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INTRODUCTION

This report describes the continuation of two efforts. The first is a computing scheme de-
veloped by the authors for the analysis of factorial designs. An IBM 704 Electronic Data Proc-
essing Machine program using this scheme was submitted to the SHARE Society in 1958, and a
short paper discussing this scheme was presented to the 14th national meeting of the Association
for Computing Machinery (Ref. 1).

The second effort is an attempt to promote a general linear approach to numerical and sta-
tistical analysis. A report describing this approach in the smoothing of experimental data has
already been published (Ref. 2).

Three concepts form the basis of these efforts: the Gram-Schmidt construction, the linear
method of least squares, and the application of orthogonal polynomials. References 3. 4, and 5,
and many other texts, also introduce these well-known concepts.

The notation of vectors, matrices. and tensors is used in place of the sunmation notation
frequently (but aot universallyv) used in textbooks. It is believed that the notation used is more
practical at the working level. with the advent of FORTRAN and ALGOL.. and it certainly allows
a much shorter text.

Computer programs for factorial and statistical analysis are presented in Appendixes A. B,
and C: they demonstrate a method rather than finished programs. They ure finished to the extent
that results are summarized. but there are many ways of summarizing. depending principally on
the desires of the user. Because of the versatility of the FORTRAN language. the prospective
user is invited to summarize results in the manner he sees fit.

This wnrk is presented principally to those who are comput.r-oriented. For this reason,
there is a great deal of elaboration on some of the basic concepts and philosophy of statistics.
On the other hand. it is assumed that the reader is familiar with the algebra of vectors and
matrices and their geometric interpretations.

VECTORS, MATRICES, AND THE
GRAM-SCHMIDT CONSTRUCTION

Linear hypothesis statistics. which includes regression and factorial analyses. may be de-
veloped by a method (the orthogonalization of matri~es). a theorem (the Pyvthagorean). and a
philosophy (inference). This development is best made with a uniform notation. Therefore, the
following definitions are made.

Matrices will be denoted by capital letters such as Y. ), .1, and D), und scalar quantities
will be prcsented by small letters such as a. b. and ¢.

The elements of a matrix will be represented by subscripted small letters such as X and
Yi

The ith row of a matrix ' will be denoted by x, , and the jth column of a matrix X will be
denoted by x .. A row or a column (or any singly ‘mchrlptcd variable) mayv be considered to be
a vector in spate. the elements of the row or column being the ordered components of the vector.

This is the geometric viewpoint.
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Two columns of a matrix are said to be orthogonal if

2joxg=0  j#k m

where the vector do¢ preduct notation above is defined thus

I.I- M x_,‘ 521(-"”) (I"“) (2)
i=

From the geometric viewpoint, the vectors x j and x ; meet at right angles in n-dimensional
space.

An individual column of a matrix Y is said to be normalized if

x ’x..r:l (3)

An unnormalized column (provided it contains at :east one finite entry) may be easily
normalized by dividing each element of the column by the length of the column vector as shown:

xpexg/lx gl 1<i<n

and where the length is defined as follows:

= 2
X .1 = . .= ..
lx ;| "= % (4)
i1
From the geometric viewpoint, a normalized column is a vector of unit length. The vector need

not be oriented along any axis but may have components along all axes. kquation 4 rewritten
n ' .

. = 2
"-i |- xjtxi —Z‘ *ij

[
_is a statement of the Pythagorean theonrem generalized to m dimensions. The square of the
hypotenuse (vector length) is equal to the sum of the squares of the other sides (components).

A matrix X is said to be orthonormal (with respect to columns) if each column is normalized
and if each column is orthogonal to every other column. From a basic theorem of linear algebra.
this is possible only if the number of columns does not exceed the number of rows (Ref. 3).

An important property of any orthonormal matrix is that premultiplication by its own tramsposel
yields an identity matrix.
PP 1

This may he demonstrated as follows:

T JT T . 0

3 3 : 3 :

] 0 1 0}-

3

L ]
4: ‘5_1

Note that it is the second matrix which is orthonormal with respect to columns.

L

e

o=
-

The same matrix with rows and columns interchanged
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Conversely, the product P P “does not generally yield an identity matiix unless P is square.

This also may be demonstrated

S G A
Bl & 0 @
AR (8 3 &)
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wil—
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A matrixo.\' may be transformed into an orthonormal matrix P by the Gram-Schmidt construc-
tion (Ref. 3).° The following paragraphs describe this construction. The matrix is first trans-
formed into a matrix having the orthogonal property

X -
Thence it is transformed into a matrix which also has the normal property
Q) —>P '
The first column of the orthogonal () matrix is formed by simply using the {irst column of
the X matrix®
07 %

The second column of the () matrix is formed by taking the second column of the X matrix
and adding to it that portion . ¢ |, . of the first column of the ¢ matrix which makes the new
column orthogonal to the first column of the () matrix. The following vector equation expresses

this required condition

(6)

9.y " yreypq,):0 7
The solution yields
R SR
'd l 2 o e —————
‘ 7.1+ 9.
With this result. the second column of the () matrix is
(8)

9.27 %.2* C1290
The third column of the () matrix is formed by taking x_, and adding portions ¢, und c o,
of the ¢ | and ¢ , columns which make g jorthogonalto both ¢ | and 4 ,. Two simultaneous vector
equations express these desired conditions

q.l‘(.r.3¢r”q.ltr23q_2)--0 (9)

9.9 ‘(x.3+rmq_|+r23q.2) =0 (10)

2vaidmi the columns have the property of linear independence A further elaboration of this is given
after the mechanics of the construction is presented

3Romemboring that the dot notation is defined thus

) Ty lgign
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Since ¢ ; * q 4= 0., ¢, and c,, are quickly evaluated to be

91 %3
[ =
l3. 9191 (11)
—q . !’
€pyn —22 | (12)
9.2°9.2 .
With these results, the third column of the orthogonal matrix is
. (13)

937 %3* 1390 *% 2392 ,
The Gram-Schmidt construction may be easily generalized so that the expression for the jth
column, q_j» may be written

L
q.’.=x_i+ E 9.4 rkl. ] _<_,§_m (1)
k-1
This may be expressed by the matrix relation
0=X+QC (15)
where ‘
c,.,=0 j< k
ki . 1</<m
k% 1<k<m
)y ——— i>h =F=
T "4

and where m is the number of columns and n is the number of rows of the X and {) matrices.

The orthogonal matrix () may now be transformed into the orthonormal matrix P by dividing
each elemnent 9ij by the length of the column vector to which it belongs

Pij = l‘l.,’|~.'l,'l’ 1<ica
1</5m
This too may be expressed by a matrix relation
P- QR (16)
where
rig =0 j 7k 1<jZm
ik gl i:k} 1skom

Normalizaticn may not be possible. This is obviously the case where all elements of a
column are zero. When such a column vector appears in a matrix during Gram-Schmidt construc-
tion, the original matrix lacks the required property of linear independence. In fact, this is an
excellent practical test of linear independence.

Two important relations have been developed above

Q- X+0C (15)

P QR (16)
The first may be rearranged as follows: :

QU-0O-X (17
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(I - €) is a triangular matrix with diagonal terms of unity; its determinant is nonzero (in fact,
unity) and, therefore, its inverse existe, and Eq. 17 may be rewritten

Q-XU-0" (18)
‘ From Fq. 16. P is found to be |
PoX{U-Cr'R (19)
or P-X\XD

where D - -CY 1R
Equation 19 demonstrates that the Gram-Schmidt construction is equivalent to postmultiplication
of the original matrix by another matrix. .

" There is also a geometric viewpoint of the construction. The columns of the Y matrix repre-
sent vectors of varving lengths, meeting each other at various angles in n-dimensional space.

Each vector is considered in the arbitrary order in which they appear in the \ matrix, and its
components which lie along previousls chosen vectors are removed. The first vector obviously has

no other vector to be compared with and is left alone.

This can be illustrated graphically in the two-dimensional case (Fig. 1), Consider two
-» - . . " . > :
vectors. 1 | and v ,. described by a matrix \. where 1, is the component of x_, on the x, axis,

X, axis

4

-
A ..'k..l‘...l.l.l se S sOENBERIBCEeBeRDN x., :—q.’
.
Xy 4 ~
RN
. \\
N
: \\ Ed
sepscsadee 40000 esss0s8ssrssstc0sersne X, 2
: NS
M . ~
2 : RN
; - X axis
: ; N~ 2
*
. ° ~.
. s ~
q¢2 . ¢ ~
* .
by .
. .
ese -oooouo-u.-ooco--sooooo‘:-uo.coo :\qi E
—p { R : \\ .
. . -~
, . o N -
‘ . . ~ cX 4
2 - . ~
: : ~
x22 —
.
FIG 1 Geometrie Representation of the \ and ¢ Matrices in Two Dimensions, Show ing
the Gram<Schmidt Construction.
. o,
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; and %9 is the component | of ¥ .1 on the %, axis, x,, is the component of ¥ _gon the x, axis, and
x,, is the component of s g on the Xy axis. In the Gram-Schmidt construction the column x| is
accepted. and its elements are put into the first column of the matrix {.

Then the vector ¥ 2l is taken, and its component fcr ) along t.' is subtracted to form the vector
7 2+ The components of q along the x| and x, axes now form the second column of an orthog-
onal matrix (. The normahzmg process (not shown in Fig. 1) shrinks q . and ¢  to unit lengths
but preserves their respective directions, which now form a right angle with each other.

On digital computers, the matrices P and D are determined from X as follows: The P matrix
is formed in the same memory arca as the X matrix. Fach succeeding column vector of the X
matrix (except the first) is orthogonalized separately with respect to each succeeding column in
the manner previously described. The s. parate columns of the matrix may then be normalized.
Meanwhile, the same operations performed on X are also performed in another memory area orig-
inally containing an identity matrix /. It is obvious that as X is transformed into P, [ is trans-
formed into D, thus '

X—P
! — D
because, as noted above, this construction is equivalent to postmultiplication by the matrix D.

A numerical example of these transformations appears in Appendix D.

REGRESSION ANALYSIS AND THE LINEAR
METHOD OF LEAST SQUARES

The linear method of least squares is closely related to the solution of simultaneous lincar
equations by the method of orthogounalization which will be briefly described.

The following system of linear equations,

axx“ 402112¥ .. 'Fa I yl
M R TIMAL R PRSI T 4 (20)
a‘x"' + a‘,xnl « o b an nn yll

may be represented by the matrix equation
Xd-Y (21
where the Y and } matrices are known, and 4 is to be determined.

With the results of the first section. a solution may be found as follows:

POV A ¥ (from kgq. 19) t (22)
Pr P D—] 4 = p’ Y (23)
Dt - PTY (from Fq. 5) ($2))




NAVWEPS REPORT 9001

hence

A=DP"Y (25)

A FORTRAN coded subroutine for simuliuneous linear equations using this method appears
in Ref. 2.

At this point, it is useful to look at the geometric viewpoint of the system of linear equations
and its solution as outlined above. Y, of course. should be considered a vector in n-dimensional
Fuclidean space, with a direction. a length. and components y,. As before, the dot product of
Y on Y should be recognized as an expression of the Pythagorean theorem: i

Foe¥-|r[2=) y?2 (26)
where | Y| is the length of the vector. The y; are components of } when referred to a particular
reference frame. namely, that defined by the identity matrix / of order n.

Note that Eq. 25 may be rewritten B8 ~ P” ). where B = U"'4. Since P is orthonormal, the
elements of B are also components cf }:* This time the components b, are along unit vectors
whose components. in turn, are found in the columns of P, and hence there is a new reference
frame P. The Pythagorean theorem may also be stated in terms of this reference frame

D VI (27)

Inherent in this development is the fact that an orthonormal matrix is a vector basis, or
Cartesian reference frame, in which the } vector retains both its magnitude and direction Sn
other words, the vector B in the P reference frame is identical with the } vector in the / refer-
ence frame.

The solution process can be described in this light. Consider the matrix equation X 4 = Y.
4 may be called a representation of }. because it may be determined from Y. Fven more. it
represents } in a manner very pertinent to X, so it may be stated further that 4 is a representa-
tion of } in the X space. But it is a distorted representation of }, because the X space is
generally distorted 8 If this distortion is removed by Gram-Schmidt construction, there is ob-
tained a space, P. in which } has an undistorted. easily calculated, understandable. representa-
tion, B. But B is not what is wanted, so. to get .{. one must reintroduce the distortion. This is
done in the final step of the solution 4 - DB (from kq. 25). Thus the term “distortion,” used
very loosely above, is. nevertheless, preciselv and quantitatively expressed by the matrix D.

To turn now from the geometric viewpoint, consider the case where the coJumns of the X
matrix do not possess linear independence. This is revealed when a column of zeros appears
during the Gram-Schmidt construction. When this happens. the vector basis is incomplete. be-
cause there are fewer vectors than dimensions. The vector basis is also incomplete, for the
same reason, when there are fewer columns than rows in Y. This will be considered to be the
general case of the incomplete vector basis. because zero columns which appear during Gram-
Schmidt construction may be-simply deleted with no loss of generality.

It will first be shown why this situation (fewer columns than rows) actually occurs. Suppose
one is conducting a secries of experiments to measure the value of y. the dependent variable.
U'nder experimental control are m independent variables x;. By physical law or statistical hy-
pothesis, y may vary linearly with the x; as follows:

- 9
Y=a,x v a,%, ¢ .. .4 a X - (28)

Equation 28 is called the “regression model "
YReference 3, or another basic text, may be consulted 1o prove this point
Sh issimply two different methods of locating its coordinate points

Not orthonormal
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Obviously, one must perform at least m experiments to determine the a.. However, one may.
proceed further and perform n experiments, where 7 is any number greater l}{an m. Attaching the
subscript i for the ith experiment, one gets the following set of “overdetermined” equations

@, X, 48X 4. A X =y, 1<i€n (29)

which may also be represented by the matrix equation
XA-Y , (21)

noting that X now contains more rows than columns.

While it is not surprising that the experimenter did not have to stop after m experiments, it
may be surprising that the overdetermined equations above may be solved ia the same manner
as outlined in Eq. 21 through 25. A careful examination will show that no step is invalid.

The preceding is contrary to usual experience in solving systems of linear equations. If
the X matrix is not linearly independent, no solution is possible by the usual methods. But
here there is a solution where the X matrix is not even square, let alone linearly'independent .
Before examining the meaning of such a solution, a numerical illustration will be given .

L.et the dependent variable be the yield of the principal product in a chemical experiment.
One is interested in how the yield varies with pressure (x,), temperatere (x3), and amount of
catalyst (xy). Six experiments provide the following data:

Experiment No. Pressure Temperature Catalyst Yield
(i) (x;,) (x,,) (x;,) {r)
1 1 300 .001 108
2 1 100 .001 11
3 1 600 002 120
} 2 350 .001 99
5 2 550 .002 115
6 2 650 002 17

The following regression model can then be set up:
QX v d X, @ XA X - Y 1<i<6 (30

In this case (which is very common). a dummy x| variable must be defined which takes the value
unity for all values of i. The data and model ure now expressed in the following matrix:

1 1 300 0ol a, 108
1 00 .00l a, i
11 600 002 al _ |20 31
12 350 001 a, 99
12 350 002 115
1 2 650 002 17

P and D matrices are now found by Gram-Schmidt construction, and the . matrix is found by

Eq. 25 to be (99,417, -T.250. .N25. 7500).

What is the { vector in this case? The A vector is an incomplete representation of the ¥
vector in the A space. It has only four components: to be complete, it should have six 8

Further insight may be gained by returning to the geometric viewpoint and to the solution
process itself. The Gram-Schmidt construction has developed a matrix P, which contains four

* More rows than columns in the X matrix; equivalently more data than parameters in an experiment.

Bin statistical terminology, components are called degrees of freedom.
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columns in the example. These represent four vectors meeting at right angles in six-dimensional
space. Therefore, when the solution step B - P’} is performed. only four of the six possible
components, b.. are computed. It would be possible to compute two more componenta by arbi-
trarily adding two more orthogonal vectors to the P space. However, these two new vectors
would have no definite relation to the independent variables of the experiment, so this addition
would not be justified. One must accept the actual situation .

B, less two components, while not a complete representation of ¥ in the P space, is a com-
plete representation of some other vector, ¥, which does not have components along the two
missing P vectors. f can be found by the reverse transformation § = PB, which transforms B
back onto the / reference frame. (This expression may be shown to be equivalent to | = X4,
where 1 is obtained from kq. 25.)

In the example, § and ¥ compare as follows:

f ¥

107.2 108
109.7 i
122.2 120
101.2 99
113.7 115
116.2 17

It is not an exact solution, but it is close, and there is gnod reason why it should be close. If
the phyvsical law is correct and there are no experimental errors. one would expect the } vector
to have only four components in its . representation, namely, those of the regression model.
The manifestation of other components, as seen in the difference between } and f. would be ex-
pected only if there were experimental error or if the model were incorrect. Thus, it is not only
possible to have an overdetermined set of equations, but it can be very desirable, because it
can elucidate sources of error. It will now be shown that this is not only a solution to the over-
determined set of linear equations, but that it is the best solution in the sense of least squares.

The problem of least squares can be stated from the geometric viewpoint:

The best representation” of a vector Y of dimension n, in a subspace P of dimensicn m,
smaller than n, is found by constructing the vector ¥, having components only in P, such that
the square of the distance between } and } is a minimum.

The distance between two vectors is the length of the vector difference, denote |} - F|.
The evaluation of this quantity follows. The unknown vector Y has components b, o,. ..., b
in the P space, which are chosen to fulfill the criterion above. If additicnal vectory are added
to P (in practice, a trial und error process) so as to form a complete orthonormal vector basis,
the components of the known vector } may be exactly determined, " by, by b by el
b,. where the last n - m components do not belong to the original incomplete space. The compo-
nents of the vector difference } — § are found by the rule of vector subtraction

ol b

(by = b)) by by, oo (b b )b . R
The square of the vector difference (which is to be minimized) is found by the theorem of
Pythagoras

[V = F ]2 b, =62 e (b= b v (b b2 4t D2 v . sb 2 (32

%In the sense of least squares.
lo.’\ﬂ before, B=P'Y.
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The minimum occurs when each b; is set equal to b; for all i up to m: this can be seen by ob-
serving that each of the leading terms has a minimum possible value of zero. Thus, the criterion
of least squares ia fulfilled when | consists of the components of Y in the incomplete P space.
This is exactly what the solution process ubove does, and it will henceforth be referred to as
the linear method of least squares.

The foregoing is not the classical approach to least squares, nor does it yield the more fa-
miliar least squares equations. It is a curiosity in statistics that, while much of the theory is
based on linear hypotheses, much of the analysis is presented in a cumbersome quadratic form .
The subject of least squares is easily presented with the aid of the Pythagorean theorem, as
shown above. In the classical approach, differential calculus and summation algebra are used.
To arrive at the quadratic form of the least squares equations. modify the linear equation Ad = ¥

by premultiplying both sides by .X”, which yields (X" X) 1 = (X”)), which. expanded, yields

[ n n n 1T r 1 © n
¥ *n E X %ig v 2 : i ¥im 4 Z : TR
i ey i i-1
n n n n
E : X% E Y%y .. E : Yi2%im 4y E : Y2 Yy
il : i i ' e
- (33)
n n n n
E : xlm x[l 2 tun {2 E : xim'tim am E imYi
il Pl P 4 L o l.i;l .
b

This is the form presented in many texts.

A sample coding for regression analvsis. using the linear method, appears in Appendix A,
Statisticians use the inverse matrix elements from the quadratic form to perform ¢ tests. which
show whether the data conform o the regression model or not. The reader is referred to stand-
ard works (such as Hef. 1) for a description of these tests. The statistician is not deprived
of these elements in the linear method, for one can show that the inverse matriv (Y7 V) ! is
equul to the product DD’ from the lincar method. The sample coding in Appendix \ includes
this calculation. :

ORTHCGONAL POLYNOMIALS AND
CURVILINEAR REGRESSION

In the previous secti. rs it was snown that the square matrix X of a matrix equation may be
transformed into a matrin # wiick has highly desirable algebraic and more readily understood
geometric properties. The catarin vectors of the P matrix are of unit length and are mutually
perpendicular to one actrer. o urthesmore, the set of vectors may be incomplete, in which case
there are fewer vectors than data points.

The elements of the orivogenai vectors are called by statisticians “orthogonal polynomials.”
for the vector elemenis are actually values taken by the set of polynomial functions

10
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i<n (39

H N

Pig = dyg ¥+ dyp %y ‘ !

Pia = d 3% + dag%ip + gy ¥y
These equations are an expansion of the matrix product, P=XD, from the preceding section.
The most common application of orthogonal polypomiais occurs in curvilinear regression.
Curvilinear regression 18 a special case of regression analysis hased on the following model
= . 2 mtl 1< < 3
yica, +a,x;va L a,x; 1<i<n (35)

Again, this may be represented by a matrix equation

X4 ¥ (21)
where the ijth element of X is defined by
-1

and where the singly subscripted v, are the values taken by a single independent variable, and
j-1 is an exponent. As before, Gram-Schmidt construction yields a P matrix which is related to
Y as follows:

Py -4y

Pig -
i2 du»dzz.t‘. (37)
2
Piz- dig* dyy v v dyy 3

In the functions above. p | is a constant. p,, is a linear function of x . p,, is a quadratic
function of 1. and so on. A very important facet of these equations should be noted here.
Although the members on the right are polyvnominal functions (of linear, quadratic, and higher
degree varieties). the dependent left-hand members (being only the set of functional values) may

by viewed as vectors and represented in a linear vector space. This will be an aid to under-
standing how one can speak of higher order variations with a linear theory.

Continuing to the next step of the linear method

B-P’Y (38)
This equation may be broken down as follows:
b, P, vy
b (39)

by~ Py
by P oy

The significance of the b . as the components of } in the P reference frame. has already been
discussed. In addition to the algebraic and geometric meaning, the 5. will Le shown to take on an-
other meaning. It is about the #. components of } that the statistician begins making inferences.
It is inference that separates the statistics from the physics and mathematics of the experiment ,
and of its model. Fquation 39 will serve as an illustration. The term b, may be inferred to be the '

" BA
__________)




NAVWEPS REPORT 9001

variation of y, due to a linear variation of x;; b, may be inferred to be due to the quadratic vari-
ation, and so on through higher orders.

That inference is not strictly mathematical may be seen by the word “due.” There is almost
a causal implication here, although statistics are not supposed to show causes!! What is meant
is that the b. (which, mathematically, are only linear vector components) are inferred to show a
true functional relation (not necessarily linear) between the dependent and independent variables.
Under certain frequent conditions!? it is possible to show that the b are indeed the best esti-
mates of the true functional relations, in which case the statistician has great confidence in his
inferences.

Continuing with the linear method for the case at hand (curvilinear), the last step is to trans-
form the B vector into the A vector, by premultiplying with the D matrix, and thus complete the
determination of the regression coefficients. This last step may be considered to be an anti-
climax. Before the last transformation, there existed an ideal Euclidean! 3 space, where the &,
were merely components of Y in the P reference frame. The last transformation not only destroys
this situation but also destroys the inferences as well, because the magnitude of the a; depend
not only on the linear, quadratic, cubic, etc., variations of y with x, but also on the amount of
distortion in the X matrix.

If the last transformation is deferred, thlere are not only components about which inferences
can be made, but there is also a simple device at hand to test the validity of the model. In the
preceding section, it was shown that Y may have components which do not appear in the P
reference frame. The hypothesis may be made that these components are experimental error. If
the error is small, the components of ¥ about which functional relations of y with x were in-
ferred should be larger than those about which functional relations were not inferred. The
following comparison function may therefore be set up

1<j<m (40

k=m+1

which is calledan F ratio. Note the b, in the denominator are those components of Y which do
not appear in the P space.

An F distribution is a function of the number of inference components in the numerator and the
number of error components in the denominator. When an F is larger than a preset percentage
(say 95%) of all other possible Fs that are determined by the distribution, the statistician says
that a true functional relation exists. In normal practice, the computer calculates the F ratios,
and the statistician draws inferences and performs the F tests. F and ¢ tests are part of the
probability aspects of statistics, and it is not in the scope of this report to pursue them further.
The reader is referred to Ref. 4 and other basic works on statistics.

M Eor an interesting discussion of this, see How To Lie With Statistics, by D. Huff, W. W, Norton and Co.,
New York, 1954. 142 pp.
12Namely, normal (Gaussian) distribution of error.

lsThat is, undistorted, orthonormal.

12
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The computational aspects of curvilinear regression will now be considered. It will be shown
that the calculations of the linear method can he performed stepwise. As the name implies, step-
wise calculation allows the regression coefficients to be calculated and tested one at a time.
Such a process is desirable because the curvilinear regression model approximates a Taylor's

expansion of y on x

-1 (41)

w e 2
yimep+agxtazxte...rax

a; = i\ y S (42)
dx 0 G-n!

Because the reciprocal factorial term in a; rapidly approaches exceedingly small numbers. it is
expected that at some term in thejmodel, the remaining functional relation between x and y is
small compared to the experiment Verror. A stepwise solution can locate this term and can,

furthermore. yield regression coefficients for all intermediate degree models without numerical

where

it

repetition.

Huving established the motive for using stepwise regression, it will be shown how it works
for digital computers. One possible methad is to use published values of orthogonal polynomials,
but this is not usually practical on digital computers. Onlv the orthogonal polynomials for equally
spaced intervals of the independent variable are usually published. Also, the /) matrix is very
hard to determine, requiring almost as much computation as the Gram-Schmidt construction. A
more practical approach to the use of digital computers will be described.

Stepwise regression is the technique of performing all steps of the linear method by analyzing
one column of the ' matrix at a time, according to the following outline, which describes the steps

for the jth column

Form the jth column of the X matrix

- a7 1<i<n (43)

if i - =

2. Orthogonalize this column [with respect Lo previous columns by the Gram-Schmidt construc-
tion. and normalize to find the jth column of the P and /) matrices

Pij (1‘.,. 1<i<n (144)
3. Find the jth component of } in the P spucel4
bop oty (45)
t. Compute the current £ ratio
b2
Fon) ———dt (46)
n
1 2
il
Ak jrd

5. The F ratio of step $ may be used to test for significance of the jth functional relation.
At any time before column m is reached. the statistician may decide to stop the stepwise
regression on the basis of this test. or perhaps on the basis of the residual standard
deviation discussed below. It is difficult to get agrcement on a proper criterion.

14 The vector v, is identical to the Y matris

13
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6. At any time. the conventional regression coefficients for a j-1 degree fit can be found
from the current states of the D and B matrices
o dij . b; (47)
This technique is used in the sample program shown in Appendix B.

The denominator in Eq. 46 is a useful statistic called the “variance,” s2. of the regression

n
32 _‘- bk2 . (‘8)
n-}
kojr
The square root of this quantity, namely. the residual standard deviation. is an estimate of the
experimental error.
Note that Fiq. 16 and 48 contain components of B which have vet to be computed. It is known,

n

n .
however. that E b/.2 : E ¥;2. from the Pythagorean theorem. and therefore the following
e o)

relation may be used to compute the required components:

n n i
Zb‘z Z‘V" 2 Z:,,kz (49)
gl Ao o

THE DESIGN OF EXPERIMENTS

In the preceding section. it was noted that useful inferences could be made about the com-
ponents of the B8 vector in the special case of curvilinear regression. This cannot be demonstrated
in the general case. To explain this. the pertinent orthogonal polynomials will be reviewed.

In the general case. Gram-Schmidt construction leads to the following relationships
Piv dyy ¥
Pia (112 Tyt 4122 Yy 39

Pig dyy Tty vt day gy

and it is seen that each polynominal is a linear combination of the independent variables.

The difficulty lies in the fact that generally. there is. no physical siguificance in the
particular linear combinations that arise. This is more obvious when one notes that these com-
binations arise strictly according to the manner in which the independent variable values were
chosen and depend in no way on the functional relation between the dependent variable and the
independent variables.

This statement may be verified by observing that the 1) matrix is formed independently of
the } matrix.

14
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Fortunately, when the Gram-Schmidt construction is applied to the curvilinear regression
model, each polynominal is one degree higher than the one preceding it

Piy =4y
Piz dyptdyyx; S & 1

. 2
Pis~ dygrdygx; v dyyx,

The nature of an ath degree polynomial is not altered by its having terms of degree less than n:
therefore, useful inferences may be made.

It is 50 useful to form inferences. and to work in the undistorted P space, that the general
case will be examined further. If only diagonal elements appeared in the D) matrix, Eq. 34 could
be rewritten

Pi1 4y %y
Pig” O x; v dyy vy

P;3- (O, +(0) Xigtdyq¥g

In this speculutive case. each p ; is related to only one independent variable. Therefore, it
would not be unreasonable to make inferences about the corresponding b, components, namely,
that b, would show a functional relation between the dependent variable ‘and the jth independent
variable.

When would this speculative case arise? The off-diagonal terms in the D matrix appear
during the Gram-Schmidt construction. The only case where they are zero is the one where the
columns of the X matrix are already orthogonal !> This is unfortunate. because an orthogonal
relationship among the independent variables is far from a general case. '

However. the nature of an independent variable is that its values are free to be chosen
(hence the term independent). By choosing these values so that the X matrix is orthogonal before
the experiment is run, one gets a designed experiment. The /) matrix can now be viewed as a
description of the arbitrary way in which values are assigned to the independent variables.

For example. suppose that there are two brands of soap. brand P and brand (). Suppose.
further. that each manufacturer has recently introduced a new version of his brand containing
the ingrediont TRID. There are two independent variables: the brand. and the presence or
absence of TRID. The value +1 can be assigned to the first independent variable (x,,) when the
soap is brand P, und the value - 1 when the soap is brand QO Furthermore, the value +1 can be
assigned to the second indrpendent variable (1,,) when the product contains TRID and, ~1 when

it does not.

To determine the relative cleaning power of the four soaps. a test agency measures the
dependent variable by measuring the percentage of light reflected from sheets washed in the
various products. [t is desirable to compute statistics, bj. from which proper inference can be
made about the two independent variables.

15 But not necessarily normal

n® ’ J'

L_________’




L]
NAVWEPS REPORT 9001

Note the X matrix formed when the following four data points are chosen
1. Brand P without TRID

2. Brand Q without TRID

3. Brand P with TRID

4. Brand Q with TRID

+ 1 -1
x- |- - (50
+ 1 + 1
1 + 1
. 'The two columns of \ are already orthogonal, and P and 1) are
p- -
1 _ 1
s 7
1 -1 I
P 2 2 D 2 (51
1 1 ]
o b - 0 -
2 2 2
L + L
- 2 2-J

due entirely to normalizing. Hence

Components 6, P | * Yand b, P , - ) may be inferred to be the variation of ¥ with
brand name and with TRID), respectively This is possible because a good choice of data points
was made

The p . vectors in this case are called “orthogonal contrasts.” This is only a simple ex-

ample of the designed experiment. A specific class of designed rxperimerts is discussed in the

next scction.

FACTORIAL ANALYSIS

One experimental design. leading to orthogonal relationships among the independent variables,
is the lattice!® design. The analysis of this design will be presented. and an example will be fol-
lowed throughout the section. ‘ :

Consider an experiment where there are two independent variables, x| and v, In this example,
it is desirable that x, take three distinct values and that x; take four distinct values. A special
situation. involving a total of 12 points, occurs when the four x5 values are repeated for each of
the three x| values. In this case, the puired values taken by the two independent variables may

be arranged into the following lattice:
(DL x,(0) x, (D). x,(2) x, (D x,(3) 2, (1), x,(4)

(2, x (D 1, (2), 4,2 (2 2,3 X, (2 x,(1) (59
x'(.'%). xz(l) xl(.'l). .t‘,z(?) .\'I(-'l). .t'2(3) x,(3), x2( 1)

16 \ widely used special case of factorial analysis

16
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where x,(1), x,(2), and z,(3) (which may be denoted x;(j,), 1 < j; < 3) are the three values taken
by the first independent variable, and 2,(j3), 1 < jz < 4, are the four values taken by the second
indspendent variable. In such a design, j, is called the “level” of x;, and jj is called the level
of x3. The variables x; and x, are called *factors.”

In this experiment, the dependent variable y may be doubly subscripted by the level indices
of the independent variables. The experimental data, therefore, may be arranged into the same
lattice

n Y.2 Y1a Y14 ,
Y Ya2 Ya3 Y4 (53)
Y Y32 Y33 Y34

To analyze such a desigr, a regression model must be set up. The first step in establishing
a model is to “partition” the independent vasiables. Although this term is just now introduced in
factorial analysis, it refers to substitutions already described informally in the sections entitled
Orthogonal Polynomials and Curvilinear Regression, and the Design of Experiments. Formally,
partitioning is the procedure whereby the expression y = f(x) is replaced by the expression
y = flal(z), 2%=x), .. ., 27 (x). In other words, the expression “y is a {unction of z” becomes
“y in a function of a numbe. [ functions of x.” This procedure introduces no restrictive assump-

tions.

A new notation is used in this formal definition for reasons that will become apparent as the
model is developed. The symbol x' refers to an arbitrary function of x. The superscript is an in-
dex which identifies the function; it is not an exponent. The form of these functions in the case
of curvilinear regression is

z'=1
=2 | (54)
13 = x2
and so on, where, in the conventional notation on the right (not underscored), a superscript is
indeed an exponent. This is a common example of partitioning, but certainly not the only exam-
ple. The arbitrary functions may take such diverse forms as -
xt=1
z2=log(» (55)

x3 =tan (2)

and so on. The basic point to remember is that for a finite number of x values, the arbitrary func-
tion xi is only a set of functional values and may bz viewed as a vector in linear vector space.

Sometimes only the set of functional values is given, and there is no analytic form to xi. An
example of such a case may be taken directly from the section on the design of experiments:

2l =4+1 if soap is brand P x22=4+1 if TRID is contained

x'=~1 if soap is brand Q z%=-1 if TRID is not contained

The latter case is called a qualitative partition, and the former coses (such as Eq. 54 and 55)
are called quantitative partitions.

1

ﬁ_________)
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The regression model for y, a function of one variable with partitioning, may now be written
7“’1‘1"'“2‘2"’ co ot ax”
and a simple criterion for a linear model may be expressed
; — = a; (n constant) 1<i<n (56)
. :

The lineer approach to lattice designs require« that each independent variable (factor) be
partitioned into as many arbitrary functions as there are functional values (levels). This is a
controversial point. The nonlinear approach presented by many texts does not require partition-
ing (in fact, partitioning is not possible without reverting, at least part way, to a linear approach).
An objection to the linear approach is that meaningful partitions cannot always be made. (Take
three brands of cigarettes for an independent variable, as an example.) The objection is not
valid, however, as meaningless partitions can always be performed and a “departitioning” per-
formed at the end of the analysis. This will be discussed further after the development of the
model has been completed and the analysis has been presented.

In the lattice design being followed, there are two factors, one with three levels and one
with four levels:

=) 1<), <3
z,(j,) 1£j,54
The first factor must be partitioned into three functions
1 2 3
), x MG, a ') 15j,<3
and the second must be partitioned into four
1 2 3 ‘
2 %), 4, 2%y, <) 1<j,<4

to equal the number of levels .

The partitioning must be performed so that there is linear independence among the arbitrary
functions and hence in their matrix of values. The matrix of values for the first factor is

2 £y 2K

242 2@ L4 (57)

2 3

PRI R

Ifx)(1) =1, x) (2) =2, and 2)(3) = 3, and this first factor is partitioned according to Eq. 54, the
matrix of values to be checked for linear dependence is

1 1 1
1 2 4
1 3 9

Once independent partitioning is accomplished for each factor, the regression model itself
may be considered. For a lattice design of two factors, the general form of this model must be

Yiyia =[x, "2(jz)]

18
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When the partition device is applied, the model becomes
1 ©a 3 1, 1, 3, . 4,
Yiiiy - [[_x G a2 G ) ) G -(,2)]
If the requirement is made that y be u linear function of x; when x, is constant. the following

relationship may be derived from F.q. 56

9 a; {x) (a function oaly of .x2) Vi =3
y 2

dx !
" Furthermore, if the requirement is made that v be a linear function of a3 when x; is held
constant. another relationship may be derived from kq. 56

oy

u; () tafunction onlv of v} 124, <}
i iy : ! — 2
dy?

The most general solution to these differential relationships can be shown to be

v, .
"1

1 1 1 2 1 3 g 4
AT Sy 2 RETIPRNRE T Wivet2 s
a3 GG e ) e x G x ) ey DX
2 1 2 2, 2, 3, . 2,4, .
vd, A '(j')_; "(/'_,) Uy, A ‘(jl)‘x U, ray,a '(/l)g'L 2(,vz) P '(/l)a.‘. 2(/2) (>8)
S, 1, 3,2, 3,008, 3, 4y
v x NG e, & GX Y e & X T ) e A (a4,
provided that one arbitrary function of each independent variable is merely a constant. The prac-
tice of setting ' and &'2 tand for that matter the first arbitrany function of any factor) to a
constant value of unity is so common and so necessary for this solution that it will be assumed
throughout the rest of the text

This is. finally. the regression model for the 3 « § lattice design being used as an example .
That it obeys the differential relations above may be verified by substitution.

As a further demonstration of the linecarity of the model, Fq. 58 may be expanded into 12
linear equations. in 12 unknowns, by substituting in the 12 lattice points. [The data ly;,,, from
F.q.33) are directly substituted. but the values of the independent variables (x (). x5/, from
Fq.52) must. of course. be transformed according to the partitioning used (such as in kq. 54).'7]

The u;, ;, may. therefore. be deterriined by the techniques of the previous sections However, a

more powerful technique is possibie and will be described later.

There are some interesting and desirable properties of this model (Kq. 58) which should be
noted. The terms in the equation may be arranged into the same lattice as the design points
(Eq. 53). This property is a key to the analvsis which will be presented. Another property of

RIS Eq 39 for o ~vimbolic example of this substitution.
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the model, and one which makes it realistic, is that when each factor is partitioned into zero-
order, linear, quadratic, etc., functions (Eq. 54), the model takea the form of a Taylor's ex-
pansion of y in two variables

Yz, z) =
e, +0,,%, +a

3
| +0,% %, +0,, x (59

2 2 2,2 2,3
+ay, 5,2 +0y, v 2 a2, %2, va x %,
Here the level indices have been stripped to enhance the form of the expansion, and a‘liz is an

approximation for |
.

a\h 3\ y (0,0)
dx, Jx, (i) (i)

Because of the finite number of points in the lattice, only the low order terms of the expansion
appear.
The model given may be simplified (at least in appearance) as follows:

i i
- x'1 yh
X, =& & 4, | (60)

172

where the underscored capital letters are tensors.

Tensor notation (Ref. 6) is intoduced at this point because it is particularly suited to the
description of the analysis. The small amount of tensor notation used will be fully explained.
The four variables in Eq. 60 are two-dimensional arrays similar to matrices, except that some of
the indices appear as superscripts. The elements of the 'xiliz array appear in Eq. 53.

i §
The elements of_KI.1 are x l(/'l), where 18 [
1
1<i <3
1<j,53

{ i
and those olel2 are x 2(j.‘,), where
2

15j,%4
The elements of the A; ; tensor span the a coefficient of Eq. 58.
1f2

Tensors may be multiplied in two different ways to obtain either an inner or an outer product.
Only the inner product is of interest in this development, and only that product will appear.

As a first example of the tensor product, consider the product X ,Xiz from Eq. 60. This
product yields a four-dimensional array which may be denotedl f142 wnhout notational ambiguity.
/2

18 These elements may be recognized as the matrix of values (Eq. 57).
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s . .
The §,i,/,j, th element of this array is the product of the i, j, th element from &i: and the i j,th
)
element from X. ' .
4,
The continuation of the product in Eq. 60 presents a second example of the tensor product
i
172
xixiz Ail‘z
Note that the superacripts of X appear as the subacripts of 4.
There are two steps in forming this product. The first is forming the following four
dimensional array (there are six indices, but only four are distinct):
42
 Thighi
where the i,/ i,j,th element of this array is formed from the product of the i,/ i)/, th element
of X and the ijiyth element of 4.

The inner pr~duct is completed by a second step where the indices appearing both as subsacripts
and as superacripts are to be summed out as follows:

X

which reduces the product to a two-dimensional array. A numerical example of such a tensor
product appears in Appendix E.
Retumning to the subject of factorial analysis, in Eq. 60 there appears a tensor for each in-

=3 3 yhtz
Iyl ?'. ig x’t'z‘l‘z (61)

i i
dependent variable or factor,,{l.l and XI.2 . While their product can be immediately written as
1 2
[T} ]
Xl.' 2, it is better to analyze them separately. Each X tensor can be analyzed in a manner
12
similar to the matrix methods given previously.

It is desirable to separately transform each of the X tensors into orthonormal P tensors.
This may be done by the Gram-Schmidt construction, which was previously described by the
matrix transformation

P=XD

This transformation may be rewritten in tensor notation
s ips

Some insight into tensors can be gained by studying this equation. Because it describes the
same transformation as the matrix equation, it - an be ohserved that the supcrscript of the ten-
sor embodies the row property of the matrix'? and the subscript of the .ensor embodies the

column property.
Consider now a tensor Qi‘, such that the tensor product
sk _ gk
.Q,' g_, =l"
where the elements of [ are unity if i = k and are zero if i # k. Such a tensor ( contains the in-
verse elements of the [ array in the matrix sense.

19 Also called the contravariant property.
20 A}y called the covariant property,
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The tensor [ has the property that, when it multiplies another tensor such as X, the follow-
ing relation results:

§ 1k k
&L - X |
Performing this multiplication according to the inner product rules will show that the individual
elements of X;‘ are equal to the individual elements ofX;, so the change is only symbolic.

This relationship will be used below.
Both sides of Eq. 62 may be multiplied by C to give the following:

2iCk - XiDyCh - x} (63)
A further multiplication by 1;; gives
BiCi-Xi (64)

This relation, with the indices properly subscripted, may be substituted into Eq. 60 for each
factor X to give
s i s i
Y. . =pVcrp2clayg (65)
hiz —h 'c’l'elz f2 T hite

Some desirable properties of tensors allow a rapid completion of the analysis. Tensors, un-
like matrices, obey the commutative rule as well as the associative rule of multiplication; for
example

f; C =L P; (66)
Therefore, one may rearrange the product terms in Eq. 65 at will. One way follows:
- 2
Y, £} 1’,2 8, s, (67)
where
—’1’2 } C, g '4‘1‘2

It is ~epeated at this point that each P tensor is a two-dimensional array which contains the
same elements as an orthonormal matrix P. A property of such matrices is that P” P = |. This
relation may also be rewritten in tensor notation

i ps -
Pi -
It is legitimate here to use the same s mbol for each P tensor, bec.mse each contains the same

elements. However, the index which describes the column property in the original P® array
must describe the row property in the new P’ array. !

Hence j is a subscript in the tensor correspondmg to the matrix P, and is a superscript in the
tensor corresponding to the matrix P.” It is in this way that tensors are transposed. Both sides

2I'This is because the matrix P was defined so that it was column-orthogonal.
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of Eq. 67 may be multiplied b _Ei' and 2 to give the following: 22
q y plied by ;1 and P, " 10 g 8

B _ (68)

Lty

Iy piq
by &, Liig "
The tensor 4 may be solved for in a manner analogous to the matrix solution of Eq. 25.
However, as before, this will be considered an anticlimax in the analysis, and, in fact, it is very

seldom done in factorial analyis.

Equation 68 may be compressed by the rule of tensor products as follows:

fiig _ :
Lf 12 Iill'z - B'n’z (69)

The tensor P operates on the data tensor },to yield a third tensor B. A transformation is
presented in the next section which changes Y and B into one-dimensional arrays while pre-
serving the total number of elements contained. The same transformation, when applied to the
P tensor, reduces it to a two-dimensional array. It will be shown, further, that this latter array
is also orthonormal. This will establish that the elements of the B tensor are components of the
lata }'. Therefore, the theorem of Pythagoras applies, which, for the example, is expressed

¥y /y.  \2-3= 2 (70)
i,ig(]lﬂz) '1'2(!2‘!'2)

shere a double summation is required because of the double index.

Furthermore, the elements of B may be inferred to be variations of the data due to certain
sariations in the independent variables. To complete the analysis. it is necessary to identify
hese variations. The key to this identification is the double subscript of the B tensor. Just
18 the double subscript of the Y tensor identifies the individual data with the levels taken by
he independent variables, the subscripts of the B tensor (which run the same gamut as the Y
subscripts) identify the components with these variations in the independent variables.

A study of this can be made by expanding Eq. 67 according to the definition of the tensor
woduct

2jyiy =
1 1 1 2, . 1, . 3, 1y, 4,
biyp l(il)f 2(/‘2) thy,p l(jl)f 2(/2)4-_1;]32 l(ll)f 2(12)+b“£ l(]l)f 2(/.‘,)4-

) 2 1 2 2 2 3 2
byrp i) p Aip+byap WDP Xid+byap Ni)p Hidrbyp WiYp Xid+ (D)

3 1 3 2 3 3 3 4
by p '(,‘,)g HjJ+byyp ‘(,',)f 2(;2)+g“_,_, ‘(/,)E i+ baep ‘(,‘1)2 Ajy)

22 The difference between B, and 8, is only symbolic; they each contain the same array of
umbers, =2 12
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As an example, let the independent variables be partitioned according to Eq. 54.

1 1,
2 )=1 2 Aj)=1

2 2, .

x l(il)"l F 2(/2)”2
53‘(1',):::12 532(/'2)=::22

5‘2(1'2) =x,°
Then from Eq. 62

1 1 1, 1
L4 l(i1)=§1: P 2(12)=5-1:
2 1 2
p l(i1)=-42:"’ 42:’-‘1

3. h 4 3 2 3y, 2, ;%2 32 2
P (11)"43‘*43‘51*‘-"3‘-’51 4 2(12)=d32*d32.12+d3252

1 1 2 2 ) ) .
Therefore, p ! and p 2 are zero-order functions; p and p”? are linear functions of their
T K 3 e . , ‘2.
respective factors; p Y and p~ 2 are quadratic functions of their respective factors; andp s a

cubic function of x;.

An inspection of Eq. 71 will show that an element b, _ of the B tensor shows the variation

1%2
s s .
in the data Y, due to the variation in p 'and in p 2. A component which depends on two varia-
tions is called an interaction component. In a completely general case, all 5, _ are interaction
172

components. However, in practical cases, such as the example being given, the independent

variables are partitioned in such a way that the first orthogonal function, p! of each is zero order.
or constant. Because of this, certain degenerations occur. The component._b“ is inferred to be
the variation of the data due to the zero-order variation of x, and of x,. This interaction is doubly
degenerate and is itself zero order. The term b, shows the variation of the data resulting from
the zero-order variation of x,; and the linear variation of x,. This interaction is singly degenerate
and is called a main effect, namely, the linear x, effect. The rest of the inferences are found in
the same manner and are tabulated in Table 1.

Henceforth, only interactions which do not degenerate will be termed interactions.

An inference need not always be made about a component. In order to test whether components
are showing a true functional relation between y and the independent variables, it is necessary to
have extra components where no functional relation is expected to appear. These components are
of the same nature as those described in the section on curvilinear regression and are termed error
components. An F test can be made where each component, about which an inference is made, is
tested against the error components.

In the example given, there are not enough components to test all possible inferences. Two
approaches are possible. First, it may be that there are no true functional relations expected

2
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TABLE 1. Inferences for a 3 x 4 Experiment Rith Linear, Quadratic,
and Cubic Partitioning

Component | x| Variation x9 Variation Inferences
By, zero order zero order zero order®
84 zero order linear lin. xg effect
B, zeto order quadratic quad. x5 effect
By, zero order cubic cub, x4 effect
By linear zero order lin. xleﬂectb
Bgs linear linear lin. x lin. x4 interaction
Bas linear quadratic lin. x| quad. x5 interaction
Bag linear cubic lin. 2y cub. x9 interaction
Bay quadratic zero order quad. x; effect®
B32 quadratic linear quad. x lin. x5 interaction
By, quadratic quadratic quad. x) quad. x interaction
B3, quadratic cubic quad. x; cub, x, interaction

“Doubly degenerate,
Singly degenerate,

among the interaction components. In this case, the F ratio used to test a true functional relation
between y and a linear variation in x| is computed as follows:

2
F(1,6) = - (1) - - (72)
";l"[(ézz)z +{byy) + (éu)z + (’-’32)2 + by + (b, ]

and for a linear relation between y and x,

2
(
F(1,6) = b1 (73)

Lirad® s 02"+ (1307 4 00+ (" (z_,“)z]

and so on for quadratic and cubic relations. If it is necessary to infer that interaction effects do
exist, then it is necessary to create more components, which is the second approach. The only
way to do this is to add a new factor. This factor may be some new variable in the analysis, or

it may be a factor about which no inference is made. The latter case is called multiple replication,
because it is merely repetition of the experiment.

It is not always possible to partition a factor in a meaningful manner. A “brand name” factor
was given as an example. If factor x, of that example had resresented brands A, B, and C of
automobile tires, then it would be meaningless to talk about ihe linear and quadratic variation
among the brands. However, one can still make the meaningless partition and get the total varia-
tion of y, due to brands by adding (vectorially) the two meaningless components

- -
2l+—bSI =ébrands. |

io-¢

Because b,, and b, are components in orthogonal directions, the length of the new vector is

{(b,l)’ NTIRE

by the Pythagorean theorem. This may be called departitioning.

23 . . . .
Note that the denominator containsthe interaction components shown in Table 1.

25
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If one assumes, as before, that the interaction terms are error, the F ratio to test the varia-
tion of y due to brands is

o]
=1(bay) +(Bay) .
F(2,6) = —— 7 (%) + s | (74)

Ly + 8,97 + 5,00 + 8,07 + 3,9 + (g“)’]

where the general rule is applied that the F function is the ratio of the mean square components
being tested to the mecn square components considered to be due to experimental error.

The choosing of the componeats to be tested, and of the F ratios to be formed, is called the
summary of the analysis and, as stated before, is strictly within the working area of the statisti-
cian.

Thus far, only a particular two-factor experiment has been considered. Generalizing to the
n factor experiment is remarkably simple in tensor notation and is summarized below.

SUMMARY OF THE ANALYSIS OF LATTICE DESIGNS

Assume the regression model
< xixiaxta 4 (75)
Xflizfs' e ‘)‘{il‘)‘{izzf 3 TTipigdy T
1. Partition each independent variable to obtain the matrix of values which are to be inserted
into the individual X tensors.

5‘1(,'1) = ;“[z G (each gil an arbitrary function of z)
5‘2(1'2) = ;‘qxz(,'z)] {each ;Iz an arbitrary function of x,)
5‘3(/‘3) = 3“'{: 3(;’3)] {each J_cia an arbitrary function of x,)

where, for each f;cu;r. the number of values taken by i (number of functions) is equal to the
number of values taken by j (number of levels) to obtain a square matrix of values.

2. If each matrix of values possesses linear independence, form the orthonormal tensors by
the Gram-Schmidt construction

pii_xiipt
Iy ThTh

2 ylap'2
'Piz—'z(fz“z
K] i [
P.3-x3Dp.3
=13 113"'3

3. Transp.o.a; each P and, using the solution process of Eq. 67 and Eq. 68, evaluate the
following equation

B =Pil)’2i3---

P S (76
152%3 =51%2%; =Ivas )

26
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4. Form inferences about 8 (which may now contain three-way and higher interactions) and
summarize according to the desires of the statistician.

The factorial analysis program in Appendix C uses this method. Other facets of this program
will appear in succeeding sections.

The reader is referred to Ref. 7 for another description of the linear approach to lattice
designs.

TRANSFORMATION OF INDICES

As stated in the preceding section, a transformation will be described which reduces the
multidimensional Y and B arrays to one-dimensional arrays. The transformation works on the
indices of the tensor, but it does not alter the number of elements in the array or their numerical
values.

This transformation is of more than academic interest, because the addressable memory of
a digital computer is one-dimensional. So, an n-dimensional array must be represented by a one-
dimensional array, the elements of which are found by a single subscript computed from the many
subscripts of the n-dimensional array.

Assume, for example, that there are m factors with the number of levels denoted by [, f,,

+s [+ The total number of data points, n, is equal to the product of the fs. Consider the

data tensor !I NERERL variable with m subscripts. A single subscript j may be computed from
m I
these subscripts as follows:24 b

U= =1+ G Df  + G- o+ GO fofat e oo+ Gu=Df [y oo [y (77)

The above formula25 will be recognized immediately by one who has coded operations on
m-dimensional arrays in digital computing machine language, and the number theorist will
recognize it as a representation of j~1 in a hybrid-base number system. That is, a number may be
written (j_-1) ... (j,~1) (j-1), which does not represent j-1 in a decimal or a binary number
system, but in a system where the low order digit, (j,~1), is of base /,; the second order digit, (j,-1),
is of base f,; and so on. Because the last viewpoint delivers the greatest insight into the trans-
formation, an example will be given.

Consider a three-factor experiment where factor x, has two levels, L has three levels, und
x4 has four levels. Table 2 illustrates how the three-dimensional array may be “stretched out”
into a single array. An important property of the transformation in Table 2 is that it is a one-to-one
transformation. That is, for every j there is a unique set, j,, j,, ..., j., and vice versa, The
uniqueness may be proved by induction in a manner similar to the proof in Ref. 8.

24This/’ is notationally distinct because it is not subscripted.

25 A cumbersome translation, | ~J-1, is used because the FORTRAN language does not allow indices to

run from zero.

77
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TABLE 2. Transformation of Indices for a
2 x 3 x 4 Experiment Showing the Base—10

and Hybrid~Base Representation of the
Single Index Formed

J-1 ]l
Jrd | Izt | 751 | (Base 10) | (Hybrid base)
0 ] 0 0 000
1 0 0 1 001
0 1 0 2 010
1 1 0 3 011
0 2 0 4 020
1 2 0 8 021
0 0 1 6 100
1 0 1 7 101
0 1 1 8 110
1 1 1 9 111
0 2 1 10 120
1 2 ! 1 121
0 0 2 12 200
1 0 2 13 201
0 1 2 14 210
1 1 2 15 211
0 2 2 16 220
1 2 2 17 221
0 0 3 18 300
1 0 3 19 301
0 1 3 20 310
1 1 3 21 3l
0 2 3 22 320
1 2 3 23 321

This transformation may be applied to the subscripts j and ¢ in Eq. 69 as follows:

ftl.’./,':.B: (78)

It is important to recognize that Eq. 78 describes the same arithmetic computations as Eq. 69.
In fact, the computer programmer will recognize Eq. 78 as the method of coding the computations
of Eq. 69 in machine language.

Equation 78 may be immediately rewritien in matrix notation
P’Y=8 (79)

noting that the simplified tensor products of Eq. 78 corresponds exactly to a matrix product.
Equation 67 may be transformed in the same manner

Y-PB (80)

. . s
applying first the rule of tensor products to obtain Y. . = p12 .
Thi2 SlY 7%,
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The only way in which Eq. 79 and 80 may both be true is that
P’F=1 (81)

Thus it is shown that the matrix P. formed by the transformation of subscripts and superscripts

2.8
of the tensorfl. :J' :, is orthonormal It is therefore possible to observe two things. First, the

lattice design fulfills .he desired requirement that the independent variables be mutually
independent (orthogonal). Second, the _bslsn. .. are truly components of the data!,. g and

the inferences of the previous section are correct.

FRACTIONAL REPLICATION

The lattice designs already described are not the only means by which an orthogonal rela-
tionship may be established among the independent variables of an experiment. It is not within
the scope of this report to describe the others in great detail. One type, however, is so common,
and so intimately related to lattice designs, that something should be said about what it is, why
it is used, and how it may be handled on digital computers.

Fractional replication is related to what is called the redundancy check. The reader will
probably be familiar with the parity check on binary numbers or with check sums on punched
cards. The redundancy check may be described as taking essential information and inclueding
with it redundant information computed {rom the essential information in some predetermined way.
The purpose of this, of course, is to detect transmission errors (or, when the human element is
involved, to reduce the possibility of forgery of numerical information). One may, for instance,
look at the 10-digit serial number on his oil company card and note that the company could not
possibly have 10 billion credit customers as this number implies. If some of these numbers are
used as a redundancy check, one's chances of forging a legitimate serial number are small. A
redundancy check may be added to the subscripts »f data tensors from lattice designs. A par-
ticular class of redundancy checks will be described which requires that two or more factors
have the same number of levels. For example, consider a simple two-factor experiment where
each factor has three levels. The Y tensor than has nine elements

Y11, Y122 Y13 Y2 Yaor Y230 Y3 Yazr ¥as

A third subscript may be added which has the property that the sum of the subscripts modulo
3 is zero

Yiee Y230 Yiaze Yarsr Y2220 Y2310 Y3120 Y3210 Y333

Consider now the case where a new three-level variable is introduced which takes the level sug-
gested by the third subscript. In this case, some interesting things happen. First, the third
subscript is now a redundancy check in mathematical form only. Actually, it achieves the same
status as the other two subscripts. Second, a three-factor experiment has resulted, but some-
thing is missing, namely, those elements of a 27-element data tensor, the sums of whose sub-
scripts equal 1 and 2 modulo 3. In fact, there is one-third of a 3 x 3 x 3 experiment (written

1/3 x 3%). This is called a fractional replicate of the full 33 experiment.
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The three subscripts possess the property of symmetry. That is, if originally there were only
the second and third subscripts, the value of the first would be detrrmined by the same rule. In
fact, if the first subscript is dropped, the second and third take the same set of values that the
first and second did originally (but not in the same order); that is, all the points on a3 x 3
lattice appear. Similarly. the second subscript is a redundancy check on the first and third, and
if this second subscript is dropped, the first and third contain all the points on a 3 x 3 lattice
{(and again, the order is different).

Becuuse it is a lattice design, the original two factors have an orthogonal relationship be-
tween them. But, by the property of symmetry. it must be concluded that the third is orthogonal
to each of the orizinal two. Thus, the fractional replicate is a designed experiment.

Hows or, a poradon exists. Although there are three subscripts, there is only a two-
dimensivnal array. In fact. the analysis made for complete factorial designs may be made here,
ignoring any one of the three subscripts (because, as already noted, in all three cases the re-
maining subscripts describe a complete lattice). But cuch process analyzes only two factors.

What happens to the thied?

The solution tensor § consists of nine elements: the zero-order components of the data, the
two main effects of the fizst factor, the two main effects of the second factor, and four interaction
components. Because the vector basis is complete, the components related to the third factor
must be contained somewhere, By its verv nature, the zero-order component is eliminated. and,
as already noted. the thiee main fuctors are mutually orthogonal. Therefore, the two components
of the third factor must fie along some of the interaction components of the other two factors.

In this case. cach factor is said to be “confounded™ with the interaction of the other two
factors This dual identity of components presents a problem. How does one know whether o
component results from one factor or the interaction of two others? Proper inference can solve
the problem. One mav have good reason to believe that there are really no interaction effects.
He then infers the components to be only main effects

One way to have confidence in such inferences is to confound factors with high-order inter-
actions. (In the previous section. the regression model was described as an estimate of Taylor's
expansion of the dependent variuble. One therefore expects components resulting from high-order
effects. even when real. to be small, because of the reciprocal factorials in the high-order terms
of the expansion.) The only way to confound high-order interactions. in the class of fractional
replication being described. is to have many factors with the same number of leveis. Consider, for
instance, a < §« b« }experiment. The independent variable will have four subscripts, each
taking values 1 to L. One mayv add a fifth subscript with a redundancy check, so that the sum
of the five must be 0 modulo §. and may thus introduce a fifth factor. Fach factor will be con-
founded with a four-way interaction. One then infers confidently that the components show
only the functional relation of the factor and not a four-way interaction.

This example also illustrates the principal advantage of fractional replication. With four

factors, one already had a need for 256 experimental points. Without fr.ulmndhng a fifth factor
would require 1024 but with it. the need is still for only 236,

30
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The type of fractional replication described above is called the Latin-square class, because
the simplest cases lead to Latin-square patterns. For instance, from the 1/3 x 33 example, one
may set up the following square:

1 2 3
11312
2 31211
21113

where the first subscript appears across the top, the second along the side, and the third in the

boxes.

There are. of course, more complex examples in the Latin-square class; for instance, a
173 x 4 x 33 experiment. The four-level factor has no redundancy check and hence no con-
founding with other factors. The other three, considered separately, form the classical Latin
square above.

There are other types of redundancy checks which give rise to other factorial models. In
some cases, there can be two independent redundancy checks on a number of factors of the same
number of levels. This is called the Greco-L.atin-square class of fractional replication. Other
types of checks exist which give rise to incomplete-block and other exotic designs, some of
which can be solved by the programming in appendixes A, B, and C and all of which can be
solved by the methods of this report.

There are two ways of analyzing fractional replicates by the methods described under Fac-
torial Analysis. One may be called “putting the burden on the statistician™ and the other “putting
the burden on the computing machine.” In the first method, the redundant subscripts are ignored,
and the regular factorial analysis is made, which computes each single degree of freedom. The
statistician, knowing the redundancy check, then searches among the high-order components for
the missing factors. The second method requires that the rest of the lattice, of which there is only
a fraction, be filled in with zeros. The regular factorial analysis is then made, and highest-
order interactions are successively discarded until there are fewer components than data. The
remaining components are divided by the fraction of the experiment. In this method, all com-
ponents are properly identified as described under Factorial Analysis.

As an example of the second method, consider the 1.'3 x 33 experiment. This is first con-
verted into a 37 by filling those elements of a 3 x 3 x 3 lattice that are not in the design, with
zeros. The factorial analysis is then made. The two- and three-way interaction components are
discarded, and the main effects are divided by 1°3. Care must be taken in calculating F ratios
in this case. The denominator must be calculated in the manner of Eq. 46, where the squared
components to be tested, including the zero-order component, are subtracted from the total sum
of squares of the data.

THE MISSING-VALUE PROBLEM

It sometimes happens that one or more points of a desired experiment are missing. This can
happen for any number of reasons, such as a failure in recording instruments or an operator er-
ror. What is worse, in some cases these points are irreplaceable.

When there are points missing, there are two possible approaches to analyzing the data. One
approach is to compute estimates of the missing value on the basis of the components of the data
about which real functional relationships are inferred. The other approach is to revert to the gen-
eral regression model.

3
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There ure disudvantages in hoth approaches. and both are subject to much criticism. In the
first method, there is the disadvantage that the solution to the regression model that is formed
after the computation of missing vulues is no longer the best solution in the sense of leust
squares. [t has the udvantuge, however, that the inferences are preserved.

In reverting to the general regression model, one has the advantage of an exact solution in
the sense of least squares. but the inferences become distorted and F tests are not properly
made. Another advantage here is that it is a noniterative approach, whereas the missing-value

approach remires iteration if there ure two or more missing values. On a digital computer. this
last is not an important consideration

The method of Villaes (Kef. 9) has served the authors well as a missing-value technique and

has been coded in machine language for the IBM 701 (Ref. 10). Unforiunately. it has not been
updated to FORTRAN.

FINAL REMARKS

FORFTRAN-coded programs for general regression. curvilinear regression. and factorial anal-
ysis, using the methoda of the text. appear in Appendixes A, B. and €. Although these programs
have output summaries. they cannot be described as final. They are presented mainly to illustrate
the linear method. The potential user is invited to take them and choose his own methods of sum-
marizing the output and of handling fractional replication and missing values.
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Appendix A

USE OF THE MULTILINEAR REGRESSION PROGRAM

The data input may be described best by referring to the basic matrix equation
XA =Y

where X is an n by m matrix, 4 is a column vector of m elements, and Y is a column vector of n
elements. The unknown is the A vector.

Card 1, FORMAT (215, F5.0, 54H . . .), has the following parameters:
N (1) = m which is less than 51.

N (2) = n which is less than 1001.

SF = scale factor for Y vector (power of 10).

ID = identification of problem with any legal Hollerith characters.
m x n = product less than 16,001.

Card 2, FORMAT (12A6), contains identification for each of the m columns in the X matrix.
Use as many cards as needed.

Card 3, FORMAT (12F6.0), contains the values of the elements in the Y vector. Use as many
cards as needed.

Card 1, FORVAT (12F6.0), contains the values of the elements in the firat column of the X
matrix. Use as many cards as needed. Repeat this card for each additional column of the X ma-
trix.

When the last column of the X matrix is punched, a complete problem is ready to be processed
by the computer. The next card in the data file is Card 1, described above, for another problem;
therefore, the above procedure is repeated for the second problem. Any number of problems may be
processed.

EXAMPLES OF DATA INPUT

[ &1 0 EXAMPLE A
.4 X X2 X3
3 22. 39, 5S4,y 654 76 8%, 90, 9%, 99, 102, 103,
104, 103, 102, 101, 99, 964 93, 89, 84, T8, T2 66,
60, 58, 53, 51 49, 49, 50, 52 55, 60, 66 T8,
84, 95, 108, 121, 137,

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1

1 2 3 A 5 (] 7 8 s 10 11 12
13 14 18 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 3 32 33 3 3% 3¢

33




NAVWEPS REPORT 9001

34

37 19 39 40 41
1 ) 9 168 2% 36 49 84 81 100 121 144
169 196 228 2%6 289 324 3s1 400 451 484 529 576
62% 676 729 T84 841 900 961 1024 1089 1156 122% 129¢
1369 14844 1%21 1600 1681
1 8 27 64 12% 216 343 512 729 1000 1331 1728
2197 27a4  337% 40986 4913 5832 6859 8000 9261 10648 12167 13824
1%562% 17576 19683 21952 24389 27000 29791 32768 35937 39304 42875 46656
80657 %4872 597310 64000 #8921
3 28 0 EXAMPLE B
[ 4 LN T LN T2
269, 180, 150, 120, 90, 7%s 664 80s She 68, 82, 38,
30, 27 24, 21, 20, 18 18%.1 14, 12, 10, 8. (-
S5 [ ¥ 3. 245

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1

000,69311416321,60942,146012,49322,72792,90693,09103,30323,54103,8177
8012718,31754,40986,76276,8%5985%5,08895,41561%55722%5.074964624426,68467,265%4
7e62568,07098,64829,0119
Od 04480 1,353 2,590 4,580 654216 7,441 844%0 9,55510,91112.53814,575
17603318,64120,24822,67823,61825,69629,433431404924451538,99044,68452,786
58,1506%5414074479281,4214
[ [ 0 EXAMPLF IS TAKFEN FROM EQUATION 31 OF THE TEXTe.
X2 X3 X&
1080 111. 120, 99, -115%¢ 117,
1o 1. 1. 1s 1 1s
1 1. 1, 2 2e 2
300, 400, 600, 13%0, %80, K50,
0,001 0,001 0,002 0,001 0,002 0,002

MULTILINEAR REGRESSION FORTRAN PROGRAM
STRFTC SIMLIN LISTeREFIDFCK

CMAIN
c SIMUL TANEOUS LINEAR EQUATIONS, MAXIMUM NUMBER OF ELGMENTS IN
¢ COFFFICIENT MATRIX IS 164000,

COMMON Al116000),Y11000)3D(50s50)sYHATI1000)+5S(50)+AP{50)9X(50)
1STATI(B0) s IDENTI9) +HEAD(S0) sRATIO(S0) o XMEANISO) o XINVEI50950) oMeN»
2RSDOY s FVFRE sBALM

1 FORMAT (2159F5400(9A6))

2 FORMAT (12A8)

3 FORMAT {12F6,0)

S FORMAT (42HO [N THF GRAM=SCHMIDT PROCESS THERE WERG s13+30H BINAR
1Y BITS OF ACCURACY LOSTs})

8 FORMAT (1MI30Xe(9A87/1HOBXIIHMYIOX 42HY#ISX s IHY12X 0 2HYRIS5X 9 IHY 12X e2H
1YS18X s 1HY 12X 9 2HY#/1H )

9 FORMAT (4l1PE164591PE1445))

16 FORMAT (1H130Xs{9A6)/1H0SIX s 1IHREGRESSION ANALYSIS/20H0 THE MEAN
10F Y 1S E1%,8/3940 RESIDUAL STANDARD DEVIATION OF Y 1S E15.8/29H0

2 F VALUF FOR REGRFSSION 1S F1743/30H0 REGRFSSION COEFFICIENTS AR

3E/1M )
17 FORMAT (8F€1%.,6)
18 FORMAT [14HO X MEANS ARE/1MW )
19 FORMAT (30HO INVERSE MATRIX ELEMENTS ARE/1IM )
20 FORMAT (1M )
28 FORMAT (1MH130Xe(0A6))
& READ [891)MeNeSCALF»{IDFNT(1)912199)
READ (85432)(HEADIT) o121 M)
READ (833)3(Y(1)sI=1eN)
DO 6 Js=leM
LV s (J - 1)#N + 1
LA s LV + N = 1
6 READ (5431 {A{1)s1sLVeLA)
SCALE = 10,0%#SCALE
DO 13 I=1N
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13

14
18
11

12
10

2
22
29

23
24
30

26

27
2%

SIBFT

12
13

21

Yi1) = Y(1)#SCALE

CALL LINEQ

CALL VARFAC

LY = 80

DO 10 IwloNsb

J = 143

1F (N=J) 14015%.18

Jes N

1F (50-LV) 11011912

WRITE (6981 (ICENTI{K)eK=)99)
Ltv = 0

WRITE (8493 (IYIK)IYHATIK) Y oK=2T0J)
LY = (V+}

WRITE (8016)(IDENTIT)o1=199) 9 XMEAN(])sRSDOYoFVFRE
LY = 18

DO 29 I = 1oMo8

Jd = 167

IF (M=J) 21922922

J =M

WRITE (80171(X{K)eKel0J)

LY = Vsl

WRITE (6+18)

DO 30 1 = 24Ms8

J = 1e7

IF (M=) 234924924

J=n

WRITE {(8¢17) I XMEANIK) sKu] )
LY = Lvs]

1 = BALM + 0,5

WRITE (8+8)1)

WRITE (6+19)

DO 25 1 = 24M

IF (LV=51) 27426426

LV = &

WRITE (6+28)(IDENTIN) oN=1+9)
WRITE (6+19)

WRITE (601T7T)II{XINVE{T o) oJn20])
WRITE (60209

LY = LVa241(1=21/8)

GO TO &

END
¢ LINEO LISTIREFIDECK
SURROUT INE LINEQ

COMMON A(16000)9Y(1000)9s0(50080)sYHAT(1000)e5S{S0)eAPIS0)sX(50),
1STAT(S0) s IDENTI9)sHEAD(S0) sRATIO(S0) s XMEAN{50) 9 XINVE(50950) sMoN>»

2RSDOY sFVFRE 9BALM
DIMENSION P(16000)
EQUIVALENCE (AP}
IF (N=1) 11512913
Xt1) = Y{13/A11)
GO T0 11

DO 2 Jslem

DO 2 I=1sM

DileJ) » 0,0

1F (1=J) 24192
DileJ) = 1,0

CONT INUE

BALM = 0,0

YXLO = ALOG(2:40)
DO 24 Ju2eM

S58¢G = 0,0

LY = (J=]1)98Ns1

LA » LVéN-]

00 21 I = LVslLA
SSBEG = SSBEG ¢ P(1Y*P( D)
M J=1
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1e
20

15

22
24

16
14

17

10

19
11

00 13 Kelyum

S = 0,0

Rs 0,0

LK = (K=1)oneq

LM » K

00 4 1 = LVeta

R R+ PlTYSPILM)

S =5 4 PILM)BPILM)
LM = M+

Q= R/S

IF (K~1) 20418420
XMEAN(JY) = O

LM = K

DO 5 1 = LVeLA

Pi1) o PI]) = Q%P (LMY
M= 1m 4

DO 18 rmlem

DiIeJ) = DIleJ)=QeDIT4K)

SSFIN = 0,0

DO 22 1 = LVyLA

SSFIN = SSFIN « P(1)#P:1)
BALM = BALM + (SSBEG/SSFIN)
CONTINUE

BALM» (ALOG(BALM) /YXLO)#0,48
DO 7 JU=1l.M

S$S5(J) = 0,0

LV = (J=1)one+l

LA = LY4N=)

DO 6 I = LV4LA

SS(J) = SS{J) » PiTY®®(T1)
SStJ) = SQRTISStUY)Y

DO 16 I = LVyLA

P{I) = P(1)/5S(J)

DO 1a I=1yMm

DilsJ) = DI1eJY)/8SLSY
APlJUY) = 0,0

tM =0

DO 7 1 = LVsLA

M= LM+

AP(JY) = APLJ) 4 Pl1)#Y(LM)
00 8 I=l4M

Xt1) = 0,0

DO 8 J=1l.M

X(1) = XUT)eD(1sJ)®AP ()
DO 17 J=2:M

Dl1vJ) = 0,0

DO 9 UwiM

STAT(J) = AP(JY®AP(J)

DO 10 I=1eN’

YHAT(?) = 0,0

00 10 U=l

LY = (J=1)en+1]

YHAT(I) = YHAT(T) + P(LV)I®AP(J)

DO 19 K=1lM
DO 19 f=1¢M
XINVE(Tek) = 0 O
00 19 Jsi M

XTNVEU[on) = XINVE(T9K)}SDITeJ)I®DIKsJ)

RE TURN
END

SIBFTC VARFAC LIST.RER,DECK

SUBROUTINE VARFAC

COMMON A(16000)sY{1000)spI80y8n)

OYHAT(IOOO)nSS(SO’oAP(50)oX(SO)’

1STA7(SO)OIDENT(9)0HEAD(5°)ORAT!O(SC)OlMEAN(SO)QX!NVE(SOoSO)'MoNo

2RSDOY s FVFRE s BALM
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s

6 FORMAT (T7Xs1A6918X91A914X0E1508¢F2243)
7 FORMAT (1MHOs6Xo8HRESIDUAL 0168X014914XeE15,8)

12

13

14

18

16

FORMAT (1H130Xs9A6)
1S OF SQUARES+16XeTHF RATIO/1H )

GMEAN = 0,0

DO 12 Is1sN

GMEAN = GMEANSY(1)
GN = N

GMEAN = GMEAN/GN
XMEAN(1) = GMEAN
SSTOT = 0,0

DO 13 IwleN

GN « Y{1)=GMEAN

SSTOT = SSTOT+GN*GN

TTSTAT = 0,0

DO 14 J=2M

TTISTAT = TTSTATHSTAT( LY
SSERR = SSTOT=TTSTAT

IDF = N=}

ERRDE = IDF+1~M

ERRME » SSERR/ERRDE

RSDOY = SORT({ERRME)

GN = M-}

FVFRE = (ERRDESTTSTAT)/(GN#*SSERR)
DO 15 1=2sM

RATIONL) = STAT(1)/ERRME
WRITE (6+4){IDENT(T)sIx1e9)
WRITE (6+5)

K =1

DO 18 I=2¢M

WRITE (898)HEAD( 1) oKsSTAT(I)sRATION]
K = ERRDE

WRITE (8+7)K9SSERR

DATA QOOOHL/6HTOTAL /
MEAD(1) = QOOOML

WRITE (8+6)HFAD(1)9INFSSTOT
RETURN

END

8 FORMAT (20HOSOURCE OF VARTATION»SX¢18HDEGREES OF FREEDOM»6Xs15HSUM
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Appendix B

USE OF THE ORTHOGONAL POLYNOMIAL AND
CURVILINEAR REGRESSION PROGRAM

The data input may be described by referring to the curvilinear equation

j=0
where a; are the unknowns.

Card 1, FORVAT (1311, 12, 3I3), has the following parameters:

L) = notused.

L(2) = 1toreadin new x values or 0 to use previous values.

L(3) = 1 to print out transformation matrix (otherwise 0).

L(4) = 1 to print out orthogonal polynomials (otherwise 0).

L (5) = 1 to punch out orthogonal polynomials (otherwise 0).

L(6) = 1toreadin new y values or O to use previous values.

L(?) = 1 to print out regression coefficients for orthogonal polynomials
(otherwise 0).

L(8) = 1 to print out conventional regression coefficients (otherwise 0).

L (9 = 1 toprint out correlation coefficients (otherwise 0).

L (100 = 1 to print out y values predicted from regression (otherwise 0).

L1 = not used.

L(12) = notused.

L(13) = not used.

L(14) =  m which is less than 20. All degrees of fit from 1 to m are computed.

L (15 =  number (n) of points. It is less than 1,000 but must be greater than m.

L (16) =  scale factor for x values (power of 10),

L(17) =  scale factor for y values (power of 10).

For large problems, x and y values should be scaled so that the data are close to unity.
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Card 2, FORMAT 72H . . .), identifies the problem with any legal Hollerith characters. The

character in the first column enters the carriage control channel.

Card 3, FORMAT (12F6.0), contains the x values. Use as many cards as needed. This card
must not be in the data file if L (2) = 0, in which case the x values from the previous problem

are used. (L. (2) = 1 for the first problem.)

Card 4, FORMAT (12F6.0), contains the y values. Use as many cards as needed. This card
must not be in the data file if L (6) = 0, ir which case the y values from the previous problem

are used. (L (6) = 1 for the first problem.)

With the completion of Card 4, the next card in the data file is Card 1, described above, for
the next problem; thus, the above process is repeated for annther problem. Any number of prob-

lems may be processed.

The program is coded in single precision, and thus large differencing errors may appear for

high degrees of fit.

EXAMPLES OF DATA INPUT

1 1111 |1 & -6 -4
1 EXAMPLE ONE

3002 2915 2832 27%4
27993 25224 22989 20569

1111 1 &4 -6 =4

1 EXAMPLE TwO
28195 25623 23201 20792
1 111 1 & =6 =4
1 EXAMPLE THREE

3007 291% 2826 <743

111 1 4 5

1 EXAMPLE FOUR
-2 -1 0 1 2
1 2 3 L 5

1 111 4 10 -5 =3

1 EXAMPLE FIVE
2525 2828 3147 3586 4198 44586 5757 6688 7662 8704

1000 1099 1144 1188 1228 1253 1304 1339 1374 1408
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ORTHOGONAL POLYNOMIAL AND CURVILINEAR REGRESSION FORTRAN PROGRAM

SIAFTC CURVLN LISTIREFIDECK
COMMON P(999,20) sMeNoL(17)9Y(999)s BI20)s SS(20)s XB(20+20)s TOL
FORMAT(131101293139F506)
FORMAT(S4HIBAD CONTROL ZARD OR MISCOUNT OF INPUT QUIT THIS JOB.)
READ (Se1)(LIT)s] = 19.7)
M= Li18)
N = LI1%)
IF (N~1=M) 1111+13,13
13 DO 14 X = 1,413
IF (L(K) =1) 14+1i4,1111
14 CONTINUE
1IF (M=19) 1%5,1551111
18 CALL 1D
IF (L(2)) 179179016
16 CALL XFILE
17 IF (L(3)) 19919s18
18 CALL DETMAT
19 1F (L14)321921920
20 CALL WRITEP
21 1F (L{5)126+26924
24 CALL PUNCHP
26 IF {L{&)) 28B+28+27
27 CALL YFILE
28 IF(L(7)1304+30429
2° CALL OUTB
30 IF(L(8))32+32931
31 CALL OUTA
92 1FIL{9)134+34433
33 CALL OUTR
CALL OUTFR
34 TF{L(110))10+10,35%
3% CALL OUT
GO 70 10
1111 WRITE (642)
CALL EXIT
END
$SIBETC OUTFR LISTIREFIDFCK
SUBROUTINE OUTFR
COMMON P(999320) sMsN»L(1T7)0Y(999)s BI20)9 SS(20)s XB(20920)s TOL
COMMON SSY
DIMENSION FA{20)s FR(20), A(20)9sR{2015(20)
1 FORMAT (51HOF=RATIOS (INDIVIDUAL) DeFo(NUM)21s DoF {DEN)aN=1~J)
2 FORMAT(8SHOF-RATIOS (ACCUMULATIVE) DoFo(NUM)IzJs DoFo(DEN)2N=1-Jy J
1200100000012}
FORMAT (1H )
FORMAT(1HO$10F1143)
FORMAT (2SHORESIDUAL VARIATION IN Y,)
FORMAT (1HO»7E1546)
FORMAT (34HORESIDUAL STANDARD DEVIATION OF FIT,.:
Q0 = N=2
MP = M+]
po ¢ J = 2.MP
8 QtJ) = B(J)we2
D = SSY
A = 0,0
DO & J = 24MP
S = N-~-J

T =J -1
00 = S/T
A=A+ QN
D=D - Q(J)

(5]
OV ON

OB ew
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1n

R(JY = D

FALJY = QLUY/0 ®QQ

FB(JY) = A/D®QO

R{1) = SSY

0o 11 J = 1eMP

X & N=J

StJ) w SORTIRID)/X)

WRITE (6+3)

WRITE (691)

WRITE (6+4)(FALJ)e J = 19MP)
WRITE (4&+3)

WRITE (6¢2)M

WRITE (604)(FB{J)s J = 14MP)
WRITE (6+3)

WRITE (&97)

WRITE (8+8)(R{J)y J = 19MP)
WRITE (6+3)

WRITE (6+9)

WRITE (6+8)1(S(J)s J = 1eMP)
RETURN

END

$IBFTC OUTR L1STIREF+DECK

WP W N -

SUBROUTINE OUTR
COMMON P(99Ge20) sMeNsLI1713Y(999) s B{20)s SS5{20)s XB120+420)s TOL
COMMON SSY ,
DIMENSION R({20})eV(20)

FORMAT (26HOCORRELATION COEFFICIENTS,)
FORMAT (50HOY VARIATION ACCOUNTED FOR 3Y J TH POLYNOMIAL SET )
FORMAT (1M

FORMATIIH sF945011F10,%)

FORMAT(1IH +7E1%46)

WRITE (6¢1)

WRITE (603)

0O = 1,0/SQRT(SSY)

MP = M 4 1

DO 6 U = 2.MP

ViJ) = BlJyne2

RiJ) = BlJUI=Q

WRITE (Rsa)(RIJ)2) = 19 MP)

WRITE (6¢3)

WRITE (442)

WRITE (4+3)

WRITE (6+5)(VIJ}eJ = 14MP)

RETURN

END

$IAFTC 1D LISTeREFIDECK

1
2
b]

3
'y

SUBROUTINE 1D
COMMON P(999,20) sMyNsLI17)sY(990)y BI20)y SS(20)9 XB120+20)s TOL

COMMON SSY
FORMAT (6SHIORTHOGONAL POLYNOMIZL AND CURVILINEAR REGRESSION ROUT!

INE 131<22911291111)

FORMAT (72H

1 )

FORMAT (1M )

FORMAT{13HOOFGREF FI1T =913+5Hs N =914)
READ (%,2)

WRITE (£01)(L(T)oTn1012)

WRITE (6+2)

WRITE (6+3)MsN

WRITE (445}

RETURN
END

SIRFTC DETMAT L ISTIREFHIDECK

SUBROUT INE DETMAT
COMMON P(999+20) sMyNsL(17)9Y(999)s BI20)s 5S(20)s XB120+20)s TOL
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P OOWN-

COMMON SSY

FORMAT (24HOMATRIX OF DETERMINATION)

FORMAT (1M )

FORMAT (1M +27E1%46)
FORMAT ( 1M1)

WRITF (6419

WRITE (6429

MP s M+ 1

DO 8 J = 1sMP
WRITE (603)(XBIKsJ)sK = 19J)
WRITE (6+2)

WRITE (6+6)

RETURN

ENO

SIRFTC WRITEP LISTIREFIDFCK

B U

[

SIBFTC OUTB

W N -

SURROUT INE WRITEP

COMMON P{999920) sMeNIL(17)9Y(999)s BI20)s SS(20) e XB(20020)s TOL

COMMON SSY

FORMAT (23HOORTHOGONAL POLYNOMIALS)

FORMAT (SHOJ = »1?2)
FORMAT (1H 9E204696F1%5,6)
WRITE (é&+1)

MP = M 4}

DO 6 J = 24MP

Ke J=-1

WRITE (6+3)K

WRITE (6+4)(P{1sJ) » 1 = 19N}
RETURN

END

LISTIREFIDECK
SUBROUTINE 0OUTB

COMMOM P(999520) sMeNsL(17)sY(999)s B{20)9 SS(20)s XB8(20,20)s TOL

COMMON SSY

FORMAT (S2MOREGRESSION COEFFICIENTS FOR ORTHOGONAL POLYNOMIALS

FORMAT (1H )

FORMAT (1H +s7E1546)

WRITE (891}

WRITE (642)

MP =2 M + 1}

WRITE (6+4)(B(JYs J = 1eMP)
WRITE (6+2)

RETURN

END

SIBFTC XFILE LISTeREFDECK

32

33
36

SUBROUT INE XFILE

)

COMMON P (99095 20) sMaNsLI17)9Y(999)s B8(20)s SS(20)s XB120920)s TOL

COMMON SSY

DIMENSION R2(20)

FORMAT (12F640)

READ (841)(P{1+2)s I=19N)
MP = M 4 1

DO 3 I = 1:N

P(ls1) = 1,40

IF (3-MP) 32932+9%6
DO 33 U = 3.MP

DO 33 I = 1N

PlleJd) = Pll1e2)88({J=-])
DO & J = 1iMmP

DO &4 | = 1yMP

XB(1sJ) = 0,0

IF (T=J) 49594
XBUloJ) = 10,088 ( (18)%(1=J))
CONTINUE

DO 7 J = 2¢)MP

JM = =1

pnctn ot

& Ty
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10
11

00 7 K = 1oym

S = 0,0

R = 0,0

DO 6 I = 1.n

ReR 4+ PlIsJ)nP(1,K)
Sess Pllik)ee?

C = s

DO 8 I = 1,mp
XB(1sJdy) = XBlIsJ) = CHXBIL oK)
DO 7 1 = 14n

P(lsJ) = PlTeJy - C*P(14K)
DO 9 U = 1.mp

SStJ) = 0,0

00 9 1 = 14n

SStJ) = §5(y) o Plledrenz
00 11 U w 1M

Se 1e0/S0RT(SS1 U}

DO 10 1 = 1,mp

XB(1ed) » XBliToJd)ws

DO 11 1 = 1,

PlIsJ) » Pl1,0)es

RETURN

END

SIRFTC YFILE LISTREF,DECK

G N g

SUBROUTINE YFILE
COMMON g;:qvozo)cMoNoLf17)0Y(999)O B8{201y $S(20), XB120+20)s ToOL

DIMENSION YYt999)
FORHAT(‘?HIREGRESS!ON ANALYSIS s SUM OF SQUARES VY « 2€15,6)
FORMAT (1M )

FORMAT (12F840})

READ (SoS’OY(llollloN)

Q » 10,088 117

D0 & I = 148

Y1) = 0 » Yir

YY(1) = vi1)

MNP = Moy

009 U= lomp

BlJY) = O

00 S 1 = 14N

8(J) = n(yy & YY(R)#P (1)

D0 9 1 =« 14N

YY1} = YY(]) w BlJISP(Te )

SSY « ¢

YB = B{1)#XB(1,1)

DO 6 1 = 1,N

SSY x SSY 4+ (Y(1) = Y8) 2w2
WREITE (6s735SY

WRITE (642)

RETURN

END
SIBFTC OUTA LISToREF,DECK

~ A e

SUNROUT INE OUTA

COMMON 9(999920)oNbN’L(17)0Y'999|O BL203)s $S(20) XB(20520}), TOL
COMMON SSY

DIMENSION A(20,20 ) '

FORMAT {38HOCONVENT TONAL REGRESSTON COEFFICIENTS )

FORMAT {1AHODEGREE FIT = 012)

FORMAT (1H 47E18,6)

FORMAT (1M1}

WRITE (841

MP & M+l

All91) = BI1)®XB{(1,1)

00 6 J » 2,mp .
00 & K » 1,0 o
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& AlJeKY = AlJ=1:K) + XBIKoJI*R(J)
6 CONTINUE
00 8 J = lamp
M = J=1
WRITE (6¢2)KM
8 WRITE (643)(A{JsKYy K = 144}
WRITE (6+7)
RETURN
END
SIBFTC OUT LISTsREFIDECK
SUBROUTINE OUT
DIMENSION T110)
COMMON P{999+20) sMeNsL{17)9Y(999) s BI2N)s SS{20)s XB(20s20)s TOL
COMMON SSY
FORMAT (99H1Y AND PREDICTED Ye¢S FROM M DEGREE FITs)
FORMAT (1MW )
FORMAT (1M 9F19404F10403F20,00F10409F20409F10,09F20,09F10,0)
FORMAT (13MO(NOT SCALEDY)
WRITE (601}
WRITE (&+4)
WRITE (8+2)
Q = 1,0/10,0%82 (17
MP = Myl
KL = ¢
DO & 1 = loNes
IF (N=1) 9+8+9
8 KL = 2
9 Ti1) = Y(1)%Q
T(2) = 060
IF (N~-1=~1} 11+10,11
10 XL = &
11 T(3) = Y{(1+1)%Q
T(a) = 0,40
IF (N=1=2) 13+12413
12 XL =
13 T(S%)
T8}
T(?7Y Y(1+43)8Q
Ti8) 0,0
DO & J = 1oMP
T(2) = T(2) + PlleJ)®BlUY®C

T(AY) = T(a) + P(141,9J)8B(J)%Q
Tla) = TI8) « Pl142.0)1%R(U)2Q
5 T(8) = T{8) &+ P(1+39)128(U)*Q
6 WRITE (6e3)UITI(K)e X = 158)
RETURN
END
SIBFTC PUNCHP LISTSREFDECK
SUBROUT INE PUNCHP
COMMON P(999920) sMeNsL(17)sY(999)y BI20)s SS(20)s XBU20e20)s TOL
COMMON SSY
FORMAT (23HOORTHOGONAL POLYNOMIALS)
FORMAT (SHOJ = 412}
FORMAT (1H 3€19694E15,46)
WRITE (3s1)
MP = M &+ 1
DO &6 J = 1.MP
Ke J=1]
PUNCH 3y X
PUNCH &y (P{T1eJ)s I = 19N}
RETURN
END

b N e

Y{l+2)%Q
0,0

L 20 B B . )

AU Y N

>N

44




NAVWEPS REPORT 9001

Appendix C

USE OF THE FACTORIAL ANALYSIS PROGRAM

The data input may be divided into two parts. The first part is the orthonormal tensors, and
the second part is the measured data points which are to be arranged in a factorial design. Using
the notation of the text, the orthonormal tensors are designated as

, 2<i <9
Pio1<s <
Cogj<i
The index i designates a tensor which is congruent to a square matrix of order i. The index s
denotes a nomal vector of the ith tensor, and the index ; denotes a component of the sth normal
vector. For an ith tensor, there are { normal vectors and { components for each normal vector.
Thus there are i 2 elements.

Card I, FORMAT (I1), gives the order, i, of the tensor which appears on the next card.

Card 2, FORMAT (5X, 5E 15.7), contains the i values of the first normal vector of the ith
tensor. If i is greater than 5, use another card with the same format. Repeat this card for each
additional normal vector of the ith tensor.

When the ith normal vector is punched, repeat the above cards for another tensor. The process
is terminated when i is equal to zero. These tensors (orthogonal polynomials) may be obtained
in the proper format from the program in Appendix B.

The second part of the data input is for the measured data points of a factorial design.

Card 1, FORMAT (215, F5.0, 5TH . . .) has the following parameters:

N (1) = number of factors in the design. It must be less than 15. Replication is not
considered to be a factor.
N (2) = number of data points in the design. It must be less than 21,001.

SF = scale factor for the data points (power of 10).
ID = identification of problem with any legal Hollerith characters.
Card 2, FORMAT (4X, 1514), has the following parameters:
L. (1) = number of replications.
1. (2)

I.(3) = number of levels fur second factor.

number of levels for first factor.

H

L (15) = number of levels for fourteenth factor.

If a minus sign is punched in front of the number of levels, that factor is considered to be
quantitative. Otherwise, the factor is considered to be qualitative. Each distinct number punched,
for the number of levels of a factor, presupposes that an orthogonal tensor of that order has been
included in the first part of the data file.

45 {
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Card 3, FORMAT (12F6.0), contains the measured data points of the factorial design. Use
as many cards as needed. The data points must be ordered by the level indices of the replicate
and of the factors, according to the hybrid-base number system (see text), where the highest-
order index is for replication, the next order index is for the first factor, etc., unti! the lowest
order index is for the last factor of the design.

When all the data points have been punched, one factorial design has been completed. Any
number of factorial designs may be processed by repeating the above cards for the second part of
the data input. The first part of the data input is not repeated for each factorial design. If dif-
ferent tensors are to be used for a design, a new data run must be made on the computer with both
parts of the data input present. A limitation on the use of the program is that two factors having
the same number of levels cannot be analyzed with two different tensors.

EXAMPLES OF DATA INPUT

2
7¢0710678€-01
=740710678¢-01

847735027F=01
«740710878F=01
4,0824829F~01

%,0000000F =01
«647082039F=01
8,0000000£-01
~242360880€=01

4,44721360€-01
«6¢3245553F~01
8,3452248F-01
«341622777F=01
1019%2286F-01

4,0824229F-01
440824829F=01
«549761430F=01
5097G:1430F=01
Se4554473F-01
Be45%4473F=01
=347267800F=01
3¢7267800E-01
148898224F~01
148898224F=01
-£6e7994079F~07
802994079E=~02

3477964A7F=01
s 7T7964ATE-0]
-5466786T1E6~01
34 77964A7F=01
504584473F=01
0,
-4,0824829F=01
=440828829E=-01
204176689F-01
«%,6407807F=01
-l509108085Fr=01
-hy3643578F=01
3,7897%85F~02
«1,9738%51F=01

(]

[
740710678€=-01
7¢0720678€~01

$4773%027€~01
Oy
“hel649658E-01

8,0000000F=01
«2,2360680E-01
-%,0000000F=01
647082039F=-01

44A721360E-01
~341622777€=01
=246775124E=-01
643245583F=N)
~4¢7809144E~01

4,UR2A829F~01
«34585685RE-01
«140910895€=01
5¢21764919F=01
-5,6698671F~01

341697039E-01

3,7796447F=01
347796467E-01
«3,7796447F=01
546694671F=01
O
508554473F-01
490824829F=~01
4,0824829E-01
«8,6407607F=01
2441746898=01
54364357RE~01
1,0910895¢€=01
«1,9738551F=01
3142897%585%5€E-02

$¢7735%5027€~01
7¢0710678E=01
4,0824829€-01
§4N000NNNFE =01
2422608&80F~01
-8 40000000F=01
«647082039E-01
4446721360€~01
Os
~5434%2248€-01
Ns
741713717€-01
4408248295F-01
=14195%52286F~01
=4,3643578E-01
2698142408 -01
34 779RA4LTE~O1

~$42994079£-01

347796447F-01
=1+8898224E-01
=342722684€~01
440824829£-01
8,0582296£-02
~5:6550473F-01

44934A8377F-01

%,0000000=-01
647082039E-01
5+0000000E-01
242367680E-01
bobT21360E~01
341622777€~01
~2,672A124E-01
~643245%53E-~01
=4478C9144E-01
440824829€-01
141952286£-01
-4643643578E-0]
~2¢9814240E~01
347796447F-01

642994079E-01

3+7796447E-01
0.

~443643578E-01
0.
4483403785=01
0.

~6¢57971695-01

446721360E-01
643245553E-01
5¢3452248E-01
341622777€E-01
1.1952286E-01
440824829E-01
3,5854858£~01
-140910895E~01
~5:2174919€-01
~5:6694671E-01

~3.1497036£=01

3,7796447€-01
1.8898224E-01
~342732684E-01
~4,0824829E~01
840582294F=~02
5¢8554473F-01

449346377E-01
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245958339F<01 3,535%339E=01 3,5358339F-01 3,935%5339€-01 3.5355339E=-01
345985339F=01 34539%93396~-01 3,53%55339£-01

«8,4008172E~01 ~3,8578837€=01 =2,31455026-01 =7,7151675E-02 T¢T151675E-02
203185802F=01 3,857%8376-01 5,4006172-01
33400817201 7,7151675E~02 «2,314%502E-01 =3,8575837€-01 -3,8875837€-01
«243185502F=01 7471516 75€=-02 %,4006172€-01
«8¢30820226«01 3,0772873E=01 443082022801 1,48463724€-01 ~1.8463724E~01
b g3082022F=01 «3,0772873E-01 4,43082022F-01
c268203804F=01 «85,2379493F=01 ~1,2087344F-01 3,6262033£E-01 34,6262033€E~01
©]14208734AF=0] ~54,2378493F=01 2,8203804F-01
=144978617E=N1 £49215457€=N1 =346376642F-N1 =342097037E-01 3,2097037€-01
3,63766A2FE=0]1 «449215457E=01 1449785178-01
601848 748E=02 =3,0772873E=01 %,5391171€-01 =3,0772873E-01 -3,0772873E-01
505391171F«01 «3,0772873€=01 6415%45745¢~-02
«197069T19E-02 141948803E~01 =3,5846409E-01 %,9744015€~01 ~%5,97440156~01
345886409€-0]1 «]1,1948803€=01 147069719€-02
303393333F=01  3,3333333F=01 3,43333333F-01 3,3333333F-01 3.3333333€~01
< 303333333F=01 343333333FE-01 3,43333333€~-01 31,3333333E-01
«5416397T8E=01 ~3,8729833FE=01 «2,5819889F-01 =1,2909944E-01 O,
10290998AF-01 2,5819889F~01 3,8729833FE~01 %5,1639778€E~01
5¢3181602E=~01 14329%5401€=01 =1,5194744E-01 -3,2288830€-01 -=3,79868%59E-01
«3422688830F=01 «1,5194744F=01 1,43295%401F-01 5,3181602E-01
=4 08498921E=-01 2,2247460F=01 4#41316712F-01 2,8603878BE-01 O,
=208603878E~01 =4,1316712E=01 ~24224T460FE-01 4&,4494921F-01
361289311E-01 =0,6933966E-01 =2,4584459E-01 2,0114557E-01 4,0229114E-01
200114957F=0]1 «2,4584459FE~0]1 ~4469323966E-01 3,1289311E-01
*148490007E=01 $,0847518E~01 «148490007€-01 =441602515E-01 O
441602%18F=01 1,8490007€-01 ~5408475185-01 1,8490007€-01
849893315E=02 =3,82045659E=01 449841323E~01 2,2473329E~02 =~4,4946657E-01
202873329F=02 4,9441323F=-01 ~3,8204659F-01 B,98933156-02
w«34813943TF=N2 2,0483662€=01 =&y 779%212F-01 A4T7T9%5212E=01 O,
847795212601 447795212601 ~2,0482862E~01 I,4139437E-02
848147648F =03 «7,0518118F=02 2,4681381F~01 =4,9362683E-01 641703353F-01
wd99362683F~01 2,4881341E=01 «7,0518118E-02 8,8147648E-03
) o8 =3 EXAMPLE NUMBER ONE
1 2 2 =3 -4
2783 2007 19%9 3010 2913 22857 1973 2%63 2666 2160 1803 2520
2649 222% 1990 2%82 2542 2210 210% 2764 2%03 221% 2064 28a3
2038 2312 2086 240% 2768 2419 2325 2644 2608 2203 2048 2544

23358  222% 1944 28738 2579 2003 2218 2494 2655 2230 2084 2712

4 189 0 EXAMPLE NUMBER TWO
1 =3 7 =3 3

14208 14206 16201 1,208 1,205 1,204 15210 14208 1,210 14200 12199 1,200
16200 14203 14201 14200 14206 1,203 1,205 14206 1,205 14205 1,205 1,210
16209 16210 14212 14150 1,148 14150 16150 162151 16155 1,155 14153 14156
10145 14138 14139 1,140 1,139 14139 14140 14140 14140 14160 14159 14159
10165 14165 14161 14165 14162 1,163 14,050 14056 14050 1,055 1,0%3 1,059
14048 1,052 1,053 1,050 14043 1,083 1,050 14042 1,041 1,038 14043 1,045
10050 1,049 14080 14080 14050 1,049 1403% 14050 1,050 14320 14318 1,319
16315 16319 10319 14305 16319 1,320 14330 14326 1¢3%4 14320 14322 1432%
14330 14328 14325 14320 1,319 14322 16315 103107 14320 14320 14312 1,319
15390 14385 14383 1,385 1,304 1,388 1,390 14385 14390 1,395 14397 1.393
16395 15395 10397 1439% 14398 16395 14400 14395 14391 1.39% 14399 1.391
10795 14392 1,391 14180 14185 14180 14180 1,180 14180 1,185 1,182 1,182
10165 14159 14161 14165 14163 14161 14165 14161 14163 14,180 1417% 14175
16175 16178 16178 1,180 14179 16179 14990 14988 14990 1,990 14990 1,993
20000 1,998 1,995 2,020 2,012 2,015 24015 24016 2,016 2,020 2,015 2,018
20020 2,021 2,023 2,020 24019 2,025 2,02% 24022 2,025




NAVWEPS REPORT 9001

48

FACTORIAL ANALYSIS FORTRAN PROGRAM

SIBFTC mMAIN

CMATN

< ANALYS
COmmOn

LISTeREF,DECK

1S OF VARIANCE .
P(9c9o9)olNDFX(lS)oKOG(lS)oLEV(15)oLUMP(lS)oD(ZlOOo)OLIPlIS

1)'VECTOR(9)ONEAD(IOloHOLER(ZZ)oLEVEL!MoNoMF

1 FORMAT
2 FORMAT
3 FORMAT
4 FORMAT

112 X13
S FORMAT
15 FORMAT
16 FORMAT

1CH TME

{2150F5,099864A3)

(aHO 1814

(12F6,0)

(8010 REP X1 X2 X3 X4 X5 X8 X7 X8 X9 X10 Xx11 x
X14 SUM OF SQUARES/1M )

(AH 215144€1648)
(1HM1930X9104¢)

{11 HOTHERE ARE »12410M FACTORSs +15+42H DATA POINTS OF WH1
SCALE FACTOR IS +F8,0)

CALL POLY

& READ
M= M
READ

(SoI’NbNoSCALE-(HEAD(!)o!‘lO?)oHEAD(IO)
1
(892)(LEVIR)y K » M)

DO 23 KalyM
TF (LEVIK) 12191822
1

21 LINIK)
LEVIK)
G0 TO
13 LEV (k
22 LIN (X

® ~LEV(K)

23

) =1
) = 0

23 COMTINUE
16 1F (LEV(1)~=1) 184+18,20

18 MF = 2
GO TO
20 MF = )

19

19 SC = SscaLe

LUMP (M
po 7
JI"-
T LUMPIY
READ

y =1

I = 24M

T+1

Y} = LUMP(J41)8LEVIJa])
(543)(D(])e T = 19N)

SCALE = 10,0#8SCALE

DO 9 1
9 D(1) =

= 19N
DI{l)#SCALE

00 17 K=1418

17 KOG(K)
WRITE

= 0
(6915)(HEADIT) sl = 1,10)

K » M=} ’

WRITE

(6+16)1KINsSC

CALL MEANS
CALL ANLSIS

o 12
12 Dl1) =

I=1eN
Di1)es2

LEVEL = 1 .
LV = 890 h

DO 8

IF (80-LV) 10410524

10 WRITE
WRITE
WRITE
WRITF
LV =0

26 WRITE

T = 1N »
(6915) (HEADIU)sJ ~ 1910
(6916)IKsNsSC
(6+2)ILEVIKYs K = 19M)
(644)

(6951 (KOGIK)s K = 1418)y p(])

CALL COUNT (189
8 LV = LV+}

CALL ANOVA

GO TO ¢

END
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SIBFTC POLY LISTIREF,DECK
SUBROUTINE POLY

COMMON P194949) ¢ INDEX(15) KOG (
1) sVECTOR{9)sHEAD110) yHOLER(22)
FORMAT {11)

FORMAT (1H » E1946¢ 4E1546)
READ (8,1)N

IF (N) 60644

DO S U = 14N

READ (5+2)(P(NsJsT)s T = 1sN)
GO T0 3

DATA QOOOML/6HREP

HOLER(1) = 0000MHL
DATA QOOINL /6MHX1
HOLER(2) = 0001HL
DATA QOO02ML /6MX2
HOLER(3) = 0002HL
DATA QO003ML /76MX3
HOLER(4) = Q003HL
DATA QOO&HL /6MX4
HOLER(S) = Q00aMHL
DATA QOOSHL /6HXS /
HOLER(&) = QOOSML
DATA QOO0ML /6HXs /
HOLER(7) = QOO6HL
DATA QOOTHL /6HX7 7
HOLER {81 = QOOTML
DATA 0008HL /6HX8 7
HOLER(9) = QOOBML
DATA QOO09ML/g¢HX9 Vs
HOLER(10}) = QOO9HL
DATA QO10HL /6HX10
HOLER(11) = Q010M
DATA QO1INL/6MX1Y 7
HOLER(12) = QO11HL
DATA QO012HL/6HX12 7
HOLER(13) = QO12HL
DATA QO013HL /6HX12
HOLER{14) = QO13ML
DATA QO14HL/6HX] 4
HOLER(1%) = QO14ML
DATA QO1SHL/&HLIN
HOLER(16) = QO1SHL
DATA QO16HL /6%10UA
HOLER(17) = QO016HL
DATA QO17HL /6HCUB
HOLER(18) = QO17HL
DATA QO18HL /&M,
HOLER(19) = QO18HL
DATA QO19HL /76H(
HOLER(20) = QO19ML
DATA QO20ML/6HY
HOLER{21) = QO20M
DATA QO21HL/6H o/
HOLER(22) = Q021HL
RETURN

END
SIBFTC ANLSTS LISTsREF,DECK
SUBROUTINE ANLSTS
COMMON P19+999) s INDEX(15) skOG(
1?-VECTonfoyonEAotlo).HOLERlZZ)
0o 3 J = MF M
Do 1 K = 1y18
1 KOGIK) = 040
LEVEL = LEVLY)
DO 3 I » 1eNsLEVEL

B Wb A ps

o

NN N N

\\\\\\\

~

B

15’0LEV(15)oLUH?llS)oD(ZIOOO)oL!NllB
SLEVEL sMyN o MF

IS’OLEV(IS)’LUMPUIS)OD(ZIOOO)0LIN‘15
sLEVEL sMoNyMF
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SIBFTC COUNT

1
2
3

[ 8

-
é

CALL COUNT (J)

00 2

K = 1)LEVEL

IN = INDEX(K)
VECTOR(K) = D(IN)

00 3 K = 1sLEVEL

IN = INDEX(K}

D(IN) = 0,0

Do 3 L = 19LEVEL

DUIN) = D{IN) 4 VECTOR(L)®P(LEVEL+KosL)
RETURN

END

LISTIREFDECK

SURROUTINE COUNT ()
COMMON P(999+9) s INDEX(15)9KOGI15)sLEVIIS) sLUMP(15)9D(21000)9LINI1S

1)oVECTOR(9)sHEAD (10) sHOLER(22) s LEVEL sMoN s MF

INDEX(1) = 1}

DO 2

T = 1M

INDEX{1) = INDEX(1) + LUMP(1)#KOG(1)

00 3
00 %

1 2sLEVEL

=
INDEX(1) = INDEX(I=1) + LUMP(J)
s

1 1M

L = Malel
IF (L=J) 4:54¢4

KOG(L)

= KOG(LY + 1

IF (KOG(L)=LEVIL)) 69593
KOG(L)Y = ©

RETURN

END

SIBFTC ANOVA
SUBROUTINE ANOVA
COMMON P(909+9) s INDFX(15)9KOGI1S)sLEVIIS) sLUMP{15)+D(21000)sLIN(1S

42
43
b4
“s
46
47

A8

63
64

31

LIST4REFsDECK

1Y sVECTOR(9)YsHEAD (10 ) sHOLFR (2219 LEVEL sMaN o MF

DIMENSION SS{18%51+555(15)
41 FORMAT (1H130X,10A6/20HOSOURCE OF VARIATIONG6X+»18HDEGREES OF FREEDO

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORVAT

18)

FORMAT
FORMAT
FORMAT

1M7X s 14HSUM OF SQUARES20Xs7THF RATIO/1H )

(1H4 )

(BX92A391229E29489F2643)

{1HOEX 4 BHRESTDUAL1219E2948)

{7Xs5HTOTAL1244E29,48)

(1K 12934H WAY INTERACTION SUMS OF SQUARES =£17.8)

{14 122454 WAY AND HMIGHER INTERACTION SUMS OF SQUARES =E17,

(1H1)
(1HO/1HO6Xs30HRESTIDUAL STANDARD DEVIATION = E15,.8)
(8X92A39A142A39T1154E29489F2643)

WRITE (6461)(HEAD(J) 9 =110}

Lv = 0

DO 1 I=1,1%

$55{1120,0
$S(1)=0,0
K0G{1)=0
ERSS=040
ERDF=0,0

TSS=040

DO 6 I=2sN
CALL COUNT(16)

k=0

DO 3 J=21M
IF (ROG(JY) 39392

K=K+1

CONTINUE
SSIKRY=SSIK)Y4DIT)
TSS=T5S5+0( 1}

1F (K=2) 44315
IF (XOG(1)) AsheS
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26

27
2%

10
32

33

36

34
35
37
11
38

12

3%
13

18
18
28
29

s1

DO 7 J=24M

IF (KOGIJ)=3) 797421
IF (LINGOYY 7078
CONTINUE

GO T0O 6
ERSSeERSS+DI(T)
ERDFIERDFO].O

CONT INUE

IF (MF=1) 27426427
K=}

GO ToO 2%

K = 2

DO 12 KAzK M

DO 8 121,18

KOG (1)=0

IN=)

OF = 0,0

ALP = 0,0

00 9 1=24N

CALL COUNTI(16)

IF (KOG(KA)=IN) 9410412
IF (LIN(KAYY 32432433
DF = DF 4+ 1,0

ALP = ALP + DI(T1)

GO TO 34

DF = 1,0

ALP = DT}y

IM = IN + 18

RATIO = (ERDFSALP)/(ERSS#DF)

J = DF

WRITE (6443 )HOLERI(KA) 4HO

LV = Lvs}

IF {IN=11) 34912,12
IN =2 IN 41

TF (LEVIKA)=TIN) 12,3%,11
IF (LINIKAY)Y 37437912
IN = 11

IM = 22

GO TO 38

IF (LIN(KAY) 9,9,138
IF [IN=3)9,9,12
CONTINUE

CONTINUE

Kaptey

D0 18 xXA=2,k

KB=KA+1

DO 18 KCaKBM

TM=1

IN=]

DO 13 1=1418

KOG(13=0

OF = 0,0

ALP = 0,0

DO 14 Ix2,N

CALL COUNT (16)

IF (KOGIXAY=1N) 1491%918
IF (KOGIKC)=IM) 14416518
IF (LIN(KA)) 30930428
TFILINIRCY) 88488,29
DF = 1,0

ALP = DI

INN = IN + 18

IMM = IM + 18

ASSIGN %6 TO IER

LER({IM) s JsALPIRATIO

51

P
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52

50 RATIO = (ERDF®ALP)/(ERSS*DF)
61 WRITE {(6+81)(HEAD(J) s J=1910)

52

58

%9

40

30

39
40

49

82
53

54

57
56

17

22

23

IF (88«LV) 61161462

LV = 0
J = DOF

WRITE (6484 1HOLER(KA) sHOLER(INN) sHOLER{19) sHOLER(KC) s HOLER(TMM) sy
1ALPsRATIO

LY = LV+]

GO TO 1ERs{54+56460)

DF = DF 4+ 1,0

ALP = ALP + DI

IM = IM 4 1}

IF (LEVIRCI=IM)I60459014
M= 1

tMM = 22

INN = IN + 18

ASSIGN 60 TO IER

GO TO 50

DF = 0,0

ALP =2 0,0

GO T0 17

DF = DF 4 1,0

ALP = ALP + DIT)

IF (LINIKCYY 39939,52
IM = IM 4+ 1

IF (LEVIRC) = IM) 40940914
IM = ]

IN = IN #+ 1

IF (LEVIKA) = IN) 18+49+14
IM = 11

IN = 11

INN = 22

IMM = 22

GO TO %1

IN = IN + 1

IF (LEVIKAY=IN) 53983414
IN = 11

INN = 22

IMM = IM + 15

ASSIGN %4 TO IER

GO TO %0

IM = IM &+ ]

IF (LEVIKCY) = IM) 184518957
IF {(IM=3) 55,585,138
IM=IMs]

IF (LEV(RC)I=IM)I17417+20
IN=IN+1

M=}

IFILEVIKAI=IN) 18418919
1IF (IN=3) 14414918

IF (1M=3) 14414917
CONTINUE

CONTINUE

1ERaFRDF

WRITFE (&+44)TFRIFRSS

N = N=1

WRITE (6+45INsTSS

DF = SORT(FRSS/ERNDF)
WRITE (6+63)DF

DO 22 1=21sM

DO 22 J=IsM
S8S(131=55S(11+85( )
WRITE (6sa8)

DO 23 1=1sM

WRITE (6+46)14SS5( 1)
WRITE (&942)
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24

DO 2a I=1.M

WRITF (6947)1+5551(1)
RETURN

END

SIRFTC MEANS LIST+REFINGCK

1
12
13
19
21

15

17
20
18

SUBRQUTINE MEANS

COMMON P(9+939) s INDFX(15)sKOG(15)sLEVI1IS) sLUMP(18)4+D(21000)sLIP(1S

13 sVECTORIG)HEAD(10) sHOLER{22) s LEVEL sMeNsMF
FORMAT (19HO0 GRAND MEAN =3 E13,6)
FORMAT (1XsA34911Xs5E2046/15X04E2046)
FORMAT (1M )

FORMAT (1H1)
FORMAT (1XsA39AYsT10A20A204Xs5F2048/15X54.20,6})
VECTORI(1) = 0,0
DO 8 K=1N
VECTOR(1) = VECTOR(1)4D(X)
FLNUM = N
VECTOR{1) = VECTOR{1)/FLNUM
WRITE (&»11)VECTORI(1)}
LEVEL = ]
LV = 0
DO 14 KF=MF M
WRITE (6+13)
LV = V41
LL = LEV(KF)
DO 1 I=1l,LL
VECTORI(!: = 040
DO 2 K=1,N
J = ROGIKF)+1}
VECTOR(J) = VECTOR(JI+DIK)
CALL COUNT?I18)
CONTINUF
FLNUM = N/LL
DO 2 Uslell
VECTAR(J) = VECTOR:I I} /FLNUM
WRITE (6912)HOLERIKF )2 IVECTORIJ) s Jx1LL)
LV = (Va#1+(LL/S)
IF {(XF~1) la9014)»8
KG = KF+1
IF (M=KG) 10916916
DO & KHM3RGM
IN = O
WRITE (6413)
LV = LV4}
= LEVIKH)
DO & KXO=1yLL
= IN+1
= KQ=?

DO 6 I=1sLF
VECTOR(1) = 0,490
1 =0
DO 17 K=1sN
IF (KOGIRF)=KS) Te1%97
J = KOGIKH)+1
VECTOR(J) = VECTOR(J)+D(K)
1 = 41
CALL COUNTI!1s)

CONTINUE
IF (Lv~30) 18420420

WRITE (6+19)

LV = 0
FLNUM = T/LF
DO 9 ImlylF

ﬁ”??‘

/
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54

9 VECTOR(I) = VECTOR{1)/FLNUM
l:“lTE ;GOZI,HOLER(KF)oHOLEﬂfZO)OINoHOLER(Zl)OHOLER(KH)'(VECTOR(!).
w]lylfF
a LV = LVe1+(LFE/8)
14 CONTINUE
10 RETURN
END
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Appendix D

GRAM-SCHMIDT VCONSTRUCTION WITH NORMALIZATION

The following X matrix and identity matrix will be used for illustrating, step by step, their
transformations into the P matrix and 1) matris, respectively,

1 1 0o
Vlr 27 foro
1 30 n oo

Retaining 1 1+ the matrices remain the same, thus

1 11 I 0o
P2 010
1 30 0 0 1

The second column is formed by the vector cquation
T2 Y2t Cyady

W h(‘r(‘

thus

1
1
q v, A2 U A 12+ 1.3 6
} .- b 2
[
6
“re ¥ 1

020 ] o0 2v1 0
| R o 1 2.0 0
1 3.0 9] 0 0 2.0 1
which, upon computing the second columns. become
[1 1 i 2 o |
1 0 1 h] } 0
1 1 9 0 0 1

s .
Ihe third column is formed by the vector equation

T3 Y3l “aade

55

<-—-_-—§
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where
=91 - %3
¢
13 q-l » q 1
and
9.2 * %3
Con =
2 99.9,
thus

92°9.27 i (‘1.'2)2=(‘1)2+02+12=2

=1

3
ql.x-3= qilxi3=1xl+]x4+lx9=l4
i=1
3
G g% ,4= 2 qizx‘.3=-lxl + O0x4 ¢+ 1x9=8
i=1
-14
‘137 73
-8
=5 -_4
23 ]

and the matrices become

M -1 1-1-3x1-4(-1)‘

1 0 4—-134X1—4x0
1 1 9—%‘-’)(1-4»(1_4
1 -2 0-Li- 4]

0 1 0—%x0—4xl

0 0 1—134-x0—4x0.‘

which, upon computing the third columns, become
1 10
I R
-2 -
1 0 3 0 1 4
1
3 0 1

This completes the Gram-Schmidt construction.

56
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The left matrix will be normalized to obtain the P matrix, and the right natrix will become
the 1) matrin. The first column is formed by the equation

UE
p. ——
|
1
)
where
thus
i
!
and the

L
w"“
s |

J
1
;;I—i
to
J

] 2
3 0 3 0 ] 1
! ] 0
3 ] 1 0 1
- el b p-

The second column is formed by the equation

iz
Pia  m—
M2
t
where
- l
T2 2
thus

wAl3

1o
> IJ—I r.'d—l
-

=
wi—l o wai—1
|
'0"-'| o toi—1
L i
1
= = l—-l
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The third column is formed by the equation

p ."ia
.3 ————
IR AT
whare
~1
r
33=Iq’3|
thus

N ASKINRRE

’

and the matrices become

=

This completes the transformation of the X matrix and of the identity matrix into the P ma-

|
I\

]

|

trix and into the D matrix, respectively. The P matrix is

pue

ol~] o &-]
ta
o~|~‘ ox[.—-‘ o«&p—l

[N

P o

and the D matrix is

1
|
(<)

o §D|‘\|.o.~

w

rf
o oﬁ

58

—
f=]

-

J

[

10‘%—
-12‘@‘
&

.

J
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Appendix E ' < |
)
TENSOR PRODUCT 1
3
The following equation will be used for illustrating the product of three tensors ¢
{ ni
4; B C; =0, %
where §
12i<4 £
153 ;
1<s<4 ;o
1£¢£<3 :
The elements of A: may be arranged as o
al &l o] a ¢
EEC
4, !
e} a) a} a}
ad ot &t ot
i 1 2 3 4 g :
The elements of B!; may be arranged as kS
Vo ) %
bl b b i
o " . ]
Bl = b§ b3 b 4
S S R ¥
L 1 2 3..1 E
The elements of Q‘-’- may be arranged as N
. \'3“;
‘n o ‘iz "13‘1 .
€21 €22 ‘23
£y =
Flem e ca
| ‘o ez Cas
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The elements of D, , may be arranged as

The product B{ <

out.

where

™
i

B g,

‘l may

dlﬁ

d22

d: 2

d4 2

be formed firat and set equal to a tensor E,;- Note that the j is summed

B

11

JIS

J23

d33

d

.

-

€31

€32

€a3

€34 |

11 13

21 11 13

31 11 13

12 21 23

e

22 21 23

az 21 23

13 31 33

23 3

33 31 33

14 41 43

24 41 43

34 41 43
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The tensor D.” may be formed from the product A,‘ E,; where

1 2 3 ‘
d, =aye, +aj€, + 8¢, + 03,

+ ‘22 #ﬂlezs +dl¢

Q
-

d -0}8

12 24

21

3
+ dl 633 + dl

d

e

Q
-

1
13 * 9 ¢ * 34

+
L]

(X S Y ]
+
Q
o
o
—
w
+
[

-]
02 v

dgy = 11 €14

+
2]

d

[ ]
]
Oy
+
-]

22 €2 24

»0 » W
&>

d,y =

]
[y

e

+
L)

- <E;§§' Py

» 0

31

Py
TR

i)

+
)
e e
+
1)
L
—
™
+
L
e
n
—
-
Y e
&

dy, = ";‘

o)
2its

[

[

*»

+

]

123

L]

»

“

+

Q

[~

]

[

-

Lo FTF YS!
P

1
432 = ay¢5 *

. |
Jusae

+
®

- w0 - - n “w»

d

o
-
-

+

L)

41

dgg = @

> W - W

+

822 +

1 4
“43 = a, ey + + aje,, + Oy ey,

Instead of having formed the tensor product B’; C,'.’. first, the product A:Q” could have been
formed and then the tensor D, .

A third way of arriving at the tensor ), , is to perform first the tensor product A“ B,’; . This
tensor product has, for the example, 144 elements, some of which follow,
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rl 1 131 121 1 l—
| gy by apby ey by  agd
a8 alel el ol
“ ol alb alb} alb}
alb) alb) alb} albl
al8] albl albl al
a1 alb} alb] alb}
‘ albl albl  albl el
o8l alil aldl  alH
o183 albl  alby al
a6l bl Il a2l

Aigi=1a2b3 o202 G282 202

2 33 2 23 2 33 2 13

ey by a3 by  al b} aq b3

331 331 3311 331

a) bl a, bl ay bl a, bl

3,3 343 333

LHES B by  ay b3

4l 41 41 41

: a; 4 ay b a; b, ay b
{

: .- & o« s » L3 . & 0
¥
.2

433 433 433 433

i a3 b3 ay 63 a; ba a, b3

) L J

11 1;2 1,3
du’"151“11*"15:"12*"1”1‘13*

+

2,1 2,2 2,3
aybjcgy + aybycy, + ajbjcyy +

+

3,1 3,2 3,13
81bycyy + ajbicgy + ajbicy, +

431 412 3
ajbicgy + o1bicy, bjc

+

[ ]

Multiplying the above tensor by C‘-i. the tensor D, is obtained, the elements of which are
43
|
|
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1,1 12 1,3 B
12 = 81 byeyy +apbie), + o byo, 4 B
2,1 2,2 2,3 £
81 bycy + ajbycgy + albyeyy + ¥
3,1 3,2 3,3 Q
8ybgcyy + ajbycyy + aybycgy,y +
4,1 42 413
a1 baey + ajbycy, + atbye,, i
1,1 1,2 1.3
13 = 01 b3¢) + aybyey, + apbie,,+
241 2 2,3
aibycgy + a1bicyy + afbie,y + :
3,2 3,3
aybycy) + ajbie,, + a) bycyy +
4,1 4,2 48
8ybycy + ajbyc,, + ajb3cys 4
_ 11 1 2 1.3 ‘
21 = G3bjeyy +agije, 8pbicys +
2,1 2,2 2,3 .
a3bycgy + a3bicy, + azbic,y + k
3,1 3,2 33 .
“21’1"31 + azbl"az + "2”1"33 + ;
41 4,2 413
Gpbycy + agbic,, + a2bjlcys :
1,1 1,2 1;3
22 = 83bg¢)) + a3bye 4 agbye,, +
i
2,1 2.2 3 H
G3bycgy + agbycg, + a3bycy, +
3,1 3,2 1;3 .
azbzc31+a2b2cu+azbzc‘3+ a
1 442 3
azbaeq + azbycyy + a3brcy, ;
1,1 1,2 1,3 Z
dza“’zba"n*”zbs"n*“'zba"‘u* 4
241 2,2 2;3
“263"21 + azbac22 + ¢:2b3c2 + g
3,1 3,2 1,3
azbyegy + agbyegy + agbyey, + ’
41 4,2 48
Gybgcgy + agbic,, + a3bycy,
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dyy = a3bicy, +ajblc, + ajbc,
a3 blc,, + o} b cgy + a3 b} cyy
a3 bl ey, + a3 bley, + aibiecy,
a3 ble,, + a3 bleg, + o3 bicy,
dyg= 63b3¢y, + a5 bieyy + 03 bjcyy
al by, + 4 by + a3 b3 ¢y
a3 by ey, + a3 b] ag *+ 93 b3 ¢5;
a3bye,, + agbic,, + a3 b)ec,,

daa = al bl ¢ al b2 + al b3
3% °n 39312 3% %3
al by ¢y, a3 b3 cyy + al bl cyy
a3 bycyy + a3 bicy, + a3 b] €33
a3 bycyy + a3 bie,, + ayblc,,
dyy = ajbiec, , a} bley, + ajbiey,
albicy + aiblec,, + afblcy,
8 bicyy + ajbley, + afbley,
albiey + atble,, + afblc,,
dyg = agbye) +alble, + ay bjcyy
6l bycyy + atbicy, + afblc,,
albycgy + agbley, + ajblcy,
a3 b ¢y, ag blcy, + ag b)cy,
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A numerical example is given to illustrate the above operations of tensor product. The
elements of each tensor are arranged in matrix form. The numerical values of the elements are

given for the 4%, B) and C.. tensors.
s ¢ if

(1 3 1 4
2 2 J 5 2 2V5
1 =1 -1 3
4. |2 2vs 2 2Vs
R I U G R
2 2 J 5 2 2 \_/ 5
1 3 1 1
Lz 2vs 2 25 |
r~ n
ﬁ :1__ .l. -z,';;
3 V2 Ve
i = l -2 f'
-' — — El
V3 ° % ;
1 1 1
V3 V2 Ve ¢
" .
B B
1 2 4
-] 3 3 4 g
=ij j
4 5 7 1
6 7 8 "A':x
L 4 &R
sl
As has been outlined ebove, there are three different ways of arriving at the D, tensor. ‘;
The first method will be given, where the E“ tensor is formed first, and then the Q“ tensor is : {Jg

computed.
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The E,; tensor is

73 17
Vi & Ve
0 1 1
Ji V@ Ve
6 3 1
Vi Vi V%
2 2

Vi V2 °4

The formulas for the elements of this tensor were given previously.

The D" tensor is

27 9 3

V3 2v?2 2ve
24 -1 -3

15 2v10 2vV30
1 1 -1

V3 2v2 2v6
-2 7 -1
V15 2 V10 2\/'37)_J

The formulas for the elements of this tensor were given previously.
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