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NOTATION
Speecd of sound in fluid
Speed of sound in air
Current
Hulf wetted breadth of wodge n sasured horizontelly,
= 7”2 of half breadth of wedge at undisturbod water

level

Added mass of fluid

Mass of falling body

Impact pressure in generai

Total impact pressure in general

Resistance

Time in general

Period in general

Half period or duration of first po: itive pulse, = 7’0
Voltage in general

Velocity in general

impact velocity

Horizontal coordinates in z, ¥, 2 coordinate system
Verticai coordinate in z, ¥, 2 coordinate system
Vertical position at instant of impact

Deadrise angle, tadian

Mass density of fluid
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ABSTRACT

An experimental investigaticn of rigid body siamming was performed at
the David Taylor Model Basin by dropping cre flat-bottom steel model and five
wedge-shaped steel models with small deadrise angles (from 1 to 15 deg) from
various elevated positions above a calm water surface. Recording instrumen-
tation was capable of picking up and recording frequencies from 0 to 200 ke,
which covered the frequency range of the hydrodynamic as well as the acous-
tic pressures that might act on the model. From the test results, a set of
charts is provided to predict the maximum impact pressures due to slamming

of rigid wedge-shaped bodies.

ADMINISTRATIVE INFORMATION

The experimental investigation of rigid wedge-shaped body slamming is being carried
out as part of the plate-impact studies under the In-House Independent Research Program.
This work is funded by Subproject S-R011 01 01, Task 0401.

INTRODUCTION

In recent years, ship speed has become one of the important factors among competitors
in private industry as well as in the navy in ship operations. The desire to increase the ship
operational speed is obvious. When a ship is trying to maintain this increased speed during
a heavy weather season, it is inevitable to experience the impact force of the wave at the
bow. This type of impact force may easily damage the local ship-hull structure or cause the
entire ship to vibrate for some time. The impact of any portion of a moving ship upon the
surface wave is known to mariners by the term ‘‘slamming.” Ship response due to slamming
may be classified into three categories, namely, localized response, transitions, and overail
response.

During and immediately after slamming, there is a period of localized response when
the hull-plate panels will respond immediately, because of direct contact with the slamming
load. Since keel, floors, and nearby frame structures function as supports to the hull plating,
they also react without delay.

Following the initial period is one of transition when the stress wave is travelling at
the speed of sound through the local hull structure, but the entire ship hull is not yet aware

of the slamming load.



Finally, there follows a period of overall response. If the excited force, i.e., the
slamming load, has produced sufficient momentum, the hull may vibrate transversely, longi-
tudinally, torsionally, or in any combination of these, depending upon what portion or locality
of the ship hull has been attacked by the slamming load. The transverse hull vibration is
sometimes referred to as whipping.

Slamming damage of local ship-hull structure has been a puzzling problem to ship re-
searchers as well as to ship designers. In view of this, it was decided to perform some
basic experiments to determine the mechanics of local slamming phenomenon before getting
into the complicated problem of structural damage due to slamming.

From previous fundamental studies,!’ 2 evidence has been found that the air trapped
between the falling flat-bottom body and the water surface has a great effect on the magnitude
of peak-impact pressure. The objective of present study is to determine the effect of various
deadrise angles of the impact body on the trapped air and the impact-pressure time history.
The deadrise angle is defined as the angle between the impact surface of falling body and
the horizontal.

This report presents the work done in connection with rigid wedge-shaped body slam-
ming and some of the conclusions resulting from the experimental work. It indicates that
further tests are needed before the results can be considered conclusive. In addition, model
constructions, test facility, and instrumentation are described; and the theoretical background
concerning the rigid wedge-shaped body slamming is presented. Theoretical results are com-
pared with the test results.

All tests discussed in this report were performed at the David Taylor Model Basin dur-
ing the Fiscal Year 1966.

THEORETICAL BACKGROUND

When a rigid body penetrates the water surface, the total hydrodynamic impact prebs-

sure P acting upon the impact surface may be obtained by3

For the free falling body, the change in momentum is zero, or

My +m, )V -MH,V,=0

1Ret’erences are listed on page 30.



At the instant of impact,

ty=0,2,=0, and 2=V,
Thus,
. MOVO
V = 2 =
Mo +m,,
and
. N M()Vomzz
V=2=-
M, +m”)2
This gives
M2V m V. m
N 00 0
P=itys - L. o (1)
(MO + mzz)2 PP 2
<1 + -——)
MO.

Equation [1] shows that the added mass m_, and the change of the added mass as a
function of time m_, play a significant part in calculating the impact pressure. Various two-

dimensional added-mass formulas have been derived for the case of the V-shaped wedge pene-

tration, ard a list of the few is shown as follows:?
, m (2L)? )
von Karman m,,=— p\—
2 7
w
Wagner m,, = -:‘2- pL?
=7 2 B
Kreps m”—EPL [1- n]

. Zret 2
Wagner-Sydow m__ = Z pL? [_Z.. - IJ [g.i/?_]

22 2B g
2 2
v t
Mayo m, . =0.82 — pL2 [1 - 1] [-Q—E-Eﬁ-]
2 2B m
3

Monaghan m,, = =z pL? [1 - E_]

“ 2 w




Ifm__ =

.z pL? is used for Equation [1], it is easy to show that the total impact pres-

(SN

sure P is

" LYV
3
+
MO

Now that the total impact pressure is known, it is desirable to study the pressure dis-

P =

tribution. The pressure distribution on the impact surface of a wedge penetrating through the
water surface was derived by Wagner from the Bernoulli equation for unsteady potential flow.3
This equation is

= - + — JLZ2 - 22 {3l

The maximum impact pressure Poax \S Obtained by putting

d
2 o
dx

and assuming Z to be small and therefore neglected. Thus

p 2
T LT R (4]
2
- ,V2 48
) p
The maximum impact pressure occurs at
4 2
z=L\1- 2B (5]

2

At keel, z = 0. From Equation [3], the impact pressure at the keel p, .., is



p .
1kee1='_g_+£2_L (6]
2
- V2 V
9 P
If 2 is neglected,
lpkeel =-§. [7]
— pV2
9 P

4 . .
However, as derived by von Karman,S the maximum impact pressure at keel at the moment of

contact with water surface is,

Preel 7 (8]
1  tan B
Fad]

which is identical to Equation [7] if B is small.

For the flat-bottom slamming, the deadrise angle B is zero. This means that the im-
pact pressure p is infinitely large if Equation [3], [7], or (8] is applied. Therefore, as 8
approaches zero, Equations [3], [7], and [8] have no practical value.

An experimental investigation of rigid flat-bottom body slamming was performed at the
Model Basin.!* 2 It was observed that

1. The major reason for the maximum impact pressure of flat-bottom slamming being much
lower than expected (pcV as per von K I:ma’ns) 1s due to the existence of air trapped be-

tween the falling body and the water surface.

2. The effects produced by the compressible layer of air between the falling body and the
water are as follows:

a. The rise time of the impact-pressure pulse is increased because of the cush-
ioning effect of the compressible air.

b. Some of the air has to be pushed into the surface layer of water because the

air cannot escape completely. This greatly reduces the value of pc because the sur-
face layer becomes a nonhomogenious air-water mixture.

From the experimental observation and theoretical reasoning, the impact pressure for
rigid flat-bottom body slamming was given by

t
—14 ;
P =2p_.. . ! sinp — (9]

1
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with

1 (r]:l' v ot
Prmax ™ .

| P T o
32(]‘4) L(’—]“‘ . J Fiiud arr O

7T, =1L f11l

where (1/144) is the factor to convert p from p=f units InLo p=i UNi=: =I0Ce poy i in
mux fluid

I T . P . i . NPT . o

Ih-sec ft7, o is 1D fps, and V. i=in fp=<. Using priiq 1294 Ih-=ece ? Te? for fre=h water

and ¢ = 1125 fps. Lquation [10] reduces to

= 4.5 I'O {121

pmax

! DESCRIPTION OF MODELS AND TESTS

Six models were tested in the present study. They were one rigid flat-bottom model
and five ricid wedge-shaped models.

The rigid flat-bottom medel is shown in Figure 1. It consisted of a1 - hy 20- by
96 1.2-in. steel plnte with welded 1/2- by 3-in. steel flat-bar stiffeners. Th 'wte und the

- stiffeners were welded to a steel box. Thus, for drop heights of 7 172 n. and lower. the
meel may be considered as a rigid flat-bottom body. To assurc he flatnes< of the test plate
on the impact side, a three-quartei-inch plate was used for fabrication. After welding, the
test plate was machined to a thickness of a little more than one-half inch. The combined
weight of the steel box and the flat-plate model was 212 ib, and the total drop weight for the
test was 255 Ib. This total weight included the guided sliding beam and other necessary
attachments.

The rigid wedge-shaped models are shown in Figure 2. They were esseutinlly similar
to the rigid flat-bottom model, except for the shorter edge of the test plate of each model,
which was cut into two equal widths anltt.n wolded together to form a V-shaped wedge. The
deadrise angles of the five models were 1, 3, 6, 10, and 15 deg, respectively. The method of
fabrication of these models was essentially similar to that for the flat-bottom model. The
combined weight of each steel box and the wedged-plate model ranged from 20% to 211 1b, hut

‘3:;5 “

the total drop weight for each test was
The tests were conducted in the facility designed and built by the DTMB Hydrome-
chanies Laboratory: see Figure 3. This facility i a large rectangular tank, 25 by 15 ft, filled
with water to a depth of 8.5 ft. To ensure two-dimensional flow conditions, two vertical walls,
made of steel piates, were consiructed to span the length of the tank and to extend from 18 in.

above the water surfa » to the full tank depth. The two parallel walls are rigidly connected

[«




to the tank floor and sides and are separated by a distarce equal to the model length of
26 1/2 in. plus a small amount of clearance. The parallel walls have open ends to permit
iree flow of the surfaze wave around the tank during the drop test.

The support and guide systems for the drop test consisted of a steel frame and a
guided aluminum box beam; see Figure 3. The model was attached to the beam by two alumi-
num brackets, with rubber strips fitted between the brackets and the model to absorb the un-
wanted vibration caused by the drop test. The desired drop height was obtained by proper
positioning of the sliding beam, which was guided so that maximum rotation of the model in
any direction was limited to one-quarter degree during the drop.

The releasing mechanism consisted of a solenoid attached to the top member of the
frame by an adjustable steel rod. The solenoid was equipped with a hook from which to
hang the sliding beam. When the solenoid was activated, the hook was instantaneously re-
leased, and the beam and the model fell freely.

The drop heights, which are defined as the distance between the keel and the water
surface, ranged from 3 to 7 1/2 in. at 1 1/2-in. increments. Pressures, accelerations, and
two selected positions of the moving model were recorded. In addition, 16 mm high-speed
movies, both underwater and surface, were taken to study water flow, piled-up water, and
trapped air during and after the impact. The speed of the movie varied up to about 5000
frames per sec. Sufficient time was allowed for the camera to pick up speed before a drop

was initiated.

INSTRUMENTATION

The instrumentation system used for the experimental investigation consisted essen-
tially of quartz-crystal transducers, charge amplifiers, a dual-beam oscilloscope, and a high-
speed streak camera; see the block diagram shown in Figure 4. The charge amplifiers were
the Kistler Model-568. These picked up a 200-kc signal without noticeable error. The oscil-
loscope was a Tektronix Type-551, with a frequency range from zero to 25(10) cps. By
means of the chop technique, four traces were displayed on the screen instead of two. The
streak camera was a General Radio Type-651-A, with speeds up to 1000 ips, and it was fitted
with suitable optics to view the screen of the oscilloscope. Also in view of the camera were
two neon bulbs which served as ‘‘event markers.”” By means of beaded chain, one event
marker flashed when the model had fallen 1 in. from the rest position. The other event marker
fiashed when the model had fallen to within 1 in. of the water surface. From these two event
marks on the film, the velocity of the falling body could be checked.

The pressure gages were of Kistler Model-603 quartz-crystal, having a natural frequency
of 200 kc and able to record a rise time of 1 ysec. The validity of the pressure measurements

of the complete recording system was tested electronically and mechanically, and was also
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calibrated by an underwater explosion. The results indicaicod that the entire recording sys-
tem nad the ability to j.ck up and record the high-frequency acoustic pressure, if it existed
during the impact of the falling bady with the water surface.

Piezoelecti.c accelerometers, KEndeveo Mode!l-2225) were used to measure modei ac-

celeration near the center of the model. With a natural frequency of ®0-ke the page was con-

sidered & iequate for the drop test.

PRESENTATION AND DISCUSS.:ON OF TEST RESULTS

During the Fiscal Year 1965, a =eries of drop tests of a rigid flat-bottom model (0-deg
deadrise angle) was conducted at the Model Basin to determine the origin of slamming pres-
sure.' Based upon the observations of the trapped-air phenomenon, a theory for rigid flat-
bottom slamming was developed. As outlired briefly in the =ection of theoretical background,
.he theory pre-licts the impact pressure upon the impact surface of a failing body during the
occurrence of flat-bottom slamming. One of the assumptions was used in developing this
theory that the first positive pulse of the impact pressure occurred during the split second
when the air was trapped between the falling body and the water surface. Nevertheles:. no
evidence was available to determine whether the measured impact presstre was generate:d by
the compression of the trapped air or by the actual contact of the falling body on the waier
surface.

Immediately after considering the trapped-air phenomenon, the effect of the deadrise
g zle of the ship bottom on the trapped air was questioned. Thus this series of tests was
planned and performed to answer that question.
the wave formation during siamming of a wedge-shaped body was ob-
tained from the underwater and surface high-speed movies. Owing to geometrical discontinu-
ity at the edge of the box, the water was forced out tangentially to the impact surface of the
wedge-shaped body and then curved upward to form a void space between the vertica: wall of
the box and the waterjet. The void = ace closed up, and the water struck the side wall of
the box as the immersion velocity of the box was grudually reduced. This secondary slam-
ming, phenomenon was very much the same as piesented in Reference 1 for the flat-bottom

slamming, and therefoi«, that presentation is omitted in this report.

DETECTION OF TRAPPED AIR DURING FLAT-BOTTOM SLAMMING

The electronic detection of trapped air was performed | r the rigid filat-bottom model

only. The trapped-air detecting equipment was not uzed for the other models largely because
4

Hmitations in time schedule. The method of detection is dexcribed in the following

paragrapns.




As shown in Figure 5, the two probes are attached to and insulated from the impact
surface of the flat-bottom model. If both of the probes are touched by a mass of water, the
resistance across the two probes will be about 3000 ohms, depending on the distance be-
tween these probes. If the water does not connect two probes together, even though two
probes are independently wet, the resistance across the points B and £ will be practically
infinite.

To demonstrate how the circuitry serves the purpose of trapped air detection, Figure
6, which is a simplified representation of the circuit shown in Figure 5, will be used for
explanations. Let R, represent the resistance across two probes which are the points B and
as the current flowing through B and E. R, is a 30-k resistor, V,

in

E in the diagram. Use ¢,

is the input voltage, and V _  is the output voltage.

t

For the Circuit Loop-1,

Vi =i, (B, + R)

in

or

But from the Circuit Loop-2,

out 171

Thus,

|4 = — [13]

Then by Equation [13],



If a mass of water touches both prohes

3

R, = 3k

Then by Equation [13],

In other words, at the instant a mass of water is 1n contact with the impact surface of the
falling body, the voltage output signal will be reduced to one-eleventh of the inpat voltage.

However, if the two probes are splashed wet by the water but are still separated by an air

: gap, the resistance across B and E is still large, and the change of the output signal will be
j relatively small.

i Figure 7 shows a typical record providing evidence: of the time reiation=ship hetween
. the occurrence of the first positive pulse of the impact pressure and the occurrence of water
‘ actually in contact with the impact surface of the rigid flat-bottom body. As demonstrated

. in the figure, the trace with a 10-ke carrier signal is used to indicate whether or not a mass

of water is actually in contact with the impact surface of the flat-bottom model. The large
: 10-ke signal indi-ates the existance of a layer of air trapped between the flat-bottom model
and the water surface. The 10-kc signal with very small magnitude means that at that
moment the water is actually in contact with the impact surface of the flat-bottom model.
The other trace of the recerd showsn in Figure T is ihe time-history curve of the im-
pact pressure measured at the center of the flat-bottom model. The curve provides the
specific time when the maximum impact pressure occurs. For this particular record, the
drop he ght was 6.5 in. The maximum impact pressure was 27 psi. which supported the flat-
bottom impact theory very well. The maximum pressure occurred about 13 msec before the
water came in contact with the impact surface of the flat-bottom body. In other words, only

after completion of the first positive pulse of the impact pressare did the trapped air appear

to have partly escaped and to have partly been pushed inw the water surface layer.

From the observations and the analyzed data of the trapped-air detection tests, it is
reasonable to conclude that, during the water surface impact, the first positive pulse of the
impact pressure occurs when the air is momentarily trapped be tween the falling rigid flat-

bottom body and the water surface.

10




EFFECT OF DEADRISE ANGLE ON TRAPPED AIR

In response to the question on the effect of deadrise angle to the trapped air, a series
of tests was planned and conducted by dropping five rigid wedge-shaped models with low-
deadrise angles of 1, 3, 6, 10, and 15 deg, respectively. These models wcre described
carlier. The trapped-air phenomenon was investigated by the underwater slow-motion camera
and by the pressure measurements. All the movies were taken at a drop height of 6 in., and
the pressure measurements weare taken at drop heights of 3, 4.5, 6, and 7.5 in.

Figure 8 shows the underwater photographs taken during the drop test of the wedge-
shaped models. The underwater photograph of the flat-bottom model is included for ccmpari-
son. As it can be seen from the pictures, only the flat-bottom and the 1-deg models trap a
considerable amount of air. For the models having deadrise angles of 3-deg and higher, most
of the air escapes at the instant of impact. During the impact, the higher the deadrise angle
the clearer the impact surface observed. However, this could be affected to some extent by
the angle of the light source to the impact surface of the model.

Since 3 deg is not much deadrise and since the air is trapped for such a short dyration,
the trapped-air phenomenon is highly uﬁstable with respect to time and the angle of impact.
Thus the test results are sufficient to make a general conclusion that, during the impact,
most of the air is pushed away by the _wedge-shapéd model with 3 deg or greater deadrise
angle before its keel pierces through the water surface. '

Evidence of the effect of the deadrise angle to the impact pressure is brought up in

the subsection that follows.

EFFECT OF DEADRISE ANGLE ON SLAMMING PRESSURE

In the section about theoretical background, the maximum impact pressures of the

wedge are given by

1. Away from the keel (Wagner):

1 , n2
pmax=-2—PV 1+ 5 (4]

2. At the keel (Wagner and Von Ka’rma’n):
1 o [T :
Pree: =. E pVO (E) [7]

The maximum impact pressure oi the flat-bottom model is given by

=45V, [12]

pmax

11



Equations [4] and [7] are applicable for the large value of the deadrise angle 8 be-
cause the cushioning effect of the air can be neglected. As the value of B becomes less,
the effect of air cushioning on the maximum impact pressure is greater. For small values of
B, there are no theoretical equations to predict the impact pressure. Therefore, the wedge-
shaped models with low-deadrise angles were used to rcsolve some of the uncertainties in
the region where the deadrise angle of the wedge-shaped body wouid be small (for instance,
B = 15 deg).

Samples of records are shown in Figure 9. As can be seen from the records, the
impact-pressure histories at the keel are quite different from those away from the keel. The
impact pressure at the keel begins with an impulse, short in duration (less than 0.05 msec),
then it is followed by the so-called hydrodynamic pressure. The impulse pressure at the
keel is not pronounced for the 1-deg model, since the impact pressure is affected by the
trapped air cushioning; see Figure 9a. With the exception of the 1-deg model, the impact
pressure away from the keel steps up quickly with a rise time of about 0.1 msec; then it dies
out slowly. The impact pressure histories of the 1-deg model closely resemble those of the
flat-bottom model except that there is a time delay for the pressure messured further away
from the keel.

The pressure measurement at the keel deserves some discussion. Theoretically,
even an infinitesimal force will produce infinite pressure, since the force is applied to a
line which has no area, and the pressure is the force divided by the arca. The pressure
gage used to measure the keel pressure has a non-zero area one-quarter inch in diameter.
Therefore, if a different size of gage is used, the results may not be the same, especially
the impulse pressure at the keel. However, based on the test results, the maximum impact
pressures at the keel and away from the keel are plotted in Figure 10.

From plots on log-log charts, such as shown in Figure 10, the pressure-velocity rela-
tionship (or pressure-drop height relationship) may be obtained by fitting a straight line to

the test data, since Equations (4], [7], and [12] can be rewritten in a general form

p=CV"

which is a straight line on a log-log chart. Based on the experimental results, a straight
line was fitted on a log-log chart for each model. These lines are shown in Figures 10a to

10c. From these, the coefficients of the formulas are calculated and are given as follows:



1. Flat bottom:

At keel:
Preer = 4.5 VO
Away from keel:
Pmax = 4.5 VO
2. 1-deg deadrise angle:
At keei:
1.4
Preer =315V,
Away from keel:
= 1.4
Ppax =93-15V
3. 3-deg deadrise angle:
At keel:
- 1.6
Preel = 1.04 VO
Away from keel:
- i.6
Prex =411V

4. 6-deg deadrise angle:
At keel:

_ 1 y2 /4
pkeel - .2_ PVo <‘E) (TZZ)

Away from keel:

=0.87 V2

pmax

5. 10-deg deadrise angle:
At keel:

1 y2 7
Preer = 5" PV (E) (_11:

Away from keel:

=0.42 V2

pmax

6. 15-deg deadrise angle:
At keel:

Away from keel:
=0.24 V2

Pmax

7. 18-deg and above deadrise angles:

At keel:
1 A
Preer = 578 (5) (

Away from keel:

1 s myy 1
Pree1 = 5 PV (“5)(

1

144

1

]

144 )

)

1
144

) |

(14]
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where (1 "144) in Equation [14] Is the factor for converling he impact pressure p from psf
units into psi units; and p is in lh-sec?ftY g is in radians, and V and Voare i fps. dn
Equation [14], p = 1.94 Ib-sec? /ft? is used for fresh water  For the sea water slamming
problem, a correction of (p_ . o Prresn warer) Should be applied.

Wigure 11 15 plotted from Equation {14] and Figur 1212 a cross plot of Figure 11,
These may be used to predict the maximum slamming pressure of the ship bottom with vari-
ous deadrise angles. If the deadrise angle 15 greater ~han 45 deg, Equation [4] and [T] may
be used. No formula or plot i=x formulated for the impulse pressure at keel. Nince the keol
impulse pressure le=sts only about 0.05 msec, it 1= probably not fe!t by the <hip bottom.
From the practical point of view, the impulse pres-ure at the keel may be ignored in the de-
sign of & ship bottom.

CONCLUSIONS AND SUMMARY

On the basis of the analvses of experimental result=:, the following conclusions are
drawn:

1. During the slamming of the rigid flat-bot.om body, the first positive pulse of the im-

pact pressure occurs when the air is momentarily trapped between the falling body and the
water surface.

2. Only the flat bottom and the 1-deg wedge trap considerahle amounts of air at the in-

stant of impact. Wedges with 3-deg or more deadrise angles do not trap much air.

3. The maximum slamming pressure of the ship bottom may be predictcd from Figures 11
and 12. Neveriheless, further test.  "th much wider ranges of drop height are needed before

the results can be considered conclusive,
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Figure 8 — Underwater Ph. os Taken during 6-Inch Drop Tests of Rigid W-dge-Shaped
Mocels with Various Deadrise Angles
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Figure 9 — Samples of Records Taken during 6-Inch Drop Tests of Rigid Wedge-Shaped

Models with Various Deadrise Angles
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Figure 10 - Experimental Results of Maximum Impact
Pressure Due to Rigid Wedge Slamming
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Figure 10 (continued)
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Figure 11 — Maxim' m Irpaci Pressure Due to Rigid . edge
Slamming versus Various Drop Heights
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Figure 11 (continued)
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Figure 12 — Maximum Impact Pressure Due to Rigid Wedge
Slamming versus Various Deadrise Angles
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