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Abstract 

Random variables  T., ,T0,. .. ,T   are. In this paper, i  z      n 

aseoaiated  If each pair of non-decreasing functions  FCr. »T«,... ,T ), 

G(T1,T2 T )  have a non-negative covarlance.  Association holds 

In cases rangxng from T1,T2>...,T  independent to T-.T.,...,! 

Jointly restricted to a non-decreasing curve.  Association Is 

preserved under the standard multlvarlate operations of extracting 

subsets and polling Independent sets; and under the special operation 

of forming sets of non-decreesing functions.  Suitable choices of 

F,G lead to various inequalities for associated random variables. 

The properties of association are studied in the simple, but 

representative, case that TjfT2 T  are finitely discrete. 

The notion of association is useful in extending the domain 

of validity of the minimal cut lower bound for the reliability of a 

coherent system [4,1], notably (here) to the case of repairable 

components with exponential times to failure and exponential times 

to repair. 
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1.  Introduction 

It is customary to think that two random variables S,T are 

associated (In the sense of similar behavior) If Cov[S,T] - EST-ES»ET 

Is non-negative.  The same two random variables are more strongly 

associated If  Cov [ f(S),g(T)] >_ 0 for all pairs of non-decreasing 

functions f,g.  The same two random variables are still more strongly 

associated If  Cov[F(S,T),G(S,T)] ^0  for all pairs of functions  F,G 

which are non-decreasing In each argument. 

The strongest of the three criteria has a natural multivariate 

generalization.  We consider the definition 

(1.1) Random variables Ti»T2 T  are aaaoaiated  if 

Cov[F(T),G(T)] >. 0,  where ,£ - C^,^. ... fTn) ,  for all 

pairs F,G of non-decreasing functions. 

Here, and later, we say that a function F is non-decreasing if it is 

non-decreasing in each argument, i.e. if  F(si) <_ F(t)  whenever 

s. ^. t.,  i"l,... »n. 

This paper is intended to indicate an approach to the organization 

of the properties of (1.1), and to motivate it by a sample application. 

We study (Section 2) the properties of (1.1) in the case that the 

joint probability distribution of T-.T»,...,!!  is finitely discrete, 

i.e. the vector £ takes a finite number of values.  The finitely discrete 

case Illustrates the general situation; the propertiea of (1.1)  obtained 

are  true in general;  but by confining our attention we can defer discussion 
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of some equivalent versions of  (1.1) which are of   Interest  In the 

general theory. 

Our application   (Section 3)  Is a demonstration that   the minimal 

cut lower bound for the reliability of a coherent   system Is valid  In 

a greater variety of circumstances  than previously known.     This 

application reflects  the origin of our  Interest  In  (1.1), and Is 

suitable because It  Involves a number of the manipulations that  our 

•tudy of  (1.1)   Is designed  to facilitate.     We do not attempt a 

complete discussion of  this  subject.     Further we  postpone consideration 

of certain non-reliability results,   e.g.   Kimball   (1951)  and Robblns 

(1954),  which can be  related  to  (1.1). 

There is an extensive   [see Goodman-Kruskal  (1959)   for  a recent 

bibliography]   and continuing  literature   on    quantitative measures  of 

association,   primarily  for bivarlate distributions.     By contrast,   our 

interest  is  in the qualitative identification,  and  corresponding 

properties,  of classes  of associated distributions.* 

The multivarlate  dependence described by   (1.1)   is one of  several 

similar notions.     When referring to  it we should qualify the  term 

"association",  but  for  the present  it  Is  simpler  to let  it mean   (1.1). 

*At the time thlt> paper was being typed,  our attention was drawn to the 
manuscript  "Some  concepts of dependence" by  E.  L.   Lehmann, which  treats 
several concepts of association and their applications. 

^rrr^ 
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2.  Properties of association for finitely discrete and binary random 
variables 

For finitely discrete T^T^,...,! ,  functions  F(T)  have finite 

expectations EF^T).  The covariances considered in (1.1) are finite. 

2.1 General properties 

Association has two properties desirable in any classification of 

multlvarlate distributions: 

(P.) Any subset of a set of aeaooiated random varidblee is also  a 

set of associated random varidbtes. 

(P-) If tDo seta of ossooiated random varidblee are independent of 

one another^   then their union ie a set of associated random 

variables. 

Property P.  follows immediately from the definition of association. 

P-  requires a short proof, which can be made by considering two 

independent. Internally associated random vectors gm  (S.tS2(...,S )( 

T - (Tj^l^ Tn)  and writing 

Cov[F(S,T).G(S,X)l - E^FG - E^F • E^G - E^FG - E^F • E^G 

" EAFG" Es{Y * ExG} + h{Y ' hG]' E&Y * W 
- EgCov-EF.G]   +  CoVg[E_F,E G], 

where Ec denoces expectation over the distribution of J>.  E_ expectation 

over the distribution of £, and E_ _ expectation over the Joint 

■*m 
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dlstrlbutlon of g    and JJ.  Es T " ESET fron the Independence of £ 

and 2.  Since Cov-,[F(£t;£) ,G(£,£)] >. 0  for each fixed £, 

E-Cov-IF.G] _> 0 follows.  Since E-F(£,T), E-G^s,T)  are non-decreasing 

functions In ^,  Covs[ETF,E_G] >_ 0. 

Another standard multlvarlate property, valid for association. Is 

(P-) The eat oonaiating of a eingle random variable ie aeeoaiated. 

To show P» consider a random variable T taking values  t. < t, <•••< t. . 

For non-decreasing F and G,  F(t-) i F(t2) <.•••<. F(t.)  and 

6(0 <. G(t2) <.***<, G(t.).  It follows from an inequality for similarly 

ordered sequences due to Chebyshev [Hardy, Llttlewood, and Ptflya (1934), 

12.17] that Cov[F(T),G(T)] >_ 0. 

P., together with P-,  Implies that independent random varidblea are 

aeeoaiated.     The example of Independent random variables represents an 

"extreme" of association. Another extreme Is represented by the example 

of random variables J^ ■ (T.,T2,...,T )  taking values X   < <t   <"'< A 

i 

I 

i 

where   £ < £    means     aii.ti»     1-1,...,n,     and    s.   < t.     for some    1.    Then fo 

F,G    non-decreasing we have again    F^  O <, F(t       )   <.•••<. F(t^')     and 

6^      )   <. G(t^2^ <.•••<. G^^),     so  that by the Chebyshev Inequality 

CovtFCp.G^p]   >. 0. 

Proparties    P,,   P,    and    P.    permit some standard multlvarlate 

manipulations with associated random variables.    The applications of 

association, e.g.  to reliability theory, are often founded on another 

manipulative property. 

rv '   ^m> •        ■ ■" ■i^———^^—^^n»—^.i^——    ■ - „  ^^-■■i^i^»- 
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(P.) If   T-.T-«...^  are aaaooiated,   then any aet of non-deareaeing 

functione    Sj^CT^ ,S2(jr) ,... ,S iT)    are aaaoaiated. 

To show P.  we observe that S.(.T)tS2(JT),...tS  ^T)  are finitely discrete; 

that If F,G are non-decreasing, then FQ>), 0(8^)  are non-decreasing; 

and that 

CoVgCF^.G^)] - CoVjCFCS/TH.Gig^T)}] >. 0. 

2.2 A working definition of association 

In the finitely discrete case there is one alternative definition 

of association, equivalent to (1.1), that is particularly useful. 

Theorem 2.1.  Ti»T2 T are aaaooiated if,  and only if, 

(2.2.1) Cov[r(£),A(T)] >.0 

/or all  pairs  r,A of binary, non-deoreaaing funotione. 

Proof.  Condition (1.1) clearly implies (2.2.1).  To show that (2.2.1) 

implies (1.1), suppose that  F(£)  takes the values f. < f. <•••< f. 

and write F(T) - ^ + (fj-fj)^^!) +•••+ (^-^l^V^ *    where *!<&  " 1 

if F^T) >^ f1, ri((T) - 0 otherwise.  Similarly write 

G<T) - «! + <82"81)A2^) +,"+ (8A"8A-1)AA(^'  Then 

Cov(F(T),G(T>] -2,i.2ZJ-2
(fi-fi-l)<8j'8J-l)Covtri^)'Aj^)1 -0- 

One application of (2.2.1) is the observation that for two binary 

random variables X,Y 

wim  "'■ap« 
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(2.2.2)    Cov[X,Y] _> 0  Implies X,Y  are associated. 

This result follows readily from (2.2.1) since the only possible binary, 

non-decreasing functions  r(X,Y)  are 

(r - X) 
(r H o) <^ (r - XY) <^     < (r - x + Y - XY) < (r s i). 

(r - Y) 

The covarlance between any pair of binary functions  r,A  such that 

F <. A is automatically non-negative, and the remaining pair  r - X, 

A - Y has non-negative covarlance by hypothesis. 

The utility of (2.2.1) partially rests on the well-known fact that 

for binary random variables  X,Y,  Cov[X,Y] ^ 0  Is equivalent to 

(2.2.3)  P[X-1,Y-1] • P[X-0,Y-0] >. P[X-l,Y-0] • P[X-0,Y-1]. 

In (2.2.1) each pair of binary, non-decreasing functions  r,A  defines 

a partition of the sample space of the vector £    into  the four disjoint 

regions  {r-j,A-k},  j,k - 0,1.  The condition (2.2.3), applied to the 

pairs of binary random variables  r(<T),A(iT),  gives a good description 

of the Joint probability distribution of associated  T,,T0,...,T   in i /     n 

terms of the geometry of the sample space. 

In Section 2.1 we mentioned two "extremes" of association.  Now 

(2.2.2) and (2.2.3) permit a reasonably complete discussion of a simple, 

non-extreme example.  Let a vector of random variables T    take values 

t01 

t00 < ^   < ±11 
10 
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To show BP, ,  observe that If  r  is a binary, non-decreasing function, 

then the dual function r (ac) ■ 1 - T^-jc),  where X ~ & m   (l-x-.l-x,,. .. 

is also binary and non-decreasing.  Let X " -i ~ Ä'  The« 

•*>■, 

4- 

with the possible additional orderings £_  <. ^   or ^  <. ,£ 

excluded.  In this case we can define X^^) - j, X2(t
Jk) - k, 

j,k - 0,1,  and have X (jT), X-(T)  non-decreasing. We can also write 

1k 
T. ■ fi       when X. - j, X- ■ k and have  T.(X-,X2)  non-decreasing. 

It follows from P.  that  Tj^.T-f-.T  are associated if, and only 

if,  X1(T), X2(T>  are associated.  Then from (2.2.2) and (2.2.3) 

Xj^T), X2(T>)  are associated if, and only if,  PIIPOQ — ^Ql^iQ'     where 

Pjk - P[X1(T)-j,X2^T)-k] - P[I-X
Jkl- 

2.3    Binary random variables 

Certain properties of  associated  random variables have a special 

intuitive content  if  the random variables are binary.     The most useful 

of these is 

(BPj)    If   X1,X-,...,X      are aasooiated binary random variables,   then 

1-X1,1-X2,...,1-X      are asaoaiated binary random variäblee. 

covY(rQr).A(Y)] - cov&[r
D(x),AD(x)] >_ o. 

and the property follows. 

For X1,X2 Xn associated and  rQC) - X^^, A(X) -X2X3...Xn,  (2.2.1) 

gives  E(X.X0...X )>E(X.) • E(X.X_...X ).  Proceeding inductively we find x z   n —   x      ^ J   n 

I 
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EJX.   jX.   >^ TTJ«!   EX..     Since for a binary random variable    X, 

EX - P[X-1],     we have 

(2.3.1) PlXj-l.X^l Xn-1]   >. PUj-l]    • PiX2-l]-....P[Xn-l]. 

From  (2.3.1)   and     BP.     follows 

(2.3.2) PIX^O.X^O Xn-0]   >_ PtX^O]   •  P[X2-0] •... «PIX^O]. 

3.    A sample application of association,   the minimal cut  bound  In 
reliability  theory 

The minimal cut  lower bound  for  the reliability of a coherent 

system was  obtained  in Esary-Proschan   (1963)   in a  simple,   basic  case. 

In this  section we  show that  the bound  is valid  in some of   the more 

complex situations considered in reliability theory.     The  derivation 

illustrates  the application of  a  formal organization of  the  properties 

of association. 

3.1    Association in  time of performance processes 

In the setting  of reliability theory,   the performanoe process of 

a device  is a binary  stochastic process     {X(t),teT},     TC  [0,+«>), 

(e.g.     T  -   [0,+»)     or    T  -  {0,1,2,...}),     where    X(t)   -  1     if  the  device 

is  functioning  at   time    t     and    X(t)   ■  0     if  the device  Is  failed at 

time    t. 

A performance process     {X(t),t   ET)     is associated in time  if  for 

every finite  set of  times     {t^t,» •. . ft, } C T,     the binary  random 

variables     X(t1),X(t2) x^tif^     are  assoc±ated. 
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The basic example of a performance process that Is associated 

in time arises when the device has a life   [Esary-Marshall (1964)J, I.e. 

when P[X(s) ^X(t)] " 1 whenever s > t.  In essence a device has a life 

if once failed. It stays failed.  For  t1 < t- <•••< t.  the vector 

(X(t, ),X(t2),...,X(t. ))  can, with probability one, take only the values 

(0,0,...,0) < (1,0,...,0) < (1,1,0,...,0) <•••< (1,1,...,1)  and thus 

X(t ),X(t„),...,X(t. )  are associated (of. the cases of "extreme" 

association in Section 2). 

3.2 The exponential-exponential process 

Aside from the cases in which a device has a life, perhaps the most 

frequently studied performance process Is the alternating renewal process 

that arises when a device falls, then revives (e.g. Is repaired or 

replaced), then falls, and so on, where the time S from revival to 

—As failure is exponentially distributed,  P[S > s] - e   , X > 0, s ^ 0, and 

the time T from failure to revival is also exponentially distributed, 

P[T > t] « e u , pi > 0, t 21 0.  The corresponding (exponential-exponential) 

performance process  {X(t), t e [0,->■«>) }  is Markov with the transition law, 

for s < t. 

(3.2.1) 
P[X(t)-l|X(s)-l] - (X+y)"1{w+X exp[-(A+vi)(t-s)]} 

P[X(t)-0|X(s)-0] - (A-hi)'"1{A + ii exp[-(X-Hi)(t-8)]} 

[See e.g. Cox (1962) or Barlow-Proschan (1965)]. 

Theorem 3.1. For any initial diatvibution,  i.e.     P[X(0)"1], the 

exponential-expoAential Performance prooeas is aaeociated in time. 
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Proof. We consider    t-i.to 'k    such that    0   < 'i   < '2   <"*< 'k* 

,k.     We show that    X1,X2, and let     X    - XC'j).  J   " 1. 

associated by  Induction.     X       alone  is associated by    P-.     Assume  that 

X-.Xj xi-i    are a88ociated. 

Let pj   - P[X.-11X^-1]     and     q     -P[X-0|x       -0].      From   (3.2.1), 

Pj  + Qj   >. (^+M)     (A+y)   - 1.     Construct  binary  random variables     U   ,V., 

Independent  of    Xj^X^ ... ,X.   -,     with the  joint  distribution 

P[UJ-1.VJ-1]   -  1  -  qj,   PlUj-l.Vj-O]   -  pj   +  qj   -  1,     and     PfUj-O,Vj-0]   -  1   -  Pj 

For this joint  distribution    P[U -1]   - p       and    P[V =0]   -  q   . 

A 
v^ 

Vj-0 
\. 

Y      mr\\y ^^ Gj-O   (Xj-0) J-i    1 

Figure  1 

Let    ejCXj.^nj.Vj) - x^üj + (i-Xj.^Vj as We can regard     X 

generated by the  branching process  shown  in  Figure 1   in  the   sense   that 

X-,X2,...,X._1,9.     have  the eame joint probability distribution as 

Xj,X_,...,X.   ,,X.,     since e.g. 
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Plej-l.X j^-l^-jcj where ^ - (Xj_2,XJ_3 X^^) 

- PtUj-l.Xj^-LjC-jcJ - PtUj-1] • P[Xj_1-l.,£-Ä] 

- PtXj-ijXj^-i] . PCXJ.J-I^-X] - PCXj-i.Xj^-L^-ac]. 

Because  U. >. V ,  CovEU-.V.] >^ 0,  and by (2.2.2)  U .V.  are 

associated.  Also because  U  >. ^.,  the binary function  6.  Is non- 

decreasing In X  ., U.,  and  V.. 
J—■••  J        J 

Now X^fXy X._-,U. ,V.  are associated by ¥2»     since 

X. «X-,...,X._1 are associated, V.,V      are associated, and the two 

groups of variables are Independent.  Then X..X-,...,X. , ,6.  are 

associated by P, ,  since these variables may be viewed as a set of non- 

decreasing functions of X1,X2 X._. ,11. »V.. 

Thus  xi»X2 Xl-l,Xi  are associated> because their Joint distribution 

agrees with that of X-.X,,...,X, ,,8.. 

The same method can be used to show association In time for the 

geometric-geometric performance process {X(t),t"0,l,...}, I.e. the 

alternating renewal process where time to failure  S has the geometric 

distribution P[S > s] - ps, s - 0,1  and time to revival T has the 

geometric distribution P[T > t] - q , t « 0,1   In this case the 

condition P + q £. 1 becomes a necessary hypothesis, but the result Is 

again Independent of the Initial distribution. 
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Other performance processes of Interest In reliability theory 

are also associated In time, e.g. the process that arises from scheduled 

replacement of a device whose intrinsic performance process is associated 

in time, and that of a device with several unloaded or lightly loaded 

spares (under exponential assumptions about times to failure and repair). 

For our present purposes, however, we want to focus attention on the 

elementary life and alternating processes. 

3.3   Joint performance processes generated by systems 

We consider systems whose performance at a time  t  is determined 

by the performance of their components at the same time  t.  if 

ÜC(t),t E T},  where ,£(0 - (X^t) ,... ,X.   (t)),  is the joint performance 

process for the components in a system, the performance process for the 

system is  {(|>jC(t),t ex},  where  $£(0 = ())(jK(t))  is a binary function 

that takes the value one if the system is functioning at time t  and takes 

the value zero if the system is failed at time  t.  A system is coherent 

[see Barlow-Proschan (1965) for a survey and bibliography] if $     Is 

non-decreasing and $(1,1,... ,1) - 1,  4>(0,0 0) - 0.  The function  <t> 

is called the structure function  of the system. 

We write  {|X(t) .t e x},  where £C(t) - (^(t) .^(t),... .^(t)) , 

for the Joint performance process of a set of m systems, with structure 

functions  ^, (|>2,..., ()> , formed from a set of  n  components with the 

Joint performance process {X(t),t E T}.  We admit the case in which a 

component participates in several systems. 
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The  Joint   performance  process     {X(t),t   ex}     for a set  of     n 

devices   Is aasoaiated in  time  if for  each  finite  set  of times 

(t-.tjf•• • tt. } C  T,      the  binary  random variables  in  the array 

x1(t1) x1(t2)  ... X^tj^ 

x2(t1) x2(t2) ... x2(tk) 
(3.3.1) 

Xn(tl>   Xn<t2)   •••   W 

are associated. 

If    n    devices  perform independently,   and  the performance process 

of  each device   is associated  in  time,   then  the  rows   in   (3.3.1) are 

independent and each  row is associated.     From    P,     their Joint  performance 

process  is associated  in time. 

Theorem 3.2.     Jjf the joint perfomanae prooeee     {JC(t),t c T}    of a 

set of components is associated in time,   then the joint performanae 

process     {^X(t),t ET}    of a set of aoherent systems formed from those 

components is associated in time. 

Proof.     For    ^i*^! 'k^ c ^     each    ^Ä^'l^'   A":L»*"»m» 

J  ■ l,...,k,    is a non-decreasing function of variables in the array 

X.(t,),     i - l,...,n,   J  - l,...,k.    The conclusion follows from    P, . 

Using Theorem 3.2  one can show that  the Joint  performance process 

corresponding to  the multivariate exponential   (life)   distribution defined 

in Marshall-Olkin  (1966)   is associated  in time. 
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3.4  The minimal cut lower bound for the reliability of a coherent 
svatem 

The reliability  at time  t,  F(t) ,  of a device with the performance 

process  {X(t),t E T}  is defined as F(t) - P[X(s)-l,  all  s e T(t)], 

where  T(t) -in [0,t].  We make the convention that the sample functions 

of any performanoe proaeee are aontinuoue from the right on     T.  The 

reliability of a device then becomes the survival probability  or the time 

T until the first failure of the device occurs, i.e.  P[T > t] = F(t) , 

t _> 0. 

Every coherent system has a finite number of minimal cuts 

C, «C» C . k minimal cut  is a minimal set of components such that If 

all are simultaneously failed, the system is then failed.  The performance 

process  {4&(t),t e T}  of the system can be related to the performance 

processes  {X.(t),t ex}, i ■ l,...,nl  of its components, through the 

minimal cuts, by 

(3.4.1) «^(t) - fTjH.n.jXa), where ^(t) - 1 - nieC (1-X^t)). 

for all  t e T  [see e.g. Barlow-Proschan (1965)].  The performance 

process  {n.^C(t),t er}  is that of the (coherent) system In which the 

components in the j   minimal cut perform in parallel.  The representation 

(3.4.1) corresponds to connecting these minimal cut parallel structures 

in series. 

The minimal cut lower bound was previously obtained In what amounts 

to the case of components that perform Independently and have lives.  The 
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followlng theorem extends  the bound  to  the  case  In which  the  Joint 

performance process  of  the components  Is associated  In time. 

Theorem 3.3«     Let    F(t)     be the veliab-tlity at time     t    of a 

coherent ayetem.     Let     F. (t),  J  - l,...,m    be the  veliobility at time 

t    of its minimal out parallel atruaturea.     If the aomponente in the 

ayatem have a joint performance process  that ia aaeooiated in time, 

then 

(3.4.2) F(t)   >, TT^FjCt).    for all     t   >. 0. 

Proof.     By Theorem   (3.2)   the Joint  performance process of  the 

minimal cut  parallel  structures Is associated In time.    Let 

Sk -   {81,82,....s.} c  T(t).     From (3.A.1)   and   (2.3.1) 

(3.4.3)     FC^s^-l,   A-l,...,k]  - PClTj"!  1^(8^-1,   t-1 k] 

- PtTTj.i  n^s^-l,  j-1 m]   >. TTjIi PC 1^(8^-1.   A-l k]. 

Now let    S,   +  S,     where    S     la a set dense  In    T(t).    By monotone convergence 

(3.4.3)   becomes 

P[<l>(X(s)-l,     all     s e S]   >. TTJ.! Prn^Cs)-!.     all    s  c S]. 

Then (3.4.2)   follows  from the  right   continuity   of  sample functions on T(t). 

3.5    The minimal cut   lower bound as an approximation to system reliability, 
a numerical example 

When the minimal  cut lower bound Is applicable.   It  Is  simpler to find 

than the actual system reliability,  because  the bound requires  only the 
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calculatlon   (or  simulation)  of  the   reliabilities of  systems  of 

components  in parallel.     Viewed as  an  approximation  to  system  reliability 

the bound  is  conservative,  as  is usually desired  in practice.     The  bound 

aan be a very good approximation to actual  system reliability. 

A numerical   example  is given  in  Esary-Proschan   (1963)   in  the  case 

of  components   that   perform  independently  and   have  lives.      The  approximation 

Is good when component  reliabilities  are  reasonably high,   the most  likely 

practical  case. 

We want   to  give another numerical  example,   in the  case   that  components 

perform independently according  to  identical  exponential-exponential 

processes.     We  consider  the "two out  of  three"   system,   i.e.   the   system 

which functions whenever  two or more  of  its three components are  functioning. 

The system has  three minimal cuts     C.,   -   {c^jC-}»  C»  -   (c-.c»},   C-  ■   {c-.c.}, 

where    c. ,  c_,   c_     denote the components.     In this case both  the reliability 

of  the system and   the  reliability of  the minimal cut   parallel   structures can 

be calculated.     For the  "2 out  of  3"   system the  reliability at   time     t     is 

(3.5.1) F(t)   -   (k2-k1)"1{k2  expE-kja]   - ^  exp[-k2a]}, 

where    2^  -   (b+5)   -   O^+lOb+l)^,   2k2  -   (b+5)  +   (b^lOb+l)*5,     and    a  =  At, 

b ■ p/X     [Halperin   (1964)].     For the minimal  cut parallel   structures 

(which may be  considered  "1 out  of  2"  systems)   the reliabilities  at   time     t 

Fj^t)  - F2(t)   -  F3(t)     are given by   (3.5.1)  with    2^  •=   (b+3)   -   (b2+6b+l)!i, 

2k    -   (b+3)  +  (b^b+l)5*       [Epsteln-Hosford   (1960), Halperin   (1964)].      It 

Is assumed  in deriving   (3.5.1) that  all   the components are   functioning  at 

time    0. 
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From    (3.5.1)    F(t)     and    F-Ct),   F2(t),   F3(t)     depend  only on 

a  » t/A     ,     i.e.   the  ratio of mission  duration to  the mean  time     ^ 

to component   failure,   and    b •   A     /u     >     I.e.   the  ratio  of   the mean 

time     A to  component  failure  to  the mean time     u to  component 

revival. In Table 1 we compare F with F. »F. «F- over a range of 

values for a,b that are of likely practical Interest, I.e. t > X 

and     A       >>  IJ 

The case  of  a  "2  out  of  3"  system,  when the components have lives 

distributed  according  to  the  trivarlate exponential distribution of 

Marshall-Okin   (1966),   furnishes an  example   In which  the minimal cut  lower 

bound  is a  poor  approximation  to  system reliability—because  there  is a 

positive probability that two or more components will  fail  simultaneously. 
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1 10 100 1000 10,000 

2 a 
.44 
.36 

.089 

.074 
.0536 
.0520 

.05016 

.05001 
.049824 
.049809 

5 a 
.565 
.510 

.336 

.323 
.3048 
.3034 

.30156 

.30141 
.301230 
.301216 

10 a 
.682 
.650 

.565 

.559 
.5505 
.5498 

.548976 

.548910 
.5488281 
.5488215 

50 a 
.8982 
.8948 

.88799 

.88758 
.88703 
.88698 

.886931 

.886927 
.8869215 
.8869211 

102a 
.9449 
.9439 

.94205 

.94194 
.941793 
.941782 

.9417673 

.9417662 
.9417648 
9417647 

103a 
.994053 
.994041 

.994021 

.9940?0 
.9940183 
.9940181 

.9940180 

.9940180 
.9940180 
.9940180 

104a .9940053 
.9940041 

.9994002 
,>994002 

.9994002 

.9994002 
.9994002 
.9994002 

.9994002 

.9994002 

Table 1 

Comparison of system reliability and the minimal cut lower bound 
for the "2 out of 3" system. 

The components perform independently with exponential 
times to failure and exponential times to revival. 

a - duration of mission/mean time to failure 

b m  mean time  N failure/mean time to revival 

The bound is tabled .   w the corresponding system 
reliability. 
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A.     Remarks  on   some  conditions   for  blvarlate  dependence 

As  we   observed   in   the   Introduction,   for   two  finitely  discrete   random 

variables     S,T,     each  of   the  conditions   in   the  list 

(4.1) Cov[S,T]   >_ 0 

(''.2) Cov[f (S) ,g(T)]   ^0,     all  non-decreasing     f,g 

(4.3) S,T     associated 

Implies its predecessor.  We can add to the list the condition 

(4.4) T  is stochastically increasing in  S, 

i.e.  P[T > t|S=s ]  is, for all  t,  non-decreasing in j,  where 

s, < s? <•••< s.  are the possible values of  S.  It is not difficult to 

show that (4.4) implies (4.3), by an adaptation of the proof of  P.. 

We have seen in (2.2.2) that for two binary random variables  X,Y, 

(4.1) Implies (4.3).  The construction used in the proof of Theorem 3.1 

can be readily modified to show that for binary X,Y,  (4.1) implies 

(4.4).  Thus in the blvarlate, binary case conditions (4.1) through (4.4) 

are equivalent. 

For general finitely discrete random variables  S,T none of the 

conditions are equivalent.  It is easy to find S,T  satisfying (4.1) but 

not (4.2).  If  S,T each take the values a^ < a, < a« and have the 

Joint probability distribution. 
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T-a, 

T-a, 

T-a, 

8/64 0 15/64 

0 18/64 0 

15/64 0 8/64 

S-a, S-a, S=a, 

then S,T  satisfy (4.2) but not (4.3).  If  S,T take the same values 

with the joint distribution. 

^ 1/8 0 1/4 

T.a2 0 1/4 0 

T-al 1/4 0 1/8 

S-a, S=a, S=a., 

then S,T  satisfy (4.3) but not (4.4) 
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