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Abstract 
The viscous hypersonic flow past the leading edge of a 

sharp flat plate,   whose surface is parallel to an oncoming 
uniform flow,  is analysed on the basis of a continuum model 
consisting of the Navier-Stokes equations and the velocity-slip 
and temperature-jump wall boundary conditions.  It is assumed 
that the model fluid is a perfect gas having constant specific 
heats, a constant Prandtl number, (r, whose numerical value 
is order unity, and a normal viscosity coefficient varying as 
a power, w, of the absolute temperature.   Limiting forms of 
the solutions for such a flow are studied as: (1) the free- 
stream Mach number, M, goes to infinity; (2) the free-etream 
Reynolds number based upon the distance from the leading 
edge, RT , goes to infinity; and (3) the 'Newtonianparameter1, 
C=(Y-1)/(Y

+
1)I where y is the ratio of the specific heats, goes 

to zero; such that the Newtonian hypersonic interaction 
parameter, Xe=(c3+wM2^+wVllL)1/S  goes to infinity. 

Through the use of asymptotic expansions and matching, 
it is shown that, for w<l, near the leading edge,the interaction 
of the thin (thickness ratio, 6, going to zero), viscous, high 
temperature, principal layer adjacent to the plate and the 
external flow produces three distinct strong-interaction 
(N=l/cM2 62«l)(sub-)regimes, for which the quantity 6 is of 
order c^n^ 1/(1+w^cVU+wl and eV2, respectively,  as the 
various limits are approached. 

1.    Introduction 
According to ordinary hypersonic strong-interaction theory 
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(OHSIT) withe = 0{l), for flow past a flat plate (Bush,(l]), for 
w<ll at the plate surface, there is a thin, viscous, heat con- 
ducting layer, which disturbs the external uniform, high 
speed flow.    This layer, with 6, the layer's thickness ratio, 
much less than 0(1), acts as an effective slender 'body', pro- 
ducing an oblique Rankine-Hugoniot Shockwave (SW), whose 
dis.ance from the plate is also of 0(6), and an HSDT inviscid 
shock layer (SL) between the clearly defined outer edge of the 
vificous 'body' and the downstream side of the SW.   In addition, 
it is found that there must be a viscous HSDT-type transition 
layer,  whose thickness ratio is much less than 0(6),   between 
the viscous 'body' and the inviscid SL, in order to insure 
uniform matching between these two layers.   This theory is 
shown to be valid for x= M2+u>/RLy2>>1' 

The Newtonian hypersonic strong-interaction theory 
(NHSIT) with e«l, is formulated,  assuming that the Newtonian 
equivalent of the above requirement holds true, namely, 
X£ = C(>+<4A M2+W/RL»/2» 1. 

Clearly,   it is expected that the NHSIT should produce a 
regime that is the direct equivalent of the OHSIT picture just 
described.   However, with the degree of freedom that the add- 
itional limit of e—»-O offers,   it is also expected that the NHSIT 
should produce additional (sub-)regimes. 

In the following sections,   it is shown that,   indeed,   the 
NHSIT does produce the direct equivalent of the OHSIT regime 
plus two additional (sub-)regimes that owe their existence 
entirely to e's approaching zero. 

2.     The Equations of Motion 
Comiider the (two-dimensional) flow of a viscous,  com- 

pressible gas past a semi-infinite flat plate.     Let Xj = Lx and 
yj = JL./ represent the Cartesian coordinates parallel and 
normal to the plate, respectively, with the origin of this coor- 
dinate system at the leading edge of the plate.   The length   L 
is to be chosen so that x is of 0(1) in each regime that is 
analysed.   The velocity components in the Xj- and yj-directions 
are U^UQQU and V^UQQV,  and the pressure, temperature, and 
density are p^p^p, T^TooT, and pj-poop, where u^, p^, T^, 
and PQQ are the velocity in the Xj-direction,  pressure,   tem- 
perature,  and density in the undisturbed region upstream of 
the flat plate. 

The gas is assumed to be a perfect one (p=pT)l having (i) 
constant specific heats,  cv and c- , with y=[cp /cv ), suchthat 
C=(Y-1)/(Y+1)<<1J (") a constant Frkndtl number of ^rder unity 
(o-=const. =0(1)); and (iii) a normal viscosity coefficient pro- 
portional to a power, u, of the absolute temperature (}jii=p00}jL=p00'It,)l 



with }/Z^<J><1) and a bulk viscosity coefficient taken to be zero. 
The two-dimensional Navier-Stokes equations including the 

Fourier heat conduction law,  assumed to be the governing 
equations of motion for the flow of such a gas,  are 

8(p (2.01) fe^-o. 

r (2.02) 
/8v.   8vVl-e   1 8p_ 1     8^W/4 8v   2 8u{\.   B Lvfiu ^ dv\ 

(2.03 

^^-m^y-^-M"^"®] 
2c M2 

+ (I^R ^1(l7^H^^>KI~^)2]' (2.04) 

where M2=(p00Ua3/YRx>)» ^e square of the free-stream Mach 
number, and RjJ

=(P(X)l\x>^,/M'Oo)» ^e Reynolds number.   The 
analysis presented here is for M2» 1    and   R^» 1. 

3.     The Principal Layer 
According to existing hypersonic strong-interaction theory 

for flow past a flat plate, at the surface there is a thin, 
viscous, heat conducting layer, which disturbs the external 
flow.    This layer, designated here as the principal layer (PL), 
whose outer edge is given by y=6Yjix), with 6, the layer's 
thickness ratio, much less than 0(1), has as its proper dis- 
torted Cartesian coordinates 

x = xb,  y = 6yb . (3.01) 

The expansions for the flow quantities in this region, carried 
out in the above distorted coordinates, are taken to have the form 

u = ub+ •••, v = 6vb+ ••• , p =(M262)pb+ •••, T =(eM2)Tb+ ••• ,p^b2/?)^"•, 

(3.02) 
with the variables £   of 0(1). 

For these expansions,  in which it is implicit that 

N = l/eM262«l, (3.03) 

the leading terms in the equations of motion are 



8Pb4l     /   ^b,     8vb\    xhL^b   Za\.\.   » LJvb<i 
5^+^b5^ +vb5^;-^^b^-53^>/+^b ^• 

where \ se'+^M^/Rj^ö4 and Kb = (e/62).    The quantity \=0{1), 
in order that there be a balance between the inviscid and vis- 
cous terms, while K,   must be >0(1)(K. «1 is rules out as not 
being physically realistic for this flow problem). Note: The 
combination of \= 0(1) and N«l yields 

x   =C(34W)/2M2+W/Rf;2»l. 

From Eq.(3.04), it is seen that there are two different 
structures for this layer depending upon the magnitude of the 
parameter Ku.   For Kjj» 1, the y-momentum equation becomes 

8Pb - 0 

and Eq.(3.04) corresponds exactly to the flat plate boundary 
layer equations.  For ^=0(1), although the rest of the equations 
are of flat plate boundary layer type,  the y-momentum equation 
is not,   since, in this limit, the convection and viscosity terms, 
as well as the normal pressure gradient term,   are retained. 
The PL with Kb»l is the Newtonian equivalent of the OHSIT 
viscous boundary layer,  while the PL, with K^=0(l),is a special 
case,  for which there is no OHSIT parallel. 

To complete the picture,  the boundary conditions that are to 
be applied to the PL's equations of motion must be specified. 

The boundary conditions at the wall (y^ = 0), taking into ac- 
count velocity-slip,  thermal-creep, and temperature-jump, are 

v,<o= 0. TJ|0- TlfW=C2 WPiPi)'1/2 |^O, (3.05) 

where Tj w is the temperature of the plate,   and Cl and C2 are 



constants of 0(1), which depend upon the momentum and 
thermal accommodation coefficients of the surface and the 
gas properties.   Recasting Eq.(3.05) in terms of the PL 
variables gives, at yb=0» 

T(2w-l)/28u 

v-^{±F^"^o=0'Vb^=0, 
b
 T(2W-1)/28T 

{-~ ^p)     =0. (3.06) 
pb      8yb .0 

with T.  W=T1    /^M2!^. Again,  two different structures arise 
depending on'the parameter K^,   For K. » 1, the wall boundary 
conditions reduce to 

"u    = v.     = T.     - T.       = 0 , b,o      b,o      b,o      b,w 

the usual non-slip boundary conditions.   On the other hand, 
for Kjj=0{l), the velocity-slip and temperature-jump effects 
must be retained.   Even for Ku=0(l), the effect of thermal- 
creep is negligible. 

Thus, for Kjj»!, which corresponds to 6«c 1/2, the 
equations of the PL take the form of the flat plate boundary 
layer equations and satisfy the non-slip boundary conditions 
at the wall; while, for Kb= 0(1)(6=0(G ^i ), the PL equations 
are of flat plate boundary layer type except for the y-mo- 
mentumequatiDn,and satisfy the slip boundary conditions at 
the wall.   These two couplings of the equations and wall 
boundary conditions for the PL are the only consistent coup- 
lings (cf., Pan and Probstein, [2], [3] ; Garvine,[4], [5 ]   ). 

The specification of the boundary conditions at the outer 
edge of the PL cannot be made explicitly at this time,   since 
these conditions depend upon matching with the solutions for 
the adjacent layer. 

4.    The Equations of Motion for the External Layers 
The analysis of the flow in the layers external to the PL is 

most conveniently done,  assuming the PL to be thicker than 
any of these external layers,  in terms of a boundary layer 
type coordinate system oriented with respect to the outer 
edge of the PL. 

If Sj = Ls and ^ = Ln are the boundary layer type coordi- 
nates, with the Sj-axis along the PL's outer edge and the nj- 
axis normal to this outer edge, then the Cartesian and 
boundary layer coordinate systems are related by 



= \ cos$(t)dt - n 8in§(s),  y=\ 8in$(t)dt + ncos $(8),       (4, 01) 

where §(8) i8 the angle that the PU8 outer edge make8 with 
the free-stream direction.   The velocity components in the 
8|-and nj-directions are qs i = u0C)qs and qn ^u^q^   The 
velocity components of these two coordinate systems are 
related by 

u=qcos$-q  sin?.  v = qsin§+qcos§. (4.02) ^s nn * n8 nn * ' 

In this new coordinate system,   Eqs.(2.01)-(2.04)become 

8,      wB,.       ln     (qBd%±     8q8    $' Vl-e 1   1 8p 

/qs8qn .      aqnjLf'   z\±l-e  1  Bp     1   r/4 8    2$N/rW8qn\ pVTr-5T + qn"^+Tqs;+T+iM2^-R£Lv3^i-TrJv ~57r; 

/qsaTa    aT\  2e/qs apA    ap\ 
p vr a?+ qn ä^r TTe VlT tf+qn W 

=a^ [fe ~ TjKmd+h 17 v W{h "Ji VJ 

K(^+T)qs4-Tii)2-KHTr+(^r-T)qn)2} 
(4.03) 

where h = 1 - f'n . 



Under the assumptions that the PL, has a thickness ratio 
of 6 « 1, and the thickness ratio of any external layer is 
«0(6),   it follows that 

s-^x,  $-•-60 (sin?-" 60,  cosf-*l,  h-»-l), (4.04a) 

where,   since the outer edge of the PL is y,      = Y. {XK)» 

0-Y^. (4.04b) 

5.    The Shock Layer 
The PL,  as formulated in Sec.3, with Kjj»!, acting as an 

effective slender 'body', produces an oblique SW and a SL 
between the 'body' and the SW.   The structure of the Newtonian 
SL is given in this section,using the Newtonian HSDT (Cole, 
[6] ) as a guide for determining the orders of magnitude of the 
flow quantities.    According to this theory, valid only for 
Kjj»!, the coordinates of the layei are 

s = sh,  n = (e6)nh (5.01) 

and the flow quantities are expressible as 

qß = 1 + 62uh + ••• ,  qn = (c6)vh + ••• , 

p = (M262)ph+....  T =(EM262)Th + •-,  p=(l/e)ph+...,(5.02) 

with the variables f,  of 0(1), 

For this layer, then, the leading terms in the equations of 
motion, Eq. (4,03),  are 

*i;+ in^PhV= 0' Ph=phTh' ph^'+ a^ =0' 

/     . (5,03) 
where K,   = (€/61+w). 

Since A.=0(1),  the ratios of the orders of magnitude of the 
leading viscosity and heat conduction terms to those of the 
inviscid terms in Eq.(5.03) are 0(1/^).    Thus, within the 
Newtonian framework, Eq.(5.03) describes either an inviscid 



shock layer (ISL) or a viscous shock layer (VSL),   depending 
on whether the quantity KL is greater than or equal to 0(1). 
The ISL,  with Kh»l, is the Newtonian equivalent of the OHSIT 
SL, while the VSL, with Kh=0{l), is a product of the Newtonian 
approximation that e -* 0, and has no CHSIT parallel. (Note: 

Kh/Kb=:61"w«lfor w<l, 

and the relation K.  >0(1) does not violate the conditionK »1.) 
To complete the specification of the SL, it is necessary to 

determine the shock relations that are to be applied at the 
outer edge oi the layer, n^ E=^h^sh^ ^or N^-» anc* show that 
the resulting solutions match at the SL inner edge to the PL 
solutions. 

6.    The Shock Structure and Shock Relations 
An analysis,   similar to the one performed to obtain the 

shock structure for viscous hypersonic blunt body theory 
(Bush, [7] ),   finds that either PL-SL combination,  with N«], 
and Kij^ 1, supports a shock structure (SS) which is made up 
of three thin layers: (l)a very thin exterior layer, in whichthe 
order of  magnitude of the flow quantities is characterized by 
their magnitude in the free-stream; (2) a relatively thicker 
middle layer, in which there is dissipation; and (3) a thin interior 
layer, which acts as a transition layer between the middle layer 
of the SS and the SL. 

Since,  as has been noted, the analysis of the three layers of 
the SS for NHSIT follows the lines of that given in [7], only the 
proper expansions of the flow quantities and the limiting forms 
of the equations of motion for these layers are presented. 
6.1.    The Uniform Upstream Region 

In the uniform upstream region the flow quantities are 

q =cos$ = l-62(0y2)+«",q =-sinf = -60+-",p=p=T=l .      (6.01) 

b.c.    The Exterior Layer of the Shock Structure 
The coordinates of the exterior layer (EL) are 

(6.02) 
and the leading terms in the expansions for the flow quantities are 

q = cosf + Ö^'u + ••• = {l-62{d)2/2)+ ••• }+ 62N*u + •••, 
6 6 c 



p =l+N3/4ap +•••, p = p+ •••,  T = T +•••    . (6.03) 
6 6 6 

The first integrals of the equations of motion for this layer, 
that match to the upstream boundary conditions of £q^6.01)f 

V *Pe--0'V V MV 4T^ ■ ^V^)] = 0' 

6 -J 
fc 

= O,0(T -l)+\ fiTw 
[a   e 

ax 
6 

6 

= o, (6.04) 

subject to the restriction of N > 0(e    ),  This restriction must 
be consistent with the restriction from Sec.5 of 
N>0(1/M2€^+U)/(1+W)). 
6.3.    The Middle Layer of the Shock Structure 

The coordinates of the middle layer (ML) are 

—ri n=rf[z^H(4)nJ=£6hs^(4)n-+"']'   (6•05, 

and the leading terms in the flow quantity expansions are 

q =cos§+62u +*,,*l+62|La  -?£-)+•••. q a-sin* +6v + ••• =6(v  -(b)i"•, ^s m \m   2/       * nn m v m r/ 

p=l+pm+...,p = (l/N)pm+—,T=(l/N)Tm+.-.  . (6.06) 

The first integrals of the equations of motion,  determined by 
matching with the EL,  are 

«^V^'M.P.n-O'PjV0' ^m+X[Tm *i£)=0' 

J4T
W
 'n 3   m ön L m 

8v    -i 

8u 

8T 
r m       3   m ön *  r*  m    i m ' + 4Tm3Tr>0- (6•07, L

 m J 

6.4.   The Inner Layer of the Shock Structure 
The quantities in the inner layer (IL) have the following 

representations: 
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(6.08) =si.n=c6[zi(si)+(^)ni]=e6[Nh(sh)+(^)ni]. 

$+ 62 W(s.)+c U.+ --   = 14 6Z{W-{<})Z/Z)] +€bzui + -" , a   =cos 
^8 

qn=(e6)vi + ..., p=(l/4;pi+-,p={l/cN)pi+--,T=(l/N) Q(s.)+eT.+... 

(6.09) 

The first integrals of the equations of motion, from the ML-IL. 
matching,   are ^ 

p^-N^H 0=^*4 0=0,^-0^=0, x[Q^jfW0 = O,pi-^Qw^]-^=O, 

(6.10) 
[flT n 

i-l 

6.5.    The Shock Relations 
From matching with the solutions of the 1JL (as n.-*-oo), 

the boundary conditions at the outer edge of the SL,   Nj^s, ), 
are determined to be 

^ 8T, 
Uh.E+ i|^h ^),E   =:-^/2'Th.E+i|?(v'^lE:=^' 

vh,E= NL-( Th.E/^,' Ph,E=^/Th|E, PhfE= 02, (6.11) 

h.E^.VVWV ^     •     • re  discussing the  invisci d  shock  layer   regime 
where f. 

Befor' 
('KJ1>>1) and the  viscous   shock layer  regime  (1^ = 0(1) ), 
it  must be  re-emphasized that the  SS analysis  presented 
above  is  valid  only for   K|D>>1.    Therefore,   forKlj = 0(l), 
the  whole  concept   of a  SW,   as  well as   that   of a    SL, 
must be  modified. 

7.    The Inviscid Shock Layer Regime; 6«c lAl*u' 
For the inviscid shock layer regime (ISLRhK. »l(Kh»l)t 

the primary layers of interest are the PL (defined by Eqs. 
(3.04) and (3.06), with Kb»!), and the 1SL (defined by Eqs. 
(5.03) and (6.11), with   Kh»l). 

It is possible to write the equations for these layers and 
the boundary conditions at the SW and at the plate in   imilarity 
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form,  as is done for OHSIT in [l], if N«l and Yb(pcb)~xb*fi 
and Tb w= const.   However, as in the OHSIT case,the solutions 
of the ^L and ISL do not match directly to each other,   and a 
transition layer (TL), intermediate to the PL and ISL,   is re- 
quired to provide uniform matching for the entire ISLR. 

Since the discussion of such PL-TL-ISL similarity 
solutions is presented in detail in [l], in this paper, it is 
considered sufficient to present the equations of motion for 
the Newtonian TL,   showing the dependence of the flow quanti- 
ties in this region upon K^» 1. 

The quantities in the TL have the following representations: 

s = st,   n = (e 6)Atnt, (7.01a) 

qß =l+62atut + -",   qn = (e6)ptvt+ — f 

p = (M262)p.-f-,T=(eM262)ötTt + -.P={l/e)(l/öt)pt+-. 
1 l l (7.01b) 

where 

0t=at=K^2 +W,» l.A^K^2^« l,for Kh» 1. (7.02) 

and the variables f  are of 0(1).   (Note: It is also true that 

(eM262)0t= (eM2)(e6)2^2+a))«cM2,62at=(eö)2^2^1« 1. ) 

From Eq,(7.01), then,  the leading terms in the equations of 
motion for this TL are 

8Pt     8 8pt 
^ + ^(Ptvt'=0'P.^tTf^ = 0' 

8.    The Viscous Shock Layer Regime; 6 = Ok1"1*"*) 
For the viscous shock layer regirne (VSLR), Ki =0(1) 

(Kjj»!), the primary layers of interest are the PL (defined 
by Eqs.(3,04) and (3.06), with Kb»l), and the VSL (defined by 
Eqs.(5.03) and (6.11), with Kh=0(l)).   (Note: For Kh=0(l), the 
thickness ratio of the ML of the SS is of the sume order of 
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magnitude as that of the SL,   namely,   0{e6). ) 
For this regime,   it is not possible to write the equations 

and boundary conditions for these layers in similarity form, 
due to the additional terms in the shock relations.   However, 
it is still possible to show that,since the VSL equations now 
contain the viscous terms that are required in the TL equa- 
tions for the XL's matching with the PL (cf.,Eq.(7.03)),   the 
VSL matches directly with the PL, and no intermediate layer 
is required, / 

9.    The Merged Layer Regime; 6 = 0(g 1/?>) 
Consider that Kb= 0(1), so that ö^CKe^)«!.   When this is 

the case,   the analyses presented for the SL and SS cannot be 
valid(cf.. Sec.5 and 6).   However,   for Kj3= 0(1), Eq.(3.04), 
giving the equations of motion for the PL, contains all the 
terms that are present in the SL and SS equations,  as well 
as those in the viscous boundary layer equations.   Therefore, 
it is concluded that,  for Kjj=0(l), a merged layer regime 
(MLR),  upstream of the regimes of Sees".7 and 8,  exists,   in 
which the three above-mentioned regions are replaced by a 
single PL,   which takes on all of their properties. 

Strictly speaking,   since T and p are of 0(cM2)»l   in the 
PL of the MLR,   this PL now includes only what were formerly 
the SL and the ML and IL of the SS,   and must be complemented 
by an EL, similar to the one formulated in Sec.6.2, with Z = 0, 
in which T and p are of 0(1).   From the mrtching with this EL, 
the boundary conditions at the outer edge of tnis PL, Y^x. ), 
are found to be 

Ub,E=1'Vb.E=0"Jb,E=Kb'Tb.E=t,E=0"b,E = yVYb<Xb»-     „ 

The boundary conditions at the wall are those given in Eq. 
(3.06) for 1^=0(1).   Further,  as x^-»-0, the flow quantities at 
the wall should also approach their free-stream values,namely, 

"u      =1|VU       =0, p.       =K,, T.        =p.        =0(f.       =^(0,0)). .b,oo     '   b,oo      ,rb,oo     V   b,oo    ^b,oo      x b,oo     b*   JQ nC\ 

An examination of Eqs.(3.04), (3.06), (9.01), and (9.02) 
shows that,   for this regime, it is not possible to write this 
set of equations in a general similarity form, however, it is 
possible to show that local similarity can exist near x   = 0. 

Consider that,   as xjj-»- 0, the coordinates and flow quanti- 
ties may be expressed as 



13 

xb=eb'yb=YbUb,VwithYb(eb,=A^by4",(A =const-)J   (9-03) 

ub=1 + CuX,+••••vCvbK)4'•••Pb--Kb^bpRbK,+•••• 
Tb^bTHbK)+-'Pb=VbTHb<V + - (9.04) 

with J  ,   J  ,  J ,  J  ,  J_,>0. y      u      v      p       T 
Take the values of these exponents to be 

1/2 < J   =2J =J =J„=l/tl+w)<2/3. 

4/3<Jy=(2w-n/2{Htü)<y4(since^2 <w<l). (9.05) 

(Note: The value taken for Jy in Eq.(9.05) indicates that the 
effective 'body' becomes progressively blunter as the leading 
edge is approached, rather than becoming straight.) Substitu- 
tion of the above expressions into Eq.(3.04) (with 1^=0(1) ) 
yields 

(_T   b    y 'bd^ 

[ 

1 

b 
dU*- 

^"b^y^b^ 

dvj- 
D 

dR 
JTRk-J„Tl| Kb|:T"b    y 'bdr^ 

\ 

H 
dV.' 

= 0. 

(   d   /   *w b\ i 

PLX-J n, v b     y 'b dTlbJ   A*2Kb 

x r2 d (Hr[jTu 

b' 
dV* 

3 dr]. dV 

A*Kb 
l 3 ^ ]) 

[>,(" 
dU 

t- 
'b   dri 

dH* 
,H. - J TI 

W ^-J, d 

T"b     y-'b dnbJ    A*12^ 

b/      y'bdr^ 

dt! 

dU. *    T b 
b-Vbd^; 

du!l!\i 

i     A    i       dH* 
(9.06) 

neglecting terms proportional to |.' ,   The corresponding 
boundary conditions at the outer (r)b=l)(derivable from Eq. 
(9.01) ) are 
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"MT vbV RM: XE = 0 • (9-07) 

Within this framework,   the boundary conditions at the plate 
i^b' 0)»  with respect to tangential velocity-slip and no 
normal flow,  become 

1 - -^%, (H*^-1^2 ^ }      = V*    =0 . (9.08) 
A*K'/2      b d%   .o        b'0 

b 

As far as the temperature-jump condition at the plate is 
concerned, there are two such conditions that render the 
equations of motion and all their boundary conditions locally 
self-similar as ^b"*^'     The first is that of a 'hot wall'  with 
Tjj w-•'T^ w= const,   as ^-»-0.   For this 'hot wall' case,   the 
temperature-jump condition becomes 

T*    +-^r (HK
(2W

"
1)/2

 ^)     =0. (9.09a) 
b,w    A«K3/2   ^   b ^   >o 

The second.is that of an 'adiabatic wall' with TV ...-*■ 
(const.)|bVt'M =|b'/T.^ HB>w=6bV('+") Hgi0

basW|b-.0. For 
the 'adiabatic wall' case, the temperature-jump condition is 

= 0. (9.09b) 
o 

Thus,   Eqs.(9.06)-(9.09) represent the 'starting' ordinary 
differential equations and their boundary conditions.   Their 
solutions provide the 'initial conditions' for the parabolic 
system of partial differential equations that defines the con- 
tinuum, thin layer model that has been postulated. 
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The viscous hypersonic flow past the leading edge of a sharp flat plate, whose 
surface is parallel to an oncoming uniform flow, is analysed on the basis of a 
continuum model consisting of the Navier-Stokes equations and the velocity-slip and 
temperature-jump wall boundary conditions.  It is assumed that the model fluid is a 
ptrfect gas having constant specific heats, a constant Prandtl number,* , whose 
numerical value is order unity, and a normal viscosity coevficient varying as a 
powe",«^ , of the absolute temperature. Limiting forms of the solutions for such a 
flow are studied as:  (I) the free-stream Mach number, M, goes to infinity; (2) the 
free-stream Reynolds number based upon the distance from the leading edge, R, , goes 
to infinity; and (3) the 'Newtonian parameter», € «(/-^/(f+l), where t   Is the 
ratio of the specific he9lA>5 99SA\t0 z$r,1i'>  such that the Newtonian hypersonic inter- 
action parameter,X^- (e3 MZ'Z '/RL)  , goes to Infinity. 

Through the use of asymptotic expansions and matching, it Is shown that, for 
W<1, near the leading edge, the interaction of the thin (thickness ratio,! , 
going to zero), viscous, high temperature, principal layer adjacent to the plate 
and the external flow produces three distinct strong-interaction (N"I/6M2S2« I) 
(sub-) regimes, for which the quantity S Is of order €rn(m>l/(l+«»)), 6,/0+,•), 
and €*'2t   respectively, as the various limits are approached. 
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