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Abstract

The distribution function for the spherical source is
determined by integrating the B-G-K model equation, :here
the local tcmperature is determined by the moment equations
under the hypersonic approximation. In the far field, the
axial distribution is nearly laxw%--ellian. A free molccule
limit exists; but does not define the lateral temperature
and higher moments properly. The lateral temperature is
determined by far field collisions, and is largely contained
in the tail of the lateral distribution. A Mach number or
a Reynolds number similarity in the distribution function
i:, shown.

1. Introduction

Since Ashkenas and Sherman I pointed out that the flow
along the centerline of a jet issuing fram a sonic orifice
into a vacuum could be approximated by a supersonic spheri-
cal source flow, and since, in the far field, the viscous
effects can be shown to be significant, there has been
interest in the analyss of source flow, with the transition
to free molecule flow of concern. Narasimha 2 presented a
"collisionless" solution to the problem, and no:ed the far
field properties of a limiting Mach number and a nearly
uniaxial, radially directed distribution function. To
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study transition fro. continuum to a nearly collisionless
region, Brook and C-.an 3 adopted the B-G-iK rodel of the
Boltzmann equation for a rmonatomic fas .hich %-'as further
simplified by the hypersonic approximation and integrated
numerically. There -.as, hc':ever a question regarding the
oission of several terns frcm the basic equation. The
problem -as subsequently analysed by farnel and Willis 4 for
a Maxwell molecule, and by Ed:ards and Cheng5 using the
B-G-iK equation. if the collision frequency An in the B-G-K
model is taken to be p//L, the two methods yield equal ro.ents
of the collisional terms to second order, arid, with the
approximation introdufed, the results of References !; arid 5
are equivalent, in both studies, the flo-. %-.as assumed to

.have reached hypersonic speeds before the dissipative effects
became significant, and, under the hypcrsonic approxir.ation,
it was shown that the mo:,cnt equations could be truncated
at second order. Again, a limiting te..perature and uniaxial
distribution function vere obtained. Cylindrical source

flcas %-,ere also studied by tne sane techniques in both papers.
Recently, Edw,ards and Rogers 6 have applied the sa.te

approach to the study of the strciailine.structure in an
axisyr metric free jet. It was concluded that, in the far
field, the flo-: along the axis of symmnetry is reducible to
the spherically syrmnietrical source flow.

Borisov 7 has solved a two diniensional, timle dependent,
rotationally symmetric problem for Maxw-:ell molecules using
the method of Grad. If the problen is assu,.cd to be inde-
pendent of z, there exists a solution to the moment equations
in which the flo. is directea away from the z-axis with a
speed proportional to the distance from the axis and in-
versely proportional to the time. With these assumptions,
the moment equations admit a solution in which the pressure
tensor is independent of position and has rotational symmetry
about an axis parallel to the z-axis, and in which the
third order moments are zero. This unsteady problem is
mathematically equivalent to the hypersonic source flow
problem considered here if one lets t = r/ and if terms of
0(1/4) are omitted. Borisov obtains an equation for temper-
ature which is identical in form to Eq. 3 of this paper,
with W set equal to one.

In this paper, the character, of the distribution
function for the spherical source flow is studied using
the B-G-K model eiuations. The observations and conclusions
on the analytical behavior of the distribution function in



the far fic!d are pres..rably rot limited by the model
equation, and the knci;:ledge should be helpful in interpret-
ing and deterrmining distribution f,.,rctions in free jet
experirents. The soluticn presc;tcd here may also serve as
a basis for detailed assess-:.ent of the B-G-K model equation.

2. Review: of So.ent Solut ion

In the notation of Ref. 5 the follo.-ing equations may
be obta-ncd directly by ta:it.-I r-vints up to second order
of the Boltzmean B-C-K equation in spherical coordinates
with spherical sywrnetry.

r =)
r p A 1t2 R P)7 p

Prr - T)_ AJ2

wihere

Note that , , are the orthogonal components of particle
velocity in the direction of increasing r, O, 9respectively.

Al and A 2 are errors due to truncation of the moment equa-
tions and contain moment terms higher than the second order.
Fro.n the B-G-K solution to f, A1 and A62 can be shown to
belong to an order at least 1/11 higher than that of the
terms w.hich are kcpt. "is constant to 0(1/112). An repre-
sents the collision frequency term and is taken to be
proportional to pRT/y.

Assurnel'OCT °', and A = (amRTI/Th)T where a is a constant
of order unity. Introduce® t T/Tc, and s = (f/Anr) =
,r /amRnlrjljT1 -' . The subscript I designates a reference
upstream point where the f low is hypersonic, bt't still in
equilibrium. The subscript 00 designates conditions far
downstream. ThenCsatisfies the equation11

.sOsCt ~1~ 2 @ (3)o +--(2)2
F., 0
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Let Prr

Then0

If C'J= I (Maxweil molecules), Eq. 3 tray be solved in
terms of confluent hypergeo-iietric functions, and a unique
solution can be displayed which satisfies the conditions:

and as s-*O, it approaches the isentropic
solutionos-4 /3. In .ig. 1, solutions fore, oand -sen.
are sho.mn as functions of the dimensionless radius s; for
WO= 0.5 and J= 1. These solutions were obtained by n'Jmeri-
cal integration of Eq. 3. It will be noticed that in terms
of = T/Tc, for a given W, transitions from an isentropic
to a frozen temperature are represcnted by a single curve,
,rrespective of the reservoir pressure; and that @.i follow.s

Iisen, closely for a considerable distance beyond the point
at wh'ch2diverges fro. the isentropic value. At very
large distances, however,@Lwill diverge fromi(n sen, since
the i3entropic value decays as s-4/3, while, the solution
to Eq. 3 has the expansion for large s:

-~ - 1 ". .. ; -@ '..

The limiting Mach number can be correlated explicitly with
the reservoir conditions, or, equivalently, the ratio of
the throat temperature to limiting temperature n)y be
expressed as a function of the throat Reynolds number:7o' IT* = f(k) [RiW1" 41Pil-4 (/ LO (7)

where f(w) is approximately 2.5 and 10 for WI= 1/2 and 1,
respectively.

3. Integration of the Distribution Function

The moment solutions as reviewed in Section 2 will be
used to compute the distribution function.

Consider the Boltzmann B-G-K equation in spherical
coordinates with spherical symmetry, i.e.

+ 4 ~ fAn(F-f)
r r r ag(5

with n L(,.le T2,_.

F E. *4T



With the limiting speed taken forg , and tIle condition
njr2 = const., F is coiplecly defined by the solution to
Eq. 3 for teiperature. Since the problem is spherically
symrictrical, 0 =P/2 may bc chosen. With this choice, Tand

genter synetrically, and the variable /o F is
sufficient to define the lateral velocity co.aponenLs.

Three independent variablesOC, and r are introduced
into Eq. . They are:

13 ;= 1.-
and Eq. 8 takes the form:

dand/3 are, in fact, two of the characteristic variables
for the partial differential Eq. 8. Constant values of &,
and /3correspond to constant particle kinetic energy and
angular mcomentum about the origin respectively. With no
collis"ons, the Ctand 00 associated vith any particle would
be fixed, and, as can be seen fiom Eq. 10, the distribution
function would be independent of r, and a. function of a and
0 alone. The invariance of P = rQ ina collision-frer;
solution signifies that the scale of the abscissa of ihe
lateral distribution function will reduce with increasi.,.
r like h/r.

A formal integration of Eq. 10, starting with a radius
re, yields: p + c)

where

0 0f . .f Anc p 2
f I Andr.2 A4*

with fo(c(,A) representing the distribution function at r ro .
In this study, since the flow is assumed to be in equil-

ibrium up to a hypersonic speed, that portion of the distri-
bution function which has a negative value of g will be
ignored, and all integration with respect to r will be
performed in a forward direction. The analysis which follows
will be presented in two parts: first, an analytical study
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of the literal temperature in the far field, and second a
study of numerical results and other details of the dis-
tribution fUnction.

4. The Lateral Temperature and Collisions in the Far Field

Eq.1l is valid for any initial value ro, provided the
'low is hypersonic at that point. The solution will first
be studied when ro is within the continuum regime.

The exponential in fQ may be expressed in the form
subject to a relative error of 0(1/1i),

rr .
JAn dr aIo (i2

with r* defined by 14 2 W here r and n are
evaluated at any point where the flow is hypersonic; n'* and

represent the isentropic Mach one values of density and
mass averaged velocity; (612-j2/r 2) was replaced by" since
fo has a significant value only near S = for M >>].

For ro/r* << (Re*)l/l 4(l-Wt/3, the integral in Eq. 12
is large, and the fo term is rapidly damped out. Conse-
quently, when r/ro.:> 1, the distribution function is given
by f].

The existence of a limit of f1 as r- ,is easily shown
for J2-f2/r2 greater than zero, since the An2 times a
constant will dominate the integrand. This limiting f] can
be called the collision-free limit since it is a function
of o~and9; but it does not give the correct far field
lateral temperature. One observes that, while fl converges
to the collision-free limit uniformly in /3as r--W, J33f,
.as well as the ratio of fl to its collision-free limit, do
not. Consider now a representation in which ro/r* is large
compared to Re*. The integral in Eq. 12 is then very small
compared to 1, and, in Eq. 11, fo fo (ot,0). fA then behaves
as a nearly collision-free distribution. The number density
and lateral temperature associated with f' would then both
be shown to be porportional to I/r2. For example

o -co co
0 ~~ 7J______g ('s)

and, with the hypersonic assumption, in the region of
Interest, 43al/.. a hence,
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r.

Similarly,

With the decomposition, fI and its moments will be approx-
imated in the far field where Ttwlo , An2 = (C/r) and
roe.$ Re r' . C can be represented as (3/5)Reo". 0 but it
is independent of ro . Then

.. ..;,c~.. p/r| )/ (/6)-.

and

.fffp ~~ydd ' r j/'fD o d (P7

The integral in Eq. 17 can be evaluated by using Eq. 16
and interchanging the order of integration to obtain:

4 i4 (7) Tdrgd
,dp. ,, 1.~

0 , (2rt,?
where the subscript I has been used to designate1 and 9
at r1 . Again, with the hypersonic approximation, Eq. 17
yields:

for m= 0 , r (')
C (2_rJ)¢.r)0and form= 2 -

where TI has been introduced to designate the lateral

temperature of the scattered molecules. If r.> ro

and

rof r
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*These results are strongly dependent on ro , but the
lateral pressure component is not, since

The lateral temperature of the combined distribution
will be given by:

For r sufficiently large,

This is precisely that given in Eq. 6 of Part 2. It has,
thus, been demonstrated that the lateral temperature at
large distances frcom the source is governed by collisions
in the far field. The number density of the particles
which furnish the lateral temperatures is, on the other
hand, small compared to the total number density.. Speci-
fical ly,

Y11 a r Re )
*0~ ~ ~~ 4Or- r2

which,0by assumption is small compared to 1. The lateral
velocity distribution in the far field .,ould then be
representable as the sum of two distributions. The first
would contain most of the particles, and would peak near
?= = 0, with a peak width proportional to llr and a
fateral temperature proportional to I/r2 . The second part
would contain considerably fewer particles, but .'ould have
a total lateral pressure which is higher than that of the
peaked distribution. The resultant lateral temperature is
then manifested primarily in a thickening of the tail of
the distribution function rather than in the pulse width.
The foregoing study indicates clearly that the distribution
functions in lateral velocity is not adequately represented
by the collision-free solution in the far field. (In fact,
the collision-free limit resulting from the full solution
to Eq. 10 would yield infinite lateral temperature.)

While the foregoing is based on the B-G-K model, similar
results can be obtained for the hard sphere with relatively
simple arguments that follow. Suppose thai the flow is
nearly collisionless, radially directed, with a limiting
temperature T9, and a limiting Mach number M ,I. The
distribution function is assumed to be nearly uniaxial and
aligned with the flow. The number of collisions per unit
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time and voluImC is proportional toiT 2 n2 X. llcre E is a
mean rand'n 5pecd, and T6-- is the collision cross scction.
After collision, a mean later'- spc-d of approxir.:ately
2/3C will be induced. If a lateral speed is induced at
r = rl, it will be decreased by a factor rl/r2 at r - r2
since, with no further collisions, 3 = const.

Let us consider then the " lateral energy" at r = r 2 due
to coflisions which have taken place in ro<r<r2. Let
ro >>r*'Re ": . The major portion of the flow will then be
nearly collisionless. The flux in lateral energy throuc!-
the surface of the sphere at r = r 2 due to collisions in
the prescribed range is

W K, I -4 7WAZ PY
WM7 K1  9 er (23

• Jo
where K1 is a constant of proportionality. This integral
expresses the fact that the lateral energy ind,,ced at r is
transported outwards and reduced in magnitude by the ratio
r2/r2 in the process. f n = noro/r2,then

and Y 2 

Since n is proportional to llr2

Tu"a1 (21

5. More Detailed Properties of the Distribution Function
and Numerical Results

The dimensionless radial distance s is introduced as in
Eq. 3. Let

Then Eq. 7'becones: N(

s-- (r- f)
where
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K f i 2

If the integration for f will start at s =1'/ce, Eq. 10

forl r 0 beco.aes:

'~4 d 3'

.. .

Two types of results obtained for the distribution
function will be presented. First, the centerline distri-
bution f Do,s) will be detemined. Second, the integral
ffd will be evaluated as a function ofA' and s, and the
_mcnents thich are associated with this distribution will be
studied. For exampleffdfo7 orff3fq6de can be displayed
asA funcLton of s. lote that, if the flo. is hypersonic,

J; dy f df.
By the argument given ir Section 3, one can ignore the

second term of Eq. 31 if the integration is started in the
equilibrium region. Then

This equation has been integrated numerically forO = 1,

and 14, = 15. The results are sho::n in Fig. 2. The rather
high degree of symmetry with respect tot " = I is expected
from Eq. 32, since except in t-2 (j-l)2 , the' under the

integral sign can be replaced by ' =1, subject to an
error of order 1/1. This indicates that the similarity
parameter is 1.y('-1) which is, therefore, employed in the
presentation. -IoTe that, in view of E9. 7,

At large values of s, the centerline distribution is seen
to be nearly independent of s, and is well represented in
the far field by one component of a Maxwell distribution
with a temperature w.hich is three times the limiting
temperature. The factor of three is necessary to account
for the fact that the distribution function is nearly
uniaxial.

The lateral distribution will be characterized by:
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ff*,C~ 'd M (1? r)d3)

wher e

(S j 4
x4

d t (34)
0 d

Consistent with the hypersonic approximation, (he interior
integral in Eq. 35 is evaluated by Laplace's method to

yield, (subject to an error of order 1/I2 ).

JOrK I , r_2'// fs/' dr
0 ' --" -t K - - a,' $,s - ".

Eq. 36 can be further simplified. With the integrand
again approximated to within order I/i2 , one obtains (forall do') _Q ,

The approximation follo.is from the fact that if 1lWp3'is of
order one or less, the radicals are l+0 (1/t1Z). If tei ,
the only contribution comes from the neighborhood o x s
where the two terms in the radical cancel, again with error
of order 1/fl 2 . Note trat, in Eq. 3 the lateral velocity
enters only in the cnbination 1t.' or M. j'. Also note

that both ranges of M.¢,' considered will contribute to the
integral.

Eq. 37 has been integrated numerically for &J= 1, and
values of0 obtained from the integration of Eq. 3. The
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results of these calculatios appear in Figs. 3, 4, and 5.
In Fig. 3,.ffdis lotted a-,ainst the similarity pararaeter
M p',g (R) 2 e*/. ( It' will be noted that the curves
corresponding to s = 7.146, 20 and O are quite close over
much of the range of LA plotted. This is to be expected,
since, froai Eq. 37, it'can be sho'.n that the s-)Iution will
depart from the limiting distribution when 14P is of order
s. The curves presented for large s cannot ne -ieaningfully
fitted to a Maxweliian-type distribution Ac- 2 /32 (the dash
curve); the scale B bears no relationship to the lateral
temperature.

Fig. 4 displays psffdg as a function of J8'orfsp'
The area under these curves is independent ors, since tiis
area represents s2n. Again the existence of the limit is
indicated. Note the range of 1.1 _'A contributing to the
area, hence, the number density, is 1.1009 = 0(1) # 0.

Fig. 5 shows p,3s3 fdg as a function of 11.p correspond-
ing to two values of s. For large s, although th.' curves
are not similar, the areas under the curves appear to be
approximately equal. With this area fixed, the lteral
temperature varies as I/s. The main contribution t: the
area, hence, the lateral temperature, is seen to be in the
range of f p' 0(1) ' 0. The limit as s.>ocan be obtained
analytically, and is given by the dashed curve.

By an extended application of the method of Laplace it
is possible to find a rather general moment of the distri-
bution function, again with accuracy 1/112 . For simplicity,
consider only WO= 1,

u~f/-ffY '- 4 dd d
X 71 K(F) ' b)bb '' 5 ) x

xJ~MJ'sie~f dX .8
0

where 
t-C.2 trxv
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Specializin( to sy> 1, sa!:ple calculations sh..: that

ii00 ii02 and 11 reduce, indced, to n, 2,',Tjfs - n
respectively. iote that for j ., I, the last intcgral of
Eq. 38 increases with s. This ce.:,firs that nioeCrits with
j ! are defined mainly by collisions in the far field.

6. Conclusion

In the far field of a spherical source, the B-G-It model
equation admits a solution which po .csses a limiting tc-
perature and a limiting speed. The distribution function

is nearly uniaxially and radially oricnted, but the lateral
temperature in the far field is governed by far field
collisions. Because of these collisions, the lateral

temperature decays as lr rather than I/r2 . How:ever, this
lateral temperature and higher moments will be manifested
in a thickening of the tail of the distribution function
rather than in a broadening of the spike. The primary
contribution to the lateral temperature comes fro:,, the
region where I009I is O(1). The spike width decreases as
I/r, and a lateral temperature measurement- basc on spike
width would indicate a temperature decay vl-i'n is propor-
tional to I/r2 .

Fo- hypersonic flo.., a Mach or Re,,aolds numbcr independ-
ence is obtained for both axial and *ateral distributions,
with M00 or (Re*)2/3+4(I-t appearii 4 only as a scaling
factor for the peculiar velocities. The axial distribution
in tle far field looks much like one component of a Maxwell
distribution which possesses a terperature three times the
limiting temperature.
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