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Abstract

Various problems concerning the effects of the boundaries
of the ocean on the propagation of pressure waves in the ocean
are considered. The propagation of a transient pressure wave in
a wedge shaped region of fluid is treated. This is the model
chosen to describe the situation in which an underwater explosion
takes place in a coastal ocean region which is characterized by a
strongly sloping bottom. In an attempt to study the effects of the
polar ice cap on the propagation of a pressure wave, the reflection
of a plane wave onto a rough boundary separating a fluid half space
and a thick fluid layer of differing sound speed and density is con-
sidered. These results are currently being used to construct the
response to a transient pressure pulse and to generate numerical re-
sults for conditions representative of underwater explosions. The
final section presents numerical values of the reflection coefficient
as a function of grazing angle for the case of a plane wave incident
on a porous elastic bottom. The eanalytical expressions used were

derived in an earlier report of this series.
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I. INTRODUCTION

The underwater detonation of an explosive charge, vhether it be nuclear or
conventional, produces a region of high pressure. This pressure is transmitted to
the surrounding water and propagates as a shockwave in all directions. It is well
known that the geometric and mechanical properties of the boundary media as well
as the propagating media itself can strongly modify the pressure pulse that is
sensed at a given location. The study of such effects is necessary for an under-
standing of underwater explosion effects and explosive echo-ranging.

The actual situation is of course quite complex. In the immediate vicinity of
the explosion non-linear effects are important due to the extremely high pressures
generated. The pressure pulse propagates through water which is inhomogeneous,
the sound speed and density varying with depth. The boundary media can themselves
be quite complicated in their mechanical behavior and furthermore the interface
between the water and the boundary is often highly irregular. In order to make
any mathematical analysis tractable many simplifying assumptions must be made.

For the purposes of this report we restrict ourselves to analyzing the pressure
field in terms of linear acoustic theory, i.e., at distances large enough from

the source of the explosion so that the pressure amplitude has decreased suffi-
clently to permit the use of the linearized equations of motion. The fluid through
which the pressure pulse propagates is assumed homogeneous.

An earlierreportl concerned itself mainly with the effects of the mechanical
properties of the boundary mdeia, treating the boundary media as a liquid satu-
rated porous elastic solid (mathematical model of a consolidated sedimentary
bottom). In this study the interface between the bottom media and the water was
taken as a smooth plane parallel to the free surface of the ocean.

The present report, for the most part, will emphasize the geometric effects
of the boundaries rather than the mechanical behavior of the boundary media.

S8ect. II treats the case of a pressure pulse propagating in a coastal region char-
acterized by a strongly sloping bottom. 8ect. III concerns itself with the re-
flection of plane pressure waves from a rough boundary while 8ec. IV treats the
reflection of waves from sinusoidal boundaries between various types of media.
These results are currently being used to find the response to a transient pressure
wave and to generate numerical results for conditions representative of underwater
explosions. Finally, S8ec. V. presents numerical results for the reflection of a



plane wave incident from a liquid onto a liquid saturated porous elastic solid.
(The theory of this was presented by Eichler and Rattayya.l)

II. PRESSURE PULSE PROPAGATION FROM AN UNDERWATER EXPLOSION IN THE

VICINITY OF A SLOPING BOTTOM

In recent years interest has developed in the propagation of pressure waves
from undervater explosions taking place in coastal ocean regions. These areas are
characterized by a strongly sloping bottom consisting of volcanic or coral rock.
The angle that the bottom makes with the horizontal varies from about 10° to as
much as h0°.2 The situation that these regions present is qQuite different from
that of either the continental shelves or the deep ocean basins, where the water
depth can be considered to be fairly constant.

In order to study the problem of underwater explosions in the vicinity of
strongly sloping bottoms, the situation is idealized by considering a transient
point or line source situated in a wedge shaped region occupied by a slightly
compressible, non-viscous liquid of density p, and constant sound speed c. Cylin-
drical coordinates (r,9,z) are introduced such that the z-axis coincides with the
edge of the wedge and the boundary walls of the wedge are given by 6=0, and O=y.
The boundary at 6=0 is taken to represent the ocean surface, while the boundary
at 0=y will correspond to the ocean bottom. The point source is located by the
cylindrical coordinates (ro,eo,o) as shown in Fig. 1. In contrast to the problem
of a point source located in an ocean of constant depth, which benefits from cy-
lindricalsymmetry, the problem of a point source in a wedge shaped region is truly
a three-dimensional problem.

A rigorous mathematical model for the above situation should assume that the
bottom boundary 6=y is in contact with an elastic solid or another liquid of
different density and sound speed, but this problem has been shown to be mathe-
matically intractable. K:arsley's thesis gives a detailed description of the
difficulties involved.3 Therefore as a first approximation to the problem the
ocean bottom will be assumed to be infinitely rigid, i.e., the normal derivative
of the pressure vanishes at 9=y, and the ocean surface will be taken as a free
surface, i.e., the pressure is zero at the surface 6=0. The method used will very
closely follow that of Oberhettinger.h This reference also contains an excellent
bibliography of earlier work on the problem of wave diffraction by wedges. The
present work goes beyond Oberhettinger, in that it solves the problem with one
boundary rigid and one boundary free, whereas Oberhettinger considers the case
where both boundaries are either free or rigid.

R



A. Line 8Source Excitation

First consider the case of a time dependent line source parallel to the z-
direction situated on the line s(ro,eo) within the wedge. The pressure field

within the wedge 0 < 0 < y must then satisfy the wave equation .
2 2 2 -6(r-r_)6(6-0 t
Sp,l¢,1.3p L3p, (r-zp)e(0-0,) ) (11.1)
at T P ot &
vhere f£(t) represents the time history of the source and 6(x) is a Dirac delta
function, together with the boundary conditions
P(r:e) =0
(11.2)
%(r’*) =0
Taking a Laplace transform in time of both sides of Eq. II.l results in
- . - " ’
& 1 & 2 . 8(r ro)a(e eo)r\s)
32 Ty 2PTT T (12.3)
r c
where
®
- -8t
P(rie) 'f P(r:e:t) *Yat }
0
(I1.4)
yhie )
(r,0,t) = 4 p(r 0)e®® as
P\T,v, ol P\T,
y-ie=
and /
[ ]
Ns) = j £(t)e®t at (11.5)
0

is the Laplace transform of the time dependent source strength. In order to solve
Eq. II.3 together witr the tramsformed boundary conditions corresponding to

Eq. II.2, consider first the following problem; a transient source is located at
r=r ,6-90 in a wedge shaped region 0 < 8 < @, the boundaries of which are pressure-
release surfaces, i.e., the pressure vanishes at 6=0 and at 6=xx. The solution to
this problem can be easily derived (see Appendix A) and is given by

p(r,0) = !gl; ¢, [cosv, (6-6 )-cosv (640 )]I (% r<)K (%r > ) (11.6)
n n
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vhere r < and r > are, respectively, the smaller or larger of the quantities r and

T v, = -35 and ¢ = 1, ¢,= 2 for n > 1. The solution for an image source located

at r=r , e=a-6° is

p(r,8) = ﬂac%l 2_ ¢n[cosvn(e-a+90)-cosvn(6-9°+a)]Ivn(% r <)K"n(% r>) (11.7)
n=0

Combining the two solutions and letting @ = 2§ one arrives at the Laplace trans-
form of the solution to the problem posed by Eqs. II.l and II.2, and this can be

written as

p(r,8) = %%)-Zb en[cosvn(e-eo) - cosvn(9+90)
n=

(11.8)
\ 8 g
+ cosvn(6+9°-2¢)-cosvn(9 9°+2¢/]Ivn(c r <)Kvn(c r>)
For convenience in further manipulation define the function G by
@®
= . =1 - - 17 (8 8
G(r,e,ro,eo) WZ cn[cosvn(e 90) cosvn(e-l-eo),.lvn(c r <)Kvn(c r>) (1I.9)
n=0
so that
p(r,0) = {&(r,0;5r_,6 ) + G(r,6;r ,2¢-6 )} F(s) (11.10)
Following Oberhettingerh it can be shown that G can be put in the fomm
é(r,e;ro,eo) = L(r,ro,e-eo) - L(r,r°,9+6°) (11.11)

where
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E(r, rdcp) - — K, {s[r +r -2rr cos(kny + @) ]%}
nsnl
—é—i‘; ‘f (r r +2rr coshx)%] X (11.12)
P
' sin X (n-9) sin[Z5(x+9)]
(i

Lcosh(g—’:- -cos [g—.'.(:t-tp) ] °°8h(2_v')'c°s [ﬁ(ﬂﬂp) |

where ny is the largest positive or negative number which is smaller than or equal
to - (n+9/4y) and n, is the largest positive or negative number which is smaller
than or equal to (m-9/Ly). If n) is greater than n, the sum in K. II.12 is zero.

B. Point 8B8ource Excitation

The line source solution derived in the previous section can be used to derive
the solution for a point source. Using cylindrical coordinates (r,6,z) the point
source i1s located at (r ,en,o). Eq. II.1 now becomes

2 8(r-r_)8(6-0_)8(z)r(t)

5_2 1 5_2 1_3_2 = ) o (II.13)
Taking & Fourier Cosine transform in z and a Laplace transform in time gives
Om - Om 2 8(r-r_)8(6-6_)F(s)
o9p,1 19D _ (B, \2)ge- 0 o
. + 2 %E + -l (c2 + \°)F = (11.14)

where A is the Fourier Cosine transform parameter. It is then obvious that one
can derive the point source solution from the line source solution by replacing
s/c by (82/ c2+}\2)% in the line source solution, multiplying each term of the solu-
tion by (1/x cosAz) and integrating with respect to A from O to ». In performing

the above operation one can use the following well-known relationship3
2 2.-4 8,2 24 2 & o
(r"+2%) %exp[s (r"+2%)%] = ;g Ko[r(;g + N )%] cosAz dA (11.15)



Operating on Eq. II.12 in the above described manner we obtain

n
2
o) Z exp{- —[r +r +za-2rrocos(9-l-hnt)]%]
) =
= (r°4r +z2-2rrocos(9+hnv)]3i
(11.16)
L 2 ) sin[ (x-e)] sin[ (x+9)]
H +
IE?;'g i cosh(gv)-coslgv(x-e)] COBL(Q* °°S[ (“+9)]
where
exp[- 2 (r +r Crz242rr coshx)%]
H(x) = (11.17)

(r +ro Cez +2rrocoshx)%

Finally using Eqs. II.10 and II.11 p(r,9) can be written in the form
p(r,0) = [L(r,ro,e-eo)-i(r,ro,e+eo) + ﬁ(r,ro,9-2$+9°)-i(r,ro,6+2w-9°)] F(s) (II.18)

where ﬁ(r,ro,e) is defined by Eq. II.16. Bach i(r,ro,e) consists of two kinds

of terms, one a sum of terms each of which has the same functional dependence as
the point source but located at image points of the source with respect to the
boundaries of the wedge. The number of images depends on the numbers n, and n,.
The other term is given by an integral expression which vanishes whenever the
angle of the wedge ¥ is a submultiple of x, i.e., ¥ = x/m, m = 1,2.... If this

is the case the solution is then given by the effect of the original source and a
finite number of image sources which are necessary to satisfy the specific boundary
conditions. The integral expression has been called the edge diffracted wave by
Biot and Tolstoy.5

C. Transient Solution

It has been assuved in writing Eqs. II.1 and II.13 that both the line and point
source are time-dependent, and that their time-dependence is given by f(t). In ao-
plying the Laplace transform to the function f£(t) it has been assumed that f(t)
vanishes for t < 0. What remains to be shown is how the solutions depend on f(t).

In order to present results for the time-dependent source it is convenient to

introduce the following notation

Rn(e) [r 4r +z -2 rr_ cos(9+hnt)}% (11.19)



Rn(x) = {r2+r§+z2+2 rr_ cosh x}% (11.20)

sin[ (x-e)] sin[ (x+e)]
g(x,8) = + (11.21)
cosh( ) cos[ (n -6)] cosh( ) cos[-—(u+9)]

Using the above notation L(r,ro,e) can be written as

- s/cR (0) ® -s/cR (x)
L(r,ro,e) = 11; Z L ane)“ - lé*xé $ %n%‘)“ g(x,0) ax (11.22)

The solution corresponding to the case F(s)=1, where F(s) as given by Eq. II.5
is the Laplace transform of the function f(t), represents the response of the
system to a Dirac delta excitation applied at the time t=0.

This response is given by

n, R (6-6_) R (6+6 )
lza[t"nco] 6[t-nc°]
pg(r,0,t) 'Hn_l{ R(6-6_) R (6+)
( ) ( ) L
R_(6-2y+6 R_(6+2¢-6
G[t- n - O] 6[t- n - (]
+ -
R (6-219_) R (6+2v-6_)
R (x)
1 X 8[t- “c ]
- T g (M e {a(x,0-0 )-a(x,6+0 )+e(x,0-24+6 )-g(x,6+2¢-6 )} ax
(11.24)
where
22 2 2 2
-1 ¢t -r -r -2
x, = cosh ( ) . (11.25)

err
o)

For any given f(t) the first four summations can be obtained explicitly while
the integral contribution can be evaluated numerically.



III. SCATTERING OF A PLANE WAVE BY A ROUGH NON-SINUSOIDAL BOUNDARY BETWEEN A

SEMI-INFINITE FLUID MEDIUM AND A THICK FLUID LAYER

The problem considered in this section is that of a plane wave scattered by
a rough non-sinusoidal boundary between a semi-infinite fluid and a thick fluid
layer. This is the first step necessary for the consideration of the scattering
of a transient pressure pulse by the Arctic icecap. These results are currently
being used to construct the response to a transient pressure pulse and to generate
results for conditions representative of underwater explosions.

The reflection of waves from a periodic boundary has been studied quite ex-
tensively and for a discussion of this problem see the following section. Reflec-
tion of waves from arbitrary non-sinusoidal boundaries has not been studied so
extensively. Recently Abubakar6 and Dunkin and Eringen7 have studied the reflec-
tion of waves from an arbitrary non-sinusoidal surface by means of a perturbation
method. It is essentially this method which is used in the present analysis.
Consider the case of a plane wave, propagating through a fluid of density Py and
sound speed Cy? incident on a liquid layer of density Py s sound speed ¢ and of
mean height h. The interface between the fluid and the liquid layer is taken to
be z=¢f(x) where ¢ is a small parameter and f(x) is the arbitrary function of x.
The fluid lies in the half space z > ¢f(x), while the liquid layer, whose upper
boundary (2= -h) is taken to be planar, then lies in -h < z < ¢f(x) (Fig. 2), where
z 1s measured positive into the fluid half space.

As before, a plane sound wave of unit amplitude is arrumed to be obliguely
incident upon the irregular boundary separating the two fluids. The velocity
potential ¢1 of this wave is given by

P, = e1(oox-152) (1I11.1)

where oo-kosipeo, uo=k° coseo, (konw/co), the projections of the incident wave
number on the x- and z-axis respectively, eo is the angle that the plane wave nor-
mal makes with the z-axis as shown in Fig. 2.

The reflected wave ¢r is assumed to be of the form

¢. =R el(oox-roz) | ;—ﬂ [ - Ae) RICR 39 ae

(111.2)

Ve gl
=\ -
where Yo ko g .

cites a denumerably infinite set of plane reflected waves whereas in this case it

In the case of a sinusoidal boundary the incident wave ex-

is assumed to scatter a continuous spectrum of plane waves.



The transmitted wave ¢t is assumed to be of a similar form and is given by

Q = T[ei(OIX°Ll12) +C ei(CI”HIZ)]
t (III1.3)

f [ B(e)etBx ) | p A(Etwz)) 4

=D

where 91 is the angle of refraction of the transmitted wave, olskl sinel,
ul-klcosel are the pr9Je§tiggs of the transmitted wave number on the x, and z axes
respectively, and 0 \/xl-g g

We assume that the upper surface of the liquid layer z= -h is a pressure-
release surface, i.e., the potential given by Eq. III.3 must vanish at z= -h.
Using this condition we can solve for C and D in Eq. III.3 and we obtain

C e . $2imh ,
(III.4)

D e . 2ivih
Substituting these values back into (III.3) we obtain

9 =T e1(alx-ulz)[1_e21ul(z+h)] +
(1I11.5)

ex

=D

1 f- B(¢) ei({x-ylz)[l_eeiyl(z+h)] a

The rough boundary separating the two fluids is given by
z = ¢f(x) (111.6)

vhere ¢ is a small characteristic parsmeter (for example the ratio of the maxi-
mum amplitude of the boundary to the smaller of the two acoustic wavelengths

2nc 2xnc
2 or xl = 1

AN =T Y

In order to determine the unknowns R,T,A(f), B(£) appearing in Eq. III.2 and
Eq. III.5 the boundary conditions at the interface z=¢f(x) must be satisfied. The
two boundary conditions are continuity of pressure and continuity of normal
velocity. 1In terms of the potential functions the condition of continuity of

pressure 1is

P (P + @) =p®  ;  z=ef(x) (111.7)



1
The components of the unit normal to the surface z=¢f(x) are n = -¢f’[l+(ef')2] <
nz-[l+(ef')2]-i, where f’=df/dx, and so the normal velocity condition is written as

o(e,+¢ ) , % . R o,

= (34 (ax + = ) = - ~ul ef’ = H z = ¢f(x) (111.8)
As mentioned earlier ¢ is taken to be a small parameter and therefore we
expand the functions A(f) and B(E) into power series in ¢.
A(S) -Z A (8) = cA (5) + c"’AQ(g) + ... (III.9)
n=1l
B(§) = Z ann(!) = ¢B ) (§) + ¢2Ba(§) + ... (11I1.10)
n=1l

Substituting these expressions into Eq. III.2 and Eq. III.5 and then the resulting
expressions into Eq. III.7 yields

[ ]
®
po{e1°o"{e"“°°f+nei“°‘f] A ;_“ I. Z ‘nAnei(yocf-i-;x) d;] @
(1I1.11)

pl{,rei(alx-ulcf)[l_e2iul(ef+h)]+ ;_“ J,-Z ‘anei(clx-Ylsf)[l.eaiyl(cﬁh)] ae}

n=1

Now expanding the exponentials of the form éa‘f into a power series

2
e“‘f-1+%f,bf+d—25,—‘2+ (III.12)
and equating the coefficients of like powers of ¢ in Eq. III.ll we obtain the
equations
pOReicox - plT(l-eeiulh) eiclx - . poeicox (III.13a)

P . P, @
aed_ A0 ag - 2 [ B(g) (1-e¥VIM) 16X g
(III.13b)

=1 f[pouo(l-R) e19c% T(l+e21“1h) eiclx], etc.

S L |

Egs. III.13a and III.13b are determined from the zeroth and first order ¢ terms

10



in Eq. III.1l1, respectively. In order that Eq. III.1l3a be satisfied for all values

of x 1t is necessary that 95°%1 vhich means that

0. 1 (III.14)

vwhich is the familiar expression of Snell's Law.
In the same manner one satisfies the normal velocity condition Eq. III.8 and
obtains the following two equations corresponding to the zeroth and first order

terms in ¢.

uoeioox R+ ul(l + eai“lh) R uoeicox (III.15a)

® ]
éh-f Y A e Hx ag 4 ag I Yl(l+e21“1h) B %% ae

en
-
(III.15b)
= (o, £f1,° “£)(1+R) el%% _ (olf'-iuif)(l-eaiulh) Te191%
Making use of Bq. III.l4, Eqs. III.13a and III.13b become
by g,
PR pl(l e )T Py (111.16)
MR+ p (1+e21“lh) T=p (I11.17)
(o) 1 o]
Solving for R and T we obtain
P P
2 (2-e2127) - 2 (et
R = pl p° (II1.18)
2 (1-e2111) 4+ 2 (Pl
H uo
ep
0 1
T = (111.19)
° L (1.21Hh) 4 -2 (14e211T)
My Ko

In order to solve for the functions A(f) and B(€), multiply ~ach of the
Eqs. III.13b and III.15b by e ig and then integrate over x from - to @, making
use of the identity

jr (88X o L 2ns(g-2') (I11.20)



vhere §(£) is the Dirac delta function. The transformed Eqs. III.13b and III.15b
become, respectively

oA (8)- o, (1-*1V2%) B (¢) -
(111.21)
1 #(g-0,){pyp,(1-R) - pyu T(1ee?1427))
YA (e v, (1+*17) B (2) -
. (111.22)
if(ﬁ-oo){[oo(g-ao)-uil(1+R)-[ao(g-co)-uil(l-eziulh) T}
vhere
#(g) = jP £(x) e 6% ax
(111.23)

£(x) = —I 2(g) ' ag

Eqs. III.21 and III.22 can be solved for A1 and Bl' The present analysis will
only calculate the first order perturbation to the reflected wave and so we need
only obtain Al vhich is given by

= ipl“o ipoYo -1
Al(;) =21 r(;-oo){[l- oo tan p,h]{1- oy tan ylh]} X
(1II.24)
Py K
fu (2- pl) + == 22 tan y,h tan uhlo_(§-0 )(1- —) -8 = pl 213

o p “IYl o

Insertion of this value of Al into Eq. III.2 ylelds the first order pertur-
bation to the reflected potentiel as

51) -1 f A (8) 1 (v, 2#8x) 4 (111.25)

vhere Y5 ™ Vki-ge . This integral can be evaluated asymptotically, i.e., at dis-
tances from the origin that are large enough so that kor >> 1, where rax2+z2 and
the result is (see Appendix A)

k
¢$l) a.af; e1(kr- %) Al(ko sing) cose . (III.26)



From Eq. III.2 it is clear that the first order perturbation to the re-
flected potential is given by a cylindrically spreading wave.

IV. REFLECTION OF PLANE WAVES AT AN IRREGUIAR BOUNDARY

The reflection of a plane sound wave from a non-planar interface between two
media has been termed by Uretsl_ty8 a "marvelously complex problem." The problem
vas first attacked by Rayleigh9 and has since apparently captured the fancy of
many workers for there is a wealth of literature dealing with the problem. The
bulk of this literature however is concerned with the simplest case which is that
of a sinusoidal pressure-release boundary. This simplest case is trouble enough
however, for its solution involves solving infinite sets of equations for which,
of cowrse, only approximate solutions have been obtained. There is much less lit-
erature dealing with the case of the non-perfectly reflecting boundary such as a
sinusoidal boundary between two fluids of different characteristic impedance, no
doubt because the problem is a degree more difficult than the perfectly reflecting
boundary inasmuch as the amplitudes of the rays transmitted into the second fluid
constitute a second infinite set of unknowns to be dealt with.

We will briefly mention the other analyses of reflection from a non-perfectly
reflecting sinusoidal boundary. Mileslo treats the case of oblique incidence upon
a sinusoidal boundary between two semi-.infinite fluid media in contact and both he
and Grasyukll also look at the case of oblique incidence upon the sinusoidal bound-
ary between a semi-infinite fluid in contact with a semi-infinite elastic medium.
In both these analyses, the amplitude of the undulations of the boundary is assumed
to be small compared to a wavelength of sound while the slope of the boundary is
considered to be non-negligible. However it has been pointed out by Lapin12 that
Grasyuk's work has errors. Rayleigh in his work took the opposite point of view,
i.e., the slope of the boundary is assumed small while the amplitude of the undu-
lations is not. Rayleigh's analysis is also available in Ref. 13. Rayleigh lim-
ited his attention to normal incidence.

In the analysis that follows, we extend Rayleigh's work to allow for oblique
incidence. An approximate solution, entirely analogous to that of Rayleigh, is
obtained under the conditions that the acoustic wavelength is much less than the
wavelength of the undulations of the boundary and the slope of the boundary is
negligible. We then treat in turn the problems of reflection from a sinusoidal
boundary of a plane, obliquely incident wave between 1) two semi-infinite fluid
media, 2) a semi-infinite fluid and a semi-infinite elastic medium, 3) a finite

thickness fluid layer sandwiched between two different semi-infinite fluid
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media, and 4) a finite thickness elastic layer sandwiched between two semi-
infinite fluid media. For these four cases, an approximate solution is again ob-
tained under the restriction Just mentioned, and, for the last two cases, with the
additional restriction that the thickness of the layer be much greater than the
amplitudie of the boundary undulations.

Before beginning the analysis, a word must be said about the controversy that
exists regarding Rayleigh's assumption that the reflected end transmitted waves
can be written as a superposition of plane waves, each propagating in a discrete
direction. Although it is agreed that this is a valid representation for the
scattered field at a large distance from the boundary, the controversy pertains
to the question of whether this representation is valid near the boundary, that is,
in the region between the extremes of the undulations. No rigorous proof that
Rayleigh's assumption is incorrect has yet been published although Uretskylh pre-
sents a strong argument to that effect. Marsh,15 on the other hand, has published
an argument which he claims justifies the Rayleigh assumption. In the analysis
that . follows, we unashamedly and without providing any additional justification
use the Rayleigh approach.

A. Scattering from A 8i.usoidal Boundary between Two S8emi-Infinite Fluid Medis

The geometry of the problem is shown in Fig. 3. The notation used closely
follows that of Rayleigh9 or Grasyuk.ll A plane sound wave of unit amplitude®
(defined by the velocity potential vi) is assumed to be obliquely incident upon
the sinusoidally rough boundary (it is assumed that there is no y-direction varia-
tion of the boundary undulations).

¢, = exp i(oox - uoz) (1v.1)
where % and W, are the projections of the incident wave number upon the x- and
z-axes respectively, i.e., ;O-kosineo and uoskocoseo(konw/co).
According to Rayleigh,” this incident wave excites a denumerably infinite
set of plane reflected waves ¢r and of plane transmitted waves ¢1, which can be

written

¢, = ;E[: A exp{i[(ao + ga)x + unz]} (1v.2)

2 .2 2
with i =k - (co + gn) (1Iv.3)

*The harmonic time factor exp(-iwt) will, as usual, be suppressed.
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- ) B el + e - xzl] (2v.4)
D=
with xi - ki - (oo + gn)2 (Iv.5)

where g is proportional to the reciprocal of the wavelength of the boundary
undulations (see Fig. 3). Ref. 16 contains an excellent physical explanation

for writing the reflected and transmi:.ted waves in this fashion. The restriction
Eq. IV.3 on the direction cosines of the reflected rays, Ky results from the
fact that Eq. IV.2 must satisfy the wave equation in the incident fluid: the re-
striction IV.5 arises in an analogous fashion.

The ray defined by n=0 is the specularly reflected one, i.e., the one for
vhich the angle of reflection equals the angle of incidence and the only one which
would be present if the boundary were plane. The rays defined by n > O are some-~
times called forward scattered, while those for n < 0, backward scattered. If
(o+gn)2 is greater than kﬁ, for some n, then the corresponding (R is imaginary and
hence that ray and all rays defined by larger values of n are exponentially atten-
uated with distance from the boundary and hence contribute nothing to the sound
field at large distances from the boundary; these attenuated waves are called
inhomogeneous or evanescent waves. Note that if Ab is less than ko, (I.e., g > k)
all rays except n=0 (and possibly n=l, depending on eo) are inhomogeneous, i.e.,
the rough boundary reflects just as a plane boundary.

The unknown coefficients An and Bn are determined from the two boundary con-
ditions which are continuity of pressure across the boundary and continuity of

normal velocity.
29/3n = ) /3n (2v.7)

vhere ¢-¢£+¢r and n indicates the normal direction to the boundary. The equation
of the boundary is z=((x) and consequently Eq. IV.7 can be written

o - 9) 5. 39 -9)
— "0 (1Iv.8)

At this point in the analysis, we must make the basic approximetion Rayleigh9
did. It consists in saying that the slope of the boundary is very small, i.e.,
3¢/3x ~ 0.
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For ((x)=a cos(2nx/xb), this means that 2:ta/)\b &0 or the amplitude of the
undulations must be very much smaller than their wavelength. With this approxi-
mation and the definitions of the potentials in Egqs. IV.1, IV.2, and IV.k4, the
boundary conditions become (the limits of summation which are always - to +®

are omitted).

— P,
) Bpexp{il(o_+en)x-x 21} = = |exp{i(o x-u_z)]

z=((x) F1 !
< " (Iv.9)
+ L_Anexp{i[(co+gn)x+unz]3L=c )
[ in exp{i(c x-u 2)}+ i\;A uexp{i[(c_+en)x+y z1}
(1Iv.10)
+ 1) By exp{il( SHen)x- ZJ}] =0
L‘ B o 2=((x)

At this point in the analysis we must introduce another approximation which
naturally restricts the applicability of the results but which makes the solution
of Eqs. IV.9 and IV.1l0 tractable. This approximation consists of restricting our
attention to high frequencies such that xo << kb. It is then true that
gn << 0 < k. We also assume that the wavelength in the transmitted medium is
much less than xb so that gn << kl. It is also evident that for these inequali-
ties to hold we must restrict our attention to rather small values of n, i.e.,
to the first one or two rays on either side of the principal (n=0) ray. However,
as noted eariier, the rays defined by large n are quite likely to be inhomogeneous
and thus contribute nothing to the sound field at a large distance from the
b oundary.

With the approximations just described, we can write

TS V2. i k cos6 (Iv.11a)

n o]
X, = Vki-ci = k,cosf, (Iv.11b)

Srell's law,(sinel)/cl=(sin90)/co was used to obtain Eq. IV.1llb. We can now
bring “n and xn out from under the summation signs in Eq. IV.1O.
In this report, we are primarily concerned with determining what is reflected

from the boundary and hence we will only solve for the coefficients An’ although
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there is no difficulty in solving for the transmitted rays as well.* We use
Eq. IV.9 to eliminate the coefficients Bn from Eq. IV.10 which, after a little

algebra, can be written

Z.-2

|22 exp[-1 2k ((x) cos6] + ZA exp[ignx] = O (Iv.12)
ZI+ZO o n
© where
[ p.c
171 00
zl = cosel akd z0 = coseo (IV.l3)

The first factor in the first term of Eq. IV.12 is of course the plane boundary
reflection factor which we denote by R. Employing the standari identity

exp[-1 & cos(gx)] = Z (-1)" J (@) explignx] (Iv.14)

n= - 00

in Eq. IV.12, where Jn is the Bessel function of the first kind of order n, we
finally obtain this result.

R E: (-i)n Jn(2koa coseo) explignx] = }[;An exp[ie.x]. (1v.15)

It is now a trivial task to obtain the coefficients An by equating terms with
the same x-dependence [note that J_n=(-l)an].

A = RJO(Zkoa coseo) A, = -RJé(Ekoa coseo)
A = -iRJl(Qkoa coseo) A, = -RJ2(2koa coseo)
A, = -iRul(Qkoa coseo) etc.

These results are very similar to those obtained by Rayleigh for the case
of normal incidence; in fact Rayleigh,9 before leaving the problem of scattering
from a rough boundary, gives the above result for the amplitude of the specularly
reflected ray (i.e., n=0). It is noted that the amplitude of the corresponding
rays on either side of the specular direction are precisely equal, i.e.,

A1=A_l. The results Rayleigh quotes for normal incidence are presumably the total

*In Sec. B for illustrative purposes we actually solve for other than the
reflected waves.
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amplitude of the pair of corresponding rays since his Al is twice the result given
here and he quotes no result for A_l. For large argument, all Bessel functions
look like damped sinusoids; therefore, with increasing frequency, less and less
sound is reflected in the specular and near-specular directions. This 1s one of
the basic features of the transient response. Furthermore the most damaging com-
ponent of the pressure wave is associated with the specular reflection.

We turn now to the consideration of scattering of a plane wave incident from
a fluid onto other media. It is stressed that throughout the remainder of the re-
port, the two basic approximations already encountered, i.e., that the slope of
the boundary is small and that the wavelengths of all reflected or refracted com-
pressional or shear waves are small compared to the wavelength of the boundary,
will be employed. Because the analyses are very similar to the preceding, their

presentation will be quite brief.

B. Scattering from a Sinusoidal Boundary between a Semi-Infinite Fluid Medium
and a Semi-Infinite Elastic Medium

The geometry of the problem is essentially that of Fig. 3 except that we now
assume the upper medium to have a shear wave velocity bl and, correspondingly, a

set of shear waves defined by the potential vl

w®
o
¢ s Cn exp[i[(co+gn)x-an]} (Iv.16)
n‘ - ®
2 2 2
v =My - (co+gn) (Iv.17)
where
" = cx)/bl

The boundary conditions are continuity of normal displacement, continuity
of normal stress and vanishing of the tangential stress. In terms of the potentials
¢ (=¢i+¢r), ¢, and ,, these become ™ (assuming d(/dx = 0)

o) Oy )
-§+EZ—+E(—=O

2 2
Py o 09 Oy
-—9+ 9 -=( + )=0 > at z=((x 1v.18

Fo, Fy Py,

3y 3,2 t xz

[}
o
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The assumption that all wavelengths are small compared to that of the boundary

allows us to write, as before,
By ™ K cose°
X, ~ k, cosé; (Iv.19a,b,c)

v, ™ kl cosy,

The angles 61, and Y,, are defined by Snell's law
sine sing siny
- S . i Ly = 1 (Iv.20)
(o] 1l 1l ,

where y is the angle that the principal (n=0) ray of the set of transmitted shear
vaves makes with the z-direction.

For convenience, let us introduce the notation
A= Z‘”‘n exp[i(gnx + u ()]
B = Z B expli(gnx - x ()] (Iv.21a,b,c)
- =
C=) C,expli(gnx - v 0)]

Whence the boundary conditions Eq. IV.18 become, after some algebraic manipulation

— ol — -—
co 1 % sin 2yl
- cosé - — cosb == —7=|[A -cos6_exp(-ik (cos6 )
o c 1l 2 b, cosy o e] o]
1 1l 1l
Po Po
- Fl- cos 2y, - sin 2y, B|= ;l- exp(-ikoCcoseo) (1Iv.22)
|
bl sin 2y I
0 — ——= c0sf cos 2y i C o
c_  cosy 1l 1l
o 1l ’L

Solving for A, we find

Zlc0822yl + Ztsin2 2yl - Zo
A= exp(-ikoCcoseo) % 5 (Iv.23)
Zlcos 2yl + Ztsin 2yl + Zo
where
b
! (Iv.24

Zy = cosy,

were defined in Eq. IV.13.

while Z and 2
(o} 1
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The term in brackets is, again, simply the plane boundary reflection factor
(denoted V in Brekhovskikhl7). Therefore we write

Anexp(ignx) =V exp[-i(2koa coseo)cos(gx)] (Iv.25)

vhich, with the identity IV.4, becomes

®

j{: Anexp(ignx) =V jgii (-i)an(2k°a coseo) exp(ignx) (Iv.25)

= =-® N==®
whose solutions are

A=VJ (2k a cosf )
oo 0

A =-1V Jl(2koa coseo) (Iv.27)

A, = -V Jé(ekoa coseo)
Note that if we solve Eq. IV.22 for B, we obtain

EE:Bnexp(ignx) =W exp{-i[(kocoseo - klcosel) a cosgx]} (1v.28)

where W is the amplitude of the transmitted compressional wave in the case of

a plane boundary.18 Eq. IV.28 has the solutions

B =W (-1)an[(kocoseo - klcosel)] . (Iv.29)

If we solve Eq. IV.22 for C, we obtain

E::Cnexp(ignx) =P exp[-i[(kocose° - nlcosyl)a cosgx]} (1v.30)

where P is the amplitude of the transmitted shear wave in the case of a plane
boundary.l9 Eq. IV.30 has the solutions

c,=P (-i)an[(kocoseo - nlcosyl)a] (1v.31)

C. Scattering from the Sinusoidal Surface of a Thick Fluid Layer Sandwiched
between Two Different Semi-Infinite Fluid Media

The geometry of the problem is illustrated in Fig. 4. 1In addition to the in-
cident wave wl, the reflected wave in the incident medium ¢r and the transmitted

wave in the second medium ”1’ we must allow for a reflected wave from the plane
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surface of the intermediate layer (the surface at z= -h) which we denote ¢, and
for a wave transmitted into the third fluid media, which we denote ¢t. We write
these two additional potentials in this fashion

9, = Z Dnesp[i[oo-l-gn)x + xnz]] (Iv.32)

where xﬁ = ki-(co+gn)2 (1v.33)

?, = Z Eexp{i[(c_+en)x - n 2]} (Iv.34)
n=-

vhere ni = xg - (co+gn)2 (Iv.35)

It is evident that even though we have a plane boundary, these two waves must
be written in the same fashion as the infinite set of waves associated with a
sinusoidal boundary to be able to match the boundary conditions; for example, if
the plane boundary of the intermediate fluid were a free boundary the potentials
¢l and ¢2 would obviously have to cancel each other and, given ¢l’ (Eq. IV.4),
this could only be possible if ¢é has the form defined above.

The boundary conditions are again continuity of pressure and normal velocity
at both z={(x) and z= -h. Under the assumption of negligible boundary slope, these

become
p (P + @) =0 (9 +9)
8t 2=g(x) (Iv.36a,b)
3o, + %) 3w, + ,)
- -7 % J
o (%, + @) = p%, \
& at z= -h (IV.37a,b)
o9, +9,) P,
322 T

/
As usual, the assumption that all wavelengths are small compared to that of the
boundary allows us to approximate the direction cosines as in Eq. IV.19a,b and
in addition to write

n, ~ k,cosf (1v.38)

2
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vhere 62 is defined by Snell's law

o _ 1_ 2 (1v.39)

Employing the shorthand notation introduced in Eq. IV.21 (where D and E are the
right-hand sides of £gs. IV.32 and IV.33, less the factor exp(ipz), the four

boundary conditions can be cast in the form

- eixogcoseo ple-iklgcosel pleikICcosel 0 FA
k cosé eik°cc°59° k, cos8 o 1R1Cc0SO] -k, cos@ eiklgcosel 0 B
o o 1 1l 1 1l
o pleiklhcosel ple-iklhcosel -p2e1k2h°°392 D
-ikyhcosf; _ -ikjhcos6) _ hcosé
0 klcose 18 klcose 18 k2 coseaeikQ i E
- (1v.40)
- eikogcoseo
)
= |k cosg e Ky5c086|
o 0
0
0
Solving for A, the amplitudes of the set of reflected waves in the incident medium
we obtain
Zp 2 L
» (-1+ ==)cos[k, (h+{)cos6, ]-1(5= - =)sin(k, (h+;)cos8, ]
Z 1 1l 2 Z 1 1l
A ignx -1Zk {cos@ 0 0 1 L
e =e 0 z Z, 7, (1v.41)
K (1+ zg)cos[kl(h+g)cosel]-i(zg»+ ZI)Sin[kl(h+C)c°891]
where
0,C
-
Z, = cosf (1v.4)

2

while ZO and Zl vwere defined in Eq. IV.13.
Now if { is negligible compared to h (i.e., if the amplitude of the boundary
undulations are small compared to the thickness of the intermediate layer) so that

we may discard it in the arguments of the sines and cosines in the factor in brackets
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in Eq. IV.41, then that factor reduces to the standard plane-boundary reflection
factor for the three-fluid layer problem.20 We denote the factor by Q.
Employing the Bessel function identity Eq. IV.lk, Eq. IV.41 becomes

[« 2]
1 § 1gnx ,
AT =g (-1)% J (2k a cos6 ) (T7.43)

= «© nN= =

which has solutions
n
A, =0 (-1)" J (2k & cose ) (Iv.uk)

If one were to solve for the amplitudes of the various other sets of waves,
B, D, or E, the results would quite evidently be the appropriate reflection or
transmission factor from the plane boundary case multiplied by a Bessel function
vwhose argument involves the difference of wave numbers as in Eq. IV.29 and IV.3l.

D. Scattering from the Sinusoidal Surface of a Thick Elastic Layer Sandwiched
between Two Different Semi-Infinite Fluid Media

The geometry of the problem is the same as in Fig. 4 except we now assume the
intermediate layer to have the shear wave velocity bl and correspondingly, two
sets of shear waves - one set that originates at the sinusoidal boundary and the
other that represents reflections from the plane boundary.

It is evident from the preceding work that under the three basic assumptions
made in this analysis, viz., negligible boundary slope, all wavelengths much less
than the boundary wavelength and layer thickness much greater than amplitude of
boundary undulations, the reflection or transmission factors for a sinusoidal
boundary are simply the corresponding factor for a plane boundary multiplied by
a Bessel function whose argument involves the wave numbers in the appropriate
media, the amplitude of the boundary, and the angle of incidence. We shall there-
fore spare the reader's time and simply quote the answer for the reflection co-
efficients A of the reflected potential (Eq. 1Iv.2),

n
A = r(-i) Jb(akoa coseo)

where I' is given in Ref. 21.
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E. Scattering from a Sinusoidal Boundary between Two Semi-Infinite Fluid
Media - Slope of Boundary Not Negligible

Let us return to the problem considered in Sec. A and relax the condition
on the slope of the boundary, i.e., let us try to solve the problem using the
exact form of the second boundary condition (Eq. IV.8). For {=a cosgx, this

second bouidary condition can b written

-uoe'i“°C+Z Anunei(gnanf) . X annei(gnx-xnc) )
(1v.45)

zisgpolex  -lex) {an( ,O+gn)ei(gnx-xnc)_oe-iuog_ Z An(oo+gn)ei(snx+unc )}

Employing the approximation that all wavelengths are much smaller than that of
the boundary so that uﬁ&kocosao, ank1°°391 and oo+gnkkosin00 (note that because
of this last approximation, theresults below will not be strictly valid for nor-
mal incidence), eliminating the Bn from Eq. IV.45 by the use of Eq. IV.9, and
finally employing the Bessel function identity Eq. IV.1k4, we obtain this relation-

ship for the amplitudes of the reflected rays

(zo-zl) Z(-i)n Jn(2koa coseo) ERX (zo-a-zl)}: Aneignx ~ ( )
IV.46

q P : 3
-ia o _ eigx  -fpgx _s\0 ignx
—52 [thaneo(—pl 1) I( e )E ((-1) Jn(2koa coseo)+An]e

If we now equate terms with the same x-dependence on both sides of the equation,
we generate an infinite set of coupled equations each of which involves three of the
unknown An' For example, pgathering the terms that have no x-dependence and that
have x-dependence exp(*igx) results in these three equations

Ay = RI(x) + Z—Ez— [-A1+A_l]
1770
=t E
A, = -m.rl(a) + 75 [Jo(a)+J2(a)+AO-A2] (IV.47a,b,c)
- . —2 1 3(a)- -
A = iRJl(a) + 77 [-J(a) Je(a) AstA ]

where

@ = 2koa cosd_ and B = (-1ap,2)[Zl taneo(po,pl-l)].
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In general, the nth coefficient An is coupled to both An-l and An+l' We solve
these by iteration, i.e., we use the results obtained in Sec. A (now denoted Ago)
in the right-hand side of these equations, to generate a first order correction

(denoted Agl) which includes the slope of the boundary. Noting that Afg)zAig),
we obtain
a8t - ri(a)
(1) (2zl)
AL = -iRIl(a) +p—— [Jo(a) + Ja(a)] (1Iv.48a,b,c)
(2,+2,)
(2z,)
A o Lirg (@) - 8 — 2 (3 (o) + I, (e)]
-1 1l ( +2 )2 0o 2
2)+2,
umploying the identity
Jn-103) + Jn+101) = 2anGz)/a , (Iv.L49)
. the last two equations can be written
(l) g [l'(po/pl)]
AY./ = <iRJ. (2k a cose ){1F tang (1Iv.50)
+] 1'7o o kocose° [1'(ZO/Z1)2] o)
In general
[1-(p,/py)]
(1) ng o/ P1
Ay = (-1)nRJn(2k°a cos@ ) {1¥ tang (Iv.51)

kocoseo [l'(zo/zl)al o]

The correction term is seen to be independent of a, the amplitude of the boundary
undulations. Also the correction term has destroyed the symmetry of the
amplitude coefficients so that A-n no longer equals An.

V. THE REFLECTION OF PLANE WAVES FROM A LIQUID-SATURATED POROUS ELASTIC HALF-SPACE

In an earlier reportl formulas were derived for the reflection coefficient
for a plane harmonic wave incident on a porous fluid saturated elastic solid using
field equations derived by Biot.22 The reflection coefficient so formulated de-
pends on seven parameters characterizing the liquid-saturated porous elastic solid

as well as the density and sound speed of the fluid in which the plane wave
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propagates., The seven parameters characterizing the porous elastic solid are:

1. Pg s the density of the pure compacted solid.

2. Pes the density of the fluid which saturates the solid.

3. Cu, the unjacketed compressibility of the liquid saturated elastic solid.
L, ¢ 52 the Jacketed compressibility.

5. N, the shear modulus of the material.

6. x, the structure factor.

7. B8, the porosity.

The physical significance of the above parameters are described in the report
by Eichler and Rattayya.l

Certain of the above parameters can be determined from experiments while the
others must be estimated. For example, the only measurements made of unjacketed
and jacketed compressibility were those made by Fatt.23 However these were made
for a kerosene saturated sandstone under static conditions in the laboratory and
in any case would not be applicable to a theory which attempts to model the ocean
bottom. A similar situation exists with regard to x, the structure factor; a
factor x approximately equal to 4.3 has been measured for an air-filled sand.ah
Very few measurements of the shear wave velocity in ocean bottom sediments are
available. In fact the only oner we are aware of are those reported by Laughton.

With the above limitations in mind, a numerical procedure to determine the
reflection coefficient as a function of the grazing angle has been developed and
programmed for a digital computer. Assumed values for the structure factor x
and the unjacketed compressibility Cu together with experimentally obtained values
of the porosity B, saturating fluid density Pe (in all cases the saturating fluid
den:sity is that of sea water) the bulk density p (mass per unit volume of the com-
bined solid and liquid), the dilatational wave speed Vp , and the shear wave speed
Vs, are entered into the program. The program then proceeds to calculate the
quantities necessary for the determination of the reflection coefficient.

In each case the calculations were performed for a relatively large structure
factor x=11 and two smaller structure factors x=1, and x=2. The data used was
that of Laughton on Globigerina Ooze.

In both Figs. 5 and 6 we show plots of the bottom loss per reflection versus
grazing angle for a given set of parameters. The bottom loss per reflection is
defined by [-20 loglRl] where |R| is the modulus of the reflection coefficient.
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In each figure we show two plots, one for a value of Cuz.l Cf and the other for
Cu-.2 Cf , where Cf is the compressibility of the saturating fluid. Fig. 7 shows the
bottom loss per reflection for a given set of parameters for two different values
of the structure factor x=1, and x=2. It is characteristic of each of these plots
that there 1is some angle at which the bottom loss is a maximum. There is also
some angle above which the bottom loss is relatively insensitive to change in the
grazing angle. Fig. 8 shows & plot of the phase angle ¢ of the reflection coef-
ficient superimposed on a plot of bottom loss. From this figure we see that the
angle above which the bottom loss is fairly constant is precisely the critical
angle 6 , where 6  is given by ecscos'l(co/vp), c, is the sound speed in the fluid
and Vp is the dilatational velocity in the solid (i.e., the angle for which the
phase angle of the r.:flection coefficient goes to zero).

Since we have neglected viscosity in the above calculations the reflection

coefficients obtained are independent of frequency.

APPENDIX A: Laplace Transform of Time Dependent Green's Function for a Wedge
with Pressure-Release Walls

Consider the problem of a source with Dirac delta time dependence located at
the point S(ro ,90) within a wedge-shaped region 0 < 6 < &, the boundaries of which
are pressure-release surfaces. The pressure must therefore satisfy the equation:

18,1 .1 By, e )
brz r or r2 392 c2 ata r

and the boundary conditions

p(r,O) =0
(A.2)
p(r,@) =0 .

Taking a lLaplace Transform in time yields the following system of equations:
F,13, 0 85 L, Lkl (8.3
ara r or r2 692 c2 r

and
p(r,0) = 0
] (A.4)
p(r,a) = 0

where p(r,0) is the Laplace Transform of p(r,9,t).
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The angular eigenfunctions corresponding to the boundary conditions (B.4) are

¢ (6) = A_ sin no (A.5)

where
nit

e r =1,2,3 ... (A.6)

Assuming that the transformed pressure p can be expanded in the form
[« ]
p(r,0;s) =Z An(r;s) sin v 6 (A.7)
n=1

and using the orthogonality of the eigenfunctions over the range 0 < 98 < a it
is found that the functions An must satisfy

2 2
a“A dA 2 v 8(r-r_)
n, 1l n 5 n 2 0
2 tra  (Fr ) bt gste vt T (8.8)

dr

Equation A.5 is solved using Hankel Transforms and the result is

2 s S

== 2 rc< - > .
An(r,s) 5 sin v 6 Ivn(c r <) Kvn(cr ) (A.9)
where r < and r > are, respectively, the smaller or larger of the quantities

randr .
o}

Using the identidy
(A.10)

-1 -9 ) -
sin v 6 _sin v 6 = 3 {cosvn(e 6,) cosvn(6+60)]

the solution to the set of equations A.3 and A.4 can be written as

o]
e

- 1 8 s

Q - —e— - - -— — > a
p(r,6;s) 5o en[cosvn(e 90) cosv (6+60)] Iun(c r <)Kvn(c r>) (A.11)
n=0

where eo=l and en=2 for n > 1.
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APPENDIX B: Asymptotic Evaluation of I
Consider the integral I where I is of the form
1 o 1(Exs M 202 ) ag

I=§I A(E) e

(B.1)

vhere the integral is taken along the real axis in the g-plene and the branch of
Yara s
ko-§ is that for which Im ko-§ >0 (see Fig. 9a).
We define a conformal transformation §=k°sin<p from the €-plane to the region

- % < Repp < -g- of the ¥-plane. Then
\
I-= ;_ I Ak _sing) eiko(xsinq»zcos:p) k_cos® d®
% o o
5 (B.2)
k
_ 1k cos(9-6) cos® AP !

0
5 { A(kosintp) e

where x=r sind, and z=r cosfd, and where the contour C is as shown in Fig. 9b.
This integral may be evaluated asymptotically for the case where kor >> 1 by the
method of steepest descents. Letting

F(¢)= cosfv(kosintp) (B.3)

we have

k
1% 52 J; F(p) el¥oreos(®-0) 40 (B.4)

The location of the saddle point is found from the condition
d .
[dtp(n(orcosw-e)] =0 (B.5)

so that the saddle point (SP) is at ¢ = O. The path of steepest descent (PSD)

through the saddle point is given by
)

Im {ikor cos(¢-9) - 1kor} =0
i.e., Re[cos(9-6)-1] = 0 > (B.6)
or cos(u-0) cosh v = 1 J
ife=u+ iv.
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This path is sketched in Fig.%. We deform the contour C into the PSD and,
since the integrand decays rapidly away from the saddle point on this contour, we
approximate the integral by its value along a smhll section of the path around the
saddle point. The leading term of the asymptotic expansion for I is then given as

k
I~V 5%; cosé A(kosine) ei(kor'“/h) (B.7)

provided 6¢x/2, and A(kosine) is bounded and non-zero. To this must be added
the residues of the integrand at all poles which lie between the uriginal path C
and the steepest descent path (a possible set of these poles are shown circled in
the figure). The poles are given by the zeros of the transcendental equation

p.Y
o'l J 2 2
i tan v,h = 5% vhere v, = Vi -£° . (B.8)

Since Al(g) is an even function of y,, there are no branch cuts necessary
to make Y1 single-valued, so long as h is finite. As h -« = the poles become more
and more numerous along a line which in the limit becomes a branch line.
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P(r,8,2)

8=0

Fig. 1. Geometry of the problem associated with a point source
at 8(r 0, ,0) located within a wedge whose boundaries
are gisen by =0, 6=y,
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Fig. 2. Geometry of the problem associated with a plane wave

¢, incident on an arbitrary rough interface z=ef(x).




Ap =27/g - J/Z/ﬁ P

xy

S g(cg')sqx} # \\\q&r

K-

Fig. 3. Geometry of the problem associated with a plane sound
wave obliquely incident onto the sinusoidally rough
boundary between two semi-infinite fluid media.
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\
T A a— 4//'#' h\\\? p1s €,

Fig. 4. Geometry of the problem associated with a plane sound
wave obliquely incident onto the sinusoidal boundary
of a thick fluid layer sandwiched between two different
semi-infinite fluids.
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¢ Plane:

¢ Plane:

Ny

Fig. 9.

complex §-plane.

—> Re €

Im¢

X poles

Nl

path as well as possible pole locations.
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- (a)

Re ¢
(b)

(a) Integration path for evaluation of integral in Eq. B.l in the
(v) Integration path in the complex ¢-plane for

evaluation of integral in Eq. B.2, also showing steepest descent
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