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ON THE NEWTONIAN BYPERSONIC
STRONG-INTERACTION THEORY
FOR FLOW PAST A FLAT PLATE

William B. Bush¥*
University of Southern California

Los Angeles, California

Abstract

The viscous hypersonic flow past the leading edge of a
sharp flat plate, whose surface is parallel to an oncoming
uniform flow, is analysed on the basis of a continuum model
consisting of the Navier-Stokes equations andthe velocity-slip
and temperature-jumpwallboundary conditions. Itis assumed
that the model fluid is a perfect gas having constant specific
heats, a constant Prandtl number, 0, whose numerical value
is order unity, and a normal viscosity coefficient varying as
a power, w, of the absolute temperature, Limiting forms of
the solutions for such a flow are studied as: (1) the free-
stream Mach number, M, goes to infinity; (2) the free-stream
Reynolds number based upon the distance from the leading
edge, Ry, goes to infinity; and (3) the 'Newtonian parameter!’,

€=(y- 1)/(L+1), where y is the ratio of the specific heats, goes
to zero; such that the Qz ewtonian ypersonic interaction
parameter, ye =(e3t@wM22tw)/R] )12, goes to infinity.

Through the use of asymptotic expansions and matching,
it is shown that, for w<l], near the leading edge,the interaction
of the thin (thickness ratio, §, going to zero), viscous, high
temperature, principal layer adjacent to the plate and the
external flow produces three distinct strong-interaction
(N=1/e M2 62<<1)(sub-)r ;(gxmes, for which the quantity 6 is of
order € M{m>1/(1+w)), €/ (11w} and ey2 , respectively, as the
various limits are approached.

], Introduction
According to ordinary hypersonic strong-interactiontheory
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(OHSIT) with €= O{l), for flow past a flat plate (Bush,[1]), for
w<], at the plate surface, there is a thin, viscous, heat con-
ducting layer, which disturbs the external uniform, high
speed flow, This layer, with §, the layer's thickness ratio,
much less than Ofl), acts as an effective slender 'body', pro-
duc.ng an oblique Rankine-Hugoniot shock wave (SW), whose
dis‘ance from the plate is also of O(f), and an HSDT inviscid
shock layer (S1) between the clearly defined outer edge of the
visicous 'body' and the downstream side of the SW, In addition,
it is found that there must be a viscous HSDT-type transition
layer, whose t}}ickness ratio is much less than O(f), between
the viscous 'body' and the inviscid SL, in order to insurc
uniform matching between these two layers. This theory is
shown to be valid for x = M¥*W/R¥2>>1,

The Newtonian hypersonic strong-interaction theory
(NHSIT) with €<<], is formulated, assuming that the Newtonian
equivalent of the above requirement holds true, namely,
x€=eb+d e M2HO/R | V25>,

Clearly, it is expected that the NHSIT should produce a
regime that is the direct equivalent of the OHSIT picture just
described, However, with the degrce of freedom that the add-
itional limit of e =0 offers, it is also expected that the NHSIT
should produce additional (sub-)regimes,

In the following sections, it is shown that, indecd, the
NHSIT does rroduce the direct equivalent of the OHSIT regime
plus two additional (sub-)regimes that owe their existence
entirely to €'s approaching zero,

2. The Equations of Motion

Consider the (two-dimensional) flow of a viscous, com-
pressible gas past a semi-infinite flat plate. Let x;=Lx and
y;= Ly represent the Cartesian coordinates parallel and
normal to the plate, respectively, with the origin of this coor-
dinate system at the lcading edge of the plate. The length L
is to be chosen so that x is of O]) in each regime that is
analysed. The velocity componeats in the x;~ and y,-directions
are u;=ugu and v;=ugv, and the pressure, temperature, and
density are p;=popy T)=TooT, and p,=poop, Where ugy, Poor Toos
and p, are the velocity in the x,-direction, pressure, tem-
perature, and density in the undisturbed region upstream of
the flat plate,

The gas is assumed to be a perfect one (p=pT), having (i)
constant specific heats, c,, and ¢, , with y=(cp /c:V ), suchthat
€=(y—1)/(y+1)<<1; (ii) a cons'tant P};ldndtl numbe? of ‘order unity
(0=const.=0f))); and (iii) a normal viscosity coefficient pro-
portional to a power, w, of the absolute temperature (‘.L1=p03}.l=pm'1w,




with /2 €w<1) and a bulk viscosity coefficient taken to be zero,

The two-dimensional Navier-Stokes equations including the
Fourier heat conduction law, assumed to be the governing
equations of motion for the flow of such a gas, are

8(pu) , 8(pv) _

A " =0, (2.01)
Bu, Ou\,l-e 109p_1 w,u av w4 du 20v
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where M?=(p.u&% /YRo) the square of the free-stream Mach
number, and RL—(poouooL/p.oo), the Reynolds number, The
analysis prescnted here is for M®>>1 and Ry>> 1.
3. The Principal Layer

According to existing hypersonic strong-interactiontheory
for flow past a flat plate, at the surface there is a thin,
viscous, heat conducting layer, which disturbs the external
flow. This layer, designated here as the principal layer (PL),
whose outer edge is given by y=6Y{x), with §, the layer's
thickness ratio, much less than O(l), has as its proper dis-
torted Cartesian coordinates

X = Xy, y=6yb . (3.01)

The expansions for the flow quantities in this region, carried
out in the above distorted coordinates, are taken to have the form

usu teer,ve Svptee,p =(Mz5z)Pb'* pcl T} =(€M2)Tb+ 9 P =(6'zk)pb+"',

{3.02)
with the variables fb of O(1).
For these expansions, in which it is implicit that
N = 1/e M?6%<< ), (3.03)

the leading terms in the equations of motion are
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where \ =€ HOM2W/R; §* and Kb"(e/é") The quantity A\=0(1),
in order that there be a balance between the inviscid and vis-
cous terms, while must be 2 O(1)(K, <<1is rules out as not
being physically realistic for this flow problem). Note: The
combination of A= O(1) and N<<1 yields

X - (BHw)/2p2t0/RE2>> 1,
€

From Eq.(3.04), it is seen that there are two different
structures for this layer depending upon the magnitude of the
parameter K. For Ki>>1, the y-momentum equation becomes

8pb—0
3___

and Eq.(3.04) corresponds exactly to the flat plate boundary
layer equations. For Kp=0(l), although the rest of the equations
are of flat plate boundary layer type, the y-momentum equation
is not, since, in this limit, the convection and viscosity terms,
as well as the normal pressure gradient term, are retained.
The PL with K, >>1 is the Newtonian equivalent of the OHSIT
viscous boundary layer, while the PL with Ky=0(l) is a special
case, for which there is no OHSIT parallel,

To complete the picture, the boundary conditions that are to
be applied to the PL's equations of motion must be specified,

The boundary conditions at the wall (y, =0), taking into ac-
count velocity-slip, thermal-creep, and temperature-jump, are

-1/2 2\11}

-1
By + "{Pl(Ple }

Uy,0 =Cy {mypypy)

-1/2 6T}

where T ,, is the temperature of the plate, and C, and C, are
’

v1,0500 Ty 0= Ty, =C2 {14(Pyp)) . (3.05)



constants of O(1), which depend upon the momentum and
thermal accommodation coefficients of the surface and the
gas properties. Recasting Eq.(3.05) in terms of the PL
variables gives, at y,=0,

(2w-1)y2
T S P
b,0 K Pp Byb 1o | b0 '

b
" Tt(>2w-l)/2 BT,
o S | =

g KII:,_{ T }.o 0, (3.06)
with T =T, /GMZTOO. Again, two different structuresarise
depen&fng on the parameter Ky. For K> ], the wallboundary

conditions reduce to

Ubyo = Vbyo " Tbyo” Tbyw 0

the usual non-slip boundary conditions., On the other hand,
for K= 0O(1), the velocity-slip and temperature-jump effects
must be retained. Even for Kb= O(1), the effect of thermal-
creep is negligible.

Thus, for K >>1, which corresponds to §<<e 1/2, the
equations of the PL take the form of the flat plate boundary
layer equations and satisfy the non-slip boundary conditions
at the wall; while, for Kp=O(1)(6=0(c }2) ), the PL equations
are of flat plate boundary layer type except for the y-mo-
mentum equation,and satisfy the slip boundary conditions at
the wall, These two couplings of the equations and wall
boundary conditions for the PL are the only consistent coup-
lings (cf., Pan and Probstein, [2},{3); Garvine,[4],[5] ).

The specification of the boundary conditions at the outer
edge of the PL cannot be made explicitly at this time, since
these conditions depend upon matching with the solutions for
the adjacent layer.

4, The Equations of Motion for the External Lavyers

The analysis of the flow in the layers external to the PL is
most conveniently done, assuming the PL to be thicker than
any of these external layers, in terms of a boundary layer
type coordinate system oriented with respect to the outer
edge of the PL,

If s,=Ls and n;=Ln are the boundary layer type coordi-
nates, with the s -axis along the PL's outer edge and the n,-
axis normal to this outer edge, then the Cartesian and
boundary layer coordinate systems are related by




8
X = ('cos $(t)dt - nsin ¥(s), y=S sin ®(t)dt + ncos $(s), (4.01)
"0 (]
where $(s) is the angle that the PL's outer edge makes with
the free-stream direction, The velocity components in the
8y-and n,-directions are q5 ,=uyqg and q,, Uy, The

velocity components of these two coordinate systems are
related by

u=gq.cosd - qnsin§> . v=q88in§> + qncos<I> . (4.02)

In this new coordinate system, Eqgs.(2.01)-(2.04)become

9% Bq qu € 18
T(qu“an(hpqn) =0 P\ 73 "q qu,)‘r— > h
)
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(4.03)

where h=1-%'n,



Under the assumptions that the PL has a thickness ratio
of 6 <<, and the thickness ratio of any external layer is
<< 0O(6), it follows that

s—=x, 8—~6¢ (5ind—~b6¢, cos®—1, h-1), (4.04a)
where, since the outer edge of the PL is Vb,E= b(xb)’

¢ Y. (4.04b)

5. The Shock Lavyer

The PL, as formulated in Sec.3, with Ki>> 1, acting as an
effective slender 'body', produces an oblique SW and a SL
between the 'body and the SW, The structure of the Newtonian
SL is given in this section,using the Newtonian HSDT (Cole,
[6]) as a guide for determining the orders of magnitude of the
flow quantities. According to this theory, valid only for
K, >>1, the coordinates of the laye: are

8 =6, n= (eé)nh (5.01)
and the flow quantities are expressible as

q, = 1+ quh DRLCHICEIS (€5)Vh o eiger

P = (Mzbz)ph.} ves, T= (EMzbz)Th  TTIS =(1/€)ph+ eee, (5.02)
with the variables fh of O(1).

For this layer, then, the leading terms in the equations of
motion, Eq. (4.03), are

aph opy,
5, r(phvh) 0, p,=p,To Py 0" *——— 0,
Ph(sg*"h ) “R? [m'( ]Phé_ RL [’ é‘d&_)]

5.03
where K}\ (6/6”‘*’) ( )
Since A=0(1), the ratios of the orders of maygnitude of the
leading viscosity and heat conduction terms to those of the
inviscid terms in Eq.(5.03) are O(1/K}). Thus, within the
Newtonian framework, Eq.(5.03) describes either an inviscid



shock layer (ISL) or a viscous shock layer (VSL), depending
on whether the quantity K; is greater than or equal to (1),

The ISL, with K,,>>1, is the Newtonian equivalent of the OHSIT
SL, while the VSL, with K;,=0(1), is a product of the Newtonian
approximation that € — 0, and has no CHSIT parallel. (Note:

K, /K, = 6!79<<] for w<],

and the relation K. 2 O(1) does not violate the condition K > 1,)

To complete the specification of the SL, it is necessary to
determine the shock relations that are to be applied at the
outer edge of the layer, nh,E= Nh(sh), for N<<!, and show that
the resulting solutions match at the SL inner edge to the PL
solutions,

6. The Shock Structure and Shock Relations

An analysis, similar to the one performed to obtain the
shock structure for viscous hypersonic blunt body theory
(Bush,[7])), finds that either PL-SL combination, with N&1,
and Kp> 1, supports a shock structure (SS) which is made up
of three thin layers: (1)a very thin exterior layer, in whichthe
order of magnitude of the flow quantities is characterized by
their magnitude in the free-stream;(2)a relatively thicker
middle layer, in which there is dissipation; and (3)a thininterior
layer, which acts as a transition layer between the middle layer
of the SS and the SL.

Since, as has been noted, the analysis of the three layers of
the SS for NHSIT follows the lines of that given in (7], only the
proper expansions of the flow quantities and the limiting forms
of the equations of motion for these layers are presented.

6.1, The Uniform Upstream Region
In the uniform upstream region the flow quantities are

q =cos®= 1—6"(¢2/2)+---,qn= -sin® = -6+, p=p=T=1. (6.01)

6.c. The Exterior Layer of the Shock Structure
The coordinates of the exterior layer (EL) are

s:se,ma%ze(se)+(KIEITA,%:%[Z(&(S(B)@K_‘;)@:es[wq_‘;;l)ng...],

(6.02}
and the leading terms inthe expansions for the flow quantities are

q =cos? + 62Nl/aue+ oo = {1-6HpY2)+ o+ }4 BZN‘/(rue AR S



. g
q = -sin® + SN/ Ty 4ese = (-6 +eee JHONATY 40ee,
p=1+N3/‘°'pe+o.o’ p:pe+ see T:Te+ see (6.03)

The first integrals of the equations of motion for this layer,
that match to the upstream boundary conditions of EqJ6.01),
are

du Z'ov
- _ e € e ‘e\|_
Voo PPe= 0 By -Te= 0 D+ A [T:%n— ) {W}T B_ne)] =0
v
¢ve+x[§'re E::] 0, (T, -1+ x[ el ]_o. (6.04)

n
e

subject to the restriction of N = O(e %), This restriction must
be consistent with the restriction from Sec.5 of
N = 0(1/M2€(3+w) ( +(.o))
6.3. The Middle Layer of the Shock Structure
The coordinates of the middle layer (ML) are

s=smn=ea[zm(sm)+(xlh)n :] cé[NéshH(K)n S -:,, (6.05)

and the leading terms in the flow quantity expansions are

= 2 ooy 2 _Q__ see =gl o009 = = cos
qs-cos§+6 um+ 146 (Am 22)-& »q, sm§+6vm+ 6(vm d)t:--,

p=l4p 4o, p =(1/N)pm+ oo T=(1/N)Tm+ TN (6.06)

The first integrals of the equations of motion, determined by
matching with the EL, are

du
(l+prr)(vm- d)+¢=0, pm-(1+p")Tm=0, ¢i1m+)\[: T 5—%}0,

b)

wbvm 1 8T |
v +A3Tm =0, ¢(T -vi H)‘«r mr =0, (6.07)

6.4. The Inner Layer of the Shock Structure
The quantities in the inner layer (IL) have the following
representations:
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s:si.n=66[zi(si)+ (%ﬁ) nJ:eé[Nh(shH (Rei) ni:] s (6.08)

q = cos® + 62[W(si)+€ gt :,: 14 63{W-(¢?/2)} +€62ui $ooe,

q =(eb)v, 4o+, p=(1flp 4+, p=(1/eN)p, + ,T=(1/N)[Q(si)+ eTi+---:],
(6.09)

The first integrals of the equations of motion, from the ML-IL
matching, are

*
8u
' *
pi(vi-Nh)+ ¢=pivi+¢>=0,pl-Qpi=0,){ -8— We= O,p )1_3Q ——J-qbl =0,

xIQ“’aTiI Q-¢2) = 0 6.10
-a_- Wl"‘(p( ‘¢)" ¢ ('1)

6.5. The Shock Relations
From matching with the solutions of the IL (as ne-- ),
the boundary conditions at the outer edge of the SL Nh(sh),
are determined to be

T
h) - g/a ek L(RR) g
h,E qu) han E ! h,E K‘}’-)q; ¢ dn 0 '
= '- =2/ = d?®
Vi, B= Ny (T g/ 0 oy 550/ T g Py = 9% (6.1}

where f (s ,N (

Bef01L dlgl ussmg t‘}me inviscid shock layer regime
(Kh>>1) and the viscous shock layer regime (K, =0(1)),
it must be re-emphasized that the SS analysis presented
above is valid only for K,>>1. Therefore, for Ky =0(1),
the whole concept of a SW, as well as that of a SL,
must be modified.

7. The Inviscid Shock Layer Regime: § <<e¢ A1)

For the inviscid shock layer regime (ISLR),Kh»l(Kb»l),
the primary layers of interest are the PL (defined by Eqs.
(3.04) and (3.06), with K,>>1), and the ISL (defined by Egs,
(5.03) and (6.11), with K>1).

It is possible to write the equations for these layers and
the boundary conditions at the SW and at the plate in imilarity




form, as is done for OHSIT in (1], if N1 and YY) b x )"‘xb/4
and T, \,= const, However, as in the OHSIT c.ase the solutions
of the PL and ISL do not match directly to each other, and a
transition layer (TL), intermediate to the PL and ISL, is re-
quired to provide uniform matching for the entire ISLR.,

Since the discussion of such PL-TL-ISL similarity
solutions is presented in detail in [1], in this paper, it is
considered sufficient to present the equations of motion for
the Newtonian TL, showing the dependence of the flow quanti-
ties in this region upon Kp>> 1,

The quantities in the TL have the following represe:tations:

8 =6, n= (€ 6)At ") (7.01a)

q, =1+6% u +°, q =(e8)Bv +°

p=(M262)p 4+, T=(eM?62)8 T, +°**, p =(1e J(1/6 Jp 4+ ,
(7.01b)

where

6,=a, K‘A "‘*”>>1At =p, =K ’A’*“’)«lfor K,> 1, (7.02)

and the variables ft are of O(1). (Note: It is also true that
(e M262)9, = (€ M?)(e 6 A0 a, 6%, =(c6 phetelcy )

From Eq.(7.01), then, the leading terms in the equations of
motion for this TL are :

apt E)pt
5"5_ (ptvt) =0, p=p, T tdn, 0,

s B

8. The Viscous Shock Layer Regxme' 6= O(GAH“"))

For the viscous shock layer regime (VSLR), K, = (1)
(K, > 1), the primary layers of interest are the Pi(defmed
by Egs.(3.04) and (3.06), with Kp>>1), and the VSL (definedby
Eqgs.(5.03) and (6.11), with K;=O(1) ). (Note: For K, = O(1), the
thickness ratio of the ML of the SS is of the sume order of

11
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magnitude as that of the SL, namely, O(€b).)

For this regime, it is not possible to write the equations
and boundary conditions for these layers in similarity form,
due to the additional terms in the shock relations, However,
it is still possible to show that,since the VSL equations now
contain the viscous terms that are required in the TL equa-
tions for the TL's matching with the PL (cf,,Eq.(7.03)), the
VSL matches directly with the PL, and no intermediate layer
is required. A
9. The Merged Layer Regimec: 6 = Ole /%)

Consider that Ky=0{I), so that § =0O{e /)< 1. When this is
the case, the analyses presented for the SL and S& cannot be
valid(cf., Sec.5 and 6). However, for Ky=0(1), Eq.(3.04),
giving the equations of motion for the PL, contains all the
terms that are present in the SLL and SS equations, as well
as those in the viscous boundary layer equations. Therefore,
it is concluded that, for Kp=0(1), a merged layer regime
(MLR), upstream of the regimes of Secs.7 and 8, exists, in
which the three above-mentioned regions are replaced by a
single PL, which takes on all of their properties,

Strictly speaking, since T and p are of O(¢ M®)> 1 in the
PL of the MLR, this PL now includes only what were formerly
the SL and the ML and IL of the SS, and must be complemented
by an EL, similar to the ocne formulated in Sec,6.2, with / =0,
in which T and p are of (1), From the m-~ tcbmg w1th this"EL,
the boundary conditions at the outer edge of this PL, Yp(xp )
are found to be

U, £ 2%, E7 O A, 55 Ky Ty £5 Ry, 57 014, £ 4, 0%, Yy, )()9 01)

The boundary conditions at the wall are those given in Eq.
(3.06) for Kp=0O(1). Further, as xp— 0, the flow quantities at
the wall should also approach their frec-stream values,namely,

=], v =0 =0 =
Yboo " Vb,00 ' Pb,00 =Ky T4 b,00 Pb,o00 (fb,oo f(o(C)O)o)Z)

An examination of Eqgs.(3.04), (3.06), (9.01), and (9.02)
shows that, for this regime, it is not possible to write this
set of equations in a general similarity form, however, it is
possible to show that local similarity can exist near x, =0,

Consider that, as xp— 0, the coordinates and flow quanti-
ties may be expressed as



J *
%, = €0 Y =Y (6 )0, with Yb(gb)=A*s;bY+--- (A =const.); (9.03)

J J J
-— u * ee e -— v * 'Y = p * se e
ub_ l + gb Ub(flb) + ’ Vb- gb vb (ﬂb) + ? pb Kb+ gb Rb(flb)* []
J J
= T * LA b— T * [N
Tb" E-’b Hb(ﬂb)"’ -Pb- Kbgb Hb(nb)+ ’ (9.04)

T
Take the values of these exponents to be

withJ , J,J,J3,J3.>0.
y “u v Ty

1/2<J =2J =J =l =1A1+w)<2/3,
2/3 < <Jy= (2w+1)/9(1+w) 3/4 (since Y2 <w<1). (9.05)

(Note: The value taken for Jy in Eq.(9.05) indicates that the
effective 'body' becomes progressively blunter as the leading
edge is approached, rather than becoming straight.) Substitu-
tion of the above expressions into Eq.(3.04) (with Ky =0O(1) )
yields

- du} dr¥ av*
I UE-d Pyl iy RX-7 bly L b -9
y bdn 'K IrRp Iy Mg dn, " a¥dn,

B d”* oo U
J.U*-Jg —)
“T b ™y b dn, | A¥IK dnb b dn /"

- *]
.

*
Vb Iy My dnb *sz I\ &
iy du¥
+ (H J. . u¥ ——]>
A*Kb [T b Y"b dnb
dH* dH*
bl A 1 d
!;TTHb Iy Mo Tn;]’ A, o dng (Hb 3_)} ’ (9.06)

neglecting terms proportional to g‘/(”"’). The corresponding
boundary conditions at the outer (n,=1)(derivable from Egq.
(9.01) ) are

13
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* = * =Rr* =¥ -
Up, = Vorr = Rb,e =Hp,g =0 - (9.07)

Within this framework, the boundary conditions at the plate
(np=0), with respect to tangential velocity-slip and no
normal flow, become

*
1 - AC, {H*(Zw 1)/z

by =v* -o. (9.08)
AFKY?

dqb ,0

b

As far as the temperature-jump condition at the plate is
concerned, there are two such conditions that render the
equations of motion and all their boundary conditions locally
self- 51m1lar as £, — 0. The first is that of a 'hot wall' with
Tb w"’Tb w= const, as §,— 0. For this 'hot wall' case, the
temperature- jump condltlon beccomes

£ )‘C *(Zw l)/Z
Tb,w+ —-7- {H } =0, (9.09a)
A Kb 0
The second(xi that of +'ad1a'bat1c wa11+' w1th T W
(const,)gp /M -gb‘/ o) g E ‘§bl/(l @) HE , @s £~ 0. For

the 'adiabatic wall' case, the ;emperature Jump condition is

(?l_ﬂf).o =0, (9.09b)

Thus, Eqs.(9.06)-(9.09) represent the 'starting' ordinary
differential equations and their boundary conditions, Their
solutions provide the 'initial conditions' for the parabolic
system of partial differential equations that defines the con-
tinuum, thin layer model that has been postulated,
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