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ABSTRACT 

The distribution of stresses in a unidirectionally oriented, multi- 
fiber composite as a result of process shrinkage and external loads has 
been analysed after assuming continuity boundary conditions at the inter- 
face and certain hexagonal boundary conditions in the space between the 
reinforcements.    Selected model specimens have been numerically analyzed 
by computer, and the results have been compared with photoelastic experl- 
mental studies. . 
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SUMMARY 

This program was Initiated as a contiruation of analytical research 
on composite materials which had been reported in USAAVLABS Technical 
Report 65-58.    The objective is to improve the understanding of the mech- 
anism of load transfer through the composite material consisting of fi- 
bers embedded in a matrix under consideration of internal stresses caused 
by polymerization and temperature shrinkage of the matrix as well as ex- 
ternally imposed loads.    It is anticipated that this research will lead 
to more reliable methods of predicting mechanical behavior of fiber rein- 
forced plastic composites under load in order that the structural integ- 
rity of airframe components from this material can be improved. 

During the program reported here, the boundary conditions at the in- 
terface and at the hexagon boundary have been analytically Investigated 
and a tridimensional stress and strain analysis on a unidirectionally 
oriented multifiber bundle has been performed.    The developed analytical 
expressions have been checked on a special case of a single fiber and then 
applied to analyze the distribution of stresses within a multifiber com- 
posite.    The solutions were checked by computer analysis, which also 
provided numerical results for stress distribution in selected model spec- 
imens.    The analytical work has been compared with results of microphoto- 
elastic studies conducted on similar experimental model specimens. 



INTRODUCTION 

The high strength-to-weight ratio of oriented-filament composites can 
be most fully realized only If the optimization of these materials Is 
based on accurate stress analysis.    Test results have  shown that present 
stress equations do not accurately reflect the true stress-strain distri- 
bution In matrices reinforced with oriented filaments.    At present,  there 
Is Incomplete understanding of the three-dimensional mechanical load 
transfer between reinforcements and matrix In a composite subjected to 
externally Imposed stresses combined with Internal residual stresses. 
The Influence of these combined stress conditions on composite character- 
istics must be resolved by these fundamental steps; 

1. Study of the solutions to the differential equations of 
distortions 

2. Expression of the physical problem In terms of restricted 
numbers of these solutions 

3. Examination of mathematical Implications   of the solutions 

4. Comparison of the solutions with test results 

5. Derivation of practical design formulas from the theoreti- 
cal  solutions 

During the process of the previous contract  [DA 44-177-AMC-208(T)], 
mathematical relationships were derived for a single fiber embedded In a 
resin cylinder for the case of shrinkage and static  loading with general 
boundary conditions.    Efforts on the multlflber case have led to the point 
of obtaining  solutions to the differential equations; however, boundary 
conditions which would relegate these  solutions to a specific physical 
problem were not yet applied. 

During the present contract,  the general boundary conditions have been 
specialized to correspond with the experimental  specimens.    This provided 
the possibility of programming the equations for a computer analysis and 
of obtaining numerical results for  stress distribution within the compos- 
ite models. 

The question of so-called "potentials" present  in the anaysis of the 
multlflber case has also been resolved.    The solutions of  the short and 
very long multlflber case have been obtained in three dimensions.    They 
have been programmed for the very long fiber bundle. 

As a special case of the multlflber problem,   the stress distributions 
for the single-fiber problem have been established for any fiber length. 



Because the theoretical analysis is applicable for any combination of 
elastic properties of the constituent materials, specific properties which 
correspond to those of the selected specimen materials have been used in 
the computer analysis to establish the diagrams for stress distributions. 
This now makes it possible to relate the theoretical results with results 
of the microphotoelastic studies. 



TECHNICAL DISCUSSION 

METHOD OF APPROACH 

There are two generally known methods for reducing the fifteen linear 
field equations. One method leads to three equations for the displacements 

1 a Si Xi n    a Si 
^M    1 - 2v  ax ax     G       G  at3 v^ 

1   -    1,2,3 

j    -    1,2,3 

and the other leads to six equations for stresses. 

In the present work, the displacement method expressed In equation (1) 
was utilized. This equation covers completely the linear three-dimensional 
elastomechanics, including the mechanics of elastic wave propagations (Ref- 
erences  1 through 5). 

One of the reasons  for this decision was the existence of extensive 
literature (chapters on basic equations  In References  1 through 5) showing 
how facts must be arranged to obtain solutions  In terms of a restricted 
number of elementary solutions.    Further,  It was believed that the obtained 
solutions of the displacement equations  for the static case can  later be 
more readily extended for dynamic considerations such as acoustical and 
shock-wave propagation  (Reference 4) than It would be by utilization of 
stress equations. 

Another reason for selecting the approach of displacement functions was 
that In three-dimensional elasticity, this approach Is the only one that has 
been used effectively In obtaining solutions of practical problems. 

For the static case and by neglecting the body forces and assuming 
rectangular coordinates,   the equation for displacements becomes 

T8 V» f     -    0  . (2) 



There are two classical approaches often used  (see Reference 2) to 
find expressions  for displacement and stresses  fr^m equation (2):   the 
Galerkln-Westergaard approach and that of Bousslnesg-Papkovltch and Neuber. 
Here,  the second method was selected, because the stresses appear as second 
and not as third derivatives of a potential    P    defined as Papkovltch func- 
tions.    This fact facilitates considerably the transformation into cylindri- 
cal coordinates as well as the   numerical   calculations. 

The displacements expressed in Papkovltch functions are 

-    P.   - 4(1 - v)    öxi I  J    j        of (3) 

1 

J 

1,2,3 

1,2,3  . 

The four Papkovltch potentials in equation (3) are solutions of the harmonic 
equations. 

V8  P1    -    0 1   -    0,1,2,3 . (4) 

The completeness of the Papkovltch functions is shown in Reference (6) and 
also in Reference (2). 

Transformation of the equations into cylindrical coordinates, a process 
which is shown in Appendix A, equations (Al) through (A25), enables us to 
express the internal elastic condition in the composite. Without going into 
further details of transforming the basic equations, (1) and_(2), and equa- 
tion (4), we transform directly the solutions 
drlcal coordinates, obtaining 

gl and the f.    into cylin- 

Pj(r,0,z)' Joilih-* ■'»M* v "»Kk'lJ^jnk •""■M- 

«jak """Kk2) >' [«Jn •ln(,,») + 'n "'^j + 



+J0|>orn + Pjno^j^Vjno + 6jnoZ] '[«jn sin^ + Cjn cos^)]   + 

[%o+Pjoolo^]-[Yjoo^jooZ] (5) 

j    -    1,2,3.0 

Equation (5) represents three Papkovltch functions for each of the two mate- 
rials with 36 constants in total. Introducing equation (S) into equation 
(3) and after transforming (3), we obtain for the displacements (see equa- 
tions (A60) through (A76) in Appendix A): 

in radial direction, 

Si •  »i • Mrhö  ^ {r p' + ^ + ?°] ;      (6) 

in tangential direction. 

5» " *'  -MTh) r ^[rP>+2P= + poj; (7) 

in axial direction, 

53  "  P3 " lo^J  ^ ^ Pl + Z P3 + Po]. W 

The stress distribution from strain components is given by the physical 
components of the stress tensor. 

'u - ■rh(Dij + 6iJ(r-^Dkk-Ä["T + e]|)      <9> 

Here D^s    are the elements of the strain tensor in cylindrical coordinates 
and are restated as follows: 

Dtx   • sf do) 
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(12) 

(13) 

(14) 

(15) 

The stresses can be represented and calculated directly from the Papkovitch 
potentials through the following relation: 

^IJ    "    G(^Pl+^Pj) + 

2(1 - V) V73 
axj^ öx. \h Pk + Po (16) 

1    -    1,2,3        j    -     1,2,3        k    -    1,2,3. 

Equations (5) through (16) are general, and they are valid In the rein- 
forcement as well as In the matrix. After adaptation to the boundary condi- 
tions, the functions and constants will have superscripts I and II for fiber 
and resin respectively. 

For the present purpose, equation (16) has to be transformed into 
cylindrical coordinates (Appendix A, equations (Al) through (A16)). 

BOUNDARY CONDITIGMS AT THE INTERFACE 

A set of conditions results from the assumption that, at the fiber' 
matrix interface, two neighboring particles of the two materials remain 



together during all displacements and that the total shrinkage of the matrix 
is greater than that of the fiber. Under chis condition, stresses will de- 
velop in both materials, depending on the definition of the displacement. 

It was further assumed that the stress perpendicular to the Interface 
and the shear stresses at the Interface are continuous. 

There are two possibilities for consideration of shrinkage. For 
explanation, one cylindrical fiber in a matrix cylinder shall be considered 
(Figure 1). As a first possibility, it is possible to describe the dis- 
placement with reference to the free shrunken position, where one material 
would shrink as if the other were not present; then the displacement of a 

P at the interface would be in Figure 1 the vector PJJ P ■ g1^ 

»j P ■ 51 for material II and I respectively. In this case, the 

term (3 in equation (9) should be omitted. The second possibility is to 

define the vector P0 P ■ §^ ■ 5  as displacement at the Interface. 
The second procedure is easier to use because in the first method the estab- 
lishing of directional signs for forces and displacements and the two float- 
ing reference systems present major problems.  In equations (A131) through 
(A135), it is shown that both methods yield the same results. 

In total, the following boundary conditions have been assumed at the 
Interface: 

Displacements: 

5j(a.0.z) " 5"(a.0.z)       i " 1.2,3 (17) 

Stresses: 

0^(3,0,2) - a"(a,0,z)      j - 1,2,3. (18) 

GEOMETRIC BOUNDARY CONDITIONS AT THE FIBER HEXAGON 

Referring to Figure 2,   it can be assumed for reasons of symmetry that 
the hexagonals will preserve their regular geometry during the shrinkage 
and axial loading process. 

Therefore,  the boundary condition will be 

«(. 8     Icos0 

8 

C" 1 , 0  , z| sin0    -    e      (19) 
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Figure 2.    Multifiber Composite Model 
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where C  is half the distance between two fibers before coatraction and o 
e  is the total shrinkage of the composite. For comparison with the left- 
hand side, the right-hand side in equation (19) has to be represented by a 
double Fourier series given in detail in equations (A77) through (A93). 

In order that the fibers remain in the hexagonal arrangement, the tan- 
gential displacements at the lines OA and OB have to be zero, so that 

^'"(r.O.z) - 0 (20) 

^'"(r^.z) - 0 . (21) 

Another geometric condition comes from the fact that the displacements (and 
stresses) are identical for every multiple of TT/3 of the variable 0 , so 
that  in equation  (5)   the eigenvalue must be a multiple of 6: 

n    -    0,  6,   12,   18,  etc. (22) 

To satisfy the boundary condition at  the hexagon, which is a  function of    z 
and    0  ,  it  is necessary to have the solutions    §    represented  in orthogonal 
functions of    z    ind    0   .    Therefore, we  let equation (5) become 

Hk    "    iJP k    -    1,  3, 5,  7  .   .   . (23) 

The general path of the function    £J     is  imposed by the geometry considera- 
tion of equations   (A21)  through  (A23),  which express  the  following: 

§!     is even  in    0    and even In    z  i 

§a     is odd  in    0    and  even in    z   ;        ) (24) 

53    is even in    0    and odd in    z   .       ) 

In order to repeat six times  in    2TT  ,   the periodic characteristic implies 
that 

5^,0,z)    -    §^,0+5'  z)   • (25) 

11 



Since the stresses are derived from the displacement vector by derivations 
(equations 9 through 15), they also repeat six times in 2TT period (equa- 
tions A24 through A27). 

For computing the shrinkage alone (A40) without external loads, the boundary 
condition at the two ends is 

oi3{T,0,±l)    - a3I3I(r,0,±O • 0 . (26) 

The integration constants and the eigenvalues for    ^.     are derived from 
equations  (A44)  through (A58). 

The results of the multiflber case show that  for  the eigenvalue    n " 0 
the stresses  are constant with    0   ,  while  for    n / 0    the stresses repeat 
six times  in 360 degrees. 

SPECIAL CASE OF A SINGLE-FIBER MODEL 

In the case of a cylindrical  filament centrally embedded  in a matrix 
cylinder,   the potentials expressed  in equation (5) degenerate Into functions 
Independent of    0    (Reference 7,  page 41-2). 

The solutions of displacements and stresses due to differential con- 
tractions of the two constituents are given in Appendix B, equations (B8) 
through  (B13). 

For the axially loaded specimen,   the displacement and stresses are 
given in Appendix B, equations  (B48)  through  (B53) .    The total stress and 
the displacements  in the composite are obtained by superposition of values 
from both cases. 

The eigenvalues  for the shrinkage case are determined by the boundary 
condition at  the two ends, where,   for  the single-fiber specimen,  equa- 
tion  (26)  becomes 

aaaU.O    -    aaaU.-O    -    0   . (27) 

The only condition that makes the solution for the shrinkage case nontrivial 
is 

cos (U) - 0 . (28) 

12 



This  implies  that 

U    -    ^    ,     n    -    ±1  , ±3  ,  ±5   ,   .   .   . (29) 

5f,n-    1,3,5,... (30) 

The eigenvalues for the axially loaded single-fiber composite are determined 
from the boundary condition at the  free cylindrical surface: 

^(b.z)    -    0  . (31) 

The only condition that makes the solution of the loaded case nontrivial 
is 

hcbjoKb) -j^Kbl ■ 0 • (32) 

The computed  first six eigenvalues are 

bnk   -     1.8411   ;  5.3314  ; 8.5363  ;   1.7060 

14.8635   ;   18.0155  ; 21.1643   ;  24.3113  . 

The boundary conditions at the interface of a single-fiber composite are 
the same as expressed by equations   (17) and  (18) but are not    0   dependent. 

NUMERICAL RESULTS 

A single-fiber model  loaded at the resin as shown in Figure 3 produces 
axial stresses  in the fiber which are computed to be 25 times higher than 
the externally imposed stresses. 

13 
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The following values were used in the equations of Appendix B: 

E 

,11 

10 x 10^   psi  (glass fiber) 

0.436   x  itf5   psi  (epoxy matrix) 

v 

II 

0.20  (Poisson's  ratio for glass) 

0.35  (Poisson's ratio for resin) 

a      ■    0.005  inch  (fiber radius) o 

b      •    0.6875  inch  (resin cylinder radius) 

14 
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The shear stress    Oi3     decreases with distance from the  load and be- 
comes  zero at the half  length  (z = 0,  see Figure 4).     The axial shear stress 
in  the  resin   aQ     (see Figure 5)   is a  function similar  to   0^3   . 

The radial stress   in  the resin II 
an is shown  in Figure 6. 

The tangential stress   in the resin    Oga     increases with    z    and de- 
creases with    r    (see Figure  7).    The tangential and radial stresses  in the 
fiber    022    an^    Vxi     respectively are equal and constant for a certain 
cross section and increase with    z    (see Figure 8). 

Shrinkage stresses due to differential shrinkage  in the same specimen 
as above result  in apparently undulated  stress distribution (see Figure  9), 
which  is more pronounced  in a specimen with a very high resin content.    A 
specimen with a thin resin coat of a thickness of 0.0025 inch was also com- 
puted.     Here,  the computer results  indicated no undulation of stresses. 

The multifiber problem equations given  in Appendix A were programmed 
for an  infinite fiber bundle.    The numerical results  show that  the  influ- 
ence of the solution with the eigenvalue    n * 0   , Appendix A,  equations   (A96) 
through  (A99), disappears at  the interface at a certain total shrinkage    e 
of  the composite and becomes  a maximum at    e = 0   .     It should be pointed out 
that    e     is not identical with    ß^  ,  the resin shrinkage.    If    e " 0  ,   it 
would mean that the total composite shrinkage  is prevented for some external 
reasons   (cross  fibers,   fiber contacts, etc.).    This would produce very high 
tension stresses  in the resin.     In case the  fibers  touch each other,   the 
total shrinkage    e    would become almost zero and  the shrinkage stress due  to 
ßH    would be higher. 

The greater the total shrinkage    e    becomes,   the more effective will 
be  the solutions  for    n ^ 0   .    The    n ^ 0    solutions  are    0-dependent    and 
repeat themselves six times within 2TT  .    The total solutions are,  of course, 
the sum of both solutions.     To indicate the  influence of both solutions. 
Figure  10 shows at the  left   (a)  the stress generated by the    n = 0    solution 
as  a function of the  total shrinkage    e   . 
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duced by Load at the Resin End 
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Figure 5. Axial Shear Stress in the Resin 
Produced by Axial Load at the 
Resin End s ■ 1.5 inches 
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0.8       1.0 1.2 1.6 

Tangential Stress  in the Resin 
Produced by Load    cj}}il)    at the 
Resin End  z =   1.5  inches 
(single-fiber composite) 
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Figure  8.    Tangential and Radial Stress  in the Fiber 
Produced by Axial  Load at  the Resin End 
z -   1.5 inches 
(single-fiber composite) 
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Zero Solution 
Predominant 

*»0 

bn-zero Solution 
Predominant 

Figure  10. Shrinkage Stresses  In Radial Direction 
as a Function of Total Shrinkage 

At  the right side  (b)  of Figure 10 Is the sum of the    n - 0    and    n ^ 0 
stresses as a function of    0  .    If the total shrinkage Is not prevented and 
the total shrinkage    e    assumes a certain value  (In the case of epoxy and 
glass,  -0.001132),  then the non-zero solution Is  the only one which generates 
stresses at the Interface.    These stresses are recurring every 60°.    The 
stress distributions around the fibers are very sensitive with respect to 
the total composite shrinkage    e   .    An additional equation or condition to 
circumvent or determine    e    analytically would be very advantageous.    In the 
search for an additional equation, we find that at the hexagonal boundary, 
the following conditions exist: 

//6 

[ i [oS II 
033 |+2   plx   - aaa ] cos20 - CTXa   sin20    d0 

a(r,0,z)    -   a|^ . 0  , z| . (33) 

If the correct e is chosen, the conditions shown by equation (33) are 
automatically satisfied. The reason for this is given in the displacement 
boundary conditions of the hexagon (equation (19)). 

One can visualize that the non-zero solution is additionally influenced 
by the distance 2 C0 of the surrounding fibers and the relation of dis- 
tance to the fiber diameter 2 a. The closer the fibers come, the more 

20 



pronounced are the circular six-times-repetitious stress distributions 
expressed by the non-ztro solutions. 

In Reference  (9), page 4,  a condition similar to those in equation  (33) 
has been used to impose the hexagonal geometry during deformations.    Using 
this condition  for the present shrinkage  case,  similar to what was used in 
Reference  (9)  for a loading case,   it would be possible  to set up an in- 
homogeneous boundary condition at the hexagon which would not contain    e 
Such a boundary condition would contain only the shrinkage constants of 
both materials,    ß1    and    ß11  . 

The numerical results  (see Figure II)  show that the radial stress at 
the interface is  in compression at points where the fibers are close and in 
tension where they are farther apart.    The shear stress  (Figure 12) at the 
interface is a maximum at   0 ■ 22°    and zero at    0 a 0° and 30°   .    The total 
shrinkage displacement between two fiber axes in the model was 2 x (-0.001132) 
The dimensions of this particular multlflber specimen were    a0 ■ 0.14 inch 
and   Co - 0.20 inch  . 

Appendix C describes the methods used and the results of a photoelastic 
determination of stresses of selected single-fiber and the multlflber models. 
They are represented as stress differences.    It is now possible  to present 
the theoretical analysis in the form of principal stresses, rather than in 
the form of stress differences, and to compare the theory with the experi- 
mental values. 
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•1,000, 

•5,000, 

0 =  30' 

Figure  11.    Radial Shrinkage Stresses  at Interface 
in a Multifiber Composite Model    a0 ■ 
0.14 inch;  C0 = 0.2  inch  (Components: 
glass and epoxy) 

20,000 

10,000 

10°       20°       30° 
Figure 12. Shear Stress at Interface Due to 

Shrinkage a0 = 0.14 inch; C0 = 
0.2 inch (Components: glass and 
epoxy) 
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APPENDIX A 

TRIDIMENSIONAL ANALYSIS OF THE 
UNIDIRECTIONAL MULTIFIBER COMPOSITE 

LONG CYLINDER WITHOUT AXISYMMETRY 

The displacement and stress  components,   in terms  of Papkovitch func- 
tions,   in rectangular coordinates, are quoted as follows: 

%-*(\K f In) 
^[cv^-^xv^J 

To convert these expressions  into a system of cylindrical coordinates, 
one can perform the following proper and admissible transformation. 

One transforms from (x  , y ,  z)    to    (r  , 9  ,  z) 

The results are collected as  follows: 

25 



for displacements, 

(A3) 

(A4) 

(A5) 

for  stresses, 

•f/^. + ^+fJ (A;, 

0« = ^&feF3 + i^/^-^+Äfä+f.); 
(A8) 
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^ 

er 
(A9) 

j2.a 

<?, 
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for Laplace's equation of Papkovltch functions. 

(A12) 

(A15) 

A solution of Laplace's equation In the finite  cylinder In the domain 
(0 < r s a  ,O<0*2Tr  ,  0 * z * l)   takes the  following general form: 

2 u{**j*M+ß*w*$}lK^*f**> 

f {^o + ßoc it»/iX rec 4 stti>)- (A16) 
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Combination of equations (A12) to (AI6) gives the following results of 
Papkovitch functions: 

+ C ^ + H. *) (^ t ^ ^> ***** 
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^o re« 

*f ^ 5,1M,, (A^ ^ 4 ^ ^^(AK^ 

(A17) 
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and 

'\AJm Shinty+ ?mc*i(n&\c**t 

- Cceo -f J)0c*) (A.. + ße. ^A) S'I t 
J (A18) 

+ (5... + T00*)(^+^^) . (A19, 
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BflMiJa aad Bamdaja SflaiUtLJM 

Domain: 

(O < A. <a) 

a ^ A. ^ <Vc«^ } 
for fiber 

for resin 

(A20) 

Geometry consideration: 

For 
I ' 

For 

>i- 

For 1,: 

§) (^ ^ 55) = ^ f/^ 4>r ^ (A2l) 

§3 (»/ ^ *) 

(A22) 

(A23) 
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Periodic characteristic of   TT/3    period  implies that 

and 

^A^lf VHt*)- 

(A24) 

(A25) 

(A26) 

(A27) 

DisDlacen^nL«? 

Substitution of equations  (A21)  to (A23)  into equations  (A3)  to 
(A6),  (A9), and  (All) and taking into account the consideration of 
the previous section yields: 

Radial displacement for fiber, 
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tx» / oo 

~T*k*mi> 

00 

Radial di-splacement   for resin, 

Co 

-WÄ^ Ml     /_/,._ / / J 

cx> r t?* 

&P  t   *<>        x 
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co r c*> 

^p   r^o 

+11 K)j*m^>m^^i <*w 

-^"'Ife««" 

+ 
■**;•• fav 

t>0 t   €*Z> 
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^o 
n+l +1 KV^-^^IJ^-M 

(A29) 

Tangential displacement for fiber, 

(A30) 
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Tangential displacement  for resin, 

t 
:)   ^^VA^) 

+1    K)H/^-40^))^^t(^^^JM" -n-H 

-*-l 

W*. -'^^^(Ci-^"^ 
(A31) 
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Axial displacement  for fiber, 
ix»   /fro r^lff^f^^^m^J^M; 

';% ; 
(A32) 

Axial  displacement for   resin, 

IN«.» to« / 

*) 

J 
•C^'»^) 
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CO    Too 

^1 J (Cl^Y4U^M^^ 

•f 

(A33) 
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Stresses 

Radial stress for fiber, 

^ 
-l-n-OOi-tChP*)) r^n-ii 

^O    /.  frO 

+^Ut ^-U^u»*-) 

Co rc*o 

1 

U^LuA) 
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.ifcSmijAi*) 

j-2j> fy^jtM'te ^^*)(- 

- Cvftb) 

*~ ' ho 
11=1,11;« 

I) liAiu^mi^^fi 
(A34) 

Radial  stress   '.or  resin has all  terms  defined   in  the same  form as  equa- 
t ' on   (AM)   except  for  replacing all   superscripts  I by  II,   plus   the 
t   rms   involving   Bessel   functions  of   the   second  kind and 

*-  v    Arno JrJr 

Shear stresses, 

^ 

J^ 
/t*^ 

tx» r*<* 

^'"/iH* 
Z )L filly ('»-Otv-W-P'))^jfi^l 

"/' 
(*-!)& (V-J.(hP*))T ̂ Vj 

re** 

C^^M^ r6''*^ 
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\ 

s** 

1 

(A35) 

Q"   has all   terms  defined  in the same  form as  equation   (A35)  except  for 

replacing all  superscripts  I by II,  plus   the terms  involving-Bessel 

functions of  the  second kind and 

q.1 .V-Wt«.») 
^n*"' kür k 

io r£<3 
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^ (f    1   Pr 

(A36) 

V3.3 has all  terms defined  in  Che  same  form as equation  (A36)   except for 

replacing all superscripts I by II,  plus  the terms  involving Bessel 
functions   of the second kind. 

Axial  stress for fiber, 

<£ 
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^p   sb*o 

4) 

^^ 
xj: -Mj.^i^j 

Ooj^'f) 

+ ^ (A*),,, 4^(^+0 A." C^j (^ ^) 

(A37) 

Axial  stress  for  resin,        Q"      ,  has  all 
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terms defined in the same manner as equation (A38) except for replacing 
all superscripts I by II, plus the terms Involving Bessel functions of 
one second kind and 

••• 

Boundary Conditions at the Interface 

The continuity of displacements implies 

The continuity of stresses implies 
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Axial stresses at the ends should vanish;  i.e., 

The sides of the hexagon should remain fixed;  i.e.,   . 

(A41) 

Since   ^    Sfttb    is approximately 57. of   f C^S^ '    we  then 8et 

or 

^cS^*)-^- 
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Equations to Determine Coefficients 

The constants  to be determined are  listed as follows; 

-y\=.o, L, /a., " ' 

(Aa. (BX iKx • 
These consLnius v!Il be determined by the following equations, 
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Combination of equations (A30), (A31), and (A38) yields 

Combination of equations (A32), (A33), and (A38) gives 
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Equations  (A34) and  (A39) yield 

iKL (TS) ['C*'* (V-KI-^» $*}&*£ 
+A^ *^^^ 

^-^/u/jj 

49 



IHMJ*' 

Equations  (A35) and  (A39)  yield 

A) 

00 
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Equations  (A36) and  (A39) yield 
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f (Clt^fA^^^-^ Yw^; 

— 0- «*») 
Equat'oi«  (A29)  and  (A41) yield 

■JA* ££3**y<i**> ^)] 
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(A50) 

From equations  (A37)  and (A40), we get 

(A51) 
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Equations  (A34) and  (A39)   give 

(A52) 
and 

X..3C 

(A53) 

Equations   (A35)  and (A39)  yield 

0. (A54) 
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Equations (A37) and (A39) give 

and (A55) 

Equations (A30), (A31), (A39), and (A40) give ^A56) 

= O  . (A57) 

Equations (A29) and (A42) yield 

(til W'^J-*) iätT1 

^^l^md  (A58) 
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and 

(A^^'-^^+^K^ «59) 

_ ae 
r /^3- 
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Transformation of Coordinate  Systems 

One has  the  following transformation: 

( W, V, v) 

Cartesian Coordinate System 

0 -z 

Cylindrical Coordinate System 

57 



The transformation relationships are as  follows: 

(A61) 

4 = ^'(^ 
-/ / //   v (A62) 

^ = -1    ^-^     —   -2^. = r^ii 
B/       * JFff ft       CC5* 

££ _   _i^      X - = £s± 

(A63) 

(A64) 

(A65) 

(A66) 
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From equations   (A03)   to (A66), we get 

■^X       IDC itt T dXl)*  T ^Cl* 

11. =='^k'^ +^-^- +"Si.l- 

=  2—   . (A69) 

The relationships between two coordinate systems for displacements and 

Papkovltch functions are 

V  =  §(>Sm^   i ^cas^ (A70) 
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Combination of equations   (A3),   (A70),  and (A71),  and dropping  the    P 
term yields 

- S^ffi [A- "5 4> ( ^ COS* ~?t S.4) 

Similarly,  combination of equations   (A4),  (A70), and   (A71),  and dropping 
the    P0    term yields 
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+T^r^^j]. (A73) 

äS ÄLr^^^nr i^^--.r 

5.=F'"^[&rv^*fj]- 
Similarly, 

(A74) 

(A75) 

(A76) 

61 



Fourier Representation of Boundary Condition Equation at the Outer 
Surface of the Hexagon 

At  the outer surface of the hexagon, one has 

*,'( 
-    ^ *)  C04> -^ (^ t>, ^ SiK + =£ (A77) 

or 

s, (^r>/*)^€^+- (A78) 

We want  to represent 

5   JjLC^    = 

= ^> I   "Co ^M 

+ 2 ^^(^j 

(A79) 

Now define a function 

f f^*) =(£ ^^^ 

^ 

o < 4 <"% 
je < ^ < ^J? : 
o < 4 < "^^ 

(A80) 
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The coefficients of the Fourier representation are as follows: 

0  0Ltc 

£ MC$   d% Afy   =■   \       \      <XecclsbJ$       (A81) 
^e Jo Jo -A. 

~3L 
TT ^„-^iVwt-f^j^J « 

(A82) 

(A83) 

SB   Ci 
1\    wc 

^ 
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■ 

^.o 

% 

(MS) 

«f^^-»^-^3] (A86) 

When "7H ■* Z , 

=f [,-47 -äz'M 
(A87) 

Continuing to •••ume number«, one gets 
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o^  = isr__jf s  

—       W 1 

-|^(l i^m^'iv] 
»tea    ^m» «4/ 

(AM) 

j[ ^ f Ac+c«^^^«^^^ 

^^^V5'^ 
(A89) 

(A90) 
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^ — 
r6t(-0* 

tif *?* 
io 

when   ^_.     odd 

when   ^y=    even 

(A91) 

^ e^ <^^)c^m<fe)^^ 

=    ^(»H^ 

^ 

(A92) 

HV^j 

when    ^/ =• pdj 

when     ^/ä ei^e^ 

^f] 
when       ^rH=~cJ4 

(A93) 

[^'-ntl s^W^y] 
when       -7^ = Äl/cn. 
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PLANE STRESS FIELDS WITHOUT POLAR SYMMETRY 

The solution to the biharmonic function In cylindrical coordinates, 
for the stress fields without polar symmetry, Is 

+ /\$./« ^ lAttf + AjS- 

Then, the stresses and displacements are as follows: 

CO 

(A95) 

(A96) 

^^" (A97) 
X   A      L-2 t A7/V 

5, =1 [A^M.B* WM£?H 
-yw^/l/H 

l AfU+M^M +2(I^Ml 
(A98) 
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£>c9 

«here   FfrVt    are functions of   r    only and are defined In the next 
•ectlon. 

Deflnltlone of   P(r) 

FmVt>s=-(-*-d'>tA*'i (*l00) 

/^ f A) = - -» (VH) hrK'z (Ai«) 

fL^""   -('*-*)('*+$ &'*' CA103) 4H 

»-2 

->i-i 

CA104) 

f^fÄ) = (t1-fi>('»+*) A"- (A105) 

^ (A) =  '^('»+«) A--""* (A106) 

PS« fA) = ('*-*)('>>-l) A"* (A107) 
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F^) - = ^-l)-^i k 
fl-2. 

f^fo) Ä ^«-^Ö ^ 

//ft 

->l-2 

-*t 

/ZM 

5« (A) 

E   /L 

E /t 

E 
-Vd+J» +211-X» .-nH 

B 

E    A 

(A108) 

(A109) 

(AUO) 

(AlU) 

(AU2) 

(AlU) 

(All*) 

(AUS) 

(AlU) 

(All?) 

(All«) 

(A119) 
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Boundary Conditions for n = 6. 12. 18. . . . 

1.  At the interface, the stresses and displacements should 
be continuous; i.e., 

n3h' ««  ^  ' V It» 
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d. 

-K^-K^-* (A123) 

2.    At  the  outer  surface of resin,   it  should remain a regular hexagon 
after deformation;  i.e., 

/H 

when    -^tj— ö^<| 

111 Mm^'if] 
(A124) 

when      -»»tje^Mt 

^>7 =4 -^ ,   tn^lsZ,!, 
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and !>, <* *=<( &:£*)**# 
i» i-jt 

-TTS^/V^^'1 CA125) 
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Boundary Conditions for    n ■ 0 

1.      At the Interface,  the stresses and displacements should 
continue. 

It implies 

A^Ä 0 CA126) 

•ad 

It  Implies 

c. 

(A127) 

(A128) 

This yields 

2.      At the outer surface,   the hexagon remains regular after 
deformation. 

(A129) 
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+K{^m 
=^V (A130) 
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3.     Comparison of Two Reference Systems 

With reference  to  the original position of a particle before  shrink- 
age,   the  shrinkage  stress      in the  shrunken,  equilibrium position 
is,   from equation   (9), 

^-^(W-f) (A131) 

r = a = composite interface 
before shrinkage 

Distance of the Interface from 
the Fiber Axis before Shrinkage 

Figure 13.  Graphs Showing the Comparison of 
Two Reference Systems 
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With reference to the location where the material particles would 
shrink if the other material would not be present, the tensor equa- 
tion (9) for stresses in the matrix in one dimension becomes 

_r        ^_ Qjr 
<s-(n) = 

" ' _  /tv1   9/1 (Al32) 

In Figure 13, the relationship between the displacements is 

Substituting equation (A3) into equation CA2), 

(A133) 

(A134) 

shows  that both reference systems yield the same shrinkage stresses 
di   » equations  (Al) and  (All).    The comparison could be made in three 
dimensions and would show that,  in general. 

^ W'^^-M- (A135) 

76 



APPENDIX B 

TRIPUmiOHAL AHALYSIS 9F Hg 
SINGLE-FIBER COMPOSITE 

(Bl) 

SHMHKACE CASE 

The solutions for a biharmonic equation in a system of cylindrical 
coordinates with axisymnetry are as  follows: 

where    I0(j*kr}  and    ^f^, r) are modified Bessel functions of the first 
kind and of the zeroth and first order respectively; and    ^(^tJ?) and 
Kif^kO    are those of the second kind  in their corresponding zeroth 
and first order. 

msnlarempnts and Stresses 

The displacements and stresses  in terms of strain function are: 

77 



(B6) 

(B7) 

Combination of equations (Bl) to (B7) yields 

_ r (B8) 

4=1 ^%HAfcWf^^/-A*^'-/WV4)' 

(BIO) 

(Bll) 

^ r (B12) 

(B13) 

where     Fl (r)   ,   .   .   .   ,   F12 (r)   are   functions  of    r     involving I   (M-  r)   and 
Ii(uk

r))   and Gi (r)   ,   •   •   •   ,   ^^(r)  are   functions   involving K  (|j,.r)   and 
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Definitions  of    F(r)     and    G(r)   : 

B16) 

B17) 

B18) 

[B19) FWA)=/^ [(v>-i)I,jH,h) yt^i,^ 

F^  =/«   l^-l)I.frfi) (B2U 

F^ =/^ J,^V9 B22) 

B23) 

B24) 

B25) 
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(5*U) = (i^)/**. Kofi,*) 

^(^=/C[^K.^-il^Üj     (B29)
(330, 

Gj*^ ^ A3 f '"■ ^ ^'^^ (B33> 

Ö-W1)  =/^K.^A) (.3*) 

Gjl«'*)   =    T^K,^ (B36) 

Superscripts I,   II were omitted in equations   (Bl)  to (B37). 
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Imposing Boundary Conditions 

I.      At the interface,  the continuities of stresses and displacements 
are assured. 

This  implies ' 

A^F>) -M;F>) f ^^)+^F> 

c) (^:,:rA/*) = <5^^«) 
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4)  Q^K*)-^*) 

2.      At  the outer surface of  the matrix,  the resin should be  free  from 
normal and snear stresses. 

(B42) 

(B43) 

3.      At the ends,  axial stresses  for both  fiber and resin should 
vanish. 

OA, *) = OÄ*) =<> '53 

The only condition that makes  the solution nontrivial  is 
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CKftJ)—0. (B^) 
This  implies  that 

/A/f =. agL   ^     >= ±^ ^ ^ * v\ 

(BA5) 

(B46) 

Remarks 

1. In deriving equations  (B38) and  (339), we have used Fourier 
expansion  for a constant and a  function    z   . 

2. It  is  interesting to notice that  the eigenvalues determined 
by equation  (346) are consistent with the argument of the 
orthonormal  function used  in the Fourier representations  in 
equations   (338) and  (339).    The  coincidence is not accidental; 
rather,  it is  intentional. 

3. The constants  to be determined for each    k    are    A.   , A-,   , 
II TT II II • ^ A,  , A*1-  , At    ,  and Af  . These six constants can be found 

by solving the simultaneous equations (B38) to (343). 
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AXIAL LOADING CASE 

The superposition-product solutions of the biharmonic equation in 
cylindrical coordinates with axisymmetry has the following general  form: 

(B47> 

where    •JoOik10   and    ^i(^kr) are cylindrical harmonics of the first 
kind and of the zeroth and first order respectively, and    Yohi^rj and 
Yl(|i|cr) are that of the second kind. 

Stresses and Disolacementa 

r (B48) 

(B49) 

-# ^ (B5t)) 

(j = 2 ^m\A F fA) fAFß+A & mA 6 d 
(B511 

^ ' k (B52) (Bs: 
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% =| ^iW+täHW+itt* 
(B53) 

where    Fx (r)   ,   .   .   .   , Fla (r)    are functions of    r    involving    Jo^kO 
and    ^(M-k1)»  an^   ^i (r)   »   •   •   •   » ^la (O    are functions  of    r    involving 

Definitions of    F(r)    and    G(r)   : 

fjjv ~'{J%L)/kx[w-w./k>L) -/kW/u* 

(B55) 

(B56) 

(B57) 

(B59) 

F;V^=A2^ 
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flh.) = - (I-IP)/* Jo^ w 

FJti ~/tflxi-pw^y^jyiAAÜ(B63) 

G1 (r)   ,   .   .   .   , Gla (r)     are defined exactly  in the same manner as 
equations  (B54)   to (B65)  except replacing    J^n^r) and    ^ (n^rj  by 
^o(^kr)  an^    ^i(^kr)  respectively.    Superscripts  I and II were omitted 
in equations   (B47)  to   (B6S) . 

iBBflaiM Bauadm CanAitiflaa 

1.       At the interface,   the continuities of displacements exist. 
This  implies 

(B66) 
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2. At the outer surface, radial stress of resin should vanish; 
i.e., 

It Implies 

A^fJ/^ f A^F^d,) ==-0 ■ (B68) 

3. At the ends,  resin Is subjected to axial  loading;  I.e., 

0^   fA/ JO   ^^ FfA^    =   load per unit area . 

This yields 

and 

A*4/<*^o (B70) 
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Equation (B70) implies 

Then combination of equation (B69) and (B71) gives 

Determination of Eigenvalues and the Dini-Beaael Reoreaentation of 
Loading at Ends 

1.  Eigenvalues are determined from equation (B68); i.e., 

Ay^fA^3 - ^J-^ ■ (B73) 

then A^^C^/Ö =vj; G^U  . (B7A> 

2.      The loading at ends  can be represented as Dini-Bessel 
expansion;  namely. 

FWO  = 2   C^JAlk) (B75) 
A 

where 
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For the case F(r) ■ 1 , 

r       _        . ZJljMd (B77) 

1. Eigenvalues ^ (> 0) are determined by equation (B74). 

2. Coefficients of Dini-Bessel expansion for loading at ends 
can be found from equation (B76) or (B77). 

3. Constants to be determined are A^ , A^ , and A^ . These 
values can be found by solving equations (B66), (B67), and 
(372) simultaneously. 

4. The condition that a/b is much smaller than unity is assumed. 
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APPENDIX C 

PHQTOELASTIC EXPERIMENTS 

SINGLE-FIBER SPECIMEN PREPARATION 

To perform an experimental evaluation of the shrinkage stresses 
for a single fiber and epoxy resin matrix via photoelasticity,  four 
cylindrical specimens vere fabricated.    Typical dimensions of the cylin- 
ders are shown in Figure 14.    Specimen one contained no fiber;  specimen 
two contained a 4-mil-diameter boron fiber;  specimen three contained a 
5-mil glass fiber;  and specimen four contained a 10-mil glass fiber. 

1.375  in 

Shell Epon 815 
With Dyethynolamine  (15 phr) 
Used as Resin Matrix 

Figure  14.    Typical Dimensions  of Cylindrical  Specimens 

The method  of fabrication  for the cylinders  and  fibers was  to  locate 
a  fiber  in the center of a metal  tube  (the fiber was  supported  to allow 
axial   freedom of movement as   the resin cured)   and  to pour Shell Epon 815 
resin with dyethynolamine  15 PHR  (parts  per hundred weight ratio)  slowly 
in  to  fill up the tube,   allowing air bubbles  to be forced  to the sur- 
face.    A rubber stopper was  used to plug  the bottom tube end  (the fiber 
end  simply "rested" on  this  stopper). 

The resin cure  temperature cycle was  200oF  for  12 hours, with post- 
cure at 250oF for 4 hours.    A parting agent applied   to the  inner surface 
of the  tube allowed  the resin  to shrink during   the curing process and 
during  the  cooling period. 

Figures  15  through   18 show the specimens  photographed under direct 
polarised  light   (quarter wave  plates are  in the system to ^llow only 
stress magnitudes to be  seen).    White  light was  used  for the photoelastic 
analysis because the various   colors  indicate very clearly the stress mag- 
nitudes  present  in  the  specimens. 
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Figure 15. Epoxy Resin Cylinder without Fiber 
Viewed under Polarized Light 
(Quarter wave plates are in the 
optic system) 
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Figure 16. Boron Fiber (0.004-inch Diameter) 
in an Epoxy Resin Cylinder Viewed 
under Polarized Light (Quarter 
wave plates are in the optic 
system) 
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Figure 17. Glass Fiber (0.005-inch Diameter) 
in an Epoxy Resin Cylinder Viewed 
under Polarized Light (Quarter 
wave plates are in the optic 
system) 
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Figure 18. Glass Fiber (0.010-inch Diameter) 
in an Epoxy Resin Cylinder Viewed 
under Polarized Light (Quarter 
wave plates are in the optic 
system) 
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As   can be seen from Figures   15  through  18,  the boron and 5-mil 
glass   fiber buckled due to the  compressive  load applied  to the fiber 
by resin shrinkage.    As nearly as can be seen,   the  10-mil glass  fiber 
specimen did not buckle,  but remained straight. 

From the photographs of the boron fiber and  5-mil glass fiber 
specimens,  the following Information was obtained: 

Boron Fiber  (4-mil diameter) 

Buckle wavelength    *    0.238 Inch/cycle 

Double amplitude      -    0.0125  Inch 

5-ffil Glass Fiber 

Buckle wavelength    -    0.212  Inch/cycle 

Double amplitude      ■    0.015  Inch 

Since the theoretical analysis Is predicated upon the fiber's not buck- 
ling,  the specimen chosen for quantitative stress evaluation was the 
10-mll glass fiber specimen. 

In order to photoelastlcally analyze the stresses  In the resin 
around  the  fiber, a thin slice along the fiber axis  from a cylindrical 
specimen must be used.    This  Is  to allow the polarized light to incident 
perpendicular to the specimen surface and also to make  the stress  field 
appear two-dimensional, by having the  thickness of the specimen small 
enough  that the thickness stress  component can be neglected.    To cut 
slices  for analysis  from a specimen at points and  in directions of de- 
sired stresses  is a standard technique for photoelastlc measurements. 
A problem is encountered with  slicing when thermal  stresses are the 
quantities  to be measured,  since during cutting,  heat  is  produced and 
this perhaps distorts  the original stress values.     In addition,  the 
remainder of the resin material might result in stress releasing of the 
fiber. 

It was therefore decided  to slice the  lO-mil fiber  cylinder in 
three steps  in order to observe this effect.    The  cutting was also done 
under a high-pressure water Jet to minimize the effects  on the original 
thermal stresses present in  the specimen. 

It was decided to cut  the specimen first to  1  inch across the flats, 
then to  1/2  inch thickness,  and  finally to  1/8   inch as a goal for analy- 
sis  evaluation.    A diagram of  the cuts  is shown  in Figure  19. 
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Second Cut 

First Cut 

Final Sit* 

Figure  19.    Typical Cuts Made on 10-mil Glass Fiber Specimen 
to Obtain a Specimen for Quantitative Photo- 
elastic Stress Evaluation 

The stress patterns of these cuts as shown under polarized light 
(quarter wave plates in the system) are found in Figures 20 through 22. 
Additional slices cut parallel to the fiber but perpendicular to the 
first cut mi0} ♦: have further reduced the effect of heat during the cut- 
ting operatic:., however,  this idea was rejected because such slices 
would have cut off the zero isochromatics reference points which are 
necessary for the quantitative analysis. 

The pictures, of course, show some change in stress pattern between 
the first cut and the final cut.    One has also to be very careful in 
evaluation of the fringe lines and remember that the fringe order in- 
creases with thickness of the specimen. 

An elementary examination revealed that the stress near the center 
of the fiber for the first cut and the stress for the final cut turned 
out to be fairly close to each other in magnitude.    On this basis,  it 
was concluded that the original stress pattern was not greatly harmed 
by slicing. 

It was decided to use the Budd Company reflection polarscope as 
shown in operation in Figure 23 to evaluate quantitatively the stresses 
in the slice  from the cylindrical  10-mil glass fiber specimen. 
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Figure 20. Glass Fiber (0.010-inch Diameter) 
in Epoxy Viewed under Polarized 
Light after Slicing the Cylinder 
to 1 inch Across Flat Areas 
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/ * ' V 

Figure 21. Glass Fiber (0.010-irch Diameter) 
in Epoxy Viewed under Polarized 
Light after Slicing the Cylinder 
to 1/2 inch Across Flat Areas 
(Second cut) 
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Figure 22. Glass Fiber (0.010-inch Diameter) 
in Epoxy Viewed under Polarized 
Light (Direct polarscope) where 
Distance Across Flats is 1/8 inch 
(Third cut) 
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Figure 23. Budd Company Reflection 
Polarscope 
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HuOBMHEHm A«ALYSI§ 

The reflection polarscope operates by observing the fringes  in a 
birefringence model  coated on one side with a reflective coating.     In 
effect,  the reflection polarscope simply doubles  the specimen thickness 
since the light-path thickness is doubled. 

The first step  In quantitative stress evaluation by photoelasticity 
is to determine the stress-optic coefficiency for the particular material 
of the model. 

This is done by using a standard calculable stress distribution 
model and observing  the  fringes as this model is being loaded  (this 
technique is discussed in detail in Reference 1). 

For this case, a flat sheet of the same thickness as the final cut 
on the 10-mil glass  fiber specimen was cast from the same resin and with 
the same cure cycle.    A "dogbone" tensile specimen was then machined 
(under cooling) from this plate. 

The test section of the machined dogbone was coated with an aluminum 
paint for reflection of the white light used in the Budd Company instru- 
ment. 

The dogbone specimen was then placed in a tension testing machine 
and load was applied.    As the load was  increased,  the "tint of passage" 
or fringe order was  recorded.    Several  load and unload cycles were used 
in this process.    In every case, the applied stress was below the elastic 
limit and conformed to Hooke's law. 

A plot of the  fringe order versus applied  load gave the slope of 
the load-fringe order curve.    The stress-optic coefficient was then com- 
puted as shown In Reference 1. 

In the following, symbols and formulas used in photoelastic analysis 
are listed. 

Difference in principal stresses; 

01 "   ^2    m   T"       (***ic photoelastic equation) 
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where 

K ■ stress-optic coefficient in lb/in./order 

n a fringe order 

t = length of passage of the light vector 

(f]»   Öo = stresses in 1 and 2 directions 

For the tension specimen, let   (f-    ■ 0 

CT, ■ rr   (loaded direction) 

where 

P - applied load 

b = width of specimen at test section 

h m thickness of specimen ; 

then, 

K . 41 
n 

2h 
■   P/bh — ,  t ■ 2h (for reflection polarscope) n 

P/n   ■   slope of load vs fringe order curve 
=   18.7 lb/in./order (as determined for this case) 

2P _  2 x 18.7 
K       bn     0.5 

K   =   74.8 lb/in./order for this type of resin 

With the stress-optic coefficient determined, the lO-nll glass fiber 
slice was mounted so as to be viewed by the Budd instrument. 

This picture under polarized light is shown in Figure 24. Small 
grease points were used to locate spots where the stress measurements were 
desired. 

A plot of the difference in principal stresses at a radius of 0.10 inch 
from the fiber center along the fiber length is shown in Figure 25. The 
0.10-inch radius was chosen for plotting, since this coincided with a sta- 
tion used in the theoretical analysis. 
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Unloaded 

Loaded 

Figure 24. Slice of 10-mil Glass Fiber in Epoxy 
Resin. Specimen under Reflection 
Polarscope (Quarter wave plate in 
system) 
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The standard Tardy method was used to determine the fringe order at 
each point of Interest; I.e., the polarizer and analyzer sections of the 
polarscope were oriented each time to bring an Isocllnlc or principal 
stress direction on each point. The analyzer then was adjusted to bring 
the lower observed fringe order to the point of Interest. The fraction 
of this degree movement to 180° gave the fractional order to be added to 
the lower fringe  for the final value. 

The versatility of the Budd Instrument allows an additional  feature; 
I.e.,  to pass  light obliquely Into the specimen and thus to separate the 
magnitude of the stresses.    This was done for the center fiber point and 
only for the specimen without external  load.    The principle of oblique 
incidence and separation of the principal stresses is discussed thoroughly 
in Reference  1.    The plot of magnitudes of these stresses for the center 
point is shown in Figures 26 and  27. 

The theoretical analysis has  been extended to the  case where  the 
resin surrounding  the  fiber was subjected  to a uniform compressive  load 
In the direction of the length of  the fiber. 

It was desired  to accomplish  this  same effect in the experimental 
work. 

The  loading scheme  for  this  operation  is  shown in Figure  28. 

A minuLe portion at both ends  of the  fiber was  removed  inside  the 
resin so  that,   in effect,  it was  not  loaded under a pressure application 
to the ends  of the specimen.    The  load measurement was determined by the 
spring  load cell attachment shown in Figure 28. 

The  results  of this determination of principal stress difference 
under compressive  load are shown also in Figure 25,  and allow a direct 
comparison of the unloaded and   loaded specimens. 

Unfortunately,  the mirror attachment for oblique incidence measure- 
ments could not be brought close enough to the specimen due to the inter- 
ference of the  load cell.    Therefore,  it was not possible to separate 
the stresses at the center point. 
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Spring Load Cell 

Figure 28. Compressive Loading System for 
the Single Glass Fiber Specimen 
(Fiber diameter - 0.010 inch) 
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MULTIFIBER MODEL 

Glass rods 0.275  inch  in diameter were assembled  in a simulated 
cylinder consisting of a 19-fibcr array and an epoxy resin of the same 
cycle which was used for the single-fiber specimen. 

Figure 29 depicts  the glass rods assembled Just prior to the surround- 
ing of the rods with resin. 

Upon completion of the  fabrication of the cylinder,  a 1/8-inch-thick 
slice was  cut from this specimen.    This  is shown in Figure 30 under polar- 
ized   light  (with quarter wave plate in the system). 

It can be seen that the specimen shows the stresses in the resin 
between the rods to be symmetrical in nature. 

The resin between a group of three rods within this specimen was 
selected for analysis (the selection was based upon uniformity of the 
distance between rods). 

Figure 31 shows the magnitude of the difference in principal stresses 
along a line Joining the center of the resin triangle to the interface of 
one of the glass rods. 

A good comparison of these stress magnitudes was obtained with the 
analysis reported In Reference 2. 
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Figure 29. Assembly of Multifiber Glass 
Rod Specimen prior to Filling 
with Resin 
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Figure 30. 1/8-inch-Thick Slice of 19-Rod 
Specimen as Viewed under Direct 
Polar scope Optic System 
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