
-

I-V.V-

»

i
■ ■■

A*"1"
'

'

-

-00

"--

* f.

-

-

-

■

**

■

-

■

■

r>
JA.

.
■

-

Final Report: MAGIC PAPER - AH ON-LIN&,SYSTEM FOR THE

MANIPULATION OF SYMBOLIC MAXK^IATICS
. ■ ■-•. • ■

by L. C. Clapp, D. E. Jordan, E. J, Wax, R. 3. Wolf

■

COMPUTER RESEARCH CORPORATION

429 Watertown Street

Newtcn, Massachusetts 02158

(617) 969-7150

■

■, :.>

- *

1

r »«' in i - um

I -

TTTTiTSTTOT
FOE FHQBFAL SCIENTIFIC AND

TECHNICAL mrojMArjow

Report No, R 105-1

15 April 1966

i mm Si

;

.
Submitted to:

•*=* .

s

.

DYNAMICS PROCESSES BRANCH

DATA SCIENCES LABORATORY

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES

HANSC0M FIELD

BEDFORD, MASSACHUSFTTS

■

%

D D C
1 DEC 14 1S66 \\

.v- ■'

Final Report: MAGIC PAPER - AN ON-LINE SYSTEM FOR THE

MANIPULATION OF SYMBOLIC MATHEMATICS

by L. C. Clapp, D. E. Jordan, E. J. Wax, R. S. Wolf

COMPUTER RESEARCH CORPORATION

429 Watertown Street

Newton, Massachusetts 02158

(617) 969-7150

Report No. R 105-1

15 April 1966

Submitted to:

DYNAMICS PROCESSES BRANCH

DATA SCIENCES LABORATORY

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES

HANSCOM FIELD

BEDFORD, MASSACHUSETTS

Computer Research Corporation

TABLE OF CONTENTS

Page

I. Introduction 1-1

II. The Console 2-1

A. User-Console Interaction 2-1

B. Display Format 2-1

C. Use of the Light Pen 2-2

III. Elements of The System 3-1

A. Pushbutton Operators 3-1

B. Transformations 3-1
C. User-Defined Procedures., 3-3

IV. Input of Mathematical Expressions 4-1

A. Introduction 4-1
B. Standard Notation 4-2
C. User-Defined Notation 4-6

V. Description of Pushbutton Operators and

Their Use 5-1

A. ENTER 5-1
B. LABEL EQUATION 5-1
C. APPLY 5-1

D. APPLY TRANSFORMATION 5-2
E. DISPLAY TRANSFORMATION TABLES 5-3

F. RESTART 5-3

G. CANCEL 5-3

H. Scroll Manipulation Operators 5-4
I. Transformation Table Operators 5-4

J. DELETE , 5-5

K. Simplification Operators 5-5

L. SUBSTITUTE 5-5

M. TRANSPOSE 5-6
N. PROCEDURE DEFINE 5-6

, . i ., - -

Computer Research Corporation

TABLE OF CONTENTS

(Cont'd.)

Page

0. EDIT 5-7

P. ADD NEW OPERATOR., 5-8

APPENDICES

A. Examples A-l
B. System Description for Adding A New Operator.... B-l
C. Proposed Extensions to the Systems C-l
D. Internal Format of Mathematical Expressions D-l
E. List of System Programs E-l

TABLES

A. Examples of the Input Language

B. Keyboard Symbols Which May Not Be Used As

New Operator Symbols

C. Lists for New Operators and Functions

D. Precedence Values of Various Operators

E. Words for Describing Operators in

Abbreviated Mode

Computer Research Corporation

I. Introduction

This report describes the preliminary version of the

MAGIC PAPER System which is being developed by Computer

Research Corporation for the Dynamic Processes Branch of

the Data Sciences Laboratory at the Air Force Cambridge

Research Laboratories. Through a conversational interaction,

the system aids the scientist, engineer or mathematician as

he performs symbolic operations on linear algebraic equations

The user begins by entering his initial equations and

conditions through a mathematical keyboard. As he types

these equations, they are displayed on a flicker-free scope

in standard mathematical notation. Using a push-button

control panel and a light pen, he may select expressions

and operations which pre to be performed on them. If the

operation is legal, the system generates a new equation

which is then added to the scope display»

With the basic set of operations, the user may create new

operators which can then be added to the system. He can also

introduce special notational conventions. In other words,

the user has considerable control which enables him to

personalize the system to meet his own particular needs.

A flow chart indicating the major functional components and

logic of the system is shown on the following page. The

succeeding sections of this report describe the system in

detail. Examples of the system's use and several significant

features of the internal structure are described in the

appendices, which also contain lists of the sub-routines

used in the full system.

The MAGIC PAPER System is being implemented on the DX-1

processor at Hanscom Field and makes use of the Visual

Information Processor (VIP) developed by Charles W. Adams

Associates.

1-1

terminator

Syntax
Analyzer

Math
Syntax
Defs

Conversion
to
Internal
Format

I
Enter

Computer Research Corporation s.

^^fight pe*

System Flow Chart

update
picks

add
character
to input?ist

display
error
message

Y Pushbutton
 Operators

Substi

L T JTJ J
~\ yProcedui^e
itujfce (Define)

Apply
transf

)

i uonvers'ion or
Result to
Display
Format

I
Update
Display

-L-2-

Computer Research Corporation

II. The Console

The system console consists of the following user devices:

1. A DEC type 30 cathode ray tube display and drum-driven

display processor that provides a flicker-free display.

2. A DEC type 32 light pen.

3. A pushbutton panel.

4. A keyboard containing the Roman and Greek alphabets

and a number of mathematical symbols.

5. Two foot switches.

A. User-Console Interaction

The focal point for controlling the system is the push-

button panel. Each button on the panel corresponds to

a system operator which is called whenever its button is

depressed. These operators control the display format

and manipulate expressions. The arguments required by

the operators are either selected by the light pen or

are entered through the keyboard. The expressions the

user types on the keyboard and the results of his manipu-

lations are displayed in conventional mathematical format

on the scope. Thus a normal sequence of interaction would

involve selecting a group of arguments with the light pen

or entering them through the keyboard, invoking a push-

button operator, and viewing the results on the scope.

B. Display Format

The equations entered and the results derived are organized

2-1

•

Computer Research Corporation

into a system of "scrolls". The current scroll is usually

displayed in an area occupying the lower 7/8 of the scope

face. At the top is an area used for the display of the

expression being entered. As each new result is developed

or new equation entered it is placed at the end of the

scroll. When the display area is filled with equations

the scroll is automatically rotated to make room for new

results. The user may also rotate the scroll using

operators to be described later.

C Use of the Light Pen

1. Selecting Arguments

The light pen is used to select displayed expressions to

be used as arguments for pushbutton operators. Using

techniques described in the next section, expressions

on the scope may be brightened or underlined. We shall

say that such an expression has been picked. After

picking the desired expression, the user presses the

Select Argument pushbutton to define that expression as

an argument.

2. Picking Techniques

To pick a character the light pen is pointed at the

character with the penswitch depressed. In response the

picked character is brightened or underlined to show the

user that the system recognizes his pick. At this point

the user may release the penswitch to terminate the

picking process, or shift the light pen to another character

If he merely shifts the pen the new character becomes the

pick and the previous character is no longer picked. There

are a number of ways to pick expressions larger than a

2-2

Computer Research Corporation

single character. Each allows the user to pick only

legal mathematical expressions. Consider the following

example: given the equation

a(x + y) + b = 0

suppose we wish to select the left hand side as an argument

for an operator. We may use any of the following techniques.

1. Operator Pick - Picking the + preceding the b picks

the whole left side of the above equation as shown

in fig. la. In general, picking an operator causes

that operator and all of its arguments to be picked.

2. Inclusive Pick - Picking the a and the b and depressing

the Inclusive Pick button picks the left side of the

equation (fig. lb). In general the Inclusive Pick

brightens the minimum legal expression containing

both picked characters (e.g. the picks in fig. lc

yield the same expression).

3. Expanding Pick - Picking the x a second time picks

the next higher expression, x + y. Each repick of

x causes the next higher expression containing x to

be picked (fig. Id.).

Note the difference between the actions of the

operator pick and the expanding pick in an expression

involving more than two arguments joined by an

associative and commutative operator such as addition

(fig. 2). The operator pJ.ck brightens only the

arguments of the picked operator, while the expanding

pick brightens the complete sum.

In addition, an expanding or operator pick may be

used to define the end points for an inclusive pick.

2-3

Fig. la.

Computer Research Corporation

pick

a(x + y)* + b = 0

picked expression

Example of Operator Pick

Fig. lb.

pick 1 pick 2

a(x + y)2 + b = 0
v L, ^

picked expression

Example of Inclusive Pick

Fig. lc.

pick 1 pick 2

a(x + y) + b = 0
V ^

picked expression

Another example of Inclusive Pick

pick 12 3 4 5

picked expression

Fig. Id. Example of Expanding Pick.

pick

x + y + z = 0

picked expression

Fig. 2a.

2-4

Computer Research Corporation

pick 1 2

i JL+ y +z = o

Fig. 2b,
picked expression

Fi-?. 3.

pick 1 pick 2

a + b + c+d+.e + f = 0

picked expression

2-5

^■^^■^?"^r"

Computer Research Corporation

The user may pick several, but not all, arguments of

an associative and commutative operator by using the

technique illustrated in figure 3. Once all the picks

have been made and the desired expressions are brightened

or underlined, the user presses the Select Argument

button. Brightening and underlining are then terminated,

and the user may select the next argument or invoke a

pushbutton operator.

2-6

Computer Research Corporation

III. Elements of the System

A. Pushbutton Operators

Operators are preprogrammed routines assigned to push-

buttons and form the central language of the system.

Operators perform the following types of tasks:

1. Scroll manipulation

2. Equation editing

3. Equation input

4. Application of mathematical operators to

expressions, e.g., adding two equations, or

raising an expression to a power.

5. Simplification

6. Application of transformations to expressions

7. Definition and execution of user procedures.

Each operator is initiated by selecting its arguments with

the light pen or entering them through the keyboard and

then depressing the appropriate pushbutton. For example,

to enter an equation the user types the equation on the

keyboard and then depresses Enter. If the user does

not specify the arguments the system will tell him via the

CRT what arguments are required for that operator.

The system is open-ended in that new operators may be

programmed in DECAL-BBN making use of previously defined

operators. A particularly valuable operator would be

one that allowed the user to create new operators on-line

in a higher level language than DECAL-BBN. A simple class

of such operators, called user-defined procedures, can be

created on-line and are described in Section III-C.

B. Transformations

In addition to the control operators described above, the

3-1

\

Computer Research Corporation

system contains mathematical relationships in the form

of identities or transformations. In effect, these

transformations determine the "mathematics" known to

the system. A transformation is simply a pair of

expressions or equations, the second derived from the

first by an unspecified sequence of manipulations.

Consider the following example of a transformation:

(a + b)2-* a2 + 2ab + b2

Transformations are used with the 'transform Apply"

operator whose arguments are a transformation and a

selected expression. The operator "matches" the selected

expression with the left hand part of the transformation

to determine if they are of the same form and then

determines the relations between the variables of the

form (the left hand of the transformation) and the

instance (the selected expression). The operator then

replaces the variables in the right hand part of the

transformation by the corresponding quantities in the

instance to produce the result. Consider applying the
2

above quadratic transformation to the instance (x + 3) .

The operator matches the "x" with "a" and the "3" with
2 2

"b" to produce the result x + (2) (a) (3) + 3 . Note

that this result is not automatically simplified. In

addition the transformation could have been applied to

a more complex expression such as ,

(, ab2x2
(xy + —)

The transformations in the system are organized into

tables for easy reference by operators and users. These

tables may be displayed instead of the current scroll by

depressing the left foot switch. The user may modify

3-2

Computer Research Corporation

the transformations tables or enter his own transformations

into tables with appropriate operators.

C. User-Defined Procedures

An operator called Procedure Define allows the user to

combine a series of operators into a single operator.

As an example, let us develop a procedure (S0LV2) to

solve a pair of linear equations, A and B for the variables

X and Y, assuming we have previously defined an operator

SOLVE that solves a linear equation for a given variable.

S0LV2 also uses the operators SUBST (for substitute),

DISPLAY (to enter the expression into the current scroll),

and =^ (assign result to following keyboard letter).

Underlined words refer to single buttons on the pushbutton

panel.

DEFINE S0LV2 A B X Y

Solve equation A for X, assign result

to S. Substitute for X in equation B,

assign result to T. Solve T for Y,

assign result to R. Display unsimplified

solution for Y. Substitute for Y in

equation giving X in terms of Y. Display

END solution for X.

A X SOLVE =£ S

S B SUBST =>T
T Y SOLVE =^ R

R DISPLAY
R S SUBST =^Q

Q DISPLAY

3-3

Computer Research Corporation

IV. Input of Mathematical Expressions

A. Introduction

The user enters all mathematical expressions directly

from the keyboard, using input notation closely

resembling standard mathematical language. Except for

a few types of notation and the conventions for typing

two-dimensional information, all of which will be

discussed in the next section, the user's intuitive

notion of mathematical language will enable him to

enter expressions correctly.

As the user types an expression, the characters are

displayed in the upper portion of the scope. Exponents,

subscripts, and superscripts are displayed normally;

but no other formatting of the expression takes place.

When the expression is completed, as signaled by the

user typing a double carriage return, it is redisplayed

in a completely formatted form. If the expression is

ambiguous, the system, in most instances, notifies the

user. However, by examining the redisplayed version

the user can verify that the correct interpretation of

the expression has been made. If he desires to change

the expression he can either delete it and then type

another, or he can modify it using the edit operator

described in Section V.

The material in this chapter is divided into two

sections. The first describes the notation built into

the system and the rules for using this notation.

The second describes the input and use of user-defined

4-1

Computer Research Corporation

functions and operators, which once defined become

part of the language. Extensive examples of input

are shown in Table A.

B. Standard Notation

1. "Implied Multiplication"

In accordance with standard usage, a multiplication

sign is understood between items which are strung

together, e.g. 3X or XY. Numbers and expressions

appearing in the middle of such strings must be

parenthesized. Specifically, the first item may

be a number, and every succeeding item must be

a variable, a function, or a parenthesized

expression. In addition, any of these items may

be exponentiated (See Table A, Ex. 14, 20, 27).

However, a mutiplication sign may still be used in

input. Note that the implied multiplication feature

necessitates the use of single-letter variable names.

2. Numbers

Numbers may be of any type: positive or negative,

integral, decimal (.1; 1.; 1.1; 1.10; etc.),

fractional or mixed (2 1/2). Mixed numbers should

have a single space between integer and fraction.

The use of fractions often causes ambiguities,

and the user should note that fractions are not

treated like ordinary quotients, e.g, , "l/2x"

is taken to mean (l/2)x, but '"l/ax" is taken

to mean l/(ax). For further examples, see Table

A, ex. 1-4, 11, 17, 45-46.

3. "Line Changing" Notation

Input of two-dimensional expressions involving

exponents, subscripts and superscripts requires

4-2

Computer Research Corporation

Special conventions because keyboard input is

"linear". These operation are indicated by the

f , "sub" and "super" keys, respectively. In

this paper, we will denote the last two byV and A .

Variables and function names are the only items

which may have "scripts" (superscripts or sub-

scripts) . A letter* (i.e., a variable) may have

each type of script, and if it has both, the

superscript must come first. Scripts may be

multiple, containing several expressions with

commas between them. Furthermore, scripts and

exponents may themselves contain scripts and

exponents, etc. (Note that aVij? would not be

interpreted as a double subscripted letter, but

as a letter with the single subscript iXj. The

double indexing notation can be indicated by

aVi,j?). Each of the scripting operations is

terminated by a question mark (?), which means

"return to previous line" or equivalently, terminate

last exponentiation (f), superscripting (A)>

or subscripting (V) operation. The terminator

may not be omitted, even in simple unambiguous

cases like %t«t?, for # . Thus, % *^ may be input

as % f **^ V t A3L??f. Another terminator symbol,

the verticle bar (|), meaning "return to main

line" may be used in place of one or more question

marks. Thus a single J could have been typed

instead of the three question marks in the above

example. The user should note that his expression

May be English or Greek, upper or lower case.

-4-*-

Computer Research Corporation

will be displayed in two-dimensional form and the

line-changing characters will not be shown.

Subscript notation can be abbreviated in the

following special case: if a letter is followed

directly by an integral, decimal or mixed number,

the number is interpreted as a subscript. But

note that x-, /« must be input as "xVl/2?M, since

"xl/2111 would be taken to mean x-,/2.

Examples of the use of line-changing notation may

be found in Table A, Ex. 6-13, 15, 18, 23, 24.

4. Transcendental Functions:

The functions sin, cos, tan, esc, sec, cot, log

(base 10) and In (base e), are typed in exactly this

form. Unlike normal functions they cannot be

scripted, but they may be exponentiated. Thus,
Msin^2?x" and "(sin x) ♦ 2?" are two ways of inputting

2 2 4
sin x, or (sin x) . Note that "sin* -l?x" does not

mean arcsin x, and at present the inverse trigonometric

functions are not in the system.

Spaces are not necessary between the function name

and its argument and will be ignored. However,

spaces may not appear in the middle of a function

name. Writing "s i n x" is a simple way to input
(s)(i)(n)(x).

In accordance with standard usage certain types of

arguments for transcendental functions need not be

in parentheses: for example sin 2x is sin(2x) and

4-4

i

Computer Research Corporation

cos x sin y is cos (x) sin (y). The argument is

determined by the following rules:

1. If the first item after the function name is

parenthesized it is taken to be the entire argument.

2. If the first item after the function is not

parenthesized, the argument is terminated by any

infix operator except division (or implied multi-

plication) or by another transcendental function

name. (See items 30-37 in table A for example.)

Examples of the above rules are shown in Table A,

Ex. 24-42.

Other Notation

(a) +, -, X, / are used in the usual fashion. + and ■
have lower precedence than X and /, which in turn

have lower precedence than implied multiplication and

functional operators. However, the input processor

is not strictly "precedence-driven"; there are too

many special cases.

When several infix operators of the same precedence

occur in sequence, grouping (i.e. , algebraic interpre-

tation) goes from left to right. So "a/b/cXd" is

stored as ((a/b)/c) X d. (But note the special

rules for numerical fractions). See Table A, items

27-29, 31-33, 3 7-42, 50, for examples.

(b) -*• is the symbol used to input transformations

(see Section III-B) Technically,-* is a binary infix

4-5

Computer Research Corporation

operator whose operands are both expressions, or

both equations, The pair of symbols 4r* is used

as a single operator to denote a transformation

which may be performed in either direction (See

Ex. 19 in Table A)

(c) Spaces are generally ignored by the input

processor, but are needed to input mixed numbers.

(d) Expressions with unpaired parentheses are

illegal. However, expressions of the form (...],

<<£...), etc., will be accepted, and an appropriate

comment made to the user.

C. User-Defined Notation

An important feature of the system is the ability

to add mathematical functions and operators.* The

method by which this is done on-line at the console

is discussed in Section V-P and in Appendix B of

this manual. The following is a discussion of the

usage (i.e., input rules) of these "new" mathematical

operators.

The input form of a new operator must be a single

keyboard symbol. Thus, if the user wishes to add

the determinant function to the system, he cannot

input "Det" for this function (although he may have

it displayed in this form). But any symbol which

has no other special meaning may be used as a new

operator. Function names need not be letters.

* Not to be confused with push-button operators.

4-6

Computer Research Corporation

Table B contains a list of the symbols which may not

be used as new operators.

The symbol for the new operator must be placed into

one or more (any combination) of the six lists in

Table C. The first three lists provide for what

might be called "operator" notation, and the last

three are for "functional" notation. The examples

in Table C should make these concepts clear, as they

correspond quite closely to normal usage.

To clarify these ideas, let us consider a specific

example: suppose the user wishes to make "f" a

function of one variable, to be used in the standard

notation " f (...)"• To do this, he just adds the

symbol "f" to the Unary Function List. If he decides

that he would also like to be able to use "f" as a

function of two or more variables, he can add the

symbol to the Binary Function List and/or the Many-

Place Function List. When using such functional

notations, he muse always parenthesize the argument(s),

and must separate arguments with commas. Also, function

symbols may have exponents, subscripts, at:d superscripts,

(See Table A, numbers 13, 15) Another featuie is that

"f" may still be used as a variable, since it is a

letter. Whenever it is written in an expression with-

out an acceptable, parenthesized argument, the input-

processor will assume it to be a simple variable (see

Table A, nos 5 & 14; nos. 12, 16 and 17 also demonstrate

functional notation).

Now suppose the user does not want to be forced to

use parentheses. He can use notation like "f3x",

j±a.

Computer Research Corporation

iifii just as he can write "sin 3x", etc., by making "f

a "Prefix Operator". (This type of notation is more

commonly used with non-letter symbols, likeN , etc.)

He may still use "f" with a parenthisized argument,

however use of operator notation is somewhat restricted

For example, "f(x,y)" is only legal if "f" is kept

in the Binary Function List. A prefix operator may

have an exponent, but no "scripts". An infix or

suffix operator can have neither exponent nor scripts.

Furthermore, no symbol in any of the operator lists

may be used as a variable, even if it is a letter.

The feature of user-defined notation raises questions

concerning the interpretation of ambiguous expressions.

The input processor makes most of its interpretations

on the basis of "precedence values". Where there

is an ambiguity, the mathematical operator with the

higher precedence is "performed" first. When the

user adds a new function or operator, he assigns to

it a precedence value. The input processor could use

these values, however the current input processor

assigns values automatically. The precedences are

shown in Table D. The only other general rule is

that in an expression like "a*b*c*d", where "v.-" is an

infix operator, computation or grouping proceeds from

left to right. See Table A, Nos. 32-51, for examples

of interpretation of input. Parentheses may always

be used to clarify the meaning of expressions.

4-8

Computer Research Corporation

V. Description of Pushbutton Operators and Their Use

The description of each operator includes the arguments

required for its use and its results. As mentioned

above all arguments are selected with the light pen

or entered from the keyboard. The following commands

are used for selecting equations or transformations

on the scope from the keyboard:

.en - where n is an equation number

.tn - where n is the number of a transformation

in a table.

Each such expression is terminated by a double carriage

return (denoted here by //). All other information

from the keyboard is assumed to be mathematical

expressions.

A. Enter

Arguments: An equation or expression

Action: Enters its argument into the current scroll

B. Label Equation

Arguments: None

Action: Assigns the next label number to the current

equation (beginning with 1)

C. Apply

Arguments: Operator, expression 1, ... , expression n

Action: The specified mathematical operator is applied

to the expressions following and the result is entered

into the scroll. The number of expressions following

the operator must correspond to the normal number of

arguments for that operator. Multiplication and

5-1

Computer Research Corporation

addition may take an indefinite number of arguments,

subtraction, division, and exponentiation two arguments;

most other operators take a single argument.

If an argument of an operator is an equation, the

operator is applied to each side of the equation

rather than the equation as a whole.

Examples of Use:

+ // a // b // c // Apply

will enter the result

a + b + c on the scroll

+ //.el //.e2 // Apply

will add equations 1 and 2 together and enter the sum

on the scroll.

X //.el // 2 // Apply

will multiply both sides of equation 1 by 2 and enter

the result.

Note that equations 1 and 2 in these examples could

have been picked by the light pen in the appropriate

order rather than selected by typing their numbers

on the keyboard. The results are not simplified

in any way.

D. Apply Transformation

Arguments: transformation, expression

Action: The expression is matched against the left

part of the transformation to determine if the forms

are similar and, if so, to determine the correspondences

between the variables. A new expression is formed by

substituting the corresponding value of each trans-

formation variable into the right half of the

transformation. This new expression is then entered

Ü

Computer Research Corporation

into the scroll. If no match is found the message

"no match found" is displayed on the scope. If the

transformatic: has been specified as going in either

direction then the expression will be matched against

both parts and the appropriate substitutions will be made.

E. Display Transformation Tables

By depressing the left foot switch and then releasing

it, the display changes from normal scroll display

to display of the transformation tables. This display

is organized into pages which can be turned by picking

the forward or backward arrows at the bottom of the

display. Normal scroll display is continued by

depressing the left foot switch again. Transformations

may be picked from the display and used as arguments

for other operations.

F. Restart

Restart returns the system to its state before the

previous equation was formed, i. e. , it deletes the

last result.

G. Cancel

Cancel deletes the last step the ussr made in setting

up the arguments for an operation:

1. If the last step was to select an argument, that

argument is deleted.

2. If the last step was an expanding pick, the level

is contracted to the previous level.

3. If the last seep was an inclusive pick, that pick

is deleted.

5-3

Computer Research Corporation

H. Scroll Manipulation Operators

1. Rewind Scroll

Returns the scroll to the starting equations.

2. Backup Scroll

Shifts the display window back one equation.

3. Advance Scroll

Shifts the scroll window forward one equation.

4. Unwind Scroll

Places scroll window at current end of scroll.

5. Save Scroll

Argument: (string for name)

Action: Files the current scroll and assigns the

given name to it.

6. Display Scroll

Argument: (string for name)

Action: Retrieves the named scroll and displays it in

rewound position. Unless previous scroll was saved

it is lost.

7. Start Scroll

Action: Deletes current scroll (unless it is saved)

and allows the user to start a new scroll.

I. Transformation Table Operators

1. Insert Information

Argument: transformation

Action: The selected transformations is inserted ir

the transformation table, and assigned the next

higher number. A transformation may be .».ormed by

applying the transformation operator (♦) to two

expressions or equations, or the transformation

may be entered by the Enter operator. In the latter

case the validity of the transformation is assumed.

2. Remove Transformation

Argument: Transformation

Action: The selected transformation is removed from

its table and added to the end of the current scroll.

5-4

Computer Research Corporation

J. Delete

Argument: Expression ./hich is itself a scroll entry.

Action: The selected expression is deleted from the

current scroll.

K. Simplification Operators

1. Combine Terms

Arguments: Expression, variable

Action: Combines like powers of the specified

variable within the selected expression. Elementary

numerical simplification also takes place.

2. Combine Fractions

Argument: An expression whose highest operacor

is addition or subtraction

Action: The terms in the sum are combined into a

single fraction with the least common denominator

of all the fractions. If no member of the expression

is a fraction or the highest operator is not subtraction or

addition, no action is taken.

3. Simplify Products and Fractions

Argument: An expression whose highest operator is

multiplication or division.

Action: The selected expression is transformed into

a ratio of products, and is reduced to lowest terms.

L. Substitute

Arguments: An equation of the form expression a =

expression b, an expression

Action: All occurrences of "a" in the selected expression

are replaced by "b".

The equation "a=b" may be entered from the keyboard

directly or may be picked from the scroll. The user

may control the instances of "a" that are replaced,

by picking a subexpression which contains only the

desired instances.

Computer Research Corporation

:

<-

C

M. Transpose

Arguments: An expression which is itself either one

side of an equation or which is associated with all

other expressions on one side on an equation by + or

- operators.

Action: The expression is transposed to the other

side of the equation and its sign is changed.

N, Procedure Define

Arguments: None

Action: The system records the definition of a direct

procedure. The format of the definition is as follows:

Procedure Define Pushbutton AB ... C

f pushbutton operators and letters L
\ representing their operands)

END

Pushbutton is the operator button to which the direct

procedure will be assigned. Since the unused pushbuttons

are not labeled the user depresses the correct one to

indicate which is desired. A, B, and C refer to

letters on the keyboard which represent the arguments

of the procedure. The following operators may be used

in procedure definitions in addition to the normal

operators:

1. A RESULT - indicates A is to be returned as

the result of the procedure.

2. s^ (store) - indicates that the result of

the preceding operator is to be temporarily

"assigned" to the letter following.

Literal mathematical expressions to be used as arguments

of operators within a direct procedure definition

should be enclosed in quotes (") to distinguish them

from keys on the keyboard.

5-6

Computer Research Corporation

As an example let us define a procedure with converts

an expression in cartesian co-ordinates (x and y) into

the equivalent expression in polar co-ordinates,

(Y and »)

Procedure Define Pushbutton E

"x= r cos * " E Substitute => A

"y= ** sin b " A Substitute =r> B

B DISPLAY

END

0. Edit

Argument: An entry in the scroll or the expression

in the input area

Action: The argument expression is displayed in a linear

format showing all characters including control characters,

and a pointer is positioned before the first character

in the expression. Using the commands described below

the user may delete characters or insert new ones.

NCTE: The user must insure that any changes he makes

through the edit operator are valid. All edited

expressions are treated in exactly the same way as

expressions entered from the keyboard, i.e., their

validity is assumed.

Edit Commands:

1. The following commands are used to move the pointer:

r - moves the pointer one character to the right.

1_ - moves the pointer one character to the left.

2. Delete Characters

d - deletes the character following the pointer.

3. Insert Characters

i - the characters following the i are inserted

before the pointer; the characters after the pointer are

iO.

Computer Research Corporation

shifted right. The insertion process is terminated

after an upper case followed immediately by a

lower case is typed.

4. End Editing

z - The edit operator is terminated, the edited

expression is re-analyzed by the input processor,

and the new version replaces the old.

P. Add New Operator*

Argument: None

Action: This operator allows the user to add certain

types of mathematical operators to the system.

Because the information required by the system is

quite detailed the system will ask the user questions

requiring the user to choose between several alternatives,

or to answer yes or no. The information requested

is of the following types:

1. Input symbol

2. Input format (number of arguments»prefix, infix, etc.)

3. Mathematical properties (commutative, etc.)

4. Display format (which may be different from

input format because of input limitations.)

* A more detailed description of this operator can

be found in Appendix B.

5-8

Computer Research Corporation

Appendix A: Examples

This appendix presents two examples using the system to

solve mathematical problems. In the examples we show

the commands required to execute each step and the

resulting equation, which is added to the scroll. We

use the following notation to represent the user's

commands:

// - double carriage return (standard terminator)

"A" - the expression in quotes has been picked with

the light pen from the last equation and

selected as an argument.
B - B is one of the pushbutton operators described

ii. section V.

For reference, the following transformations are used
in the examples. They will be referenced by their numbers:

a(b + c) -* ab + ac (1)

ab + ac ■> a(b + c) (2)

1. Solution of a linear equation in one variable

User's command Resulting expression

5* - l/f = 3(H- l3//r) // Enter S-* - ? = 3(* 4 jl)

•"£1 // " 3U + T|) Apply Transformation Ca. -i = 3 fe + (Jl^l

1 (3/(13) Simplify Product ra i = 5a A '3

|5- —— 6* r « + j

31 Transpose £"fc - 3* - > = "F

S Transpose £~l -3a =. U . JL
 — 5* r

A-l

Computer Research Corporation

"Xl - 3l" Simplify Sum

ii »3 i i»
"Z +• ~ Simplify Sum

,i y
x

Simplify Product

»» J^_ Simplify Product
UK 5)

2 h - !3 +
i

2* =■

IM

r
11 c

I s
is

* s
7

2. Derive the formula for the addition of velocities in

special relativity from the equations of the Lorentz

Transformation. In the frame of reference A let a body

be moving in the Z direction with speed U. Let frame of

reference A be moving in the Z direction with a speed

v relative to reference frame A'. What then, according

to the Lorentz transformation is the speed w of the body

relative to A1?

User's Command Resulting Expression

*» = u-<t)/T(i-Arte?/cU?)// g, _ *-«*
Enter Label Hi - ^r

* * r ==5i ~ /•

Enter Label •£/ r : 3..

t' = it-*%)/c*a?/rti-ArtA?/cU?)// ^

^2

- U/fc II Enter Label

Computer Research Corporation

Uj = fc /-t // Enter Label ^ s -^ 4.
t

.63//.ei// Substitute / . u-t-^rt

i ^ yy ii, x x." , t(u.- AT)
.X.A/1 U^'C-zo-t- Apply Trans format ion "£ = --

Label J / - —*"

ttJ>//.e.a// Substitute f/ =

ta.// "f ^ " / tll~ c*/ • '/ L TTT Apply Trans format ioR ts —i

Label W ! c**-

2
/VT W t' tu--?

HI -=;
II t (w, - «r) "

I *T~~ Simplify Product

t (! - «£) 4' "" | - £%_
rr^?

C^
AT«-

Label 1 u, - *r

C1-

f.

4.

.C.7//.C«/// Substitute Label s U, - *r_ p

Computer Research Corporation

Appendix. B: System Description for adding a new operator

New mathematical operators are added by the user through this

systems operator. The user presses the push-button before

specifying any information, and the following action then occurs:

1. The system asks the user to type the operator or function

symbol. The user in return types a single keyboard symbol

(he may first hit "upper case" or "Greek"). The user

should check that the symbol is allowable (see Table B).

2. The system next asks the user to specify the input category

or categories into which the operator belongs. The user's

response is one or more of the list names in Table C,

typed on separate lines. The user indicates that there

are no more categories to come by typing two carriage

returns in sequence.

3. The system must then specify the information for the

Operator Table and the display program. The cystem first

asks the user in which of two "modes" he wishes to supply

the details, "explanatory" or "abbreviated". The user

answers this question by typing "e" or "a".

In either mode, the system must obtain the information necessary

for the operator's "code word". In explanatory mode, the system

asks tl'.■■(-. following questions (the questions appear in sequence

on the scope):

0

1

2

3

4

5

6

7

8

9

10

11

Is operator crazy?

Is operator prefix?

Is operator infix?

Is operator suffix?

Must argument area be parenthesized?

Must argument area not be parenthesized?

May operator have 5 or more arguments?

May operator have exactly 4 arguments?

May operator have exactly 3 argrnients?

May operator have exactly 2 arguments?

May operator have exactly 1 argument?

Is operator a "string" operator?

.£zJ_

Computer Research Corporation

12) Is Operator associative?

13) Is Operator commutative?

14) What is precedence value of operator (0 to 15)

The user answers all but the last question by typing "y" or

V.
Many of these questions seem to ask for the same information

that was supplied in the input specifications but actually

this is not so, since these questions refer to the output

specifications, which may be entirely different from input.

The following is an explanation of these questions, by number:

0) Is operator crazy?

For display purposes, every operator is called either

"crazy" or "normal". An operator is normal only if the

following conditions are met: display for this operator

involves only display of the input symbol, with no special

control routines, in some combination (any 0,1,2 or 3) of

the categories prefix, infix or suffix. Functional

notation (i.e., parenthesized operand area and commas between

operands, for a prefix or suffix operator) is normal. But

any other complex display procedure makes an operator crazy.

1-3) Is operator prefix/infix/suffix?

An operator is prefix, infix or suffix if the display program

must perform some action before, between, or after the

arguments, respectively. In the case of a "normal" operator,

this "action" is simply the display of the input symbol.

In the case of a "crazy", "string" operator, the action is

the display of a specific string of symbols (see question 11)

An operator need not be in exactly one of these categories.

Exponentiation, for example, is infix-suffix, since

"action" (i.e. , line-changing) must be done before and

after the operand. See Example 3 for a useful prefix-suffix

possibility. Implied multiplication, on the other hand, is in

none of these categories.

The display program automatically places commas between

operands of a prefix or suffix operator (unless it is also

infix). Thus, to effect functional notation, an operator

should be described as normal, prefix and "yespars".

(see next question).

Computer Research Corporation

4) Must argument area be parenthesized?

Used mainly for functional operators. Note that "operand

area" means neither the individual operands nor the entire

expression (i.e., we want to see "f(x,y)", not "f(x),(y)M

or "(fx,y)" (See example 1)

5) Must argument area not be parenthesized?

Some operators, especially prefix-suffix, like the

standard notation for absolute value (example 3) should

never have a parenthesized argument area. (We do not want

I v • • •) i J '
Most non-functional operators would have both questions 4

and 5 answered No.

Questions 6-10 and 12-13 ask informationjwhich is used by

algebraic programs as much as by the display program .

6-10) How many arguments Tiay the function or operator have?

An operator may, of course, be in several of these categories

(For multiplication, for example, the answer would be Yes

to all but the last question).

11) Is operator a string operator?

This question is asked only for crazy operators. A

"string" operator is one for which the only "craziness"

is that a string of one or more characters is displayed

instead of the symbol used for input. Example 2 shows how

the determinant function may be defined to effect the

display of "Det (A)", even though input is of the form

D(A). In Example 3, the absolute value function must be

added as a string operator since a vertical bar may not

be used input. Here the "string" is the single symbol "|".

12) Is operator associative?

This question is not asked if the operator cannot hav

more than two arguments.

13) Is operator commutative?

This question is not asked if the operator is only unary.

14) What is precedence value of operator?

The user answers this question with a number from 0 to 15.

B-3

Computer Research Corporation

At present, these values are used by the output program to

determine where parentheses are required. They will also

be used by the input processor to interpret ambiguous

constructions, especially those involving infix operators.

Table D contains the precedence values of some of the

permanent system operators.

The abbreviated mode allows the user to specify this operator

information more quickly. In this mode, the system simply asks

for the operator's output specifications. The user must know

exactly how each of questions 0-13 would be answered. For each

question which would be answered Yes, he types the appropriate

word (see Table E). He types these words one to a line, in any

order. For a question which would be answered No, he does

nothing. After typing all the necessary words, he types the

precedence value on a separate line, and then types a double

carriage return to inform the system that all the information

has been given.

If the operator is not crazy, the system now has all the

input-output information it needs, and the operator is ready

for use in the system. Otherwise, there is still more information

to supply. If the operator is "string", the system simply

asks for the string of characters to be displayed for the

operator, which the user then types. It is suggested that in

most cases the string should begin and end with a space, to

aid visibility. The user terminates the character string by

typing a double carriage return, am the operator is ready

for use.

If the operator is crazy and not of the string variety, complete

display specifications may be quite complicated. The system

asks various questions, and the user describes the display

format at the keyboard and/or by using the light pen and the

scope.

B-4

Computer Research Corporation

Example 1:

The user wishes to use the symbol "f" in standard functional

notation, as a function of two or more variables.

The following is a simplified version of the dialogue that

might occur:

Information Required User's Response

Input symbol: f

Input list(s): twofl

mulfl

Mode: a

Display Description: prefix

yespars

multops

10

Since the operator is normal, this is all the information

that is asked. If the user had chosen explanatory mode, his

answers to questions 0-10 and 12-14 would have been, respectively:

n,y,n,n,y,n,y,y,y,y,n,n,n,10

Example 2:

The user wishes to add the determinant function to the system.

Display is to be of the form "Det A". This is a typical

"string" operator. For input, let us say the user wishes to

write "DA". The dialogue would then be:

Input symbol: D

Input list(s) popl

Mode: a

Display Descripcion: crazy

string

prefix

unary

12

Display string: Det

3=5-

Computer Research Corporation

If the user had wanted to see this operator displayed with

parenthesized arguments in all cases, he could have included

"yespars" in the display description. Note that he does not

have to make it "nopars" to see "Det A".

For input purposes, if the user had specified the "onpfl"

input list instead of "popl", he would have to input

"D(A)"; "DA" would not be understood.

Example 3:

The absolute value function is added to the system. To be

displayed in the usual way, it must be made a "crazy"

operator; but it fits very conveniently into the "string"

category as a "prefix - suffix" operator. Assuming the user

wants to input "a(x)M forjxf , the conversation runs

as follows:

Input symbol: a

Input list(s): onefl

Mode: a

Display Description: crazy

string

prefix

suffix

nopars

unary

14

Display String: 1

B-6

Computer Research Corporation

Appendix C: Proposed Extensions to the System

The system could be extended in several ways to:

1. Allow more manipulations to be performed automatically

while keeping extensive control in the user's hands.

2. Allow richer forms of mathematics to be handled.

3. Allow numerical evaluation, computation and graphical

display of results.

Particular extensions toward these goals might be:

1. Explicit declaration of various types of mathematical

quantities - e.g., real variable, complex variables,

vectors, matrices, etc. At present no declarations

are necessary and the user must keep the nature of his

variables in mind. Without declarations the system would

be unable to distinguish transformations that applied

only to vectors or matrices, for example.

2. Explicit function definitions

In the present systeta a function may be defined
(i.e., the rule for its evaluation specified) in two ways:

1. as an equation entered in a scroll or
2. as a transformation.

Since there may be a number of equations of the form
Mf(x) = ..." the present system provides no way for uniquely

defining a function. In addition each of these ways of

definition is restricted to those functions that have a closed

form definition. However, many functions of interest cannot

be defined in this way. The following methods of function

definition are often useful:

C-l

Computer Research Corporation

a. closed form - a formula describing the value

of the function in terms of dummy variables
2 2 ex: f(x,y) = x + 3xy + 3y +4

b. functional - the value of a functional

operator applied to other functions

ex: f1 is the result of the application

of the differentiation operator to f.

h might be defined as f-g meaning

h(x) = f-g(x) = f(x) g(x)

c. numeric or tabular - a table giving the value

of the function for a limited set of arguments,

the remaining values computed by interpolate., when

needed. This is the representation used in tie

Culler-Fried System; it provides a very f&Ft

means for displaying graphs and curves , and

allows powerful operations to be performed

easily. For example differentiation is

accomplished by taking the difference between

adjacent pairs of values. The intersection of

two curves may be found by applying the delta

function to their difference.

d. operational - an algorithm (i.e. a computer

program) that computes the value of the function

for any argument in its domain.

An important use of such function definitions lies in numerical

evaluation of complex expressions. Often a mathematician will

introduce auxiliary functions during his derivations to keep his

expressions simple. When he wishes to evaluate his final ex-

pression, explicit definition of his auxiliary functions allows

the system to carry out the evaluations automatically.

C-2

Computer Research Corporation

Many functions may be defined by several of these types. In

fact, the user should be able to easily change the definition to

suit his needs. To investigate the mathematical properties of

a function the user might prefer the closed form definition.

To examine its shape or its relation to other functions, he might

shift to the numerical definition. The operational

definition might be appropriate ffor doing straight computation

where speed and accuracy are important.

3. Application of logical constraints to expressions.

Often an expression or equation is valid only for certain

ranges of its variables. Theso constraints or side

conditions often become vsry complex (or are forgotten).

The conditions could be carried along during derivations

and modified as new conditions are added. They may also

be used to prevent fallacious reasoning (e.g. dividing

by an expression which may be simplified to be zero, or

evaluation a derivative at a point where it does not

exist).

4. Extension of the procedure definition language to handle

conditional and branching logic. In the present system

the user may define a procedure as a sequence of existing

operators. Currently complex operators involving loops

and operations dependent on the ranges of variables must

be programmed off-line in Decal-BBN. A more powerful

procedure language would allow algorithmic operators such

as polynomial factoring) symbolic differentiation, or the

Euclidean algorithm to be developed on-line. Furthermore,

these operators could be used by other operators.

C-3

Computer Research Corporation

5. Development of more powerful simplification operators.

The notion of simplification is extremely ambiguous;

it varies from problem to problem as well as from user to

user. For this reason no single simplification operator

would be satisfactory. The following scheme seems to

offer both flexibility and power: The simplification

operator would be written to work with transformations

in several transformation tables. The operator would apply

those transformations that were relevant and ignore the

others. By changing the contents of the various tables

the user could control the simplifications that would be

made automatically. In addition he could add new tables

as he developed results that would be useful in

simplifications.

6. Use of external input. The user may define the values of

his variables with data obtained from an analog to

digital converter or another program. Thus the user

may define one of his functions to be a section of the

output of a speech sample. Similarly a least-squares

technique could be used to fit a curve to incoming data

so that it may be analyzed analytically.

C-4

Computer Research Corporation

Appendix D: Internal Format of Mathematical Expressions

I. Introduction

All mathematical input, including expressions, equations and

transforms, is stored internally in tree structures. That is,

information is stored in a list, in which one or more of the

items may be a pointer to another list (or "branch"), etc.

The first item in any branch specifies a mathematical operator,

and the following item(s) specify the ^perand(s). If an

operand is at all complex, it will be stored as a pointer to

another list, which may consist of an operator followed by its

operands, etc. So, the storage tree contains one list for

every operator in the input.

II. Branch Format in Trees:

Contents of List Operator Word

Operand 1

Operand 2

•

•

•

Operand n

Terminator (-0)

"Previous level" pointer

"Main list" pointer

Number of operands

is one or more

These words are

required in all

internal tree-lists

Computer Research Corporation

-0 automatically terminates the operand area. The previous

level pointer (which will be abbreviated "bptr", for "back-pointer")

specifies the list in which this list is an operand. If this

list is itself the main list of the tree (i.e., not an operand),

its back-pointer is ~0. The main list pointer (which will be

abbreviated "mptr") specifies the top or main list of the tree.

The mptr. of the main branch is not -0, even though the bptr. is.

III. Format of Operand-Words:

Case A: Operand is a sub-branch:

Bit: 0 12 17

0 0 Pointer to list

List Code

Case B:

i)

ii)

Operand is a variable:

Variable is lower-case English:

Bit: 0 12 3 6 7 8 9 11 12 17

ww^. ?m:'Concise Cod< 0

Variable'code "Parentheses

Request" Bit

Variable is a character from a Special Font:

Bit: 0 12 3 6 7 8 9 11 12 17

Font.
No.

Code

Variable Code
f

"Parentheses
Request" Bit

There are seven special fonts , some of which contain characters

which may be used as variables. The English upper-case alphabet

is in Font 1, and the 6-bit code for these letters is the

concise code. Thus, the operand word for the variable "X" is

600127. Greek lower-case is found in Font 2.

Computer Research Corporation

Bit 8 (1000g) is set when the user requests to have a variable

displayed with parentheses. Bit 7 is used for similar information

in operator words, and should not be set in variable words. The

function par (word) may be used to mask out bits 7-8 in a word.

Case C: Operand is a number:

Bit: 0 12

Pointer to Number List

Every number in an input string generates a number list

with the following format:

Code Word

Integer a

Integer b

-0

BPTR.

MPTR,

As in all "branches"

a and b are 18-bit positive integers whose meaning

is specified by various bits in the code word:

1. SIGN: Bit 0 is on if the number is negative. All

other information pertains only to the

absolute value of the number.

D-3

Computer Research Corporation

2. Decimal, Fractional or Floating Point

i) Bit 14 (10g) is set for decimals (the number is a.b.)

(b is a binary decimal number)

ii) Bit 13 (20g) is set for fractions (the number is a/b)

iii) Bits 13 and 14 (30g) are set for a floating-point

number, a and b are in the 28-bit floating-point

format.

At least one of these two bits must be on! Every

number is originally stored in decimal or fractional

form. Integers written without a decimal point are

stored as fractions. Floating-point representation

is set up and used exclusively by internal

manipulative programs.

3. Useful Algebraic Information
i) Bit 12 specifies that the number is integer-valued,

(in a decimal, b=0; in a fraction, b=l).

ii) Bit 11 specifies that the number is zero,

(in a decimal, a=b=0; in a fraction, a=0).

4. Display Information

i) Bit 10 requests display as a mixed number (must

be fractional),

ii) Bit 15 requests that the number be displayed with

a fraction-line or a decimal point, even though

it is an integer,

iii) Bit 16 requests a display of:

"O.b", rather than simply ".b" or

"a.O", rather than simply 'a.",

iv) Bit 17 causes zeros to be displayed at the end

of the decimal part - they would normally be

suppressed, (e.g. , the user may wish to see

"2.300000", instead of "2.3M, in a l.st of

6-place decimals.)

D-4

Computer Research Corporation

5. Parentheses

Bit 8 requests that the number be displayed parenthe-

sized, as with variables. Again, bit 7 should never

be set.

IV. Format of Operator-Words

Bit: 0 6 7 8 9 17

Operator |
Code 1

Parentheses
Request Bits

Bits 7 and 8 govern the display of the "sub-expression"

consisting of the operator and its operands:

00 - no parentheses around expression, unless necessary

for clarity of meaning.

01 - parentheses around expression, unconditionally

10 - brackets " " "

11 - braces " " "

The ig par(op) masks out bits 7-8 of a word

The operator code is determined as follows:

A. Operators inputted as single keyboard symbols are

stored much like variables. Bits 12-17 contain the concise

code, but 11 is set for upper case, and bit 10 for Greek

letters and certain symbols.

At present, the following are "permanent" operator-symbols:

Symbol

Sub

Super
t

Octal Code Meaning

32 Subscript

37 Superscript

111 Exponentiation

120 "Is replaced by"

(Symbol for a

Transform)

+ 15A

54

X 173

D-5

Computer Research Corporation

Note that, internally, "minus" exists only as a unary operator,

while division does not exist at all.

["a-b" is stored as "a+(-b)"; "a/b" as "ax(b~1)"]

The user may decide to make almost any other keyboard symbol
into an operator. To do this, he must place the symbol in one
or more of the following lists:

Name Meaning Example

popl Prefix-operator list ^[x
iopl Infix-operator list x * y
sopl Suffix-operator x'

onefl Unary Function list f(x)
twofl Binary Function list ß(x>y)
mulfl Many-place Function list Q(x,y,z,w)

The coding system for such operators is the same as that for

variables and "permanent" operators.

B. "Special operators" include sine, cosine, etc. These are

inputted verbatim but are stored as if they were single characters
in the lower half of Font 4. They are also contained in the

Prefix-Operator List. Specifically, the codes are:

Operator Octal Code

Sin 401

Cos 402

Tan 403

esc 404

sec 405
cot 406

log10 407

In 410

D-6

Computer Research Corporation

Note that the product of the variables s y ± and n can be

inserted into an input string in order by simply leaving a

space in **he middle of the word.

C. Certain operators are called "internal". That is, they are

not written in input but are set up automatically in storage.

These operators have codes in the upper half of Font 4. They are:

Symbol Representation Octal Code Name and Meaning

& 441 "Implied Multiplication"

XK 442 "Doublescript" (superscript

followed by subscript; has

3 operands)

j 443 "Comma"; denotes a

superscript or subscript

with several items separated

by commas.

444 "Singleton" This is used

when input consists of a

single variable or number.

The variable or number is

made the operand of a list

whose operator, "singleton",

is meaningless (like "+"

followed by a single argument)

t-1? 445 "Reciprocal"; an

abbreviation for the

exponent -1.

THIS OPERATOR IS ONLY BEING

USED TEMPORARILY
446 "Double Transform"; used to

indicate a transform which

may be performed in either

direction.

D-7

Computer Research Corporation

Appendix: E

Name

List of System Programs

Purpose

Push, pull, tuck,

pap

tug List insertion and removal

routines

copypointers To create an alias of a list

reset Reset pointers to empty condition

typeinput Inserts string of characters from

typewriter into a list

get, giveup Assign and maintain free list area

botcopy Copies a list into the bottom

of another

topcopy Copies a list onto the top

of another

copy Copies a list into another

stuff Inserts a word into a given

numerical position in a list

yank Reads the word in a given numerical

position in a list

switch (n) Skips the n following registors

tucked Tucks the following words into

the list indicated

E-l

Computer Research Corporation

Name Purpose

markbits Marks a list item as follows:

bits 0-1 00 01 11 10

fixbits "does just that" (internal to isom)

(undoes markbits)

typerr Types the contents of a list called

typlist (rightmost character).

Then halts

Syntax analyzer Analyze input string according to

(ssv) syntax definition and produce a

tree structive transformation

Transplant Transform marklist output from

Syntax analyzer into standard

tree structure

Treechop Transforms tree structure into

character stream for display

mapcourit Finds place in tree corresponding

to character number returned from

VIP light pen identification

brtcntrl Control brightening operations in

response to light pen action

procdef Interprets input characters as a

direct procedure and adds it to the

button table

transpose Transposes a term

E-2

Computer Research Corporation

Name

subadimal

eqdams

combterm

prodsimp

combfrac

transapply

subst

subst 1

intcntrl

eqinput

Purpose

Subtracts, add, divides, or

multiplies an equation by an

expression

Divide, add, multiply or subtract

two equations

Simplifies a summation by

combining terms, canceling

a-a, etc.

Simplifies products of terms,

fractions, etc.

Combine fractions into one fraction

Apply a transformation

Substitute an expression into

an equation

Sub-routine of subst that takes

its arguments in the form of an

association list

Handles control of user interface,

device, selects procedures to

be called

Handles input from soroban and

displays typed characters for feedback

E-3

Computer Research Corporation

Name Purpose

gotvip

plusimp 1

tarzan

all insts

goto VIP

Removes nested and redundant

plus Operators from a tree

plusimp 2 Does numerical addition on top

level of sum

mulfimp 1 Changes products of quotients into

quotient of products

muls imp 2 Concatenates nested and redundant

multiply operations

mulsimp 3 Combine numerical factors

backptr Finds backpointer of a list

eqname Finds equation name of list

copytree Makes a copy of a tree

match Determines if two expressions are

and other operations)

Given a branch in a tree, finds

the corresponding branch in a copy

of the tree

Findf all instances of a given

expression in an equation

E-4

Computer Research Corporation

Name Purpose

giveuptree Returns a tree to free list area

signch Negates an expression

pbackptr Places a back pointer in a list

peqname Places an equation name in a list

remove Removes an operand from a list

replace Replaces one operand with another

opdlist Forms a list of operands, i.e.

without operator and other pointers

categ Determines whether an operand is

a simple variable, a number, or

another expression

copyopd Generates a copy of an operand

copyev Same as copyopd but inserts

backpointer and eqname if operand

is a list

topitem IG find top item of a list

botitem IG finds bottom item of a list

oppar IG nidsks out ODerator -

parenthesis bit

varpar IG masks out variable

parenthesis bit

-E=i

Computer Research Corporation

Name Purpose

conint (iniist) Procedure Transforms J^'st of

digits into a single number

distab Display a transformation table

editab Edit a transformation table -

i.e., add transf, delete transf. ,

and place a transf. on scroll

formtrans Form a transformation from two

picked expressions

transbut Assign a transformation to

button table

procbut Assign a procedure to button table

cancel Undo last user step

restart Return tc status after last

equation added to scroll

dispex Call treechop, VIP, and add

equation to scroll

backscroll Rotate scroll one position backward

forscroll Rotate scroll one position forward

rescroll Rewind scroll

discroll File current scroll and display

new one

E-6

Computer Research Corporation

Name Purpose

deleq Delete equation from current

scroll

enscratch Transfer equation to scratch pad

label Assign next eq. number

reset scroll Return scroll to end where next

equation to be added

call Handies paging and sets up procedures

for execution

control Monitors the user's console and

controls the system

opinfad Subroutine of Treechop - contains

the operator table. Given operator

symbol, returns with format word

from table

E-7

Computer Research Corporation

TABLE A

EXAMPLES OF THE INPUT LANGUAGE*

No. Input Form Interpretation

1. O. OOO 0*000

2. ./ ./

3. /.

4. a 7/$ si

5. oC oL

6. *Aä? *cl)

8. ^4C3 1/jc, 7tMü3lL

(**<■? VIA *+*■*? ^^ir)

io. -X39 3. t e. f L 9 ?? "*•

* In the examples, V denotes a subscript; A > a superscript; and t ,
exponentiation. Also, f and «^-denote user-defined functions; while
* , and ' denote a prefix, an infix, and a suffix operator, respectively.

Computer Research Corporation

TABLE A Pafie 2

No. Input Form Interpretation

11. (3 + sin X)f a 1/2. ?

12. 3,3074-£Cx) T
-ft*)

J.307

13. {t x ? (*+-*>) f'(afk)

14.

17.

18.

19.

22.

ft a?* ;** %

15- (V3^?lJ?U/3) f3* C!)

16. f (3 4 Uc-j COS ot) £(.» +• b+ <L, Cos o(.)

Hi, a, 3, 7 i/a) f (i, a, 3, 7ij

(a-t-k)fa?*-* ata? •+- u+•>>)*•» aa+ aak +-V
lib 4- b4i?

20. "^ > *■ * ty *

2i. *.+ 7?(«-+3)H TU*,«) %TC<t4 5j^(A,K,)

3. •%3*0.33 3-^3^3

Computer Research Corporation

TABLE A Page 3

No, Input Form Interpretation

>

\.

23.

24.

25,

26,

27.

29,

30.

31.

32.

33

34,

S^

Sln.J W7-H)

sin Clo^Ci^^j)

K^i sin a.a- <■«« <j it^ C stn a.aKco* ^}

28. -3.7 f-I r *^3 Loj 4 l/i -3.7~; ^ ^(Vsj

3 cos ^ * at* t%t*) U ^s -O* (a t) * (Tc-fg)

a * w * cos M, * •f^mx^ fe)* C"s ^) x ca.a *;

a/ fc> -t- COS ^ - fc + 3- C "fa) + C-«0^ M. - X + <5L

$ c n. ^

*> tw a

SLV\ a±k

(.S)Ci)CnH-X)

•*...

Computer Research Corporation

38.

39.

40.

41.

42.

44

TABLE A Page 4

No. Input Form Interpretation

35. s i*\ a X b (St^v a) K b

36. si* a/k Slwv (-^J

37. Sin 3 %t 2 ?/<M. SCK T [si*- (3%aA)J S*<" IT

COS 'V SiK 'M, C.CO.S 0.)(_StA *i)

Cos ^ fl'O cos L^fC**)]

Jcof sin a * b (ioi si« a) * b

V"~~x */""*-"* aiv\-% 0T^)(*FMJ (s^c--*))

2. I/** Uz)*

45. a%/^/^

3*
a

^

Computer Research Corporation

TABLE A Pap;P S

No. Input Form Interpretation

46. i/a.* (i)y-

47. a * fc> * c (a * b) *■£

48. a/t +• c^

49. a +-b/c

' so. a * b - /

51. <C l'

a

a ■*- z

(a *- b) - - /

-TcyJ

Computer Research Corporation

TABLE B

Keyboard Symbols which may not be used as

New Operator Symbols

X

/

(

i

t • "Upper Case"

"Super" » "Lower Case"

"Sub" "Space" "Greek Mode"

?

1
"Carriage Return" "English Mode"

"Tab" "Panic"

«- "Backspace" 0-9

TABLE C

Lists for New Operators and Functions

Name Meaning Example

Popl Prefix-operator List

Iopl

Sopl*

Onefl

Infix-operator List

Suffix-operator List

Unary Function List

x * y * z

f(x)

Twofl Binary Function List ß(x,y)

Mul.fl Many-Place Function List Q (x,y,z,w)

3 or more arguments

*The current version of the system does not accept

suffix operators.

mammtmmm

Computer Research Corporation

j

TABLE D - Precedence Values of Various Operators

Operator (s) Precedence Value

Exponentiation 14

Superscript, Subscript,

Implied Multiplication 13

Sin, cos, etc. 12

x, / 9

+ , - 7

4

For user's functions, precedence value is irrelevant because

the argument(s) is always in parentheses. For user's operators,

the input processor ignores the user-defined value and assigns

the following values automatically:

Prefix operators 12

Infix operators 10

Suffix operators 15

At the present time, the user-defined precedence values are

relevant only during display operations for proper arrangement

of the arguments in a mathematical expression.

Computer Research Corporation

TA3LE E - Words for Describing Operators in Abbreviated Mode

Question No. Descriptive Word

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Precedence is specified by a number.

The following words may be used as an abbreviation for

several words:

muitops: has combined meaning of words 6, 7, 8 and 9

arbops : has combined meaning of words 6, 7, 8, 9 and 10.

crazy

prefix

infix

suffix

yespars

nopars

unlimops

4 ops (or 4ops)

3 ops (or 3 ops)

2 ops (or 2ops) or binary)

1 op (or lop) or unary)

string

associative (or asstv)

commutative (or comtv)

:

«i—

UNCLASSIFIED
Security ClaKsifirntion

DOCUMENT CONTROL DATA -R&D
(Security ctH*#llh'f$tioti ol title, 'nwlr %*t nhnlrml mut iii*lr*in$* tmnoJHlhm must hv utttvreil when f/ii» ttvi-r/ill n-pitrt Is chis«itlvil)

t. OHtCiNATiNC ACTIVITY (Coqtofulo nuttntr)

Computer Research Corporation
429 Watertown Street
Newton, Massachusetts

l^fl. HKt'OfH iCCtjivTTv C L ASStf-IC A TION

Unclassified
2d. crioui'

)■ REPORT TITLE

Magic Paper - An On-Line System for the Manipulation of Symbolic
Mathenatics

4. DESCRIPTIVE NOTES (Typo ol report imd lnclu«i"i- dull-») DESCRIPTIVE NOTESfTy,
Final Report

S. »u THORISI (Firm name, middle initial. IMMI lliimi'J

Lev?is C. Clapp, Dale E. Jordan, Ellen J. Wax, Robert S. Wolf

6 REPORT DATE

15 April 1966
7<i. TOTAL NO OF PACES

65
/It. NO. Of UCFS

 None
B.l. CONTRACT OR CRANT NO.

AF 19(623)-5098
b. PROJECT NO.

J-105

9«, ORIGINATOR'S HEPOUT NUMIlCNtSl

Report No. R-105-1

ih. c THER HKPOH r NO(S) (Any other number» that may bo uH\lfini'tl
this report)

10- OlSTRlBUTtON STATEMENT

Distribution of this document is unlimited

i
II SUPPLEMENTARY NOTE!

J7A a S T R A C T

12. 5PONSOhiNC UlLITAIn AC Tl VI T 1

Dynamics Processes Branch
Data Sciences Laboratory
Air Force Cambridge Research Labs.
Hanscom Field, Bedford. Mass.

This report describes the preliminary version of the MAGIC PAPER System *

which is being developed by Computer Research Corporation for the Dynamic

Processes Branch of the Data Sciences Laboratory at the Air Force Cam-

bridge Research-Laboratories. Through a conversational interaction, the

system aids the scientist, engineer or mathematician as he performs

symbolic operations on linear algebraic equations. The user begins by

entering his initial equations and conditions through a mathematical

keyboard. As he types these equations, they are displayed on a flicker-

free scope in standard mathematical notation. Using a push-button contro!

panel and a light pen, he may select expressions and operations which

are to be performed on them. If the operation is legal, the system

generates a new equation which is then added to the scope display. With

the basic set of operations, the user may create new operators which can

then be added to the system. He can also introduce special notational

conventions. The user has considerable control which enables him to
I personalize the system to meet his own particular needs

JL
Mllllt I JR *-■

