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Abstract

The distribution function for the spherical source is
determined by integrating the B-G-K model equation, where
the locai tcwperature is determined by the moment equations
under the hypersonic approximation. In the far ficld, the
axial distribution is nearly Haxwellian. A firee molccule
limit exists, but does not define the lateral temperature
and nigher moments properly. The lateral temperature is
determined by far fiecld collisions, and is largely contained
in the tail of the lateral distribution. A Mach number or
a Reynolds number similarity in the distribution function
i» showm,

1. Introduction

Since Ashkenas and Sherman! pointed out that the fiow
along the centerline of a jet issuing from a sonic orifice
into a vacuum could be approximated by a supersonic spheri-
cal source flow, and since, in the far field, the viscous
effects can be shown to be significant, there has been
interest in the analys.s of source flow, with the transition
to free molecule flow of concern. MNarasimhal presented a
"collisionless' solution to the problem, and noted the far
field properties of a limiting Mach number and a ncarly
uniaxial, radially directed distribution function. To

*Research supported by the Air fForce Office of Scientific
Research Grant Number AF-AFOSR-697-66.



study transition from continuum to a nearly collisionless
region, Brook and Cwanl adepied the B-G-K model cf the
Boltzmann equation for e monatomic cgas which was furiher
simplified by the hyperscnic eppro<imation and integrated
runerically. There was, hcowever a question regarding the
omission of several terms frcm the basic equation. The
problem was subsequently enalysed by Hemel end Willis® for

a Haxwell molecule, and by Edviards and Cheng? using the

B-G-K equation. If the collision frequency An in the B-G-K
model is taken to be p/u, the two methcds yield egual moaents
of the collisional terms to second order, and, with the
approximetion intreduzed, the resulis of References & and 5
are equivalent. In both studies, the fiow was assumed to

. have reached hypersonic speeds beiore the dissipative effects
became significant, end, under the hypersonic aspproxiration,
it was shown that the momcnt cquations could be truncated

at second order. Ageain, a3 limiting temperature and uniaxiel
distribution function were obtaincd. Cylindrical source
flows were aiso studied by tne sane techniques in both papers.

Recently, Edwards oand Rogers6 have applied the saze
approach tc the study cf the strecanline.structure in an
axisymactric {ree jet. It was concluded that, in the far
fieid, the flow 2long the axis of symmetry is reducible to
the spherically symnetrical source flcu.

Borisov/ has solved a two dimensicenal, tine dependent,
rotationally symmetric problem for lexwell molecules using
the method of Grad. |If the problen is assuwcd to be inde-
pendent of z, there exists a solution to the moment equations
in which the flow is directea away from the z-axis with a
speed proportional to the distance from the axis and in-
versely proportional to the time. With these assumptions,
the moment equations admit a2 solution in which the pressure
tensor is independent of position and has rotational symmetry
about an axis paraliel to the z-axis, and in which the
third order moments are zero. This unsteady problem is
mathematically equivalent to the hypersonic source flow
problem considered here if one lets t = r/g'and if terms of
0(1/M) are omitted. Borisov obtains an equation for temper-
ature vhich is identical in form to Eq. 3 of this paper,
with @ set equal to one.

in this paper, the character of the distribution
function for the spherical source flow is studied using
the B-G-K model e uations. The observations and conclusions
on the analytical behavior of the distribution function in



the for field are presumzbly rot limited by the model
equation, and thc kncisledge should be helpful in interpret-
ing and determining distributicon functions in free jet
experirments. The scluiicn prescnted herc may also scrve as
a2 basis for detailed assess=ent of the B-G-K model equation.

2. Revia of KFoment Solution

In the notation of Rei. & the folloxing equations may
be obtained directly by teking ricuents up to secend order
of the Bolizmann B-C-K equation in spherical ccoordinates

with spherical symmetry.
: 2 .
%(rzﬁ,h%sr (pRT - Rr) + 4, 3

-1 — _}_ &f‘__ - - ..'- A
ri@r) = 5 (5 ~SRT) * 4
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r

vhere
Py = mfffig- 83 F dgdy 4 I
3Tzl (-84 7 g2 14 dsy dg J (2)

.E: = ’;;*‘/://j‘ fa’fo"? c:/ff

Note that §, 7, g are the orthogonal components of particle
velocity in the direction of increasing r, 8, {respectively.
A} and 4 are errors due to truncation of the moment equa-
tions and contain momenl terms higher than the second order.
From the B-G-K solution to f, 4y and 45 can be shown to
belong to an order at least 1/M higher than that of the
terms which are kept. fis constant to 0(1/M2). An repre-
sents the collision frequency term and is teken to be
proportional to pRT/AM.
Assume 1XTY, and A = (amRT‘f/}L,)T"wwhere a is a constant

of order unity. Introduce@ET/Tw, and s ..:;(f//\nr) =

'rf/amRnlr%f‘fToL'w. The subscript 1 designates a reference
upsiream point where the flow is hypersonic, bt still in
equilibrium. The subscript 00 designates conditions far
downstream, Thcn@satisfies the equationl‘

- 2-
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Then:

Ife=1 (Haxwell molecules), Eq. 3 may be solved in
terms of confluent hypergconziric functions, and a unique
solution can be displayed vhich satisfies the conditions:
(](60)'?], and, as s+»0, it approaches the |scntroolr
solution@ﬁik'é/ . In.ig. 1, solutions for ,;andc:zsen
are shown as functions of the dimensionless raclus s; for
= 0.5 and W= 1, These sclutions were oblained by numeri-
cal integration of Eq. 3. It will be noticed that in terms
of )= T/Tw , Tfor a given W, transitions from an isentropic
to a frozen temperature are represcnted by a single curve,

rrespective of the reservoir pressure; end that Gp follo'>
(ﬁisen_close!y for a considerabie distance bayond the point
at wh’ch(:)diverges from the isentropic value. At very
large distances, however,(#) will diverge fran(}senﬂ since
the isentropic value decz2ys as s~ 3, whkile, the solution
to Eq. 3 has the expansion for large s:

@15 bbrm 5 @ e (O

The limiting Mach number can be correlated explicitly with
the reservoir conditions, or, equivalently, the ratio of
the throat temperature to limiting temperature may be
expressed as a function of the throat Reynolds number:

To /T* = £l [R¥]” E40T g)

where { () is approximately 2.5 and 10 for &= 1/2 and 1,
respectively.

3. integration of the Distribution Function

The moment solutions as reviewed in Section 2 will be
used to compute the distribution function.

Consider the Boltzmann B-G-K equation in spheiical
coordinates with spherical symmetry, i.e.

6 -£y a $+yatfd n
Ear*)z—— +.______c§’ Y i ag]f A (r(fm

with n 5 (g_.!,)z - }]2.{' g }
F= GramnfPC = 2r1




With the limiting speed taken for &, and the condition
nEr2 = const., F is compleicly defined by the solution to
Eq. 3 for temperature. Since the problem is spherically
symuetrical, 8 =#/2 mey bc chosen. With this choice, ?’and
gcnlcr symamelrically, and the variable pg‘i;;f-f gt is
sufiicient to define the lateral velocity components.,

Three independent veriables &, ﬁ and r arc introduced
into Eq. . They are:

__.\gz'.; P’.’. f (7)
p=rp

and Eq. @ takes the {orm:

[Z=f7 2 = An(F~f) /0)

olaend 3 are, in fact, tuo of the characteristic varlables
for the partial differential Eq. 8. Constant values of ¢l
mui/3cerrespond to constant particle kinetic energy and
angular momentum about the origin respectively. With no
collis’ons, the Gl and /3 associated with any particle would
be fixed, and, as can be seen fiom Eq. 10, the distribution
function would be independent of r, and a functlion of ¢ and
alone. The invariance of (9= rQ in'a collision-free

solution signifies that the scale of the abscissa of ihe
lateral distribution function will reduce with increasisg
r like 1/r.

A formal integration of Eq. 10, starting with 2 radius

ro, yicids:
or T £ =+ 76, (1)

where
/1;1 ar

f=hapon{-[TEE]

- - 2
f = / exp, f Fandr, jAn P{»[dﬁf’bfm@ézr}
l rtd. /44_ @Wﬁ?} Qcigjaea; dk

with fo(d,3) representing the distribution function at r = r.
. In this study, since the flow is assumed to be in equil-
ibrium up to a hypersonic speed, that portion of the distri-
bution function which has a negative value of § will be
ignored, and all integration with respect to r will be
performed in a forward direction. The analysis which follows
will be presented in two parts: first, an analytical study

m




of the lateral temperature in the far ficld, and second a
study of numerical results and cther details of the dis-
tribution function,

i, The Lateral Temperature and Collisions in the Far Field

Eq. 11 is valid for any initial value ro, provided the
i low is hypersonic at that point. The solution will first
be studied vhen rgo is within the continuum regime.

The exponential in f} may be expressed in the form
subject to a relative error of 0(1/H),

I~w
/Mf_l_ - (20 p‘,i‘(_f_"")z(ﬂ) i (12)
N T
with r* defined by p#2 °=-?)§r"/ﬁ‘“{f? VWhere r andn are
evaluated at any point where the flow is hypersonic;n™ and

* represent the isentropic Mach ons values of density and
mass averaged velocity; 0d2~ﬁg/r2) was replaced ijF since

fo has a significant value only near § = F for M>¥1.

For ro/r*«d (Re®) 1/ 144 (1-w)/3 ¢ integral in Eq. 12
is large, and the fgy term is rapidly damped out. Conse-
quently, when r/rgas 1, the distribution function is given
by fi.

The existence of a limit of f| as r -»is easily shown
fcn‘a?-ﬁ?/rz greater than zero, since the An? times a
constant will dominate the integrand. This limiting f| can
be called the collision-frec limit since it is a function
of fand B; but it does not give the correct far field
lateral temperature, One cbserves that, while f} converges
to the collision-free limit uniformly hwj?as r—eao,ﬁﬁf,

.as well as the ratio of f| to its coliision-free limit, do
not. Consider now a representation in which ro/r* is large
compared to Re*, The integral in Eq. 12 is then very small
compared to 1, and, in Eq. 11, fQ xfo(et, Q). fy then behaves
as a nearly collision-free distribution. The number density
and lateral temperature associated with f} would then both

be shown to be porportional to 1/r2, For example

@ w,0 o,ro® ’
' £ detrde =57 e do o //orﬁd

and, with the hypersonic assumption, in the region of
interest, B3%/r2 ¢ d? hence,
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20’:;: [ prasp= B 2 (14)
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_ Simi la: ly,

3 arl / B
=i [l g)—}'d;dydf., f [ fdoe;a,, f,
(5’)
With the decomposition, Ty and its mo.nen’s \ull be approx-
imated in the far field where Tady, , (C/r ).and
rods Re*r“. C can be represented as (3/5)Rco . zrg but it
is independent of "o Then

‘xj':g_ ! % Pr d"‘f Zf‘d z>lz'2dr
/] 4 ',2
"oﬁ (rRT ® ﬁ/rl) [ AR7 (16)

and

.[//P"‘ﬁdf"?df' J-fz/m/ﬁ'”,f dodp  (17)

The intcgral in Eq. 17 can be cvaluated by using Eq. 16
and interchanging the order of integration to obtain:

4! f’ “2 * expf ATy
- 8/37'
=NRT [ f A ﬂ,,).;’; g

where the subscrlpt ] has been used to designate & and R
at ry. Again, with the hypersonic approximation, Eq. 17
yields:

for m = 0, ﬂ‘z///ﬁdfdydf = «g: "‘,.;- ‘;.L) (18)
and for m = 2, 2nRT, ///szdfdydf- (2;’—”)(/""3) (12)

where T has been introduced to designate the lateral
temperature of the scattered molecules. If raprg

c . r '
! rog';r& 7;4 “r &0

[P ———



"These resuits are strongly dependent on rg, but the
lateral pressure component is not, since

MTisn T/ F 12 (21
The lateral temperaturc of the combined distribution
will be given by:

T S TlenT  myToy B4 rYt 4 cTo/E 3
= = ~ (22)
For r sufficiently large,

T Clo/erdf = AnrTo /F =Tols, (23)

This is precisely that givern in Eq. & of Part 2. It has,
thus, been demonstrated that the lateral temperature at
large distances from the source is governed by collisions
in the far field. The number density of the particles
vhich furnish the lateral temperatures is, on the other
hand, small compared to the total number density. Speci-
fically,

n_ CHPER _ A [73 (24)
2l n, "I// 2 <0 rb
which, by assumptton is small compared to 1. The lateral
veiocnty distribution in the far field would then be
representable as the sum of two distributions. The first
would contain most of the particles, and viould peak near
?= g= 0, with a peak width proportlonal to 1/r and a
ateral temperature proportional to 1/r2. The second part
"would contain considerably fewer partlcles, but would have
a total lateral pressure which is higher than that of the
peaked distribution. The resultant lateral temperature is
then manifested primarily in a thickening of the tail of
the distribution function rather than in the pulse width,
The foregoing study indicates clearly that the distribution
functions in lateral velocity is not adequately represented
by the collision-free solution in the far field, (In fact,
the collision-free limit resulting from the full solution
to Eg. 10 would yield infinite lateral temperature.)

While the foregoing is based on the B-G-K model, similar
results can be obtained for the hard sphere with relatively
simple arguments that follow., Suppose that the flow is
nearly collisionless, radially directed, with a limiting
temperature Tgg, and a limiting Mach number M ,%>1. The
distribution function is assumed to be nearly uniaxial and
aligned with the flow. The number of collisions per unit

s o e




time and voluse is proportional Lorny 52, MHere € is a
mean randen speed, and gt is the coll'sxon cross scction.
After collision, a meen latercl speed of approximately
2/3C will be induced. |If & lateral speed is induced at
r=r), it will be decreascd by a factor ry/rp at r =12
since, with no furthcr'collisions,tg = const.

Let us consider then the "lateral encrgy'" at r = ry due
to collisions which have taken place in rog r<ry. Let
ro > r*Re*. The major periion of the flow will then be
ncerly collisionless. The flux in leteral energy through
the surface of the spherc at r = rp due to collisions in
the prcscr:bed range is

K/ Tr*n?€ 4nr‘-4-c (") dr (25)

vhere Ky is a Constent of pfooortlonal ty. This integral
expresses the fact that the lateral energy induced at r is
transporlcd outwards and reduced jn magnitude by the ratio
r /r% in the process. {f n = nyrg/r, then

: ,_9
Wz=Kmro [nfrﬁ)-‘é‘- ¢’ % (h-tp) (26)
and 2 2 3
K W . aK A &r o (27)
" = TamTER T T g
r=h 3
Since n is proportional to 1/r2
T = 04 e L (28)

n

5. More Detailed Properties of the Distribution Function
and Numerical Results

The dimensionless radial distance s is introduced as in

Eq. 3. Let
o r P ’ ,'_{__ (2?)
4

P'E pB=ps, f'=
27[' H .
h m 2L = % [ £ F) (30)

“':f )
Then Eq. 7§Lecom°s
K
Flp ) =290 " 2"~ ®

s34

9
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If the integration for f will start at s ﬁ;/ég £q. 1
for £ > 0 becoues:

VI Al it 2 b i Y
-’L(d’p‘S) p Yo To® /{ /5m}

: '“"’dx Efel’ /ﬁ' 3/‘

Two types of results obtained for the distritution
function will be presented. First, the centerline distri-
bution flg',0,5) will be deternined. Sccond, the integral

fd§ will be evaluated as a function of B' and s, and the
‘moments which are associated with this distribution will be
studied. For exanp!e,([fd}o? or P3 ¢fdp can be displayed
func%bOn of s. liote that, if the flow is hypersonic,
ﬁds 2 fd;
By the alguncnt given ir Section 3, one cen lgnorc the

second term of Eq. 31 if the integration is started in the
equilibrium region Then

(g} %) "'/{ x“@éﬂu QXp./ %‘ii)-t /i.f.{ 31)

ThlS cquatlon has been integrated nuncrlua]ly fordO"l
and B, = 15, The results are shown in Flg 2. The rather

high degree of symmetry with respect to = ] is expected
from Eq. 32, since cxcept in h2(§'-l)2 ' under the
integral sign can be replaced by; , suo_;ect to an
error of order 1/M. This indicate

that the similarity

(8'-1) wvhich is, therefcre, employed in the
oﬁo e that, in view of

BTN P L Y L

At large valués of s, the centeriine distribution is seen
to be nearly independent of s, and is well represented in
the far field by one component of a Naxwell distribution
vith a temperature which is three times the limiting
temperature. The factor of three is necessary to account
for the fact that the distribution function is nearly
uniaxial.

The lateral distribution will be characterized by:

parameter is M
prescntation.

10
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7<Lf fdg = fdg[é 2(s; %% p, x)dx (32)
uhcre
em{ M‘”(«’ +1—.a/a<f“ﬂ/zz )j

s'f-wv/a(,-p /x
w S ’ , /
[ /gﬁfs,d.ﬁ,z) (+ 4 dx d«’ (34)
c(' Jp(,"-ﬁl’7sg
S (2 . /
=f d{? (S X1 B85 XDl de
0 ’g" NV (55)

2(85 blfp',x) =

Consistenl with thec hypersonic approximation, the interior
intcgral in Eq. 35 is evaluated by anlace s method to
yield, (subjcct to an error of order 1/12 ).

S@“dy _
/ fds —»;[ afp [ 3\/,,6,/){,,%44”
0 "@“\/1 Bt — PV (34)

Eq. 36 can be further simplified. With the integrand
agai imated to within order 1/12 btains (f

gain approximated to within order 1/M , one obtains (for

aII‘T)

The approximation follows from the fact that if fLyB'iS of
order one or less, the radicals are I+O(I/H2). TfM ‘p ,7>l
the only contribution comes from the neighborhood o#”x =
where the two terms in the radical cancel, again with error
of order ]/H . Note trat, in Eq. 37 the lateral velocity

enters only in the cowo}nation n, g or M _ pe'. Also note
that both ranges of H F, considered will contribute to the
integral,

Eq. 37 has been integrated numerically for w= 1, and
values of (1) obtained from the integration of Eq. 3. The
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results of thesc calculations appear in Figs. 3, 4, and 5.
ln Fig. 3, ffo? glotted asaingt the similarity paramecter
ﬁ'd:/g (Ro )27+ ( It will be noted that the curves
correspondlng tos = 7.i6, 20 and Q0 are quite close over
much of the range of }{@ plotted. This is to be expected,
since, from Eq. 37, it can be shoun that the s»lution will
depart from the limiting distribution vthen 1 g8 is of order
s. The curves presented for large s cannot meanlngfuliy
fitted to a Maxweliian-type distribution Ae” FZ 32 (the dash

curve); the scale B bears no relationship to the lateral
temperature.

Fig. b displays psj}dg as a function of ?n
The area under these curves is independent , snnce th:s
area represents s2n, Again the existence of the limit is
indicated., HNote the range of M_ @' contributing to the
area, hence, the number density, is M = 0(1) # C.

Fig. 5 shows p' 3s3 fdE as a function of N, @ correspond-
ing te two values of s. For large s, aithough th: curves
are not similar, the areas under the curves appear to be
approximately equal. With this area fixed, the literal
temperature varies as 1/s. The main coatribution t> the
area, hence, the laLCIa] tcmpexatur , is seen to be in the
range of Mypp' = 0(1) # 0. The limit as s->o can be obtained
analytlca]ly, and is glven by the dashed curve.

By an extended application of the method of Laplace it
is possible to find a rather general moncnt of the distri-
bution functlion, again with accuracy 1/M2 . For simplicity,
consider only =1,

e
= ATK(F )”3/ ety € a. X

S . . Lo
X/@/uéx,fae~x/:?. i (28)
) .

where P xrz:z ,__1_.. P : W
o My, = ® , 2 3 x¢



Specializine to sy 1, sample celculations shewr thet
HOG, HOZ 5nd H2! reduce, indced, to n, 2nlTe/s and 3nlTgp
respectively. Hote thet for j21, the last intcgral of
£q. 38 increases with s. This ceufirms that moo ents with
j2 1 ere defined mainly by collisions in the fer Ticld.

6. Conclusion

In the far field of a spherical source, the B-G-K model
equation admits a solution wvhich poescsses a limiting tem-
perature and a limiting speed. The distribution function
is nearly uniaxially and radially oricnted, but the lateral
temperature in the far field is governcd by far field
collisions. Because of these collisions, the lateral
temperature decays as 1/r rather then 1/r2. Houever, this
lateral temperature and higher moments will be menifested
in a thickening of the tail of the distribution {unction
rather than in a broadening of the spike. The primary
contribution to the lateral temperature comes frca the
region where My, @' is 0(1). The spike width decreases as
1/r, and a lateral temperatlure measurcment baseu on spike
width would indicate a temperature decay vi-i<n is propor-
tional to 1/r2,

Fo- hypersonic flow, a Mach or Revaoids number independ-
ence is obtained for both axial and Tateral distributions,
with Mgy or (Re*)2/3+H (1= 5ppcarii g only as a scaling
factor for the peculiar velocities. The axial distribution
in the far field looks much like onec component of a Maxwell
distribution which possesses a temperature three times the
limiting temperature,
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The distribution function for the spherical source is determined by integrating
the B-G-K model equation, where the local temperature is determined by the
moment equations under the hypersonic approximation. In the far field, the axial
distribution is nearly Maxwellian. A free molecule limit exists, but does not
define the lateral temperature and higher moments properly. The lateral temperature
is determined by far field collisions, and is largely contained in the tail of the
lateral distribution. A Mach number or a Reynolds number similarity in the
distribution function is shown.
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