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PRINCIPLL OF THE DYNAMIC X-RAY DIFFRACTION TECHNIOUE+

Tatsuro Kawaguchi*
Polymer Research Institute
University of Massachusetts

Amherst, Massachusetts

Introduction

As it is well known, x-ray diffraction study is one of the most useful

means to determine crystal orientation. For usualy diffraction measurement,

several seconds or minutes are required to accumulate enough counts at each

point on the diffraction pattern. Thus it would not b( possible to directly

follow changes in crystal orientation occurring in short times. The dynamic

x-ray diffraction technique was developed as a direct means of determining

crystal orientation times1 . In this technique, the sample is vibrated

sinusoidally and the diffraction count is accumulated during specified

intervals of the vibration period over many cycles. The principle of this

technique will be discussed in the following sections.

Diffraction from Crystalline Polymer

The x-ray diffracted intensity from polymer films at a given Bragg

and azimuthal angle is given by a summation of

1. coherent scattering from crystalline phase and amorphous

phase of the film,

2. incoherent scattering from the sample, and

3. background scattering.

+Supported in parz by a contract from the Office of Naval Research and in Part
by a grant from the Army Research Office (Durham).
On leave from the Toyo Rayon Company, Central Research Labs., Otso, Shige-ken,
Japan, which is Dr. Kawaguchi's present address.
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That is

Itotal(",4) = Icr(094) + Iam (00,) + lincoh(,OO) + Iback(e9e)

(1)

where Itotal(0,4) is the total intensity of diffracted x-ray at Bragg angle 0

and azimuthal angle P. Icr(9,0) and Iam(0,4) are the coherent scattering from

the crystalline phase and amorphous phase, respectively. Iincoh(eo) is the

incoherent scattering. Iback(0,t) is the background scattering, which includes

stray radiations, air scattering and slit scattering.

In the case where experimental geometry is shown by (FiR. 1)

Icr(e,9) is given by

h(6) I - u d sec 0 2
icr(eP) = kcr h(6) Io Pcr(e,@) d sec e e (2)

Here Kcr is a constant. h(W) is the polarization factor. Io is the intensity

of incident beam. Pcr(e0 ,) is the density of crystal with particular orientation

which is capable to contribute to the diffraction at P and 4. d is the thickness

of the sample film. ui is the absorption coeffi-ient in reciprocal centimeters.

Intensity of the Diffraction from Crystalline Phase

As it is well known, the x-ray diffraction flat film pattern of an

unoriented sample consists of complete rings, while with oriented samples

diffraction concentrates at certain portions of the rings. The diffraction

intensity from stretched samples at a given point is a function of the applied

strain. In the following discussion we consider a case where a strain is described

by the equation

X(t) A0• + Ax coswt (W)

- -r- - - - --- -0
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Here Ao is a static strain, AX is the amplitude of dynamic strain,w is the

angular frequency in the dynamic strain, t is time. When the strain is applied

on the sample, the change in sample thickness with time is represented by

d(t) = d - Ad cos (w t + 6d) (4)0

where d0 is the sample thickness at the strain of Ao AX is the amplitude of

dynamic change in thickness, 6d is the phase difference between strain and

thickness change. When the sample volume is constant independently of strain

and Poisson ratio is a real number, Eq. (4) is simplified to

o(t) d - d cos W t (5)

The crystal distribution function Pcr(eO) giving the number of

crystals having a given Dlane oriented at angles between e a.id e + de and i

and ý + dP may he also expressed by a function of time as

Pcr(e,$,t) = Pcr 0 (6,1) + AP cos (W t + 6Pcr) (6)

cr cr
In general, the amplitude AiPcr a'nd the phase difference 6Pcr are functions

of a, t and w and may differ for different crystal planes.

By inserting Eqs. (4) and (5) into Eq. (2) we have

Icr(,0$) = Kcr(6) do secO Pcr°(ee,*) exp (-udo sece)

+ [l 'P .r cos (W t + dPcr)
Pcr° (e,*)

x - cos (w t + Sd)

x exp [u Ad sece cos (w t + 6d)]

Kcr(O) = kcr h(e) 10
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In most cases of experiments with polymer samples, the relationship

u Ad sece <<I (7)

holds. The exponential term of the above equation may be expanded as a series

and higher terms of APcr/Pcr°0 tid/do and u Ad sec8 may be neglected. Then

Icr(e90) =:"cr 0(e,) + &I cos (W t + 6 cr) (8)

where

Icr 0 (89,) Kcr( 8 ) do sec8 Pcr°0(0.) exp(-w d0 sece)

Kcr(e) Pcr° (e,0) (9)

Kcr () = kcr h(e) Io do sece exp (-w do sece) (10)

and

aicr Cos 6 cr = Kcr(e) APcr Cos 6Pcr

+ 'Icr (0 (0 cos 6d + i •d secO cos 6d] (11)

1 0

a1cr sin 6cr = Kcr(e) LPcr sin 6Pcr

+ I (8,) " I sin d u 6d sec@ sin 6 (12)

Ex-ression for Lan(8,#) and lincoh(@,#)

In the same way as for Icr( 8 ,#) the intensity of diffraction from

the 4rormhous nhase is represented by
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Iam(0,) = Iam°O(80) + Alam cos (W t + 6am) (13)

Here Iam°(e s) is the diffraction intensity from the amorphous phase of the

sample with static strain of )o, and expressed by

Iam°0 (0,) = Kam(e) PamO(e,0) (14)

where Kam(8) is a function of 8 corresponding to Kcr( 8 ) for tne crystalline

phase. Pam°(e8,9) is the distribution function of the amorphous elements which

contribute to the diffraction at the point (0,9). AIam is the amplitude, 6am

is the phase different between strain and diffraction intensity of the amorphous

phase. Then

AIam Cos 6am = Kam(e) Apam cos Spam

+ 1a °0(09) [ d •. cos 6d + U (Ad) sec e cos 6d]

(15)

AIam sin 6am = Kam(e) APam Sir, 6Pam

+ Iamo.~(8,9) Ad ~ sin 6d + P (Ad) sec e sin Sd]

(16)

just as in the case of Icr (eg,). PaP is the amplitude of the dynamic component

of density "unction Pam. 0 ,*). 6 pam is the phase difference between the strain

and change in distribution function of the amorphous elements.

ror the incoherent scattering the effects of orientation may be

ignored. Then the intensity of incoherent scattering is expressed by

hincoh"8 ' I (0,9) ncoh cos (h t + 6incoh) ()
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Here IincohO(8 ,€) is the intensity of incoherent scattering at a strain of

x, and

Aincoh cos 6incoh Iincoh°(8,$) [- ALd cos 6d + u (Ad) sec 6 cos 6d]

(18)

AMincoh sin 6 incoh-= Iincoh(,o) -Ad sin 6d + pd (Ad) sec 6 sin 6d]

(19)

Relation between Itotal(eO) and Pcr(6,8)

Insertin, ;qs. (8), (13) and (17) into Eq. (1) we have

Itotal(O8,) Itotal(68,) + AItotal cos (w t + 6 total) (20)

where

Itotal°(8,41) Icr 0 (6 ) + Iam"( 8 ,D) + Iincoho(8.o) + Iback(6,0)

(21)

Altotal COs 6total [tO~o(6j.0 0) - Iback(0.$] Ad cos 6d

+ ti (Ad) sec e cos 6d]

+ [Kcr(O) APcr cos S~cr + Kam~(B) APam cOS 6Pamj

(22)

AItotal sin 6total total°(bO0) - Iback(,I)] A do sin 6d

+ j (Ad) secO sin 6d]

+ [Kcr(O) APcr sin 6Pcr + Kam(6) AFam sin 6PPamj

(23)
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The first terms in Eqs. (22) and (23) arise from the change in the sample thick-

ness. The second terms show the effect of the change in orientation. rrom these

s 6d] equations we can get the expressions for the dynamic components of the crystal

orientation distribution function AP. That is, by using Eqs. (15), (16), (22)

" dd]and (23) we have

Kcr(O) APcr cos 6Pcr z aitotal cos 6 total - AIam cos 6am

-{totalo(',4) - Iam°(e8$) - Iam(e9$)L_ -d cos 6d + u (ad)

sec 8 cos 6d] (24)

and

Kcr(O) APcr sin 6Pcr AIltotal sin totaI -alam sin 6am

tota (of) - I am(86,) - Iam(Ot)] [ A-d sin 6d + u (Ad)

sec d sin 6d1 (25)

When Poisson's ratio is a real number and the sample volume

remains constant independently of strain, the sample thickness changes in

phase with the external strain and Eqs. (24) and (25) simplify to

Kcr(e) AP cr COS 6Pcr Aitota! cOs Stotal - alam cos 6a,

d 0 Sec , itotal-

(26)

and

K (9) APcr s P cr t sn S -ttal s an -3 al (27)c r'c r t o t a l " o a a
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In the above expressions all quantities on the right hand side can

be evaluated experimentally.

Orientation Functions

The orientation function of a given crystal axis is defined by

the following equation

3 cos~y --I 28f ,. . ,. .2(28)

Here Y is the angle between the crystal axis and the stretching direction. In

the case of experiments for which the geometry is shown by Fig. 1. The angle

y obeys following relationship

cosy z sin$ (29)

The quantity cos 2 y is an average value and given by

w/2
Sfw/2 cos 2y N(Y) siny dy

cos 2 y (30)

0/2 N(y) siny dy

where N(y) siny dy is the number of the crmstals oriented between Y and

Y + dy. One can show that the function N(y) is proportional to the function

Pcr(@,#) previously introduced. Taking into account the condition of Eq. (29)

we can show the relation by

N(n) siny dy = - const. P cr(3,) cos# d# (31)

By inserting Eqs. (29), (31) it;to (30) we have
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/12

-- 52- f0 sin2 t Pcr(e,0) cost d$ (32)

f Pcr(e,*) cost dt

0

If for Pcr(6.$) we substitute the quantity for the dynamic state expressed

by Eq. (6) we have

f Iin2[ Pcr0(e,6) + tPcr cos (W t + 6Pcr)] cost dO

COS2y = / . .. . .

-0 LPcro°e') + APcr cos (w t + acr cost d'

I + I Cos w t - I sin w t
11 12 13

(33)
I + cos W t - I sin w t

21 22 23

where Iij represents the following integrations

"w/2
11 sin2 $ Pcr°(elt) cosO do (34)

I 0

w/2
sin2o AP cos 6P cost d# (35)

12f 0 cr cr

sI = sin2 # APcr sin SP cost dO (36)13JOc

I Pcr°(to) cost d# (37")21 0

v/2
22 1 Cos 5cr COSC d' (38)

22 f0 c
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w/2
12=f APcr sin 6 cr cos€ de (39)

Usually I , I , , and I are far smaller than I and I so if small
12 13 22 23 ! 11 21

dynamic strain is used, one may rewrite Eq. (33) as

C=S 1 - Cos W tsiwt

21 11 21) 11 121

(40)

Inserting Eq. (40) into Eq. (28) we have

f = fo + Af cos (W t + 6 f) (41)

when f is the orientation function corresponding to static strain )o and

given by

-ll

21 (42)

0 2

The dynamic components of the orientation function is given by

Afco Ill 112 122A1 o (43)
121 ill 121/

Af sin 6 If 112- ý (44)
-2 121 (1ill 121)/

From Eqs. (9), (20) we have

Pcr°(€)= c 1 [Itto('00) i Iam°(8,) - incoh (9,€) - Iback(8.,')

(45)
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Fqs. (26) and (27) then lead to

AP Co=6 1 (AltotaI Cos 6ttl- Alam Cos 6a
cr c total am am

2 2*1( - i dosec6)[Itotal° (6,0) - Iamo (690)- Iback(e 0)
(4&6)

and

APcr sin 6Pcr = Kcr(A Itotal sin ýtotal - A.am sin 6a (47)

These three expressions are used to perform the integrations (34) - (39). Since

the integrations always come into the expressions of orientation function as the

ratio of two of them. The factor llKcr(e) will be eliminated in the performance

of the calculation of the orientation function. All quantities appearing in the

right hand side of these three expressions may be obtained experimentally as will

be shown in the following sections.

Semicircle Sector Technique

In order to obtain the quantities introduced in the preceding section,

esnecially AItotaI cos 6 total and Altotal sin 6total, the semicircle sector

technique was devised. Details of the principle of this technique will be

presented hereinafter.

A photo sector rotates in synchronism with the sample vibration.

On the sector four windows are arranged so as to activate the corresponding

scalers during the strain period between 0 and w, f and 2w, I and 3- , and

-J and 1, respectively. Average intensity of diffraction in these four inter-
2 2

vals are easily obtained from the accumulated counts of each scaler. Usually,

the diffraction counts are accumulated over many cycles of vibration in order
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to reduce the statistical error of counting. Now we consider the case where

the sample is vibrated with period of T(sec.) and diffraction is accumulated

over n cycles. Total time necessary for n cycles is

S= n T (48)

Each scaler works during the half of this duration.

Total number of counts accumulated by the scaler corresponding to

the window which opens between 0 and w is given by

N f(T) = D Itotalo (es) + AItotal cos (w T + Stotal dT

= nT [otal* (e) - 2 Itotal sin tota (9)

i- L 7r

The average intensity in the phase range between 0 and 7 is

S7 o (e)- - sin t total (50)

In the same way average intensities in the other phase range is given by

Iw-2 (e)= NWI/2r(T) t total 'eo) + 2 AItotal sin 6totaI (51)

II! 3 (ego) = 17r37! (T) 'total° (e90) -.- AIota cos 6total (52)
--2 222

I3•~ (8•) N N.5(x)
SR.. =) Itotal° (e,$) + . MItotaI cos 6 total (53)

2 2 I /2'r
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From these four expressions we have

I(,* -N~wT 2Nw. 27(T)] (54)

total2

[2Nf-3ir(T) 2N31T 57r(T)j=T 2 2 2- .
2 .(55)

T2N37 57r(T) Ni 37(-r
AI cos 6 1total total J 2 - 2 2 (56)

T T

ltotal ~ total [N 2 4 O.1T (5)

Therefor 'll we measure No0 w(T)q N•. 2 7(T), N~.~3 .(T) and N3 5.s,(T) by accumulating

2T2 2 2

the diffraction counts for duration of T. we can get Itotal (",1)9

(AItotaI cos 6totaI) from above relations.

Both the opening angles of the photo sector windows and synchronism

of the sector rotation contain some small uncertainty, which may induce a rather

serious error in the observed values, especially in the value of AItotal sin 6total

which must be considered.

If the opening angles of the windows are not just w and a small phase

difference exists between sector rotation and sample, initial- and end-point of

each window can be indicated as (Fi,. 2)

Initial Point End Point

window 0-w 0 + a w +
11 12

window w-2 W + a 2w + a
21 22

window ",.r + a + a
2 5 31 32

3-w3 7r 5w
window 22 a- +* 0
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Then the diffracted counts are accumulated not over a phase duration of ff. but

over a phase duration of w + (a - a ). The accumulated counts of each scaler12 11

are given by

f ° 0 -
No-. J 12 LItotalo(",*) + AItotal cOS (x + 6 totaI dx

- n (w + - a ) I o (e,.)

w 12 II total

n o [2 sin 6tota+ - a ) cos 6 (58)
:7 ' toa 6otal+ 1 12total

N n() w + 022 Itotal(F) + tI cos (x + 6totaI dxI v+ 021

- (w + a -a ) Itotal° 0(•)
S22 21

+ tA 2 sin 6 + (a + a ) cos 6 (59)
w [ttal total 21 22 totalJ

3w

N w_3(T) af r + 03 Itotal(e,.) + A6totaI cos (x + 6total) dx
-,,,i,--W w

2 2 + a 31

z a ('+ a - a ) 1 total° 8,.)

S3 2 3 1

n a1totaI 2 cos 6total - (a + ) sin 6 (60)
w l 31 32 total
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5w

N (T) n 2 Itotal(,O) + AItotal cos (x + 6total dx3ww Itta'toa tot
3w 5v 3wLJ

2 2' a~
4.1

n (W + a - a ) Itotali(eo)
4•2 41

+ [2 cos 6  -(a + a )sin 6 ] (61)W Itotal 6total 41 42 ttl

Here we expand sin ai. and cos aol into series and neglect higher terms of ail

under the assumption that a.. is small. In this case the time durations over

which each scaler works are not I nt. They are expressed by the following
2

equations.

w + a -a
T =nt 12 11 n -a ) (62)
0-1 W 12 112w

w÷a -a

T = nt 22 21 =n. (w + a - a ) (63)
W . 12 11

2w

w+• -a

+ a n
nt 32 31 ( (. + -+ ) (64)

v 3w W 32 31
2w

W + a -a

T nt 42 4 n(, + a - a ) (65)
3w-5 W 42 41

2v
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Here (w + ai2 - ail )/2w show the ratio of the duration over which the i-th

scaler works. Hereinafter the ratios will be represented by SiJI that is

w+a -a
12 11

S (66)O-W 
2w

w + a - a
22 21

S - = , (67)w.-2w 2w

W +a - a
32 31

Sw 3w = (68)

2 2 2w

W +a -a
42 41

S3W-SW = (69)

2 2 2w

Now the average intensities of diffraction in each duration are

given by

N (T) N (T)
o-w O~W

O W O-I

total w[+ s -1a L a 12 total
12 11

Itotal°(",) - total sin 6total 21 22 totalJ
k(w7/

(70)
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N () N ()
w.2w w-2w

Tw.2w T Sw.2w

=Itotai0 tel) +Atotal [2 sin t a 22 a21 + a )22) cos 6tota
w 1

(71)

N (T) N
1 3w w 3w

22 22

T Sw 3w w 3w

22 22

ItotalO8 - ~Ioa[ total (a3) 31 +a32 )sin 6tota]1

(72)

3w 5w(T) N3w 5w
22 22

13 w _Sw T S3 7w -5

2 2 2 2

Itotal°(e*#) + 2 cos 6total 1 4.2 41 - 41 + a ) sin Stota
w 1 1(

(73)
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Prom these relations we have the following equations corresponding to Eqs. (56)

and (57)

N3 w.5w(T) Nr 3U(T')

2 2 2 rfT

W total CO total

!.J Cos 6 ~ 1 S 535)
W total total w 3w 3 5

~Ittlsin 6total ( + 2) a(4
toa 1 32 41 '42

and

IN (iiw N O ~(T)ww-w o.W =

•~ Smm "2"w T 53 5 Or W~ s

-r- 2 toa

S8Itotal sin 6 total

AItotal Cos dtotal 1 + 0 12 21 22)

In the right side of the expression of the above equations, the first terms

correspond to those in Eqs. (56) and (57). The second terms arise from the

uncertainties in the opening angles of the sector windows, and vanish when the

opening angles of all windows are just v. The last terms in both expressions

are mostly due to the uncertainty in the phase relation between the sector
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and sample vibration. Since sin 6 is usually a quantity of the order of
total

0.1 or less, these two additionrl terms show a relatively large influence on

evaluating AItotal sin 6 total from Eq. (75).

These uncertainties will be eliminated in the following way. When

the apparatus is driven in the reverse direction, the phase range of each window

changes from that for the rotation to forward direction. For example, the

window that previously opened over the phase range between 0 and w now opens

over the period between r and 2t. The opening ranges of each window are shown

in the next table.

Initial Point End Point

window 0.w 0 - a C-
22 21

window w-.2 w- 2w - a
12 11

w 3w 3wwindow,-r,--"1-- - a •w 32 31

3w 5w 3w 5w
window -- 7- T'- a 7- 4

By comparing Table II to Table I and referring Eqs. (74) and (75), we have

expressions for the case of reverse rotation.

N3w 5 (T) N 3w(r)

2 2 22

r S •S-2w O-I

A -- sin 6
w total total

+ 6I total sin 6 total (l oS - S 2w)

61 Co 6+a +a + a (76)

total total (1 12 21 2
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N W U2W() No.1(.0

O2W

A •Itotal sin 6 total

It Itotal sin 6 totall - o-W w-2)

1- cs a + a + a + 01 (77)
" AItotal Cos 6total 11 12 21 22(

From Eqs. (74), (75)0 (76) and (77) we have

AT WA~total Cos 6total =-8 2- SW.3W " 3W.5W

N3 5(T) N 3 (T) "3 r 5 (T) N w r)Nk.- n-"( N.a5 -3

2 2 22 2 2 22

S3w,.5w S St.3W S 3vr.5w T Si.3W
2 2 2 2 forward 2 2 22 reverse

(78)
and

sin ItotalI si 6total 8 2 -S
0-W

( N v- () N OU () N mw(T) N U-()

o-w • w2w

SS2 forwardS S reverse
oS-2' o(w

(79)
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As is shown by the above expressions$ the sector constants play a significant

role in experiments for obtaining the values of &Itota1 cos 6total and

AItotaI sin 6 total accurately.

Determination of the Sector Constants

To determine the sector constants experimentally, a pulse signal

of constant frequency is used as an input to the counters. In this case, the

counts accumulated by the counters are exactly proportional to the duration

over which each counter is activated. According to the Eqs. (58) through (61)

the accumulated numbers of pulses are

C ()_ = (W + a - a ) C = T S C (80)Oj12 '1 0 o- 0

C (T) (W + a - a ) C T S C (81)w'•22 '1 o w-2w 0

Clr 3 w(U) = (W + a - ) C T S Cw-2 C (82)
-32 31 0 0~w

22 22

C 3 U5() ( ( a - a ) C = T S 3w5v C (63)3ww 2 41 0oW5 o

2 2 2 2

for forward rotation. Here n and w are the same quantities as those defined

previously. C is the cycle of the input pulse signal. When the values of C0o 0

is known, the sector constants are given by

Co.,if(T)

C T
(
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C- 2 w (T)
s *.27r " ... ... (85)

0

c (t)

2 2

C )T
22~ = 2 (7

2 Ts3.f-5_f - C°0 T (87)
2 2

When the value of CO is unknown, the following equations can be used with good

precision so far as aij are small.

C
0 - 7

S =(88)
o-ir 2(C + C 2  + C 3  +

C
=7 7r-2w (89)2 2(Co: + C +.

22 2 2

c f-37 r

7 r
22

22 (91)
S ff3w'-' "2 c°''2 + c ff2f + C 7 -3'-__ + c 3_.r-5 (0

222 2 2

The sector constants for reverse rotation will easily be given by the same equations.

* --- w-,-f f-3f -- f
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Resolutiin of Overlapping

In order to evaluate the quantities such as I cr°(,9), Aicr Cos Scr

and AIcr sin 6cr for a particular diffraction peak, it is necessary to correct

for overlap. One method of resolution is to assume that each peak may be

represented by a Lorenzian function to give2 )3)

I oj()

i(2e,) =2 - 26 () 2 (92)
j 1 +( j,

where 1(2,60) is diffraction intensity corrected for background, polarization,

absorption, and incoherent scattering. I 2eo (0) and 8.(*) are,0)3

respectively, the height, angular position of the maximum and half-width of

the *th component of the composit diffraction Dattern at azimuthal angle of 4.

For the diffraction intensity in the dynamic state, we make the

additional assumption that the half-width and angular position of the maximun

remain unaltered. Then we have

Ik6 exp (+ d 0 sece)

Idiff( 2 1,9 ) Itotal°_(2e,) - Iback(2e,_) -_Iincoh(2e )
h(e) do0 sec8

Zoj(0)

2e -2e oj()2(93)

+1 W )
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and

Aldiff'(20,*) - (AItotal cos 6total ( -2do secO) ta

exp (vd0 sece)

h(6) d secO
0

___________ _z~ ~(0~ Al .'(O) (94)

2e - 2e oj() J /0 )(

J + ( 0) ) J7

exp (ud 0 sece)
(Il sinAIdiff"(2OO) ( total total h() do secO

AIoj"(0) I
Al. .,,(0) (95)

/ 28 - 20 1(0 )i LiZ
S1 .+ 6j(•)0)

S8j(•) J

where AIoj'(O) and AI oj() are the in-phase and out-of-phase component of the

dynamic diffraction intensity of j-th component at the angular position of its

peak. I.(20,) is the intensity of the j-th component which is expected from
t

the assumption of Lorenzian form for diffraction intensity. That is
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I oj(O)

lj(2e20) 2 ,,(o) 2 (96)

1 +

h(6) is the polarization factor defined by

1 + cos 2 (2e)
h(e) = 2 + : filter monochromatizing (97)

1 + cos 2 (26m) cos(26)
h(e) = 1 : for crystal monochromatizing1 + cos 2 (28m)

e : Bragg angle for the monochromatizing capital (98)

Actually, resolution of the overlapping is made as follows:

First the quantity Idiff( 2 e,O) is obtained at a particular azimuthal angle as

a function of the Bragg angle for the sample with static strain A)of Then the

intensity curve is separated into each component peak by the usual process 3'•,

Lnd we get the maximum values I oj(), the angular positions of the j-th maximum

(20 j(0)), and the half-widths 8.(*) at azimuthal angle *. The same procedures

are repeated at various azimuthal angles.

We then fix the azimuthal angle at particular points and measure

the in-phase and oLt-of-phase components of the dynamic diffraction at the

angular positions of the component peaks. We have the simultaneous equations

AIdiff'(28io) C Cij (4) AIoj1(0) (99)
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and

AIdiff"( 2eio) - L Cij () AIoj"() (100)

where

1
C.. =(101)

1) 2eij(#)- 2°j (#) 2

which give AIoj '(#) and PIoj (#) for all component peaks. The same procedures

are repeated at various azimuthal angles, and finally we get AIl .'() and

di ."(e) as functions of *.

When I oj(), A Ioj'() and AIoj"(0) have been determined for each

component peak, we substitute them for Pcr(e9#)9 APcr cos 6cr and APcr sin 6cr,

respectively, in equations (34) - (39). IiLs we have the following integrations.

w= / sin20 I .(#) cos# do (102)
0 0)

= w/2 sin2  61 .'(0) coso do (103)
12 J0 0)

1/2
I: 1 sin 0( (#) cos# do (14)

2 00

21= j I/ oj(4 cos# do
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=22 A '() cosj d# (106)22 0]

= AI ."(s) cos# d# (107)
23 J0  03

By integrations graphically and using Eqs. (41) through (44) we

can pet the orientation function for crystal planes corre-.sponding to j-th

diffraction peak.

Narrow Slit Sector Technique

When one choses phase ranges between -E and c, - c and

COw t-c and wi t 2 E3 and 3 c as the phase duration over which
2 2 2

counts are accumulated, then total counts accumulated during n cycles of the

sample vibration are

E1 dx

=n-- 2E Itotal°(eo) t !I AItot a l 2 sin E cos6 (108)

N- =n.+ d x

IC [totalo(9,4) + AItotaI Cos (x + 6 dx

2 -

n n

-- 2  I (8,) -A 2 sin sin6)
i Itotal W total
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n [Itftalo('$) + A',total cOs (x + 6) dx

IW uI;-

=- 2c Itotal°(69#) - Itota 2 sin c cos6 (110)

3w

N 3w f3 Itotal e) + Atotal cos (x + 6 dx

-- 2 o(e0.) + 6n 1 2 sin E sin6 (1i1)
total W total

In this case the duration over which the scalers are actually activated is

n T 2E7 T S (112)

where T is the total time which is necessary for vibrations of n cycles. S

is the sector constant defined by the ratio of opening angle of the window

to 2w. The average intensity of each duration is then given by

Io(8,€) E No( 1 ito (e,0) - .sin E Al cos6 (113)
T S C

T sin c
I,(S,*) Itotal"e,) " sntal sin6 (1!4).. TS toa
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N (e,*) sin c

S( I totalo (8e) - - Altotal cost6 (115)

T S total £

I 3w(8,) E =- Itotato°(ego) + -- Al tota sin6 (116)
'7 T S E

The semicircle sector technique corresponds to a special ase where E is w/2.

If we put E equal to w/2, the above expressions reduce to Eqs. (50) - (53).

Another extreme case is the narrow slit sector technique, which

was devised by Kawai et. al.1 . In the extreme in which sector windows are

narrowed, Eqs. (113) - (116) are rewritten as follows

Io(0,*) 1 (total°(0,e) + AItotal cos6 (117)

IW(0 ,) toIalo (094) - A l sin6 (118)

IW(3,*) I total°(0,#) - Itota cos6 (119)

2

I (094\ 1 (804) + A÷total sin6 (120)

3w totalI

2
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In general, if a narrow slit window opening between y - c and y + c is used,

the average intensity is given by

I (e,4) =I 0(, ) + AI cos (Y + 6) (121)y Itotal( Atotal

As it has been shown above, there is not any restriction about

the opening angle of the sector window so far as the diffraction intensity

changes linearly with strain. In this case, the quantities that we have to

know are Itotal(6,), A total and 6. Thus we have only to use a sector which

has at least three windows. The opening angle of the windows is determined so

as to reduce the experimental error.

As shown by Eq. (121). the narrow slit technique is superior to

other wide window sector techniques in giving a diffraction intensity at a

particular point of strain directly. However, as it has been seen, the diffrac-

tion intensity is always given by a ratio of the accumulated counts to the

duration of accumulation. The statistical error of the accumulated counts is

inversely proportional to the square root of the total number of counts, which

is proportional to the opening angle of the window. Thus the statistica!

error of counting is reduced by widening the window of the sector. Widening

of the opening angle also reduces the experimental error in determining the

sector constant. Therefore, the wide window technique is superior to narrow

slit sector technique in reducing the experimental error.
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Measurement of the Crystal Spacing in Dynamic State

When the diffraction peak is high and sharp enough, the diffraction

intensity is usually symmetrical about the top of the peak. It is then easy to

find a Lorenzian functioru by which the intensity near the top is represented.

Thus the intensity is shown as a function of Bragg angle as *zllow

I (4)
0

((2-,2) 0- (122)

1 8(*) /

When the sample is deformed, the diffraction intensity at a given point changes

with strain. The intensity-strain coefficient at a certain point in the vicinity

of the top may be given by

3!(2e,0) 1 al 0(4)

-8 2e -#ý• I I0 II

+ 3I(20,0) a(20) 2e- 20 08(_ )

3(2e) L 8(*) SW a J

I(2e,#) TOW

0O 3

1(2e,#) 3 (2e 0 20-28 a(O)
. - I - ( 12;)

3(2e) a(o #() 30

vhere a is strain.
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Since the relations

I(26o + to#) - 1(20 - C94) (124)
0

and

+ c94) al(2e - C,)
W_ a... .. - (125)

3(2e) 3(2e)

hold in the vicinity of the top, we have

31(2e + C94) ai(24o - a.*) •I(2o÷ ' (2e)
-- =______w - 2 -- (126)

3a a)(2e)

This relation vill be generally independent of the assumption of

the IL)renzian representation of the diffraction intensity so far as the intensity

changes symmetrically around the top of the peak.

The Bragg angle ib related to the crystal spacing by

sine - n!2
2d

where A is the x-ray vavelength, d is the distance between successive crystal

planes, r. vwhle number. From this relation we have

Ad cos 00

- X - 0 a 0
d sin

0

By combining this equation with Eq. (115) we have

td 1 cos e 1
- a - -0" F..-6(20 - 9,) - A(20 0 C o¢)] (128)
d 2 sin e 0i(2e - Eq) L 0

0
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where Ad and AI(8,#) are changes in crystal spacing and intensity at the point

of (8,#) induced by change in strain (Aa), respectively. aI(20 - cg#)/ 3(20)0

is the slope of the intensity curve at point of (20 - E,#).

When a dynamic strain a + ta cos w t is applied on the sample,

WI(28 - E,9)/ a(20) is given by the slope of the intensity curve obtained by0

radial scanning for the sample with static strain o . Dynamic diffraction inten-0

sities AI*(20 - E,#) and Ai*(28 + E,.) are obtained by the dynamic x-ray tech-0 0

nique. We can then get the spacing change in dynamic state from Eq. (127).

This technique will be applicable especially or, a highly stretched

sample, because, in this case, diffraction peaks separate each other and sharp

enough.
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