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ABSTRACT 

An experimental study of the power generating characteristics of 

Savonius rotors towed through still water was made.  Variations In 

rotor geometry were Investigated.  Power absorption, drag and side 

force were measured on six rotors tested In the towing tank over a 

range of ratios of rotor vane tip peripheral speed divided by rotor 

advance speed from the free-running to the locked rotor conditions. 

results indicate that the Savon I us rotor Is not as effective 

at extract'ng the available power from a stream of moving water of a 

given cross-section area as a conventional propeller typo windmill. 

KEYWORDS 

Windmills 

Current meters 

Turbines 

Savonius rotors 
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INTRODUCTION 

The Savonius rotor (S-rotor) or "wing rotor" was Invented in the 

early 1920's by S.J. Savonius as an attempt to replace sails by a more 

effective wind-driven propulsive device for ocean-going vessels. The 

original intention was to use wind power to rotate cylindrical "Flettner" 

rotors which generate thrust due to the Magnus effect. The principal of 

the Flettner rotor was used on the "Barbara", a ship of 3f000 tons which 

was fitted with three rotating towers 13-1/2 feet In diameter and 56 feet In 

height, revolving at 150 RPM (35 h.p. each). With a favorable wind this 

vessel could attain a speed of 10-1/2 knots.  Savonius found that the 

wing rotor itself could exert more lateral thrust than the Flettner 

cylinder and» consequently, he designed and built a small boat which 

utilized this device for propulsion. 

3 
In a paper published in 1931 Savonius indicated that the results 

of some wind tunnel tests which he conducted with S-rotor models showed 

that the best of the models gave 31 percent efficiency in extracting power 

from ehe wind stream. Various applications and installations were mentioned, 

including: "pumping work and the generation of electricity; as pressure 

and exhaust fans; for moving advertising and outdoor signs; for propelling 

toy rotor ships} for stream recording in air and water; for airplane work 

in driving gyros, generators and compressors; as water motors in river 

and tidal flow; as a wave motor, etc., etc.". 

Motivation for the present investigation arose due to a request from 

ONR to investigate several alternate means of utilizing a low speed stream 

as a power source for a low power generator. The S-rotor is suited to 

certain kinds of applications by its physical simplicity and ruggedness, 

by its omni-directional character, and by possibilities of mechanical 

simplicity of shafting, gearing and mounting arrangements. The usual pro- 

peller windmill type, for example, must have a tail vane and swivelling 

arrangement to cause the windmill to f^ce into the winds which come from 

varying directions. This inevitably produces losses in power absorption 

capabilities in gusty, variable direction winds. In addition, these wind- 

3 
9 
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mills are usually connected to the driven mechanism through right angle 

gearing, whereas S-rotor applications may avoid these complications. The 

S-rotor has good starting torque characteristics. Whether the S-rotor 

is a technically useful device for power generation purposes depends, of 

course, on features in addition to its fluid mechanical efficiency, such 

as ease of maintenance, ruggedness, adaptability and cost.  These other 

features are not considered in this report. 

In the present investigations it was desired to characterize the 

torque vs. rpm relations for wing rotors operating in a uniform stream. 

The drag and side forces acting on the rotor were to be measured as well, 

this giving information on bearing support and mounting reactions. A 

number of variations of the geometrical characteristics of the rotors were 

studied. 

A number of recent studies have been published which describe the 
h S 6 6 characteristics of Savonius rotors as current meters     . One of these 

gives information on the effect of  changes of flow speed on rotor response 

and on the effect of geometrical variations of the rotor on the rpm vs. 

speed characteristics when used as a current meter (zero torque).  Savonius1 
3 

own previously mentioned article states that he conducted wind tunnel 

tests to determine the power generating qualities of r-rotors but does 

not describe the tests or the results in such a way that they can be 

utilized.  The results of the present investigation suggest that the 31 

per cent rotor efficiency claimed by Savonius is not achievable. This may 

be attributable to differences in experimental conditions (e.g., wind 

tunnel flow blockage effects, «'.tc.) or possibly to mpjor unknown differences 

in rotor configuration. Savonius also says that rotor performance in 

"natural" winds is some 10 per cent better than in "artificial" winds and 

that, in fact, this is a characteristic of all windmills, 

MODEuS AND APPARATUS 

A photograph of the six models, designated 1 through 6, investigated 

in the prese t study is shown in Fig. 1. The models were made of plexiglass 

and no effort was made to have any of these models be geometrically 

"■"^B 
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similar to the S-rotois which are used generally as current meter. All 

rotors consist of three circular plates 12 Inches In diameter and four 

half-circular vanes of three Inch radius.  The vanes are arranged In 

pairs between plates to form two "S" shaped channels, one above the 

other, with the axes separated by 90 deg in the horizontal plane.  The 

height of the vanes was varied In three of the models and four models had 

different separations of the vane tips with the same height. A sketch of 

the rotor design is given in Fig. 2 which shows some of the geometric 

details and gives a table of the dimensions of the six models.  No 

"birdcage" frame, or rotor housing enshrouded the rotor during the tests; 

the model being mounted to a flanged rotating shaft.  The vane configuration 

is such that the rotors turn clockwise when viewed from above under the 

action of an imposed flow. 

The tests were conducted with the model and force measuring apparatus 

attached to the rotating arm in Davidson Laboratory (DL) Tank No. 2. 

This tank Is 75 ft. square and k.S  ft. deep.  The model was situated at a 

radius of 31 ft. and with a test model less than 12 Inches long, the flow 

over the rotors approximated straight line motion. The speed of the arm Is 

controllable so that model speeds from 0 to kO  fps are achievable. This tow 

tank facility has been used previously to perform special calibration tests 

of S-rotor current meters. 

Figure 3 shows a sketch of the foil mounting apparatus which 

consists of a shaft and bearing supports which holds the rotor approximately 

10 inches beneath the free srrface, a rpm sensing and control System, and 

a force measuring dynamometer.  The force balance Is a DL 5 component 

balance conceived originally for use as an internal body balance for sub- 

mergeu body tests.  In the present application it has the capacity to 

measure up to 100 lbs. drag and/or side force and up to 60 Inch-lbs. rotor 

torque. The speed of the rotor was controlled by an electromechanical 

brake which is In turn controlled hy a servo-system.  The brake does not 

apply any restraining torque to the rotor during the start-up portion of 

the tests, but when the output of a tach generator coupled to the rotor 

shaft exceeds a preset reference amount the brake Is activated and t.'.c 
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rotary speed Is then held fixed by the servo system. The rotsry speed of the 

shaft Is also indicated by an interrupter signal. 

All pertinent data signals are recorded on a paper tape recorder 

after suitable amplification and the results read from the paper tape are 

tabulated for processing and plotting. Quantities recorded includei 

rotor torque, side force, drag, interrupter signal, rotor tach generator 

signal (*o indicate smoothness of rpm), and a tach generator signal giving 

the speed of the rotating arm. The speed of the rotor through the water 

was derived from the known distance from the center of rotation of the 

arm and the precisely measured time for the arm to turn through one quarte«* 

revolution. 

It should be noted that the torque measured is the torque acting 

on all elements of the apparatus and model below the balance, and is con- 

sequently the torque acting on the rotor, in view of the symmetry of the 

apparatus. No bearing friction correction need be made to the torque. The 

drag should be corrected to account for the water crag on the rotor shaft 

bearing support tube to obtain the drag on the rotor alone. The side force 

measured includes the centrifugal force due to inward (radial) acceleration 

of the apparatus and the model and due to the virtual inertia effect on 

the water acted on by the rotor and apparatus. 

TEST PROCEDURE AND PROGRAMS 

The apparatus WöS first mounted in position on the arm and aligned 

so that the drag force measured by the dynrmometer woulo be in line with 

the direction of motion and the side force in the radial direction. This 

was done by mounting a heavy weight on the model apparatus and spinning the 

rotating arm with the apparatus in air; with the balance properly aligned 

the side force readinn was high and the drag force reading negligible 

(corresponding to air drag). The apparatus was mounted with the shaft 

axis vertical so that the rotor end plates would lie in a horizontal plane. 

Calibrations of torque, side force and drag were made with the 

apparatus in position and were checked at the beginning of each test day. 

A series of tests were carried out to determine the drag and side force 
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acting on the rotor shaft bearing support tube, the exposed shaft and the 

mount flange.  The drag and side Torce measurements thus obtained can be 

used to correct the ^ata obtained with the model in place.  The model side 

force measurement as corrected still contains the influence of centrifugal 

force and virtual inertia effects due to r.he model's traversing a circular 

rather than a rectilinear path. A correction for these Influences could 

be obtained by testing the model with the arm rotating in both clockwise 

and counterclockwise directions (when viewed from above), since the magnus 

(lift) force acts Inward in the former instance and outward in the latter. 

This is due to the fact that the S-rotcr will alwf/s rotate in the clockwise 

sense when viewed from above since its rotation Is independent of the 

direction of the on-coming stream. 

Tests were carried out by mounting a rotor on the mount flange and 

running a series of tests with one speed of the rotating arm. The rate 

oT rotation of the rotor was varied in consecutive tests so that a range 

of operating conditions from locked rotor to free turning condition (except 

♦or shaft bearing friction) could be covered. All rotors were tested with 

the arm turning in the clockwise direction. In which case the lift force 

acts inward.  The force measured by the balance is less than this lift force 

by small 'mount due to the centrifugal acceleration and virtual inertia 

effects on the rotor system.  In addition, rotor I was tested with the arm 

turning in the counter-clockwise direction, in v4iich case the centrifugal 

effects add to the lift force.  The small difference between the resulting 

lift curves can be Interpreted as twice the centrifugal effect and was not 

considered for the other five rotors. 

Tests were conducted at a speed of approximately 3 ft. per second. 

One set of speed effect tests was conducted with rotor 1 at approximately 

5 ft. per second. 

RESULTS 

The measured forces and moments have been presented in the form of 

non-dimensional coefficients in Figs. U-9,  The form of the non-dimensional 

coefficients chosen are: 
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speed rttio = l/x = 
rctor vane tip peripheral speed 
""""   rotor advance speed 

- 2rr x rps x w/2 

drag coefficient = C0 = drag for^ 

^ v wh 

lift coefficient = C.  = aide force 

torque coefTlcient = C - i"otor torque 

"£v2^h 
2   2 

power coefficient    = C      = 2TT X rotor  tor^e x rP8 

P       £ v3 wh 

I 
I 
I 
I 
I 

= Vt 
where p 

v 

h 

w 

- fluid mass density 

= rotor advance speed 

= the total height of the pairs of vanes 

= the width of separation of the vane tlpr. 

The particular form of the non-dimensional coefficients used here 

were chosen quite arbitrarily.  Significant merit conparlsons of the six 

different mode' geometries can be made by noting relative magnitudes of the 

coefficients only for the case where the area of the vane height times the 

vane tip width Is considered equal for alternate rotors. For other 

design constraints -«ther forms of the non-dimensional lilng coefficients 

may be more useful,  it Is of interest to note that the form of power 

coefficient gives the ratio of the power absorbed by the rotor to the 

power original 1/ contained in a column of water with cross section area 

s w x h. It Is therefore a measure of the efficiency of the rotor as a 

power generating devici. 
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The force and moment measurements recorded on the paper tape 

apparatus all showed rather smooth traces« with oscillations about the 

mean being less than about 10 percent of the average reading as long as 

the rotor was turning smoothly (-ay for \/\    greater than 0.2). At near- 

stall conditions, torque oscillations became as large as 25 percent of the 

mean, variat ans occurring at a frequency of four cycles per revolution. 

For these conditions tne drag was still quite smooth, with oscillations of 

«round 5 to 10 percent of the average, but the lift, which is very small 

for these cases, showed oscillations up to 100 percent of the average. 

Figure k  shows lift and drag coefficients for rotor model No. 1 

plotted as a fund ion of the speed ratio for various experimental conditions. 

Corresponding results for the torque coefficient as a function cf the 

speed ratio are given in Fig. 5. All recorded data points :-e spotted: 

open symbols being for the normal test conditions, i.e., rotating arm turning 

clockwise with a speed of the model of approximately 3 ft. per second; 

f!lled-in symbols for the clockwise arm rotation with model speed approxi- 

mately 5 ft. per second; and flagged symbols for the counterclockwise arm 

rotation with model speed approximately 3 ft. per second. The degree of 

scatter of data points shown in these figures is typical for all of the 

data obtained and is indicative of the precision of measurement achieved 

in the tests. 

A peculiar feature cf these tests is that the results for counter- 

clockwise arm rotation showa difference in drag and torque, as well as lift« 

from the clockwise results. The drag and torque are lower for this direction 

of motion and the lift greater. The increase of lift was to be expected, 

due to the centrifugal acceleration effects described in the previous section. 

The torque reduction was not expected because the velocity gradient across 

the width of the rotor is quite small for this wide circular path of the 

model on the rotating arm (of the order of 2.5 percent difference in flow 

velocity between inner radius and outer radius). However, during some 

S-rotor current meter calibrations conducted by Sexton , with the same test 

facility, a difference in rpm for the same speed was found depending on 

direction of arm rotation.  In this case a rotor which turned counter- 
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clockwise u,as tested, obtaining most of the data with the arm turning 

clockwise. For two test runs made with counterclockwise rotation the rpm 

came about II percent higher than for clockwise rotation.  In the present 

instance, extrapolating test results for a clockwise turning rotor, the 

rpm for tero torque is about 5 percent lower for counterclockwise rotation 

than for clockwise rotation.  In both tests care was taken to avoid circula- 

tion of the water in the direction of the tows by rotating the arm in the 

opposite direction between runs. The discrepancy in maximum power obtained 

amounts to I'* percent between the t.v. directions of curved paths.  It 

appear« that the S-rotor may be peculiarly sensitive to a curvilinear fluid 

inflow when used either as a current meter or as a power generator. 

The speed effect tests show little influence of speed on the torque 

characteristics, except at the low rpm, or near-stall, conditions. This 

tends to confirm the intuitive judgement that the S-rotor is a highly 

inertial fluid mechanical device whose performance depends only secondarily 

on Reynolds number effects. There is also an Indication of some Influence 

of speed on the lift coefficient, with C.  for the higher speed being 

slightly higher than for the lower speed over the range of speed ratios 

from 0.25 to 0.7. 

The effect of rotor height, or "aspect ratio", on performance is 

shown In Figs. 6 and 7, where the characteristics of rotors 1, 5 and 6 are 

presented. From Fig. 6 it is seen that the lift coefficient becomes higher 

and the drag coefficient lower as the relative rotor height Increases. 

This is in accordance with experience with wings of various aspect ratios. 

The torque and power performance Increase with relative height, as shown in 

Fig. 7, with the tallest model. No. 6 having about 26 percent better power 

absorbing qualities than the shortest. 

Figures 8 and 9 show the effect of rotor vane tip width on per- 

formance, with results for rotors I, 2, 3« and k.    This variation also alters 

the internal gap for flow through the rotor vanes.  The dependence of drag 

coefficient, shown in Fig. 8 is uncertain but not very great, in any case. 

The lift coefficient, due to Magnus force, is greater fur the narrower vane 

tip widths, or larger internal flow gaps.  Tests on rotating smooth cylinders, 

with a ratio of peripheral velocity to forward velocity of one. give a lift 

8 



LR-1181 

coefficient of about 1.0.  This is well below that found with these self- 

driven S«rotors for that velocity ratio, particularly with the narrow vane 

tip width.  The torque and power characteristics, shown in Fig. 9, reveal 

that the wider tip widths perform better, the widest {model k)  giving an 

t.ficiency of absorbing power from the water of 15 percent.  It i? not 

clear whether the trend of increasing power absorption capability with 

increased vane tip width will continue for significantly larger tip widths 

but it is not to be expected that it will. 

No consideration has been given in these tests to "tilted" inflows 

to the rotor, i.e., cases where the rotor axis is not normal to the plane 

of the flow.  Sexton has examined this matter in calibrating some S-rotors 

and found that;  "The output of the Savonius rotor is clearly dependent 

upon the speed of flow, the tilt angle, the direction of tilt relative to 

the flow, and the design of the rotor and rotor housing". 

DISCUSSION 

For almost all conceivable utilizations of the S-rotor as a power 

generating device the most pertinent kinds of information required are the 

power absorbing capacity and the rate of revolutions.  The drag and side 

force characteristics would be of interest mainly for considerations of 

bearing or foundation design.  In view of  this the discussion will treat 

the torque and power characteristic measurements for these S-rotors only. 

Summarizing the results of the tests conducted on the six models 

of geometric variations in S-rotors, two significant trends may be 

recognized:  1) The power absorbing qualities improve with relative height 

of the rotor vanes, and 2) The power absorbing qualities improve with 

increase of rotor vane tip width, at least up to the maximum spacing tested, 

The former trend would be expected to continue for continuing increases in 

rotor height, as/mptotically approaching a limit as the height increases 

indefinitely, in much the same manner as airplane wing performance improves 

with increase in aspect ratio.  It is not clear whether the latter trend 

would persist for increasing vane tip widths.  In the original descriptions 

of the Savonius rotors, ' much emphasis was laid on the beneficial aspects 

9 
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of the internal flow, from vane-to-vane.  If these influences are indeed 

beneficial, it is to be expected that an optimum spacing might occur.  Test 

results presented in Fig. 9 suggests that this optimum would probably have 

at least a little greater spacing than model k,   the widest tested.  Con- 

siderations of still greater spacings, where the van«:; do not overlap, 

suggests that drag on rotor end plates would produce a decreasing efficiency 

with increasing size beyond some "best" configuration if it lay in this 

range. 

3 ft. per second, rotating arm turning counterclockwise, the greatest power 

generated was about .00k  HP or 3 Watts, obtained at a rate of about 52 

revolutions per minute.  It should be recalled that the power generated 

would increase with the third power c" the stream speed and the rate of 

rotation linearly with the stream speed for optimum performance. 

A comparison of the S-rotor's power generating characteristics with 

the performance of various propeller type windmills is given in Fig, 10. 

The performance of various types of practically utilized windmills was 
Q 

taken from Fales1  article in Marks' "Engineering Handbook", while the 

I 

I 
I 
I 
I The influence of the curved inflow, due to the circular path of the 

model attached to the rotating arm, on the rotor's efficiency is of 

interest.  It suggests that modifications of rotor vane shape, from the | 

circular arc design tested, might result in meaningful performance gains 

for straight-line inflow.  In view of this curved flow effect it would be 

prudent to reduce performance predictions derived from the clockwise ro- 

tating tests by some 5 to 7 percent.  This allowance may be counterbalanced, 

in whole or in part, by consideration of Savonius' claim that windmills and 

rotors perform some 10 percent better in artificial wind.  In the case of 

the rotor, this may be attributed in part to its omni-directional character 

and its ability to extract energy from turbulent fluid motion.  Finally, 

the possibility of utilizing naturally occurring curvilinear currents (such        I 

as might occur in the vicinity of natural obstructions or sharp river bends) 

to enhance the rotors' performance should not be overlooked. 

I 
I 

i 
As an indication of the power absorbing capabilities of the 

"standard" S-rotor, model No. 1, it may be noted that during the tests at m 

10 
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theoretical best efficiency curve for propeller type windmills was obtained 
9 

from Glauerts  contribution to Durands1 "Aerodynamic The ry". The present 

test results clearly reveal that much better fluid mechanical efficiency can 

be achieved with turbine impellers other than S-rotors.. The rotary speed 

of S-rotors is also seen to be rather low compared to other, more efficient 

types. The starting torque for the rotors is rather high, as can be seen 
9 

from Figs. 5» 7 and 9, which is not the case for the fast running windmills. 

In no case was the efficiency of an S-rotor found to approach the 
3 

31 percent figure quoted by Savonius.  Indeed, had it approached this figure 

it would have been remarkable, since a device in which there are surely 

significant eddy-making losses would not be expected to perform nearly as 

well as the ideal achievable.  Since his experiments are not described, 

except to note that they were conducted in a wind tunnel, a fair criticism 

of his high efficiency claim is not feasible.  Some experimental discrepancy 

or major variation in vane configuration may have contributed, although the 

latter could not be expected to account for such a great improvement In 

performance. 

CONCLUSIONS 

1. The conventional Savonius rotor is not a very efficient power generating 

device when placed In a uniform steady stream. Other, propeller type, 

windmills are easily twice as efficient In extracting power from the stream, 

2. Simple variations of the S-rotor geometry can be utilized to Improve Its 

performance, but It does not provide improvements sufficient to consider 

the overall performance good.  It is likely that adjustments in rotor vane 

shape could lead to performance improvements of rouyhly similar magnitude. 

The resulting rotor would still not be competitive with the performance 

which can be obtained with propeller type turbines. 

3. Thr omni-directional quality of the S-rotor, together with its physical 

and mechanic i simplicity and ruggedness are adv^nta-j    Matures. 

k.    The strrting torque for these rotors is high compared to propeller type 

windmilIs. 

11 
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5.  Savonius rotors appear to be peculiarly sensitive to curvilinear 

fluid inflow when used either as current meters or as turbines. 

RECOMMENDATIONS 

1. Inasmuch as the power generating qualities of S-rotors have been found 

to be rather poor, no further effort ought to be directed to investigating 

their performance. An exception might occur if a specific installation 

made the advantageous features of S-rotors, listed under Conclusion } 

above, assume importance.  In this case the most fruitful areas to inves- 

tigate would be rotor vane shape and spacing. 

2. The extensive use of S-rotors as current meters indicates that attention 

should be directed to their performance qualities in curved inflow fields. 

[ 

I 
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MODEL   I MODEL 5 MODEL 6 

ROTOR HEIGHT VARIATIONS 
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n 

ROTOR VANE TIP SPACING   VARIATIONS 

FIGURE I,    SAVONIUS ROTOR MODELS USED FOR POWER 
GENERATION TESTS 
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FIGURE 2.    DETAILS OF SAVONIUS   ROTOR  MODEL GEOMETRIES 
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FIVE   COMPONENT   BALANCE 
USED FOR MEASURING SIDE 
FORCE, DRAG AND TORQUE 
ON ROTOR 

7\CH GENERATOR 

WATER  DEPTH 
APPROX.  10 INCHES 

MOUNTING PLATE TO 
ROTATING   ARM 

ELECTRO-MECHANICAL BRAKE 
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