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I ~ ABS TRACT

The problem of a thick cylindrical antenna driven by a "delta-function

generator" is investigated. Numerical solutions are obtained for two dif-

ferent mathematical models - one is driven by a "delta-function generator"

on both outside and inside surfaces of the antenna, and another is driven
only on the outside surface. In both cases, current singularity near the
driven point has been taken care of and subsequently subtracted out, before

the numerical solution is applied. For .ntennas with circumferences less

than a free-space wavelength, the results arn compared with the experi-

mental data obtained by Holly [12]. For antennas with larger radii, no

experimental data are yet availabie.

ii



I. INTRODUCTION

In the theory of linear antenna, the total current distribution along

an antenna with axial symmetry can usually be obtained by solving an

integral equation. It is well known that the integral equation of the dipole

antenna can be written as [i]

+h koI W) K(_-z. )d z'- -- Coosk z+ + VsinkoI 1); jz -<h

t-h I 0 0 0a2

(1)

where

K~z-z'; a)+iko\/(z,z) 2 + (r2+a2 - 2racos e)
- (z-z2 + (r 2 +a 2 - 2racos 0)

k the free space wave number and o the characteristic impedance

of free space (i. e. , 120 IT ohm). The integral equation (1), which is sat-

isfied by the total current distribution It(z) on the antenna, corresponds

exactly to the mathematical model of a tubular dipole antenna which has

a half-length h and radius a (Fig. la). Near the origin, z = 0, the

antenna is dirven by a so-called "6-generator" of vcltage V, such that

the tangential electric field Ez(Z) on both outer and inner surfaces of the

antenna is given by

Ez(Z) = -V6(z). (3)

For antennas with very thin radius, various methods have been

developed for solving this integral equation. For example, King-

Middleton in 1946 had already obtained a second-order iterated solu-

tion [2]. Tai in 1950 used a variational technique to obtain a first-order
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solution whose input impedance is stationary [3]. King in 1959, and

King-Wu again in 1964 derived a two-term and three-term theory

for the current [4]. Wu in 1956 applied the Weiner-Hopf technique to

the problem of the long antenna [5]. Duncan-Hinchey in 1960 used the

Fourier-series-expansion technique [6] and Mei in 1964 obtained a

numerical solution for the current distribution [7]. The solutions obtained

by these authors were, in one way or another, based upon an approxima-

tion of the kernel K(z-z'; a) of the integral equation. These approxima-

tions are satisfactory only when the radius of the antenna is very small

compared with the free-space wavelength and, therefore, cannot be

applied directly to the antenna with moderately large radius.

Moreover, as pointed out recently by King and Wu [8], the model

corresponding to Eq. (1) does not agree precisely with what is used in

the experiment. Experimentally, the usual coaxial-line-driven antenna

over a ground plane is excited only from the outside and not from both

sides of the antenna (Fig. 1b). In order to represent the experimental

model, an extra term has to I'e added into Eq. (1), i. e.,

+h

ho Co2

i27'k 2  a

+ 0 V f r'dr' K(z-z;r) I z,=0 ; jzj <h.
o 0

(la)

As is shown later, this extra term in Eq. (la) is in the order of (k a) 2

and therefore can be neglected for thin antenna. Eq. (la) then reduces

to Eq. (1). This, however, may not be true for antennas with moderately

large radii.



z =h z =h
2 =Z/

V (z') 2±(2a sin 02)

b a

FIG. (1a) FIG. (Ib)



1-3

On the other hand, with the help of the modern high-speed computer,

integral equations of this type (i. e., Eqs. (1) and (la)) can actually be

solved numerically by a so-called "approximate product-integration tech-

nique," even when the exact kernel, which has a singularity at z = zI,

is retained. The purpose of this report is to apply this method to the

thick antenna.



II. DIPOLE ANTENNA WITH 2-SIDED EXCITATION

A. CURRENT BEHAVIOR NEAR THE DRIVING POINT

Let Z = k0 z, H= k h, A= k a so that Eq. (1) can be normalized

as follows:

+H I(Z9 K(Z-Z';A) dZ' i4T'(CcosZ+jVsinIZI); IZI H. (4)

f Ht o 2

The boundary condition at both ends of the antenna requires the total cur-

rent It(Z') to vanish, i.e.,

It(±H) = 0.

In order to solve Eq. (4) numerically, the integral on the left must

be approximated by a sum of products of some weighting functions and

the values of It(Z) at certain sample points. Hence, any singularity in

the current that appears in the solution of Eq. (4) must be evaluated first

and subtracted out from the integral in order to assure a good approxi-

mation. From the analysis of thin antennas, it is well understood that

the singular part of It(Z) is due directly to the existence of the non-

physical 6-function source, and that this par: of the current is independ-

ent of the antenna length. That is, when H - oo, Eq. (1) will degenerate

into

+00 2V +i(
f It(Z) K(Z-Z'; A) dZ' e Z M(; -co <Z < co (4a)

-00

Now define the Fourier transforms of It(Z), M(Z) and K(Z-Z'; A) as

IW, M() and K(X, A), respectively,
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)-ikZ (a
It(Z) f It() e d (5a)

t C

t 2j f Pt(Z) dZ (5b)
-00

M(Z) f M() e -iZ A (6 a)

C

M(XW = ffVe+i ZI e+iZ dZ
-00

i2V 1 (6b)
o 2-

and

K(Z,R)= f K(XR) e 'ixZ dX

C

1 +00 +iZ
K(,R) 2-"f K(Z,R) e dZ (7b)

-00

Since the kernel K(Z-Z'; R) is the free space Green's function of a ring

source which is distributed on the surface of the antenna, the Fourier

transform of the Green function can be substituted in Eq. (7b). Thus,

K(X, R) HX- f H(1)( - +A 2 - 2RA cosedO
-7T

+C0=__ + 7 nI  i 2  +in@
41r f d H (R> -x 2 ) Jn(R< X 2) e

;, n=-oo

-iT
(R > ) 0(R < X)(7c)
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where R>= mi (R,A). The branch cuts at X = ±1 and the path of integra-

tion C are shown in Fig. 2. The choice of these branch cuts is, in prin-

ciple, quite arbitrary. One criterion is that the solution obtained for

I xI< 1 on the real axis should be in agreement with the solution obtained

for 1 1i > 1, also on the axis, after detouring around the branch point.

However, for the convenience of numerical integration, the branch cuts

actually chosen are the following:

(i) -1% I2 -1 > 1 on the real axis;
rigtrih

2 on the left hand side of the left
(ii) -1 = -t right

branch cut;
./2 1 +i%/v2 11on the left hand side of the left

(ii) =+i rihtright
branch cut;

(iv) arg 11 <_I elsewhere. (8)

With the branch cuts defined above, (5), (6) can be substituted in (4a), and

use made of the convolution theorem. Then

27TI (N) K(X, A) = iV ( 2,T
t 7T 1 0 -

2V 1
i o (A/\(9)(1)(A/\ l A2 ) J-(A

or

I( 2V A e-ixZ 1

742 (1)(A~ 2 oA/ 20o C (1-k 0

4V 0 cos XZ
A 4V d (10)17 1A2H Ao/ %)J(t 10

04
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Here, since the integrand behaves as E In E near the branch point (i. e.,

X = 1 + E +ie ), the integration around the branch point vanishes as E - 0.

Although the expression for It(Z) for all Z is rather difficult to

obtain, the leading term in It(Z) near Z = 0 can be obtained directly from

Eq. (10). That is, if X is assumed to be a large number such that X0 >>,

2A/ >> 1, the integral can be split into two parts, one evaluated

from 0 - X 0, the other from X 0to oa. For the integral from X to co, use

can be made of the asymptotic expressions for the Bessel function,

I (Z 4V f X dCos XZH(1 (^\ 1 X 2v )o J,'(~ 0 () o 1 -2)

00 CoX

(- iA) f cosx

4V o d% +iTACi(X Z)

0 (x 2 H(1) (A, 1 X2 ) J (A,\ 1 X2)0

Here, Ci(X Z) is the cosine integral whose behavior near X 0oZ. 0 is

known as

o (-1 )n (xoZ) 2 n

Ci(X Z)= Y+InX 0Z+ 2n(2n)(12)

n=1

The substitution of Eq. (12) into Eq. (ii) gives

It(Z ) ~ i4VA In X Z as Z - 0. (13)
To o

This logarithmic term, of course, had been observed early in 1959 by
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King and Wu [9]. Also, since this logarithmic term represents a purely

local effect due to the 6-function, it should be essentially unchanged for

an antenna of finite length.

B. NUMERICAL SOLUTION FOR THE CURRENT DISTRIBUTION -

THE "APPROXIMATE PRODUCT-INTE'.GRATION TECHNIQUE"

1. Total Current Distribution

To solve the integral equation numerically, each half of the antenna

is first divided into N equally spaced segments so that each segment has

the length 2A where A =- H. Furthermore, if Zn (n-1)A, n 1,2,...

2N+1 (Fig. 3), the right-hand side of Eq. (4) can be written as the sum of

N integrals. The n t h integral in the equation is

f+A It(Z'+Z2n)[K(Z-Z'-Z2n) + K(Z+Z'+Z 2 n)] dZ'. (14)

In this segment, let it be assumed that It(Z) can be approximated by

M

It(Z)= asn(ZZ 2 n) S-+ 6 n (i4AV) n Z (15)t~ ~ ~ o In2 n 2A

s=1 0

where 6 n1 is equal to 1 if n = 1 and 0 if n 0 1. The first part in Eq. (15)

actually corresponds to the first M terms in the Taylor series expansion

about the center of this segment. Thus, the choice of M and the accuracy

of the approximation depends upon the true solution It(Z) and its deriva-

tives. The second part in Eq. (15) is a logarithmic term which exists

only in the first segment and is normalized to vanish at the end of the

segment.
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Now let u. with j = 1, 2,... M be the M sample points in the seg-

ment and let the integral in (14) be expressed as a sum of the products

(t)
of some "weighting functions" a (Z) and the values of It(Z) at the sample

points, i. e.,

I It(Z'+Z2n)[K(Z-Z' -Z 2n) + K(Z+Z'+Z 2 n)] dZ't -A

M

= na- It(uj) + nl I (Z), (16)

j=1

where

+A (Z'+A)
f t(Z)  -i4VA In 2 [K(z-Z'-Z 2 )+K(Z+Z 2 ) dZ-Zon -ZZx

(17)

and the an Q(Z) are to be determined. Equation (15) is then substituted on

both sides of Eq. (16) to give:

M

a sn i f [K(Z-Z'-Z 2n)+K(Z+Z'+Z 2 n)] dZ

s=1 f

a (t) (Z n)S-
anj ( Z 0

j=1

or

M M

s-1. (Z) _ a(t) (Z)(u-Z s =1 0; (18)
sn ns 2n

s=1 j=1

1(t)(Z) is called the "moment function." Since Eq. (18) is true for any
ns

a sn' each term in the summation is zero. Therefore
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1 1 ... 1 W( n)(Z)

n1 1, I
1 2n ( nM 2 M (t).zit

27 K2 2nU 2 (Z) tn, 26j

(u -z2M1( 2n 1 ( ZW()

(_A .n. n,M

(19)

or simply,

0n W M (19a)

where ,(t) = jan .(Z)}j, ,A((t) =(t)(z), and ( 2 ni-J=l n n jn,jj n
n n {,n ,J- n..

Multiplication of both sides of (19a) by the inverse matrix of 'n yields

the expression for a ) in terms of the moment function tn Wn.. 3 n

The error involved in Eq. (19) is essentially due to the remaining

terms in the Taylor series expansion. It is possible to estimate this

error and to "throw it back" to improve the solution, but this will not be

discussed here [10]. Also, Eq. (19) can be simplified further if It(Z) is

assumed to be approximated by a lower-order polynomial and M to be a

set of equally spaced sample points. For a parabolic approximation, let

M =3 and u. Z 2n- + (j-1)A - .2n+j_. Then

2n1 1n 1-

Wn -1 0 (20a)
j1 0 1
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The substitution of (20a) into (19a) leads to an explicit expression for

an(Z)

a ( t ) (Z) = 1 -Mnt)(Z) + n, M M

n, 1 2 n,(2 n,

a( t ) (Z) = (t)l(Z) _ 1 t M(Z) (20b)n, 2 n, 1 n, 3

a (Z)= -1 Lt 2(Z) + in, 3(Z)
. , 3 2 nn 3

With Eqs. (16) and (20b), Eq. (4a) becomes

a M (Z) I(Z 2  + f(t)(Z) i4 CcosZ+ VsilZI); Z<H,n=1 j=l j 0tZn2+)

(21)

or simply, at Z = ZK,

2N+1

Mt+ f(t) i47r C cosZ V sinZK) K= 1, 2,...2N+1,PKm'm "K K oK

(22)

~where

':P M~) a(t)l(ZK

rK1 1,1K

M a M2(ZK): S =1, 2,...N
K, 2S S, 2

(23)
(t)K, 2S-1 (S, K t)K,2- a,1Z)+a 1 3(ZK); S = 1, 2,.. .N

iB(t) = a(t)
K,2N+1 N, 3( ZK)

Since the current It(Z) must vanish at the ends, I2N+ 1 can be set equal to

zero. Equation (22) then involves only 2N+1 unknowns. Thus, if I2N+- C
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and 3K, 2N+1- i4o cos K are redefined, Eq. (22) can be rewritten as

follows:

2N+ 1
I ( o V sin!Z- f K= 1,2,...2N+1 (24a)

m=1

or simply,

t *t Q(24b)

where 3 (t)K jm = r{Im 2 }m' and = V sinZK- fK

The multiplication by the inverse matrix of 9t on both sides of (24b)

allows the values of It(Z) at the sample points to be obtained.

2. Outside and Inside Current Distributions

For any point (Z, R) in air, the magnetic field due to the current dis-

tribution on the antenna can be expressed as the curl of the vector poten-

tial,

-Ko +H
Bo(ZR) = (VXA) 9 = 47'v 8R fH It(Z) K(Z-Z'; R) dZ'. (25)

Thus, the parts of the current, which are distributed, respectively, on

the outer and inner surface of the antenna, can be determined from the

boundary condition on this surface,

Iout(Z) = ±27voaF;(Z, R=A±E)

in

= F It(Z') K(Z-Z';R) dZ] as E -

f-H R=A±E

(26)
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The difference between these two currents is

I (Z) =I (Z) -I (Z) (27a)
d out in

- [.R It(Z,) K(Z-Z'; R) dZ
:4 =- - f t =+

A Fa +HdZ
It(Z') K(Z-Z'; R)dZ as E - 0

L HIR=A-E

A +H L K(ZZI.R) 1
2-fH P'LD R ''J R=A+E 8R RA-E

=- -2fH It(z'  K(-; R):+- K(Z-Z';R) R:- dZ';

as E - 0.

(27)

The interchange of differentiation and integration in the last step of Eq. (27)

is not necessarily true for Iout or Iin alone.

A comparison of (27) with the left-hand side of Eq. (4a) leads to the

definitions

(Z' f (- - R K(Z-Z' R) + T- K(Z-Z'-Z 2 n;R)s -Zn;R=A+E 2 R=A-E]

-A R K(Z+Z'+Z 2 ;R) R=A+ --R K(Z+Z'+Z2 n;R) R=A-jjdZ'

as E - 0

(28)

and



2-11

f(d)(Z =4VA +A (Z'+tA) (
f n 2 -L K(Z-Z'-Z ;R)

= o L L 2n R=A+E

+ K(Z-Z'-Z 2 ;R)

A F K(Z+Z+Z ;R) + K(Z+Z'+Z R) dZ';
2 2n R=A+E 2n R=A-EJ Z

as E - 0.

(29)

Equation (27) can then be transformed into

2N

Id(ZK) = ( I t)+ f(d), (30)

m=1

where (d) = f(d)(Z) and (d) are related to the moment functions n ( (fkKKm ns

in the same manner as in Eqs. (20b) and (23). Let Eq. (30) be combined

with Eq. (27a) to obtain

Iout(ZK) ) + f_. + (31)

in m= d f1

C. EVALUATION OF THE MOMENT FUNCTIONS

Define

I.(t)(S'm) (Zt )- K(mA-Z'; A) dZ' (32)
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d) (S'M) -A a- {+) 46)
-A R=A+E

a K(mA-Z'; R) dZ'; as E - 0. (33)
R R=A-E

As a consequence of the symmetry of the kernel, i.e., K(Z, R) = K(-Z, R),

the moment functions t(t)(sm) and J (d)(s, m) have the following proper-

ties:

S1

(i) I(s, -M) = (-1) s 
± x(s,m)

(ii) I(l,0)= 2I(l,1) A

as A.--
(34)

(iii) i( 2 , 0) = 0

(iv) I(3,0) =--[(3,1)-2I(2,1)+IX(l,I)] A
as A-2

Equation (34) holds true for both subscripts (t) and (d). A comparison of

(34) with the definition for L t), (d)(z) leads ton, s

(t),(d) (K (t), (d)(s K-2n) + (t), (d) (s -K+2-2n). (35)
n,s K

After the substitution of (35) in Eqs. (20b) and (23), it is possible to ex-

press P,(t), (d) in terms of I (t), (d)(sm) explicitly, i.e.PK, m

PK,1 = [3 2-14 +H(2-K)IJ(212- H+ix(3,K)+I±(2,K)]

2S- 1 = -L [H(2S-K) I(2,12S -K+i.( (342S -)+1(2,2S+K- 2)+ 4(3,2S+K- 2)P K ,2 -1 2(35)

- H(2S-K-2)L(212S-K- )+±(3,S-K- )-L(2,2S+K-4)+L(3,2S+K-4)]

PK,2S = I(1,1S-I) - I (3,12S-14 + p.(1,2S+K-2) - , (3,2S+K-2)
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where HOZ is defined as -1 if Z < 0 and 1 if Z > 0.

1. Evaluation of L (s, m)

The substitution of Eq. (7a) and Eq. (7c) in (32) and the interchange

of the two integrations gives

(t)() f ciX HM 1(AA\ 1-)J( X- 2 ) f 0 (A,\ )51Z e~i('~

-f TfG(m,X) Ho 1(AA i-x 2 ) J0 (A,\ I-X 2 ) dX, (37)
C

* where

G S(mA = i(1-e- 2 X') e,'m- A S1

1-i2XA] im A
MA -(i'1)+(ik~A+ 1) e ~]eim) ; S =2

S(i) 
2  A~22+i2X-2) (X2A2 i2XA-2) e i2 XA]I e.'(m 1)XA; S =3.

(38)

Here, it can easily be seen thatG~m,X) - -i as X - oo, and that GS (m, -ix)

is purely imaginary.

In Eq. (37), aside from the logarith-m-ic singularities at the branch

points, the integrand has no other singularity. Furthermore, as jx

in the lower half plane,

~G(X)HI(l)(A\/ _N. 2 ) J0 (At~ I-X 2 ) '-ost-- e 1)L~ ImXI
3 -cost--Le- (
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Therefore, the contour can be deformed from C to C' for m > 1,

= -S . + f +F + Gs(m,k) Hi) e0(t)(S'm B + +E F

* J0 (A i7T 2)d
SJ(A e+- X21) d

-___ 1) oGSm~iX

if + ix (m i) H(1) (A A e+ii7 + d-2 f 0
0 o0

1! + 0io

2 0f f

= o f sn - -,,o.,/_. X) d,,+ foO s- " jo(.,/+, ),.

(39)

Equation (39) is the final expression for computation. The first integral

consists of both real and imaginary parts, and is integrated within a finite

interval. The second integral has only a real part and is integrated from
1

0- oo; the integrand decays at least as as X - oo. In both integrals,

due to the choice of the branch cut, the arguments of the Bessel functions

are all real.
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Likewise, an expression for f tM can also be obtained (see Appendix).
K

2. E-ialuation of ji (d) (m, S)

The substitution of Eqs. (7a) and (7b) into IEq. (33) gives

11(d) (s,m) 1 f ciX (A t) 1 X2 HM( 1 _X2 )J 0 ( I-X 2 )

4f lC XLi41)(AN'1-X2 )J 0 (A\ iX 2 )

As in Eq. (37), the integrand in Eq. (40) also has two branch points at

X =±1. However, the integrand is finite at these points. On the real

axis, as lxi 00c

+ / H 1 ( i-X2  J1 (Af\r-" JO2)]

1

const - 1)(41)
7T x
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Therefore, due to the cancellation of the leading term, Eq. (40) is inte-

grable on the real axis for all m > 1. However, this is not true on the

imaginary axis, since as Xi -,

Gs(mX) () AN1-2 Jo A

+ M(AA 1-x2) j1(A-\0

SAe 4)[e 4) +e4

S e( A f i(±AX - L i _±A k 4 7e

4)Y + e _ 0
+e Ai@(A~ + e +0±A

1" 
(42)

The (+) and (-) signs correspond to the left- and right-hand sides of the
branch cut, respectively. Because the integrand decays as on the
imaginary axis, it is not possible to deform the contour. Thus, Eq. (34)

can be integrated only along the real axis, as follows:

11~ ~ H(i(Av/x2 f 1 ( _,x2 ~) A/ 2)dX 1-

()('m=4- 0 X 1

+ HK(AV _X2) 1 (A/\ _X2) dX(3

A o mX - m - x

1 1
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As in Eq. (39), the first integral consists of both real and imaginary parts,

and is integrated withir, a finite interval. The second integral has only a

1
real part and decays at least as-- as K - oo. A comparison of (43) with

Eq. (39) shows that the second integral in Eq. (43) converges much more

slowly than that in Eq. (39).

An expression for f(d) can also be obtained (see Appendix).
K
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III. DIPOLE ANTENNA WITH ONE-SIDE EXCITATION

As shown by King and Wu [8], the vector potential Az(Z, R), in this

case, can be written as follows:

Az(Z,R) - f It(ZI) K(Z-ZI;R) dZ' - 2 VDo(Z;R), (44)
So-H 0-

where

+7T + ,/Z +(R +R -2RR ' cos 0)0 -7- f0 R f ei

( The corresponding integral equation for the total current distribution is

-HIt (Z9)Z-Z';A)dZ' C cosZ+ Y sin Z + '21 VDo(Z; A) ;f H o 2 o

SIZI <H,

(46)

which is equivalent to Eq. (1a). Since now the 6-function generator

exists only on the outside surface of the antenna, the singular current

(which is later subtracted out in the numerical solution) should be differ-

ent from that in the previous case. Aside from this, Eq. (44) is essen-

tially the same as Eq. (4) except that it is necessary to evaluate an

extra term which appears in the column matrix Q in Eq. (24a).

i A. CURRENT BEHAVIOR NEAR THE DRIVEN POINT

For an infinitely long antenna, i. e., H - o, Eq. (46) degenerates into

f+ It(Z')K(Z-Z';A)dZ'= 2-Vei Z+ VDoMA); -oo<Z<oo. (47)

I -00 ro o

-3-1
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* Now, define the Fourier transform of D (Z; R) as

Do(Z;R) = J Do(k;R) e-ik dX (48a)

C

1,. e +iX ZdZ
D(X; R) = f Do(Z; R)e

0

=fA R' dRt (+)~ H o)(R 1x2 ) JO(R'//-2

*1 0
(

iA - Jl(A (1- ) o H 0R !-) (48b)

2 ~X 2/

In the last step in the derivation of Eq. (48b), use has been made of the

relationship,

z
f tJ (t) dt = ZJI(Z).
0o 0

The substitution of Eqs. (5a-b), (6a-b), (7a-c) and (48a-b) in (47) gives

W . i-) H('((A .\ 1-)2) H,)V(Ax)

(A\ 1 _X2 Ho (A,\ 1-N.

2 1 1
I t(x) - v 2 (A

0 (A\Jl-')J.A/\/-X 2 )

+ iAV 1)j(AA Ix2) (49)

0 -X 2 JQ(A\f -X2)

NEW
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Now apply the Wronskian,

H1)'(Z) J (Z) _ H(1)(Z) J (Z) _ -42 11 0 0 1 7TZ

or

H(1(Z -i(1)Z JO(Z

0 0

and the inverse Fourier transform to Eq. (49),

It(Z) = iA v f 1 1 e-ixz dX (50)

For Z > 0, and as X .. o in the lower half plane,

1 1 -iXZ ~ const+ e .

Therefore, the contour can be deformed onto both sides of the branch cut,

f0 -o1  -iXZ I[1) (A e+irj x2-I)
It(Z)= iA V f + e I 1 dX

+o -ioOo ] 2(e +iXZ H(A e+i 1

0

=iAv(f_+ icO) e-ixZ  rH, )(Al ( -1127l)1 dX

(51)
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Now apply the Wronskian H1 (Z) H02 M(Z) - H(1)(z) H12)(Z) to Eq. (5 1).0 0

The result is

-i4
Aj 2

(+iXoiA V ( + e

Q 0~ J (A I-2  + Y (A i XT2)y A1,\ lj

-i e d) (52)
0 j2(A, + 2 ) + Y2 (A,'\ - 2)

The behavior of these two integrals near Z = 0 has been discussed by

Duncan [11]. The leading term, however, can easily be obtained by com-

paring Eq. (50) with Eq. (10). Since the asymptotic expressions of the

two integrands in Eq. (50) and Eq. (10) behave exactly in the same man-

ner as X - co on the real axis, the leading term of It(Z) in Eq. (50) will

then be

It(Z i 2 VA In X Z as Z- 0. (53)o o

Furthermore, we can actually prove that this logarithmic current exists

only on the outer surface. That is, if we substitute Eqs. (6a, b), (48a, b)

into Eq. (44), as H - oo,

A+(Z) 4 f It(1) HM (a -) Jo(a</- 1X 2)e -  iZdX
0 C

40~ C X/1-2 1o
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where R> = ma {R,A}. A comparison of (54) with Eq. (25), after the

introduction of I in(X) as the Fourier transform of I in(Z), leads to

In(X) = -i A I W H(1)(A V/ 1 -2) Jo(At\,-2)

-2 °

The substitution of Eq. (50) into Eq. (55) yields

Iin () - 0.

Therefore, in (Z) vanishes everywhere in the case of the infinitely long

antenna, and Iout(Z) increases logarithmically near the origin.

B. NUMERICAL SOLUTION FOR THE CURRENT DISTRIBUTION

Let DK = D (Z K;A). With Eq. (43), Eq. (46) leads to

2N+1

( = V(sin Z +D) f(t) K= 1,2,... 2N+I, (56)

m=1 0

where (t) and (t)
where PKm a K are defined in Eqs. (17) and (23), respectively.

In order to evaluate that part of the current which is distributed on

the outside (inside) surface, an expression for the difference current can

also be obtained by the previous method. However, in this case, the

difference current also has a logarithmic singularity at the driving point.

By comparison with Eq. (25), the magnetic field now becomes

-ko 8+H ik V
;) = 4 It(Z') K(Z-Z';R) dZ' + 0 D(ZR) (57)

0 -H 2v J 0'
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Therefore,

Id (Z)= 27av [B (Z; R=A+E) + ZR=A-E)A B(Z; R-A

--- It(z') L K(Z-Z';R) + K(Z-Z';R) dZ'2-H R=A+E IRA-i

+ D (Z;R)j +- D(Z;R)R IA
o jR=A+E RR=A-Ej

as E-- 0 and IZI < H (58)

With the definition,

g(Z) -i'AV Do R )  + - Do(Z;4R) ln - ;
o R R=A+E 8 R R=A-Ej - 7Tn

as E - 0 and jZj H

(59)

and K =g(Z K ), Eq. (58) can be transformed into

2Ni(d) (d) iMt 1(d) 2V (K-I1)A
I +Kmm i f K4-  In K=1,2,... 2N+1 (60)K m m K o H ..

whee (d) an (d)r Km and f K are defined in Eqs. (28) and (29). The second term

in Eq. (59) is added so that is finite for all K.

C. EVALUATION OF D K AND 9K

From Eqs. (48a, b),

DK= f .A 1 Jl(A fl-X2) H(1)(AA 1-X2 ) e'KdX (61)

C A,'1 _ X2
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Aside from the logarithmic singularities at the branch points, the inte-

* grand has no other singularity. Also, as X~ - c in the lower half plane,

* e - iXKA I-)H'( --2  1 KInX (62
-i (%Tl-2) HAAA 1-0)const- (62

V 1- 10 X2

so that the contour can be deformed from C to C I;

K0

-icc e~XK

H (A~ e A/ X - I'\X'd1i

e+iEKAJ
-iA : e 2J 0(AV 1-X2) J1(A l-%2)

fo Ir- . 2 J0 (A -I-X2) J1 (AN -I-X2 ) eXd ()

As for the evaluation of first, define L(Z) 1 In- -for IZI <H

and L(Z) = 0 for I Z~ > H. Then the Fourier transform of L(Z) is

1+00 +ixzL() I L(Z) e dZ
-00

iH
1~ ln zcosXZ dZ

0I f

S i(XH)
7TX (64a)
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and

L(Z) =f L(X) e dx. (64b)
C

Here, Si(XH) is the sine integral whose behavior at X - oo 1 s known. It is

Si(XH) - -- cos XH. (65)

Now substitute Eqs. (64a, b), (48a, b) into Eq. (59) to obtain:

__V_(-iA)[J(AN, X)H(1)(A i2 Si(H)]e-i+(K-2)A dX

gK = -- f /1 iT2A 

(66)

as X - oo on the real axis,

-ikK) -i i2K

[J,(A,/,' H((x2 -,) + i2 L -1_ e

-AK + --2(7 0(17r2AA

-iA(K- 1)A
~ const e 2 . (67)

However, since Si(XH) increases exponentially along the imaginary

axis, Eq. (58) is not true on both sides of the branch cut, and

the integration has to be performed on the real axis.
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2FTA 2X'H 1~ V 1rfK "lA\lX)()A/-) 'o172A cos X(K- O)A dX

g 2 AVflL i2 Si(XH ) o(K)Ld

- i2 LA -1) K (A - .)- 1 1 cos X(K-I)A dX

(68)

2Here, gK is indeed of the order of A 2 . Therefore, aside from the driving

point, I ( d ) in Eq. (60) is equivalent to IK(d) in Eq. (30), in the case of thin

antennas.



IV. NUMERICAL RESULTS

Based upon Eqs. (24), (27), (56), and (58), a numerical solution

for the current distributions along antennas with various radii and heights

can be obtained for both 1-sided and 2-sided excitation. Also, the input

conductance of the antenna is readily known as the real part of the total

current at the driving point, in the case of 2-sided excitation and that

of the outside current in the case of 1-sided excitation. The input

susceptance of the antenna, however, is always infinite in either case,

due to the fact that the singular current near the driving point is purely

imaginary.

Also, in the process of numerical computation, the choice of the

number of sample points depends upon the accuracy required for the solu-

tion on the one hand, and the computation Lime on the other. As a com-

promise, a less elegant method is adopted. That is, the antenna height

is first divided into N segments (thus, 2N+I sample points), and a set of

solutions is obtained at these sample points. Then, the number of seg-

ments is doubled and another set is obtained. N is required to be large

enough so that the difference between these two sets is less than 1-2%.

In this mann( although it is not known exactly how this approximate

solution converges to the true solution, at least a self-consistent one is

obtained.

Accordingly, numerical data for antennas with radii ranging from
a 0097ha-= 0. 03907 to 0. 5, and antenna heights ranging from 0.1 to 0. 5 have

been obtained. For antennas with radii - < 0. 16, the input conductances

vs. antenna heights are compared with the experimental data obtained

4-1



4-2I by Holly [12]. For antennas with larger radii, no experimental data are

yet available.

A. CURRENT DISTRIBUTION

1. Half-Wavelength Antenna with 2-Sided Excitation

Current distributions for 1 X-antennas with 2-sided excitation are

shown in Figs. (4a)-(4i). The real part of the total current IT(Z) be-

haves very much like a combination of terms made up of cosines and

shifted cosines with half-angle arguments, except near the ends of the

antenna where the slope is larger than given by these two terms. This

sharp increase in slope can be interpreted as a consequence of an ex-

tremely large accumulation of charge at the ends of the antenna. Further-

more, the accumulated charges are distributed on both inside and outside

surfaces of the tubular antenna; they are proportional to the slopes of

the real parts of the outside and inside currents, respectively. The imag-

inary part of the total current, on the other hand, can be approximated

by trigonometric functions only after the subtraction of a logarithmic

term. Also, the slope of this part at the ends is less than that of the

real part in most cases. It follows that the predominant part of the

charge accumulation is proportional to the time rate of change of the real

part of the current, with which it is in phase quadrature.

For an antenna with a radius less than the cutoff wavelength of the

lowest waveguide mode (i. e., XTM1 ), the real part of the outside cur-
01

rent can be approximated by a combination of cosine and shifted half-

cosine terms with an argument of k (z+E), where E is a certain number
0
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which has the physical interpretation of an "end correction." At the end

of the antenna, this real part of I out(Z) remains finite and reverses its

direction as the current passes around the edge of the cylinder from the

outside surface to the inside surface of the antenna. Once inside, it

decreases toward the driven point. The rate of this decrease is, in gen-

eral, comparable to, but certainly not the same as that of the TMV01

mode, since other higher modes also exist near the end. As indicated

in the figures, a is the "skin-depth" of the TM 0 1 . mode where the cor-
1 ofa

responding current decays - of its value at the end. As becomes

larger, the attenuation decreases. Also, from the viewpoint of the in-

side generator, as the radius of the "waveguide" (i. e. , the inside of the

antenna) becomes larger, radiation due to the open ends increases. Thus

at a = 0. 38 which is barely under the cutoff wavelength, the inside

generator actually contributes to the radiated power, as the real part of

the inside current becomes positive at the driving points.

On the other hand, for half-wave antennas with smaller radius

0. 04) the imaginary part of the outside current is inductive along

most of the antenna, except in the region near the driving point where

it is capacitive with a logarithmic singularity. At the end of the antenna,

it has a finite inductive value on the outside surface. As it changes direc-

tion it becomes a capacitive current on the inside surface, where it

decreases very rapidly toward the driving point, where the capacitive

logarithmic current becomes dominant again. Thus, the total current

distribution along half-wave dipoles that are not too thick is mostly
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inductive.* As - becomes larger, the range over which the imaginary
aa

part of the total current is inductive is reduced; at = 0. 38, it becomes

totally capacitive. At the same time, the region on the inner surface of

the tube in which the imaginary part of the current decreases toward the

driving point disappears completely.

For an antenna with a radius larger than XTM0, the inside gener-
01

ator begins to play an active role. The real part of the current on the

inside surface, instead of having a maximum at the end of the antenna

and decreasing toward the driving point, now increases toward the gener-

ator and reaches the maximum at the driving point. The imaginary part

of the current on the inner surface of the antenna, on the other hand, is
Sa 045a

capacitive when a = 0.45 and inductive when = 0.50. As will be shown

later in section C, the half-wavelength antenna is not yet resonant when
, aa

- = 0. 45, but it has passed through resonance when a 0. 50. In either

case, the magnitudes of both the real and imaginary parts of the current

on the inner surface of the antenna are larger than their counterparts on

the outside.

2. Half-Wavelength Antenna with One-sided Excitation

1
Current distributions for -L X-antennas with 1-sided excitation are

shown in Figs. (5a)-(5i). For antennas with radii less than XTM 0 theT01'

real part of both inside and outside currents behave very much the same
a

as with 2-sided excitation. At a = 0.38, the real part of the current

IX

Inductive in the sense that the region where the imaginary current is
inductive is much larger than the region which is capacitive. Of course,
in any case, the input susceptance is always capacitive.
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remains negative everywhere on the inside surface of the antenna, instead

of becoming positive near the driving point as it does with 2-sided excita-

tion. This reveals that the inside generator actively delivers power even

though the interior of the tube is still well under the cutoff of the lowest

waveguide mode.

The imaginary part of the current with 1-sided excitation Is notice-

ably different from that with a 2-sided generator. Specifically, on the

inner surface, this current is finite everywhere. There is, of course,

no discontinuity due to a generator at Z = 0 on the inside surface.

For an antenna with a radius larger than XTM01' the magnitudes

of both the real and imaginary parts of the current on the inside of the

antenna increase toward thc generator and reach a maximum at the driving

point. Also, the phase relationship between the real and imaginary parts

of the current remains constant along the antenna (except in the region

near the end), since they both form the standing-wave pattern character-

istic of a short-circuited waveguide.

3. Full Wavelength Antenna with Two-sided Excitation

Current distributions for the full wavelength-antenna with 2-sided

excitation are shown in Figs. (6a)-(6g). The real part of the total current,

in this case, can still be approximated by a shifted cosine and a shifted

cosine with half-angle argument, while the imaginary part can be approx-

imated by the trigonometric functions only after the subtraction of a log-

arithmic term. Near the end of the antenna, the slope of the real part of

the current is now less than that of the imaginary part. Therefore the

charge accumulation near the end is predominantly real.
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For an antenna with a radius less than XTM0 the real part of the

current on the outer surface of the antenna can be approximated in a
1

fashion similar to that for a - X-antenna. However, owing to the length

of the antenna, this real part of the current now is negative at the end.

On the inner surface, the real part of the current decreases rapidly and

there exists a region where it has a small but negative value. At the

driving point, however, it is very close to zero and, hence, is negligible
a

compared to its counterpart on the outside surface. As increases,

this region with a small negative value decreases and the real current on
a

the inside surface becomes more and more positive. At - = 0. 38, it has

a large positive value everywhere inside the antenna, and the inside gen-

erator again contributes significantly to the radiated power. Also, as

a .aincreases, the imaginary part of the total current changes from mostly

inductive to purely capacitive, while the current on the outer surface

aremains inductive and is not sensitive to an increase in T.

For an antenna with radius larger than TM, the inside generator

again plays an active role. The real part of the current on the inside

surface now has a maximum at the driving point, decreasing toward the

end, where it becomes negative. Also, unlike the situation in the _L X-
2

antenna, the imaginary part of the current on the inside surface is mostly

inductive for a = 0.45 and 0. 50. This is a consequence of the fact that

the antenna is very much longer than resonant.

4. Full-Wavelength Antenna witn One-sided Excitation

Current distributions for the X-antenna with 1-sided excitation are

shown in Figs. (7a)-(7g). Similar to the case of the I-X-antenna, the2
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distribution of the real part of the current behaves very much like that

with the 1-sided excitation, when a- is less than X 0, and the imagin-

ary current has no logarithmic term on the inside surface. For -larger

than X TM ,away from the end of the antenna both real and imaginary
0 1

parts of the current on the inner surface follow the same standing-wave

pattern. The phase relation between these two components of current

also remains constant along the antenna.

B. INPUT CONDUCTANCE

The input conductance of an antenna with various values of radius

vs. the antenna height are shown in Figs. (8a)-(8c). For convenience

in the description, let the whole antenna be treated as consisting of two

coupled radiating systems: system n" is driven by the generator on the

outside surface; system © by the generator on the inside. The two sys-

tems are then coupled by way of the open end of the antenna. Thus, cur-

rents and voltages at the two driving points can be related by the equation

i1 = V1 + Y 1 2 V 2

(69)

2 Y 2 1 V 1 + Y22V2

where Y and Y are the self-admittances of systems and re-

spectively, and Y12 and Y21 are the mutual admittances. The input con-

ductances G 1 and G 2 of an antenna with 1-sided and 2-sided excitation

are given, respectively, by

G() = Real part of Y
(2) (70)

G(2) Real part of (Yl 2 2 +Y 1 2 +Y 2 1)=G+ 2 2 +G 1 2 +G 2 2
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N. (1) Antenna with moderately large radius < 0.16 or 21Ta < X,

i.e., the circumference of the antenna is less than a wavelength):
For antennas in this range, the radius is much smaller than the

cutoff wavelength of the TM01 waveguide mode, even though it may be

very large compared to the conventional dipole antenna. Therefore, the

input conductance is not sensitive to the method of excitation (i.e., G1 1 >>

G 1 2 , G 2 2 ). The general behavior of the input conductance vs. antennaa 
i

height is also similar to that of the conventional thin antenna. As a is'I *
increased, both values of the input conductance at resonance (G ma x )

and antiresonance (Gin) increase, but the ratio of the two decreases.

Also, the resonant and the antiresonant lengths decrease. Thus, the

corresponding curve in Fig. (8a) will move up, shift toward the left and

become flatter.

Data obtained from the numerical solution are in good agreement

with those obtained experimentally by Mack [13], in the case of conven-

tional thin antennas. For antennas with moderate large radii (->, 0.03907),

the agreement with data obtained by Holly [12] is also reasonably good.

The two curves seem to differ by less than 0. 0075 X, and the experimental

value at resonance is consistently less than the numerical solution by

only 3-4%. (For- = 0.01074, the comparison is actually based on an
a a

average experimental value of- = 0. 10157 and- 0. 11287, therefore

is less accurate.)

(2) Antenna with radius less than XTM (0. 16 <- < 0 383}"
TM01

As the radius of the antenna becomes larger, the difference between

Resonance (or antiresonance) is defined as the position where the input
conductance reaches maximum (or minimum).
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the input conductance with 1-sided and 2-sided excitations also becomes

more significant. For a fixed radius, the corresponding curve for GM

becomes sharper than that of G ( 2 ) . Also, it has a larger resonant con-

ductance, but smaller antiresonant conductance. The resonant lengths

for the two different excitations are different, too, since the behavior of

G 11is no longer approximately the same as (G 1 1 +G 1 2+G 2 1 +G 2 2 ). Further-

more, when the antenna is short, the coupling between the inside and the

outside surfaces is comparatively stronger, and the real part of the cur-

rent on the inner surface is negative at the driven point. When the an-

tenna is long, the coupling is comparatively weaker, ana the real part of

the current on the inner surface is positive at the driven point. There-

fore, GM is quite a bit larger than G ( 2 ) when the antenna is short, and

is a little smaller than G( 2 ) when the antenna is long.

As the radius of the antenna is increased, both the input conduct-

ances at resonance GM (o G(2) (1and at antiresonance GM (or G ( 2 )

max (o mand aanienncGmill (oiGn)

become larger. However, the resonant lengths now increase and the

antiresonant lengths remain relatively unchanged.

The behavior of GM and G ( 2 ) near resonance and antiresonance,

a
and also the location of resonance as a function of are shown in Fig. 9.

(3) Antenna with radius larger than XTM > 0. 383):
TM01Q

Since the TM0 1 mode can now propagate in the inside of the antenna,

both GM1) and G( 2 ) reach a sharp maximum when this waveguide mode is

at resonance. However, for a fixed radius, the value of G ( 2 ) is muchmax

larger than that of G(1) . This is due to the fact that the TM0 1 mode is
max

driven at the location of the maximum current with 2-sided excitation,

but excited only by the coupling from the outside at the end of the antenna

with 1-sided excitation.
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V. CONCLUSION

The problem of the thick dipole antenna has been investigated

theoretically for both 1-sided and 2-sided excitations. When the circum-

ference of the antenna is less than one wavelength, the solution obtained

from the physically more realizable model with 1-sided excitation does

not differ significantly from the conventional model with 2-sided exci-

tation. However, for antennas with larger radius, it is only correct to

use the model with 1-sided excitation in order to obtain a solution that

is comparable with measured results.
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APPENDIX

j Define

P (m, x f2An i e-lAZx dZ'
_2A 2A-i'

2A~,

P =,X 2 f In Zi.(eiz) 2A ed~ t -1

2* AJf Z 1Z
-2i[C(2kt6) - v -In 2XA+ iSi(2k4~] (A-1)

P~ Q x AInZI d(A Z '~ 2A. ZI ri(A-Z')k2A~x 2A e- fZ in- X-- A'~ ) n 2A i e"

2%~ cos X 2AIn Z, e-iZ'x d% + 2X f AIn -LI sin (Z -A)k dZ'

2X1 [Ci(2XA) - v - In 2XzA -iS i(2X6)]

+ 2A CoF x I Z! d(cos XZ' 1) -i A) In ZL d sin Z1%

,f1,2i {Cos \A[ -C i(2XzA) + Ci(XA) + iSi(2kA)] + sin XzSi(AX) +in 2} (A-2)

P(M, x 2A m ZI e-i(mA-Z)X+ e i(mA+Z')X] dZ'

-2e- m" Si(2AX); m >,2, (A-3)

A-i



A-2

where Ci(Z), Si(Z) are the cosine and sine integrals, respectively. Sub-

stitute Eqs. (A-i, -2, -3) into Eqs. (17), (29) and compare with Eqs. (39)

and (43):

f(t) iA i P(m,-X) 2 (A 2 o P(mdi+) 2A d

K 307 (A/0\- X2)dX+J 0 dx.
0 JoxX

(A-4)

(d) -A 2  1 P(mX) - P(m,-) [_i~A )(A l-_ 2 )

+ HM)(A^\ 1 X2 ) 11(A^, i2)] IvJ7i 2

iA 2  co P(m,X) - P(m,-X) 2\
' [K (A/\/ 1h _x)IuA 1-%2)

- K0 (ANi1x2) I 1(A /l-X2) X 2 dx. (A -5)

v in (A-1) is the Euler's constant.
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