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ABSTRACT

The derivation of the several forms o-' the linear-tangent

steering program is presented. The iathematical form of

these equations is shown to be totally ndependent of the

variation of thrust acceleration with ti-ne. Insofar as posi-

tion and velocity changes caused by th; ust only are concerned,

the linear-tangent law is the precise n athematical optimum.

Its utility and advantages are explaine i, as well as its limi-

tations. The derivation of the thrust- irection steering law

is given, but guidance equations are n,0t.
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SECTION I

INTRODUCTION AND SUMMARY

The derivation of the several forms of the linear-tangent steering

program is presented. The mathematical form of these equations is shown

to be totally independent of the variation of thrust acceleration with time.

Insofar as position and velocity changc - caused by thrust only are concerned,

the linear-tangent law is the precise mathematical optimum. It yields minimum

thrusting time and, hence, maximum payload-carrying capability for any desired

position and velocity change. Even when forces other than thrust are included,

the tinear-tangent programn is often optimum or near optimum.

Linear-tangent steering may be used for such maneuvers as orbital

plane changes in space as well as for the exoatmospheric portion of ascent of

large multistage rocket vehicles. Guidance equations specifically for this

latter applicatior are presented in Reference 1. When used for guidance

equations, the linear-tangent steering has the advantage of not requiring

intermediate position and velocity aim points and hence not requiring a trial-

and-error trajectory design study to minimize propellant consumption for

multistage vehicles. Another advantage is that major maneuvers in yaw position

and velocity are accomplished integrally with pitch steering in a manner which

minimizes propellant consumption.

Although the linear-tangent pitch program was derived and first presented

to the literature ten years ago (Reference Z), there are still many people

engaged in trajectory, performance, and guidance work who do not understand

its utility or validity. The purpose here is to explain the limitations of this

steering law and to present a derivation similar to the procedure explained in

Reference 2. It is felt that the derivation by means of this perturbation

technique is simpler, far more concise, and yields a better physical under-

standing of the phenomenon than the classical LaGrange technique presented in

later papers (References 3 and 4). This report is confined to the derivation of

the thrust-direction steering law and does not contain any guidance equations.
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SECTION II

APPLICATIONS AND APPROACH

A. APPLICATION TO MULTISTAGE BOOSTER

The linear-tangent steering program i3 applicable to that portion of the

ascent of a multistage booster that takes place above the drag sensible atmos-

phere. When one considers that such a vehicle may burn out between 500 and

1500 n mi downrange from the launch site and yet clears the atmosphere

generally less than 40 n mi .'lwnrange (altitude approximately 20 n mi), it is

evident that the thrust direction versus time program during this exoatmos-

pheri,. portion of flight is very important to over-all propellant economry. The

linear-tangent program is not used within the atmosphere because to minimize

aerodynamic load and heating problems, it is necessary to utilize a zero lift

or near-zero lift t:ajectory for that first portiGn of ascent. Sometime after

the principal burnout mentioned above, additional impulses may take place to

change orbits, but these are ideally of short duration and could be considered

as part of space -hght rather than part of the launch trajectory

B. NATURE OF THE STEERING PROGRAM

5 As the vehicle emerges from the atmosphere, it has a (present) position

and velocity, and it is desired to achieve a different position and velocity at

thrust termination. The only two forces that can cause the vehicle to accom-

plish the desired position and velocity changes are gravity and thrust. Suppose

the over-all integrated effect of gravity for the steering program to be used

were known in advance. Then these total gravity position and velocity vectors

could be subtracted from the vector difference between the burnout and present

conditions to yield the total position vector and total velocity vector contributed

.hrust alone. A velocity hodograph of this type is illustrated in Reference 2.

-A
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Further suppose that a steering program (thrust attitude versus time)

were derived to achieve these known desired thrust velocity and position

vectors by means of minimum burning time, and that gravity did not enter into

the derivation at all. Such a steering program would be precisely optimum

from the standpoint of position and velocity changes cause,, by thrust alone.

It would, however, not necessarily be precisely the over-all optimum for the

following reasons. Any departure from this program would result in losses

in position and velocity contributed by thrust. However, a departure judiciously

selected could also result in a vehicle position-time history which would reduce

the gravity losses. Whether or not an over-all gain could be realized would

depend upon whether the saving in propellant caused by reducing the gravity

losses would exceed the increased propellant required to overcome thrust

losses caused by departure from this suboptimal program. The linear-

tangent pitch programs derived herein are of the type just described. It is

felt that any net propellant saving caused by departing from these programs

is probably not worth the effort to find it. However, an approximate method

of realizing most of this gain has been devised, but is not presented herein.

This refinement has never been tested.

C. TWO-POINT PERTURBATION TECHNIQUE FOR CURVED-EARTH CASE

In Reference 2, the two-point perturbation technique was explained, but

the actual derivation for the curved-earth case was not prescnted. The final

equation for the curved-earth case, however, was presented. It amourts to

diminishing the tangent of the pitch angle as measured above burnout hori-

zontal linearly with time. Unfortunately, in the paper, the pitch angle was

measured above launch horizontal so the fact that the tangent of the angle

above burnout horizontal was being diminished at a constant rate was not

readily visible from the equation. The reason the pitch angle was referenced

to launch horizontal was that guidance equations were not being considered

and, for performance calculations, the known horizontal at the launch site

was a more convenient reference.
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D. THE PROBLEM

After subtracting the expected gravity position and velocity changes by

the hodograph technique mentioned earlier and presented in Reference 2, the

problem is reduced to one of achieving certain position and velocity changes

attributable to thrust alone by means of a steering program that results in

minimum burning time. These desired position and velocity changes will in

general have pitch, yaw, and downrange components which may be vectorially

combined to yield one desired position vector and one desired velocity vector.

All thrust direction turning will take place in the plane defined by these two

vectors. This steering plane will in general be canted to both the pitch and

yaw planes. A linear-tangent steering program in this canted plane geometri-

cally resuits in another linear-tangent program in the pitch plane and another

in the yaw plane. Although the linear-tangent steering program applies to both

pitch and yaw, for simplicity of explanation its derivation will be carried out

for the pitch plane only.
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SECTION III

PROGRAM DERIVATIONS

A. PITCH STEERING-

I Because of its practical importance, the case selected first is that in
which it is desired to achieve a certain altitude, velocity, and flight pathI angle at thrust termination without specifically controlling downrange distance.

1. THE GEOMETRY

The geometry of the problem is illustrated in Figure 1. (It should be

noted that this figure refers to a thrust-caused phenomenon only.)

I V

V N V

Burnout Horizontal

Figure 1. Thrust-caused Position and Velocity Components

F thrust (any function of time)

S position change in direction of burnout vertical

SN position change normal to S

V velocity change in desired direction

V velocity change noimal to V
N

0 pitch attitude measured above burnout horizontal

angle between desired velocity direction and burnout
horizontal
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in terms of Figure i, the object is to find 0 as a function of time,

which will minimize burning time while achieving V and S subject to the

constraint that V N is zero. Minimum burning time means minimum pro-

pellant required, which, in turn, means maximum payload-carrying capability.

2. SYMBOLS

The discussion will be aided by use of the following symbols.

aT thrust acceleration = F/M

M vehicle mass

t time from start of pitch program

tf burnout time from start of pitch program

ti fractional time = t/tf

At an infinitesimal time increment

A an increment in burnout conditions caused by thrust acting
during At

60 a perturbation in 0 acting only over At

5 an increment in burnout conditions caused by 60

A equals by definition

Subscripts

a, b, c general points along the trajectory

o initial

f final

3. THE DERIVATION TECHNIQUE

The derivation technique will be first to assume that the pitch progiam

is optimum, then to investigate certain properties derived from the assumption

and, finally, to determine the optimum pitch program from these properties.

By definition the optimum program is one that will achieve the desired position
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and velocity changes with the minimum burning time. Then, if the burning

time were held fixed at this minimum, it would be impossible to modify the

steering program in any way that would result in increasing any of the

desired thrust position or velocity components except at the expense of

others. In other words, it would be impossible to alter the pitch angle as a

function of time in any way that would result in increasing one of the position

or velocity components while maintaining the others unchanged.

The minute increments in the components of burnout position and

velocity caused by thrust acceleration acting over an infinitesimal time

increment At at any point along the trajectory are as follows (see Figure 1):

AV =aT At cos(Oe-) (1)

AVN = aTat sin(O- ) (2)

AS = TAt sin O(tf - t) (3)

ASN a TAt cos O(tf - t) (4)

It will be observed that the thrust velocity (aTAt) generated during the

time increment At appears as a multiplier in all four equations. Therefore,

it may be expected that the mathematical form of the final optimum pitch

program will be completely independent of thrust acceleration. This can be

seen from the fact that, regardless of the value of aT at any point, the value

of the product aT At can be adjusted to any value by changing the magnitude of

the infinitesimal time increment At. Equations (1) through (4) show that the

division of impulse between the velocity components depends upon the angle

only, while that going into position is a function of both angle and time.

Hence, the form of the final equation will present 0 as a function of time

independent of the variation of thrust acceleration with time.
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Partial differentiation of Eqs. (1) through (4) yields the changes i-

burnout conditions caused by an infinitesimal perturbation in 0 acting only

during the time interval at. Thus

6AV T -aTAt sin(0 - t)60 (5)

SAVN = aT At cos (0- )6O (6)

6AS = aT At cos O(tf - t)Se (7)

6-SN = -aTAt sin 0(tf - t)S6 (8)

Equations (4) and (8) are not pertinent to this derivation but enter into the

subsequent discussion.

If the values of perturbations in 0 at three perfectly general points

a, b, c along the trajectory could be adjusted to cause no change in the

controlled burnout conditions, the following three equations would apply.

F8•AV a a6oa a + abSob + ac&Oc 0 (9)

-6AVN = 6a0a + Pb6 0b + 13c 6 0 c = 0 (10)

F5AS Y aS0a + •"b 6 0b + YcSO0 = 0 (11)

where

aa aTAt sin(O-a) (1Z)

a aTAt cos(0 -O ) (13)

= aTAt cos 0(tf t) (14)

-10-



The absolute magnitude of the 60's is not important but only their

relative ratios of one to another. This can be seen by the fact that, if all the

60's were multiplied by the same constant, Eqs. (9), (10), and (1I) would

still balance. Therefore, it will be assumed that 6 0 is fixed at an arbitrary

small value. The three equations may now be viewed as three straight-line

equations in two unknowns, 60a and 60b. A glance at the coefficients,

Eqs. (12), (13), and (14), shows that these lines are not parallel. However,

for a common solution to exist, all three lines would have to intersect at the

same point (60 a, 6 0 b). The next step is to fix the values cf 60a and 6(b at

those that satisfy Eqs. (9) and (10). It now remains to determine whether

or not these same values do not in fact also satisfy Eq. (11).

With the three angular perturbations determined as just explained,

Eq. (11) is either greater than zero, less than zero, or equal to zero as

shown. No other possibilities exist, In physical considerations, the

possibility of the net change in S[ Eq. (I1)1 being greater than zero may be

ruled out. If it were greater then zero, it would mean that putting all three

perturbations into effect would result in an increase in burnout altitude with-

out any loss in either of the burnout velocity components. This would violate

the a'sumption that these perturbations w2re being imposed upon a pitch

program that was already optimum (minimum thrusting time). The possibility

of Eq. (11) being less than zero may also be ruled out, because, in that event,

simply changing the sign of each 60 would convert the loss in burnout altitude

to a gain of like absolute magnitude. The only remaining possibility is that

Eq. (iI) equals zero as shown for the same perturbations in 0 that satisfy

Eqs. (9) and (10).

Now that it has been established that, in physical fact, Eqs. (9), (10),

and (It) each equals zero, the next step is to again fix 6ec at an arbitrarily

small value and view bea and 6 0 b as variables. This time the products of the

60c'S and their respective coefficients will be transposed as constants to the

right-hand side of the equations to form the following set of functions

fit ft v f

3.



f -a a60 +b 6 eb =-ac6ec (15)

f2 = 3a60a + Pb6Ob = - Pc60% (16)

f3 'Ya6 0 a + Yb6 eb =•c -- 60 (17)

The cjeficients of 68a and 60b in the set of Eqs. (15), (16), and (17)

form a 3 x 2 matrix. Since the rank of this matrix is less than 3, the three

functions form a linearly dependent set, and so

fI + CIf2 + C2f3 = 0 (18)

where C1 and C 2 are as yet undetermined constants. The expressions with

the subscript c in Eqs. (15) through (17) may now be used to replace the f

values -f Eq. (18). The resulting equation may then be divided by aT Atc 6 0CSC c

to remove these quantities.

Since point c could be anyplace along the trajectory, the subscript may

be dropped to yield

sin(O - 6) + CIcos(O - g) + Czcos 0(tf - t) = 0 (19)

In Eq. (19), C_ is found by setting t equal to tf with 0 equal to Of. and

then C2 is found by setting t to 0 and 8 to 0 . After trigonometric

simplification, the equation reduces to

tan 0 = tan e0 - (tan 0 - tan Of)t' (20)

where

tf



Equation (20) is the linear-tangent pitch program used in th• guidance

equations of Reference 1.

Use of this steering law, Eq. (20), reduces the problem of trajectory

optimization for the vacuum portion of ascent to merely finding the unique

set of constants 0o, Of, and tf that yield the desired altitude, velocity, and

flight-path angle at thrust termination. The independence of Eq. (20) from

thrust acceleration e.iables it to be applied as a single steering program

through multiple propulsion stages regardless of the variation of thrust and

propellant flow rate. The single program applies even through periods of

zero thrust. Of course, the values of the constants 0o, Of, and tf will depend

upon the thrust acceleration versus time profile and upon the burnout

conditions dictated by the mission.

B. YAW STEERING

The linear-tangent pitch program is precisely optimum from the stand-

point of what is contributed to the trajectory by thrust only. Therefore,

another linear-tangent pitch program will be optimum in the same sense for

yaw steering as well. In the case of yaw steering, the tangent angle would be

measured out of the orbital plane at burnout. As already explained, a linear-

tangent program in both pitch and yaw is equivalent to one linear-tangent

steering program in . plane canted to both the pitch and yaw planes. This

canted plane is defined by one desired thrust velocity vector and one desired

thrust position vector, each of which is the vector sum of the desired pitch

plane and yaw components.

C. DOWNRANGE DISTANCE CONTROL

Equation (20) does not control downrange distance. The most practical

way of ,ontrolling this, if needed, is by means of a variable-duration zero-

thrust period. This amounts to changing the thrust acceleration versus time

profile, of which the coast period is a part. If, however, it is desired to

control downrange distance by means of the steering program, a bi-linear-

tangent program could be used.

-13-



1. FOR A FLAT EARTH

The bi-linear-tangent steering law was presented in Reference 4 for a

flat earth ir the form

tn0=A +BttanO C+Dt (21)

where A, B, C, and D are unspecified constants.

2. FOR A CURVED EARTH

The derivation for a curved earth in terms of the notation used herein

may be accomplished similarly to the derivation just completed, as follows.

To the set of Eqs. (9), (10), (01), add

-6SN = na 6 ea + n6eb + 'c 6 ec = 0 (22)

Eta is obtained from Eq. (8). Then

'q A aTat sin O(tf - t) (23)

The equation corresponding to Eq. (18) becomes

f + Cf 2 + C2 f3 +C 3 .=0 (2C4)

which leads to the solution

tan 6° - [tan 0° - (I + K)tan Of t'
tan e - 1 + Kt' (25)

-14-



The additional constant K in Eq. (25) is required to control the

downrange distance to burnout. When the desired downrange distance

happens to be that which would result without control, K goes to zero and

Eq. (25) reduces to Eq. (20). In fact, with chemical propulsion, if the

downrange distance is not close to this value, the cost in propellant may be

excessive.

Equation (25) is the bi-linear-tangent program of Eq. (21) with a

superfluous constant removed. It is generally recognized that this is the

optimum steering program resulting from the calculus of variations. It is

not, however, generally known that all bi-linear-tangent programs may be

reduced to mono-linear tangent ones by properly selecting the axis from

which the angle 0 is measured. For example, Eqs. (21) or (25) may be

reduced to

tan 8' = A' + B't (26)

where

D (7
0'4 0+ arc tan- (27)B

in which D and B are in terms of Eq. (21). The constant arc tangent D/B

represents the angle between the original and revised reference axes. This

angle may be used to control downrange distance to burnout, if desired.

D. PROGRAM FOR SPECIAL SITUATIONS

A third linear-tangent steering program, which may have some

application in special situations, is to maximize the relationship between one

velocity and one position vector without any constraints on the components

normal to each. The final equation is the same as Eq. (20), except that the

terminal thrust direction is made to lie along the desired thrust velocity

direction. in other words, 0f becomes the known constant

of - (28)

-15-



SECTION IV

CONC LUSI ONS

In conclusion, it may be said that the linear-tangent steering programs

are precise optimums insofar as the contributions of thrust only are concerned.

The linear-tangent programs are the practical optimum s -lutions to any

space maneuvers in which a departure from these programs cannot be found

that will favorably modify the over-all effect of noiLthrust forces such as

gravity to an extent that will appreciably exceed the losses in thrust-caused

values that result from departing from linear tangent steering.
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