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ABSTRACT 

The sufficiency theory treated in this report concerns a least time problem 

of optimal control in which the suspected solutions, which obey a strengthened 

form of the Pontryaginmaximum principle, cover a certain set E in n-space in 

a particular manner that we describe. The set E need not be a domain, and 

the covering need not be simple. In spite of this, wo are able to develop a 

theory similar to that of Caratheodory in the classical Calculus of Variations. 

This theory is, however, now valid in the large, and in circumstances which 

differ rather radically from those which occur in the classical case. The main 

tools are a greatly strengthened theorem of Malus on the one hand, and the use. 

on the other hand, of a new and more powerful Hilbert independence integral, 

whose integrand is now, in effect, many-valued. The very general situations, 

to which the theory is applicable, require moreover, many new concepts and 

definitions, which are, in part, of a topological nature, and which make it 

possible to avoid restrictions to one-to-one maps with non-singular Jacobians, 

restrictions which are normally made in the Calculus of Variations, but which 

would here be quite out of place. 



REMARKS ON OPTIMAL CONTROL I: THE STANDARD 

SUFFICIENCY THEORY FOR THE LEAST TIME PROBLEM 

L. C. Young 

Introduction. The object of this paper is to indicate how the classical 

sufficiency theory of the calculus of variations should be adapted to the problems 

of optimal control. The ideas are far from new: they are to be found in any 

good book on the calculus of variations. However, tnere are quite a number of 

ways in which optimal control differs radically from the classical calculus of 

variations, and the main difficulty to be overcome is that of adapting the old 

ideas to the new context. For simplicity, we limit ourselves here to a least 

time problem, in which we seek a trajectory, subject to certain controls, which 

leads in least time, from a given point, to a target, which may be either a point, 

or a sufficiently smooth set of points, not necessarily connected. 

In this problem, it may well happen that the positions of the initial point. 

from which it is possible to reach the target at all, occupy a set R which need 
* 

not by any means be the whole space outside the target, nor even a domain 

outside the target. In quite simple cases R is a set of lower dimension. This 

fact, of itself, renders a number of changes necessary in the classical method. 

Another important difference arises from the fact that the solutions need not, 

even in simple cases, provide a one-to-one covering of any substantial part of 

R, whereas the notion of a one-to-one covering played a vital role in the classical 
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context, finally, the classical theory was always rather lavish in smoothness 

assumptions, for supposedly practical reasons, and this is just what optimal 

control, for genuinely practical reasons, cannot afford. In this paper, smooth¬ 

ness will be reduced to mean simply: continuous differentiability (of the first 

order). Moreover, some of our basic assumptions concern, not smoothness, 

but piecewise smoothness, and some quite basic quantities T(x), y(x) are 

not even assumed to be continuous. 

In spite of these far reaching changes, we refer to the sufficiency theory, 

here presented, a? standard. This is because it corresponds still to the most 

elementary form of the sufficiency theory of the classical calculus of variations. 

There are no conjugate points, no Mo-se numbers, no generalized curves, such 

as would be needed in a deeper study. However, for many practical purposes, 

the theory here presented is adequate. 

2. .Background. For slightly greater generality, we leave the control 

space quite unspecified. Control values will simply be certain labels denoted 

by u, while x denotes a point of a finite dimensional Euclidean space, and 

t is the time. We denote by g(x,u) a smooth function of x depending on 

the control value u , and we term admissible control a function u(t) defined 

on a relevant time-interval, and which again belongs to a quite arbitrary class 

of functions, whose values lie in the control space. With this generality, the 

reader can be sure that our discussion will apply to measurable controls, with 

values in a cube, or some simple figure, and equally to generalized controls, 

whose values are probability measures on such a figure. 
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We consider an autonomous time-optimal problem, for which the admissible 

trajectories x(t) and controls u(t) satisfy the differential equation 

<2,1) X = g(x, u) , 

where the time t does not appear explicitly . Here an admissible trajectory 

x(t) Is an absolutely continuous function connected with a definite admissible 

control u(t) by the differential equation ( 2.1), which is understood to hold 

almost everywhere on the time-interval of definition. Further this time-interval 

will be supposed to end at t = 0, and the corresponding terminal value x(0) 

of x(t) will be supposed to lie on a given set, which we term the target, and 

which we take to be a sufficiently elementary configuration, without interior 

points. Since x(t) is absolutely continuous, its derivative x is measurable 

In t, etc. This introduces restrictions in practice on the utilizable controls 

u(t), but we need make no such restrictions explicitly . 

Our problem is to determine, If possible, the least time from a given 

position to the target, along admissible trajectories. Our object is not to solve 

this problem - this could only be done subject to additional hypotheses - but 

rather to show how to complete the solution, after certain preliminary steps have 

been taken. These preliminary steps are here the raw material of our sufficiency 

theory. We do not have to concern ourselves with the question whether these 

steps need have been taken: in practice they are taken. Our question is what 

we can do next. 

The first step, which we suppose already taken, is to select, from the 

Inconveniently large class, consisting of all admissible trajectories, a much 

#654 
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smaller class, where we suspect to find those which lead to the target, from 

their initial points, in least time. This is done, in practice, by making use of 

so-called necessary conditions. However, we can afford to be here more par¬ 

ticular in our choice, and to impese slightly stronger conditions, which we do 

not claim to be necessary, and which we list below. The admissible trajectories, 

thus selected, will be termed lines of flight. We shall moreover confine ourselves 

to trajectories situated in a certain set R. 

We shall suppose that every point x « R is the initial point of at least 

one line of flight, and that the selection of lines of flight is consistent in the 

following sense: an admissible trajectory C is a line of flight if and only if, 

for every point x interior to C , the portion of C from x to the target is a 

line of flight. Further, just as all lines of flight terminate on the target at the 

time t = 0, we shall suppose that all lines of flight, which start at a same 

point x t R, do so at the same time t. (If they did not, this would provide a 

reason for excluding some of them, since our problem concerns the least time. ) 

We shall term this condition that of synchronization. Of course, it does not 

ensure that, automatically, the quantity |t! is then the desired least time from 

the point x. For there might very well be no solution to the problem, or we 

might have selected the wrong trajectories as our lines of flight. 

Finally we shall suppose that every line of flight satisfies the maximum 

principle of Pontryagin, in a strengthened form described below. This form is 

understood to include the transversality conditions for t = 0, at the points of 

the target. It states that, along a line of flight x(t) with control u(t), there 

exists a conjugate vector function y(t), absolutely continuous in t, such that 

'4" *654 
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y(t) = - y(t)g [x(t), u(t) J, 

y(t)g( x(t), uj < 1 for all u, 

with equality when u = u(t), 

for t = 0, the vector y is normal 

to the target at the point x(0) . 

This differs from the original principle of Pontryagin in that, in the in¬ 

equality (2. 2)(b),the right-hand side is here unity, instead of a quantity H > 0, 

which is constant in t. By replacing H by unity, i*e. y/H by y, we do not 

affect our trajectories, except for excluding the case whore H = 0. This last 

exclusion we insist on here: there are sound reasons for it in a sufficiency 

theory as opposed to a necessity theory. (A policeman, instructed to round up 

every conceivable suspect, is liable to include certain persons whose behavior 

attracted his attention simply because they were unusual persons, e.g. poets, 

mathematicians, chess players, and the like; these rather innocuous individuals 

correspond to what we exclude here. ) 

We shall term canonical line of flight, a trio of functions 

x(t), y(t) , u(t) 

such that x(t), u(t) defines a line of flight, and y(t) is a corresponding 

conjugate vector-valued function subject to ( 2. 2). An open arc of a line of 

flight, or of a canonical line of flight, will be termed an arc of flight, or a 

canonical arc of flight, respectively. In general, the conjugate function y(t) 

is not uniquely determined by the line of flight x(t), u(t) but may depend on 

(¿.2) 

(a) 

(b) 

(c) 
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auxiliary parameters p, which can represent, for instance, initial or terminal 

conditions. Thus, a line, or an arc, of flight, is in general the projection of a 

whole family of canonical lines, or arcs, of flight which depend on the additional 

parameter p. This is one of the basic facts that our discussion has to allow for, 

and we note that when lines of flight merge or separate, so do the corresponding 

sets of values of p. 

3» The notion of a satisfactory map. We noted at the end of the preceding 

section the intrusion of certain parameters p, whose values are irrelevant in a 

family of arcs of flight. On this account, we particularly wish to avoid a con¬ 

dition, much used in classical analysis, by which certain smooth maps are re¬ 

quired to have non-singular Jacobian matrices. The intrusion of irrelevant para¬ 

meters, which play an important part in our discussion, would clearly disturb 

such a condition. 

Generally, a map f of a set Q = QX I may be said to possess the 

irrelevant parameter c t I, if for qv = (q, c) where q i Q, c € I, the value 
>!< * 

f (q ) has the form f(q) independent of c. 

A map f from a set Q to a set P = f(Q), where Q, P lie in two metric 

spaces, will be termed satisfactory, if, for each q c Q, 

(3.1) 

f 
given any rectifiable curve C c P issuing from 

f ( q), there exists a rectifiable curve TcQ 

< issuing from q, such that every small arc of A 

issuing from f(q) is the image under the map 

f of a small arc of F issuing from q. 
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We note that, if the map f is satisfactory, so is the map f* defined 

above, provided that I lies in a metric space. An example of a map which 

is not satisfactory, is obtained by choosing, in the complex plane, the function 

= q + 1 if ft q < -1 , 

f(q) < = q - 1 if ftq > 1 , 

^ = q - ftq if -1 < ft q < 1 . 

A curve C which crosses 

the imaginary axis of p 

corresponds to a curve F 

which crosses the strip 

q-plane p-plane 
-1 < ft q < 1 . 

4. The_notiqn of a spray of flights. Suppose defined, on an open Euclidean 

set, whose points we denote by v , a pair of extended real-valued functions 

t (v), t+(o-) where - <* < Mr ) < t+( o-) < 0. The points o* at which 

t (cr ) * are to constitute an open set, and the two functions are to be 

continuous, except in the case of t (tr ), at any points where the value - ^ 

is taken. Further, we shall suppose that the local restriction of the function 

tV ) to small segments parallel to the o-axes is of bounded variation on each 

such segment. 

We suppose further, that the open set of o is the projection of 

a certain set of (o-, p), situated in a higher dimensional Euclidean space. Of 
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this set of (<r, p) we need not assume that it is open: instead we shall 

sup*.' se that if [<tq) pQ) is any one of its points, and y is a small enough 

curve of the <r set, issuing from cr^, then there exists along it a continuous 

function p((T ) which reduces to pQ at o-0, such that all the points (<r,p(o )) 

for o- < y lie in our (<r, p) set. 

We shall denote by S‘,S,S+ the sets of (t, .r) for which <r isas 

before, and t is subject to the corresponding condition - 00 < = t. or 

t (a) <t<t+(<r), or t -t+(ir). We denote by [Sj the union of these three 

sets. Similarly, we denote by S “, s'",s"'+ the sets of (t, <r, p) for which t 

is subject to these respective conditions, and (ir, p) is as before. We write 
>!< 

[ S J for the union of the three sets. 

This being so, we consider a family Z of arcs of flight with corresponding 

controls, given by functions 

x(t,a ), u( t, <r ) ( t, <r ) í S . 

Here <r is the label, which distinguishes a member of the family, i. e. a 

remains constant on an arc of flight of 2), and this arc then corresponds to the 

open time-interval t"(.r ) < t < t+(<r ). We shall denote further by 2* a family 

of canonical arcs of flight, which correspond to the arcs of 2 , and which are 

obtained by giving, with the above functions, a further conjugate vector-function 

y(t,<r). p) (t, (T , p) £ s* . 

The definition of the functions x(t,<r, y(t,a , p) will be supposed extended to 
*;« , 

the sets [ SJ, [S J. This means defining them for t = t (o-) and t=t"(<r)>-« 
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where the values of x,y correspond to the end-points of our arcs. The sets of 

values of x(t,<r) In the (t,cr) sets S',S,S+,(SJ will be written E\e,E+. 

[E], and those of the pair x<t,cr), y(t,v,p) In the (t,,., P) sets S*;S*,S*+, 

[S J will be E ,E , E +, [E ]. 

Finally we write, when (t, <r) c S and when x is a point of E sufficiently 

near to x( t, o ), 

h(t, a ), g(x, t, cr ), g (x,t ,o ) 

for the expressions 

g[ x( t, <r ), u( t, cr ) J, g(x, y(t, a)J. g[x,u(t,(r)J 
x 

We now suppose the following conditions satisfied: 

(i) the function h(t,<r) and for each fixed xe E 

the function g(x, t, cr) [ when (t, o-) is near 

to the values at which x( t, <r ) takes the value 

XJ, are smooth in S and satisfy at x=x(t, <r) 

the relation 

(4.1) < |¿=g(x,t)v)x +M^O. 
ocr X cr 9cr 

( ii) the function y( t, cr, p ) is continuous in [ S J ; 

(iii) the function x(t,cr) is smooth in [SJ; 

(iv) the maps S’-E*, S-* E defined by the 

function x( t, <r ) are satisfactory. 

These conditions, together with those in the definitions of the functions 

t (cr), t (cr), and the stipulations about the corresponding sets of (t,o- , p) 
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play a basic part in our discussion. Whan they are satisfied, we term 

^ a spray of flights from E to E , and 2 a canonical spray of flights from 
” S¡«X _ 

E to E . We term E or E the source, and E+ or e" + the destination, 
* J¡¡ 

of 2 or 2 , while E or E will be termed the corresponding flight-corridor. 

This terminology must not make us forget that some arcs of 2 do not originate 

in E ; they are the ones that start at t = - oo . All arcs of flight of 2 terminate 

in E+, but only those which start at a finite time originate in E". It should 

also be emphasized that we attach to each spray 2 a definite corresponding 

canonical spray 2 , i. e. we distinguish formally between two sprays defined by 

a same family of arcs of flight, associated with different families of canonical 

arcs. We also wish to emphasize once more the possibility of various forms of 

degeneracy in a spray: for instance, 2 may very well consist of subarcs of a 

given arc of flight. 

We shall use the notion of spray of flights in much the same way as that 

of field of extremals in the calculus of variations. 

5* The Hilbert independence integral. We denote by T(x), for X€ R, 

and term flight-time from x, the length of the time-interval for a line of flight 

issuing from the point x. By our synchronisation condition, this flight-time 
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depends only on x . A set of points In which T(x) Is bounded will be termed 

a set of bounded flight-time. 

Given a subset A of R, we shall term canonical set corresponding to 

A, the set A' of the points (x,y) of 2n-space, each of which lies on a 

canonical line of flight, such that their projections x lie in A. By a canonical 

set A of bounded flight-time, we mean the canonical set corresponding to a 

subset A of R of bounded flight-time. We shall denote further by 

4(x) j 

for x « R, the set of the values of the conjugate vector y for which (x,y) 

lies in the canonical set R corresponding to R. By a function 

y(x) € y (x) x € R , 

we shall mean a function defined in R, whose value at each point x lies in 

the corresponding set l¿(x) at this point. We term such a function y(x) a 

momentum in R, and we term l¿(x) the momentum range at the point x. 

A similar notation will also be used in relation to a given spray of flights 

2 . We shall write 

x ) , 

to mean, for x € [EJ, the set of the values of y(t, r , p) at those points 

(t,o-,p) € [S ], for which x(t,n-) takes the given value x. We shall write 

ljv(x) X € [E J , 
émJ 

in a function defined in [EJ, whose value at each point x lies in the 

^654 
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corresponding set ^(x) at this point. We shall refer to y^ix) as a momentum 

for 2, and to 1^( x) as the momentum range for 2 at the point x. 

On any rectifiable curve C of bounded flight-time in R, we define the 

curvilinear integral 

/ y(x) dx = jy( x) ^ds 
C 

for any momentum in R suchthat y(x)dx./ds is a bounded measurable function 

of the arc-length s along C. The functional, defined by this integral for the 

class of curves C and momenta y(x) x« R specified above, will be termed 

the Hilbert independence integral. 

We shall study the case in which this integral exists for every momentum 

y(x) « ÿ(x), x e R, and is independent, not only of the choice of this momentum 

but also, in large measure, independent of the choice of the curve C , provided 

that we fix the ends of C . 

To this effect, we introduce still further definitions. 

At a point x € R, we term direction of univalence, a direction 6 such that 

all the vectors ye 4(x) have the same projection y0 on this direction. Further, 

we term curve of univalence, a rectifiable curve C c R. such that at almost all 

points of C, the direction of the tangent to C is a direction of univalence. 

Finally, we term set of univalence, a subset A of R. such that all rectifiable 

curves C c. A, of bounded flight-time, are curves of univalence. 

For any rectifiable curve C , of bounded flight-time, situated in a set A 

of univalence, we express the Hilbert independence integral in terms of the arc- 

length s along C, by writing 

-12- 
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/ y(x)dx = J y[x( s)J 0( s) ds , 
C 

where x(s) is the representation of C in terms of arc-length., and where 

0 = G(x) = dx/ds. This integral does not depend on the choice of the function 

y(x) € y(x) X € R. 
« > 

A subset A of R will, further, be termed set of exact integrability, or 

simply an exact set, if it is a set of univalence, and if, in addition, for every 

rectifiable curve C c A, of bounded flight-time, we have, for each 

y(x) € y (x), X c R, 

/ y(x)dx = T(x ) - T(X ) , 
C 1 ¿ 

where x^, x^ are the initial and final points of C. 

Our discussion of univalence and exactness will use corresponding notions 

relative to a spray S, whose source, destination, flight-corridor and so forth, 

we denote as previously. 

At a point X 6 [EJ, we term direction of relative univalence, a direction 

0 such that all the vectors y c have the same projection y0 on this 

direction. We term curve of relative univalence, a rectifiable curve C C (EJ. 

such that, at almost all points of C , the direction of the tangent to C is a 

direction of relative univalence. We term set of relative univalence, a subset 

A of [E], such that all rectifiable curves C c A, of bounded flight-time, are 

curves of relative univalence. A subset A of [E] will, further, be termed a 

set of relative exact integrability, or simply a relative exact set, if it is a set 

of relative univalence, and if, in addition, for every rectifiable curve C c A, 

/¿654 
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of bounded flight-time, we have, for each y (x) í !¿v(x) xt [Ej, 

/ yL(x)dx = T(Xj) - T(x2) , 
0 

where x^x^ are the initial and final points of C. 

A more restricted form of realtive exactness arises when we consider only 

those curves C which are images of (t,<; ) curves under the map x(t,o ), 

and only those momenta which have the form y(t, ir , p) along them. In that 

case, by (2. 2)(b) and (2.1), the Hilbert integral takes the form 

/ yx dt + yx d? 
t or = /d. 

r 
! yx 

ir 
do- 

where r is a (t,o- ) curve whose image is C , so that the relative exactness 

condition reduces to the vanishing of the integral of yx dx , or equivalently 

to the vanishing of yx^ . This condition will therefore play a part in the sequel. 

Preliminary lemmas. In this section 2 is fixed. Our first lemma ' 

partly makes up for the fact that we make no assumptions about T(x), y (x). 
2# 

The other two relate the vanishing of yx to our other conditions. 
cr 

(6.1) Lemma. Let C be a rectifiable curve in E~, or in E, together 

with its end-points. Then C is of bounded flight-time, and there exists on C 

a bounded momentum y^ix) relative to 2, which is Borel measurable. 

( 6. 2) Lemma. If E+ is a relative exact set, then yx vanishes in S*+. 
- —-(J -- -— 

$ m 

(6. 3) Lemma. If yx^ vanishes in S ", then E" is a relative exact set. 

>!« 
If it vanishes in S then E is so. 
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Proof of (6.1). By (4. l)(iv), we can attach to each point of C, in¬ 

cluding the end-points, a neighborhood on C, which is the image of a curve r. 

We can suppose t bounded on each such and it then follows from Borel's 

covering theorem that T(x) is bounded on C • In proving the second assertion, 

we may suppose C small enough, so that there is a corresponding (t, o ) curve, 

which we again denote by F, and we can choose on F a continuous, and 

therefore bounded, function of the form y(t, o , p(c- )). To each point x e C we 

now attach the first point (t,o-) of F at which x(t, .r) ^x. By substitution 

in y(t,tr , p(o- )) we obtain a Borel measurable yv(x) on C, which is also 

bounded, as asserted. 

Proof of (6.2). Let F be the small rectifiable curve in S+, which 

corresponds, by setting t = t+(o- ), to a small segment parallel to one of the 

(r-axes. Let C be the image of I in E , and let yv(x) be a momentum 

relative to L . Since E is firstly a set of relative univalence, and secondly, 

a relative exact one, we may write firstly 

/ ys,(x)dx yx dt + yx d.r }, 
C ^ F 1 0 

and secondly equate the common value of the two sides of this formula to the 

difference At of t (a- ) between the ends of F, Here y now stands for 

y(t,o- > P) * and P for 3 continuous function of a , suitably chosen; moreover, 

by ( 2. 2) ( b) and ( 2.1), we have y x^ = 1. Hence we find that 

/ yx ds - 0 . 
F 0 
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This must now hold for F, however we choose the small segment parallel to a 

a-axis through an initial <r , and however we choose the initial value p =p(o ) 
u r0 r 0 

of a corresponding continuous function p(<r) along F, Since yx is contin- 
<r 

uous in [ S J, we find that each of its components yx^ must vanish at the 

point [t (aQ), o-o» PqJj i.e. at an arbitrary point of S +, as asserted. 

Proof of ( 6. 3). The two assertions are proved in the same manner, and 

we shall limit ourselves to the one concerning E’ and S' ". We assume then 

that yx^ = 0 in S . We denote by C any small rectifiable curve in E", 

of bounded flight-time. (If no such curve exists, we have nothing to prove. ) 

We represent C in terms of its arc-length s , by a function X(s), and we 

denote by 0( s) the direction of the tangent at the corresponding point, for 

almost every s. As origin for s, we choose a value at which 0( s) is approxi¬ 

mately continuous, and we denote by x, Ô the corresponding values of X(s), 

0(s). Further we denote by y any vector in (x) and by (t, Ô , p) a point 

S ’ for which x(t,i) =x,y(t,«r,p) =y. 

Approximate continuity of 0( s) implies that, given t > 0, there exists 

a closed set B of values of s , such that, for every sufficiently small interval 

I of the form 0 < s < 6 , we have 

( i) I 0( s) - Ô| < c whenever s « B o I , 

( ii) meas ( I - B) < € • meas ( I) . 

We now denote by F a rectifiable curve in S’, suchthat small arcs of 

C issuing from x are, in accordance with ( 4.1) ( iv), the images under the map 

x(t,ir) of small arcs \ issuing from (t,o ). We represent F in terms 
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of its arc-length by functions t(\), o (\), so that the point (t,o ) 

corresponds to X. = 0. Wo can then define a continuous increasing function 

s(\j, which vanishes at X = 0, and which gives rise to the corresponding 

arc-length along C, i. e. which satisfies the relation 

X[ s( X )] = x[t( X ),p- ( X )J . 

We shall denote by A the set of X for which s( X ) € B. 

This being so, let As, AT denote the difference in s and in T(x) at 

the ends of a small arc of C. We wish to show that 

(b) 

< 

the ratio -7- is bounded, 
As 

for an arc of C, issuing from x, 

which shrinks to this point, 

\ 
Lim 

We remark that (a) and (b) together imply the assertion of (6. 3). In fact (b) 

implies, on the one hand, that 0 is a direction of relative univalence at x, 

and on the other hand, since x was any point of C at which 0( s) is approxi¬ 

mately continuous, and so almost any point of C, that for every yv(x) c 1^(x), 

x c [E], we have, almost everywhere along C, 

dT[X( s) ] 
ds y£[x(s)]^ 

Moreover (a) implies that we can integrate here in s , to obtain the relation 

which defines relative exactness. The proof of (6. 3) is thus reduced to that of 

(a) and (b), and we now establish these two statements. 
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To this effect, let J be the interval of \ corresponding to an arc v of 

r, and suppose y mapped by x(t,o ) onto our small arc of C. Clearly 

AT = - At, where At is the difference of t at the ends of On the other 

hand, we have along y, by hypothesis, yx^ = 0, and, by (2. 2)(b) and (2.1), 

yxt = 1. Hence 

At = f yx dt( \ ) + yx dj (\ ) = f y»ds( V ) . 
j 1 x j 

Evidently this implies the boundedness of the ratio At/As, and so (a). Further, 

is we take \ to issue from (t, Ô ) and the corresponding arc of C to be small, 

y and so J will be small. Moreover, in the expression found for At, the 

vector y is a continuous function of X, obtained by taking y - y(t,ir , p) 

along y, while 0 is the direction 0(s), where s-s(X). In terms of these 

functions, if we set ip = <p(\) = yö - y Ô, we thus have 

For small J these last two terms cannot exceed certain fixed multiples of 

an arbitrarily small positive « : for on the one hand, <p is bounded in J-A and 

this set has s(X)-measure less than c As, by (ii) above; and on the other hand, 

jr\A has s( X ) - measure at most As, while in it, by (i) above and by the 

continuity (and boundedness) of y, the absolute value |</>| of the integrand is 

at most a fixed multiple of c . This completes the proof. 
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The theorem of Malus. This theorem of geometrical optics was re¬ 

formulated for the classical calculus of variations. We need to reformulate it 

again here, and to establish it, under greatly reduced smoothness assumptions. 

We shall need the following: 

(7.1) Lemma. In a canonical spravT wc have 

9 / 9*v n 

In this statement, x and y stand for the functions x(t,o ), y(t, a, p), 

and the relation asserted is for (t,cr , p) e S*. The lemma asserts incidentally 

the existence of the left-hand side, although we do not assume second derivatives 

to exist. 

Proof of ( 7.1. ) We denote by .( t, <r , p) and x, y, G . a point of S ' and 

the corresponding values of x,y,u; further, by ß any coordinate of a and by 

c the value at ( t, <r , p) of 

g 
y ]jß (h(t,o ) - g[x(t ,(r ), GJ} . 

By performing in different orders the operations of integration in t and differ¬ 

entiation in ß, on the relation ( 2.1), and then differentiating in t. we obtain 

successively 

t 
xp(t, o )-Xß(t,<r ) = / h( t, o- ) dr , 

) r. ößh(t,(r) . 

#654 -19- 



This last we multiply scalarwise by y, with (t,<r,p) for (t,o , p). Wethen 

add at this same point, for x = x, the relation 

d 
Xp(t, U- )~y(t, 0-, p) = -ygx(x, u)Xß(t, <r ) 

which there follows from (2. Z)(a), We thus find that 

9 f 9x , 
9t dp * = C 

at (i,i , p). it only remains to prove that c = 0. 

However c, by its definition and by (4. l)(i), is the value for (t, o ) = 

(t, <r ) of 

9 - . 
^ y g ( x, t, o- ) , 

and this vanishes by (2. 2)(b), since the set of o is open. 

(7.2) Co-ollary. On each arc of ï. . the quantity yx is constant. 
~ — - j- 

In fact, the proof of (7.1) shows that x^ is, for constant o , absolutely 

continuous in t. since its difference is an integral. The function y is also 

absolutely continuous in t by section 2. It follows that yx is absolutely 

continuous in t, and so constant by ( 7.1), for constant o , p. 

(7, *) Theorem of Malus. Let £ be a spray of flights with a relative 

exact destination E+. Then S possesses a relative exact source E~, anda 

relative exact flight-corridor E . 

Proof. By (7.2), yX(j is constant on each arc of 2 ‘ , and by (4.1) it is 

continuous in [ S J. The constant value on each arc is 0 by (6. 2) and the 

assertion of (7. i) then follows from (6. 3). 
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ö# Chain5 of ^^SilL5• The relationship between the classical calculus 

of variations and geometrical optics, which shows itself in the classical form 

of the theorem of Malus, becomes particularly close in the least time problems 

oí optimal control. In geometrical optics, the source E“. and the destination 

E , of a spray of flights E , would correspond to a pair of consecutive lenses 

or mirrors, and L to the family of light-rays passing from one to the other. 

Such a system must then be studied as part of a whole complex of such families 

of rays, fitied together between parts of optical instruments. Just as we fit 

together such families of rays in geometrical optics, we shall here fit together 

different sprays of flights. 

A finite or countable sequence of sprays of flights in R. 

V V V 

r 2’ ••• ’ “n’ 

will be termed a chain of flights, and the corresponding sequence of canonical 

sprays a canonical chain, if, for r = 1, 2,..., N-l,..., they "fit together" in 

inverse order, so that the source of each Z contains the destination of Z 
r r+1 

It is thus the canonical sprays that must fit, not only their projections the Z . 

#654 
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The destination of is termed the destination of the chain. A chain 

of flights whose destination is a subset of the target, will be termed a chain 

of flights to the target. A finite chain, consisting of N sprays, has also a 

source: the latter is defined as the source of £ r. Generally, the sources 
N 

and flight-corridors of the individual sprays of a chain of flights will be termed 

its constituent sets. We do not mention destinations: they are subsets of 

sources of succeeding sprays, except for the destination of 1. which is that 

of the whole chain. If the source or flight-corridor of an individual spray - 
r 

is a relative exact set for this spray, we term it a relative exact constituent 

set for the given chain. In the case of the source, this clearly implies that the 

destination of 2 . is a relative exact set for 2 , and a fortiori for 2 ,, r+1 - ’ - ' ’ r+1 

since the set 4v(x) for an xt contracts when 2 passes from 2 to 

'r+r 

By an obvious induction, we thus conclude from Malus's theorem (7.3), 

that if the destination of 2^ is for 2^ a relative exact set, then all the con¬ 

stituent sets of the chain of flights are relative exact for the chain. This is in 

particular the case, by the transversality condition (2. 2)(c), if the destination 

of 2j lies in the target. Thus 

(8.1) Theorem. For a chain of flights to the target, all the constituent 

sets are relative exact. 

Piecing together fragments of curves. Let h be the class of rectifiable 

curves in R, of bounded flight-time, and let R^, where v describes a set of 

positive integers, be a finite or countable system of disjoint subsets of R, 
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whose union is R. A curve C € K will be termed fragmentary, or a fragment, 

if its interior portion lies in some . The class of such fragments will be 

denoted by K0 . More generally, subject to conditions described below, h 

could denote a given class of rectifiable curves in a metric space, and h0 a 

subclass. We wish to describe a situation in which , can be derived from % 

by simple operations of addition and subtraction of curves. 

By a restricted algebra of such operations, we mean one in which we allow 

them only in so far as they lead from curves of K to curves of h. We shall 

define two such forms of addition: 

(i) if the terminal point of is the initial 

point of C , we term fusion of C. and C a 
¿ 1 2 

curve C made up of two adjacent arcs, consisting 

alternative embellishment 
leading to the same curve 

of Cj and C¿; 

(ii) if C2 is a closed curve which intersects 

Cj, we term embellishment of by C¿ a 

curve C which describes, first an arc of C up 

to an intersection, then C2> and then the re¬ 

maining arc oí Cj . 

In each case C^C¿fC are supposed to lie in the class J,. 

We define correspondingly two subtraction operations, which we term, 

respectively, those of cutting and trimming C from C. We term C the 
* 1 

result of this cutting or trimming, if C is expressible as the fusion of Cj and 

C2, or as the embellishment of Cj by C2. Of course, as the figures show, 

a given C may be expressible in more than one way as the embellishment of one 

curve by another. 

*654 
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It should be made clear that, from the point of view of classical analysis, 

the operation of embellishment is not uniquely defined: if is a closed 

curve which meets Cj in more than one point, there are at least two classical 

parametric curves, each of which is, by our definition, the embellishment of 

^1 by CZ' provided that it is a member of h . This means that the classical 

notion of curve is not suited to the algebra of curves, and our definition must 

not be based on it. Accordingly, we here identify any two classical rectifiable 

curves, if they give rise to the same operation of curvilinear integration, for 

continuous integrands f(x, G) which are functions of the point x and the 

direction G. 

In the sequel, the classes h and j,0 will be such that if a curve is a 

member, so is each arc, and also the inverse arc. Such classes of curves we 

term hereditary and reversible. In that case, the operation of cutting can be 

omitted: it can be carried out in two stages by fusion with an inverse arc, and 

trimming by a closed curve consisting of an arc and its inverse. Moreover, the 

operation of fusion is then associative and we can define the fusion of a finite 

number of members of h whose end-points agree in pairs where the definition 

requires this. On the other hand, we shall allow the two operations of embellish¬ 

ment and trimming to be carried out countably often. 

We denote by Kj the subclass of K whose members are obtained from 

those of j<0 by finite fusion and at most countable embellishment. We shall 

term the members of ^ reconstituted curves. From ^ we now define a class 

H2 whose members are obtained by at most countable trimming: we term them 

trimmed reconstituted curves. 
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If coincides with K , we term jr^ a reparable class of fragments, 

and the decomposition of R into the disjoint sets will be termed a reparable 

decomposition. In that case we say that R is the unimpaired union of the sets 

R^ . More generally, a class of subsets P of R, not necessarily disjoint or 

countable, will be said to have R as its unimpaired union, if it has the union 

R, and if further, there exists a reparable decomposition of R into disjoint R 
V } 

whose number is at most countable, such that each P is the union of those R 
V 

which are its subsets. 

We shall illustrate the notion of a reparable decomposition in the case in 

which R is the plane and K is the class of rectifiable curves in R. k h 
0 ' r 

K2 are defined as before in terms of an at most countable decomposition of R. 

Clearly the decomposition into two sets, consisting of the rational points, 

and the irrational points, is not reparable. 

On the other hand, the decomposition into three sets, which are a line 

and the corresponding open half-planes, is reparable. This we see as follows. 

We need only verify that each C « K belongs to K¿, and in so doing, we 

may suppose the end-points of C on the given line. Then C meets each of the 

two half-planes in at most countably many open arcs C , and the line in a 

closed set. We denote by y the directed segment with the same ends as C , 

by yv the directed segment with the same ends as C^, by y* the opposite 

segment to y , by T the closed curve consisting of the fusion of y , yV , 

and by r the embellishment of C by the finite or countable system of the r , 

We then find that r is also the embellishment of y by the finite or countable 

system of closed curves which are fusions of C , y*. Thus r € k , and bv 
V 7 V 17 7 

trimming off the we find that C c K2 . 
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In the applications that we shall make of the notions of this section, the 

fact that we allow only finite fusion instead of countable fusion, amounts to a 

restriction on the notions of reparable decomposition and unimpaired union. 

This restriction could be removed if we assumed the function T(x) continuous 

on each rectifiable curve of bounded flight-time, but we prefer not to do this. 

10. The fundamental theorem and its consequences. We are not in a 

position to extend very considerably the results of section 8. A finite or countable 

system of chains of flight to the target, will be termed a concourse of flights, 

and the corresponding system of canonical chains, a canonical concourse. By 

the constituent sets of a concourse, or of a canonical concourse, we shall mean 

those of the individual chains, or canonical chains. Their union will be termed 

the zone of the concourse, or canonical concourse. 

We shall make the following hypotheses: 

A suitable concourse. We suppose that there exists a concourse 

of flights such that 

(i) R is the unimpaired union of its constituent sets, 

(ii) R is the zone of the corresponding canonical concourse. 

(10.2) Bounded momentum. We suppose that there exists in R a 

momentum y(x) which is bounded in each bounded subset of R of bounded 

flight-time. 

In practice, in many instances, the verification of the first hypothesis 

may well amount to no more than the often rather arduous task of giving a com¬ 

plete and adequate description of the lines of flight. For in order to describe 
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them properly, there Is really little else that we can do except to group them 

into families, which correspond to our chains, and to divide these up into 

families of smooth arcs, which correspond to our sprays. In any event, (10.1) 

directs us to carry out this preliminary work in such a manner. 

The second hypothesis can usually be verified rather easily in practice, 

and in a much stronger form: for the lines of flight issuing from a subset A of 

R, which is bounded and of bounded flight time, normally remain, all the way 

to the target, in some bounded subset B of R, in which the function g (x,u) 

Is uniformly bounded for all relevant values of u. In that case, since the con¬ 

jugate vectors along a line of flight obey (¿. 2)(a), we easily verify an inequality 

of the form 

ly(x)|<eKit| =eKT<x> , 

provided that y(x) € 4(x) x« R, and that y(x) is bounded on the target, i.e. 

for t - 0. In that case, not only does there exist a momentum with the property 

required by (10.2), but every momentum has this property. 

We now come to our main result: 

(10. 3) Fundamental theorem. If R is subject to ( 10.1) and ( 10. 2). then 

R is exact. 

Proof. By (10.1) there is a reparable decomposition of R into disjoint R , 
V 

each of which is a subset of every constituent set that it meets, of our concourse. 

We define the classes of curves h'^, , jt^ accordingly, taking for K that of 

the rectifiable curves in R, of bounded flight-time. 
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Now, for any c< hQ, and any In which C lies, we have by 

theorem ( 8.1) 

where are the initial and final points of C, and where 2 is any spray 

of a chain of our concourse, such that meets the source, or the flight- 

corridor, of 2. From this relation, we deduce that T(x), regarded as function 

of the arc-length s along C, is absolutely continuous, and that its derivative 

in s is almost everywhere ys(x)dx/ds. This is true simultaneously for all 

relevant 2, since there are at most countably many sprays, provided that we 

exclude at most countably many sets of s of measure 0. This means that the 

derivative in question has almost everywhere the stated value for every 2 , and 

therefore that almost every point of C is a point of univalence on C , since, 

by (lO.lMii), every yc l^(x) has the form y^x) for some 2 at the point x. 

Hence we may rewrite our relation 

/ y(x)dx = T( x ) - T( x ) , 
C 1 ¿ 

where y(x) is now any momentum in R. Moreover, the relation in this form 

is now proved for every C € h . 
0 

The relation thus proved extends at once by addition to the case in which 

C is a finite fusion of members of hq, and in particular the left-hand side 

vanishes in that case if C is closed. The relation is therefore unaffected by 

at most countable embellishment of C, since its left-hand side then continues 

to exist, by (10. 2). The relation thus holds for all C € K. . For the same 
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reason, the relation is also unaffected by at most countable trimming, and must 

hold for all C « K , i. e. for all C « K . 

This completes the proof. 

(10.4) Corollary. With the same hypotheses, let C be any rectifiable 

c^rve in R of bounded flight-time, whose initial and final points are Xj. , 

and let y(x) be any momentum in R. Then 

/ y(x) dx = T(x ) - T(x ) . 
C z 

Further, if in particular, C is a trajectory arc, which starts at the ti_me t^ and 

ends at the time t , then 

/ y(x)dx < t -t . 
C 1 

Proof. We need only justify the last statement, and this follows from the 

fact that y(x) x < 1 along a trajectory, by (2.1) and(2. 2)(b). 

In particular, if we set Xj = x, and suppose x¿ on the target, we obtain, 

as a further corollary, the following: 

(10.5) Theorem. With the same hypotheses, let x be any point of R, 

Then the flight-time T(x) along a line of flight is the least time for transferring 

the point x to the target along a trajectory in R. 

Theorem (10. 5) is the basic existence theorem provided by the method. 
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