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ABSTRACT

The distribution of stresses in a unidirectionally oriented, multi-
fiber composite as a result of process shrinkage and external loads has
been analyzed after assuming continuity boundary conditions at the inter-
face and certain hexagonal boundary conditicns in the cpace between the
reinforcements. Selected model specimens have been numerically analyzed
by computer, and the results have been compared with photoelastic experi-

mental studies. .
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FOREWORD

This report was prepared by Whittaker Corporation, Narmco Research &
Development Division, San Diego, California, under Contract DA 44-177-AMC-
320(T), entitled "Micromechanical Behavior of Fiber Reinforced Plastics."
The work was accomplished under the technical supervision of Dr. R. Echols,
Chief, Physical Sciences Laboratories Division, US Army Aviation Materiel
Laboratories (USAAVLABS), I'ort Eustis, Virginia.

This report covers work conducted from 14 June 1965 to 14 May 1966.

The principal techmnical investigator on this project was Dr. Juan
Haener. Dr. Gerhard Nowak contributed as a consultant, and Dr. George
Burgin was responsible for computer work. Other contributors to this pro-
gram were Messrs. Krishna Naik, Ming-Yuan Feng, Noel Ashbaugh, and Curt
Thompson. The program was conducted by Narmco's Engineering Department
under the supervision of Mr. B. L. Duft, Engineering Department Manager.
The program management responsibility resided with Mr. B. Levenetz,
Research Engineering, and the administrative responsibility with Mr. R.
Hidde, Project Engineering.
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SUMMARY

This program was initiated as a contiruation of analytical research
on composite materials which had been reported in USAAVLABS Technical
Report 65-58. The objective is to improve the understanding of the mech-
anism of load transfer through the composite material consisting of fi-
bers embedded in a matrix under consideration of internal stresses caused
by polymerization and temperature shrinkage of the matrix as well as ex-
ternally imposed loads. It is anticipated that this research will lead
to more reliable methods of predicting mechanical behavior of fiber rein-
forced plastic composites under load in order that the structural integ-
rity of airframe components from this material can be improved.

During the program reported here, the boundary conditions at the in-
terface and at the hexagon boundary have been analytically investigated
and a tridimensional stress and strain analysis on a unidirectionally
oriented multifiber bundle has been performed. The developed analytical
expressions have been checked on a special case of a single fiber and then
applied to analyze the distribution of stresses within a multifiber com-
posite. The solutions were checked by computer analysis, which also
provided numerical results for stress distribution in selected model spec-
imens. The analytical work has been compared with results of microphoto-
elastic studies conducted on similar experimental model specimens.



INTRODUCTION

The high strength-to-weight ratio of oriented-filament composites can
be most fully realized only if the optimization of these materials is
based on accurate stress analysis., Test results have shown that present
stress equations do not accurately reflect the true stress-strain distri-
bution in matrices reinforced with oriented filaments. At present, there
is incomplete understanding of the three-dimensional mechanical load
transfer between reinforcements and matrix in a composite subjected to
externally imposed stresses combined with internal residual stresses.

The influence of these combined stress conditions on composite character-
istics must be resolved by these fundamental steps:

l. Study of the solutions to the differential equations of
distortions

2. Expression of the physical problem in terms of restricted
numbers of these solutions

3. Examination of mathematical implicatiors of the solutions
4, Comparison of the solutions with test results

5. Derivation of practical design formulas from the theoreti-
cal solutions

During the process of the previous contract [DA 44-177-AMC-208(T)],
mathematical relationships were derived for a single fiber embedded in a
resin cylinder for the case of shrinkage and static loading with general
boundary conditions. Efforts on the multifiber case have led to the point
of obtaining solutions to the differential equations; however, boundary
conditions which would relegate these solutions to a specific physical
problem were not yet applied.

During the present contract, the general boundary conditions have been
specialized to correspond with the experimental specimens. This provided
the possibility of programming the equations for a computer analysis and
of obtaining numerical results for stress distribution within the compos-
ite models.

The question of so-called 'potentials" present in the anaysis of the
multifiber case has also been resolved. The solutions of the short and
very long multifiber case have been obtained in three dimensions. They
have been programmed for the very long fiber bundle.

As a special case of the multifiber problem, the stress distributions
for the single-fiber problem have been established for any fiber length.
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Because the theoretical analysis is applicable for any combination of
elastic properties of the constituent matarials, specific properties which
correspond to those of the selected specimen materials have been used in
the computer analysis to establish the diagrams for stress distributionms.
This now makes it possible to relate the theoretical results with results
of the microphotoelastic studies.,



TECHNICAL DISCUSSION

MEIHOD OF APPROACH

There are two generally known methods for reducing the fifteen linear
field equations. One method leads to three equations for the d;splacements

aag X aag
1 i 4 . 2
Vet T ax, oxg t3 G at (1)
{ = 1,2,3
j = 1,2,3

and the other leads to six equations for stresses.

In the present work, the displacement method expressed in equation (1)
was utilized. This equation covers completely the linear three-dimensional
elastomechanics, including the mechanics of elastic wave propagations (Ref-
erences 1 through 5).

One of the reasons for this decision was the existence of extensive
literature (chapters on basic equations in References 1 through 5) showing
how facts must be arranged to obtain solutions in terms of a restricted
number of elementary solutions. Further, it was believed that the obtained
solutions of the displacement equations for the static case can later be
more readily extended for dynamic considerations such as acoustical and

shock-wave propagation (Reference 4) than it would be by utilization of
stress equations.

Another reason for selecting the approach of displiacement functions was
that in three-dimensional elasticity, this approach is the only one that has
been used effectively in obtaining solutions of practical problems.

For the static case and by neglecting the body forces and assuming
rectangular coordinates, the equation for displacements becomes

Vg =o0. (2)




There are two classical approaches often used (see Reference 2) to
find expressions for displacement and stresses frgm equation (2): the
Galerkin-Westergaard approach and that of Boussinesg-Papkovitch and Neuber.
Here, the second method was selected, because the stresses appear as second
and not as third derivatives of a potential P defined as Papkovitch func-
tions. This fact facilitates considerably the transformation into cylindri-
cal coordinates as well as the numerical calculations.

The displacements expressed in Papkovitch functions are

= .3 . 1 3
517 B Tua W) axg [x ¥y + ¥, &

i = 1,2,3

The four Papkovitch potentials in equation (3) are solutions of the harmonic
equations.

v Fi = 0 1 = 0,1,2,3. %)

The completeness of the Papkovitch functions is shown in Reference (6) and
also in Reference (2).

Transformation of the equations into cylindrical coordinates, a process
which is shown in Appendix A, equations (Al) through (A25), enables us to
express the internal elastic condition in the composite. Without going into
further details of transforming the basic equations, (1) and (2), and equa-
tion (4), we transform directly the solutions !'1 and the F:I. into cylin-
drical coordinates, obtaining

1,_1 (r,¢,z)-n°§0 IEI[ajnk Jn(""nkrb Bjnk Yn""’nkr)] [ank smh(""nkzi-"

ajnk cosh(unkz,] o [‘jn sin(ng) + cn °°°(“.¢)] +

-



+n°§°o[ajnorn + Bjnor-n] . [ano + 6jnoz] . [ i sin(ng) + Cjn cos (n¢)] +

[ajoo L Bjc»olog l.].[ono E 6jc;oz] (3)
j = 1,2,3,0

Equation (5) represents three Papkovitch functions for each of the two mate-
rials with 36 constants in total. Introducing equation (5) into equation
(3) and after transforming (3), we obtain for the displacements (see equa-
tions (A60) through (A76) in Appendix A):

in radial direction,

§1'P1'W}T)§;'-'P1+zpa+l’o]; (6)

in tangential direction,

&'Pa-ﬁ%ja%[rP1+zPa+Po]; (7
in axial direction,
£, = P, '_1_4(1-\)) Sa;[r P, +zP3+P°]. (8)

The stress distribution from strain components is given by the physical
components of the stress tensor.
} (9

Here D;; are the elements of the strain tensor in cylindrical coordinates
and are testated as follows:

- —E S VI Jlrty
91} 1+ Dij+°1j(1-2vnkk 1-2\,[°'T+3]

o)
D, = g%" (10)
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D = %[51 + QE;_] (11)

3¢
Dy = 2 (12)
ne - [} B La] a2
w - d[Eed )
Dy, = %[%53-4-%51-] . (15)

The stresses can be represented and calculated directly from the Papkovitch
potentials through the following relation:

R |
o3 = Glax, P1tax Byt
3 i
—G @ '
2(1 - v) (61.1\’v2 %, axj)(xk Pk+P°) (16)

i = 1,2,3 3§ = 1,2,3 k = 1,2,3.

Equations (5) through (16) are general, and they are valid in the rein-
forcement as well as in the matrix. After adaptation to the boundary condi-
tions, the functions and constants will have superscripts I and II for fiber
and resin respectively.

For the present purpose, equation (16) has to be transformed into
cylindrical coordinates (Appendix A, equations (Al) through (A16)).

BOUNDARY CONDITIONS AT THE INIERFACE

A set of conditions results from the assumption that, at the fiber-
matrix interface, two neighboring particles of the two materials remain




together during all displacements and that the total shrinkage of the matrix
is greater than that of the fiber. Under chis condition, stresses will de-
velop in both materials, depending on the definition of the displacement.

It was further assumed that the stress perpendicular to the interface
and the shear stresses at the interface are continuous.

There are two possibilities for consideration of shrinkage. For
explanation, one cylindrical fiber in a matrix cylinder shall be considered
(Figure 1). As a first possibility, it is possible to describe the dis-
placement with refererce to the free ghrunken position, where one material
would shrink as if the other were not present; then the displacement of a

—_—
point P at the interface would be in Figure 1 the vector Py P = gll

—p—

and Py P = gI for material II and I respectively. In this case, the
term P in equation (9) should be omitted. The second possibility is to

define the vector P, P = gII = gI as displacement at the interface.
The second procedure is easier to use because in the first method the estab-
lishing of directional signs for forces and displacements and the two float-
ing reference systems present major problems. In equations (Al31) through
(A135), it is shown that both methods yield the same results. )

In total, the following boundary conditions have been assumed at the
interface:

Displacements:
£.(a,0,2) = € (a,0,2) 1 = 1,2,3 (17)
Stresses:
o1y(a,0,2) = oyy(a.g,2) 3 o= 12,3, (18)
GEOMETKIC GOUNDARY CONDITIONS AT THE FIBER HEXAGON

Referring to Figure 2, it can lre assumed for reasons »f symmetry that
the hexagonals will preserve their regular geometry during the shrinkage
and axial loading process.

Therefore, the boundary condition will be

1| _% ‘ C
€1 cosg ’ d :! cosg - Q:I ;;ga v B z} sing = ¢ (19)

8
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Figure 1. Reinforcement Cylinder Embedded in
Hollow Matrix Cylinder




Figure 2. Multifiber Composite Model
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where C is half the distance between two fibers before contraction and

¢ 1is the total shrinkage of the composite. For comparison with the left-
hand side, the right-hand side in equation (19) has to be represented by a
double Fourier series given in detail in equations (A77) through (A93).

In order that the fibers remain in the hexagonal arrangement, the tan-
gential displacements at the lines OA and OB have to be zero, so that

£’ (r,0,2) = 0 (20)
e e Bz = 0. (21)

Another geometric condition comes from the fact that the displacements (and
stresses) are identical for every multiple of n/3 of the variable ¢ , so
that in equation (5) the eigenvalue must be a multiple of 6:

n = 0,6, 12, 18, etc. (22)

To satisfy the boundary condition at the hexagon, which is a function of =z
and @ , it is necessary to have the solutions £ represented in orthogonal

functions of z 2nd ¢ . Therefore, we let equation (5) become
b %%n k = 1,3,5 7. .. (23)

The general path of the function £ is imposed by the geometry considera~
tion of equations (A21) through (A25), which express the following:

€y, 1is even in ¢ and even in z ; \
€ 1is odd in ¢ and even in =z ; > (24)
€s 1is even in ¢ and odd in z . )

In order to repeat six times in 2n , the periodic characteristic implies
that

£, (r.9,2) = §i(r,¢+r31, z) . (25)

11



Since the stresses are derived from the displacement vector by derivations
(equations 9 through 15), they also repeat six times in 2n period (equa-
tions A24 through A27).

For computing the shrinkage alone (A40) without external loads, the boundary
condition at the two ends is

Oas(r,0,tL) = oaa(r,g.t) = O . (26)

The integration constants and the eigenvalues for u, are derived from
equations (A44) throuzh (AS8).

The results of the multifiber case show that for the eigenvalue n = 0
the stresses are constant with ¢ , while for n # 0 the stresses repeat
six times in 360 degrees.

SPECIAL CASE OF A SINCLE-FIBER MODEL

In the case of a cylindrical filament centrally embedded in a matrix
cylinder, the potentials expressed in equation (5) degenerate into functions
independent of @ (Reference 7, page 41-2).

The solutions of displacements and stresses due to differential con-
tractions of the two constituents are given in Appendix B, equations (B8)
through (B13).

For the axially loaded specimen, the displacement and stresses are
given in Appendix B, equations (B48) through (B53). The total stress and
the displacements in the composite are obtained by superposition of values
from both cases.

The eigenvalues for the shrinkage case are determined by the boundary

condition at the two ends, where, for the single-fiber specimen, equa-
tion (26) becomes

oaIa(r,L) = caI:}(r,L) = 0. (27)

The only condition that makes the solution for the shrinkage case nontrivial
is

cos (k¢) = 0. (28)

12




This implies that

k{,=nzn,n-t1,t3,t5,... (29)
k*%%,n‘l,li,S,... (30)

The eigenvalues for the axially loaded single-fiber composite are determined
from the boundary condition at the free cylindrical surface:

oilm,z) = 0. (31)

The only condition that makes the solution of the loaded case nontrivial
is

bb Jo(_pkb) - g (ukb) - 0. (32)
The computed first six eigenvalues are

buk = 1.8411 ; 5.3314 ; 8.5363 ; 1.7060

14.8635 ; 18.0155 ; 21.1643 ; 24.3113 .

The boundary conditions at the interface of a single-fiber composite are
the same as expressed by equations (17) and (18) but are not ¢ dependent.

NUMERICAL RESULTS

A single-fiber model loaded at the resin as shown in Figure 3 produces
axial stresses in the fiber which are computed to be 25 times higher than
the externally imposed stresses.

13



fiber axis

Figure 3. Axial Stress in the Fiber Produced by
Load at the Resin End z = 1.5 inches
(Single ~fiber composite)

The following values were used in the equations of Appendix B:

EI = 10 x 10° psi (glass fiber)

II
E~ = 0.436 x 10° psi (epoxy matrix)

v' = 0.20 (Poisson's ratio for glass)

I1 '

= 0.35 (Poisson's ratio for resin)
a, = 0.005 inch (fiber radius)
bo = 0.6875 inch (resin cylinder radius)

14
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The shear stress 033 decreases with distance from the load and be-
comes zero at the half length (z = 0, see Figure 4). The axial shear stress
in the resin o}} (see Figure 5) is a function similar to o}3

The radial stress in the resin o}f is shown in Figure 6.

The tangential stress in the resin qé} increases with 2z and de-
creases with r (see Figure 7). The tangential and radial stresses in the
fiber ogé and o}l respectively are equal and constant for a certain
cross section and increase with z (see Figure 8).

Shrinkage stresses due to differential shrinkage in the same specimen
as above result in apparently undulated stress distribution (see Figure 9),
which is more pronounced in a specimen with a very high resin content. A
specimen with a thin resin coat of a thickness of 0.0025 inch was also com-
puted. Here, the computer results indicated no undulation of stresses.

The multifiber problem equations given in Appendix A were programmed
for an infinite fiber bundle. The numerical results show that the influ-
ence of the solution with the eigenvalue n = 0 , Appendix A, equations (A96)
through (A99), disappears at the interface at a certain total shrinkage ¢
of the composite and becomes a maximum at € = 0 . It should be pointed out
that € 1is not identical with BII , the resin shrinkage. If ¢ =0 , it
would mean that the total composite shrinkage is prevented for some external
reasons (cross fibers, fiber contacts, etc.). This would produce very high
tension stresses in the resin. In case the fibers touch each other, the
total shrinkage € would become almost zero and the shrinkage stress due to
BII would be higher.

The greater the total shrinkage ¢ becomes, the more effective will
be the solutions for n # 0 . The n # 0 solutions are ¢-dependent and
repeat themselves six times within 2r . The total solutions are, of course,
the sum of both solutions. To indicate the influence of both solutions,
Figure 10 shows at the left (a) the stress generated by the n = 0 solution
as a function of the total shrinkage ¢ .
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Figure 10. Shrinkage Stresses in Radial Direction
as a Function of Total Shrinkage

At the right side (b) of Figure 10 is the sum of the n =0 and n # 0
stresses as a function of ¢ . If the total shrinkage is not prevented and
the total shrinkage ¢ assumes a certain value (in the case of epoxy and
glass, -0.001132), then the non-zero solution is the only one which generates
stresses at the interface. These stresses are recurring every 60°. The
stress distributions around the fibers are very sensitive with respect to
the total composite shrinkage € . An additional equation or condition to
circumvent or determine ¢ analytically would be very advantageous. In the
search for an additional equation, we find that at the hexagonal boundary,
the following conditions exist:

/6

[‘% 1 + 031) + l ( 0“1) cos2g - 0131 sin2¢] = 0

o

c
—2 . (33)

O(r)¢)z) = 0 COS¢ » O » 2

If the correct ¢ 1is chosen, the conditions shown by equation (33) are
automatically satisfied. The reason for this is given in the displacement
boundary conditions of the hexagon (equation (19)).

One can visualize that the non-zero solution is additionally influenced

by the distance 2 C, of the surrounding fibers and the relation of dis-
tance to the fiber diameter 2 a, . The closer the fibers come, the more

20



pronounced are the circular six-times-repetitious stress distributions
expressed by the non-z¢ro solutions.

In Reference (Y), page 4, a condition similar to those in equation (33)
has been used to impose *he hexagonal geometry during deformations. Using
this condition for the present shrinkage case, similar to what was used in
Reference (9) for a loading case, it would be possible to set up an in-
homogeneous boundary condition at the hexagon which would not contain ¢
Such a boundary condition would contain only the shrinkage constants of
both materials, BI and BII G

The numerical results (see Figure 11) show that the radial stress at
the interface is in compression at points where the fibers are close and in
tension where they are farther apart. The shear stress (Figure 12) at the
interface is a maximum at ¢ = 22° and zero at @ = 0° and 30° . The total
shrinkage displacement between two fiber axes in the model was 2 x (-0.001132).
The dimensions of this particular multifiber specimen were a, = 0.14 inch
and Co = 0.20 inch .

Appendix C describes the methods used and the results of a photoelastic
determination of stresses of selected single-fiber and the multifiber models.
They are represented as stress differences. It is now possible to present
the theoretical analysis in the form of principal stresses, rather than in
the form of stress differences, and to compare the theory with the experi-
mental values.
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Figure 11. Radial Shrinkage Stresses at Interface
in a Multifiber Composite Model a =
0.14 inch; C, = 0.2 inch (Components:
glass and epoxy)
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Figure 12. Shear Stress at Interface Due to
Shrinkage aj, = 0.14 inch; C, =
0.2 inch (Components: glass and
epoxy)
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APPENDIX A

1 ANALYSIS OF
UN N E MPOS ITE

G ER W AX R

The displacement and stress components, in terms of Papkovitch func-
tions, in rectangular coordinates, are quoted as follows:

§L = P (/ ) 2%, (DCA F‘a+ }7) (A1)

G.; (D/% P o FJ)
t 765 [ (8327 - ?‘}{@)(x,dmv*r,)]

(A2)

To convert these expressions into a system of cylindrical coordinates,
one can perform the following proper and admissible transformation.

One transforms from (x , y , z) to (r, 0 , z)

(B"PJIE) to (P'r B!, ﬁ‘)
(U, v,W) to (S,I .fh §)

% % %) (%, GG
(q'g, ‘5;,(&) ( Ts, G, w)

The results are collected as follows:
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for displacements,

§ ="F - m[‘?fl(}bﬁ"‘iﬁ 'I'-PO)J (a3)
g,_ — FL = 4—0":)_))[%%(&?,4'%% +P°i, (A%)
gszﬁ‘m[%(k?"*iﬁ'rh)] o (AS)

for stresses,

0 =26{gzhi ~ T ) (Pt “Tasind)

BTy p)[))v T hs:ucb%)}
(Pt 2P tP) (46)

% = 26(5i5 % + meanss)(Psint + Res?)

z(l—») [ rve (35 Sink 3/1 n&s@‘?ﬂ
/'7"}7, +RP+P) (a7)

26 & 4 3o PV - Lrp2RAR):

(A8)
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O, =G|(5p 2 + ) (st - Psink)
T (coiée m "/Lgimy» 5! ]715;”4+7’z°“3"?)]

—_Z%—)T)[( %E b.Sw@ bc}))

(—,;;M h )J nf +z]>3+?q)

(A9)

= G’[(%})('F,Sin&’f ?7,_@3%)
t (S T Rest 3 B
2%)3)[ Sind B’t h%)b—J
()L?' +23'ﬁ,, t F) (A10)
G, = & [ (5% % ~ méwd) P
+ \‘}2’; ( P C@&—’Fzsim\b)‘]

- 5355 [ % e~ m %)
(AP +2P: 1 o) i
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for Laplace's equation of Papkovitch functions,
V: (F, cozd -—Bsiné):o (A12)
V; (P sing + R emd) =0 an
V:_ F5 =0 (A14)
VZ Po =105 (A15)

A solution of Laplace's equation in the finite cylinder in the domain
(0O<r<a,0<¢g<2nr, 0<z<{) takes the following general form:

(7]
,; {Z [ Ao Tt fus Yo 7«,‘,@}[ K Snh i, D)
+ &, cah }sz [ nsintme) S”c,o;(rn&)]
+ ) [ + ] [1ou B Easinen
-yre{
+5,c5(md)]
T ("(” T 600 ﬁoi)l)( Voo + S5 2 )- (AL6)
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Combination of equations (Al12) to (Al6) gives the following results of
Papkovitch functions:

F =z [Aut+ B ][y 30 J
[ E, Sintmbt F, cos(n)] cos d
1 Z [ Gt ™[ s tHus?]
[ NoSin(md) 43, e (m) ] sind

1 (Coe + Ds, 5)(A,,+6.,l?h,)co+
T ( Moo + Moo %) (G oot Hes 1?):,) sSing

t S{E[AWL ()t B Y, }Awh,)}
[Cw Sinh }/‘wfﬁ) + D ml}/l,wi»)]
-}:[ E, ( Sin (m+)d+sin(m-D&)
+F,(Cos (mt)d+ CJS(M-M)J
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+5

“m=

{ y G bt Y )]
L=

[ L b D)+ Mg o5h A3

L[ N, (emsm-dé - s (mide)
+ P, (Sin (mtd =Sin(m-D )J

= 21 e bt
‘[CWSi"h}”W’z’)+\DwCBWw%):I
"zl_[E,,(Co&(m+f)<\'J~003(m—D4>)
}F, (sta(m-Dé —Su‘n(fn+z)4>)J
+ f { Y [ GuugTnlAn ) # Hug Yelhug )
o | A=
T Long Sinh O M, cash A

'3[ M (sin(mtd 4sin(m-2)
+ P (coz(mi)d+ %(""‘D‘;’J
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+Z (G n+ Hoh™ oo tMue?]
[N Sin 0"4>)+Pm603(7nﬂ663¢
- ‘Zo [Anoh’ + 6noh' J'[Cnoﬂ%z]
»=|
.[E,, Sin(md) + F, ca (m&)]si@

t (ko t Moo (G, + Ho Loy ) cd
— (Coo +:Doo'2>> ( Aoo + BOo 13)") Sin#

(A18)

and

o

Po=2 {3 [0 059t Re Vo)

4=0
i [ SAPSMA (S_#i))-} Taf c,@l,(sjf-z)J

W, Sing ¥+ X caad]
*Z[&ion F Ry 2] [ Syot Too¥]
[ W, Sinad) + X %(icb):]
o0t Too®)( Qoo t Roo fep) . a0
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(0 <)L<m } for fiber

as }LS C/%# for resin
Domain:

o< &<,

Los £$X (A20)

Geometry consideration:

For 5
5,

g, (/L/¢/£)=§I(/l,"<tz)
§‘ ()7'/49/ Z) = §, (A, 4’, -Z) 2)

{ E,(n,&2) == (4-42)
gz( h/%%) = §,_(/7-,<\>, ~2)

(A22)
For §3; [ §3(0,<b,£) — ﬂ,‘“d_[
§,(h &)= § (A %2
\ §3 (h'/?/ ?) = --§3(/’-/ $-2)

(A23)

A
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Periodic characteristic of n/3 period implies that
E(nd 2)=8,(r,¢t] 2), wo
__g.t. 4> %) “'%%(h,‘f-’-'g’/ 8)} (A25)

'W

- (k4B =0yl (LD e
20 F— h ‘f L %), @
’gg{h’/ 4’; = %( 4) ) “zn)

Displacemepts

Sub-titution of equations (A21) to (A23) into equations (A3) to
(A6), (AY9), and (All) and taking into account the consideration of
the previous section yields:

Radial displacement for fiber,

Z {Z ( (mz-#fq_,}/: md'/“m}‘g(”'ﬁ

n=s, AFl 3
+—m¢,~" go A i) ‘z'zﬂ'*”m/"“*% S

f { Z ( I) ( “*W’“”)\Z,fmwﬂ)cﬂb/‘mﬁ} -c3(nd)
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Radial di-splacement for resin,

,_Z {Z ) (rm‘z—lfﬁ) /{1{.“11)603 /umg) ex(nd)
" (A2

+ {Z (Ao P T el 2] cotnt
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Z [ ) (4= n)h ""+¢\f,) (245"

+(85), ( 2—4))’L+fn)h‘"”+ 3 ) (445 4mx J
. Coz(mé)

T f[ (&,,) n " +(R)),, & Jz Cos(nd)
- ( " )oo z h'-, t (Azl)oo(z-w)a)h'.f(en o h'-

(A29)
Tangential displacement for fiber,

£X =) { ) Aot ar e, z:>} Smiong)

N2,

Z {‘ )(wm-» J,LL/ A)Cgl.}/‘w"ii}ﬂn('n»

M/z,
Z Z ), ™ —"7%‘& %sfnl,ywz)}smm)

L
Rl AV e

.}Ln-H +(&’; N M -l ZZJSM(’"¢)

(A30)
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\I"
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16N

M&

z/m 5 \ ‘
o f : Z (&, Yﬁ%— 5 SMA/“'“F)JS}"(@)
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(A31)
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Axial displacement for fiber,

= Zbo {Zbo (A‘:)w (‘/fm")JH/(&M")s‘m%mi)\]'Ca(mé)

=5 (42

g fg,. (Az,) v wm%,/ WW’"I’/Q,W@} Coymg)
~ (M) Stnh(A ) - co3(n
'tgié | ( &,,) (3-40")T, /< s }4‘%} o3

y WA h(u  2Y-co3(né)
17 {1 (@uponpneap
+f [ (83,),,@- 49" z}m(@)

)

1 [(‘9111) + R Q?hj (2-42D%

Axial displac t for resin

{f (Am(/wm, e —
5 ml, .
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Stresses

Radial stress for fiber,

n-l( L A
G, T :+,»=[le (A,,) (M=) (M~4(-PY T

apae \J;'i//§"1“fh>

(=A%)
+ -vﬁ-‘-& J/‘Mg

/-2 "
'<103‘:9q%4b9i5) ‘¢:€3(77¢9

P jZ ] (32 s i)
(st ") T s )
4 (m(/- (»’(mm«)) J_%M‘__J
- Cozh ( /Ltmz)j Co(nd)
L el
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. Z Sinh /(//Wi,)

F 2 z/wymw)}.

- e

Z AZ) B2 -m(n-) A" cos (1 4)
ho

A‘u)“ Q“)oo 27 +//+2.11))l(3 ”(A:sa)

R3d1a1 stre~s for resin has all terms defined in the same form as equa-
t on (A3) except for replacing all superscripts I by II, plus the
t.rms involving: Bessel functions of the second kind and

D (BE), e (nt#-y i) A cand)- 2B, 7

n={

Shiear stresses,

r Et &2 (o I _ rn S );)
0','1 —/ﬂ)‘ﬂz {Z (A,,ZN{(”' D(m-4(-p") ///(;fw
4F#9"‘$¢n
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Htwan, (1202 Tl i 2]
- Cosh y,m%) f -Sin(md)

+1 1) (@ By ]

T
. J‘bsinh}“wi)}o sin(mé)

f 7 [(A,T PRICE ) /z"”-J-s:M (o«b)]] .
£

- (A35)
072 has all terms defined in the same form as equation (A35) except for

replacing all superscripts I by II, plus the terms involving -Bessel

b -R-2
functions of the second kind and S (Bj)"((%)!_)n(nfwldﬁ))l 551!(7!47) .
:‘m

h 7/
I :.t bo
O/-s =F?7>"HZ {
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F Ao (202011, v ﬂ
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. Sinh %%z)} -co3(md)

+Z tf ( &;:)m H (1=2D7)T,, }“w k)
g fepe
; ~7(1-2%) \%”_j.s;”%z)
+[ —/(:4, Jn—/y"w"f)
e =t
Ca(nd) B : (A36)

(;’3 has all terms defined in the same form as equation (A36) except for

replacing all superscripts I by II, plus the terms involving Bessel
functions of the second kind.

Axial stress for fiber,

) = ‘F‘ Z i,z (A |t Ff o
P W’B—‘H} )U,; ch)}
0 COSL}“(»—:)‘Q%)} -ciz(md)

LT L] s it

’n%m ‘:%w
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'f- %Mp I\L}“ﬂ%@J

s D |- castma)
‘Z: g ) [[zu-»m: i) cohfuge)
—[( 'f/“ :A)Jny“w/’)
= Ztath i

. C3 (md)

+Z (A A7) 27 casn )

Z (6, 20=2D) 2" cr(nd)

M=bjr
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terms defined in the same manner as equation (A38) except for replacing
all superscripts I by II, plus the terms involving Bessel functions of

one second kind and

H-)J'[Z (6) 455 nt) “em(nd)

+ Z (&')”z( 1-V5) 7 e (m@]-

w;m

Boundary Conditions at the Interface

The continuity of displacements implies

£ (a4, 2) =§,I(a/¢/'z‘)
£ (a,&2) =85 (a ¢ 2)
§(a,d2 =5, (34 2)

The continuity of stresses implies

01(44’2)— n 44,%)
12 (@4’,23)'.'—':‘“ 1 (@‘b,%)

05 (a,4,2) =Gy (a%,2).
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Axial stresses at the ends should vanish; i.e.,

+ = r=E = (A40)
05 ()z,c\gi}l) Oy (n,$ 2]) =o0.
The sides of the hexagon should remain fixed; i.e., .

EX(E, ¢, 2 cnd -5, (S5 4, Dsindk =€

(A41)

%N b &
Since g Slné is approximately 5% of 5 %4) , we then get
% i

I(E%,¢, Z) cﬂ‘b — E (A42)

or

§ (C,“, $ ) =t Stcd. (A43)
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Equations to Determine Coefficients

The constants to be determined are listed as follows:

(Afl)w,(A;w/(Qz)w, - ) T2 T
(A (A2, (€2, (BEL, (B2 (K7

.{.,)1== o, év /:;/ DRI
&'—;// 5/ 6’/ v

(Ai)no ),
(Ao, (B,
(Af' oo - / (Q:)oo

(Af‘)w/ (B&nl)oo Y, (&::)oo ’

These constants will be determined by the following equations.

( N = 4; /23'/>8;'\ (R )
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Combination of equations (A30), (A31), and (A38) yields

(A :)m [ DAY T %«wa)
A4 402 2 T )
= (Al mtau-» ’)_-]‘7;'-'}”«%“9
= (ALl #401-2) Tt )

- (B [-7 14 0-0%)] Yau /g,w«)
( ”)“[—'n ‘H")}J Y»H/fw.«/t) = 0. ()

Conbnation of equstions (A32), (AS3), and A38) gives
(At P Tt Firsi)
+ (At Fhoan Tt Huanl)
T { Ak o9 P
t (A:)w( 'ftm“) ~Tnt ;'”MW“)
1 (8w (7%,..,)0“) Yn-;}'“cnm“)
t (B (i Yo foua) =0
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Equations (A34) and (A39) yield

Al (7%;) [—‘ (M=) (M40~ %ﬁ‘i’-
+ /Qnu T,y Yon i
vl SI:IK%__%&,&J /,1* )}
1 GA: w('/%;t) [‘3'2)’9 «»MJ:'/‘em“)

+ (Mdﬂ J;v-ﬂ /“(mdhé
+ PTms) -~ (mt40=25) 5, ’Eﬁ"‘ﬁﬂ

[—2 )%

+(A) W)( —(n-0D (7n- 4(/—»»:#&:&

- /ta-ae a Jo—w}"‘w‘w@

+ (1=2%)( S:ﬁfi -J’; M 04 » 4)]
t (A:)w(i%)':) [ ~(3-2V" )/“NHMJ; }“WM/
-7‘:#0.0 Y Jon /‘m “)

_ g‘mﬂl—(wmmwue)ﬂz%
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a
+ (h-;A o Yn-o%h-wa)

_ U=D(3-40%) —p',«myy «»«9]

= (B[ ~m-dm -2 Youlforas®

[~2p% 7

~ B55) [ o Yot

+ /‘mw: a Ynﬂ}“cm@
DY m+d) = (Ot 4 (1= \ qJ)
v [~2p5* a
= O ° (A46)

Equations (A35) and (A39) yield

b o EI - U
(Au)w(w)[(m—l)(w—;/.(,_pt)) Jr (9« a_)jwa)

.-/q(m%( h- 2(/-3.)1 ) J.}%»M)J

+ ( A::)M (%)[/ﬁm)m (m+2( I-P;))\Tml/(“lmﬂhd')

"/u(m:h T ( wu.“):,
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A”) /+))’ [(fn —) (m-4(1-DVT)) _:70.‘14:«&)_

— /um_,w(m—z(/—p‘))\z, /(m@] .

- (A:) W(TE-;)[——( NH) Iu%mﬁww( ni2(1-)%).

I ;/I,Ma)]
(Bi) (T"E-i) [ (n-D(7=4(-22 Yh"}d(n-fwd)/a} |
/u o ( M=201-2%) Yn}'u r»-w"*)]

(BLG5) [ - Tl
1 Henary (P 201-2") T, W)J

=10 . ‘ (A47)
Equations (A36) and (A39) yield

(A (753) vt 59
'I'/‘Q,,_M (2(1-)%) ’”)\J;Hyrma)]
+(A:.)w(75p:=) [/“(mw (7 20-2") Ty )

‘/“ :MM \Tn/(“(mw a)
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F(ASh (52 [ 0 S
' + Ain-on (2("‘)7':)"”)\7;-1}/‘«%9]
(AL) GES) o P09 Eufpa)
fanad darsd
+ (Bl (B Ao ® Yot
P 20-59-2) Yo o)
F (B (5[ At 742079 Yo Gt
o Yo Jonscd |

=(). (A48)

Equaticns (A29) and (A4l) yield

(Aﬁ " [(’n-rz—#))’) -, }/1,, wonk)
s 22T s 58]
T (AL (M=) To oo 25)

"’/“(Md/d —c§$\fh yfmﬂm ﬁ)

5




F(BEL(mt2- 455 Y, (hose 255)
Yoo 5% Yoo sy
+ (8}, [ (n+40-P™D) Y, (ot o)
oo Z Yoo 5]

— , ce(¥ 5
oy

€ ,_ A5
‘%F( D i (Ab.o(u-a)«w +HD” 2hoy3

24¢ (— l)‘fl (-—’)i 8 ™
\ Ar Z =) (6i-3)(ti~5) = ZLQ?’S

(& )w = (@)= (K:)w:'O-

From equations (A37) and (A40), we get

e = Lff P VA S AN
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Equations (A34) and (A39) give

) -PF) - _ h-2 EI
(A”)M(IUL(/ P7) n)('n ) a o

T AD (4= -n)(m-) e (_/f;

t (B ) (41— ~n)(m#) A~ (/+yl

(A52)
and
I . E*
(Au)s 2 m»‘f + ((Qf)oo 2 B4
EEI: _INnE ng T
'(A) ’“'w' B2 = ~(8)), 255
- I-.zp‘- - /“2.1); (A53)

Equations (A35) and (A39) yield

(IAIT)M (75;;_: g (/h- ) ah—z

= (A"I)M ( %} n (m-4(1-5%) a"*

( 6210),", < /.;E.;n (M H(-P5) o

a (A54)
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Equations (A37) and (A39) give

(AL, 4070257 +(Q,), 2(1-209= (6"

and (A55)
(A2),, A9 + (QE) 2029 =~
A56)

Equations (A30), (A31), (A32), and (A40) give

(A,),, (m=40-»=pa""
(1), (o= () e
= 0. (A57)

Equations (A29) and (A42) yield

(An ho (A01=27)=m) LL"?) K
&,), [ - (1-2%) +M) ( L;} i

))
=
C‘\
11\4
.’{\‘
<:I
<
‘,?
%
S>
\".’.
*
<
~~

Led _(-))'8
\ Fe 8 ([:‘—:)(Lé-s)(td-‘s')ﬂ_p ”’lxa”’ (LKE)
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(Aade 20-227(c25) + (B2),, ()

=§£

7.'173'
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(A59)



Transformation of Coordinate Systems

One has the following transformation:

(L4 P (h&3)
(P)‘/ Fa‘/ Pz;) - ('F:, ]71, P:) e
(u, v ) == (§,3,5)

g

r d

— :
. 0

Cartesian Coordinate System Cylindrical Coordinate System

y A
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The transformation relationships are as follows:

{ﬁ = nSind (A61)

(A62)

=4 2X - X Cc:;tb (A63)

on
X
%_)Z-_ =1 24 =5in<‘> (A64)

58

IR Sy v e e, o e T s



From equations (A03) to (A66), we get

(A67)

(A68)

(A69)

The relationships between two coordinate systems for displacements and

Papkoviteh functions are
U == §, cosd -3 sin¢
v = §,sin® + §cas¢
w=§,

F)‘= P‘ casd — ﬁ65n¢
P3= 'P, sing + P;Cas‘?
=""
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(A70)

(A71)



Combination of equations (A3), (A70), and (A71), and dropping the P,
term yields

U= §' cosd "§zsin4>
= P cnd —Psing
- 755 { casd 2| head (Peméb-Psind)
+ h Sinb(Psindt Prcosb)tZR)]

- ﬁlﬁ_i;"b[ncmb( P cosd —, Sind)

+hsind (Psind +gcas¢>+z}zgj}
= P esd — P, Sin &
~ H0D) {U’*”“’%/Z [rpt 2ps]
_ u%% hP, +2 }3]& o

Similarly, combination of equations (A4), (A70), and (A71), and dropping
the P, term yields

60




V = §'3fnb + §, cad
=== P, 5;n+ + ﬁ.m*

- 4‘#55{5‘"4’ $i(~P 1 3R]
g c‘:‘?% [ l"?' +2 F 3]} g (a73)

Multiplying (A72) by cosp and (A73) by sing , adding together, and

then making use of the trigonometric identity sing + cos®y « 1 ,
one gets

§, =P i(;i."ﬁ)'{%,_ ()Lf, 'I'%B]} : )
§;_ =Fh- 4(_["-;) {k%[’tﬂ“"%ﬁ]} (a5)
§6 =k -#@{?ﬁ[)’:ﬁ +’3f5_]} (A76)
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o i dary Copditi Equatio e Outer
Surface of the Hexagon

At the outer surface of the hexagon, one has

gl"( ii_/ *,/ i,) coylb __gn(c%’ 49/ z)Sincb =& @AM

or

§ ( cosé /49 ) o e'&““’ (A78)

We want to represent

& hec o = {f Ay Co3 %f)m(é""*’)

“Mh=0

=y, T+ Z Ay Co5(6m3)

20|
(L—o)

5 suclly
(7"4)
+) fdm%( 2 )ersma)
M| AH (A79)
X,(i&/ $) -=<'E «M—C‘\’/ { giiiﬁ/éf (A80)
b {5
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The coefficients of the Fourier representation are as follows:

) e
Tttt =["[ o g e
oo =2 0%/9 by = L [Ly, Liae JV
= ‘57‘ 3¢ (a82)
2) o
J % f le Lecd casl bwk)dz ddb (a8

=fy‘fkdmo¢;g§_(fﬁskldzsd¢

%
owo = SE [ callmd) 4y

= éni [J'/Z cox(bm-)dd- Ma‘ﬂ
?[zs'nlé(‘w-D %l _ (%5 cottmbds
m— | 0

% bm-4)d_ LS
H[" eallmpbdp 4
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Xy, == [z sin [umdW,] _ zsin[(Em-3)T]

Em-1 bm-3
p2sinLim9N) f" _%&2%14{]41
o e R L

=én§[ m-){m3)m-5) "'f. “c!.:‘?l"*]'

(A85)

When M= |,

7( M‘%)Jk '=‘E[5-31 "i‘lgﬁ] (A86)

When “M = 2

fm;«\»&=ﬁ_;_ fuc%ut‘(é_
= 4e[8 - 255+l

(A87)




A = !igé[- L] == £ ‘
mo T (‘m—t)(""'\; {L..‘g) (4 m-7)(ém- ,) (‘M'iD

t T8 m-Eom 1)
+ (- l)u-'-l?»’]

~%(Z Sates ]

vhen M=

o= \\y

(a88)

“[3 whasus + Vi)

vhen M = eVer

3) ooy

f f g&cém&ﬁ&a’zd¢”‘0‘ffﬂkﬁ
(A89)

oy == 13 * AN (A90)

65



l
3
L

'.\

_-—_-r[&i C~1) % J[f ai,)’):j)(éd)*( J L()fj
J when ~m=cdd

(A93)

% J[Z <¢»—u'(238)71w>+(>2£3}J

hen  “m=—even .
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P W P

The solution to the biharmonic function in cylindrical coordinates,
for the stress fields without polar symmetry, is

L=) (A" +A X"+ A K HA L Jeuint
hefe (A94)

+/Agl?,/?— +A‘hz+A7¢'

Then, the stresses and displacements are as follows:

GI“I ='n§,‘/4 [ Am Fh{h) +Azn5n()9 +Adnl§’t0}) +AME"MJCG(9’»

-t“A;/z" t2ZA + -F_—_‘f; (493)
T =) [ARDHAED AR A Fofenod

297 Xz
i -2 E (A96)
As A7 t2 A+ o

5.0 [AROHAE A FA i
t A, 172
5 =) [AFEIDHA, EWTAF +4~Wm¢

v _,
= Ag (HP) KYE 1+20-DAN/E
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£ =5 [AJ,—’,,(» tAENTAEBAE (»Js.-,,(m@
e Lo

+ (DAL

(A99)

vhere F(r)'s are functions of r only and are defined in the next

section.

Detinttions of (e
Fuld = —(m-pm p"*
Fa® = —(n-D(ni) A~
R, (D= —n(my "2
R W)= —(n-D(ntd p~"
Fal) = (m=dm ™"
Fal® == (m+)(mt2) A~
F,(0) == "n(m) 7"

Fon = (1-2)(mn-) p™
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(A100)

(A101)

(A102)

(A103)

(A104)

(A105)

(A106)

(A107)



FW = (m-0m4""
F (R == m(nt) A*
F®)=—ntmt) A~

F (== —(n-Dnp™
— )4 n-
F;”lh.)— - z"_ég)h !

Fm ()'_) = ﬂg.é).ﬂ.}z_‘“'/
Faon() = LA !

69

(A108)

(A109)

(A110)

(Alll)

(Al112)

(Al13)

(Al1l4)

(Al15)

(Al116)

(Al17)

(A118)

(A119)
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Boundary Conditions for n =6, 12, 18, . . .

1. At the interface, the stresses and displacements should
be continuous; i.e.,

o 0;708,4) =G (a,d)

AnFr@tAr Eiw-AL Fin)-A% Fr
B A;:L F;n(a) _A; E;[%) =0 (A120)

o

/z (a 47) ”_ (a $)

A':Fq"(a) 7LA Flon a) Aqunq) A /:/cm()
_A F,,,,( -A Fn(4)=0 o)

0

§|I(a/ $) =§Ix( q/4>)
AIFI(4)+A () A F (a)— AI /4)

Bn 2N [y

—ABh M F/A (4) =0 (A122)
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§,7(a,4) =8 (a,&

A, F,,n )+A F. ()“AMF,‘;() A»,F/:n@
A ()“‘A Fl(a) == 0" (A123)

3n 11u

2. At the outer surface of resin, it should remain a regular hexagon
after deformation; i.e.,

‘§II—< C,—%;_&, 43) C'OS# =&

A o (emm) t AL P B2) + AL Ry, (529
t A, Fin &@ = 66[5 (éb(—r)%@at i) JZJJ

when vwm= otH

5 [i - )@.‘3) il %’J

(A124)
when m=gm

“h=bm , m=/23
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- 5509 =5 (¥, %)X
ArEXQHALFL@ + AL Fr@tA B

- B[ AP (550 + Aubae ) AP (&%)
+ K Fon ()| el =0

m:‘/ /2,/1, ' e (A125)
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Boundary Conditions for n = 0

1. At the interface, the stresses and displacements should
continue.

x x
. ((a,0=0; (a0 .
It {mplies .
A =0 (A126)
5

.ZA:: —,ZA;[ —A;a'z - -,% . (A127)
b 0, (4,4) =G e 4

It implies

and

A;: = A;L =0. (A128)
. §la®) —§ (a9 =0

This yields

T (/- X
A‘ 2( E;)da - A ;(/Egﬂl a

+ A; !.&ZE_:_L&: =0. (A129)

2% At the outer surface, the hexagon remains regular after
deformation.
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As [ JEoE m Cc¢,¢‘>>’j+ A [2(/ D“)(&.@J
— 3€ L? G155
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Comparison of Two Reference Systems

With reference to the original position of a particle before shrink-

age, the shrinkage stress in the shrunken, equilibrium position
is, from equation (9),

T
T ’9?
G; n) = /-hﬂ = /3 ) (A131)

r=a = composite interface
before shrinkage

Matrix Shrinkqﬁe 'nB

Composite Interface

after Shrinkage

l

Distance of the Interface from
the Fiber Axis before Shrinkage

Figure 13. Graphs Showing the Comparison of
Two Reference Systems
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With reference to the location where the material particles would
shrink if the other material would not be present, the tensor equa-
tion (9) for stresses in the matrix in one dimension becomes

=r g QF
Sl = 1+VE 9n

(A132)

In Figure 13, the relationship between the displacements is

—i’+ = +4f
‘s" E-ap

’a}, ’af:I -
%2 At a1

Substituting equation (A3) into equation (A2),

I
E’;T,I-—f’gf"‘ ﬁj)

(A1364)

shows that buth reference systems yield the same shrinkage stresses
o011 » equations (Al) and (All)

. The comparison could be made in three
dimensions and would show that, in general

- A———

1,55/9)'—-5;,-(/\,?5,@) : (A135)
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APPENDIX B

IRIDIMENSIONAL ANALYSIS OF THE
SINGLE-FIBER COMPOSITE

SHRINKAGE CASE

The solutions for a biharmonic equation in a system of cylindrical
coordinates with axisymmetry are as follows:

L= % (SimAB A T A8 tAs A LD
A Kefth) t A Ak KA

where Io(“k") and Il(ukl‘) are modified Bessel functions of the first

kind and of the zeroth and first order respectively; and lg(ukr) and
&(ukr) are those of the second kind in their corresponding zeroth
and first order.

Risplacements and Stresses

The displacements and stresses in terms of strain function are:

= -2 Y
5, E "

§, = (&£ )[zu-y) VL - %—é‘} (®3)
0 = é—(PV‘L Bh‘) (84)

Q=& (»viL -1k -

77



G =2[cwvi-ZY]
_Z_,r- . ) _ ) B
G=slv-»ovu-8) o

Combination of equations (Bl) to (B7) yields

5, = ] cospuon)| Au Fut A AGHAGH)

(B8)

$ = ; Sin ;ﬂhz)[%/—;dw Al AR o]

(B9)

0, = % Cos (/‘WB)[ AwsFi t Ay N AG M

(B10)

= 5 confpudl Ao A TAGPAGY)

(B11)

U= 2 Cofid | AdRW AT A A

AJ
(BlZ)
G, = ] si M[Aw FNt AwFut AdG AL G 4
(B13)
where Fy(r) , . . ., Fy5(r) are functions of r involving Io(ukr) and

11(ukr)» and G, (r) , . . . , Gu(r) are functions involving Ko(ukr) and
Kl(ukr).
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Definitions of F(r) and G(r) :

Fef® = = (422) 4 ) o1
) = —(E2) A LA @13)
Fult = ()40 3 )
Fult) = (LU [ ()T, ) AT ] o
od) = Lt + 8] o
Faslh) = /4/5 20=) L, k) /“/./LI /%/z)] X6

Fuft) = /«0 T 20
Ful) = = M (20-, ) LA 621)
Fud®) = A L. 2% w225
FulP = /«j [2(2-2 T, ) 1 I,/m)] 25
Fu(h) = //Af I }/‘ah) @24

/z/uU’) /%/ L/%Al.o /Mhh’) +2(1-¥) I /%h)] (B25)
l/u h) — ﬁ% KI/%”) (B26)



Gy () = (’dff)/%’}‘ KO/(%/’*) (827)
Gy = | l:l:f) /“; KoM (828)
Gilh) = (L""—*EP)/‘AT | ‘4“‘”)"%‘%‘9*/'@"/(4/4/‘;8

Gl h) = M “'L[7”A Ko i) — 5'7%&] 7
G (h) = /«,3 [(~20) K,W) K yw]mm
Gyt = plu [ K44 o

G_&"{") .—_—-/4‘}3 (1~2)) }'(‘7‘((/9 (B33)
GT,A,( H = /‘(Af Koyll/") (B34)
G,./,{h) =/kf[—2 (2-—») KW)-I' MK,}NW] (B35)
Gl = "/(Qs K, l/fg,/u) (836)

G’,‘/J’l) '-:/(/J’[\/A&LK,(/“’N)‘"Z(FD) K'}q‘lhj(rm)

Superscripts I, 1I were omitted in equations (Bl) to (B37).
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M

1.

si d ditiops

At the interface, the continuities of stresses and displacements
are assured.

Y g'I(a,z) + g:r(ujzs) = a(/g“-{@-‘)

This implies
A,:‘ F,;(d) + A\“;t 5‘/ -t(a) + A/: /'-7:( ) + A;/ in( a)
X X r _x - = \t_ 4 .
+AWG}A/M> +A4»€16.w“) = &(/) (5‘)17?5:4%1) (B38)
k=), 35
b) §,7(2,2) +§, (a,2) = zrp‘i B")
i Fi(® HAL Ff®) + A7 Fa@ AR Fago)
+ A; G;[o.) + A; G;( %) =(@I~t3x) %Sin( &) @39)
% =), 335; e O

¢) G (a,2) =G a,z)

)
Ao Foa(t Al Fio(a) = A Fauft) —As Fol®
—A%Ga® *A; G, (@) =0 (840)

81



A) 6;31( ax) = OZ:(Q,'K"J)
AZ FEO HALEL - An Foro AL
~ AuGfa)-A, %‘Qﬁﬁ)

2. At the outer surface of the matrix, the resin should be free from
normal and shear stresses.

a) 0;%(b,®) =0
Ao Fi (B 1Al Fal®) +AL G A, Gy =0
(B42)

b Gy (b®=0
xr I X X X Ir r X
A:A Flllu(b) +A3& fj“(b) t Aw Gmﬂ’) +A%G/;;,(9 =t

(B43)

3. At the ends, axial stresses for both fiber and resin should
vanish.

05214, 1) = G (1, L) =0

The only condition that makes the solution nontrivial is
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cos W) =0. (B44)

This implies that

/“d = ﬁzn- , k=L 13 25
£

Remarks

l. In deriving equations (B38) and (B39), we have used Fourier
expansion for a constant and a function z .

2. It is interesting to notice that the eigenvalues determined
by equation (B46) are consistent with the argument of the
orthonormal function used in the Fourier representations in
equations (B38) and (B39). The coincidence is not accidental;
rather, it is intentional.

3. The constants to be determined for each k are A{ , A; ,

A{I 5 A%I ; A%I , and AZI . These six constants can be found
by solving the simultaneous equations (B38) to (B43).
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AXIAL LOADING CASE

The superposition-product solutions of the biharmonic equation in
cylindrical coordinates with axisymmetry has the following general form:

L =g Sinh(s, z)[ LWL WIS
A Y EAFA M/{&YW}

(347)

where Jo(ukr) and Jl(ukr) are cylindrical harmonics of the first
kind and of the zeroth and first order respectively, and Yo(ukr) and
Y,(uir) are that of the second kind.

5, = 3 cabualA EONEDHA GO G

5 =23 """W’[& RIS ,,u‘%o“)*&‘i;’:’zi
%= cab A EDTAFOTA Gt G ‘{@J
G = cahd (A tAEIDHA G A G
5, = 3 o ABNAEIAGIAG)
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=Y Scn’%ﬁ{/}flw EOA, GG (A)J

(B53)

where F(r) , ..., Fio(r) are functions of r involving J (p.k )
and J, (wyr), and Gl(r) ..... Gy3(r) are functions of r Tnv volving
q(u.kr; and Yl(u.kr)

Definitions of F(r) and G(r) :

e =(ué£) /’Af 3, ) =
FM/h’) == _(LEP )/213\];}/%&) (B55)
A

Ful® =(HER)AC [#0-2T ) AT )] o
F 5D = /%,. [ /‘,‘, JZ}%)L) - \—77%&] (B58)
F w(}") ""/‘2 [ (1 "Z)))\Ey%’l) ""/”4/’—\7; f‘/z)] (B59)

_ 2 Ji!
F m(ﬂ) - /l(&l %Q (B60)
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F ) = =U=22) /ai\r, ) (@61
Fal® = =4 () @6
PP = A [2(2—»)\7' bt A A /, M)] (63)
Fu®) = /‘(q J /m) 364y
Fou D= 7% [ Hah T +2—(/—)))J,'}/4~A)] 565

G (), ..., G,3(r) are defined exactly in the same manner as
equations (B54) to (B65) except replacing J,(ukr) and 3 (mx) by

Ko (uyr) and K1£ r) respectively. Superscripts I and II were omitted
in equations (B47) to (B65).

Imposing Boundgry Conditions

1. At the interface, the continuities of displacements exist.
This implies

a) §7 (a,2) = §"(a,2)
Ak Fo(® 1A Faf0-A L Fafo-AL Fao =0

(B66)
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b) §,7(4,2) =& (a,2)
A Fa® 1 AuFu® -Ag R @-AL R =0 aen

At the outer surface, radial stress of resin should vanish;
i.e.,

. :
0;1 “’/ %) =0 .
It implies

b A E K
Ak Fa® AL Rt =0 (868)
At the ends, resin is subjected to axial loading; i.e.,

0;31()"/ k) —_— F()L) = load per unit area .

This yields

b, -z D)= o

and

X 4
AJM/AI =0 . (B70)

87



Equation (B70) implies

I
= . 71)
Aak. 0 ®

Then combination of equation (B69) and (B71) gives

I C
A,A, = 5 al (872)

M mlﬁl) '

2 o vllle ELIEED

1. Eigenvalues are determined from equation (B68); i.e.,

then /%b%%g) =J, %b) : (B74)

2. The loading at ends can be represented as Dini-Bessel
expansion; namely,

FiA) =‘-/% CAIJ;}”,@/») (B75)

where

B b
Ca= b L M) +£J,,uw}’lf, AFLf @76
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For the case F(r) = 1,

23, (Meb) (877)
Ca

~ AslfauiyHTmst]

Remarks

1. Eigenvalues pi (> 0) are determined by equation (B74).

2. Coefficients of Dini-Bessel expansion for loading at ends
can be found from equation (B76) or (B77).

3. Constants to be determined are AI , AI , and A{ll‘ . These
values can be found by solving equations (B66), (B67), and
(B72) simultaneously.

4,

The condition that a/b is much smaller than unity is assumed.
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APPENDIX C

PHOTOELASTIC EXPERIMENTS

=FIBE P

To perform an experimental evaluation of the shrinkage stresses
for a single fiber and epoxy resin matrix via photoelasticity, four
cylindrical specimens were fabricated. Typical dimensions of the cylin-
ders are shown in Figure 14. Specimen one contained no fiber; specimen
two contained a 4-mil-diameter boron fiber; specimen three contained a
S5-mil glass fiber; and specimen four contained a 10-mil glass fiber.

le 3 in. -I

Fiber

meere_— . ST 1.1_!75 in

8

Shell Epon 815
With Dyethynolamine (15 phr)
Used as Resin Matrix

Figure 14. Typical Dimensions of Cylindrical Specimens

The method of fabrication for the cylinders and fibers was to locate
a fiber in the center of a metal tube (the fiber was supported to allow
axial freedom of movement as the resin cured) and to pour Shell Epon 815
resin with dyethynolamine 15 PHR (parts per hundred weight ratio) slowly
in to fill up the tube, allowing air bubbles to be forced to the sur-
face. A rubber stopper was used to plug the bottom tube end (the fiber
end simply '"rested" on this stopper).

The resin cure temperature cycle was 200°F for 12 hours, with post-
cure at 250°F for 4 hours. A parting agent applied to the inner surface
of the tube allowed the resin to shrink during the curing process and
during the cooling period.

Figures 15 through 18 show the specimens photographed under direct
polarized light (quarter wave plates are in the system to allow only
stress magnitudes to be seen). White light was used for the photoelastic
analysis because the various colors indicate very clearly the stress mag-
nitudes present in the specimens.
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Figure 15.

Epoxy Resin Cylinder without Fiber
Viewed under Polarized Light
(Quarter wave plates are in the
optic system)
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Figure 16.

Boron Fiber (0.004-inch Diameter)
in an Epoxy Resin Cylinder Viewed
under Polarized Light (Quarter
wave plates are in the optic
system)
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Figure 17.

Glass Fiber (0.005-inch Diameter)
in an Epoxy Resin Cylinder Viewed
under Polarized Light (Quarter
wave plates are in the optic
system)

93



Figure 18.

Glass Fiber (0.010-inch Diameter)
in an Epoxy Resin Cylinder Viewed
under Polarized Light (Quarter
wave plates are in the optic
system)
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As can be seen from Figures 15 through 18, the boron and 5-mil
glass fiber buckled due to the compressive load applied to the fiber
by resin shrinkage. As nearly as can be seen, the 10-mil glass fiber
specimen did not buckle, but remained straight.

From the photographs of the boron fiber and 5-mil glass fiber
specimens, the following information was obtained:

Boron Fiber (4-mil diameter)

Buckle wavelength = 0.238 inch/cycle
Double amplitude = 0.0125 inch

2-pil Glass Fiber
Buckle wavelength = 0.212 inch/cycle
Double amplitude = 0.015 inch

Since the theoretical analysis is predicated upon the fiber's not buck-
ling, the specimen chosen for quantitative stress evaluation was the
10-mil glass fiber specimen.

In order to photoelastically analyze the stresses in the resin
around the fiber, a thin slice along the fiber axis from a cylindrical
specimen must be used. This is to allow the polarized light to incident
perpendicular to the specimen surface and also to make the stress field
appear two-dimensional, by having the thickness of the specimen smali
enough that the thickness stress component can be neglected. To cut
slices for analysis from a specimen at points and in directions of de-
sired stresses is a standard technique for photoelastic measurements.

A problem is encountered with slicing when thermal stresses are the
quantities to be measured, since during cutting, heat is produced and
this perhaps distorts the original stress values. In addition, the
remainder of the resin material might result in stress releasing of the
fiber.

It was therefore decided to slice the 10-mil fiber cylinder in
three steps in order to observe this effect. The cutting was also done
under a high-pressure water jet to minimize the effects on the original
thermal stresses present in the specimen.

It was decided to cut the specimen first to 1 inch across the flats,

then to 1/2 inch thickness, and finally to 1/8 inch as a goal for analy-
sis evaluation. A diagram of the cuts is shown in Figure 19.
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First Cut

Final Size

Figure 19. Typical Cuts Made on 10-mil Glass Fiber Specimen
to Obtain a Specimen for Quantitative Photo-
elastic Stress Evaluation

The stress patterns of these cuts as shown under polarized light
(quarter wave plates in the system) are found in Figures 20 through 22.
Additional slices cut parallel to the fiber but perpendicular to the
first cut migh% have further reduced the effect of heat during the cut-
ting operatio:.; however, this idea was rejected because such slices
would have cut off the zero isochromatics reference points which are
necessary for the quantitative analysis.

The pictures, of course, show some change in stress pattern between
the first cut and the final cut. One has also to be very careful in
evaluation of the fringe lines and remember that the fringe order in-
creases with thickness of the specimen.

An elementary examination revealed that the stress near the center
of the fiber for the first cut and the stress for the final cut turned
out to be fairly close to each other in magnitude. On this basis, it
was concluded that the original stress pattern was not greatly harmed
by slicing.

It was decided to use the Budd Company reflection polarscope as
shown in operation in Figure 23 to evaluate quantitatively the stresses
in the slice from the cylindrical 10-mil glass fiber specimen.



Figure 20.

Glass Fiber (0.010-inch Diameter)
in Epoxy Viewed under Polarized
Light after Slicing the Cylinder
to 1 inch Across Flat Areas
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Figure 21.

Glass Fiber (0.010-i:ch Diameter)
in Epoxy Viewed under Polarized
Light after Slicing the Cylinder
to 1/2 inch Across Flat Areas
(Second cut)
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Figure 22,

Glass Fiber (0.0l10-inch Diameter)
in Epoxy Viewed under Polarized
Light (Direct polarscope) where
Distance Across Flats is 1/8 inch
(Third cut)
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Figure 23. Budd Company Reflection
Polarscope
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EXPERIMENTAL ANALYSIS

The reflection polarscope operates by observing the fringes in a
birefringence model coated on one side with a reflective coating. 1In
affact, the reflection polarscope simply doubles the specimen thickness
since the light-path thickness is doubled.

The first step in quantitative stress evaluation by photoelasticity
is to determine the stress-optic coefficiency for the particular material
of the model.

This is done by using a standard calculable stress distribution
model and bserving the fringes as this model is being loaded (this
technique is discussed in detail in Reference 1).

For this case, a flat sheet of the same thickness as the final cut
on the 10-mil glass fiber specimen was cast from the same resin and with
the same cure cycle. A ''dogbone" tensile specimen was then machined
(under cooling) from this plate.

The test section of the machined dogbone was coated with an aluminum
paint for reflection of the white light used in the Budd Company instru-
ment.

The dogbone specimen was then placed in a tension testing machine
and load was applied. As the load was increased, the "tint of passage"
or fringe order was recorded. Several load and unload cycles were used
in this process. In every case, the applied stress was below the elastic
limit and conformed to Hooke's law.

A plot of the fringe order versus applied load gave the slope of
the load-fringe order curve. The stress-optic coefficient was then com-
puted as shown in Reference 1.

In the following, symbols and formulas used in photoelastic analysis
are listed.

Difference in principal stresses;

0’1 - 0; = %9 (Basic photoelastic equation)
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where
K

n

t
J,. 0,

stress-optic coefficient in lb/in./order
fringe order
length of passage of the light vector

stresses in 1 and 2 directions

For the tension specimen, let (j; = 0

P/n

E% (loaded direction)

applied load
width of specimen at test section

thickness of specimen ;

0,

P/bh %h , t =2h (for reflection polarscope)

slope of load vs fringe order curve

18.7 1b/in./order (as determined for this case)

22 _ 2x18.7
bn 0.5

74.8 1b/in./order for this type of resin

With the stress-optic coefficient determined, the 10-mil glass fiber
slice was mounted so as to be viewed by the Budd instrument.

This picture under polarized light is shown in Figure 24, Small
grease points were used to locate spots where the stress measurements were

desired.

A plot of the difference in principal stresses at a radius of 0.10 inch
from the fiber center along the fiber length is shown in Figure 25. The
0.i0-inch radius was chosen for plotting, since this coincided with a sta-
tion used in the theoretical analysis.
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Unloadad

Loaded

Slice of 10-mil Glass Fiber in Epoxy
Resin. Specimen under Reflection
Polarscope (Quarter wave plate in
system)

Figure 24,
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The standard Tardy method was used to determine the fringe order at
each point of interest; i.e., the polarizer and analyzer sections of the
polarscope were oriented each time to bring an isoclinic or principal
stress direction on each point. The analyzer then was adjusted to bring
the lower observed fringe order to the point of interest. The fraction
of this degree movement to 180° gave the fractional order to be added to
the lower fringe for the final value.

The versatility of the Budd instrument allows an additional feature;
i.e., to pass light obliquely into the specimen and thus to separate the
magnitude of the stresses. This was done for the center fiber point and
only for the specimen without external load. The principle of oblique
incidence and separation of the principal stresses is discussed thoroughly
in Reference 1. The plot of magnitudes of these stresses for the center
point is shown in Figures 26 and 27.

The theoretical analysis has been extended to the case where the
resin surrounding the fiber was subjected to a uniform compressive load
in the direction of the length of the fiber.

It was desired to accomplish this same effect in the experimental
work.

The loading scheme for this operation is shown in Figure 28.

A minute portion at both ends of the fiber was removed inside the
resin so that, in effect, it was not loaded under a pressure application
to the ends of the specimen. The load measurement was determined by the
spring load cell attachment shown in Figure 28.

The results of this determination of principal stress difference
under compressive load are shown also in Figure 25, and allow a direct
comparison of the unloaded and loaded specimens.

Unfortunately, the mirror attachment for oblique incidence measure-
ments could not be brought close enough to the specimen due to the inter-
ference of the load cell. Therefore, it was not possible to separate
the stresses at the center point.
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Spring Load Cell Specimen

Figure 28. Compressive Loading System for
the Single Glass Fiber Specimen
(Fiber diameter - 0.010 inch)
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MULTIFIBER MODEL

Glass rods 0.275 inch in diameter were assembled in a simulated
cylinder consisting of a 19-fiber array and an epoxy resin of the same
cycle which was used for the single-fiber specimen.

Figure 29 depicts the glass rods assembled just prior to the surround-
ing of the rods with resin.

Upon completion of the fabrication of the cylinder, a 1/8-inch-thick
slice was cut from this specimen. This is shown in Figure 30 under polar-
ized light (with quarter wave plate in the system).

It can be seen that the specimen shows the stresses in the resin
between the rods to be symmetrical in nature.

The resin between a group of three rods within this specimen was
selected for analysis (the selection was based upon uniformity of the
distance between rods).

Figure 31 shows the magnitude of the difference in principal stresses
along a line joining the center of the resin triangle to the interface of
one of the glass rods.

A good comparison of these stress magnitudes was obtained with the
analysis reported in Reference 2.
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Figure 29. Assembly of Multifiber Glass
Rod Specimen prior to Filling
with Resin
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Figure 30. 1/8-inch-Thick Slice of 19-Rod
Specimen as Viewed under Direct
Polarscope Optic System
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