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Abstract

Random variables Tl’Tz"”’Tn are, in this paper,
associated 1f each pair of non-decreasing functions F(fl,TZ,...,Tn),
G(Tl’TZ""’Tn) have a non-negative covariance. Association holds
in cases ranging from Tl’TZ""’Tn independent to Tl’T2"“’Tn
Jointly restricted to a non—decreasing curve. Association is
preserved under the standard multivariate operationé of extracting
subsets and po..:ing independent sets; and under the special operation
of forming sets of non-decreasing functions. Suitable choices of
F,G lead to various inequalities for associated random variables.
The properties of association are studied in the simple, but

representative, case that Tl'T2'°"’Tn are finitely discrete.

The notion of association 1is useful in extending the domain
of validity of the minimal cut lower bound for the reliability of a
coherent system [4,1], notably (here) to the case of repairable
components with exponential times to failure and exponential times

to repair.
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1. Introduction

It is customary to think that two random variables S,T are
associated (in the sense of similar behavior) if Cov[S,T] = EST-ES-ET
is non-negative. The same two random variables are more strengly
assoclated if Cov [ £(S8),g(T)])] > 0 for all pairs of non-decreasing
functions f,g. The same two random variables are still more strongly
associated if Cov[F(S,T),G(S,T)] > 0 for all pairs of functions F,G

which are non—-decreasing in each argument.

The strongest of the three criteria has a natural multivariate

generalization. We consider the definition

(1.1) Random variables Tl’T2""'Tn are associated 1f
Cov[F(l),G(‘!‘_)] > 0, where T = ('1‘1,'1‘2,....'1‘“). for all

pairs F,G of non-decreasing functions.

Here, and later, we say that a function F 1is non-decreasing if it is
non-decreasing in each argument, i.e. if F(s) < F(t) whenever

8, f-ti' i=1,...,n.

Thic paper is intended to indicate an approach to the organization

of the properties of (1.1), and to motivate it by a sample application.

We study (Section 2) the properties of (1.1) in the case that the
joint probability distribution of Tl,‘l'z,...,'l‘n is finitely discrete,
i.e. the vector I takes a finite number of values. The finitely discrete
case illustrates the general situation; the properties of (1.1) obtained

are truz in general; but by confining our attention we can defer discussion



of some equivalent versions of (1.1) which are of interest in the

general theory.

Our application (Section 3) is a demonstration that the minimal
cut lower bound for the reliability of a coherent system is valid in
a greater variety of circumstances than previously known. This
application reflects the origin of our interest in (1.1), and is
suitable because it involves a number of the manipulations that our
study of (1.1) is designed to facilitate. We do not attempt a
complete discussion of this subject. Further we postpone consideration
of certain non-reliability results, e.g. Kimball (1951) and Robbins

(1954), which can be related to (1.1).

There is an extensive [see Goodman-Kruskal (1959) for a recent
bibliography) and continuing literature on quantitative measures of
association, primarily for bivariate distributions. By contrast, our
interest is in the qualitative identification, and corresponding

properties, of classes of associated distributions.*

The multivariate dependence described by (1.1) is one of several
similar notions. When referring to it we should qualify the term

"association", but for the present it is simpler to let it mean (1.1).

#At the time this paper was being typed, our attention was drawn to the
manuscript ""Some concepts of dependence' by E. L. Lehmann, which treats
several concepts of association and their applications.
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2. Properties association for finitely discrete and binary random
variables

For finitely discrete Tl,Tz,...,Tn, functions F(I) have finite

expectations EF(T). The covariances considered in (1.1) are finite.

2.1 General properties

Association has two properties desirable in any classification of

multivariate distributions:

(Pl) Any subset of a set of assoctated random variables is also a
set of associated random variables.
(P,) If two sets of associated random variables are independent of .

one another, then their union 18 a set of associated random

variables.

Property Pl follows immediately from the definition of association.
Pz requires a short proof, which can be made by considering two
independent, internally associated random vectors § = (81.82,...,Sn),

I= (Tl'TZ’ 000 ,'I‘m) and writing !

Cov[F(§,1),G(8,I)] = Eg FG - Eg ,F - E.E,FG - E
hu

s 15l N il v i v i O
= EGE,FG - EE{FIF . Ezc} + EE{EIF . EI'G} - EgE,F - Eg"zc |

- EECOVE[ F,G] + Cov‘s[ EIF'EEG] s

where E,§_ denoces expectation over the distribution of §. EI. expectation

over the distribution of JI, and E expectation over the joint
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distribution of 8 and . E2 I - E.§EI, from the independence of §
9,
and . Since COVIIF(.I,-I) »G(s,T)] >0 for each fixed g,
E.Cov..[F,G] > O follows. Since EI.FQ'"?")' EIG(’!""D are non-decreasing

3 e 5
functions in g, Cov‘glE‘EF,E‘zG] > 0.

Another standard multivariate property, valid for association, is
(P3) The set consisting of a single random variable ie associated.

To show P3 consider a random variable T taking values tl < t2 Ceoec tk'
For non-decreasing F and G, F(tl) _5_F(t2) Keoe< F(tk) and
G(t,) < G(t;) <-°°< G(t,). It follows from an inequality for similarly

ordered sequences due to Chebyshev [Hardy, Littlewood, and PSlya (1934),

§2.17] that Cov(F(T),G(T)] > O.

P together with Pz, implies that independent random variables are

3.
assoctated. The example of independent random variables represents an
"extreme" of association. Another extreme is represented by the example
of random variables T = ('rl,'rz....,'rn) taking values ,g(l) < £(2) <eveg £(1‘
wvhere g < t means '1<—t1' i=1,...,n, and 8, < ti for some 1. Then fo
!

F,G non-decreasing we have again F(,g(l))i F(_g_(z)) Keec< F(g(k)) and
G(S(l)) < G(£(2)) Seee< G(g(k)). so that by the Chebyshev inequality
Cov[F(D,6(D] 2 0.

Properties Pl’ P2 and P3 permit some standard multivariate

manipulations with associated random variables. The applications of

association, e.g. to reliability theory, are often founded on another

manipulative property.




(Pa) If 'rl,'rz,. «+»T ~are associated, then any set of non-decreasing

functions Sl ¢9) ,Sz (@,... ,Sm(z) are associated.

To show P4 we observe that Sl(z),sz(}‘_),...,sm(_g) are finitely discrete;
that 1f F,G are non-decreasing, then F(§), G(S) are non-decreasing;

and that

Covg[F(8),6(D)] = Covg[FIS(D LGIED 1] > o.

2.2 A working definition of association

In the finitely discrete case there is one alternative definition

of association, equivalent to (1.1), that is particularly useful.

Theorem 2.1. T;sTys..., T are assoctated if, and only if,
(2.2.1) Covir(m,a(m»] >0

for all pairs T,A of binary, non-decreasing functione.

(k) ‘ .
2 Proof. Condition (1.1) clearly implies (2.2.1). To show that (2.2.1)

for implies (1.1), suppose that F(I) takes the values fl < fz Coeog fk
and write F(T) = fl + (fz-fl)rz(;r) L SKXT 3 (fk-fk-l)rk@)’ where l"i(z) -]
if F(D) > f:l’ I‘i(}‘) = 0 otherwise. Similarly write

G(I) -8 + (82'81)A2Q‘) L LERL (SL-Bz-l)AL(D' Then

k £
COV[F(I) .G(I)] L 21-2 Zj-z(fi"fi_l) (sj—sj"l)cov[ri(‘z)’Aj('!)] i 0.

One application of (2.2.1) is the observation that for two binary

random variables X,Y




(2.2.2) Cov(X,Y] > 0O implies X,Y are associated.

This result follows readily from (2.2.1) since the only possible binary,
non-decreasing functions TI(X,Y) are
(r = X)

(' =20) < (I =XY) < <(I'=X+Y-XY) < (F=1).
(r =Y

The covariance between any pair of binary functions TI,A such that
' < A 4s automatically non-negative, and the remaining pair T = X,

A = Y has non-negative covariance by hypothesis.

The utility of (2.2.1) partially rests on the well-known fact that

for binary random variables X,Y, Cov[X,Y] > O is equivalent to
(2.2.3) P[X=1,Y=1] + P[X=0,Y=0] > P[X=1,¥Y=0] - P[X=0,Y=1].

In (2.2.1) each pair of binary, non-decreasing functions TI,A defines
a partition of the sample space of the vector I into the four disjoint
regions {I=j,a=k}, 3,k = 0,1. The condition (2.2.3), applied to the
pairs of binary random variables TI(I),A(I), gives a good description
of the joint probability distribution of associated Tl'TZ""’Tn in

terms of the geometry of the sample space.

In Section 2.1 we mentioned two "extremes' of association. Now
(2.2.2) and (2.2.3) permit a reascnably complete discussion of a simple,

non-extreme example. Let a vector of random variables T take values

.01
0T 2
(10

~
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with the possible additional orderings ,5_01 S, ,510 or £10 = .501

ik Jky
excluded. In this case we can define Xl(,g_ ) =3, ngg_ ) k,
j,k = 0,1, and have Xl(l‘), XZQ‘) non-decreasing. We can also write
T:l ti when xl 3, xz k and have 'ri(xl,xz) non~-decreasing.

It follows from P, that Tl’TZ""’Tn are associated if, and only
if, xl(g), XZ(I) are associated. Then from (2.2.2) and (2.2.3)

Xl(_g), Xz(z) are associated if, and only if, P11P00 > P01P10’ where

Py = P[X, (D=1,X,(D)=k] = P[,:L-.gjk]-

2.3 Binary random variables

Certain properties of associated random variables have a special
intuitive content if the random variables are binary. The most useful

of these is

(BP,) If X,,X,.,...,X_ are asgsoctated binary random variables, then
1 1°%2 n TY

1-X,+1-Xy,...,1-X  are associated binary random variables.

To show BPl, observe that 1if ' 18 a binary, non-decreasing function,
then the dual function I‘D(l:') =1-r{lx), where 1l - x = (l-xl,l-xz....,l—xn),

is also binary and non-decreasing. Let Y = 1 - X. Then
Covy, [T (¥),AX)] = Cov [rP®),aP®)1 > 0
‘!‘ ’ ‘& ’ 2 Vs

and the property follows.

For xl,xz,....xn associated and T(X) = Xl, AX) = x2x3...xn. (2.2.1)

gives E(xlxz...xn) _>_E(x1) . E(X2X3...xn). Proceeding inductively we find

iy



n n G
ETTi_lxi z-TTi-l.Exi' Since for a binary random variable X,

EX = P[X=1], we have
(2.3.1) P[xl-l,xz-l,....xn-ll z_P[xl-ll . P(x2-1]-...-p[xn-1].

From (2.3.1) and BP1 follows

(2.3.2) P[Xl-O,Xz-O,...,Xn-O] 3-P[X1-O] . P[XZ-O]-...-P[Xn-O].

3. A sample application of association, the minimal cut bound in
reliability theory

The minimal cut lower bound for the reliability of a coherent
system was obtained in Esary-Proschan (1963) in a simple, basic case.
In this section we show that the bound is valid in some of the more
complex situations considered in reliability theory. The derivation
illustrates the application of a formal organization of the propeyties

of association.

3.1 Association in time of performance processes

In the setting of reliability theory, the performance process of
a device is a binary stochastic process {X(t),t € t}, 1 < [0,+=),
(e.g. T = [0O,4x) or t = {0,1,2,...}), where X(t) =1 if the device
is functioning at time t and X(t) = 0 if the device is failed at
time ¢t.

A performance process {X(t),t € 1} 1is associated in time if for
every finite set of times {tl,tz,...,tk} C t, the binary random

variables x(tl),x(tz),...,x(tk) are associated.



The basic example of a performance process that 1is associated
in time arises when the device has a life [Esary-Marshall (1964)]}, i.e.
when P[X(s) > X(t)] = 1 whenever s > t. In essence a device has a life
if once failed, it stays failed. For t, < tz <eer< tk the vector
(X(tl),X(tz),...,X(tk)) can, with probability one, take only the values
(0,0,...,0) < (1,0,...,0) < (1,1,0,...,0) <°++< (1,1,...,1) and thus
X(tl),x(tz),...,x(tk) are assoclated (cf. the cases of '"extreme"

association in Section 2).

3.2 The exponential-exponential process

Aside from the cases in which a device has a life, perhaps the most
frequently studied performance process is the alternating renewal process
that arises when a device fails, then revives (e.g. is repaired or
replaced), then fails, and so on, where the time S from revival to

As

failure is exponentially distributed, P[S > s8] = e » A >0, s >0, and

the time T from failure to revival is also exponentially distributed,
ut

PIT>t) =e ¥, nu>0,t¢t > 0. The corresponding (exponential-exponential)

performance process {X(t), t ¢ [O,+»)} is Markov with the transition law,

for s < ¢t,

PIX(t)=1]|X(s)=1] = (A+u) L{u+ A expl-(r+u) (t-8)]}
(3.2.1)

PIX(t)=0|X(8)=0] = (A1) L{r+u expl-(A+u)(t-8)]}.

[See e.g. Cox (1962) or Barlow-Proschan (1965)].

Theorem 3.1. For any initial distribution, t.e. P[X(0)=1], the

exponential-expoiential performance process is associated in time.
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Proof. We consider tistoseeesrty such tPat 0 < t) <ty <ttty
and let %i - X(tj), jJ=1,...,k. We show that xl,xz,...,xk are

associated by induction. Xl alone is associated by P3. Assume that

xl,xz,...,x are associated.

3-1

Let - P[xj-llxj_l-ll and q, = P[xj-olxj_l-ol. From (3.2.1),

P3 3
pJ + qj 3_(A+u)-1(A+u) = 1. Construct binary random variables UJ,VJ,
independent of xl,xz,...,xj_l, with the joint distribution

P[Uj-l,VJ-ll -1 - qJ, P[Uj-l,Vj-O] - pj + qj -1, and P[Uj-O,Vj=0] =1 - pj.

For this joint distribution P[Uj-ll - pJ and P[VJ=O] = qj.

0,=1 (X,=1)

3 b

Figure 1

- = v . v

Let ej(xj_l,nj,v3) xj-luj + 1 xj-l)'j We can regard 3 as

generated by the branching process shown in Figure 1 in the sense that
xl,xz,...,xj_l,ej have the same joint probability distribution as

xl.xz,...,xj_l,xj, since e.g.
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P[ej-l.xj_l-l,}_-z'] where X = (XJ_Z.XJ_3,...,X1)
= PLU=1,X,_,=1,%=] = P[U;=1] - P[X,_,=1,X=x]

= P[Xj-llxj_l-ll . P[xj_l-l,gg-;g = P[xj-l,xj_l-l.g-z).

Because Uj :.VJ, Cov[Uj,Vj] > 0, and by (2.2.2) I.Ij,V.1 are
associated. Also because UJ I.Vj' the binary function eJ is non-

decreasing in xj_l, Uj’ and VJ.

Now X ,X nooo RS

1 are associated by P2’ since

3-1°Y5>Y;

X are associated, Uj V_1 are associated, and the two

l' 2,....Xj_1
groups of variables are independent. Then xl,xz,....xj_l,ej are
associated by Pd' since these variables may be viewed as a set of non-

decreasing functions of xl,x secesXy g J’ 3°

Thus are associated, because their joint distribution

XpsXgseoeaXy g0y
agrees with that of xl,xz,...,xj_l,ej.

The same method can be used to show association in time for the
geometric-geometric performance process {X(t),t=0,1,...}, 1i.e. the
alternating renewal process where time to failure S has the geometric
distribution P[S > g] = pa, s = 0,1,..., and time to revival T has the
geometric distribution P[T > t] = qc. t =0,1,... . In this case the
condition p + q > 1 becomes a necessary hypothesis, but the result is

again independent of the initial distribution.
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Other performance processes of interest in reliability theory
are also associated in time, e.g. the process that arises from scheduled
replacement of a device whose intrinsic performance process is associated
in time, and that of a device with several unloaded or lightly loaded
spares (under exponential assumptions about times to failure and repair).
For our present purposes, however, we want to focus attention on the

elementary life and alternating proce:ses.

3.3 Joint performance processes generated by systems
We consider systems whose performance at a time t 1s determined
by the performance of their components at the same time ¢t. If
(X(t),t ¢ 1}, where X(t) = (Xl(t),...,Xn(t)), is the joint performance

process for the components in a system, the performance process for the

system is {¢X(t),t ¢ 1}, where ¢X(t) ¢$(X(t)) 1is a binary function

that takes the value one 1if the system is functioning at time t and takes

the value zero if the system is failed at time t. A system is coherent
[see Barlow-Proschan (1965) for a survey and bibliography] if ¢ 1is
non-decreasing and ¢(1,1,...,1) = 1, 4(0,3,...,0) = O. The function ¢

is called the etructure function of the system.

We write {2&5:),t € 1}, where iﬁﬂt) - (¢1§ﬁt),¢2§jtx...,¢m§£t)),
for the joint performance process of a set of m systems, with structure
functions ¢1,¢2,...,¢m, formed from a set of n components with the

joint performance process {X(t),t e t}. We admit the case in which a

component participates in several systems.
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The joint performance process ﬁé(t),t € 1} for a set of n
devices 1s associated in time Zf for each finite set of times

{tl,tz....,tk}cz T, the binary random variables in the array

xl(tl) xl(tz) 000 xl(tk)
xz(tl) Xz(tz) xz(tk)
(3.3.1)

xn(tl) Xn(tz) xn(tk)

are assocliated.

If n devices perform independently, and the performance process
of each device is associated in time, then the rows in (3.3.1) are
independent and each row is associated. From P2 their joint performance

process 1s associated in time.

Theorem 3.2. If the joint performance procecs {Z(t),t € 1} of a
set of components ie8 associated in time, then the joint performance
process {¢X(t),t € 1} of a set of coherent systems formed from those

components i8 assoctated in time.

Proof. For {tl,tz,...,tk} c t, each ¢zx(tj), L=1,...,m,

j=1,...,k, 1is a non-decreasing function of variables in the array

xi(t ), i=1,...,n, j=1,...,k. The conclusion follows from Pa.

b

Using Theorem 3.2 one can show that the joint performance process
corresponding to the multivariate exponential (life) distribution defined

in Marshall-Olkin (1966) is associated in time.
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3.4 The minimal cut lower bound for the reliability of a coherent
system

. we

The reliability at time t, F(t), of a device with the performance
process {X(t),t ¢ t} d1is defined as F(t) = P[X(s)=1, all s e t(t)],
where <t(t) = 1N [0,t]. We make the convention that the sample functions
of any performance process are continuous from the right on +t. The
reliability of a device then becomes the survival probability or the time
T until the first failure of the device occurs, i.e. P[T > t] = F(t),

t >0.

Every coherent system has a finite number of minimal cuts
Cl’c2""’cm' A minimal cut is a minimal set of components such that if
all are simultaneously failed, the system is then failed. The performance

process {¢X(t),t € T} of the system can be related to the performance

e em g ——— =

processes {Xi(t),t e t}y 1i=1,...,n, of its components, through the

minimal cuts, by

(3.4.1) ¢x(e) = Ty n,X(e), where nx(e) =1 - niecj(l-xi(t)),
for all t € 1 [see e.g. Barlow-Proschan (1965)]. The performance
process {njzﬁt),t € T} 1s that of the (coherent) system in which the
components in the jth minimal cut perform in parallel. The representation
(3.4.1) corresponds to connecting these minimal cut parallel structures
in series.

The minimal cut lower bound was previously obtained in what amounts

to the case of components that perform independently and have lives. The
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following theorem extends the bound to the case in which the joint

performance process of the components is associated in time.

Theorem 3.3. Let F(t) be the reliability at time t of a
coherent system. Let f'j (), §=121,...,m be the reliability at time
t of its minimal cut parallel structurea. If the components in the
system have a joint performance process that is associated in time,

then
(3.4.2) F(e) 2 TT{, Fy(0), for all t > o0.
Proof. By Theorem (3.2) the joint performance process of the

minimal cut parallel structures is associated in time. Let

Sk - {sl,sz,...,sk} c t(t). From (3.4.1) and (2.3.1)

(3.4.3)  PLoX(sy)=1, #=1,...,k] = PIT[0; n.X(sp)=1, 2=1,...,k]
- P[TT:_I nX(sp)=1, 3=1,...,m] 2 ﬂ__‘“_l PInX(sg)=1, t=1,...,k].

Now let S+ S, where S 1is a set dense in 1t(t). By monotone convergence

k
(3.4.3) becomes

P[¢(X(s)=1, all s ¢ S] > ﬂ‘;_l P[nX(s)=1, all s ¢ S].

Then (3.4.2) follows from the right continuity of sample functions on 1(t).

3.5 The minimal cut lower bound as an approximation to system reliability,
a numerical example

When the minimal cut lower bound is applicable, it is simpler to find

than the actual system reliability, because the bound requires only the
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calculation (or simulation) of the reliabilities of systems of
components in parallel. Viewed as an approximation to system reliability
the bound is conservative, as is usually desired in practice. The bound

can be a very good approximation to actual system reliability.

A numerical example is given in Esary-Proschan (19Y63) in the case
of components that perform independently and have lives. The approximation
is good when component reliabilities are reasonably high, the most likely

practical case.

We want to give another numerical example, in the case that components
perform independently according to identical exponential-exponential
processes. We consider che "two out of three' system, i.e. the system
which functions whenever two or more of its three components are functioning.
The system has three minimal cuts C{ - {cl,cz}, C2 - {cz,c3}, C3 = {cl,c3},
where cl, Coys c3 denote the components. In this case toth the reliability
of the system and the reliability of the minimal cut parallel structures can

be calculated. For the "2 out of 3" system the reliability at time t is
=y -1
(3.5.1) F(t) = (kz-kl) {kz exp[—kla] - kl exp[—kza]},

where 2k, = (b+5) - (b2+10b+1)%, 2k, = (b+5) + (b°+10b+1)%, and a = it,
b = pu/X [Halperin (1964)]. For the minimal cut parallel structures

(which may be considered "1 out of 2" systems) the reliabilities at time t
F) () = Fp(t) = Fy(r) are given by (3.5.1) with 2k, = (b+3) - (b24eh+1)?,
2k2 = (b+3) + (b2+6b+1)% [Epstein-Hosford (1960), Halperin (1964)]. 1t
18 assumed in deriving (3.5.1) that all the components are functioning at

time O.
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'

From (3.5.1) F(t) and il(:), EZ(:), 5*3«) depend only on
-1

A

a= t/A-l, i.e. the ratio of mission duration to the mean time
to component failure, and b = A-l/u-l, i.e. the ratio of the mean
time A-l to component failure to the mean time u-l to component

revival. 1In Table 1 we compare F with il.FZ.F3 over a range of

values for a,b that are of likely practical interest, i.e. t > Anl

and A—l >> u-l.

The case of a '"2 out of 3" system, when the components have lives
distributed according to the trivariate exponential distribution of
Marshall-Okin (1966), furnishes an example in which the minimal cut lower
bound is a poor approximation to system reliability--because there is a

positive probability that two or more components will fail simultaneously.
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b 1 10 100 1000 10,000
2 44 .089 .0536 .05016 .049824
.36 .074 .0520 .05001 . 049809
5 .565 .336 .3048 .30156 .301230
.510 .323 .3034 .30141 .301216
10 .682 +565 5505 .548976 . 5488281
.650 .559 .5498 .548910 .5488215
50 .8982 .88799 .88703 .886931 .8869215
.8948 .88758 .88698 .886927 .8869211
102 <9449 .94205 .941793 .9417673 .9417648
9439 94194 .941782 .9417662 .8417647
103 . 994053 .994021 .9940183 .9940180 .9940180
«994041 . 994020 .9940181 .9940180 .9940180
104 . 9940053 . 9994002 9994002 .9994002 9994002
.9940041 + 2994002 . 9994002 .9994002 .9994002
Table 1

Comparison of system reliability and the minimal cut lower bound
for the "2 out of 3" system.

The bound is tabled .

a = duration of mission/mean time to failure

b = mean time

reliability.

v failure/mean time to revival

w the corresponding system

The components perform independently with exponential
times to failure and exponential times to revival.
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4. Remarks on some conditions for bivariate dependence

As we observed in the introduction, for two finitely discrete random

variables S,T, each of the conditions in the list

(4.1) Cov[sS,T] > O

(¢.2) Cov(f(S),g(T)] > 0, all non-decreasing f,g

4.3) S, T associated

implies its predecessor. We can add to the list the condition

(4.4) T 1is stochastically increasing in S,

i.e. P[T > t[S=sJ] is, for all t, non-decreasing in j, where

<ese< g are the possible values of S. It is not difficult to

S3622 k
show that (4.4) implies (4.3), by an adaptation of the proof of P2'

We have seen in (2.2.2) that for two binary random variables X,Y,
(4.1) implies (4.3). The constructicn used in the proof of Theorem 3.1
can be readily modified to show that for bimary X,Y, (4.1) implies

(4.4). Thus in the bivariate, binary case conditions (4.1) through (4.4)

are equivalent.

For general finitely discrete random variables S,T none of the
conditions are equivalent. It is easy to find S,T satisfying (4.1) but
not (4.2). If S,T each take the values a; <a, < a, and have the

joint probability distribution,
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T-a3 8/64 (0] 15/64
T-a2 0 18/64 0
T-al 15/64 0 8/64
S-a1 S=a2 S=a3
then S,T satisfy (4.2) but not (4.3). 1If S,T
with the joint distribution,
T-a3 1/8 0 1/4
T-a2 0 1/4 0
T-a1 1/4 0 1/8
S=a1 S=a2 S=a3

then S,T satisfy (4.3) but not (4.4).

take the same values
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