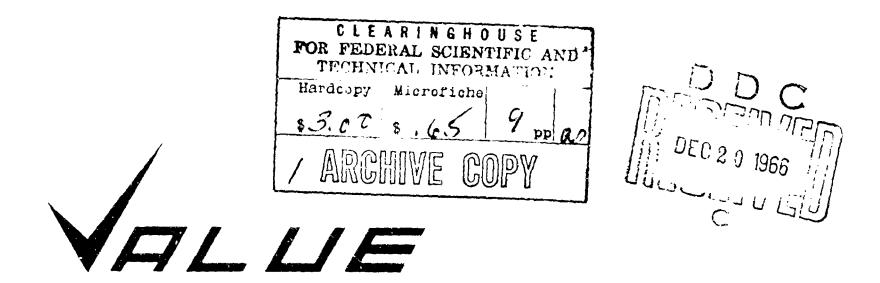
Report No. 9-RD-65

(?

1

(:)

STANDARDIZATION TASK REPORT TASK NO. 4


FORWARDED BY: COMMANDER, MANAL SHIP SYSTEMS COMMAND TECHNOLOGI, ELECTRY

ESTABLISHMENT OF STANDARDIZATION DATA FOR MONEL AND K-MONEL FASTENERS

Conduct d for: Department of the Navy Bureau of Ships

Contract No. NObs-90493

28 April 1965

ESTABLISHMENT OF STANDARDIZATION DATA FOR MONEL AND K-MONEL FASTENERS

Conducted for: Department of the Navy Bureau of Ships

Contract No. NObs-90493

28 April 1965

Conducted by: E. Goodman T. Hogland J. Miller

Approved by: $\mathcal{U}, \mathcal{P} \mathcal{U}$

H. P. Weinberg, Director Research and Development

VALUE ENGINEERING COMPANY 2316 Jefferson Davis Highway Alexandria, Virginia

I PURPOSE

The purpose of this task is to obtain data on which to base thread dimensions for 8UN interference-fit threads. The major diameter, minor diameter, and pitch diameter for external and internal threads for sizes 1 to 2 inches are to be determined. These dimensions are to be determined for monel studs engaged in tapped holes in HTS and HY80 plate and K-monel studs engaged in tapped holes in HTS and HY80 plate and monel and HY80 castings.

II MATERIALS TESTED

A. Requirements:-

1. <u>K-Monel Studs</u> - K-monel studs used in the performance of this task must conform to Military Standard MS18116 and the applicable requirements of specifications QQ-N-286 and MIL-B-857.

2. <u>Monel Studs</u> - Monel studs used in the performance of this task must conform to the applicable requirements of QQ-N-281 and MIL-B-857, except that the studs must have the following mechanical properties:

Tensile strength - 80,000 psi, minimum

Yield strength - 40,000 psi, minimum (0.2 percent offset)

Elongation in 2 inches - 20 percent, minimum

3. <u>Plate Materials</u> - Plate materials must conform to the following specifications.

Material	Specification			
High Tensile Steel Plate (HTS)	MIL-S-16113 Grade HT			
HY80 Steel Plate	MIL-S-16216			
Cast HY80 Steel	MIL-S-23008			
Cast Monel	QQ-N-288			

-1--

4. <u>Porosity</u> - All cast materials must be subjected to radiographic examination to ascertain freedom from porosity.

B. Mechanical Properties:-

Table I is a compilation of the required and actual mechanical properties of the studs and materials used for tests performed in this task.

All cast materials were subjected to radiographic examination. The cast HY80 was found to be free from porosity. Several plates of cast monel had an area of porosity which was marked so that no holes were drilled and tapped in these areas.

Material	Item	Tensile Strength (psi)	Yield Strength (psi)	Elongation in 2"(%)	
Monel Studs	Required	80,000 min.	40,000 min.	20.0 min.	
	Actual	113,000	99,000	20	
K-Monel Studs	Required	130,000 min.	90,000 min.	20.0 min.	
	Actual	162,000	121,000	23	
Monel Casting	Required	65,000 min.	32,500 min.	25 min.	
	Actual	78,400	39,900	45.0	
HY80 Steel	Required	For information only	80,000-95,000	20.0 min.	
Casting	Actual	113,000	92,000	22.5	

Table I Mechanical Properties

III THREAD GAGING AND DIMENSIONS

A. Thread Gaging:-

The thread major diameter, minor diameter and pitch diameter of all studs used in this task were measured. The major and minor diameters were measured on an optical comparator. The pitch diameter was measured over wires using the "three-wire method" (see Handbook H28, Part I, Appendix 4, page 194). The thread dimensions of the tapped holes were measured in a like manner by making a cast of each of the holes.

B. Thread Dimensions:-

Since no dimensional data are available for interfence fit 8UN threads, the setting of thread dimensions for this task had to be essentially that of trial and error. The following were the guidelines used in setting the dimensions of the threads for the studs and tapped holes used in this task.

EXTERNAL THREADS

7

- (a) The minimum pitch diameter was larger than the basic pitch diameter of the 8N series threads of the same size (see Handbook H28, Part I, Table III. 6, page 17).
- (b) As in the class 5 interference fit threads, the maximum major diameter was set approximately equal to the minimum major diameter for 8N class 3A (see Handbook H28, Part I, Table III. 10, page 27).

INTERNAL THREADS

0

- (a) As in the class 5 interference fit threads, the minor diameter limits were the same as those of 8N class 3B.
- (b) The pitch diameter limits were set equal to those of 8N class 3B.

Table II and III contain the limits of size for the 8UN interference fit threads for the external and internal threads, respectively.

Size and Threads	Major	Diameter	Minor Diameter	
per Inch	Max	Min	Max	
1-1/8 - 8	1.108	1.095	0.980	
1-1/2 - 8	1.483	1.469	1.357	
2 - 8	1.980	1.966	1.836	

Table II Limits of Size, External Threads

Table III Limits of Size, Internal Threads

Size and Threads	Minor Diameter		linor Diameter Pitch Diameter		Pitch Diameter		Major Diameter	
per Inch	Min	Max	Min	Max	Min			
1-1/8 - 8	0.990	1.005	1.0438	1.0505	1.1250			
1-1/2 - 8	1.365	1.379	1.4188	1.4259	1.500			
2 - 8	1.865	1.879	1.9188	1.9264	2.000			

After the holes were tapped and measured, the studs were machined to give interferences on the pitch diameter ranging from 0.001 inch to 0.008 inch.

IV TEST PROCEDURE

Studs were engaged to the minimum length of engagement as follows:

Stud	Size	Length of Engagement (inches) Internal Thread Material			
Material	(inches)				
		Monel Casting	HTS Plate	HY80 Steel Plate	HY80 Steel Casting
Monel K-Monel	1-1/8 1-1/8	- 1.07	0.71 1.00	0.6 4 0.79	0.86
Monel K-Monel	$\begin{array}{c c} 1 - 1/2 \ 1 \\ 1 - 1/2 \ 1 \\ \end{array}$	- 1.40	0.96 1.25	0.86 1.00	- 1.10
Monel K-Monel	$\begin{array}{c} 2 \frac{1}{2} \frac{1}{2} \end{array}$	- 1.90	1.28 1.70	1.15 1.35	- 1.50

 $\frac{1}{Extrapolated}$ from data obtained in Task 2.

The break-away and back-out torques for removing the stude were, subsequently, determined. These torques were obtained without any preloading of the stude. The test set-up for determining these torques is shown in Figure 1. Internal holes were lubricated with "3-in-One" SAE 20 oil.

V RESULTS

;

Because of the relatively high break-away torques required for the 1-1/8 inch class 5 interference fit studs and tapped holes in the 0.001 - 0.008 inch interference range, it was felt that this interference range would be adequate for the 8UN interference fit threads. This proved to be an erroneous assumption, however. At the low end of the range break-away torques varied from 20 to 100 ft-lbs. At the high end of the interference range tested, namely 0.008 inches, maximum break-away torques were 250 ft-lbs. for 1-1/8 inches, 280 ft-lbs. for 1-1/2 inches and 480 ft-lbs. for the 2 inch studs. It appears, then, that the minimum interference for the 8UN interference fit series should be 0.007 - 0.008 inches.

VI DISCUSSION

The class 5 interference-fit thread series was based on ten years of research, testing and field study (Handbook H28, Part III, page 48). It was not intended, therefore, that testing performed in this task would be adequate to completely set dimensional requirements for the 8UN interference-fit series. However, several conclusions and beneficial suggestions can be made.

- 5-

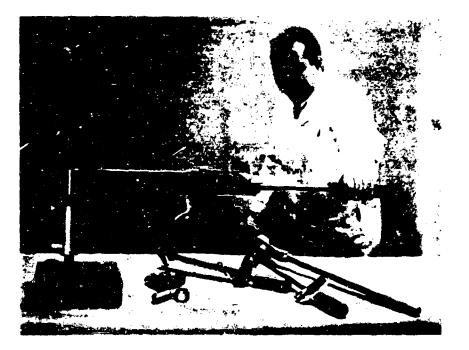


Figure 1 - Determination of Break-Away Torque

(a) The guidelines used in setting the limits of size for the external and internal threads appear to be valid. Relief of the external thread major diameter and internal thread minor diameter appear to be sufficient to allow for plastic flow which would greatly eliminate seizing and galling.

(b) The minimum pitch diameter interference should be 0.007 - 0.008 inches. The maximum interferences were not established in this task.

(c) Adequate break-away torques may possibly be achieved by increasing the length of engagement although the testing seems to indicate that increasing the pitch diameter interference would be more suitable.