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PRINCIPLL OF THE DYNAMIC X-RAY DIFFRACTION TECHNIOUE'

Tatsuro Kawaguchi*
Polymer Research Institute
University of Massachusetts

Amherst, Massachusetts

Introduction

As it is well known, x-ray diffraction study is one of the most useful
means to determine crystal orientation, For usualy diffraction measurement,
several seconds or minutes are required to accumulate enough counts at each
point on the diffraction pattern, Thus it would not be¢ possible to directly
follow changes in crystal orientation occurring in short times, The dynamic
x-ray diffraction technique was developed as a direct means of determining
crystal orientation times!, In this technique, the sample is vibrated
sinusoidally and the diffraction count is accumulated during specified

intervals of the vibration period over many cycles, The principle of this

technique will be discussed in the following sections.,

Diffraction from Crystalline Polymer

The x-ray diffracted intensity from polymer films at a given Bragg
and azimuthal angle is given by a summaticn of
1, coherent scattering from crystalline phase and amorphous
phase of the film,
2., 1incoherent scattering from the sample, and

3. background scattering.

+Supported in part by a contract from the Office of Naval Research and in part
*by a grant from the Army Research Office (Durham),

‘On leave from the Toyo Rayon Company, Central Research Labs., Otso, Shige-ken,
Japan, which is Dr, Kawaguchi's present address.,
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That is

Ltota1(8s®) = 1..(8,0) + I (6,0) + I (6,0) + I k(8,0

incoh
(1)
where I+nta1(6,¢) is the total intensity of diffracted x-ray at Bragg angle 6
and azimuthal angle ¢, I, .(6,9) and I,,(8,%) are the coherent scattering from
the crystalline phase and amorphous phase, respectively, Iincoh(e’o) is the

incoherent scattering, I k(6,¢) is the background scattering, which includes

bac

stray radiations, air scattering and slit scattering,

In the case where experimental geometry is shown by (Fig, 1)

I.-(8,6) is given by

- U d sec 6
I.p(8,8) = k., h(8) I P..(6,8) d sec 8 e (2)

Here K.p is a constant. h(8) is the polarization factor. I, is the intensity
of incident beam. P ,.(6,6) is the density of crystal with particular orientation
which is capable to contribute to the diffraction at @ and ¢. d is the thickness

of the sample film, u is the absorption coefficient in reciprocal centimeters,

Intensity of the Diffraction from Crystalline Phase

As it is well known, the x-ray diffraction flat film pattern of an
unoriented sample consists of complete rings, while with oriented samples
diffraction concentrates at certain portions of the rings. The diffraction
intensity from stretched samples at a given point is a function of the aprlied
strain, In the following discussion we consider a case where a strain is described

by the equation

a(t) = A+ 4h cos w t ()
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Here A is a static strain, 4) is the amplitude of dynamic strain,w is the
angular frequency in the dynamic strain, t is time, When the strain is applied

on the sample, the change in sample thickness with time is represented by
d(t) = do - 4d cos (w t + 64) (u)

where do is the sample thickness at the strain of Ao’ AX is the amplitude of
dynamic chenge in thickness, 8d is the phase difference between strain and
thickness change, When the sample volume is constant independently of strain

and Poisson ratio is a real number, Eq, (4) is simplified to

- AX
d(t) = do do 5—-cos wt (5)

The crystal distribution function P.,(8,¢) giving the number of
crystals having a given plane oriented at angles between 6 a.d 6 + d6 and ¢

and ¢ + d¢% may be also expressed by a function of time as
Pop(0,0,t) = P 0(68,9) + AP cos (wt + 6P.) (6)

In general, the amplitude AP_,. and the phase difference éP_,. are functions

of 8, ¢ and w and may differ for different crystal planes,
By inserting Eqs. (4) and (5) into Eq. (2) we have
I.pn(8,90) = Kcr(e) d, sec8 P .°(6,¢) exp (-ud, sec8)

2|l ¢ ——————cos (wt ¢ “’cr)]
- Pep® (8,9)

[ ad
x l-a“cos(wtodd)]
L o

x exp [u Ad sech cos (w t + 8d)]

Ker(8) = kep h(8) I,




In most cases «f experiments with polymer samples, the relatioaship
u Ad sech <<} (7)

holds, The exponential term of the above equation may be expanded as a series

and higher terms of AP../P.n°, 8d/d, and u Ad secd may be neglected, Then

I.r(0,9) = Icr°(6.0) + 81, cos (v t + 6.p) (8)
where
Icr®(8,9) = K. (8) d, sec8 P, °(8,9) exp(-u d  secé)
= Kep(8) P 0 (8,0) (9)
K.p(8) = k_ h(8) I, d, sec8 exp (-u d, sect) (10)
and

"

8Icp cos Sop = K pn(8) 8P.. cos 8P,

Ad
+ I.° (8,0)[} 3:' cos 84 ¢+ u Ad secf cos 64} (11)

H

8lcr sin §cp = Kop(8) 8P . sin 8P

7

+ 1.0 (8,0) [- %ﬂ sin §4 + u 4d sec# sin 6§J (12)
o

Ex~ression for I,,(8,¢) and I; . .on(8,¢)

In the same way as for I_.(8,4) the intensity of diffraction from

the amorphous phase is represented by
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I, (0,0) = I °(6,8) + Al cos (w t + 8,p) (13)

Here I1,,°(8,4) is the diffraction intensity from the amorphous phase of the

sample with static strain of A,, and expressed by
I,m°(08,8) = K m(8) Pap©(0,4) (1)

where K, n(8) is a function of 6 corresponding to K.n(8) for tae crystalline
phase, P,,°(8,¢) is the distribution function of the amorphous elements which
contribute to the diffraction at the point (6,4). Al,, is the amplitude, San

is the phase dirferent between strain and diffraction intensity of the amorphous

phase. Then

81,4m cOS b4n = Ky (8) APy cos 8P 4

+ I1,m°(8,9) [- ég-cos 64 + u (8d) sec 8 cos 65}
o

(15)

8l sin &4y Kam(e) AP'n sin &Pam

+

T

I1.m°(8,¢) [} 8d sin &d + u (ad) sec 8 sin Gd]
o

(16)
just as in the case of I .(6,0). AP, is the amplitude of the dynamic component
of density function P,(8,4). &P,y is the phase difference between the strain
and change in distribution function of the amorphous elements,

For the incoherent scattaring the effects of orientation may be

ignored. Then the intensity of incoherent scattering is expressed by

Iincoh(8,®) = Iincoh(e'.) + 81 o COS (ot + 850 0n) 17)
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Here I, ..h°(6,4) is the intensity of incoherent scattering at a strain of

Aoy and

AIincoh €08 Sincoh * Tincon®(84%) [; 4d cos 8d + u (Ad) sec 8 cos 6%]

o
(18)
BIincoh Sin 85ncoh = Tincon®(09®) [} %ﬂ sin 6d + u (Ad) sec 9 sin Gd}
o
(19)
Relation between I+o+a1(€,9) and Pcr(8,9)
Insertin,_ :gs. (8), (13) and (17) into Eq. (1) we have
Itotal(e‘@) = Itotal°(80°) + AItotal cos (w t + 5total) (20)

where

Teora1®(8,8) = I,.0(8,0) + I 0(8,0) + I, 1°(8,0) + Ipack(8,0)

(21)

FIfOtalo(eio) - Iback(etq’ﬂ [} %‘l cos 4&d
o

AI¢otal €05 Syotal

A

4+ 1 (Ad) sec 8 cos éd]

—
+ Kcr(e) Apcr coSs 6Pcr + Kam(e) Apam eos GPam]

ol

(22)

LItotal Sin 8iptal = Teotal®(8,0) - Iback(e'oi] [:- %2 sin &d
o

—

+

p (Ad) secd sin GdJ

+

[Kcr(e) AP.p sin 8P, + Kyq(8) AFgy sin éPag]

(23)

gt

[ - - . U N

e
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The first terms in Eqs. (22) and (?3) arise from the change in the sample thick-
ness, The second terms show the effect of the change in orientation, From these
equations we can get the expressions for the dynamic components of the crystal
orientation distribution function AP, That is, by using Eqs. (15), (16), (22)

and (23) we have
Kep(@) APy €08 8Pop = Blyqral €0S Spora) = 8Igm CO3 Sam
“11e0ea1(048) - I,,°(8,8) - Im(ﬂ,o;l - ﬁi‘-cos §d + u (ad)
19 A5 J °

sec 6 cos édJ (24)

and
Kep(8) AP, sin 6P p = 8ltoral SIn 8pqe,) - 81an sin &5p

0 ad
‘(Itotal"(e.ﬂ - 1,n008,8) - Im(e,o)} [- 3? sin &4 + u (ad)

L

sec 9 sin Gd‘} (25)

J

When Poisson's ratio is a real number and the sample volume
remains constant independently of strain, the sample thickness changes in

nhase with the external strain and Eqs. (24) and (25) simplify to

Kep(8) 8P cos APop = 84 pa) COS ¢ pay = 815y, COS &am

ax , &) N .
[- = + > u d, sec e}[ztouf(e,o) Ia‘.,,(e,h]

(26)

and

K_(8) 2Pcp sin 4P __ = 81, sin 8 (27)

i X - A
cr ai sin -tctal ...Im

lad
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In the above expressions all quantities on the right hand side can
be evaluated experimentally,

Orientation Functions

The orientation function of a given crystal axis .s defined by

the following equatiorn

coSs
£ = - (28)

_ 3 7, . 1

Here v is the angle between the crystal axis and the stretching direction. In
the case of experiments for which the geometry is shown by Fig. 1. The angle

y obeys following relationship

cosy = sin¢ . (29)

The quantity cos?y is an average value and given by

%/2
[ cos?y N(y) siny dy
0

cosly = (30)
N(v) siny dy

where N(y) siny dy is the number of the crystals oriented betwaen vy and
vy + dy., One can show that the function N{y) is proportional to the function
P.p(8,9) previously introduced. Taking into account the condition of Eq. (29)

we can show the relation by

N(a) siny dy = - const, Pcr(a,O) cosé¢ deé (31)

By inserting Eqs. (29), (31) into (30) we have
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n/2
fo sine P_ (8,9) coss d¢

cos?y (32)

n/%
f Pcr(ﬁ,o) cosd d¢
0

If for pcr(e,o) we substitute the quantity for the dynamic state expressed

by Eq. (6) we have

n/20
Tl
[o sin<¢ Pcr°(e.0) + 8P, cos (wt ¢+ 6Pcr)] cos? d¢

2 —
cos‘y = T3~

Pep®(0,8) + AP, cos (uw t + GPCP)T cosé d¢

<

..

1 + I cos wt -1 sin w t

11 12 13
= (33)
I + 1 cos wt -1 sin w t
21 22
where Iij represents the following integrations
n/2
I =f sin?® Pcp2(8,4) cosé 49 (3u)
11 0
®/2
I =[ sinl¢ AP cos 8P cos¢® d¢ (3%)
12 5 cr cr
0
/2
I =[ sinle Apcr sin 4P cos¢ d¢ {3¢)
13 cr
0
v/2
= or \ A )
I21 f P.p008,0) cose d¢ (37
0
v/2
T = AP cos % cosd ¢4 (38)
22 fo cr cr
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/2
I =[ APoyp sin 8.y cosé do (39)

Usually I ) I I , and Izaare far smaller than I
1 :

13° 22
dynamic strain is used, one may rewrite Eq. (33) as

and 1 so if small
11 21

I I I I I
cos?y = AL |1 4| 124 22) coswtfdl - 2ilsinwt
I I I I I
21 11 2} 11 21
(40)
Inserting Eq. (40) into Eq. (28) we have
f=fo+ 8f cos (wt+ &p) (41)

when. fo is the orientation function corresponding to static strain A, and

given by

- (42)

Af cos & =% - (43)

I I
Afsin%:%-‘-‘—l&--@& (ub)

From Eqs., (9), (20) we have

1

o - i ’
Pop(849) = W [ltotalo(e’w = Tan (80®) = T oh (809 - Iback(eo‘b)]

{45)

- e e - — S e r—— or e pp——
- ~v- — —— .
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Fgs, (26) and (27) then lead to

- 1l
APcr cos Gpcr = RZ;TET AItotal cos Gtotal - AIam cos 6am

+ %l (1 - ud secd) [Itotalo (6,8) = Iym° (8,9) - Iback(e’{i}

(46)
and

1l
AP,y sin 6P_, = K:;737' AItotal sin stotal - AT sin Gan:} (u7)

These three expressions are used to perform the integrations (34) - (39), Since
the integrations always come into the expressions of orientation function as the
ratio of two of them, The factor l/Kcr(e) will be eliminated in the performance
of the calculation of the orientation function, All quantities appearing in the
right hand side of these three expressioﬁs may be obtained experimentally as will
be shown in the following sections.

Semicircle Sector Technigque

In order to obtain the quantities introduced in the preceding section,
especially Al ,.7 €0S Si0¢q) and AL, ooy Sin Siopay, the semicircle sector
technique was devised. Details of the principle of this technique will be
presented hereinafter,

A photo sector rotates in synchronism with the sample vibration,

On the sector four windows are arranged so as to activate the corresponding

scalers during the strain period between O and w, = and 2w, %- and 2%5 and

-% and T, respectively. Average intensity of diffraction in these four inter-
2 2

vals are easily obtained from the accumulated counts of each scaler, Usually,

the diffraction counts are accumulated over many cycles of vibration in order
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to reduce the statistical error of counting., Now we consider the case where
the sample is vibrated with pericd of T(sec.) and diffraction is accumulated

over n cycles, Total time necessary for n cycles is
t=nT (u48)

Each scaler works during the half of this duration,
Tetal number of counts accumulated by the scaler corresponding to

the window which cpens between O and 7 is given by

T/2
N0~ﬂ(r) -7 j; [?tOtalo (849) + Alygpay cos (w T + 5total)] a

gz-[:ltotalo (6,0) - %- Alyota) Sim 6total] (49)

The average intensity in the phase range between 0 and 7 is

I (0,8) = four®) ° (8,0) - 24l sin § (50)
0.1 ' Y/ R total ’ ¥~ total total

In the same way average intensities in the other phase range is given by

N (1)

- Mem - 2 \
In-2ﬂ(e’°) - Y/ - Itotalo(e’Q) + T bltotal sin 8¢otal (51)
N () _ o 2
L 3n(008) = m3m7 7 = Tegea)® (6,8) = = AL o) €08 8y vay (52)
5 5 22
2 2
N (v)
I3w~5ﬂ(e'°) B %17%1' = Itota1® (6,9) + %’AItotal cos 84nra;  (53)
2 AP

1/2t




From these four expressions we have

Ito

Al cos §

total

Bltotal Sin Syoea) = 3

Thereforc i€ we measure N _.(t), N

talo(e'¢) )

N -

S [

.13 -

M3q_selt) 2N
total “ T 2 2

(2N (1) _ 2N,,_2,,(r)]

LT T J

P2Nﬂ-3n(T) 2N3q 5q(1)
2 2 - 2 2

N T T

“~
2 - 2

'
|=

N

=2

n~2n

22

(1)) Ny 34(7) and N

(54)

(55)

(56)

(s7)

3p~5{T) by accumulating

the diffraction cnunts for duration of 1, we can get Itotalo (8,4),

(AItotal cos Gtotal

) from above relations,

Both the opening angles of the photo sector windows and synchronism

of the sector rotation contain some small uncertainty, which may induce a rather

serious error in the observed values, especially in the value of Al¢oea; Sin §

which must be considered,

total

If the opening angles of the windows are not just % and a small phase

difference exists between sector rotation and sample, initial- and end-point of

each window can be indicated as (Fi,. 2)

window O-n
window ®+2

window 1~3"
2 2

3In.5n

INdOW ™ e
window = 3

Initial Point

0O +a
11

End Point
" +aq

12
2x + a

22
3

¢ Q
72 a2

Sn +a
7 a2
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Then the diffracted counts are accumulated not over a phase duration of w, but
over a phase duration of v + («'.;12 - a“). The accumulated counts of each scaler
are given by

" 4 alz
NO'" = %]a [Itotalo(e’o) + “total cos (X + Gtotll) dx
11

:P_ + - I ° (o
m(ﬂ 012 a“) total (8,4)

iy Mtotal [2 sin Gtotal + (al11 - Glz) cos Gtotal] (58)

n n <+ 022
- ]
Nw-2w(T) == [Itotal (8,4) + AL ., cOs (x ¢ Gtotal)] dx
" 4 021
=D (n+a -a )I °(A,¢)
- 22 21 total ’
n
+ = AItotal [2 sin Gtotal + (cx21 +4a )cos$ l] (59)
x
] 3+ a3,
.
N'_a'(f) e v [ItOtalo(e") * AItotenl cos (x + 6total)] >
2 2 2t %,
oy - o
= ; T+ 032 031) Itotal (e.‘)

-= Mtotal [2 cos 6total - (c:3l + cn) sin 6totalJ (60)

e o e e sy o e me
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n me— + a
- - 42
Naw 5'(1) =% 1"2 [Itotalo(e'” + 8lyoea) COS (x + 6tota1):] dx

n

n o
+ = AItotal [2 cos 6tota1 - (<:c.’l + 0“2) sin 6total] (A1)

Here we expand sin %55 and cos aiy into series and neglect higher terms of °ij
under the assumption that a

5 is small, In this case the time durations over

[N

which each scaler works are not i nt. They are expressed by the following
2
equations,

1 = nt 12 11 _D(wsta -a ) (62)
o.m w 12 11
2n
n + 02 - Qa n
= 2 2l = (w+a -a ) (63)
Tn2m nt w 12 11
2%

% _3x w 32 31
T
2
¥ +a -Qa
T = nt “2 #l B (g4 ag -a ) (65)
In_ 5w w 42 Wl
T 7




Here (# + ¢, - a

i2

1

- 16 =

,l)/2n show the ratio of the duration over which the i-th

scaler works, Hereinafter the ratios will be represented by Sij' that is

12 11
So-w =
v
T+a - Q
22 21
"+ Q - Q
32 31
Sw K} § z
™ cupe
2 2 2n
T+ a - a
b2 4l
2 2 L

(66)

(67)

(68)

(63)

Now the average intensities of diffraction in each duration are

[?sxn étotal + (ull + alz) cos étota;]

given by
N (1) N (1)
o.n o.n
To ' 1 Go .
al
o - total
z Itotal (8,6)
T +a
12 11
Al
total
= ItotalO(e") -

. _o22
[? sin 6total 1 . (u21 + 022) cos Gtotaé]

(70)
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N (1) N (1)
n.2n = W-2n
Al a - a
total
= Itota1®(8,4) + [2 sin 6, . [1- 22 21
" "
N (t) N
m 3n n 3w
22 22
Tn 3n N sn~31r
22 2 2
Al a -a
- o - total 32 1
Itotal (e") ‘______-2COS Gtotal l -
w 4
N
an 51 My 50
2 2 2 2
‘3l Sx T 83'~5'
2 2 2 2
sl a -a
total "2 ol

+ (021 + 022) cos 6totaJ

(71)

-(a +a )siné
31 32 total

(72)
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From these relations we have the following equations corresponding to Eqs. (56)

and (57)
N3' S'(T) N;F%'_(T)
13—"-5_' - I_'03’ s L - ——————
2 2 2 T 53'-5' T S'-S.'
TT 37
=3 Al cos §
T "'total total
= 2 a1 cos 6 1-5
n total total L 31.. J
77 2
-1 :
=& AItotal sin 6tota1 (a“ + a a a (7u4)
and
I o1 . Ne on(T) Ny o (1)
"~2' O't' -
1 S’_z' T So_'
=21 in §
* = Olrotal SIM Ototal
= 2 a1 sin & 1-S _ =5
=7 “ftotal total o-% n.2®
21
== 8I,,cal COS 6total (u“ + 012 + 021 + cu) (75)

In the right side of the expression of the above equations, the first terms
correspond to those in Eqs. (56) and (57). The second terms arise from the
uncertainties in the opening angles of the sector windows, and vanish when the
opening angles of all windows are just x, The last terms in both expressions

are mostly due tc the uncertainty in the phase relation between the sector
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and sample vibration, Since sin § is usually a quantity of the order of

total
0.1 or less, these two additionnl terms show a relatively large influence on

evaluating 8I, .., sin § from Eq. (75).

total
These uncertainties will be eliminated in the following way, When
the apparatus is driven in the reverse direction, the phase range of each window
changes from that for the rotation to forward direction., For example, the
window that previously opened over the phase range between 0 and 7 now opens

over the period between n and 2w, The opening ranges of each window are shown

in the next table,

Initial Point End Poin;
window O_n 0 -a T -a
22 21
window ¥_2 " -a 27 - a
12 11
.. 1r3u L In
window 3"z 3 - u32 T - a31
ind In_Sv 3n Sw
window - a - a
T T 7 42 T ol

By comparing Table II to Table I and referring Eqs. (74) and (75), we have

expressions for the case of reverse rotation.

(1) N' 3"(r)

3w S5n -
2 2 - 22
1 S'-2' 1 So-!

"

) .
; AItotal s1in étotal

+
| &

i 1l -3 - S
AItotal sin 6total ( ao  J - 2:)

[

-4 +a +a +a (76)
toral <% Stota: (an 1z 21 22)




(20)

N'-z'(r) NoJ(ﬂ

L

T8
n-2% o~

oy
* 7 8totay sin $total
+ 3 a1 in & 1-5 S

¥ "Ttotal SiP Storay (1 - S, - ,-2,)

1
- = Al cos § o t+a +a +a (77)

From Eqs. (74), (75), (76) and (77) we have

Miotal €8 8, 1 7 T S -
n_3n 3n 5%
727 72
\
2 2 2 2 2 2 22
Y Sam.sn TSy ag T S3p.5w ¥ Sy 3y
5—3_ 35‘ forward 5—5_ ;T reverseJ
(78)
and
. _x 1
8l otal SIn Sp i1 8 3-% S
o-w 2-2n
N!~2 () No-l(t) Nw-?t(r) No-!(r)
-t § —~
t S t S forwardlt S Tt S reverse
¥.2x o.% .2 (R

(79)
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As is shown by the above expressions, the sector constants play a significant
role in experiments for obtaining the values of 81, ta1 €°8 Gtctal and

Al y sin 8., ., accurately.

tota

Determination gg the Sector Constants

To determine the sector constants experimentally, a pulse signal
of constant frequency is used as an input to the counters. In this case, the
counts accumulated by the counters are exactly proporticnal to the duration
over which e~ch counter is activated. According to the Eqs. (58) through (61)

the accumulated numbers of pulses are

Co_'(r) = (r+ alz- 0'1) €, = T So_' C, (80)
1) = + - )C =158 C (31)
Cﬂ'?ﬂ( ) (ﬂ 022 qu (o) -2 ©
Cpoge(®) = (n ¢ o - 031) Co = T Sy_2x Co (82)
22 2 2
z : - = c £§3
C3'~5w(r) (7 + 0“2 u“l) Co 2 ¢ S3w~5' o (83)
2 2 2 2

for forward rotation. Here |, n and w are the same quantities as those definecd
oreviously, Cc is the cycle of the input pulse signal. Wwhen the values of CO

is known, the sector constants are given by

Lo_'(Y)

o.r (8s)
|G ¢
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o ne2n
B ey
“ne2n
Co T
w_3"(r)
. e
22
Yn~3n C T
- — o
2 2
C
21:21(1)
2
e TTT
e 2

(85)

(86)

(87)

When the value of Co is unknown, the following equations can be used with good

precision so far as a, are small,

i3
Co_"
S =
o- ‘
i 2(Co~n + Cw-ZW + Cﬂ.3n + C3ﬂ~5w )
22 2 2
q - n-2n
B LI +C _+C ,+0C
o-m w2 " "m-3n “3meam
22 2 2
‘-3
22
S LY N N Y
> 5 o7 T2 T3 31r~51r)
22 2 2
c3n-5v
a . 2 2
) 3 ‘S ~
2L 2((:0_,r *Cpp +C o+ c3"~5")
2 2 2 2

T e e w—— ———

(88)

(89)

(90)

(91)
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Resolution of Overlapping

In order to evaluate the quantities such as Icr°(6,¢), 8., cos 6.,
and Al sin 6, for a particular diffraction peak, it is necessary to correct
for overlap. One method of resolution is to assume that each peak may be

represented by a Lorenzian function to give2)3)

Ioj(¢)
1(20,¢) =:§E: 20 - 28 () 2 (92)
0]
j 1+
Bj(¢)

where 1(20,¢) is diffraction intensity corrected for background, polarization,
absorption, and incoherent scattering, Ioj(¢), 2eoj(¢) and Bj(¢) are,
respectively, the height, angular position of the maximum and half-width of
the jth component of the composit diffraction pattern at azimuthal angle of ¢.

For the diffraction intensity in the dynamic state, we make the
additional assumption that the half-width and angular position of the maximun
remain unaltered. Then we have

exp (+ ud  sec)

Ta1£(20,0) = T 0 .1°026,0) = Ip,.(26,6)

tota - Iincoh(2e'¢)

h(8) do sec8

1_.(4)

jii: -
: 2 (93)
20 - 2eoj(¢)
1l +

i
Bj(¢)
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and

BX . .
Blg;ps'(20,0) {fltotal cos 8, 4.1 + 3 (1 - ud, sech) [}total (26,4) - IbaCkgr(28'¢{Jt}

exp (udo sech)

X
h(8) do secH

AI°4(¢) Ij(29,¢)
= Z - > = —— AIoj'N) (94)
26 - 26 .(4) 2 Io4(¢)

j 1+ j

exp (udo secf)

AIq;¢£"(26,4) = (AT sin §
dif ’ total total) | oy 4, secod

20 - 2903(‘“ 2 Ioj(q;)

1+

8145"(9) 1.(20,4)
T N E-l-—— AT ."(4) (95)
= / - Q]
y A

3

3
Bj(¢)

where AIoj'(¢) and AIoj(¢) are the in-phase and out-of-phase component of the
dynamic diffraction intensity of j-th component at the angular position of its
peak, Ij(2e,¢) is the intensity of the j-th component which is expected from

the assumption of Lorenzian form for diffraction intensity., That is
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Ioj(¢)
I.(20 =
J( o¢) 20 - 2eij(¢) vl (96)
1+
Bj(O)
h(8) is the polarization factor defined by
l+ 2(20
h(8) = c;s (26) : filter monochromatizing (97)

1 + cos?(26,) cos(26)

h(e)

1 + cos2(28_) : for crystal monrochromatizing

8,: Bragg angle for the monochromatizing capital (98)
Actually, resolution of the overlapping is made as follows:
First the quantity Idiff(26,¢) is obtained at a particular azimuthal angle as
a function of the Bragg angle for the sample with static strain A,+ Then the
intensity curve is separated into each component peak by the usual process3’“.
and we get thﬁ)maximum values Ioj(¢), the angular positions of the j-th maximum
(280j(¢)), and the half-widths Bj(¢) at azimuthal angle ¢, The same procedures
are repeated at various azimuthal angles,
We then fix the azimuthal angle at particular points and measure

the in-phase and out-of-phase components of the dynamic diffraction at the

angular positions of the component peaks, We have the simultaneous equations

Blyje'(205,0) = z Ci5(9) BIo5"(#) (39)

i
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and
AIdiff"(Ni.o) = Z Cij“) “oj"“) (1c0)
i
where
1
C.. = (101)
1] 2015(4) - 268,5(¢) 2
1+ .
B

which give AIoj'(O) and AIoj“(O) for all component peaks, The same procedures
are repeated at various azimuthal angles, and finally we get AIoj'(o) and

AIoj"(o) as functions of ¢,

wWhen Ioj(O). AIoj'(O) and AIoj"(o) have been determined for each

component peak, we substitute them for Pcr(ﬁ,o), APCr cos 6.

and APCr sin écr’

respectively, in equations (34) - (39), Thus we have the following integrations,

. /2

1) - J- sin?¢ I__(¢) cosé d¢ (102)
1 J, °j
. n/2

1} =‘f sinZ¢ A1 .'(¢) cose de (103)
12 0 o)
3 ®/2

I =.[ sin¢ A1 _."(4) cos¢ de (1Cuw)
13 0 03

(89
N
~—

) n/2
13 =j I .(¢) cose dé (12
a1 oj
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. n/2
13 =j Al .'(¢) cosé d¢ (106)
22 0 o)

3 /2
I23 = -[o Moj ‘(¢) cos¢ dé (107)

By integrations graphically and using Eqs. (41) through (4u4) we
can get the orientation function for crystal planes corrzsponding to j-th
diffraction peak,

Narrow Slit Sector Technique

When one choses phase ranges between -¢ and ~, ;-- € and
" 3n an R .
ste, m-¢ and 7 + €, 7= € and 5= + ¢ as the phase duration over which
counts are accumulated, then total counts accumulated during n cycles of the

sample vibration are

€
N, = n f [Itotalo(eo‘) + AItotal cos (x + 6)] %x_
€

-

_n, n )
= =t 2 1t5ta1°(0,8) + = 8Ii5ea) 2 sin € cosé (108)
T+ d
2 T«
S LI o _h : :
= = 2¢ Itotal (8,¢) - AItotal 2 sin ¢ siné (109)
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dax
[Itotalo(a") + 8I,.,tal €08 (x ¢+ 6)] =

= =26 T4oa1°(048) = = 8lioea) 2 sin € coss (110)
3n R
2 ) dx
- [+
Ni"_ s nL' [Itotal (6,4) + AItotal cos (x + 6)] =
2 5—- €
=021 °(0,¢) + 1 AT 2 sin € siné (111)
w total ! w total

In this case the duration over which the scalers are actually activated is
nT}-"-=TS (112)
where 1 is the total time which is necessary for vibrations of n cycles, S

is the sector constant defined by the ratio of opening angle of the window

to 2n, The average intensity of each duration is then given by

. N (8,¢) i
z lo) [ ] - Q sSin € 1
10(8,0) Itotal (8,0) + AItotal cosé (113)
TS €
N, (8,4)
. 7 - o sin ¢ . i
sze,o) z — = Itotal (8,¢) - - AItotal siné {1iw)}

~N
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I.(6.6) N"(9,¢) _ °(8.) sin ¢
2(6, "fFTE"' = Itotal 8,4) - Bl ray €088 (115)
N3n,(68,4)
.7 ) o sin € ) .
ISN(B.O) P = L tal (8,4) + I, ra1 Siné (i16)

The semicircle sector technique corresponds to a special .ase where e is 7/2.
If we put € equal to n/2, the ubove expressions reduce to Eqs., (50) - (53),
Another extreme case is the narrow slit sector technique, which

was devised by Kawai et, al.l. In the extreme in which sector windows are

narrowed, Eqs, (113) - (116) are rewritten as follows

I,(8,8) = I °(8,0) + 81, ., cos (117)

total

siné (118)

I“(egé) O(e") - AI

Itotal total

[.03,98) = I 0ea1%(0,4) - 81, oray COSS (119)
2
13'(8,0_‘ = Itota1°(e,o) + 8l4otal 8iné (120)

2
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In general, if a narrow slit window opening between y - ¢ and y + ¢ is used,
the average intensity is given by
Iy(a.é) z I

°(8,¢9) + AItot cos (y + §) (121)

total al

As it has been shown above, there is not any restriction about
the opening angle of the sector window so far as the diffraction intensity
changes linearly with strain, In this case, the quantities that we have to

know are I

totalo(e")' Al and 8§, Thus we have only to use a sector which

total
has at least three windows., The opening angle of the windows is determined sco
as to reduce the experimental error.

As shown by Eq. (121), the narrow slit technique is superior to
other wide window sector techniques in giving a diffraction intensity at a
particular point of strain directly., However, as it has been seen, the diffrac-
tion intensity is always given by a ratio of the accumulated counts to the
duration of accumulation., The statistical errcor of the accumulated counts is
inversely proportional to the square root of the total number of counts, which
is proportional to the opening angle of the window, Thus the statistical
error of counting is reduced by widening the window of the sector., Widening
of the opening angle also reduces the experimental error in determining the

sector constant, Therefore, the wide windcw technique is superior to narrow

slit sector technique in reducing the experimental error.
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Measurement of the Crystal Sgacing in gzganic State

When the diffraction peak is high and sharp enough, the diffraction
intensity is usually symmctrical about the top of the peak, It is then easy to
find a Lorenzian functiorn by which the intensity near the top is represented.
Thus the intensity is shown as 2 function of Bragg angle as f:llow

I (9¢)
(o]

1(26,¢) = (122)
20- 28 (9)\?

1+
8(¢)
When the sample is deformed, the diffraction intensity at a given point changes

with strain. The intensity-strain coefficient at a certain point in the vicinity

of the top may be given by

31(20,9) 1 3T (9)
3 [26- 26_ (4] )2 %0
1 +
( 8(e)

/

+ 31(20,4) [- 3(2e )  26- 20 ae(o)'}

3(26) 2a  8(¢) 2 J

1(20,0) IQ(O)

Io(t) da

(123)

4 c———

ax(ze.o)[a(eeo) 26.28 as(o)}

3(29) da g8(¢) 23a

vhere a i{s strain,




Since the relations

I(26° +€8) = I(20o - €y0) (124)
and
31(28_ + ¢,9) A1(26 =~ ¢,9)
° .- 2 (125)
a(2e) a(2e)

hold in the vizinity of the top, we have

31(29o + g,8) 31(230 - £.6) 31{28_ + c,%) 3(260)
- B e - (126)
3a 3a 3(20) da

This relation will be generally independent of the assumption of
the Lorenzian representation of the diffrection intensity so far as the intensitly
changes symmetrically around the top of the peak.

The Bragg angle is related to the crystal spacing by

‘ &L ii1o7)
sind = >3 1127,

vhere 1 is the x-ray vavelength, d is the distance between successive crystal

planes, rn whole number, From this relstion ve huave

Ad cos eo
—S—-—-—-AO
d sin

]

By comtining this equation wvith Eq. (115) wve have

&d 1 cos 90 1 5
- - [51(290 - o¢) = a1(2e_+ c,0)) (128)
4 ¢ sin @ 31(2e° - c.0) L

a(2e)
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vhere Ad and AI(6,4) are changes in crystal specing and intensity at the point
of (8,6) induced by change in strain (Aa), respectively, 31(20o - c,¢)/ 3(20)
is the slope of the intensity curve at point of (28 = €,4).

When a dynamic strain a, ¢+ La cos w t is applied on the sample,
31(290 - €,0)/ 3(28) is given by the slope of the intensity curve obtained by
radial scanning for the sample with static strain a,e Dynamic diffraction ipten-
sities AI'(26° - €,¢) and AI'(QOo + €,4) are obtained by the dynamic x=ray tech-
nique, We can thun get the spacing change in dynamic state from Fq. (127).

This technique will be applicable especially or a highly stretched
sample, because, in this case, diffraction peaks separate each other and sharp

enough,
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