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INTRODUCTION

This re-port describes the continuation of two efforts. The first is a computing scheme de-
veloped by the authors for the analysis of factorial designs. An IBM 704 Electronic Data Proc-
essing Machine program using this scheme was submitted to the SIIARE Society in 1958, and a
short paper discussing this scheme was presented to the 14th national meeting of the Association
for Computing \Machinerv (Ref. 1).

The second effort is an attempt to promote a general linear approach to numerical and sta-
tistical analysis. A report describing this approach in the smoothing of experimental data has
already been published (Ref, 2).

Three concepts form the basis of these efforts: the Gram-Schmidt construction, the linear
method of least squares. and the application of orthogonal polynomials. References 3. 4. and 5,
and many other texts, also introduce these well-known concepts.

The notation of vectors, matrices, and tensors is used in place of the summation notation
frequently (but not universally) used in textbooks. It is believed that the notation used is more
practical at the working level, with the advent of FORTRAN and AIGOI. and it certainly allows
a much shorter text.

Computer prograes for factorial asd statistical analysis are presented in Appendixes A. B,
and C: they demonstrate a method rather than finished programs. Trh(y are finished to the extent
that results are summarized. but there are many %avs of summarizing. depending principally on
the desires of the user. Because of the versatility of the FORTRAN language. the prospective
user is invited to summarize results in the manner he sees fit.

This wnrk is pre-4ented principally to those who are comput.-r-oriented. For this reason.
there is a great deal of elaboration on some of the basic concepts and philosophy of statistics.
On the other hand. it is assumed that the reader is familiar with the algebra of vectors and
mat6ices and their geometric interpretations.

VECTORS, MATRICES, AND THE
GRAM-SCHMIDT CONSTRUCTION

Linear hypothesis statistics, which includes regression and factorial analyses. may be de-
veloped by a method (the orthogonalization of matri-es). a theorem (the Pythagorean). and a
philosophy (inference). This development is best made with a uniform notation. Therefbre. the
following definitions are made.

MIatrices will be denoted by capital letters such as X. Y, .1. and D. and scalar quantities
will be presented by small letters such as a. b. and c.

'rhe elements of a matrix %ill be represented by subscripted small letters such as xi. and

The ith row of a matrix X will be denoted b% xi., and the jth column of a matrix X will be
denoted by% x A row or a column (or any singly subscripted variable) may be considered to be
a vector in space, the elements of the row or column being the ordered components of the vector.
This is the geometric viewpoint.

1 m m,
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Two columns of a matrix are said to be orthogonal if

S. X ' X.k j0#k (I)

where the vector dot product notation above is defined thus
n

i= 

(

From the geometric viewpoint, the vectors xj and x k meet at right angles in n-dimensional
space.

An individual column of a matrix X is said to be normali:ed if
X i • X i = (3)

An unnormalized column (provided it contains at :east one finite entry) may be easily
normalized by dividing each element of the column by the length of the column vector as shown:

x'I, = xjilx.i I I <_ i < n

and where the length is defined as follows:

x . - . i x .. (4 )

From the geometric viewpoint. a normalized column is a vector of unit length. The vector need
not be oriented along any axis but may have components along all axes. Equation 4 rewritten

X.j. 1 2 _ X.i " * X-i T • Xi..2•
i I

is a statement opf the Ps thagoreani theorem generalized to m dimensions. The square of the
hypotenuse (vector length) is equal to the sum of the squares of the other sides (components).

A matrix X is said to be orthonormal (with respect to columns) if each column is normalized
and if each column is orthogonal to every other column. F"rom a basic theorem of linear algebra.
this is possible only if the number of columns does not exceed the number of rows (Ref. 3).

An important property of any orthonormal matrix is that premultiplication by its own transpose'
yields an identity matrix.

P'P I (5)

This may %e demonstrated a,- follows:. o
Note that it is the second matrix which is orthonormal with respect to columns.

I Thv ..anme matrix uith rows. and column% interchangfed

2
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Conversely, the product P P 'does not generally yield an identity matiix unless P is square.
This also may be demonstrated

3 3
'•-3 6

A matrix N may be transfornmed into an orthonornial matrix P by the Gram-Schmidt construc-
tion (Ref. 3).2 The following paragraphs describe this construction. The matrix is first trans-
formed into a matrix having the orthdgonal property

Thence it is transformed into a matrix which also has the normal property

Q*P
The first column of the orthogonal (.J matrix is formed by simply using the first column of

the X matrix3

q jx (6)

The second colunn of the Q matrix is formed by taking the second column of the X matrix
and adding to it that portion .c 12 . of the first columnn of the Q matrix which makes the new
column orthogonal to the first column of the Q matrix. The following vector equation expresses
this required condition

q.I" (x. 2  1c22 q. ) =0 (7)

The solution yields
S- q, 1 '.2

1 2 : q. q.I
with this result, the second column of the Q matrix is

q.2 + C.2' .1 (8)

The third column of the Q matrix is formed by taking x. 3 and adding portions c1 3 and c23
of the q. I and q. 2 columns which make q. 3 orthogonal to both q. , and q. 2 Two simultaneous vector
equations express these desired conditions

9. 1 (x.3 + c 1 3 q. I " r 2 3 q. 2) 0 (9)

q. 2 " (x.3 + c 1 3 q.I + c 2 3 q 2 ) - 0 (10)

2 Provided the column,. have the property of linear indepen(h'ni'v A further elaboration of this is given

after the mechanic, of the construction is presented

3Remembering that the dot notation is defined thus

3
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Sinceq q2 0.. r1 3 and c23 are quickly evaluated to be

-9.1 .3

e 3 _ _ t " . ( 1 1 )

-q. 2  
(12)

q. 2 " q.2

With these results, the third column of the orthogonal matrix is

q. 3 -- .3 * C1 3 q.1 ÷ c 2 3 1.2 (12

The Gram-Schmidt construction may be easily generalized so that the expression for the jth

column, q.,. may be written
1. 1

q4i - 1-j + E q.k rki < ] M (l|

k- I
This may be expressed by the matrix relation

Q - X + QC (15)

where

ck,=O J0k i <j~m

-q.k > I < k-< m

q. ". q.k

and where m is the number of columns and n is the number of rows of the X and Q matrices.

The orthogonal matrix Q may now be transformed into the orthonormal matrix P by dividing
each element qij by the length of the column vector to which it belongs

Pij - q./jt qii < i< a
LI *I I<i~2n

This too may be expressed by a matrix relation

P .QR (16)

where

'jk 0 ?6k _<i <,M

rl.k Iq.ij- t  -_k I <k <-t

Normnalization may not be possible. This is obviously the case where all elener,ts of a

column are zero. When such a column vector appears in a matrix during Gram-Schmidt construc-
tion, the original matrix lacks the required property of linear independence. In fact, this is an

excellent practical test of linear independence.

Two important relations have been developed above

Q- X• A (1C)

P QR (16)

The first may be rearranged as follows:

Q (I - C) 4Y (17)

4
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(I - C) is a triangular matrix with diagonal terms of unity, its determinant is nonzero (in fact,
unity) and. therefore, its inverse existe, and Eq. 17 may be rewritten

Q - (I - C) (18)
From Eq. 16. P is found to be

P ." (/- C)-R (19)

or P N D

where D (U- C)- R

E:quation 19 demonstrates that the (;ram-Schmidt construction is equivalent to pottmultiplication
of the original matrix by another matrix. 1).

T'here is also a geometric viewpoint of the constructior. The columqs of the V matrix repre-

sent vectors of %ar% ing lengths. meeting each other at various angles in n-dimensional space.
E'ach vector is coný;idered in the arbitrar% order in vhich they appear in the .1 matrix, and its
components Ahich lie along preriousl' chosen vet-orsi are removed. The first vector obviously has

no other vector to be COMpared v ith and is left alone.

This can be illustrated graphicall- in the tio-dimensional case (Fig. 1'. Consider two
vectors. A'. ! and 1' described by a matrix V. where A is the component of x on the x axis,

x1 axis

.. .... .. ....... . .- x , q ,

X11

.. . .• ........... ............ X 2

X12

q12 2 Ni.

... .......... ................ ii......i n q.n n

m rn 'q22 - •

-X22 _

G~( I (eo)meiri4- nepre,r ewminaim of[ the i nd M \atric~es in '1'%o Dimiension.% Shot% ing

the ;ramy-.S hmid|! (ont.ritt tion.
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and x 21 is the component of i'. on the x 2 axis. x 1 2 is the component ofx'. 2 on the x1 axis, and
X is the component of .2 on the x axis. In the Gram-Schmidt construction the column x., is
accepted. and its elements are put into the first column o' the matrix Q.

[hen the vector is taken, and its component ) ,lonig . is subtracted to form the vector

q.2" The components of .2 along the x, and axes now form the second column of an orthog-
onal matrix Q. The normalizing process (not shown in Fig. 1) shrinks .1 and 2 to unit lengths
but preserves their respective directions, which now form a right angle with each other.

On digital computers, the matrices P and D are determined from X as follows: 'he P matrix
is formed in the same memory area as the X matrix. Each succeeding column vector of the X
matrix (except the first) is orthogonalized separately with respect to each succeeding column in
the manner previously described. The b, parate columns of the matrix may then be normalized.
Meanwhile, the same operations performed on X are also performed in another memory area orig-
inally containing an identity matrix/. It is obvious that as X is transformed into P, I is trans-
formed into D, thus

A• -.... p

I "--' D

because, as noted above, this construction is equivalent to postmultiplication by the matrix D.

A numerical example of these transformations appears in Appendix D.

REGRESSION ANALYSIS AND THE LINEAR
METHOD OF LEAST SQUARES

The linear method of least squares is closely related to the solution of simultaneous linear
equations by the method of orthogonalization which will be briefly described.

'rhe following system of linear equations,

alX1 I + a 2x 1 2  + "" + a.X n-- YI

a x,21 + a2 x 2 2  + an+Xn l Y2 (20)

alXnI +÷ aXn2 + f . a. aXnn- yn

may be represented by the matrix equation

X.'. : Y (21)

where the X and Y matrices are known, and .A is to be determined.

With the results of the first section. a solution may be found as follows:

P D9- .', )} (from Eq. 19) (22)

PI P )-I ..I P" Y (23)

D9 . -1 P, Y (from Fq. 5) (2.)

6
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hence

A = D P' Y (25)

A FORTTRAN coded subroutine for simuihneous linear equations using this method appears

in Ref. 2.

At this point, it is useful to look at the geometric viewpoint of the system of linear equations

and its solution as outlined above. Y. of course, should be considered a vector in n-dimensional

Euclidean space, with a direction. a length. and components yi. As before, the dot product of

Y' on Y should be recognized as an expression of the Pythagorean theorem:

I,*. y } Iy J~2 = 'Y 2 (26)

where 1 Y I is the length of the vector. The Y are components of Y when referred to a particular
reference frame, namely, that defined by the identity matrix I of order n.

Note that Eq. 23 may be rewritten B - P` Y. where B D",'A. Since P is orthonormal, the
elements of B are also components of 0.4 This time the components bi are along unit vectors
whose components. in turn. are found in the columns of P. and hence there is a new reference
frame P. The Pythagorean theorem may also be stated in terms of this reference frame

Inherent in this development is the fact that an orthonormal matrix is a vector basis, or
Cartesian reference frame, in which the ) vector retains both its magnitude and direction..5 In
other words, the vector 11 in the P reference frame is identical with the ) vector in the I refer-
ence frame.

The solution process can be described in this light. Consider the matrix equation X A - Y.
.4 may be called a representation of V. because it may be determined from Y'. Even more. it
represents Y in a manner very pertinent to X. so it may be stated further that A is a representa-
tion of Y in the X space. But it is a distorted representation of Y'. because the X space is
generally distorted. 6 If this distortion is removed by Gram-Schmidt construction, there is ob-

tained a space, P. in which ) has an undistorted. easily calculated, understandable. representa-
tion. B. But B is not what is wanted, so. to get 1. one must reintroduce the distortion. T'his is
done in the final step of the solution .A DB (from Eq. 25). Thus the term -distortion," used
very loosely above, is, nevertheless, precisely and quantitatively expressed by the matrix D.

To turn now from the geometric viewpoint, consider the case where the coumns of the X
matrix do not possess linear independence. This is revealed when a column of zeros appears
during the Gram-Schmidt construction. When this happens. the vector basis is incomplete, be-
cause there are fewer vectors than dimensions. The vector basis is also incomplete, for the
same reason, when there are fewer columns than rows in Y. This will be considered to be the
general case of the incomplete vector basis, because zero columns which appear during Gram-
Schmidt construction may be-simply deleted with no loss of generality.

It will first be shown why this situation (fewer columns than rows) actually occurs. Suppose
one is conducting a series of experiments to measure the value of y. the dependent variable.
Under experimental control are m independent variables x.. By physical law or statistical hy-
pothesis, y may vary linearly with the xI as follows:

y= ax 1 + a 2 1 2 + . . . - amXm (28)

Equation 28 is called the 'regression model:

4 Reference 3, or another basic teW . ma.- he consulted to prove this point
I5t issimply two different methods of locating its coordinate points

6 Not orthonornidl

7' ri
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Obviously, one must perform at least m experiments to determine the a.. However, one may
proceed further and perform n experiments, where n is any number greater tJtan m.. Attaching the
subscript i for the ith experiment, one gets the following set of 'overdetermined" equations

atXil a 2 xi2 +. . . + a.x i, - yi I • i S n (29)

which may also be represented by the matrix equation

XA- Y (21)

noting that X now contains more rows than columns.

While it is not surprising that the experimenter did not have to stop after m experiments, it
may be surprising that the overdetermined'equations above may be solved in the same manner
as outlined in Eq. 21 through 25. A careful examination will show that no step is invalid.

The preceding is contrary to usual experience in solving systems of linear equations. If
the X matrix is not linearly independent, no solution is possible by the usual methods. But
here there is a solution where the X matrix is not even square. let alone linearly- independent.
Before examining the meaning of such a solution, a numerical illustration will be given .

Let the dependent variable be the yield of the principal product in a chemical experiment.
One is interested in how the yield varies with pressure (x 2), temperature (x 3 ), and amount of
catalyst (x 4). Six experiments provide the following data:

Experiment No. Pressure Temperature Catalyst Yield
(i) (xi 2 ) (xi. (xi 4) (yi)

1 1 300 .001 108
2 1 400 .001 111
3 1 600 .002 120

1 2 3,50 .001 99
5 2 550 .002 115
6 2 650 .002 117

The following regression model can then be set up:

a xil * a 2 xi 2 t a3 xil a4 xi - Yi I < i < 6 (30)

In this case (which is very common), a dummy ,j variable must be defined which takes the value
unity for all values of i. The data and model are now expressed in the following matrix:

1 1 300 .O01l 1 108/
1 1 t00 .001 a 2 H]l
1 1 600 D .)0 120 (31)
1 2 350 .001] a 99L
1 2 55 0 .002 115
1 2 650 D02J L117J

P and 1) matrices are now found by Gram-Schmidt construction, and the .1 matrix is found by
Eq. 2.5 to be (99.117. -7.250. .025. 7500).

What is the I vector in this vase? The A vector is an incomplete representation of the Y'
vector in the % space. It has only four components: to be complete, it should have six. 8

Further insight may he gained by returning to the geometric viewpoint and to the solution
process itself. The Graim-Schniidt construction has developed a matrix P. which contains four

Mtort, rm, ý than c,,lurn-, in the, .1 matrix; equiahlentlyi mort. data than parameters in an experiment.

In -i.ihi~ti,,l tirrminology. ,omponnts are 'ailed degrees of freedom.

8
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columns in the example. These represent four vectors meeting at right angles in six-dimensional

space. Therefore. when the solution step R - P' Y is performed. only four of the six possible

components, b,. are computed. It would be possible to compute two more components by arbi-

trarily adding two more orthogonal vectors to the P space. However. these two new vectors

would have no definite relation to the independent variables of the experiment, so this addition

would not be justified. One must accept the actual situation

8, less two components, while not a complete representation of Y in the P space, is a com-
plete representation of some other vector, f. which does not have components along the two
missing P vectors. f can be found by the reverse transformation f = P11, which transforms 8
back onto the / reference frame. (This expression may be shown to be equivalent to $= XA,
where .A is obtained from Eq. 25.)

In the example, f' and Y compare as follows:

f.Y
107.2 1O0
109.7 M11
122.2 120
101.2 99
113.7 115
116.2 117

It is not an exact solution, but it is close, and there is good reason why it should be close. If
the physical law is correct and there are no experimental errors, one would expect the Y vector

tn have only four components in its .A representation, namely, those of the regression model.
The manifestation of other components, as seen in the difference between Y and P. would be ex-
pected only if there were experimental error or if the model were incorrect. Thus, it is not only
possible to have an overdetermined set of equations. but it can be very desirable, because it
can elucidate sources of error. It will now be shown that this is not only a solution to the over-
determined set of linear equations, but that it is the best solution in the sense of least squares.

'rhe problem of least squares can be stated from the geometric viewpoint:

"T'he best rep'esentation of a vector Y of dimension n, in a subspace P of dimension m,
smaller than n, is found by constructing the vector i', having components only in P, such that
the square of the distance between Y and ) is a minimum.

The distance between two vectors is the length of the vector difference, denote V - $ I
"The evaluation of this quantity follows. The unknown vector f has components h,. 02,. I
in the P space. which are chosen to fulfill the criterion above. If additional vectors ale added
to P (in practice. a trial and error process) so as to form a complete orthonormal vector basis,
the components of the known vector Y may be exactly determined.") b 1, b2 . . . . . . b, bmt 1....
bn, where the last n -- m components do not belong to the original incomplete space. The compo-
nents or the vector difference Y - f are found by the rule of vector subtraction

(bi - b 1 ). (b 2 - / 2) ...... (bIn -" i ). b 4 I . . .. .  bn

"rhe square of the vector difference (which is to be minimized) is found by the theorem of
Pythagoras

IjY-f' 2 I (b 1-1 )2 b, 2 ) 2  . . b )2  (b) + + . .
2  (32)

9 1n the sense of Ica.•i squares.
10..%% before. R = P' Y.

9
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The minimum occurs when each 9i is set equal to bi for all i up to m: this can be seen by ob-
serving that each of the leading terms has a minimum possible value of zero. Thus, the criterion
of least squares is fulfilled when P consists of the components of Y in the incomplete P space.
This is exactly what the solution process above does, and it will henceforth be referred to as
the linear method of least squares.

The foregoing is not the classical approach to least squares, nor does it yield the more fa-
miliar least squares equations. It is a curiosity in statistics that, while much of the theory is
based on linear hypotheses, much of the analysis is presented in a cumbersome quadratic form.
The subject of least squares is easily presented with the aid of the Pythagorean theorem, as
shown above. In the classical approach, differential calculus and summation algebra are used.
To arrive at the quadratic form of the least squares equations. modify the linear equation XA ý Y
by premultiplying both sides by A'. which yields (X'A),I -(,V" ), which, expanded. yields

!L.., il 1l i x 2 Xil Xirm alXi

n n n i1

Xjj i.2 X 1  i2 2 . . X2-rim U2 g2'l

i i= - (33)

n n nn

X I i I i , 
"J

This is the form presented in many texts.
A% sample cding for regression analksis. using the linear method, appears in Appendix A.

Statisticians use the inverse matrix elements from the quadratic form to perform t tests. which
show whether the data conform to the regression model or not. 'rhe reader is referred to stand-
ard % orks ( such as lief. 0) for a description of these tests. The statistician is not depriked
of these elements in the linear method, for one can show that the inverse matrix (A' I)- is
equal to, the prod•hct DO)' from the linear method. The sample coding in Appendix -A includes
this calculation.

ORTHOGONAL POLYNOMIALS AND
CURVILINEAR REGRESSION

In the preoius serti. r.- i: wvs srown that the square matrix X of a matrix equation may be
transformed into a matrix ?tý ii'v', has highly desirable algebraic and more readilN understood
geormetric properties. Ihe 4o tti,-n cr(tors of the P matrix are of unit length and are mutually
perpendic ular to, one at ,- ier. I ,rihe-more, the set of vectors may be incoomplete, in which case
there are f(-ei r vectors th-n data points.

The elements of the os.ig,pg nal %eu'lors are called by statisticians -orthogonal polynomials."
for the %•ector elhmeris are actuallY values taken b% the set of polynomial functions

10
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Pil = dl I il

Pi2 = d12 Xil+ d22 xi2 1 < n (3)

P 2 dl3 +dA+ d A
il 3 Xi2  d 33 xi3

These equations are an expansion of the matrix product, P-AD. from the preceding section.

fhe most common application of orthogonal polvnomiats occurs in curvilinear regression.

Curvilinear regression is a special case of regression analysis based on the following model

+= o a X; + a A . .a Inx+I I <_ i<n (35)

Again. this may be represented by a matrix equation

X .1 )' (21)

where the iith element of X is defined by

xii .- xi• - 1 (36)

and where the singly subscripted xi are the values taken by a single independent variable, and
j-1 is an exponent. As before. Gram-Schinidt construction yields a P matrix which is related to

X as follows:

Psi di I

Pi 2  d12  + d2 2 xi (37)

Pi d1.3 ' d2 3 Ti . d 3 3 xi 2

In the functions above. Pi is a constant. Pi 2 is a linear function of xt, Pi 3 is a quadratic
function of .%i and so on. A very important facet of these equations should be noted here.
Although the members on the right are polnominal functions (of linear, quadratic. and higher
degree varieties), the dependent left-hand members (being only the set of functional values) may
by viewed as vectors and represented in a linear vector space. This hill be an aid to under-
standing ho% one can speak of higher order variations with a linear theory.

Continuing to the next step of the linear method

/I P 'Y (38)

This equation may be broken dovin as follows:

b I P . ) Y. (39)

ha P. 2  Y.

h3 - P.3  Y.

The signif',cance of the bl. as the components of ) in the P reference frame. has alread, been

discussed. In addition to the algcbraic and geometric meaning, the b /ill be shown to take on an-
other meaning. It is about the 1. components of Y that the statistician begins meking inferences.
It is inference that separates the statistics from the physics and mathematics of the experiment
and of its model. Equation 3V will serve as an illustration. The term b2 may be inferred to be the

11
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variation of yj due to a linear variation of xi; b3 may be inferred to be due to the quadratic vari-
ation, and so on through higher orders.

That inference is not strictly mathematical may be seen by the word 'due.' There ih almost
a causal implication here, although statistics are not supposed to show causes 1' What is meant
is that the b (which, mathematically, are only linear vector components) are inferred to show a
true functional relation (not necessarily linear) between the dependent and independent variables.
Under certain frequent conditions,12 it is possible to show that the b. are indeed the best esti-
mates of the true functional relations, in which case the statistician' has great confidence in his
inferences.

Continuing with the linear method for the case at hand (curvilinear), the last step is to trans-
form the B vector into the A vector, by premultiplying with the D matrix, and thus complete the
determination of the regression coefficients. This last step may be considered to be an anti-
climax. Before the last transformation, there existed an ideal Euclidean13 space, where the b.
were merely components of Y in the P reference frame. The last transformation not only destroys
this situation but also destroys the inferences as well, because the magnitude of the ai depend
not only on the linear, quadratic, cubic, etc., variations of y with x, but also on the amount of
distortion in the X matrix.

If the last transformation is deferred, there are not only components about which inferences
can be made, but there is also a simple device at hand to test the validity of the model. In the
preceding section, it was shown that Y may have components which do not appear in the P
reference frame. The hypothesis may be made that these components are experimental error. If
the error is small, the components of Y about which functional relations of y with x were in-
ferred should be larger than those about which functional relations were not inferred. The
following comparison function may therefore be set up

b *2

F - I <_ j - m (40)
I n Sbk2

k=m+ I

which is called an F ratio. Note the bk in the denominator are those components of Y which do
not appear in the P space.

An F distribution is a function of the number of inference components in the numerator and the
number of error components in the denominator. When an F is larger than a preset percentage
(say 95%) of all other possible Fs that are determined by the distribution, the statistician says
that a true functional relation exists. In normal practice, the computer calculates the F ratios,
and the statistician draws inferences and performs the F tests. F and f tests are part of the
probability aspects of statistics, and it is not in the scope of this report to pursue them further.
The reader is referred to Ref. 4 and other basic works on statistics.

11 For an interesting discussion of this, see How To Lie With Statistics, by D. Huff, W. W. Norton and Co.,
New York, 1954. 142 pp.

12 Namely, noimal (Gaussian) distribution of error.

13That is, undistorted, orthonormal.

12
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The computational aspects of curvilinear regression will now be considered. It will be shown
that the calculations of the linear method can be performed stepwise. As the name implies, step-

wise calculation allows the regression coefficients to be calculated and tested one at a time.
Such a process is desirable because the curvilinear regression model approximates a Taylor's
expansion of y on x

Yi I + a2 x a, 12 + an (f- 1 (41)

where

rld V- (42)
L ýd_, ) 0 (T- I-) +

Because the reciprocal factorial term in ai rapidli approaches exceedingly small numbers, it is
expected that at some term in the Imodel, the remaining functional relation between x and y is
small compared to the experitttentil error. A stepwise solution can locate this term and can,
furthermore, yield regression coefficients for all intenrediate degree nodels without numerical
repetition.

hlaving established the motive for using stepwise regression, it will be shown how it works
for digital computers. One possible method is to use published values of orthogonal polynomials.
but this is not usually practical on digital computers. Only the orthogonal polynomials for equally
spaced interals of the independent variable are usually published. Also, the D matrix is very
hard to determine, requiring almost as much computation as the Grain-Schmidt construction. A
more practical approach to the use of digital computers %ill be described.

Step%%ise regression is the technique of performing all steps of the linear method by analyzing
one colunin of the X matrix at it time. according to the following outline. %%hich describes the steps
for the jth column

I. F"orn the 'th column of the X matrix

.- Aj < i<n (43)

2. Orthogonaliie this column Iwith respect to previous columns by the Gram-Schmidt construc-
tion. and normalize to find the jth column of the P and 1) matrices

1) ij" dij I <_ i <_ n (44)

3. Find the jth component of Y in the P space 14

hi p. *y. (45)

t. Compute the current F ratio

F 11. n-j) .. .. (4 _c 6)
j l bk2
n-

n I hk

5. The F ratio of step Iant be used to test for significance of the jth functional relation.
At any time before column m is reached. the statistician ma* decide to stop the stepwise
regression on the basis of this test. or perhaps on the basis of the residual standard
deviation discussed below. It is difficult to get agrcemcnt on a proper criterion.

" T"'he etor i,. ik identiicalt 1o the ) mwtri%

13
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6. At any time. the conventional regression coefficients for a j-l degree fit can be found
from the current states of the D and B matrices

ai dii. bi (47)

This technique is used in the sample program shown in Appendix H.

The denominator in Eq. 16 is a useful statistic called the "variance." s 2 . of the regression

S2 : (18)

The square root of this quantity. namely, the residual standard deviation, is an estimate of the
experimental error.

Note that Eq. 46 and .18 contain components of B.? which have vet to be computed. It is known,
/17

however. that bbi2 Y 2. from the PYthagorean theorem, and therefore the following

relation may be used to compute the required components:

12 n

2 E 2I, A 2 (49)

THE DESIGN OF EXPERIMENTS

In the preceding section. it was noted that useful inferences could be made about the com-
ponents of the 8 vector in the special case of curvilinear regression. This cannot be demonstrated
in the general case. To explain this, the pertinent orthogonal polynomials will be reviewed.

In the general case. (,ram-Schmidt construction leads to the following relationships

Pi I di I xýi I

Pi2 "12 xil d ti2 V 2)

Pi 3  " 111:1 'i 1 11'2. Vi:. d 3 3  V i3

and it is seen that each polYnominal is a linear combination of the independent variables.

The difficultv lies in the fact that generall . there is. no physical significance in the
particular linear commbinat ions that arise. This is more obvious when one notes that these com-
binatio)ns arise strictly iacr(cording to the manner in %%hich the independent variable values were
chosen and depend in no av oan the functional relation bet%%een the dependent variable and the
independent variables.

This statement ma. be '(erifi(,d by observing that the 1) matrix is formed independently of
the )matrix.

14
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Fortunately, when the Gram-Schmidt construction is applied to the curvilinear regression
model, each polynominal is one degree higher than the one preceding it

Pit I diI

Pi 2 d12 * d2 2 Xi (37)

Pia d13 i d 2 3 xi + d 33 xi 2

The nature of an nth degree polinomial is not altered by its having terms of degree less than n;
therefore, useful inferences may be made.

It is so useful to form inferences, and to work in the undistorted P space, that the general
case will be examined further. If only diagonal elements appeared in the D matrix. Eq. 3.4 could
be rewritten

Pit I ri I xi!

Pi2 (0) Xi I d22 "i2

Pi 3  (0) XiI - (0)xi2 + d 33 xi 3

In this speculative case. each p; is related to only one independent variable. Therefore, it
would not be unreasonable to make inferences about the corresponding bi components, namely,
that h. would show a functional relation bet%%een the dependent variable and the jth independent
variable.

When vsould this speculative case arise? The off-diagonal ternis in the D nmatrix appear
during the Gramn-Schmid' construction. The only case %-here thev are zero is the one where the
columns of the X matrix are already vorthogonal'.' This is unfortunate. because an orthogonal
relationship among the independent variables is far from a general case.

lI)wever. the nature of an independent variable is that its values are free to be chosen
(hence the term independent): fy choosing these values so that the X matrix is orthogonal before
the experiment is run, one gets a designed experiment. The I) matrix can now be viewed as a
description of the arbitrary way in which values are assigned to the independent variables.

For example. suppose that there are two brands of soap. brand P and brand 0. Suppose.
further, that each manufacturer has recentlý introduced a nev% version of his brand containing
the ingredi,'nt T1IlD. There are two independent variables: the brand, and the presence or
absence of 'lrim). The value #.I can be assigned to the first independent variable (xidt when the
soap is brand P, and the value - I vshen the soap is brand Q Furthermore, the value +I can be
assigned to the second indpendent variable (.i, 2 ) when the product contains '1HID and, -1 when
it does not.

To determine the relative cleaning poAer of the four soaps. a test agency measures the
dependent variable by measuring the percentage of light reflected from sheets washed in the
various products. It is desirable to compute statistics. b .. from which proper inference can be
made about the two independent variables.

111tut not nece' •arih" normal
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Note the X matrix formed when the following four data points are chosen

1. Brand P without TRID

2. Brand Q without THID

3. Brand P with TIMli)

4. Brand Q with THID

. [' (50)
+ 1

rhe two columns of X are already orthogonal, and P and D are

1 i

p... 2 2 D2-- (51)

S + I
L2 2 L2 2

due entirely to nornalizing. itence

P. 2 " Tx2

Components bi .I Y and2 P " ) may be inferred to be the variation of Y with
brand name and with TIHID. respectively This is possible because a good choice of data points

was made

The P.i vectors in this case are called -orthogonal contrasts.- ['his is only a simple ex-
ample of the designed experiment .A specific class of dcsigned -xperimerts is discussed in the
next section.

FACTORIAL ANALYSIS

One experimental design. leading to orthogonal relationships among the independent variables.
is the lattice1 6 design. The analysis of this design will be presented. and an example will be fol-
lowed throughout the section.

Consider an experiment where there are two independent variables, x, and t 2 In this example.
it is desirable that x, take three distinct values and that x 2 take four distinct values. A special
situation, involving a total of 12 points. occurs wNhen the four x2 values are repeated for each of
the three xI values. In this case, the paired values taken by the two independent variables may
be arranged into the following lattice;

x ( 1), X2(i) x 1l). x,(2) X ( 1). X2(3) Xl(1), X2(V.

" l(2)..x. 1) X (2), t,,(2) A (2), x.M X{3 x 2). x t1 (52)

" l(3). x2(l) X (3). x (2) A (3). Q 3.') A (3). X2(1)
1 22 2 2

16 % i%%jh'(l) us-,i .pe'iai a. of t,.iorial ,inul,-iý

16
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where zt(1), xt(2), and x1(3) (which may be denoted xl('l), 1 _< j, _ 3) are the three values taken
by the first independent variable, and x2(j2), 1 _<j2 -5 4, are the four values taken by the second
independent variable. In such a design, il is called the "level" of z1, and i2 is called the level
of z 2 . The variables x, and x2 are called "factors.*

In this experiment, the dependent variable y may be doubly subscripted by the level indices
of the independent variables. The experimental data, therefore, may be arranged into the se'ne
lattice

Y11 Y.2 Y13 Y14

Y21 Y22 Y23 Y24 (53)

Y31 Y32 Y33 Y34

To analyze such a desigr, a regression model must be set up. The first step in establishing
a model is to *partition' the independent variables. Although this term is just now introduced in
factorial analysis, it refers to substitutions already described informally in the sections entitled
Orthogonal Polynomials and Curvilinear Regression, and the Design of Experiments. Formally,
partitioning is the procedure whereby the expression y = f(x) is replaced by the expression
y = f(aI(x), 12(x), . . . , n ( x). In other words, the expression "y is a function of x" becomes
"y is a function of a number ti'znctions of x." This procedure introduces no restrictive assump-
tions.

A new notation is used in this formal definition for reasons that will become apparent as the
model is developed. The symbol Al refers to an arbitrary function of x. The superscript is an in-
dex which identifies the function; it is not an exponent. The form of these functions in the case
of curvilinear regression is

•12

A2 = x (54)

X .3 ý X2

fnd so on, where, in the conventional notation on the right (not underscored), a superscript is
indeed an exponent. This is a common example of partitioning, but certainly not the only exam-
ple. The arbitrary functions may take such diverse forms as

.I= I

J2= log (x) (55)

2 = tan (x)

and so on. The basic point to remember is that for a finite number of x values, the arbitrary func-
tion .i is only a set of functional values and may be viewed as a vector in linear vector space.

Sometimes only the set of functional values is given, and there is no analytic form to xi. An
example of such a case may be taken directly from the section on the design of experiments:

AI., + 1 if soap is brand P a 2 . + 1 if TRID is contained

A.1 = - 1 if soap is brand Q A= - i if TRID is not contained

The latter case is called a qualitative partition, and the former cases (such as Eq. 54 and 55)
are called quantitative partitions.
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The regression model for y, a function of one variable with partitioning, may now be written

y = ailz + a2&2 + . . .+ a.1"

and a simple criterion for a linear model may be expressed

a, a(q constant) I < i < n (56)

The linear approach to lattice designs require-% that each independent variable (factor) be
partitioned into as many arbitrary functions as there are functional values (levels). This is a
controversial point. The nonlinear approach presented by many texts does not require partition-
ing (in fact, partitioning is not possible without reverting, at least part way, to a linear approach).
An objection to the linear approach is that meaningful partitions cannot always be made. (Take
three brands of cigarettes for an independent variable, as an example.) The objection is not
valid, however, as meaningless partitions can always be performed and a 'departitioning" per-
formed at the end of the analysis. This will be discussed further after the development of the
model has been completed and the analysis has been presented.

In th: lattice design being followed, there are two factors, one with three levels and one
with four levels:

x,(it) I </S _,< 3

Z2(id) 1 </ 2 < 4

The first factor must be partitioned into three functions

z 1(,J), X2 (j1 ),X3 (jl) 1 j, < 3

and the second must be partitioned into four
1 2 3 2 .. 4

z 0, A .z2 A(j), 2( 01),i2 i2d 1 < i2 < 4

to equal the number of levels.

The partitioning must be performed so that there is linear independence among the arbitrary
functions and hence in their matrix of values. The matrix of values for the first factor isho~l •21(1) x31(1)1

1 '(2) J62'(2) A 3'(2) (57 )

L" '(3) .2 '(3) a '(3)
If xz(1) = 1, x, (2) = 2, and x1(3) = 3, and this first factor is partitioned according to Eq. 54, the
matrix of values to be checked for linear dependence is

Once independent partitioning is accomplished for each factor, the regression model itself
may be considered. For a lattice design of two factors, the general form of this model must be

Y18i2 =f+00'X202)

18
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%hen the partition device is applied, the model becomes

Yi.i f 2 ) (,i).Y 2(i). ;L I -(i 2 ). _L 3 ,) .41 i21

If the requirement is made that y be a linear function of i: I when x., is constant. the following
relationship may be derived from Eq. 56

- a. a (.V,) (i function only of x A ::ij < 3

Furthermore. if the requirement is made that * be a linear function of %2 when x, is held
constant, another relationship ma% be deriked from Eq. 56

rY
- ua 0) (a function onh of )I i2 _I

0A2

"The most general .slution it these differential relationships can be shtwn to be

&I ! 2 , i(j 1).13 I• ' "2(j,

a l /).1 2(J) , l. , )a. 12j ) 1 1 a( t) /t). 2(j2) al 4 .,AL .t )x 2 ( )

2  2,1 ,( j1) .22t 22, ) 2 4 (2L,• L /,U./). 7-1_, } ).1. .(: , a.,:,A. ' j• (id .,) , a24a 4 j~ Aý ) (78

3 ,23 ' 3.) 3.3 j) 4(28)

a t'Ll(jj_*2 at a1, 3 A 1 I(lilA (j~2) at 1 .~4 j)'(

pro~ided that one arbitraim funtction of each independent variable is merely a constant. The prac-

tice of setting-:1) I and I2 land for that matter the first arbitrar% function of an s factor) to a

constant value of unity is so common and so necessary,- for this solution that it i.ill be assumed
throughout the rest of the text

This is. finallh. the regression model for the 3 I lattice design being used as an e'xample.
That it obeys the differential relations above ma% be verified by substitution.

.s a further demonstration of the linearit% of tie model. Eq. 58 may be expanded into 12
linear equations, in 12 unkno%%ns. by substituting in the Q2 lattice points. IThe data (Y from

Fq .53) are diretlh substituted, bait the ,alues of ithe independent variables (x i/i). x..(j2 ) from

Eq . .52) must. of course, be transformed according to the partitioning used Usuch as in Eq. 54).171

The uail i2 ma.•. therefore, be deterr,,ined b% the techniques of the previous sections However. a

more powerful technique is possibie and %%ill be described later

There are some interesting and desirable properties of this model (Eq. .58) wh;eh should be
noted. The terms in the equation may he arranged into the same lattice as the design points
(Eq. 33). This propert'. is a kei to the analysis which v'ill be presented. Another property of

19
' i
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the model, and one which makes it realistic, is that when each factor is partitioned into zero-

order, linear, quadratic, etc., functions (Eq. 54), the model takes the form of a Taylor's ex-
pansion of y in two variables

Y(X1, z) 2

al1 +0 12 X2  + a 13 x 2
2  + a14 x23

"+021 XI +0 2 2 ZxI 2 +023 XI x22 +24 xX 23 (59)

"+ a31 x12 +0 32 x12 Z2 + a33 X12 x22 + a34x12Z23

Here the level indices have been stripped to eihance the form of the expansion, and a i2 is an
approximation for 

2

Because of the finite number of points in the lattice, only the low order terms of the expansion
appear.

The model given may be simplified (at least in appearance) as follows:

111/2 A.2 A. (0
X'1'2 -Sit '1'2it IA(0

where the underscored capital letters are tensors.

Tensor notation (Ref. 6) is intoduced at this'point because it is particularly suited to the
description of the analysis. The small amount of tensor notation used will be fully explained.
The four variables in Eq. 60 are two-dimensional arrays similar to matrices, except that some of
the indices appear as superscripts. The elements of the "i~i array appear in Eq. 53.

AI iI

The elements of. i. are a (/), where1 8

l _1:5 il 
_< 3

1 : _il < 3
'2 12

and those of.X12 arex (2) where

'2 0

1 < i 2_< 4

The elements of the Aili2 tensor span the a coefficient of Eq. 58.

Tensors may be multiplied in two different ways to obtain either an inner or an outer product.
Only the inner product is of interest in this development, and only that product will appear.

As a first example of the tensor product, consider the product V A 2 from Eq. 60. This
il 1 2

product yields a four-dimensional array which may be denoted.I it2 without notational ambiguity.

18These elements may be recognized as the matrix of values (Eq. 57).

20
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Th]e i i th element of this array is the product of the iljt th element from and the i 2i 2 th

element from

The continuation of the product in Eq. 60 presents a second example of the tensor product

•11 2 '2

Note that the superscripts of , appear as the subscripts of A.

There are two steps in forming this product. The first is forming the following four-
dimensional array (there are six indices, but only four are distinct):

dl 12

l'2'1t2

where the iljii 2J2 th element of this array is formed from the product of the iYjli 2J2 th element

ofX and the iYi2 th element of A.

The inner pr-luct is completed by a second step where the indices appearing both as subscripts
and as superscripts are to be summed out as follows:

* i = X • . (61)
i1i2 =, 91 2 2'1 '2I2

which reduces the product to a two-dimensional array. A numerical example of such a tensor
product appears in Appendix E.

Returning to the subject of factorial analysis, in Eq. 60 there appears a tensor for each in-

dependent variable or factor, 1 1 and A12. While their product can be immediately written as

.X. 12. it is better to analyze them separately. Each .X tensor can be analyzed in a manner

similar to the matrix methods given previously.

It is desirable to separately transform each of the X tensors into orthonormal P tensors.
This may be done by the Gram-Schmidt construction, which was previously described by the
matrix transformation

P=XD

This transformation may be rewritten in tensor notation

_P1 = A! D1 (62)

Some insight into tensors can be gained by studying this equation. Because it describes the
same transformation as the matrix equation, it , an be observed that the superscript of the ten-
sor embodies the row property of the matrix 1 9 and the subscript of the ,ensor embodies the
column property. 20

Consider now a tensor Ck such that the tensor product

where the elements of. are unity if i = k and are zero if i k. Such a tensor C. contains the in-
verse elements of the D array in the matrix sense.

19 Also called the contravariant property.
2 0 Also called the covariant property.

21 ri
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The tensorl has the property that, when it multiplies another tensor such as.* the follow-
ing relation results:

Performing this multiplication according to the inner product rules will show that the individual

elements of 4 are equal to the individual elements of.l, so the change is only symbolic.

This relationship will be used below.

Both sides of Eq. 62 may be multiplied by C to give the following:

C! ) ala: S (63)

A further multiplication by 1, gives

IS I
s i i(64)

This relation, with the indices properly subscripted, may be substituted into Eq. 60 for each
factor X to give

XI 2 = 2 I 2  '1 2 (65)

Some desirable properties of tensors allow a rapid completion of the analysis. Tensors, un-
like matrices, obey the commutative rule as well as the associative rule of multiplication; for
example

.3; 3c = L •.0 (66)

Therefore, one may rearrange the produc't terms in Eq. 65 at will. One way follows:

Y- ' J=1 T.2 B (67)
'11/ 12 -' 1'2

where

3 1 2 r"I Al 2  '1 2

It i* epeated at this point that each E tensor is a two-dimensional array which contains the
same elements as an orthonormal matrix P. A property of such matrices is that P'P = I. This
relation may also be rewritten in tensor notation

It is legitimate here to use the same s;mbol for each 2 tensor, because each contains the same
elements. However, the index which describes the column property 2 1 in the original Ps array
must describe the row property in the new P' array. I

• --t

Hence j is a subscript in the tensor corresponding to the matrix P, and is a superscript in the
tensor corresponding to the matrix P.' It is in this way that tensors are transposed. Both sides

21 This is because the matrix P was defined so that it was column-orthogonal.

22
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of Eq 67 may be multiplied by 1  an s2 togv22 floig

ASI IP'2 liiý'8112 (68

The tensor -4 may be solved for in a manner analogous to the matrix solution of Eq. 25.

However, as before, this will be considered an anticlimax in the analysis, and, in fact, it is very

seldom done in factorial analyis.

Equation 68 may be compressed by the rule of tensor products as follows:

pY2 Y. = (69)
t lt2 1i12 1''2

The tensorf operates on the data tensor Yto yield a third tensor B. A transformation is
,resented in the next section which changes .! and B into one-dimensional arrays while pre-
serving the total number of elements contained. The same transformation, when applied to the
P tensor, reduces it to a two-dimensional array. It will be shown, further, that this latter array
is also orthonormal. This will establish that the elements of the a tensor are components of the
iata.'. Therefore, the theorem of Pythagoras applies, which, for the example, is expressed

I2=2 ( t2)

Nhere a double summation is required because of the double index.

Furthermore, the elements of B may be inferred to be variations of the data due to certain
iariations in the independent variables. To complete the analysis. it is necessary to identify
hese variations. The key to this identification is the double subscript of the B tensor. Just
is the double subscript of the Y tensor identifies the individual data with the levels taken by
he independent variables, the subscripts of the B tensor (which run the same gamut as the Y
subscripts) identify the components with these variations in the independent variables.

A study of this can be made by expanding Eq. 67 according to the definition of the tensor

)roduct

y.d =

I1( 1 2 2 1.1i 1 P32 2)+k 14 (,)P42

?IP 1(i" 1) .Pt 2(j 2) " b 12. t( )_ V 2) +-b13fp I(i)d (/) •1 - ~ l ( +

b 2 1 p(,)p 2 ( 2 )+_ 2 2  1(j 1) P 2  _ t2 
2 1(,1 ) P3 2(i 2) + b 2 P(j) 42()+ (71)`31'( 1)P 2)+b 2 +4 b2 3. 24 p ,2

- 31 ) P 2V 2) + b323 1(j1) p2 2(j 2)+b 3 3  ) 2( 2 ) + •4 F 3 33 4

22The difference between B l12 and B1'2 is only symbolic; they each contain the same array of
umbers.

23
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As an example, let the independent variables be partitioned according to Eq. 54.

A 1 1 =() I

x21 (i) Wi A22q 2)

x 31 (ji ) MX1 2 x 2(i 2 )=x 2 2

11 - 1 2'

(() - d' +12(i2) 2 2 2

- I

3(id). I + ) 2 x 2 324d22 +322

f 31) 3 1 31 - I P 3 i 2) =d32 3 2 42 32
4 (' 2 + d 2 2 3 2 X 2 + d 4 2 3

jd422 2 -2 -2

P 2 d'+ 2 2 2 3

Therefore. p IIand p 12are zero-order functions; p 21and p 22are linear functions of their
1 31 an d4

respective factors; p ndp2 are quadratic functions of their respective factors; and p 2is a
cubic function of x2.

An inspection of Eq. 741 will show that an element b.i of the B tensor shows the variation

in the data Y', due to the variation in p 1 and in ps 2. A component which depends on two varia-
tions is called an interaction component. In a completely general case, all b.12 are interaction

components. However, in practical cases, such as the example being given, the independent

variables are partitioned in such a way that the first orthogonal function, p of each is zero order.
or constant. Because of this, certain degenerations occur. The component~b 1 is inferred to be
the variation of the data due to the zero-order variation of x1and of xT This interaction is doubly
degenerate and is itself zero order. The term k 2 shows the variation of the data resulting frown
the zero-order variation of x, and the linear variation of x 2. This interaction is singly degenerate
and is called a main effect, namely, the linear x 2 effect. The rest of the inferences are found in
the same manner and are tabulated in Table 1.

Henceforth, only interactions which do not degenerate will be termed interactions.

An inference need not always be made about a component. In order to test ihether components
are showing a true functional relation between y' and the independent variables, it is necessary to
have extra components where no functional relation is expected to appear. These components are
of the same nature as those described in the section on curvilinear regression and are termed error
components. An F test can be made where each component, about which an inference is made, is
tested against the error components.

In the example given, there are riot enough components to test all possible inferences. Two
approaches are possible. First, it may be that there are no true functional relations expected

re2 ciefatr;p1 n 3 2
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TABLE 1. Inferences for a 3 x 4 Experiment Aith Linear, Quadratic,
and Cubic Partitioning

Component x I Variation x2 Variation Inferences

B 1 zero order zero order zero orderd

812 zero order linear lin. X2 effect&
813 zero order quadratic quad. x2 effectb

814 zero order cubic cub. x2 effectb

B21 linear zero order tin. Xleffectb

B22 linear linear "in. zx "in. X2 interaction
B23 linear quadratic lin. x I quad. x2 interaction
B24 linear cubic lin. z1 cub. x2 interaction

B3 1  quadratic zero order quad. xI effectb

B 32  quadratic line ar quad. xilin. x2 interaction

B33 quadratic quadratic quad. xI quad. %2 interaction

B34 quadratic cubic quad. x I cub, x 2 interaction

"Doubly degenerate.
bSingly degenerate.

among the interaction components. In this case, the F ratio used to test a true functional relation
between y and a linear variation in x, is computed as follows:2 3

2

F(1,6) - (621) (72)
(b+ ) 2 + (2 + 2 + (b 3 3 ) + (b ) 2]

and for a linear relation between y and x2

F(0,6) = . ... .. (73)1_ 2)2 2 2 2 2 2]

7[k22) + (b23) + (b245) + (_b32) + (b 3 3 ) + (b 3 4 )

and so on for quadratic and cubic relations. If it is necessary to infer that interaction effects do

exist, then it is necessary to create more components, which is the second approach. The only
way to do this is to add a new factor. This factor may be some new variable in the analysis, or

it may be a factor about which no inference is made. The latter case is called multiple replication,

because it is merely repetition of the experiment.

It is not always possible to partition a factor in a meaningful manner. A 'brand name* factor
was given as an example. If factor xt of that example had re.)resented brands A, B, and C of

automobile tires, then it would be meaningless to talk about the linear and quadratic variation
among the brands. However, one can still make the meaningless partition and get the total varia-
tion of y. due to brands by adding (vectorially) the two meaningless components

b21 +-b3l =-b brands, I

Because b 21 and b 31 are components in orthogonal directions, the length of the new vector is

4 6,21) + ( .b31)

by the Pythagorean theorem. This may be called departitioning.
23 Note that the denominator contains the interaction components shown in Table 1.
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If one assumes, as before, that the interaction terms are error, the F ratio to test the varia-
tion of y due to brands is

F(2,6) 21) + (_31)1 (74); 1(~ [~2) (~3)2+ (b +2 (b32)2 + (k::)2  (

where the general rule is applied that the F function is the ratio of the mean square components

being tested to the mecn square components considered to be due to experimental error.

The choosing of the components to be tested, and of the F ratios to be formed, is called the

summary of the analysis and, as stated before, is strictly within the working area of the statisti-

ci an.

Thus far, only a particular two-factor experiment has been considered. Generalizing to the

n factor experiment is remarkably simple in tensor notation and is summarized below.

SUMMARY OF THE ANALYSIS OF LATTICE DESIGNS

Assume the regression model

X.1 X 2 X. 3...A.(5
XN213 1 -12-1 3 1 " 23

1. Partition each independent variable to obtain the matrix of values which are to be inserted

into the individual X tensors.

PqI) = z'1[x1 (Jl)j (each x'l an arbitrary function of xI)

z'2(12) = z'"x2(j2) (each a' 2 an arbitrary function of x2)

_3(3) Z AX3 ( 3 )] (each xi an arbitrary function of x3)

where, for each factor, the number of values taken by i (number of functions) is equal to the

number of values taken by j (number of levels) to obtain a square matrix of values.

2. If each matrix of values possesses linear independence, form the orthonormal tensors by

the Gram-Schmidt construction

£j, Xi ]j

*2= f'2 D'2
=j2 2_' 2

ps3 = 'X3 D3
13 _)3-Di 3

3. Transpose each r and, using the solution process of Eq. 67 and Eq. 68, evaluate the

following equation

B 1 32 . .. = -P J)2 1 32 " " (76)
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4. Form inferences about L (which may now contain three-way and higher interactions) and
summarize according to the desires of the statistician.

The factorial analysis program in Appendix C uses this method. Other facets of this program
will appear in succeeding sections.

The reader is referred to Ref. 7 for another description of the linear approach to lattice
designs.

TRANSFORMATION OF INDICES

As stated in the preceding section, a transformation will be described which reduces the
multidimensional Y and B arrays to one-dimensional arrays. The transformation works on the
indices of the tensor, but it does not alter the number of elements in the array or their numerical
values.

This transformation is of more than academic interest, because the addressable memory of
a digital computer is one-dimensional. So, an n-dimensional array must be represented by a one-
dimensional array, the elements of which are found by a single subscript computed from the many
subscripts of the n-dimensional array.

Assume, for example, that there are m factors with the number of levels denoted by f/. /'2'
/m. The total number of data points, n, is equal to the product of the fs. Consider the

data tensor Y /l/2. * 7m, a variable with m subscripts. A single subscript j may be computed from

these subscripts as follows:2 4

H-1 = i I-' + (j2-l)f! + (j3-1)fl f2 + (/4-1)f! f2 f3 + • + (im-W)f2 " " f,,-t (77)

The above formula 2 5 will be recognized immediately by one who has coded operations on
m-dimensional arrays in digital computing machine language, and the number theorist will
recognize it as a representation of j-1 in a hybrid-base number system. That is, a number may be
written (m-D) . . . (j2-1) (jl-l), which does not represent j-1 in a decimal or a binary number

system, but in a system where the low order digit, (jj-1, is of base fl; the second order digit, (/2-1),
is of base f2; and so on. Because the last viewpoint delivers the greatest insight into the trans-
formation, an example will be given.

Consider a three-factor experiment where factor x1 has two levels, x 2 has three levels, und
x3 has four levels. Table 2 illustrates how the three-dimensional array may be 'stretched out'
into a single array. An important property of the transformation in Table 2 is that it is a one-to-one
transformation. That is, for every / there is a unique set, j,'12, ... ., j, and vice versa. The
uniqueness may be proved by induction in a manner similar to the proof in Ref. 8.

2 4 This j is notationally distinct because it is not subscripted.

2 5 A cumbersome translation, j -/.1, is used because the FORTRAN language does not allow indices to

run from zero.
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TABLE 2. Transformation of Indices for a
2 x 3 x 4 Experiment Showing the Base-10
and Hybrid-Base Representation of the

Single Index Formed

1-1 1-1
1 I 12-1 13I1 (Base 10) (Hybrid base)

0 0 0 0 000
1 0 0 1 001
0 1 0 2 010
I 1 0 3 01l

0 2 0 4 020
1 2 0 S 021
0 0 1 6 100
1 0 1 7 101

0 1 1 8 110
I 1 1 9 111
0 2 1 10 120
1 2 1 11 121

0 0 2 12 200
1 0 2 13 201
0 1 2 14 210
1 1 2 15 211

0 2 2 16 220
1 2 2 17 221
0 0 3 18 300
1 0 3 19 301

0 1 3 20 310
1 1 3 21 311
0 2 3 22 320
1 2 3 23 321

This transformation may be applied to the subscripts j and I in Eq. 69 as follows:

Ai = -at(78)

It is important to recognize that Eq. 78 describes the same arithmetic computations as Eq. 69.
In fact, the computer programmer will recognize Eq. 78 as the method of coding the computations
of Eq. 69 in machine language.

Equation 78 may be immediately rewritten in matrix notation

ply = B (79)

noting that the simplified tensor products of Eq. 78 corresponds exactly to a matrix product.
Equation 67 may be transformed in the same manner

y = P B (80)
applying first the rule of tensor products to obtain Y Ps 1*2 1

8 is2"
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The only way in which Fq. 79 and 80 may both be true is that

PI P= ( (81)

Thus it is shown that the matrix P. formed by the transformation of subscripts and superscripts

of the tensorP. 2 , is orthonormal !! is therefore possible to observe two things. First, the--/l 2 1"

lattice design fulfills .he desired requirement that the independent variables be mutual]),
independent (orthogonal). Second, the b. 1s,". . . are truly componente of the data 1"I1i2" and

the inferences of the previous section are correct.

FRACTIONAL REPLICATION

The lattice designs already described are not the only means by which an orthogonal rela-
tionship may be established among the independent variables of an experiment. It is not within
the scope of this report to describe the others in great detail. One type, however, is so common,
and so intimately related to lattice designs, that something should be said about what it is, why
it is used, and how it may be handled on digital computers.

Fractional replication is related to what is called the redundancy check. The reader will
probably be familiar with the parity check on binary numbers or with check sums on punched
cards. The redundancy check may be described as taking essential information and including
with it redundant information computed from the essential information in some predetermined way.
The purpose of this, of course, is to detect transmission errors (or, when the human element is
involved, to reduce the possibility of forgery of numerical information). One may, for instance,
look at the 10-digit serial number on his oil company cerd and note that the company could not
possibly have 10 billion credit customers as this number implies. If some of these numbers are
used as a redundancy check, one's chances of forging a legitimate serial number are small . A
redundancy check may be added to the subscripts of data tensors from lattice designs. A par-
ticular class of redundancy checks will he described which requires that two or more factors
have the same number of levels. For example, consider a simple two-factor experiment where
each factor has three levels. The Y tensor than has nine elements

YII.Y12' YI3 Y21I Y22' Y23' Y31' Y321 Y-3

A third subscript may be added which has the property that the sum of the subscripts modulo
3 is zero

Y III 'Y 12 3 ' Y13 2 ' Y2 13 ' Y2 2 2 ' Y2 3 1' Y3 12' Y3 2 1 IY 3 3 3

Consider now the case where a new three-level variable is introduced which takes the level sug-
gested by the third subscript. In this case, some interesting things happen. First, the third
subscript is now a redundancy check in mathematical form only. Actually, it achieves the same
status as the other two subscripts. Second, a three-factor experiment has resulted, but some-
thing is missing, namely, those elements of a 27-element data tensor, the sums of whose sub-
scripts equal 1 and 2 modulo 3. In fact, there is one-third of a 3 x 3 x 3 experiment (written
1/3 x 33). This is called a fractional replicate of the fiull 33 experiment.
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The three subscripts possess the property of symmetry. That is. if originally there were only

the second and third subscripts, the value of the first would be determined by the same rule. In
fact, if the first subscript is dropped, the second and third take the same set of values that the

first and second did originally (but not in the same order); that is. all the points on a 3 X 3

lattice appear. Similarly. the second subscript is a redundancy check on the first and third, and
if this second subscript is dropped, the first and third contain all the points on a 3 X 3 lattice
(and again, the order is different).

Because it is a lattice design. the original two factors have an orthogonal relationship be-

tween them. But, by the property of symmetry, it must be concluded that the third is orthogonal
to each of the or,-;nal two. Thus. the fractional replicate is a designed experiment.

llow-, 'ýr, a poradox exists. Although there are three subscripts, there is onl ai two-

dimensic nal array. In fact. the analysis made for complete factorial designs may be made here.

ignoring any one of the three subscripts (because. as already noted, in all three cases the re-

maining subscripts describe a complete lattice). But each process analyzes only two factors.

What happens to the third?

'rhe solution tensror 8 consists of nine elements: the zvero-order components of the data, the

two main effects of the fi:st factor, the two main effects of the second factor, and four interaction

coniponents. Because dh' %et tor basis is complete. the components related to the third factor
must be contained somi,'her.. I1% its %ter% nature, the jero-ortler component is eliminated, and,
as alreads noted. the thihee rdin faltoars are mutu.all% orthogonal. Therefore. the t%%o components
of the third faictor musttlie Ialon g some of the inlerac tion components of the other twvo factors.

In this case. each factotr is said to be -con founded" ith the interaction of the other two
fac'tors This dual iden t iti ofcomponents presents a problem. Ilow does one know whether a
component results fronm one factor or the interaction of two others? Proper inference can solve
the pioblem. One naa% ha..e good reason to believe that there are realhl no interaction effects.

lie then infers the comnponents to be onl main effects

One way to have confidence in such inferences is to confound factors with high-order inter-
actions. (In the previous section. the regression model was described as an estimate of Tavhbr's
expansion of the dependent variable. One therefore expects components resulting from high-order

effects. even %%hen real. to be •eaalI. because of the reciprocal factorials in the high-order term|s
if the expansion.) The onl• ' % a%\i to co)nfouund high-order interactions, in the (lass of fraction,,l

repli hation being described, is to hia% e many factors \ ith the same number of levc Is. C(insider. for
instance, a I - II. ,experinient. The independent .ariable will ha\e four subscripts. each

taking values I to 1. One may add a fifth subscript vith a redundaoc\ check. so that the sun|
of the five must be 0 modulo I. and may thus introduce ia fifth factor. I:'ach factor will be con-
founded with a four-%av interaction. One then infers confidently that the components show
Only the functional relation of the factor and not a four-way interaction.

"TFhis example also illustrates the principal advantage of fractional replication. With four

factors. one alrreadc had a need for 256 e xperiinent al points. Aithout fractionating. a fifth factor
%ould require 102 1: but % ith it. the need is still for only 256.
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The type of fractional replication described above is called the Latin-square class, because
the simplest cases lead to Latin-square patterns. For instance, from the 1/3 x 33 example, one
may set up the following square:

1 2 3

S 1 3 2
2 3 2 1

3 2 1 3
where the first subscript appears across the top, the second along the side, and the third in the
boxes.

T'here are. of course, more complex examples in the Latin-square class; for instance, a
1/3 x 4 x 3 3 experiment. The four-level factor has no redundancy check and hence no coil-
founding with other factors. The other three, considered separately, form the classical Latin
square above.

There are other types of redundancy checks which give rise to other factorial models. In
some cases, there can be two independent redundancy checks on a number of factors of the same
number of levels. This is called the Greco-Latin-square class of fractional replication. Other
types of checks exist which give rise to incociplete-block and other exotic designs, some of
which can be solved by the programming in appendixes A, B, and C and all of which can be
solved by the methods of this report.

There are two ways of analyzing fractional replicates by the methods described under Fac-
torial Analysis. One may be called "putting the burden on the statistician" and the other 'putting
the burden on the computing machine." In the first method, the redundant subscripts are ignored,
and the regular factorial analysis is made, which computes each single degree of freedom. The
statistician, knowing the redundancy check, then searches among the high-order components for
the missing factors. The second method requires that the rest of the lattice, of which there is only
a fraction, be filled in with zeros. The regular factorial analysis is then made, and highest-
order interactions are successively discarded until there are fewer components than data. 'rhth
remaining components are divided by the fraction of the experiment, In this method, all com-
ponents are properly identified as described under Factorial Analysis.

As an example of the second method, consider the 1L3 x 33 experiment. This is first con-
verted into a 3' by filling those elements of a 3 x 3 x 3 lattice that are not in the design, with
zeros. The factorial analysis is then made. The two- and three-way interaction components are
discarded, and the main effects are divided by 1 '3. Care must be taken in calculating F ratios
in this case. The denominator must be calculated in the manner of Eq. 46, where the squared
components to be tested, including the zero-order component, are subtracted from the total sum
of squares of the data.

THE MISSING-VALUE PROBLEM

It sometimes happens that one or more points of a desired experiment are missing. This can
happen for any number of reasons, such as a failure in recording instruments or an operator er-
ror. What is worse, in some cases these points are irreplaceable.

When there are points missing, there are two possible approaches to analyzing the data. One
approach is to compute estimates of the missing value on the basis of the components of the data
about which real functional relationships are inferred. The other approach is to revert to the gen-
eral regression model.
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There are disadvantages in both approaches. and both are subject to much criticism. In the
first methoid. there is the disadvantage that the solution to the regression model that is formed
after the computation of missing values is no longer the best solution in the sense of least
squares. It has the advantage, ho%%ever. that the inferences are preserved.

In reverting to the general regression model, one has the advantage of an exact solution in
the sense of least squares. but the inferences become distorted and F tests are not properl.
made Another advantage here is that it is a noniteralie approach, whereas the missing-value
approach ren-,ires iteration if there are two or more missing values. On a digital computer. this
last is not an inmportant consihderation

The method of r illars (lRef. 9) has served the authors %ell as a missing-value technique and
has been coded in machine language for the Itl\M 70t (l~ef. 10). U.niifortunatelv. it has not been
updated to l.'lrI ll %\.

FINAL REMARKS

F'O.H'IlAT\-coded programs for general regression. curvilinear regression. and factorial anal-
,,sis. using the methods of the text. appear in Appendixes A. 13. and C. Although these programs
hae output summaries. they cannot be described as final. They are presented mnainly to illustrate
the linear method. The potential user is invited to take them and choose his in methods of sum-
mari/ing the output and of handling fractional replication and missing values.
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Appendix A

USE OF THE MULTILINEAR REGRESSION PROGRAM

The data input may be described best by referring to the basic matrix equation

XA = Y

where X is an n by m matrix, A is a column vector of m elements, and Y is a column vector of n

elements. The unknown is the A vector.

Card 1, FORMAT (215, F5.0, 54F1 . . .), has the following parameters:

N (1) = m which is less than 51.

N (2) = n which is less than 1001.

SF = scale factor for Y vector (power of 10).

ID = identification of problem with any legal Hollerith characters.

m x n = product less than 16,001.

Card 2, FORM1AT (12A6), contains identification for each of the m columns in the X matrix.
Use as many cards as needed.

Card 3, FORMAT (12F6.0), contains the values of the elements in the Y vector. Use as many
cards as needed.

Card t, FORMAT (12F6.0), contains the values of the elements in the first column of the X

matrix. Use as many cards as needed. Repeat this card for each additional column of the X ma-
tri x.

When the last column of the X matrix is punched, a complete problem is ready to be processed
by the computer. The next card in the data file is Card 1, described above, f- ir another problem;
therefore, the above procedure is repeated for the second problem. Any number of problems may be
processed.

EXAMPLES OF DATA INPUT

4 41 0 EXAMPLE A
K X X2 X3

3. 22, 39. 54. 65. 76. 85. 90. 95. 99a 102. 103o
104. 103. 102. 101. 99. 96. 930 89. 84. 78. 72. 66s

600 560 531 51. 49. 49. Soo 526 553 600 66. 740
84. 95. 108. 121. 137.1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1. 1 1 1 1 1 1
1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12
13 14 1s 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36
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17 16 19 40 41
1 4 9 16 25 16 49 64 8l 100 121 144

169 196 225 256 289 124 361 400 441 484 529 576
625 676 729 794 841 900 961 1024 1089 1156 1225 1296

1369 1444 1521 1600 1681
1 8 27 64 125 216 143 51*2 729 1000 1331 1728

2197 2744 3375 4096 4913 5812 6859 8000 9261 10648 12167 13824
15625 17576 19663 71952 ?4389 27000 2Q791 32768 35937 39104 42875 46656
50651 94872 59110 6i4000 A8921

3 28 0 EXAMPLE 8
K LN T INtT2

269. 180o 150o 120. 90. 75. 66. 60s 54. 48. 42. 36.
30. 27. 24. 21. 20s 18. 15.1 14. 12, 10. 8. 6a
S. 4. 9. 2.5

0.0.69,11.16171 .6O942.14012.493??.7,792&90693,09103.30321.54103.4177
4.1271431l754.4998'.76?,'.85985.06895.416l5.57225.67496.,4426.68467.2654
7.62568.07098.64829.OI 19

0s 0#480 1.353 2s590 4.580 6.216 7.441 8.450 9.55510.9111?.53814.575
17.01318.64120.24822.67R23.61825.69479a13431.04934.51538.99044.68452.786
S&5815065. 140 74 7928 1.2

4 6 0 EXAMPLE IS TAKFN FROM EQUATION 31 OF THE TEXT.
X2 X3 X4

108. III* 120. 99s 115. 117.
I* 1. Is 1. 1.I Is
Is I* 1. 2s 2. 2.

100a 400, 600. 150o 950, 6506
0.001 0.001 0.002 0.001 0.002 0.002

MULTILINEAR REGRESSION FORTRAN PROGRAM

SIRFTC SIMLIN LTST*REFoDFCK
CMA TN
C SIMULTANEOUS LINEAR EQUATIONS. MAXIMUM NUMBER OF ELGMENTS IN
C COEFFICIENT MATRIX IS 16,000.

COMMON Atl6000lhytlOOO) ,O(S0#50)oYMAT(1000)gSS(50)tAP(50)#X(50)t
ISTAT(50),IDENT(9),HFAD(50),RATTO(50),XMEAN(503.XINVEI50,50),M.N.
2RSDOYFVFRE#MALM
I FORMAT (2159F5#.o(9A6)1
2 FORMAT (12A6)
3 FORMAT fl2F6.01
5 FORMAT (42H0 TN THE GRAM-SCHMIDT PROCFSS THERE WERG 913930H STNAR
IY BITS OF ACCURACY LOST*)

8 FORMAT C IN1IOX, I9A6) /1M08XIHYI?X,2Hy~l5X ,IHY12X ,2MY*15XIHY12X,2H
IY4ISX*IHY12X#2MY@/IH )

9 FORMAT (4(IPEl6.5#IDEl4.5))
16 FORMAT IHIMIOX.(9A6)/IHOSIX,19HREGRFSSTON ANALYSTS/2OHO THE MEAN

IOF Y IS E15.8/19HO RESIDUAL STANnARD DEVIATION OF Y IS E15*8/29H0
2 F VALUE FOR REGRFSSION IS FI'%3/30H0 REGRFSSION COEFFICIENTS AR
IF/1H I

17 FORMAT WlE156I
18 FORMAT (14H0 X MEANS ARE/IH
19 FORMAT (1OHO INVERSE MATRIX ELEMENTS ARE/iM
70 FORMAT (Im 1
26 FORMAT (IH13OXs(9A61)

4 READ 15.1 IM9NvSCALF.1 TDFNT( I)#Izjq9)
READ (5#21 (HEAD(I) ,Tu1,Ml
READ (5.11(YIIIslN)
DO 6 Jz1,M
LV a (J1 1)*N + 1
LA wLV .N - I

6 READ (5#W)AIII.I.LV9LA)
SCALE a 10.o#*SCALE
DO 13 wII.N
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11 V11) -Yr!)9SCALE

CALL LINEO
CALL. VARFAC
Lv a 90
DO 10 Ial.N.A
J3 TS
If IN-J) 14.15.15

14 .3 N
IS IF (S0-tV) 11.11.12
11 WRITE l6*81NTrFNTf~.lip.l91

LV a 0
12 WRITE (6.9) (IYIK) YHATfK)l) KvI .Jl
10 LV a L+

WRITE (6.16)(IOENTII),Iul#1,9XMEANII).RSOOYPVFRE
LV a 14
DO 29 1 a 1.mse
.3 1+7
If (M-fl 21#22.22

21 .3-
22 WRITE 16#17)(XfK)#KwI*Jl
29 LV * LV+1

WRITE (6.218
DO 30 t a 20N.8
J3 w 1.7
IF (M-J) 23024*24

24 WRITE f6o17l(XMEANIK)*Ku.JlJ
10 LV *LV*I

I *BALM + 0.5
WRITE 1695)1
WRITE (6.19)
DO 25 1 a 26m
IF (LV-51) 27.26#26

26 LV a4
WRITE (6#2P)lIDENT(HjN),Nu,)
WRITE (6.19)

27 WRITE (6.17)(XTNVF(t9J).Jm?.!)
WRITE (6#201

25 LV * LV.?,f(f-2)f8)
GO To 4
END

SIPFTC LINEO LISToREFoDECK
SU'RROUTINE LINEO
COMMON A116000).Y11000).D(5O.O).IYMAT(2000).SS(50).AP(50),X(50),
ISTAT150,ToIENTI9',,4EAD(SORATIO(50OXMEAN(50)XINVESO.#SOhNN.o
2RSDOYoFVFRE99ALM
DIMENSION P116000)
EOUTVALEF4CEIA .P)
IF (N-I) 11.12.13

12 X(II a Y(II/At1)
GO TO 11

13 DO 2 Jolt"
DO 2 I-loM
D(IIJ) * 000
IF (I-J) 2.102

1 D(I.J) a 1.0
2 CONTINUE

BALM a 0.0
YXLO a ALOA(2.O)
DO 24 Jw2.M
ssoro a 0.00
LV * (J-I)'Ne1
LA a LV+N-1
DO 21 1 w LVLA

21 ss"Fa a SSBEG + P(I)*P(I)

i59 a J3-1
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0O 15 K-l..JN

R a 0.0
LK a(K1"+

DO 4 1 a VtLA
R a R P(t)'P(LM)
S * S P(LPW)*PILM)

4 LM a LW*
o a P/S
IF (K-11 20,10*20

16 XMFANfJ) a 0
20 LW a LK

DO 5 1 u LV9LA
PIl) a PIT)'- 04 P(LM)

9 LM a LW + I

15 D(I.J) a D(t.J)-0vD~t#i)
SSFlN a 040
DO 22 1 a LV.LA

22 SSFIN *SSFIN + P(T)*P:T)
BALM *BALM + ISSBEG/SSF!NI

24 CONTINUE
BALM* (ALOGISAMIWI/YXLO)*0*5
DO 7 Jal#M
SS(Jl a 0.00
LV a (J-1)N4+1
LA a LV*NP-1
00 6 1 aLVLA

6 SSIJ) aSS(j) + p171.9(T)
SSU) a SORT(SSIJ))
DO 16 1 a LVLA

16 PIT) a P(I)/SSjJ)
DO 14 Ilul.

24 D(T.j) * DIJ.J)/SS(J)
APIJ) a 0.0
LW a 0
DO 7 1 a LVLA
LM a LW + 1

7 AP(J) a APt.)) * Pft)*YILM)

XII) a 0D0
DO 8 .jal#W

8 X11) - XfJ).O(!,J)*AP(j)
DO 17 J=2.M

17 D11,JJ a 0,0
DO 9 Jal.m

9 STAT(J) a AP(J)*AP(J)
Do 10 IwlsN
YMAT(T) a 0,0
DO 10 -Ju1.W
Lv a (J-1V1i.I

10 YMATIY) a YMATII) + PILVI*AP(J)
DO 19 Kftl$M
DO 19 TwisW
XINVFITK) a 0 0
DO 19 ialeW

19 XTNVE~i,,.. a XINVEI7,K)+,D.jo)*O(Kqj,
11 RETURN

END
S!BFTC VAPFAC LIST#.PFP.DCK

SUSROUTTNE VARFAC
COWWO#4Af16OOO1;Y(l000),DfSO50,O),y4AT(10O, 9OSSISO).APISO),X(50).

2RSDOY#PVFREtBALW DEN5)XNVIO5)MN
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A FORMAT (1H1J0X99A61
5 FORM4AT 120H40SOURCE OF VARtATTON#SX9l8HnEGRFES OF FREEDOMo6Xo1SHSUM
IS OF SOUARES#16Xo7HF RATIO/I1 I

6 FORMAT (7XslA69l8X914*I4X*El5s8sF22*3)
7 FORMAT (IMO,6X.6I4RESIDUAL,16X$14.1AXE15.B)
GMEAN v 0.00
DO 12 foloN

12 GMEAN a GMFAN+Y(ll
GN a N
GI4EAN w GMEAN/GN
XMEAN(1J a GEAN
SSTOT u 0.0
0O 13 TaloN

ON a Y(Il-AMFAN
IS SSTOT a SSTOT4.GN*GN

TTSTAT w 0.0
DO 14 Ju2gM

14 TTSTAT *TTSTATSTATIJI
SSERR SSTOT-TTSTAT
TDF v N-1
FRRDE a TDF+1-M
ERRME a SSERR/ERRDE
RSDOY a SORTIERRMS)
ON a M-1

FFfa (ERRDE*TTSTATI/(GN*SSERR)
DO 15 1u29M

15 RATTOfT) - STAT(T)ERRME
WRITE (69A)(TDFNTI TvI .Ta9)
WRITE (6.5)

DO 16 T*29M
16 WRITE (6#6IMEAD(T)vK*STATf(ThRATTOfT)

K a ERODE
WRITE (6#7)KoSSERR
DATA OOOOHL/6HTOTAL/
MEAD(l) * 0000941
WRITE (6#6)94FAD(I1,TfnFSSTOT
RETURN
END
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Appendix B

USE OF THE ORTHOGONAL POLYNOMIAL AND
CURVILINEAR REGRESSION PROGRAM

The data input may be described by referring to the curvilinear equation

Yi= axi i = 1, 2, .... n

j= 0

where a, are the unknowns.

Card 1, FORMAT (1311, 12, 313), has the following parameters:

L (1) = not used .

L (2) = 1 to read in new x values or 0 to use previous values.

L (3) = 1 to print out transformation matrix (otherwise 0).

L (4) = 1 to print out orthogonal polynomials (otherwise 0).

L (5) = ito punch out orthogonal polynomials (otherwise 0).

L (6) = 1 to read in new y values or 0 to use previous values.

L (7) 1 to print out regression coefficients for orthogonal polynomials
(otherwise 0).

L (8) = 1 to print out conventional regression coefficients (otherwise 0).

L (9) = 1 to print out correlation coefficients (otherwise 0).

L (10) = 1 to print out y values predicted from regression (otherwise 0).

[ (11) = not used.

L (12) = not used.

L (13) = not used.

L (14) = m which is less than 20. All degrees of fit from I to m are computed.

L (15) = number (n) of points. It is less than 1,000 but must be greater than m.

L (16) = scale factor for x values (power of 10).

L (17) = scale factor for y values (power of 10).

For large problems, x and y values should be scaled so that the data are close to unity.
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Card 2, FORMAT 72H . . • ), identifies the problem with any legal Hollerith characters. The
character in the first column enters the carriage control channel.

Card 3. FORMArT (12F6.0), contains the x values. Use as many cards as needed. This card

must not be in the data file if L (2) = 0, in which case the x values from the previous problem
are used. (L1 (2) = 1 for the first problem.)

Card 4, FORM|AT (12F6.0), conza;ns the y values. Use as many cards as needed. This card
must not be in the data file if L (6) = 0, ir which case the y values from the previous problem
are used. (L (6) = I for the first problem.)

With the complet on of Card 4, the next card in the data file is Card 1, described above, for

the next problem; thu , the above process is repeated for annther problem. Any number of prob-
lems may be processed.

The program is coded in single precision. and thus large differencing errors may appear for
high degrees of fit.

EXAMPLES OF DATA INPUT

1 1 111 1 4 -6 -4
1 EXAMPLE ONE

3002 2915 2832 2754
27993 25224 22989 20569

1 111 1 4 -6 -4
1 EXAMPLE TWO
28195 25623 23201 20792

1 111 1 4 -6 -4
1 EXAMPLE THREE

3007 2915 2826 2743
111 1 4 5

1 EXAMPLE FOUR
-2 -1 0 1 2

1 2 3 4 5
1 1 111 4 10 -5 -3

1 EXAMPLE FIVE
2525 2828 3147 3586 4198 4456 5757 6688 7662 8704
1000 1099 1144 1188 1228 1253 1304 1339 1374 1408
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ORTHOGONAL POLYNOMIAL AND CURVILINEAR REGRESSION FORTRAN PROGRAM

sJmFTc CURVLN LIST9RFF#OFCK
COMMON Pf999#2O)9MNL(17),Yf999I# 8(20)0 SS(201# XS(209201, TOL

I FORMAT0113Il,2olT3tF,6*
2 FORMAT(54H1BAO CONTROL CARD OP MITSCOUINT OF INPUT OUIT THIS J0OB.

10 READ (5*I1NL(I)91 a 1*17)
9 M a L02A)

N a L015
IF (N-I-M) 12111.13.13

13 00 14 K a 1#13
IF IL(K) -1) 14.14.1111

14 CONTINUE
IF (M-19) 15.15.1111

15 CALL 10
IF (L(21) 17.17.16

16 CALL XF!LE
17 IF (L(311 19.19.18
18 CALL DETMAT
19 IF IL(A))210219?O
20 CALL WRITEP
21 IF (L(5)126926924
24 CALL PUNCHP
26 IF (1(6)1 28s28927
27 CALL YFTLE
28 IF(L(71130930,29
20 CALL OUTS
30 TFIL(8)132#12#31
31 CALL OUTA
12 lF(L(91134914933
3S CALL OLITR

CALL OUTFR
34 TF(L(I1I0))O1O355
3S CALL OUT

GO TO 10
1111 WRITE (6.?)

CALL EXIT
END

STRFTC OUTFR LTST.REFDFCK
SUBROUTINE OUTFR
COMMON Pf999,2O),MNsL(17).Y(lq9Q91 8120)9 SS(20)o XB(20,2O), TOL
COMMON SSY
DIMENSION FA(20). FSf2010 0t2O)oP(20l*S(2O)

1 FORMAT (51MOF-RATIOS (INDIVIDUAL) D*Fo(NUN')s1, D&F.fDEN)uN-1-Jl
2 FORMAT(6SNOF-RATIOS (ACCUMULATIVE) D*F*(NUM)*Jo D.F*(DFN)=N-1-Jo J
1.09l#* 1..e**.2)
3 FORMAT 11H
4 FORMAT(1HO,1OFII.3)
7 FORMAT (25HOPESIDUAL VARtATION IN Ya)
8 FORMAT (1HO.7E15.6l
9 FORMAT 136HORESTDUAL STANDARD DEVIATION OF FITo;

00 x N-2
MP v M*1
DO05 J 2 2MP

5 0(j) z s(J)442
o *ssv
A 0.0
DO06 J a2,MP
S N j

T j-
00 *S/T
A*A + 0(J)
D D - 0(J)
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RIJ) a 0
FA(J) a 0(J).'D *00

6 78(J) a A/D*00
Rhl) a SSY
00 11 j a .mp

11 S(J) a SORT(R(JI/X)
WRITE (6.1)
WRITE (6#11
WRITE (694l(FA(Jl# J a 1.MP)
WRITE 16.3)
WRITE (6*21M
WRITE 16.4)(FB(J.t J a * P
WRITE (6.3)
WRITE (607)
WRITE (6#81(R(Jlo J v 19MP)
WRITE (6.3)
WRITE (699)
WRIT! (6s8)(SIJ). J a 1'mpl
RETURN
END

SIBFTC OUTR LIST#REFDECK
SUBROUTINE OUTR
COMON P(9,9,20l#MoNoL(17)#Y(9q9), 8(20)o SS(20)9 X8120.20), TOL
COMMO" SSY
DIMENSION R(20)#V(20)

I FORMAT (26MOCORRELATTON COEFFICIENTS*)
2 FORMAT (50P40Y VARIATrON ACCOUNTED FOR BY J TM POLYNOMIAL SET
3 FORMAT (IM )
4 FORMATfIN ,F90#11FIFO.)
5 FORMAT(IM o7E15.61
WRITE (6.1)
WRITE (603)
O * 1./SQRTISSY)
MP M + I
DO 6 J u 29MP
V(J) a B(J)"?2

6 RiJ aBJ)0u
WRITT aA4(RJ. It M.P)
WRITE (6.3)
WRITE (6.2)
WRITE (6.3)
WRITE (695)(VIA0, a 1,NP)
RETURN
EN()

SIB!TC ID LISTsREFDECI(
SUBROUTINE ID
COYMMON P(9Q'9.2O),~NNL(I7l9Y(999)# B(26)9 SS(2019 XB(2092019 TOL
COMMON SSY

I FORMAT(65MIORTHOGONAL POLYNOMIAL AND CURVILINEAR REGRESnION ROUT!
INE 111-220112#1111)

2 FORMAT (7214

5 FORMAT (11H
I FORMAT(1,NCO!GRFF FIT wo13.5Hs N z#14)
4 READ (5.?)
WRITE (6.1 )(L(I) .1-1.12)
WRITE (6#?)
WRITE 16*3)MoN
WRIT! (6.5)
RETURN
END

SIAFTC DFTMAT LTSTRE!,OFCK
SUBROUTINE DETMAT
COMMON P(999,20),MN9NL(17)oY(999), 8(20)o 55(20)t XB(?O2092, TOL
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COMMON SSY
I FORMAT (24MOMATRIX OF DETERMINATION)
2 FORMAT fIMl )
3 FORMAT (IN *7E15.6)
6 FORMAT ( IMIt
4 WRITF (6.1)

WRITE 16.2)
vp a M + I
DOS j Jlomp
WRITE (6931(XB(K#J)#K u 1J)

5 WRITE (6.2)
WRITE (6.6)
RETURN
END

SfAFTC WRITEP LISTREFDFCK
SUJýROUTINF WRITEP
COMMON Pf999#20)#M#N#L(17)#Y(999)o 8f20)t SS(20)9 XB(20#2O3, TOL
COMMON SSY

I FORMAT (23p400RTHOGONAL POLYNOMIALS)
3 FORMAT (SHOJ w 012)
4 FORMAT (IM 9F20s696E15&6)
5 WRITE (8.1)
MP a M + I
DO 6 J -29MP
K aJ- 1

2 WRITE (6#3)K
6 WRITE (694)fPt(ilJ 9 I a 19N)

RETURN
END

SIBFTC OUTS LISTREF9DECK
SUBROUTINE OUTS
COMMON P(9"#70,)#M9N9Lf17),Y(9qq3, 9(20)0 SS(2019 XB(20920)t TOt.
COM~MO SSY

I FORMAT (52MOREGRESSION COEFFICIENTS FOR ORTMOGONAL POLYNOMIALS
2 FORMAT (lM
4 FORMAT (IH #ME156l
3 WRITE (6.1)
WRITE (6#2)
MP a M + I
WRITE 16#4)18fJlo J v 1#MP)
WRITE (6.2)
RETURN
END

SIRFTC XFILF LTST*REFDECK
SUBROUTINE XFILE
COMMON Pf999,20)9MoNL117)9Y(999)# 9(20)o SS(201# X~f20.203., TOL
COMMON SSY
DIMENSION R2(20)

I FORMAT (22F60OI
2 READ (5#1)(P(19219 Isl#Nl

MP a M + 1

DO03 1 uItN
3 P11.1) 1.0

IF (3-NP) 32932036
32 DO 33 J a 39MP

DO 33 r = 10N
33 P(I*IJ) a P(Io2)**fJ-1)
36 DO 4 J w 1.NP

DO04 1 aI.9MP
XS(IJ) a 0.0
IF (I-J) 4.594

5 X~fI.Jl a 109O**VL(161*fI-Jl)
4 CONTINUE

DO07 J *2,MP
JM w J-1
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00 7 K a 1.JM
3 0 0.0
ft *s0.
00 6 1 a ION

6 S 3 + *pII.Kl*Z

* xe8Itsj a X811J)j - COXSlf*Kf
DO?71 IO

7 P(OJIj a P(yfjj - C*PI I.Kl
D0 9 a - 1mp

00 9 a It"
9 SStJ) *SS(Jj + * tl*
DO It j a 10Pq
S a &/QTS(f
00 10 1 a 10NO

10 X8floij x81Joj~o5

11 PlJsj) a *~j*
RETURN
END

St!I7TC YF1tE LIST.RFFDECK
SUBROUrTINE YFILE
COW40M Pf99"ePO1.A.NOLfI?J#Y(

9 qq)* 8120)9 SSI20)o XBI?20920, TQI
DIMqENSION YYf 999)7 FORMATC42HIREGRESSrON ANALYSIS SUM OF SQUARES Y 9 E15.6)2 FORMAT f 14

9 FORMAT 02F~6#0)
READ 53Yflf1N
o a 10#0**Lt17,
00 * 1 IOlN
Y~f ) * yl0 fj

4 VYyf) a VI)

DO 9 j * 1e14p
81j) a 0
00 5 1 a ION

5 80J1 a a(J) + YY(f1*PCYqjj
DO09 T1 aIN

9 YVIJ) aYY~r? - jlptl

ye etB()*XB,1,I)
DO 6 1 Or ION

6 SSY a SSY 4 (Y(T) - YS) **WRITE (697)SSY
WRITE (6#2)
RETURN
END

STBFTC OUTA LIST#REF#DECK
SU4ROUTINF OUTA
COM#*o Pt999t2o)aMsN*017?,Yf

999 f, S(ZOj, SS(20)s XB(2O.?0)v TOj.CO"'MON SSY
DIMENSION A(20920I FORMAT 13amOCONVENTIONAL REGRESSION COEFFICTENTSel2 FORMAT 114HlODEGREE FIT * 12)3 FO0RMAT (lIN #7E35&61

7 FORMAT flMI)
WRITE (6.1)
Mpa N.!

DO 6 J aOM
00 4 K aP
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4 AIJvK) a A(J-1.K) 4 XRIK#Jl4e(Jl
6 CONI4TNUE
00 5 .J a .MP
KM a -
WRITE (6921KM

.9 WRITE (6#11(A(J#K)# K a 19J)
WRITE (6.7)
RETURN
END

STAFTC OUT LIST .REFoDECK
SUBROUTINE OUT
DIMENSION T11O)
COMMON P(9q9#201,M9N9L(I71,Y(9991, 0120)0. SS(20)9 XB(2O.20)o TOL
cow"O SSY

I FORMAT tl9HIY AND PREDICTED Y#S FROM M4 DEGREE FIT*)I
2 FORMAT (1M4 1
3 FORMAT (IM' #F19&0,FlOoDF2O#O#FlOo0,F20.0,FlOoO#F20OoFlOO0)
4 FORMAT (13MO(NOT SCALED))

WRITE (6.1)
WRITE 1694)
WRITE (6#21
0 a Ie0/O/10O*'L(I7)
MP a M.1

DO 6 1 a 1.N04
IF (N-11 998#9

8 XL a 2
9 T(Il Y(I)'

IF (N-I-I) 11,10,11
10 KI a 4
11 T(S) a Y(I.1V*o

T(4) a0&0

12 EL a 6
13 T(S) a V(I.21)O

T(61 a 0.0
T(7) a Y(I1+31*0
T(81 a 040
DO 5 J t19MP
T(2) a T(2) + P(IJl'8(J)'0

T(41 a T(41 + P(I+1,J)'B(J)*Q
T61) a T(6) +9~+9)Aj~

5 T~g) s T18) + P(1+3#Jl#5(J)4O
6 WRITE f6#S)(T(K1, K a 1.8)

RETURN
END

STOFTC PUNCMP LlSTsREF.DECK
SUBROUTINE PUNCHP
COMMON P(999,201,MNL(l7),Y(999ls 8(2019 SS(20)9 XB(20.20)9 TOL
COMIMON SSY

I FORMAT (23H00RTMOGONAL POLYNOM7ALS)
3 FORMAT (5mOJ 2 #12)
4 FORMAT (114 *EV'.6#4E15s61
5 WRITE (31

MR a M + 1
DO 6 J * 1MP

2 PUNCH 3# K
6 PUNCH 49 EP(I.J)# I ION)

RETURN
END
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Appendix C

USE OF THE FACTORIAL ANALYSIS PROGRAM

The data input may be divided into two parts. The first part is the orthonormal tensors, and
the second part is the measured data points which are to be arranged in a factorial design. Using
the notation of the text, the orthonormal tensors are designated as

'i <9
p~i 1<s <i

The index i designates a tensor which is congruent to a square matrix of order i. The index s
denotes a normal vector of the ith tensor, and the index / denotes a component of the sth normal
vector. For an ith tensor, there are i normal vectors and i components for each normal vector.
Thus there are i 2 elements.

Card 1, FORMAT (11), gives the order, i, of the tensor which appears on the next card.

Card 2, FORMAT (5X, 5E 15.7), contains the i values of the first normal vector of the ith
tensor. If i is greater than 5, use another card with the same format. Repeat this card for each
additional normal vector of the ith tensor.

When the ith nonnal vector is punched, repeat the above cards for another tensor. The process
is terminated when i is equal to zero. These tensors (orthogonal polynomials) may be obtained
in the proper format from the program in Appendix B.

The second part of the data input is for the measured data points of a factorial design.

Card 1. FORMAT (215, F5.0, 57H . . .) has the following parameters:

N (1) = number 3f factors in the design. It must be less than 15. Replication is not

considered to be a factor.

N (2) = number of data points in the design. It must be less than 21,001.

SF = scale factor for the data points (power of 10).

ID = identification of problem with any legal Hollerith characters.

Card 2, FORMAT (4X, 1514), has the following parameters:

1, (1) = number of replications.

1, (2) = number of levels for first factor.

L (3) = number of levels for second factor.

L (15) number of levels for fourteenth factor.

If a minus sign is punched in front of the number of levels, that factor is considered to be
quantitative. Otherwise, the factor is considered to be qualitative. Each distinct number punched,
for the number of levels of a factor, presupposes that an orthogonal tensor of that order has been
included in the first part of the data file.
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Card 3, FORMAT (12F6.0), contains the measured data points of the factorial design. Use
as many cards as needed. The data points must be ordered by the level indices of the replicate
and of the factors, according to the hybrid-base number system (see text), where the highest-
order index is for replication, the next order index is for the first factor, etc., until the lowest
order index is for the last factor of the design.

When all the data points have been punched, one factorial design has been completed. Any
number of factorial designs may be processed by repeating the above cards for the second part of
the data input. The first part of the data input is not repeated for each factorial design. If dif-
ferent tensors are to be used for a design, a new data run must be made on the computer with both
parts of the data input present. A limitation on the use of the program is that two factors having
the same number of levels cannot be analyzed with two different tensors.

EXAMPLES OF DATA INPUT
2

7?0710678E-01 7071O67SE-O1
-7.071067SF-01 7.0710678E-01

S
5s7735027F-01 5*7735027E-01 5*7735027E-01

"-760710678F-01 O 7071067eE-O1
4t082?429F-01 -Ae16*965E-O1 460824829E-01

4
5sOOO0000r-O1 F sO0OOOOOr-OI 5,.O0000n-O1 O000000tE-01

-6?708019F-01 -20160680F-01 ?#2160680E-01 6.7082039E-01
1,0000000F-01 -5,000r00-01 -50O60000F-01 5.000000CE-01

-20216068F0-01 60708?039F-01 -687082039E-01 2.2360680E-01

4*4721560E-01 4#472136OF-01 4#4721360E-O1 4*4721360E-O1 4*4721360E-O1
-6*52455IF-01 -3*1622777E-01 0, 3.1622777E-01 6.3245553E-01

5.045248F-01 -2&677AI24E-01 -5,1457248E-01 -2.6726124E-01 5.345224RE-01
-. 10622777F-01 603245553F-O1 0* -6.3245553E-01 3.1622777E-01

1#1952786F-01 -407809144E-01 741713717E-01 -4,780914AE-01 1.1952286E-01

4.0824P29F-01 4sU,?A82qF-01 4.0824829F-01 4#0824829E-01 4,0824829E-01
4,0824829F-01

-5*976'410r-01 -3*S. eSR-01 -11952286F-01 11952286F-01 3.5856858E-01
5*9761430E-01
5,45'IA4rE-01 -1*0910895E-01 -4.364357SE-01 -4.364357FE-01 -1*0910895E-01
%*45S471F~-01I

-397267800F-01 5o2l74919E-01 209814240F-01 -2,9814240E-01 -5.2174919E-01
37?267800-01
168R9e?24F-0I -5,6694671F-01 3&7796447F-01 3,7796447F-01 -5*6694671E-01
1*8898224F-01

-6.?994079F-07 1*149703lq-01 -6s2994079F-01 6.2994079E-01 -3.14970359-01
6*2994079F-0?

7
377964479-01 S,7796447F-01 ?s7796"A7F-01 3,7796447E-01 307796447E-01
3#7796447E-01 3*7796447E-0I

-5,6694671E-0I -3#7796447E-07 -1&889S224E-0 0. 1.8898224E-01
3,779647F-01 5,669467!E-01
5*455447'3F-01 0* -3s27?2684E-01 -40641578E-01 -3o2732684E-O1
04 504534473ET-01
-:40824829F-01 4,0824829F-01 4,0824829E-01 0. -490824829E-01
-44O824829E-OI 4#0824829E-01

?s4174689F-O1 -5o6407607F-01 8.0587296E-02 4*8340378F-01 8*0582296F-02
-S*6407607F-01 ?.417&689E-01
-,0910895F-0I1 4.S61457A-01 -5#4554473F-01 O 544554473E-01
-40643578F-01 1,O9l0895F-01
1#7897585F-02 -1*071q91E-01 4*9146377F-01 -6657971695-01 4.9346377E-01

-10738551F-01 ls2897585E-02
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30515SS39E-01 3.535'5339E-O1 .S*355319E-O1 S.5355339E-01 3*5355319E-01
145995539E-01 345355319E-01 3*5355339E-01

-504006172E-01 -SeSS57837E-O1 -2*3145502E-01 -7*7151675E-02 707151675E-02
241145502E-01 3o$57'5837E-01 5*4006172E-01
Ss4006172F-Ol 7&7151675E-02 -2#3145502E-01 -3*8575837E-01 -3*8575837E-O1

-?.3145502E-01 7&7151675E-02 So4006172E-O1
-4.30820227-01 So0777873E-01 403082022F-01 1#8463724E-01 -1*8463724E-01
-4.3082022F-01 -S#0772873E-01 403082022F-01
7*7820180&E-01 -So217"49IF-OI -1&2087344E-01 S.62620337-01 3o6262033E-01

-162087S44F-01 -5.237M493F-01 208203804F-O1
-ls4978617E-'n1 4.9215457E-01 -3.63766427-n1 -3e2097037E-01 3*2097037E-01
3.6376642E-0 1 -4s9215457E-01 l.4978617E-01
6.1545745F-02 -3@0772873E-01 5053911711-01 -1*07728?IE-01 -3*0772873E-O1

9#5391171E-01 -3&0772873E-01 6.154574SE-02
-ls7069719E-02 191948803E-01 -3.5846409E-01 5*9744015E-01 -5*974401SE-01
1*5846409E-01 -1*194'3803E-01 107069719S-02

9
3.33133333-01 50331SSIF-01 3.33333337-01 303333333F-01 3*333313337-01
*3.ll3ISE-01 5313333'33-01 131333333E-01 3*3333333E-01
-5.16997787-01 -3.872q9833-01 -205819889F-01 -1.2909944E-01 0.
1.29099447-01 2.58198897-01 3.87298337-01 5*163977SE-01
5.31816027-01 1.3295401E-01 -1&5194744E-01 -3o2288830E-01 -3#7986859E-01

-3.229888307-01 -1*519A744E-01 1.32954017-01 5*3181602E-02
-4o449*921E-01 2#2247460E-01 4.1316712F-01 2.860187SE-O1 0.
-2#060187$E-01 -4a13l6712E-01 -2.22474607-01 4.44949217-01
3*1289S11E-01 -'..6933966E-01 -2&4584459E-01 2*0114557E-01 4*0229114E-01
2.0214557E-01 -2@4584459E~-01 -4.693?966E-01 3*1289311E-01

-1*0490007E-01 5.084751RE-01 -lo@490007E-01 -4.16C251SE-01 0.
4.16025157-01 1.84900077-01 -5.08475187-01 1#8490007E-01
8.98913157-02 -308204659E-01 4.9441323E-01 2.2473329E-02 -4*4946657E-O1
2.2471329F-02 4.94413237-01 -1&8204659F-01 8#9891315E-02

-3.41194S77-02 2.04836627-01 -4*7795212V--01 4*7795212F-01 0.
-4.7795212E-01 4.7795212E-01 -2*048'1662E-01 3#4139417E-02
8#8147646F-03 -7.OS1811SE-02 2.46813417-01 -4*9362683E-01 6.1703353E-01

0 -4.9S626637-01 2.4681341E-01 -7.05181187-02 868147648E-03

4 48 -3 EXAMPLE NUMBER ONE
1 2 2 -3 -4

21M3 2007 1959 3010 2913 2257 1973 2563 2666 2160 1803 2520
2649 2225 1990 2582 2542 2210 2105 2764 2503 2215 2064 2843
2438 2112 2086 2405 2766 2419 2325 2644 2608 2203 2046 2544
2315 2225 1944 2838 2579 2003 2218 2494 2655 2230 2084 2712

4 189 0 EXAMPLE NUMBER TWO
I -S 7 -3 3

10205 1.206 10201 1.205 1.205 1.204 1.210 1.208 1*210 1.200 1&199 1.200
1.200 1.031 1.201 1.200 1,206 1.203 1.205 1.206 10205 10205 1.205 1.210
1.205 1.210 10212 1.150 1.148 1.150 1.150 1.151 1.155 1.155 1.153 1.156
1.145 1.138 1.139 1.140 1.139 1.139 l.140 1.140 1.140 1.160 1.159 1.159
1.165 1.165 1*161 1.165 1.162 1.163 1.050 1.056 1.050 1.055 1.053 1.059
1.045 1.052 1.053 1.050 1.043 1.043 1,050 1.042 1.041 1.035 1.043 1.045
1.050 1.049 1405o 1.050 16050 1.0*9 l.03s 1.050 looso 10320 1.318 1.319
1.015 1.319 1.319 1.305 1*339 1.320 1.330 1.326 1.314 1.320 1.322 1.325
1.330 1.328 1.325 1*120 1.319 1.322 1.315 1.31.' 1.320 1.320 1.312 10319
10390 1.385 1.383 1.385 1.384 1.388 1.390 1.385 1*390 1.395 1.397 1.393
1.395 1.395 1.397 1.395 1.398 10395 1.400 1.395 1.391 1.395 1.395 1.391
1.395 1.092 1.391 1.180 1.185 1.180 1.180 1.180 1.180 1.185 1.182 1.182
1.165 1.159 1.161 1.165 1.163 1.161 1.165 1.161 1.163 1.180 1.175 1.175
1.175 1.178 1.178 1.180 1.179 1.179 1&990 1.988 1.990 1.990 1.990 1.993
2.000 1.994 1.995 2.020 2.012 2.015 2.015 2.016 2.016 2.020 2.015 2.018
2.020 2.021 2.023 2.020 2.019 2.025 2.025 2.022 2.025

47



NAY WEPS REPORT 9001

FACTORIAL ANALYSIS FORTRAN PROGRAM

SI8FTC MAIN LIST#REFDECK
CMAIN
c ANALYSIS OF VARIANCE

CON" PX(9i59Ko DFG 1)*(1s)eLEveis ).LuMPrls).D (21O0o)tLpIPi,

1 FOR'MAT (2f59F5#009A6*A3)
2 FORMAT (AlsO 01574)
1 FORMAT (IF6sO1
A FORMAT feOmO REP XI X2 X3 X4 X5 X6 X7 X8 X9 X III Xlx112 X13 X14. SUM OF SQUARES/IH
5 FORMAT (4H 015I4*E16681

15 FOR14AT (IMI,3OX.610A61
16 FORMAT Ill. N0TlERE ARE 91?.10iq FACTORS, #15#42H DATA POINTS OF WHIICH THqE SCALE FACTOR rS oF5*O)

CALL POLY
6 READ (S*1)M#NOSCALE,(HEAD(I),?31,,),,.,!AD(I0)

M a M+l
READ I5#2)(LEV(K)o K a I*M)
DO 23 K*loM
TF (LEV(K))2lolg, 2 221 LTNIKI aI
LEV(K) a -LEV(K)
6O TO 23

13 LEV (K) a 1
22 LIN (K) a 0
23 CONTINUE
14 IF (LEV(1)-1) 18.18920
Is MF a 2

GO TO 19
20 MF a 1
19 SC a SCALE

LUMPIM) a I
DO 7 1 a 29M
4 a M-T+1

7 L)JMP(J) a LUMqP(J.1,.t.EVrJ,])
READ 1593)(D(y~o I Or ION)
SCALE 2 10*0*SCALE
DO 9 1 a 10N

9 D(I) a D(I1*SCALE
DO 17 K*1,15

17 KOG(K) a 0
WRITE f6015)(MEADII)oI a 1#10)
K a M-1
WRITT (6*I6)KsN*SC
CALL MEANS
CALL ARLSIS
00 12 felt"

12 DII) a D(t)**2
LEVEL x 1
LV a 50
DO 8 r a ION4
IF (5O-LV) 10.10.24

10 WRITk (6.15 )(HEAD(J)tJ -1,101

WRITE (6916)K#N#SC
WRITE 46o2)(LEVtK)* K a 1,M)
WRITF~ (6s4)
LV 20

24 WRITE (695)(KOG(K), K m 1#15)o D(I)
CALL COUNT (16)

8 LV aLV+I
CALL ANOVA
Go TO 6
END
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isFtac POLY LYST*REF.DECK
SUBROUJTINE POLY

2 FORM4AT (IN 9 E19.6, 4E15*6)
3 READ (5.i1?4
IF INI 6.6.4

400O5 J1 a P4
5 READ f.)PNJrIa1N
60 TO 3
DATA 0OOOHL/6HRnEP /

6 IIOLER(1) w 0OO0NL
DATA 0OOIHL/6HXI
MOLERM2 a OOOIHL
DATA 00O2HL/6HX2/
1401ER131 a O002ML
DATA OOO3HL/6MXI
HOLER(41 a OOOHL
DATA 0004HL/6HX.
HOLER(5) a 00H
DATA 0005HL/6HX, .
P4OIER(61 a 0005141
DATA OOO6NL/6HX6/
HOLERM7 a 0006ML
DATA 0007'4L/6HX7 /
HOLFRf8 vj 000O7ML
DATA 0OOBHL/6pHX8 /
HOLER(91 a 0008ML
DATA 000 9HL/6HX9 /
HOLER. 101 a 0009"L
DATA OOIOHLI6IMXlO /
MOLEP(fl v1 OOIOHL
DATA 00!IHL/6NMXII
MOLERI12, a QOIIHI
DATA 0012HL/6pHX12I
HOLEP13pl) a 0012ML1
DATA O0l3HL/61qXI3/
I4OLEPf 14) a 001314L
DATA 0014HL/6HX14/
HOLER115, z O014HL
DATA 001SHu/6HLINI
HOLERrl6, a 00151.1
DATA OO!6H1/6%IOUA/
HOLER(17) a 0016ML1
DATA 00171IL/614CUS
MOLER(18, a 0017H1L
DATA Q0I8HL/6H.
HOLERt)9l a Q0i8I.H
DATA 0019HL/6H(/
MLEP(201 a 0019HL.

DATA 0020HL/6H)t
HOLER121) s 0020ML1
DATA 00211.1/61. a/
HOLER(22?, 00221.1
RETURN
END

SfSFTC ANLISS LTSTvREFoDECK

COMMON Pt9o9o999)NDFX(l3J.#K0G(15, LEV(11l,) S)0210)eLJNIS5

DOI K a 1.15
I KOGt'K; 0.0

00~ 3 1 .N*LEVEL 

II
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CALL COUNT fJ)
DO 2 K - IOLEVEL
TN 2 TNDEX(K)

2 VECTORMK Df INI
DO 3 K 19lLEVEL
IN T NDEXIK)
DUN) a 0&0
DO S L w ,LEVEL

3 DUIN) a WIN) + VFCTORIL)*P(LEVEL#KtL)
RETURN
END

STOFTC COUNT LIST9RFF.DECK
SUBROUTINE COUNT (J)
COM4MON P19,q,9).INDEX(15),KOG(15),LEVIIS) ,LUMPC15hD0(21000I.LIN(I5
11.VECTOR(9).HEADI1O).HOLER(22),LEVELMNMF

1 INDEX~iP aI
DO?2 a lom

2 TNDEX(I) a INDEXI!) + LUMP(I)*KOG(T)
DO 3 1 s 29LEVEL

3 TNDEX(I) a INDEX(t-1) + LUMP(J)
DO05 1 x ,M
L a M-I+I
IF (L-J) 4.5.4

4 KOG(L) a KOG(L) + 1
IF (KOG(L)-I.EV(L)l 6.5.5

5 KOG(L) s 0
6 RETURN

END
STRFTC ANOVA LTST#RFP.DFCK

SUB8ROUTINE ANOVA
COMMHON P(9,9,9),TND)FX(151,K00t153,LFV( 15) ,LUMP(I5).D(210001,LINC 15
1),VECTORI9),HEAO(1OIHOLFR(221,LEVEL.MNMF
DTMrNSTON SS I5shSSS(I5)

41 FORMAT (IH13OX,10A6/2OMOSOURCE OF VAPIATION6XISHDEGREES OF FREEDO
IM7X*IAHSLU4 OF SOUARES2OX,7HF RATTO/IM

42 FORMAT (IH
43 FORMAT (SX,2A3,12?29F290F26.3)
44 FORMAT t1I4O6X,8HRESTOUAL12IE29*81
45 FORMAT f7X*SHTOTALT24#E?9s8)
46 FORMAT (lH 1204AH WAY INTERACTION SUMS OF SQUARES *El7.8)
47 FORMAT tiM T2945H WAY AND HIGHER INTERACTION SUMS OF SQUARES mE17.

18)
48 FORMAT (IHI)
63 FORMAT IIHO/IHO6X#IOHRESIDUAL STANDARD DEVIATION *E15.8)
64 FORMAT f8X ,2A3sAI ,2AI I 59E29.R sF26.3)

WPITE (6.41) CHFAD(J) ,Jz1Il0)
LV 2 0
DO0 1 T1,15
SSS( flaO.O
55(1 )aoso

1 KOG(I~wO
FRSSROGO
ERDF: 0.0
TSS*0*0
DO 6 Ta2*N
CALL COUNTt 16)
KaO
DO 3 J21sM
IF (KOG(J)) 309.2

2 KzK4I
3 CONTINUE

SS(K)uSS(K)+0( y)
TSS=T"SSD(TI
IF [K-2) 493105

31 IF CKOG(1l)) 4t4#5

50
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4 DO 7 Jz?,N

IF fKOG(JI-31 7.7.21
21 IF (LINfJI) 7.7#5
7 CONTINUEj

GO TO 6
5 FRSSwE~RSS+.OII

EPOFuFRDF,1 .0
6 CONTINUE

IF IMF-I) 27.26,27
26 Kul

6O TO 25
27 K a 2
25 DO 12 KA*K9M

DO a f19115
8 KOG, (I)O

IN. I
DF a 0.0
ALP a 0.0
DO 9 T-2sN
CALL COUNTt161
IF (KOG(KA)-TN) 9,10,12

10 IF CLINIKAhl 32,32933
32 OF OF + 1.0

ALP *ALP + D(1)
GO TO 34

33 OF a 1*0
ALP v (1
TM a IN4 + 15

36 RATIO a (ERDF9ALP)/(FRSS*OF1
J a OF

LV a LV.1
IF (IN-Il) 34.12,12

34 IN a IN +1
IF (LEVIKA)-INI 12,35,11

35 IF (LIN(KAII 37.37,12
37 IN a 11

IM a 22
GO TO 36

11 IF (LTN(KAII 999,38
38 IF fIN-3)9,9912
9 CONTINUE
12 CONTINUE

Kot-
DO 18 KAu2.K

DO 18 KC*KB#M

55 TM-I
DO 13 wIt1Is

13 KOG(fjwO
OF - 0.0
ALP a 0.0
DO 14 1z2#N
CALL COUNT (16)
IF (KOG(KAI-?N) 14915918

15 IF (KOG(KC)-TMI 14.16,18
16 IF (LTN(KA)) 30.0.928
78 ?F(LTN(KC)1 58,58,29
29 OF * 1.

ALP uDMI
IN% IN + 1s
1MM IN + i5

51 ASSIGN 56 To IER

51
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50 RATIO a (ERDF*ALP)/(ERSS*DF)
IF (55-LY) 61.61962

61 WRITE (6*4M)HEAD(Jh9Jul,10)
LV u 0

62 J. u OF
WRITE (6.64)MOLER(KA).NOLERcINN).HOLER(29),oMLERIKC),HOLER(IMM?4JJ
lALP#RATTO
LV * LV+1
60 TO TERO(54956960)

58 OF O F + 1.0
ALP a ALP + Dill
TM a TM * 1
IF (LEV(KCl-TM)60959914

59 TM a 1
IMM * 22
INN a IN + 15
ASSIGN 60 TO TER
GO To 50

60 OF a0.0

ALP a 0.
GO TO 17

10 OF D F + 1&0
ALP aALP + Ofill
IF (LIM(KC)) 39#39952

39 TM 2IM + 1
IF (LEVIKC) - TM) 40,40,14

40 TM a 1
IN a IN + I
IF (LEV(KA) - IN) 18949.14

49 TM a 11
TN a 11
INN a22
INN it 22
GO TO 51

52 IN 2 TN + I
IF (LFV(KAI-IN) 51953o14

53 IN 11
INN =22

1MM m +M Is1

ASSIGN 54 TO TER
GO TO So

54 TM = IM + I
IF (LFVtKC) - TM) 18918957

57 IF (IM-3) 55*55918
56 IMaIN+1

IF (LFV(KCI-TI?17,17920
17 INnIN,1

1Mm!
IF(LEV(KAI-IN) 18o18,19

19 IF (TN-1) 14.14.18
20 IF fIM-31 14914917
14 CONTINUE
18 CONTINUE

IERxFRDF
WRITT (6,4411FR#FRSS
N a N-1
WRITT 16945INsTSS

DF SORT(FRSS/FRT)F)
WRITE (6,63)DF
D0 22 Iwl#M
DO 22 JuT#M

22 SSS(I)USSS(I)4.SSfj)
WRITE (6.48)
D0 23 lI#M

23 WRITT (6o46)ISS(I)

52 WRITE (6942)
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DO 24 Is1.M
A4 WRITF (60471tsSSS~f)

RETURN
END

SRFTC MFANS LtST*REFF#M(CK
SUBROUTINE MEANS
COMMON P(9,99).?9NDFX(15) .KOGf25).LEV(I5) .LUMP(15),0(21000h#LIP(15
l).VECTOR(91,HEAO(1O),I4OLFR(22),LEVELM.NMF

11 FORMAT (19P40 GRAND MEAN = E13.6)
12 FORMAT (IX#A3ollX#5E20o6/l5X,4E20*6)
13 FORMAT 11H)
19 FOR'4AT (19411
21 FORMAT (1XA3,AltlA2.A,,4X,5E2O.6/ISXý,4ý20.6)

VECTOPfl) w 0.0
00 8 Ks1,N

8 VECTOPfi) a VECTORflI.0(KI I
FLN9JM vN
VFCTORtlI a VECTOO(I)/FINUM
WRITE 16#11)VECTORfI)
LEVEL a I
LV a
DO 14 KF*MF#M
WRITE (6.13)
LV a LV+T
L a LEV(I(F)
DO I Iu1IqL

I VECTOR(17 a 0.0
DO 2 K=!,N
J a O(F*
VECTORtJI a VECTOR(J)+D(K)
CALL COUNT? 16)

2 CONTINUF
FINUM u N/LI

DO 1 Jul11L
I VECTOR(J) a VECTORUJl/FINUM
WRITE (6.!2)MOLFP(KF) ,(VFCTOR(J) .Jl* LL)
LV * LV+1+(IL/5)
IF (KF-1) 14914ý5

5 KG 9 KF+1
IF (M-KG) 10.16.16

16 DO 4 K14.KG#M
IN a 0
WRITE (6#13)
LV a LV*l
IF a LEV(KH)
DO 4 KowlILL
IN a IN41
KS a KO-l
DO 6 mI#LF

6 VECTORf I) - 0.0
I1a0
DO 17 KwloN
IF (K0G(KFI-KS) 7.15.7

15 J a KOG(KH).1
VECTOR(J)v VECTOORIJ).0(K)
I a 1+1

7 CALL COUNT(I61
17 CONTINUE

IF (LY-5O) 19.20920
20 WRITE (6.191

LV a 0
18 FINUM a I/IF

DO 9 Is1.LF

93~~ fi
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9 VECTORMT a VECTORII)/FLNUM
WRITE (6.21 j,.OLER(KF),MOLER(2O),TNMOLER(21).MOLER(KRI,(VECTOR(I),
Iu1.#LF)

.4 LV a LV+.1NLF/5)
14 CONTINUE
10 RETURN

END
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Appendix D

GRAM-SCHMIDT CONSTRUCTION WITH NORMALIZATION

The f,,ll,,%ing .\ miatrix an d ideithh Mnatrix %%ill be used for illuustrating, step by step, their
tramnsfimnattio,-b into the' P inatrix and I) matrim. respec'tivelv'.

1 2

I tet~einin'' . I'the matri v, rermn the saue. thus

1 3

* t (i )2 0

' J h , e, t ., , n d c o l u mn n i s f i, m m -• d 1h \ t h i c v vt t~ lL r , - pi a tz i , ) n

/f.1• * .. '' +" I* 1. * 3l

%\ vpre

+ I

1)

1' 2 2 1 1 1 2 0 0

11 : , 1 ) 2~

%%ichi upon collput ina the vc-ond ',oluiyn s. become

1 2

"[I " J • I 0 I 2•0

0 ~0
1 tC) 0 J

T'he third column is forme'I hi the \('('lr equation

.3 l.3  ' 3' /.l +'' .55
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where

d 13 q. I q. I
and

-q. 2  X. 3
C.3 q* Sc23 .2 • .2

thus

q .2 "q.2= %2 (_1)2 +02 + = 2

a= 1

3

q. Ix.3= • qi Ix0 3 =x I + Ix4 + Ix9=14
i= 1

3

q. 2  x.3 qi2 xi3=- I x + 0 x 4 1 x 9=8

i= 1

-14
c13= 3

c3 -= 4C23

and the matrices become

I 1 14 xl 4 (-If

3F -2 0-U Il4(-l3
1 1 9-1 x I 4x Ij

1 - 0- 14x 14-2)-3]
0 1 0- 4xO

which, upon computing the third columns, become

U ~ 1 B 1:I
This completes the Gram-Schmidt construction.

56



NAVWEPS REPORT 9001

The left matrix will be nmrmali/ed to obtain the P matrix, and the right riatrix will become
the 1) mtrix. The first column is formed by the equation

Ii I

%:i e re rI

rHJ ;q1. I "i )2\I

thus

,rn(l the matri ces be(,m'ic:

4.1 4 347"
0t) 0 I

The stec,,nd ,umnn i.re f, m the equadtion

Shere

r 22 • .

thus

and the matrices become

10

1 I5
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The third column is formed by the equation

qi 3r13 r r33

whb-re

r33 =q 3 i-'=qi

thus

r33 (= (e1 + '$3 \1 = 3

and the matrices become

163 0

This completes the transformation of the X matrix and of the identity matrix into the P ma-
trix and into the D matrix, respectively. The P matrix is

and the D matrix is*

0 5124

0 0 31
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Appendix E

TENSOR PRODUCT

The following equation will be used for illustrating the product of three tensors

where

I1< 3<1:5s<.4

The elements of Al may be arranged as

"al a 1 al 1

o2 2 2 ~21 2, 3 4

1 2 3 4

hiiThe elements of Jil may be arranged as

b1 12 13

1 2

2fj b 2 23

b C31  b32 C3

The elements of Cii may be arranged as,•

C 2 1 C 2 2 C 2 3. /

€31 342 33 £,

C41 C4 2  C43
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The elements ofDt may be arranged as

d4 d dSdl d2 2 42l 3

2t 2 3I
d31  d, 2  d33

Ld 41  d42  443J

The product Bi _Ci 1 may be formed first and set equal to a tensor 48j. Note tat the j is summed
out.

ell e 21  e 3 1

e1 2  e 2 2  e 3 2

e13  e 2 3  e33

e1 4  e2 4  e 3 4

where

e, 1 61 c + b2 c + b 3 C1 11 1 12 1 13

e21  b 2= , + b2 c12 + b3 C13

21 b• c11 + b: c. + 12 2 13

e b %c + b2  
+ b 3 C12 21 1 22 + I 23

, b, , + b 2 c + b3 C22 2 21 2 22 2 23

43 2 = b 2 c41  3 b 2 c42  3 ¢423

e 
61 c + 62

13 1 31 1 32 + 33

e b 3 + b2 b~
23 2 31 2 C32 +b2 c33

e33 ' bl31c 3 bc + b, c3 1 332 3 33

e 2  - b Ic + b2 C + b 3 c
24 41 2 42 2 43

e + +2
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The tensor 1, may be formed from the product A. E where

13 e1 + a 1+,
11 12 1 is £224", -a eo + a2 e + e+ + a1 1,4

" a 1 e, + a, e + a, °e

21 + 31 C3 2  3 2£3 + 1 32 4

"a" t e + a232 + a33 + 8a6e4

,, , 2 ° 1. , e,2 213 2 ,,14
d 22 £ 2e21 + a 2 £ 22 + a 2£e23 + 23 24

"d a 21 e, + 2 e, + a e + a e,

"23 " 31 2, 32 2I e33 2 34e, '
831 £3 3 32 13 33 1

, a " 1.I e,+ a + a e+ ' + a e
342 'a £21 3 8~22 3 a 2 3  3 a24

S£1+2 +3 + ad,, at e, + a2 e, + as e, + a4 e•,.,

43'4 31 4 £32 04633 43

Instead of having formed the tensor product Ai Ci/ first, the product Ai C. could have been

formed and then the tensor DI ~

A third way of arriving at the tensor .D, is to perform first the tensor product A.! .{ • This

tensor product has, for the example, 144 elements, some of which follow.
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al b1 a 2b 'I a 1b a'b03

1 1 21 31 41

1 b2 a21b2 a31 b2  b
a~b2  2 42l

a Ib3  a Ib3  a Ib 3  a Ib3

12 2 32 4 2

al b2 al b2 a 31b2 a b2
a1b2  21~2 ~2 4 12

a, b3  a 1b3  a 'b3  a 14b3

1 3 2 3 33 4

a 11b3 a 21 &12 a 1 62 a .1b
31 2 31 41

a ' ab3 a' b3 a 3b3 a4'b'43* 2 1 3 3 4

a2 b 1 a2 b ' a2 b a2 b'
13 23 33 431

a2bV a2 b2 a2b2 a2 b2
11 2 1 3 1 4 1

a2 b3 a2b3 a2 b3 a2P

a3tb a3 bl a3 bi a b 1

a3 b3  a3 b3  a3 b3  a3 b3
1 3 2 3 3 3 4 3

Multiplying the above tensor by the tensor D, is obtained, the elements of which are

=~ a'b' ell + alIb~c2  I ab~c3 +

1~~2  01~bc2 + a, 1 c13 +

a lc 31 + al biC 32 + a b~ 33 +

a4 1bc4  + atb~c4  + a b3 c4
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=, - *I b o, + °a bl o, + "a b o, +
d 2 bc +

12 a l 2,1 2 o C12  + a' b3 c,, +

a2 bc I2 1 + abl 2 2  + a b1 •23  +

a3 bl C4 1  + ab 2 4 2  + al231b 3 +1 2 4 + 1 2 43

"d1 , b• c, I °I + l a' .b- I b3 C, +.

3 bgc 1 1  + 3•b c12  + alb ,3 +

a bi2b221 + ab3 22 + a.bl3 23 +

. 3 b1 C + 3 3 b2 C +a + 1 1b 33 33  +

a~~4 1  4 ab~c2 C+ ab~c3 c

abc1 3 1 3 42 1 3 43

d albI ci + albý 2c3  + al b32 11c 1 1 2 11 +

o•bl ci + a2 b • c + a2 b 3 C +
12 1 23a2 =abc 1 3b 3 + a2 b2?32 + 2 2 1 33

a4 62 c 21 a42b2 C ab 3 c+
2 122221 2 1 2 21 43

I 4c 1 +a b c2  I b3

a, b, c I + abc 4 + u +c4

d2 2 2 24~1  2 2 b 1 2  2 2b 1 3 +

a2b + 2 b2 2 +ab 3c
2 2C 2 1  232 22 22232

.2b 3 1  + a b2 c3  + ab 3  +

2 2 c 4 1  2 2 b~ 42 + a2 2C4 3

d23 l bIc +al b c a~lb33
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38 1 ' 31b + b 'IC12 + al b 31c13 +

a2 ~ 2 + a2 b 2 2 + a2 b c3

a3 b1 c3 + a3 b2 c + a3 bc +3 1 31 3 1 32 3 1 33

a4 b1 c4 + a4 b2c + a4 b3c
3 1 1 3 1 C42 3 1 C43

d a3'b4 c I + a' b2 c1  + a' b3 C13l +3223 2 12 3 2
a2 ' c + a2 b2:: + a2 bc +

ab'c + a3 b2 C+ a3 bl c +
3b 2c31  a 3 2 c 2  3 2 c 33

d3=a4 b ' c1 + a4 b2 c1 + a4 b3 c13 *

d 3 al b3' cl 1 + a' b2 c 2 + a2 b3 c2 +
33 3 12 3 3 1 +

a2 b' c3 + a2 b2 C3 + a2 bc3C +

3 3 24 1 + 3 2~c2 + 3 23c

d1=a3 b, c + a3 b~ 2 C a3 b3 C 13+

a2 b31 c2 + a4 b2 C 2 + a4 b3 C2 +

d 1 al b'c, + al b2 C3 + a' b3 C3 +4 1 11 + 4 1 12 4 1 1

a2 b' c4 + a2 b2 C2 + a2 b3 C4 34 1 4 1 22 4 1 2

=a3 bl C a3 b2 C1 + a3 b c3 C+

a4 b I c + a4 b2C + a4 b3 +

4422 4 2 212 4 2 213+

a3 61 C + a 3b 2 C + a3 b3c C4 2 31 4 2 32 4 2 33

4b2 4 1 + a 4b2c4 + ab4 2 4 3
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d,3  a 4' b I c,, + a' bI c, 2 + I' b3

02 bl , c + o2 b2 c 2 2 + a4 b• c 2 3 +

a3 b' t c + a3 b2 c + 3 b3 C +
4 3 31 4 3 32 + 4 3 3

a4 63c 1 + a4 c 42  + a4 b3
63 C42 4 3 C43

A numerical example is given to illustrate the above operations of tensor product. The
elements of each tensor are arranged in matrix form. The numerical values of the elements are

given for the J, U.i, and Ci/tensors.

1 -3 1 -1

2-%7"5 2 77

1 -1 -1 3

_A'= 2 2-'- 2 2 ,1-5

1 1 -1 -3

1 3 1 1

1 -22 :75

1 1 1 /

V 2 4V6

-24

C .. 3 3 4 "i

4 5 7 '

6 7 8 :

As has been outlined above, there are three different ways of arriving at the D. tensor.
The first method will be given, where the Efi tensor is formed first, and then the D.t tensor is
computed.
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The Ei tensor is

7 3 1

10 1 1

16 3 1

21 2

SNF 0

The formulas for the elements of this tensor were given previously.

The D tensor is

27 9 3
li3 2 V'2 2

24 -1 -3
1T 2r'0 2-,/3"0

1 1 -1
,/3 2"V' 2""6

-2 -7 -1
471 2-,-1 24-3-

The formulas for the elements of this tensor were given previously.
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