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Abstract 

Various problems concerning the effects of the boundaries 

of the ocean on the propagation of pressure waves In the ocean 

are considered.    The propagation of a transient pressure wave In 

a wedge shaped region of fluid Is treated.    This Is the model 

chosen to describe the situation In which an underwater explosion 

takes place In a coastal ocean region which Is characterized by a 

strongly sloping bottom.    In an attempt to study the effects of the 

polar Ice cap on the propagation of a pressure wave, the reflection 

of a plane wave onto a rough boundary separating a fluid half space 

and a thick fluid layer of differing sound speed and density Is con- 

sldered.    These results are currently being used to construct the 

response to a transient pressure pulse and to generate numerical re- 

sults for conditions representative of underwater explosions.    The 

final section presents numerical values of the reflection coefficient 

as a function of grazing angle for the case of a plane wave Incident 

on a porous elastic bottom.    The analytical expressions used were 

derived In an earlier report of this series. 
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I.    INTRODUCTION 

The underwater detonation of an explosive charge, Whether It be nuclear or 

conventional, produces a region of high pressure.    This pressure Is transmitted to 

the surrounding water and propagates as a shockwsve in all directions.    It Is well 

known that the geometric and mechanical properties of the boundary media as well 

as the propagating media itself can strongly modify the pressure pulse that is 

sensed at a given location.    The study of such effects is necessary for an under- 

standing of underwater explosion effects and explosive echo-ranging. 

The actual situation is of course quite complex.    In the immediate vicinity of 

the explosion non-linear effects are important due to the extremely high pressures 

generated.    The pressure pulse propagates through water which is inhomogeneous, 

the sound speed and density varying with depth.    The boundary media can themselves 

be quite complicated in their mechanical behavior and furthermore the Interface 

between the water and the boundary is often highly Irregular.    In order to maxe 

any mathematical analysis tractable many simplifying assumptions must be made. 

For the purposes of this report we restrict ourselves to analyzing the pressure 

field in terms of linear acoustic theory, i.e., at distances large enough from 

the source of the explosion so that the pressure amplitude has decreased suffi- 

ciently to permit the use of the linearized equations of motion.    The fluid through 

which the pressure pulse propagates Is assumed homogeneous. 

An earlierreport    concerned Itself mainly with the effects of the mechanical 

properties of the boundary mdela, treating the boundary media as a liquid satu- 

rated porous elastic solid (mathematical model of a consolidated sedimentary 

bottom).    In this study the Interface between the bottom media and the water was 

taken as a smooth plane parallel to the free surface of the ocean. 

The present report, for the most part, will emphasize the geometric effects 

of the boundaries rather than the mechanical behavior of the boundary media. 

Sect. II treats the case of a pressure pulse propagating in a coastal region char- 

acterized by a strongly sloping bottom.    Sect. Ill concerns Itself with the re- 

flection of plane pressure waves from a rough boundary while Sec.  IV treats the 

reflection of waves from sinusoidal boundaries between various types of media. 

These results are currently being used to find the response to a transient pressure 

wave and to generate numerical results for conditions representative of underwater 

explosions.    Finally, Sec. V. presents numerical results for the reflection of a 



plane wave Incident from a liquid onto a liquid saturated porous elastic solid. 

(The theory of this was presented by Sichler and Rattayya.   ) 

II.    PRESSURE FUISE PROPAGATION JROM AN UNDERWATER EXPLOSION IN THE 
VICINITY OF A SLOPING BOTTOM 

In recent years interest has developed in the propagation of pressure waves 

from underwater explosions taking place in coastal ocean regions.    These areas are 

characterized by a strongly sloping bottom consisting of volcanic or coral rock. 

The angle that the bottom makes with the horizontal varies from about 10   to as 
_ p 

much as ho .      The situation that these regions present is quite different from 

that of either the continental shelves or the deep ocean basins, where the whter 

depth can be considered to be fairly constant. 

In order to study the problem of underwater explosions in the vicinity of 

strongly sloping bottoms, the situation is idealized by considering a transient 

point or line source situated in a wedge shaped region occupied by a slightly 

compressible, non-viscous liquid of density p, and constant sound speed c.    Cylin- 

drical coordinates (r,0,z) are introduced such that the z-axis coincides with the 

edge of the wedge and the boundary walls of the wedge are given by 0=0, and d-f. 

The boundary at 0-0 is taken to represent the ocean surface, while the boundary 

at 0«t will correspond to the ocean bottom.    The point source is located by the 

cylindrical coordinates (r ,0o,o) as shown in Fig. 1.    In contrast to the problem 

of a point source located in an ocean of constant depth, which benefits from cy- 

lindricalsymmetry, the problem of a point source in a wedge shaped region Is truly 

a three-dimensional problem. 

A rigorous mathematical model for the above situation should assume that the 

bottom boundary 0=iif is in contact with an elastic solid or another liquid of 

different density and sound speed, but this problem has been shown to be mathe- 

matically Intractable.    Kcarsley's thesis gives a detailed description of the 
3 

difficulties involved.      Therefore as a first approximation to the problem the 

ocean bottom will be assumed to be infinitely rigid, i.e., the normal derivative 

of the pressure vanishes at 0't, and the ocean surface will be taken as a free 

surface, i.e., the pressure is zero at the surface 0=0.    The method used will very 
k closely follow that of Oberhettlnger.      This reference also contains an excellent 

bibliography of earlier work on the problem of wave diffraction by wedges.    The 

present work goes beyond Oberhettlnger,  in that it solves the problem with one 

boundary rigid and one boundary free, whereas Oberhettlnger considers the case 

where both boundarier   are  either free or rigid. 



A. Line Source Rxdtatlon 

First consider the case of a time dependent line source parallel to the I- 

dlrectlon situated on the line S(r ,0 ) within the wedge. The pressure field 

within the wedge 0 < 0 < f must then satisfy the wave equation 

dr2   '^   r2ae2'c2at2' r l     ' 

where f(t) represents the time history of the source and 6(x) Is a Dlrac delta 

function, together with the boundary conditions 

pCr,0) - 0 
(II.2) 

^(r,*) - 0 

Taking a Laplace transform In time of both sides of Eq.  II. 1 results In 

ii^ii    s2- »(r-r0)*(«-e0K») 

where 

dr2     r i»2     c2 

■ 

p(r,0) - J   p(r,0,t) -8tdt 

y¥im 

P(r,e,t) -gn J        p(r,0)e8t ds 
y-l« 

(11.^) 

and 

P(s) - j   f(t)e8t dt (II.5) 

0 

Is the Laplace transfon» of the time dependent source strength.    In order to solve 
Bq. II.3 together wltJ* the truMformed boundary conditions corresponding to 

Eq. II.2, consider first the following problem; a transient source Is located at 

rar ,0-0    In a wedge shaped region 0 < 0 < a, the boundaries of which are pressure- 

release surfaces, I.e., the pressure vanishes at 9=0 and at 0=a.    The solution to 

this problem can be easily derived (see Appendix A) and Is given by 

P(M) - ^ )    •BC«.»B(«0)-«»»1|(#^0)1I|| (f r < ) I   (fr > ) (II.6) 
n n 



where r < and r > are, respectively, the smaller or larger of the quantities r and 

r , un = S" and 'o* ^' 'n8 2 for n ^ ^, ^lie solution for an image source located 
at r=r , e^x-O    is o'    o 

00 

p(r,0) = ^  > en[cosun(0-af0o).cosun(0-0o-»a)]Iv (f r <)Ku (| r >)      (11.7) 
n^O n       n 

Combining the two solutions and letting a = 2i|f one arrives at the Laplace trans- 

form of the solution to the problem posed by Kqs. II.1 and II.2, and this can be 

written as 
CO 

(r,0) = ^Z  en(cOSVn(0-0o) " cosvn{9+eo) 
n=0 

(II.8) 

+ cosun(0f0o-2t|r)-cosun(0-0o+2*)]Iu (| r <)Ku (| r >) 
u n n 

For convenience In further manipulation define the function G by 

00 

5(r)e;ro,9o) = hY .„[cosvje-^) - eo..n(»«8)]!„ (f r <», (f r » (11.9) 
n n n=0 

so that 

p(r,0) = Cö(r,0;ro,öo) + Ö(r,0jro,2t|f-0o)3 F(s) (II.10) 

k Following Oberhettlnger    It («an be shown that G can be put In the form 

G(r,0;ro,0o) = L(r,ro,0.0o)  - L(r,ro,0+0o) (ll.ll) 

where 



I^r'Vp) " kT     Ko{f[r2+ro " 2 rro cos(,W* + V)]*} 

n»^ 

"8* I   Ko[f (r +ro + 2 rro C08hx)  ] )( (II*12) 

:        8ln|^U-q>) Bin[lf{**9) ] 1 

j cosh(|^)-cos[|T(«-9) ]      cosh(^)-cos[|^(«+«p) ] | 

where n. Is the largest positive or negative number which is smaller than or equal 

to - (it-Kp/U^) and nu is the largest positive or negative number which is smaller 

than or equal to (n-cp/Ut)* If n. is greater than n the sum in Eq. 11.12 is zero. 

B. Point Source Bxcitation 

The line source solution derived in the previous section can be used to derive 

the solution for a point source. Using cylindrical coordinates (r,0,z) the point 

source is located at (r ,0 ,o)« Eq. II.l now becomes 

^2        i x.      i    ^2       ^2        ,    ^2 6(r-r )6(0-0 )6(z)f(t) 

or2      rS     r2c*2V     c2at2 

Taking a Fourier Cosine transform in z and a Laplace transform in time gives 

^2-  , i-  , ^2»    2   a   6(r-r )6(0-0 )P(8) 

or        r 00    c 

where \ is the Fourier Cosine transform parameter.    It is then obvious that one 

can derive the point source solution from the line source solution by replacing 
2    2    2 •i' 

s/c by (s /c +\ )s in the line source solution, multiplying each term of the solu- 

tion by (l/« cos\z) and integrating with respect to X from 0 to ».    In performing 
3 

the above operation one can use the following well-known relationship 

(r2
+z2rWf (Az2)*] = | f Ko[r(4 + X2)*] cosXz dX (II.15) 

0 c 



Operating on Eq.  11.12 in the above described manner we obtain 

n
2 

m = h 2_ 
exp(- -[r2+r2+z2-2rr co8(e+Unt)]2*) 

[r +r +z -2rr co8(0+^ni|f)]2 
n^n^ o o 

,       - •ln(fj(«-0)] 8in[|r(«+0)] 

- i^rJ «(«) —-^— + —-^— dx 

(11.16) 

where 

0 coshCp-cos^Ot-e)]      cosL^-cos^Cn+e)] 

B P        2       P A 
exp[ (r +r +z +2rr coshx)2] 

H(x) - — c
2    2    | 0      i (11.17) 

(r +r+z +2rr coshx)* *       o o 

Finally using Eqs.  11.10 and 11.11 p(r,d) can be written in the form 

p(r,e) -  [L(r,ro,0-0o).L(r,ro,0+0o) + L(r,ro,0-2^0o)-L(r,ro,0+2ilr-0o)] F(s)    (II.1Ö) 

where L(r,r ,0) is defined by Sq.  11.16.    Each L(r,r ,0) consists of two kinds 

of terms, one a sum of terms each of which has the same functional dependence as 

the point source but located at image points of the source with respect to the 

boundaries of the wedge.    The number of images depends on the numbers n.  and n . 

The other term is given by an integral expression which vanishes whenever the 

angle of the wedge ijt  is a submultiple of n,  i.e., ^ ■ n/ra, m » 1,2....    If this 

is the case the solution is then given by the effect of the original source and a 

finite number of image sources which are necessary to satisfy the specific boundary 

conditions.    The integral expression has been called the edge diffracted wave by 

Biot and Tolstoy. 

C.    Transient Solution 

It has been assun-ed in writing Eqs.  II.1    and 11.13 that both the line and point 

source are time-dependent, and that their time-dependence  is given by f(t).    In ao- 

plying the Laplace transform to the function f(t) it has been assumed that f(t) 

vanishes for t < 0.    What remains to be shown is how the solutions depend on f(t). 

In order to present results for the time-dependent source it is convenient to 

introduce the following notation 

R (0) «   {r2+r2+z2-2 rr    cos(0+Unt))2 (11.19) 



R (x) - {r2+r2+z2+2 rr cosh xF (II.OO) 

8in[§-(«-0)] sin[^(Ä+0)] 
g(x,0) -  —2* + 8*  (11.21) 

coshCl^-costf^n-e)]  co8h(^)-co8[f-(n+e)] 

Using the above notation t(r,r ,0) can be written as 

. V  - s/c R (0)   ,   • - s/c R (x) 

n^n. n 

The solution corresponding to the case F(s)»l, where F(s) as given by Eq. II.5 

is the Laplace transform of the function f(t), represents the response of the 

system to a Dirac delta excitation applied at the time t=0. 

This response is given by 

R (0-0  ) R (0+0 ) 

P6(r,0,t)g^;   (   R(        j 

n>l 
(11.23) 

R (0.2t+0 ) R (0+2t|r-0 ) 
fl[t-   n   c       

0 ]      6[t-   "     c     
0 ] 

+       R (0-2J+0J R (0+2t-0ÄJ n*      T    o n' 

R (x) 
xl 6[t- — ] 

where 

" 1^ I      irn^T Cg(x,9-0o)-g(x,0+0o)+g(x,0-2t+0o)-g(x,0+2t|f-0o)) dx 

(11.21+) 

2^2    2    2    2 
c t  "T  »r "Z 

x^^ - cosh"1 ( ^r-2—)    . (II.25) 
o 

For any given f(t) the first four summations can be obtained explicitly while 

the integral contribution can be evaluated numerically. 



III. SCATTERING OF A PLANE WAVE BY A ROUGH NON-SINUSOIDAL BOUNDARY BEÜVEEN A 
SEMI-INFINITE FLUID MEDIUM AMD A THICK FLUID LAYER 

The problem considered in this section is that of a plane wave scattered by 

a rough non-sinusoidal boundary between a semi-infinite fluid and a thick fluid 

layer. This is the first step necessary for the consideration of the scattering 

of a transient pressure pulse by the Arctic icecap. These results are currently 

being used to construct the response to a transient pressure pulse and to generate 

results for conditions representative of underwater explosions. 

The reflection of waves from a periodic boundary has been studied quite ex- 

tensively and for a discussion of this problem see the following section. Reflec- 

tion of waves from arbitrary non-sinusoidal boundaries has not been studied so 
6 7 extensively. Recently Abubakar and Dunkin and Eringen have studied tne reflec- 

tion of waves from an arbitrary non-sinusoidal surface by means of a perturbation 

method. It is essentially this method which is used in the present analysis. 

Consider the case of a plane wave, propagating through a fluid of density p and 

sound speed c , incident on a liquid layer of density p, , sound speed c, and of 

mean height h. The interface between the fluid and the liquid layer is tauen to 

be z=€f(x) where c is a small parameter and f(x) is the arbitrary function of x. 

The fluid lies in the half space z > cf(x), while the liquid layer, whose upper 

boundary (z» -h) is taken to be planar, then lies in -h < z < ef(x) (Fig. 2), where 

z is measured positive into the fluid half space. 

As before, a plane sound wave of unit anplitude in «RRnmftd to be obliquely 

incident upon the irregular boundary separating the two fluids. The velocity 

potential cp of this wave is given by 

_    i(a_x-Li^z) /TXX I\ «p. » e v o na ' (III.l) 

where a »k sin0 , \x  =k cos9 , (k =ai/c  ), the projections of the incident wave oo   o' o o   o'  x o    '  o** '    0 

number on the x- and z-axis respectively, 0 is the angle that the plane wave nor- 

mal makes with the z-axis as shown in Fig. 2. 

The reflected wave 9 is assumed to be of the form r 

,r . H .i(W) + i- J " A(!) .KV,,«««) d{ 
-OB 

\'T 2' where v = ^ k -5 .  In the case of a sinusoidal boundary the incident wave ex- 

cites a denumerably infinite set of plane reflected waves whereas in this case it 

is assumed to scatter a continuous spectrum of plane waves. 

8 
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The transmitted wave (p.   is assumed to be of a similar form and Is given by 
v 

(P   -T[el((JlX"Ulz) + Ce1^!^!0] 
1 (III.3) 

+ 1. I     Bft)[ei(?X-Ylz) ♦ D e1^^^] d? 

where 0, Is the angle of refraction of the transmitted wave, ^i^i slnö., 

^.»k.cose- are the projections of the transmitted wave number on the x, and z axes 

respectively, and y.-Vk-S 

We assume that the upper surface of the liquid layer z« -h Is a pressure- 

release surface. I.e., the potential given by Sq. III.3 must vanish at z« -h. 

Using this condition we can solve for C and D in Eq. III.3 and we obtain 

0 - - e21"!» 

D - - e21Ylh 

Substituting these values back Into (III.3) ve obtain 

^-Tei(alX^lz>[l.e2i^Z+h)] + 

(III.U) 

(III.5) 

nie rough boundary separating the two fluids Is given by 

z - cf(x) (III.6) 

where e is a small characteristic parameter (for example the ratio of the maxi- 

mum amplitude of the boundary to the smaller of the two acoustic wavelengths 

2jtc       2nc. 

O 'CD 1 00     ' 

In order to determine the unknowns R,T,A(f), B(?) appearing In Eq.  III.2 and 

Eq.  III.5 the boundary conditions at the interface z-cf(x) must be satisfied.    The 

two boundary conditions are continuity of pressure and continuity of normal 

velocity.    In terms of the potential functions the condition of continuity of 
pressure is 

P0(«P1 + 9r) - P^ ; z - ff(x) (III.7) 

' 



.2,-4 The conponents of the unit normal to the surface z=cf(x) are n = -ef'El+Cef') ] *, 
2 -i " n »[^(cf') ]  , where f'sdf/dx, and so the normal velocity condition is written as 

^(^-"P-)     ^  ^P_  ^P+    of* 

As mentioned earlier c is taken to be a small parameter and therefore we 

expand the functions A(5) and B(5) into power series in g. 
00 

A(5) -)  enAn(5) ■ eA^^ (5) + c^CS) + ... (III.9) 
n«l 

00 

B(5) - 2_ «\(«) ■ t\(t) * •%(*) + ••• (III.10) 
n«l 

Substituting these expressions into Eq. III.2 and Eq. III.5 and then the resulting 

expressions into Eq. III.7 yields 

po 

■ 

{e^oV^W*)^] t^fY  •BAn«
l(Vff«x) dj) = 

n-1 
(III.11) 

p {Tei(^l^l«f)[1.e2iM«f+h)]+|_ j*y .njj ei(o1x-YlSf)[liBe2iY1(cf+h)] ^ 

" -fei 

Now expanding the exponentials of the form e   into a power series 

2 2J2 
e   ■ 1 + =7— + —5-;— + ... (III. 12} 

and equating the coefficients of liKe powers of c in Eq. III.11 we obtain the 

equations 

PoRe
iaox - p^d-e21^) eialX = - p^^ (111.13a) 

^ J ' ^WS*  d5 - ^ f B(?) (l-e21^) e^  d? 
2« .» 

«.     ^      . (111.13b) 
= i f[p0U0(l-R) e1^ - p^Td+e21^) eialX], etc. 

Eqs.  III.13a and III. 13b are determined from the zeroth and first order e terms 

10 



In Eq. III.11, respectively. In order that Eq. III.13a be satisfied for all values 

of x it is necessary that ^Q^-, which means that 

sind   sind., 

co   cl 
(III.1U) 

which is the familiar expression of Snell's Law. 

In the same manner one satisfies the normal velocity condition Eq. III.8 and 

obtains the following two equations corresponding to the zeroth and first order 

terms in c. 

u/W R + MjU ♦ e£1,1lh) el0lx T - M^O* (111.15a) 

(111.15b) 

- (o^f'-i^fKi+R) eiaox - (a1f
/-i^f)(l-e2iMlh) Tei0lx 

Making use of Eq.  III.lU, Eqs.  III.13a and III.13b become 

PoR - p^l-e21^!11) T - po (III.16) 

HoR + M1(l+e2i,ilh) T - no (III.17) 

Solving for R and T we obtain 

^ (i-e21"!») . f£ (lte21ulh) 

R - -i 2  (III.1Ö) 

Ä (i.e2^lh) ♦ i (l+e2i^lh) 
h uo 

2PQ 1 T . —2 i  (III.19) 
Mo   ^ (i.e2^lh) + -2 (i+e21^h) 

^1 ^o 

In order to solve for the functions A(§) and B(5)j multiply -ach of the 

Eqs.  III.13b and III.15b by e    ^      and then integrate over x from -• to •, making 

use of the identity 

J   ei(?-S,)x dx - 21(6(5-5') (111.20) 
-00 

11 



where 6(0 is the Dlrac delta function.    The transformed Bqs.  III.13b and III.l5b 

become, respectively 

(111.21) 

1 f(§-c0){poUo(l-R) - p^Td+e21^11)) 

Vo^ftH YiCl+e21^11) B^?) - 

(111.22) 
if(5-ao){[ao(5-ao).^](1+R).[ao(5.ao)^2Kl.e2imh)T} 

where 

f(5)-J   f(x)e-15xdx 
-flD 

(111.23) 

*oo - 5;' HI) eiSx a? 
-OB 

Bqs. III.21 and III.22 can be solved for A.  and B.. The present analysis will 

only calculate the first order perturbation to the reflected wave and so we need 

only obtain jL which is given by 

Ml) - 21 fft-OCU- T^2 tan Mh][l- -^2 tan Y h])'
1 x 

0    poKl poYl 
(III.2U) 

Pi    Pi ^«1 Pi   o  Pi o 
{n (1- -i) + — -2 i- tan Y.h tan mh[o (5-a )(l- —)-^+ -h-]] 
0   PQ   po M1Y1    ^     1  0  0   po    V0 

Insertion of this value of A, into Eq. III.2 yields the first order pertur- 

bation to the reflected potential as 

•r13 ■ h f V" •i(vo'f<x) dj (111.25) 

V"2 i1 
   ,    k -g . This integral can be evaluated asymptotically, i.e., at dls- 

o    o 2 2 
tances from the origin that are large enough so that k r » 1, where Mk +z and 

the result is (see Appendix A) 

9^ - §jp e^V' V  AL(ko sine) cos0 . (ill.26) 
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Prom Eq.  III.2 it is clear that the first order perturbation to the re- 

flected potential is given by a cylindrically spreading wave. 

IV.    REFLECTION OF PLANE WAVES AT AN IRREGUIAR BOUNDARY 

The reflection of a plane sound wave from a non-planar interface between two 

media has been termed by Uretsky    a "marvelously complex problem."    The problem 
9 

was first attacked by Rayleigh   and has since apparently captured the fancy of 

many workers for there is a wealth of literature dealing with the problem.    The 

bulk of this literature however is concerned with the simplest case which is that 

of a sinusoidal pressure-release boundary.    This simplest case is trouble enough 

however,  for its solution involves solving infinite sets of equations for which, 

of course, only approximate solutions have been obtained.    There is much less lit- 

erature dealing with the case of the non-perfectly reflecting boundary such as a 

sinusoidal boundary between two fluids of different characteristic impedance, no 

doubt because the problem is a degree more difficult than the perfectly reflecting 

boundary inasmuch as the amplitudes of the rays transmitted into the second fluid 

constitute a second infinite set of unknowns to be dealt with. 

We will briefly mention the other analyses of reflection from a non-perfectly 

reflecting sinusoidal boundary.    Miles      treats the case of oblique incidence upon 

a sinusoidal boundary between two semi-infinite fluid media in contact and both he 

and Grasyuk      also look at the case of oblique incidence upon the sinusoidal bound- 

ary between a semi-infinite fluid in contact with a semi-infinite elastic medium. 

In both these analyses, the amplitude of the undulations of the boundary is assumed 

to be small compared to a wavelength of sound while the slope of the boundary is 
12 considered to be non-negligible.    However it has been pointed out by Lapin     that 

Grasyuk's work has errors. Rayleigh in his work took the opposite point of view, 

i.e., the slope of the boundary is assumed small while the amplitude of the undu- 

lations is not. Rayleigh's analysis is also available in Ref. 13« Rayleigh lim- 

ited his attention to normal incidence. 

In the analysis that follows, we extend Rayleigh's work to allow for oblique 

incidence.    An approximate solution, entirely analogous to that of Rayleigh, is 

obtained under the conditions that the acoustic wavelength is much less than the 

wavelength of the undulations of the boundary and the slope of the boundary is 

negligible.    We then treat in turn the problems of reflection from a sinusoidal 

boundary of a plane, obliquely incident wave between l) two semi-infinite fluid 

media, 2) a semi-infinite fluid and a semi-infinite elastic medium, 3) a finite 

thickness fluid layer sandwiched between two different semi-infinite fluid 
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media, and k)  a finite thickness elastic layer sandwiched between two seml- 

infinite fluid media. For these four cases, an approximate solution Is again ob- 

tained under the restriction Just mentioned, and, for the last two cases, with the 

additional restriction that the thickness of the layer be much greater than the 

amplitude of the boundary undulations. 

Before beginning the analysis, a word must be said about the controversy that 

exists regarding Raylelgh's assumption that the reflected and transmitted waves 

can be written as a superposition of plane waves, each propagating In a discrete 

direction. Although It Is agreed that this Is a valid representation for the 

scattered field at a large distance from the boundary, the controversy pertains 

to the question of whether this representation is valid near the boundary, that Is, 

In the region between the extremes of the undulations. No rigorous proof that 
Ik 

Raylelgh's assumption is incorrect has yet been published although Uretuky  pre- 
is 

sents a strong argument to that effect. Marsh,  on the other hand, has published 

an argument which he claims Justifies the Rayleigh assumption. In the analysis 

that follows, we unashamedly and without providing any additional Justification 

use the Rayleigh approach. 

A. Scattering from A 81..usoidal Boundary between Two Semi-Infinite Fluid Media 

The geometry of the problem is shown in Fig. 3« The notation used closely 
9        11 follows that of Rayleigh or Orasyuk.   A plane sound wave of unit amplitude* 

(defined by the velocity potential «p.) is assumed to be obliquely Incident upon 

the sinusoidally rough boundary (it Is assumed that there is no y-direction varia- 

tion of the boundary undulations). 

^ - exp i(oox - noz) (IV.1) 

where a   and u   are the projections of the incident wave number upon the x- and oo 
z-axes respectively. I.e., a =k sind    and u =k cosö (k -cu/c ). ^ " '   o   o       o 'o    o       ov o   '  o7 

According to Rayleigh,    this incident wave excites a denumerably infinite 

set of plane reflected waves <p   and of plane transmitted waves (p., which can be 

written 
OP 

^r '   /       An "wW^o + ga^X * V1^ (IV*2^ 

with MJ; - k* - (ao + gn)2 (IV.3) 

*The harmonic time factor exp(-lcut) will, as usual, be suppressed. 
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^ - V   Bn exPCi[(ao + gn)x - V]} (IV.4) 

with \'*l- (a0 + gn)2 (IV.5) 

where g 1B proportional to the reciprocal of the wavelength of the boundary 

undulations (see Fig. 3). Kef. 16 contains an excellent physical explanation 

for writing the reflected and transmitted waves In this fashion. The restriction 

Eq. IV.3 on the direction cosines of the reflected rays, \x  , results from the 

fact that Eq. IV.2 must satisfy the wave equation In the Incident fluid* the re- 

striction IV.5 arises In an analogous fashion. 

The ray defined by n«0 Is the specularly reflected one. I.e., the one for 

which the angle of reflection equals the angle of Incidence and the only one which 

would be present if the boundary were plane. The rays defined by n > 0 are some- 

times called forward scattered, while those for n < 0, backward scattered. If 
2 2 

(a+gn) is greater than k , for some n, then the corresponding \x   Is imaginary and 

hence that ray and all rays defined by larger values of n are exponentially atten- 

uated with distance from the boundary and hence contribute nothing to the sound 

field at large distances from the boundary; these attenuated waves are called 

inhomogeneous or evanescent waves. Note that if K   Is less than \ , (i.e., g > k) 

all rays except n»0 (and possibly n>l, depending on 0 ) are inhomogeneous, i.e., 

the rough boundary reflects Just as a plane boundary. 

The unknown coefficients A and B are determined from the two boundary con- 
n    n 

dltions which are continuity of pressure across the boundary and continuity of 

normal velocity. 

P0f - P^ (IV.6) 

&p/dn - fcty'dn (IV. ?) 

where cp^cp +9   and n Indicates the normal direction to the boundary.    The equation 

of the boundary is z»C0O and consequently Eq. IV.7 can be written 

ö(9 - 9,)     fc. ä(9 - 9,) 

9 
At this point In the analysis, we must make the basic approximaMon Rayleigh 

did.    It consists In saying that the slope of the boundary is very small. I.e., 

bQ/bx. « 0. 
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For £(x)=a cos (2itx/\h), this means that 2jta/\.  «0 or the amplitude of the 

undulations must be very much smaller than their wavelength.    With this approxi- 

mation and the definitions of the potentials in Eqs. IV.1, IV.2, and IV.k, the 

boundary conditions become (the limits of summation which are always -» to +• 

are omitted). 

^ Bnexp{i[(oo+gn)x-xnz]3 - T
2
   exp{i(a x-|i z)} 

z-C(x) pl '' 0     0 

+ ) A exp {1 [ (a +gn)x+u z ] }| 
n    l-C(x) 

.inoexp{i(aox-noz)}+ i 2_Annnexp{i[(ao+gn)x+iinz]} 

(IV.9) 

(IV. 10) 

i ' B x exp{i[(a +gn)x-x z]] = 0 
z=C(x) 

At this point in the analysis we must introduce another approximation which 

naturally restricts the applicability of the results but which makes the solution 

of Eqs. IV.9 and IV.10 tractable. This approximation consists of restricting our 

attention to high frequencies such that \ << \-    It is then true that 

gn « a < k. We also assume that the wavelength in the transmitted medium is 

much less than X. so that gn « k.. It is also evident that for these inequali- 

ties to hold we must restrict our attention to rather small values of n, i.e., 

to the first one or two rays on either side of the principal (n=0) ray. However, 

as noted earlier, the rays defined by large n are quite likely to be inhomogeneous 

and thus contribute nothing to the sound field at a large distance from the 

b oundary. 

With the approximations Just described, we can write 

\i   « Vk
2_a

2 - k cos0 (IV. 11a) 
n    o o   o   o v    ' 

X « Vk?-a2 = k.cose. (iV.llb) An    1 o   1   1 

Snsllfe law, (sin01)/c1=(sin0 )/c was used to obtain Eq. IV.llb. We can now 

bring \i    and Y    out from under the summation signs in Bq. IV. 10. 

In this report, we are primarily concerned with determining what is reflected 

from the boundary and hence we will only solve for the coefficients A , although 
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there is no difficulty in solving for the transmitted rays as well.* We use 

Eq. IV. 9 to eliminate tl 

algebra, can be written 

Eq. IV.9 to eliminate the coefficients B from Eq. IV. 10 which, after a little 

"y+Z^I exp[-i 2koC(x) cos0] + ^An expUgnx] = 0 (IV.12) 

where 

plCl . -        Vo Z, = -±3- and Zn = -2-2_ (IV.13) 
1       cosö. 0       COS0 1 o 

The first factor in the first term of Eq. IV.12 Is of course the plane boundary 

reflection factor which we denote by R.    Employing the standard identity 

00 

exp[-i a cos(gx)] =   )       (-i)n Jn^ expt1«1«] {lV,lk) 
n= -OB 

in Eq.  IV.12. where J    is the Bessel function of the first kind of order n, we ' n 
finally obtain this result. 

R Y (-i)n Jn(2k a cos0  ) exp[ignx] = ^ An exp[ife.ix]. (IV.15) 

It is now a trivial task to obtain the  coefficients A   by equating terms with 

the same x-dependence [note that J    =(-l) J ]. 

A     = RJ (2k a cos0  ) A-    - -RJ_(2k a cose  ) o ov    0 o 2 2X    o o 

A,    =  -iRJ.(2k a cos0  ) A 0 - -RJ0(2k a co80 J j. lx    o o -2 2''    o o 

A , = -iRo,(2k a cos0  ) etc. 
-1 1N    o o 

These results are very similar to those obtained by Rayleigh for the case 
9 

of normal incidence;  in fact Rayleigh,    before leaving the problem of scattering 

from a rough boundary, gives the above result for the amplitude of the specularly 

reflected ray (i.e., n=0).    It is noted that the amplitude of the corresponding 

rays on either side of the specular direction are precisely equal, i.e., 

A1=A ,.    The results Rayleigh quotes for normal incidence are presumably the total 

*In Sec.  B for illustrative purposes we actually solve for other than the 
reflected waves. 
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amplitude of the pair of corresponding rays since his A. is twice the result given 

here and he quotes no result for A ,. For large argument, all Bessel functions 

look like damped sinusoids; therefore, with increasing frequency, less and less 

sound is reflected in the specular and near-specular directions. This is one of 

the basic features of the transient response. Furthermore the most damaging com- 

ponent of the pressure wave is associated with the specular reflection. 

We turn now to the consideration of scattering of a plane wave incident from 

a fluid onto other media. It is stressed that throughout the remainder of the re- 

port, the two basic approximations already encountered, i.e., that the slope of 

the boundary is small and that the wavelengths of all reflected or refracted com- 

pressional or shear waves are small compared to the wavelength of the boundary, 

will be employed. Because the analyses are very similar to the preceding, their 

presentation will be quite brief. 

B. Scattering from a Sinusoidal Boundary between a Semi-Infinite Fluid Medium 
and a Semi-Infinite Elastic Medium 

The geometry of the problem is essentially that of Fig. 3 except that we now 

assume the upper medium to have a shear wave velocity b.. and, correspondingly, a 

set of shear waves defined by the potential ilf. 

r1 
Cn exp{i[(ao+gn)x-Jnz]} (IV.16) 

n= -• 

un ' Hl " CVgn)2 (IV. 17) 

where 

Kl B "^l    * 

The boundary conditions are continuity of normal displacement,  continuity 

of normal stress and vanishing of the tangential stress.    In terms of the potentials 

cp (={p.-Kp ), tp,  and ilr. , these become      (assuming dj/dx « 0) 

*p     ^1      ^1 
oz      oz        ox 

PT 1      „2    ^.2 dxdy' K 

cixdy 6zc 

6xc 

dxz 

at z=C(x) 

= 0 

(IV.18) 
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The assumption that all wavelengths are small compared to that of the boundary 

allows us to write, as before. 

u w k cosd 
n   o   o 

Xn « ^ cose^^ (lV.19a,b,c) 

un * kl C08Y1 

The angles 0., and y-i^ are defined by Snell's law 

sine   sine,  sinv, 
 2 i = —± (IV.20) 

cl bl ■ 
> 

where y is the angle that the principal (n=0) ray of the set of transmitted shear 

waves makes with the z-direction. 

For convenience, let us introduce the notation 

A « 2-An exp[i(gnx + |inC)] 

B = V" Bn exp[i(gnx - ^01 (lV.2Li,b,c) 

C = A Cn wcPliC8n3C " u
nC)] 

Whence the boundary conditions Eq.  IV. 18 become, after some algebraic manipulation 

-   COSe  *  CO80- 
o c, 1 

— cos 2Yi 
pl ^ 

,   c    sin 2Y. 
1 _o  VI 
2 b,     cosy. 

sin 2Y, 

b    sin 2V, 

c^    cosy1 

Solving for A, we find 

cose .       cos 2Y, 

B 

C 

L J 

-cose exp(-ik Ccose  ) o   rv     o*       o 

p 
— exp(-ik Ccose  ) P1     ^v     o^       o' (IV. 22) 

where 

A ■ exp(-ik Ccose ) o o 

"ih 

2 2 
Z.cos 2Y, + Z.sin   2Y, - Z 1 Tl       t Tl        o 

2 2 
Z..COS 2Y, + Z.sin   2Y, + Z LI          Tl       t            Tl        oJ 

(IV.23) 

t      COSY-, 
(IV.21+ 

while Z    and Z.  were defined in Eq. IV.13. o 1 -» -» 
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The term in brackets is, again, simply the plane boundary reflection factor 

(denoted V in Brekhovskikh  ').    Therefore we write 

Anexp(ignx) = V exp[-i(2k a cos0 )cos(gx)] (IV.25) 

which, with the identity IV.h, becomes 

00 

y Anexp(ignx) = V   /      (-i)nJn(2koa cos0o) exp(ignx) (IV.25) 

n=-op n=-oB 

whose solutions are 

A = V J (2k a cos0  ) 
o      o o 

A^ = -i V J1(2k a cos0  ) (IV.27) 

A±2 " "V J2^koa COS0o^ 

Note that if we solve Eq.  IV.22 for B, we obtain 

y^B exp(ignx) » W exp{-i[(k cos0    - k.cose.) a cosgx]} (IV.28) 

where W is the amplitude of the transmitted compressional wave in the case of 
iß 

a plane boundary.        Eq.  IV.20 has the solutions 

Bn - W (-i)nJn[(k cos0o - k1cos01)]  . (IV.29) 

If we solve Eq.  IV.22 for C, we obtain 

>   Cnexp(ignx) = P exp{-i[(k cos0    - H cosY1)a  cosgx]) (IV.30) 

where P is the amplitude of the transmitted shear wave in the case of a plane 
19 boundary.        Eq.  IV.30 has the solutions 

Cn = P (-i)nJn[(kocos0o - H1cosY1)a] (IV.31) 

C.    Scattering from the Sinusoidal Surface of a Thick Fluid Layer Sandwiched 
between Two Different Semi-Infinite Fluid Media 

The geometry of the problem is  illustrated in Fig.  k.    In addition to the in- 

cident wave «p. ,  the reflected wave in the incident medium (p    and the transmitted 

wave in the second medium 9-. , we must allow for a reflected wave from the plane 
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surface of the intermediate layer (the surface at z= -h) which we denote tpp and 

for a wave transmitted into the third fluid media, which we denote <p . We write 

these two additional potentials in this fashion 

DnespCi[a+gn)x + X^]) (IV. 32) 

2 2 2 
where ^ ■ ^-(o+gn) 

<P+ 

OB 

n=-<» 

exp{i[(ao+gn)x - T\nz]] 

2 2 2 
where \ - ^ " ^ao+gn^ 

(IV.33) 

(IV.3U) 

(IV.35) 

It is evident that even though we have a plane boundary, these two wares must 

be written in the same fashion as the infinite set of waves associated with a 

sinusoidal boundary to be able to match the boundary conditions; for example,  if 

the plane boundary of the  intermediate fluid were a free boundary the potentials 

tp.  and <p_ would obviously have to cancel each other and, given (p.,  (Eq.  IV.4), 

this  could only be possible if y2 has the form defined above. 

The boundary conditions are again continuity of pressure and normal velocity 

at both z=r(x) and z= -h.    Under the assumption of negligible boundary slope, these 

become 

PoK + V = P^-L + 92) 

d^i + <Pr) 
bz hz       ■ 

pl({pl + ^ "  P2*t 

£(?! + «P2) 
v2 

^t 
c hz' 

at z-C(x) (lV.36a,b) 

at z= -h (lV.37a,b) 

As usual, the assumption that all wavelengths are small compared to that of the 

boundary allows us to approximate the direction cosines as in Eq.  IV. 19a,b and 

in addition to write 

\*k2 COS0, (IV. 38) 
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where 92 is defined by Snell's law 

sind        sind.      sin0o o 1 2 
(IV.59) 

Bnploying the shorthand notation introduced in Eq.  IV.21 (where D and E are the 

right-hand sides of Sqs.  IV.32 and IV.33, less the factor exp(ipz), the four 

boundary conditions can be cast in the form 

-ik.^cosö^ n ^iCcosöi 
-poe    o^        c P1e ple 

k cose eikoCcos0o   kcos9    '^iCcosO! ik^cosÖ! 
o o 11 11 

ik^hcosö^ 
ple 

.        a    -ikihcosei k.cosö.e      ■L ■L 

ple 
•ik^hcosöj. -P2e ik2hcos02 

-k^ose^-^i^^^-kgcose^1^11008^ 

B 

E 

ik Ccos0A Poe   o'        o 

.        ö    -ik C,co8$ 
k cosö e      o o 

o       o 

0 

0 

Solving for A, the amplitudes of the set of reflected waves in the incident medium 

we obtain 

(IV. to) 

TO 

E 
n« -« 

where 

A eignx^-iZk CcoseJ 
n 

z z  z 
(-1+ ^cosfk^hfOcose^-i^ - ^)iin[k1(bfC)ooie1] 

z z  z 
(1+ ^)cos[k:L(h+C)co801]-i(gi+ ^)sin[k1(hfC)cos01] 

(iv.ia) 

>        P2C2 
J2 * coc6. (IV.142) 

while Z and Z. were defined in Eq. IV.13. 

Now if £ is negligible compared to h (i.e., if the amplitude of the boundary 

undulations are small compared to the thickness of the intennediate layer) so that 

we may discard it in the arguments of the sines and cosines in the factor in brackets 
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in Eq. IV. Ul, then that factor reduces to the standard plane-boundary reflection 
20 factor for the three-fluid layer problem.   '   We denote the factor by fi. 

Employing the Bessel function identity Bq.  IV.14, Eq. IV.Ul becomes 

OP 00 

Y  Anei6nx = ^  V  (-i)neignx Jn(2koa cos0o) (IV.43) 

which has solutions 

A., = Q (-i)n J (2k a cos© ) (IV.UU) n n     o o 

If one were to solve for the amplitudes of the various other sets of waves, 

B, D, or E, the results would quite evidently be the appropriate reflection or 

transmission factor from the plane boundary case multiplied by a Bessel function 

whose argument involves the difference of wave numbers as in Eq.  IV.29 and IV.31* 

D.    Scattering from the Sinusoidal Surface of a Thick Elastic Layer Sandwiched 
between Two Different Semi-Infinite Fluid Media 

The geometry of the problem is the same as in Fig. h except we now assume the 

intermediate layer to have the shear wave velocity b, and correspondingly, two 

sets of shear waves - one set that originates at the sinusoidal boundary and the 

other that represents reflections from the plane boundary. 

It is evident from the preceding work that under the three basic assumptions 

made in this analysis, viz., negligible boundary slope, all wavelengths much less 

than the boundary wavelength and layer thickness much greater than amplitude of 

boundary undulations, the reflection or transmission factors for a sinusoidal 

boundary are simply the corresponding factor for a plane boundary multiplied by 

a Bessel function whose argument involves the wave numbers in the appropriate 

media, the amplitude of the boundary, and the angle of incidence.    We shall there- 

fore spare the reader's time and simply quote the answer for the reflection co- 

efficients A   of the reflected potential (Eq. IV.2), 

A    = r(-i)n J (2k a cos0  ) n        N    '      ox    o o7 

where T is given in Ref. 21. 
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E.    Scattering from a Sinusoidal Boundary between Two Semi-Infinite Fluid- 
Media - Slope of Boundary Not Negligible 

Let UG return to the problem considered in Sec. A and relax the condition 

on the slope of the boundary,  i.e., let us try to solve the problem using the 

exact   form of the second boundary condition (Eq.  IV.8).    For C=a cosgx, this 

second boundary condition can be written 

-M e-^+^A U e^^n') + V  B x e1^"3^ = ^o t—.   n n L~    n^n 
^ ^ (IV. 45) 

Employing the approximation that all wavelengths are much smaller than that of 

the boundary so that [i »& cosO   , •% »iv, cos0n  and o +gnftk sinö    (note that because no       onl       1 o0o       ov 

of this last approximation, theresults below will not be strictly valid for nor- 

mal incidence), eliminating the B    from Eq.  IV.45 by the use of Eq.  IV.9, and 

finally employing the Bessel function identity Eq.  IV.14, we obtain this relation- 

ship for the amplitudes of the reflected rays 

(Z0-Z1)^(.i)n Jn(2koa cosej e^ + (Z^ A/^ = 

(IV.46) 

^[Ztane (^ . l)KelfiX.e-1gJC)y" [(-i)n J (2k a cosö )+A ]eignx 
2   1   oV, L-t    x '  ns o    o  n 

If we now equate terms with the same x-dependence on both sides of the equation, 

we generate an Infinite set of coupled equations each of which involves three of the 

unknown A . For example, gatherinr; the terms that have no x-dependence and that 

have x-dependence exp(±igx) results in these three equations 

Ao =BJ(a' + rlrt-VA-i: 
1  0 

k^    = -iR^Ca) + ^-^ [J0(a)+J2(a)+A0-A,J (lV.U7a,b,c) 

A^ - -IRJ^a) + g-|j- [-J(a)-J2(a)-A0+A_2] 

where 

a = 2k a cos0    and ß «  (-iar/2)[Z1 tane  (p0/p -l)]. 
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In general, the nth coefficient A., is coupled to both A    ,  and A    ,.    We solve n -^ n-l n+1 /Q\ 
these by Iteration, i.e., we use the results obtained in Sec. A (now denoted A^  ' 

in the right-hand side of these equations, to generate a first order correction 

(denoted A^      which includes the slope of the boundary.    Noting that A^  '»A*    , n -n     +n 
we obtain 

A^ = Rj(a) 

m (2Zi) 
A)^ = -iRJ (a) + ß i-^ [J (a) + J (a)] (lV.liöa,b,c) 

A^; = -iBJAa) - 0 ^-5 [J0(a) + J-(a)] 

Employing the identity 

Jn-l(a) + JiH-l(a) = 2nJn(a)/a ' (IV. U9) 

the last two equations can be written 

fi\ 0        [^(po/p-,)] 
Ait' - -iRJ, (2k a cos0 Hi* .6 o    tanö« (IV.50) ±1      lv o    o""  k cos0 r, /„ /- x2,    o \  x / o   o [I-CZQ/ZJ^) J 

In general 

A^:) - (-i)^ (2k a cose ){& r-Sß-- ^^ x tanö (IV.51) ±n   ^ '  n^ o    o'1  kocos0o [i^/^j    0 

The correction term is seen to be independent of a, the amplitude of the boundary 

undulations. Also the correction term has destroyed the symmetry of the 

amplitude coefficients so that A_ no longer equals A . 

V. THE REFLECTION OF PLANE WAVES TOOM A LIQUID-SATURATED POROUS ELASTIC HALF-SPACE 
i 

In an earlier report" formulas were derived for the reflection coefficient 

for a plane harmonic wave incident on a porous fluid saturated elastic solid using 
22 field equations derived by Biot.   The reflection coefficient so formulated de- 

pends on seven parameters characterizing the liquid-saturated porous elastic solid 

as well as the density and sound speed of the fluid in which the plane wave 
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propagates.    The seven parameters characterizing the porous elastic solid are: 

1. p , the density of the pure compacted solid. 

2. p , the density of the fluid which saturates the solid. 

3. Cu, the unjacketed congressibility of the liquid saturated elastic solid. 

h. C.t the Jacketed conpressibility. 

5«    N, the shear modulus of the material. 

6.    x* tt16 structure factor. 

7»    0, the porosity. 

The physical significance of the above parameters are described in the report 
by Eichler and Rattayya. 

Certain of the above parameters can be determined from experiments while the 

others must be estimated.    For example, the only measurements made of unjacketed 
23 and Jacketed compressibility were those made by Fatt. "*   However these were made 

for a kerosene saturated sandstone under static conditions  in the laboratory and 

in any case would not be applicable to a theory Which attempts to model the ocean 

bottom.    A similar situation exists with regard to x> the structure factor; a 
2k factor x approximately equal to 4.3 has been measured for an air-filled sand. 

Very few measurements of the shear wave velocity in ocean bottom sediments are 
25 available.    In fact the only oner we are aware of are those reported by Laughton. 

With the above limitations in mind, a numerical procedure to determine the 

reflection coefficient as a function of the grazing angle has been developed and 

programmed for a digital computer.    Assumed values for the structure factor x 

and the unjacketed compressibility C    together with experimentally obtained values 

of the porosity 0, saturating fluid density p    (in all cases the saturating fluid 

density is that of sea water) the bulk density p (mass per unit volume of the com- 

bined solid and liquid), the dilatational wave speed V , and the shear wave speed 

V , are entered into the program.    The program then proceeds to  calculate the s 
quantities necessary for the determination of the reflection coefficient. 

In each case the calculations were performed for a relatively large structure 

factor x"ll and two smaller structure factors x"!/ and X=2.    The data used was 

that of Laughton on Globigerina Ooze. 

In both Figs. 5 and 6 we show plots of the bottom loss per reflection versus 

grazing angle for a given set of parameters.    The bottom loss per reflection is 

defined by [-20 log|R|] where |R| is the modulus of the reflection coefficient. 
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In each figure we show two plots, one for a value of C =.1 Cf and the other for 

C ».2 C  , where C    Is the compressihHity of the saturating fluid.    Fig. 7 shows the 

bottom loss per reflection for a given set of parameters for two different values 

of the structure factor \=1, and x=2.    It is characteristic of each of these plots 

that there is some angle at which the bottom loss is a maximum.    There is also 

some angle above which the bottom loss is relatively insensitive to change in the 

grazing angle.    Pig. 8 shows & plot of the phase angle «p of the reflection coef- 

ficient superimposed on a plot of bottom loss.    From this figure we see that the 

angle above which the bottom loss is fairly constant is precisely the critical 

angle 0  , where 0    is given by 0 =cos" (c /V ), c    is the sound speed in the fluid 

and V    is the dilatational velocity in the solid (i.e., the angle for vhich the 

phase angle of the rjflection coefficient goes to zero). 

Since we have neglected viscosity in the above calculations the reflection 

coefficients obtained are independent of frequency. 

APPENDIX A:    Laplace Transform of Time Dependent Green's Function for a Wedge 
with Pressure-Release Walls 

Consider the problem of a source with Dirac delta time dependence located at 

the point S(r ,0  ) within a wedge-shaped region 0 < 0 < a, the boundaries of which 

are pressure-release surfaces.    The pressure must therefore satisfy the equation: 

N2        n  x.      i    ^2       T    ^2 6(r-r )6(ö-0 )*(*) op  .  1 op .  1    op     1    op v      o7  v     o/  v /A -n 
v 2      r Sr       2 ^2 '   2 ^2 " r ^'^ or r   00       c    ot 

and the boundary conditions 

p(r,0) - 0 
(A.2) 

p(r,o) - 0 . 

Taking a Laplace Transform in time yields the following system of equations: 

^2-      ,  •*-      ,    N2-       2 6(r-r )6(0-0 ) 

dr2      r*     r2002     c2P r {    3) 

and 

p(r,0) - 0 

p(r,cO - 0 

where p(r,0) is the Laplace Transform of p(r,0,t). 
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The angular eigenfunctions corresponding to the boundary conditions {B.k) are 

V0) " An sin ^ (A,5) 

where 

:
n= ZT > nsl>2>3  ••• (A-6) 

Assxaning that the transformed pressure p can be expanded in the form 

00 

p(r,e;s) = )  An(r;s) sin vn0 (A.7) 

n=l 

and using the orthogonality of the eigenfunctions over the range 0 < 0 < a it 

is found that the functions A must satisfy n 

d2A        ,  dA 2      u? 0 6(r-r ) 
.^i + 1     *      (i*   + ^) A   . - I sin v 0   -—2- (A.8) 
,2rdrv2       2/n a nor x/ 

dr c       r 

Equation A.o is solved using Hankel Transforms and the result is 

A (r,s) = I sin u 0    I    (- r <) K    (-r >) (A.9) nv  '  '     a n o   u xc        '    v    c      ' v    >-/ n n 

where r < and r > are, respectively, the smaller or larger of the quantities 

r and r . o 
Using the identidy 

sin v 0 sin u 0 = T- {cosu (0-0 ) - cosu (0+0 )} (A.IO) no    n   2    nv  o      nx  o v 

the solution to the set of equations A.3 and A.h  can be written as 

00 

P(r,0;s) = ^)  en[cosvn(0-0o)-cosun(0+0o)] I (f r <)K (f r >) (A.ll) 

where e =1 and e =2 for n > 1. o      n       — 
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APPENDK B: Aavtrrototlc Evaluation of I 

Consider the integral I where I is of the form 

(B.l) 

where the integral is taken along the real axis in the 5-piane and the branch of 

\n?-r Is that for which ImVk2-?2 > 0 (see Fig. 9a). 

We define a conformal transformation    5=k sincp   from the 5-plane to the region 

- | < Recp < |   of the 9-plane.    Then 

I = f J A(k sincp) e^0(xsin9fzcosq)) k ^ ^ 
2« «J      '  o 

c 
(B.2) 

= ^ J A(k sincp) e±KoC08^-d)  coscp d(p 

where x=r sln0, and z=r cos9, and where the contour C is as shown in Fig. 9h. 

This integral may be evaluated asymptotically for the case where k r » 1 by the 

method of steepest descents.    Letting 

F(cp)= coscp(k sincp) 

we have 

1-iS m eVC08^-0) dcp    . 

(B.3) 

(BA) 

The location of the saddle point is found from the condition 

[3L(lkorco8UM)] = 0 (B.5) 

so that the saddle point (SP) is at cp = 0.    The path of steepest descent (PSD) 

through the saddle point is given by 

Im {ik r cos(cp-0) - Ik r) = 0 

i.e.,        Ke[co8(«p-0)-l] = 0 > (B.6) 

or cos(u-0)  cosh v = 1 

if cp = u + iv. 
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This path Is sketched In Fig.9b. We deform the contour C Into the PSD and, 

since the Integrand decays rapidly away from the saddle point on this contour, we 

approximate the integral by its value along a small section of the path around the 

saddle point. The leading term of the asymptotic expansion for I is then given as 

l~\ni-  cose A(k sine) e^V-«/10 

provided dfii/2,  and A(k sind)  is bounded and non-zero. To this must be added 

the residues of the integrand at all poles which lie between the original path C 

and the steepest descent path (a possible set of these poles are shown circled in 

the figure). The poles are given by the zeros of the transcendental equation 

i tan v.h = -2-=- where y, ■ 'k?-* • (B.8) 
1   PJYQ Tl    1 ^ v  ' 

Since itjCS) is an even function of y,,  there are no branch cuts necessary 

to make Y^ single-valued, so long as h is finite. As h -• • the poles become more 

and more numerous along a line which in the limit becomes a branch line. 
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0=0 

0=^/ 

Fig. 1. Geometry of the problem associated with a point source 
at S(r ,6  ,0) located within a wedge whose boundaries 
are gi9en0by 0«O, 0«^. 
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z=-h 

2=€f(x) 

Flg. 2.    Geometry of the problem associated with a plane wave 
(P-  Incident on an arbitrary rough Interface z=ef(x). 
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Xb = 21r/g 

z=C(x)    ] 
= acosgxJ 

Pi»ci 

z 

Fig. 3' Geometry of the problem associated with a plane sound 
wave obliquely incident onto the sinusoidally rough 
boundary between two semi-infinite fluid media. 
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flg.  h.    Geometry of the problem associated with a plane sound 
wave obliquely Incident onto the sinusoidal boundary 
of a thick fluid layer sandwiched between two different 
serai-infinite fluids. 
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t Plane: 
ImC 

(D 

® 

© 

ReC 
(a) 

© 

4> Plane 

— Re^) 

(b) 

Fig. 9. (a) Integration path for evaluation of integral in Eq. B.l in the 
complex 5-plane. (b) Integration path in the complex «p-plane for 
evaluation of integral in Eq. B.2, also showing steepest descent 
path as well as possible pole locations. 
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