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This Final Report (Part One) deals with theoretical investi¬ 

gations performed from i960 to 1966 in the "Laboratoires de Spectros- 

copie Moléculaire" of both Faculté des Sciences de Paris and Faculté 

des Sciences de Dijon. It is divided in three sections : 

PART 1 - Calculation of Rotation-Vibration Energies 

PART 2 - Computation of Line Frequencies 

PART 3 Analysis of Infrared and Microwave Spectra 
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PART I 

CALCULATION OF ROTATION-VIBRATION ENERGIES 

Following a suggestion made by Professor H.H.NIELSEN, and 

in close collaboration with him, we have started in 1954 a research 

on the computation of high order rotation-vibration energies of po¬ 

lyatomic molecules. The goal of this program was to extend to fourth 

order the computation previously carried out to second order by Pro¬ 

fessor NIELSEN^1^. Due to significant improvements achieved in the 

design of infrared and microwave spectrographs, this extension had 

become necessary in order to analyse high resolution rotation-vibra¬ 

tion and rotation spectra obtained in various Laboratories, chiefly 

located in United States. 

We shall first recall the principle of this fourth order 

calculation of rotation-vibration energies. 

In the approximation where the energy of the molecule is 

considered as being the sum of energies of a rigid rotor and various 

harmonic oscillators, the Hamiltonian can be written down as : 

(1) H.H.NIELSEN, Rev. Mod. Phys. 23, 90 (1951) 
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H. 
1 P* 

r O1 
1 TTêT 2 a I 

aa 

- I p 
2 SO 

sa 

1 
- Z 
2 30 

* Qo s sa (1) 

«here Pa (aax.y.z) is a component of the total angular momentum P 

iilong one of the principal inertia axis of the equilibrium configu¬ 

ration, is the corresponding moment of inertia, Qgo is one of 

the normal coordinates used to describe the vibration of the nuclei 

and ps0 is the conjugate momentum to 0SO* In this notation, the 

subscript s characterizes the different normal vibrations and the 

subscript o characterizes the various components of a degenerate vi¬ 

bration. 

In this approximation , the rotation-vibration energy is ob¬ 

tained by solvirg the SCHROEDINGER equation 

H V, 
(2) 

The eigenfunctions yo of the Hamiltonian HQ are defined 

by rotational quantum numbers JIM and vibrational quantum numbers 

vim (l exists only for tvofold and threefold degenerate vibra- 
s s s s 

tions, ms exists only for threefold degenerate vibrations). 

In order to compute better values of rotation-vibration 

energies, one needs actually to use the rigourous rotation-vibration 
(2) 

Hamiltonian H established by DARLING and DENNISON . Like the Hamil- 

(e) 
tonian H^, it depends on equilibrium moments of inertia 1^ and force 

(2) B.T.DARLING and D.M.DENNISON, Phys.,Rev., 57, 128 (1940) 
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constants Xs of the harmonic potential, but it depends also upon 

other molecular constants : 

- force constants of the anharmonic potential 

*30 s'o' s"aH ’ kso s'o* s"o" s"o" 

- interaction constants between rotation and vibration 

so s'o i ** i 

(Coriolis coupling coefficients) 

(Coefficients of variation of moments and pro- 

so ducts of inertia with respect to normal coor¬ 

dinates) 

It is not possible to obtain rigourous eigenvalues of the 

DARLING DENNISON Hamiltonian. One must use a power expansion of H 

with respect to normal coordinates : 

H = HQ + + + + + . 

where the first term on right hand side Ho is given by equation (l). 

The next step is to write down the matrix H, using as basic 

functions the functions yQ defined by equation (2). Rotation-vibra¬ 
tion energies Eyr are obtained by diagonalizing this matrix with res¬ 

pect to all quantum numbers J K M vs ^ ms . 

- it can be shown that the matrix H is diagonal with respect to 

J and M 

- in order to diagonalize with respect to the quantum numbers 

vs, it is convenient to use the method of SHAFFER, NIELSEN 

and THOMAS ^^ i.e. to perform contact transformations and to replace 

W.H.SHAFFER, H.H.NIELSEN and L.H.THOMAS, Phys. Rev. 56,1051 (1939) 
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the Hamiltonian H with a transformed Hamiltonian : 

H* ^ T H T"1 = HQ + h} + + hj + hj + (4) 

(5) 

operators T and being chosen in such a manner that H0 + h!j , 
+ 

and H + h' + h2 will be diagonal with respect to quantum numbers vs. 

It can then be shown that the matrix elements of H off diagonal 

with respect to quantum numbers vg contribute to the energy only in 

the sixth order. 

+ 
- Evr will be obtained by diagonalizing H with respect to l 

l and m , i.e. by solving for the roots of the secular equation : 
s s 

As a consequence, a computation of rotation-vibration ener¬ 

gies requires the following steps 

1) Expansion of the Hamiltonian and contact transformations. 

This is described in the following references: 

[1] M.GOLDSMITH, G.AMAT and H.H.NIELSEN, J. Chem. Phys.,24, 

1178, 1956. 

[2] G.AMAT, M.GOLDSMITH and H.H.NIELSEN, J. Chem. Phys., 27, 

838, 1957 

[3] G.AMAT and H.H.NIELSEN, J. Chem. Phys.,27, 845, 1957 

[4] G.AMAT and H.H.NIELSEN, " " " 29, 665, 1958 

[5] G.AMAT and H.H.NIELSEN, '• " " 36,1859, 1962 
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The case where accidental resonances occur needs special 

consideration. This problem has been studied on three papers : 

[61 M.L.GRENIER-BESSON, G.AMAT and H.H.NIELSEN, J. Chem. Phys. 

36, 3454, 1962 

[7] M.L.GRENIER-BESSON, G.AMAT, Technical Note, Nr 3 Contract 

NR 61 (052) - 369 March 1962 

[8] S.MAES, J. Phys. Rad. 27,37 , 1966 

These papers correspond respectively to three cases of ac¬ 

cidental resonances CFermi type uu * 2 ua’ 1 Fermi type u> * uü’ + ui" , 

Coriolis type * tu')- 

2) Study of molecular constants in relation with the symmetry of 

the molecule. 

It is very important to know for a molecule of a given sym¬ 

metry which are the non-vanishing interaction coefficients and what 

are possibly the relations between these non-vanishing coefficients. 

This problem has been studied in the following papers : 

[91 G.AMAT and L.HENRY, Cahiers de Physique. 95, 273, 1958 

[loi L.HENRY and G.AMAT, •• " ,1 18, 230, I960 

[111 L.HENRY and G.AMAT, J. Mol. Spectroscopy, 5, 319, i960 

[121 L.HENRY and G.AMAT, J. Mol. Spectroscopy,15, 168, 1965 

The first two papers deal with the rotation-vibration inter¬ 

action coefficients O,^ * £s0 s*0» The third and the fourth 

ones deal respectively with the cubic and quartic anharmonic coeffi¬ 

cients kso s,o, s„o(, and kSn s, n, s„0„ s"a» 
A general survey of these problems can also be found in the 

reference : 

[131 L.HENRY, Annales ie Physique (to be published). 
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3) Computation of matrix elements of H 

In order to write down the secular equation (6), it is ne- 
+ + + 

cessary to compute the matrix elements of h2 . h^ and h^ . They are 

given in the following papers : 

[14] H.H.NIELSEN, Review of Modern Physics, 23, 90, 1951 

[15] M.L.GRENIER-BESSON, J. Phys. Rad., 21, 555, I960 

[16] G.AMAT and L.HENRY, J. Phys. Rad., 21, 728, i960 

[17] M.L.GRENIER-BESSON, J. Phys. Rad., 25, 757, 1964 

[18] S.MAES, Thesis Paris 1960 

[19] S.r.KURTZ, Thesis Ohio State University, i960 

+ 

They refer respectively to the matrix elements of h2 
+ + 

(diagonal [14] and off diagonal [15] [l6][l7])of h^ [I8]and of h4 [19] 

4) The tetrahedral X and octahedral X Yg molecules which are 

spherical rotors and have threefold degenerate vibrations require a 

special treatment. This problem has been studied in the reference : 

[20] J.MORET-BAILLY, Cahiers de Physique, 15, 237, 1961 

O 

O 0 

The research described above had been started before the 

beginning of contract NR - 61 (052) - 369. This contract has enabled 

us to complete this program under the best conditions of efficiency ; 

actually the work done with its support corresponds to the material 
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published in references [7] [8] [12] [13] [17] [20] . 

As an illustration, we shall give in Chapter I the results 

obtained in our study of the properties of quartic coefficients 

kso s'a' s''o" s"a" in the enharmonic potential [12]. 
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CHAPTER I 

The Quortic Anhormonic Potential Function oj 

Polyatomic Molecules 

The potential function of a polyatomic molecule can generally be expanded m a 

power series with respect to normal coordinates: 

where the first three terms V,, F,, and V, are, respectively, the harmonic, the 
cubic anharmonic, and the quartic anharmonic potentials. We studied Fi in 
Ref. 1 ; the present paper deals with the third term of the expansion : 

F2 
(2) 

We shall consider in this study axially symmetric, linear, and asymmetric 

molecules but not spherically symmetric molecules.1 

I. AXIALLY SYMMETRIC MOLECULES 

If we designate nondegencrate coordinates with subscripts n, n • • • and two¬ 
fold degenerate coordinates with subscripts b , , b\ b , , F2 can be written 

as 

Vi = F21 + Vn + Va + Vu (3) 

1 The anharmonic potential function is Riven for XY* tetrahedral and XYt octahedral 

molecules in Refs. 2 and S. 



1 2 

with 

I'^i 

r.,,> 

Vn 

r24 

he > h nn'n"n'"(jH(Jn'(ln“Qn"1 j 
n n'h"h ' '' 

n g n ’ £ n” ¿ n " ' 

he ^ 1 h tot'o'nH'(lto(Jt'a'(jn(jn' y 
tat'a' nn ' 

ta¿ t 'a' ; n ¿ r..' 

he ^ , h tat’a' t"a"n() taQt'a'fj fa“^*! j 
tat'a't* a"n 

tag t'a' g fa" 

he ^ htat'a'ra"t"'a"'(itaQt'a'Qfa"Qt'"a"' 
tat 'a' fa" t " ' a' ' ' 

tag fa' g fa" g f "a" ' 

(4) 

The nonvanishing coefficients k appearing in r.»i, Vn , Vn , and F24 are given in 
Tables I, II, HI, and IV a-e, respectively. The notation used for the nomencla¬ 
ture of the groups and for the symmetry species is the same as the one used in 
lief. 1. N is the foldness of the z axis; groups I are nonabelian [tV, DN , DNh, 

Dn,,(N odd), DtN/DdiHN even)] while groups II are abelian [C*, Cm, 
S2n{N odd), SníVíN even)]. The symbol m is used to characterize the various 
degenerate symmetry species: E\ , Ei, , Em , • • - . As in Ref. 1, a standard 
orientation is used for the degenerate normal coordinates qti, qn [see also Ref. 4]- 

It is important to point out2 that the symbols used for symmetry species need 
to be completed, for certain groups, with subscripts g, u or superscripts prime, 
double prime. In that case, there must be an even number of coordinates 
characterized by u or double prime, otherwise the corresponding coefficient 

kSa,’a'fa"s" a'" will vanish. Before describing the tables, it is useful to make two 

remarks. 
(a) The operator V2 has been split ir fo 17 different parts corresponding to 

the various types of combinations of four normal vibrations, namely: nnnn, 
nnn n\ nnnn, vnn'n\ nnn'n", Itnn, tt'nn, ttnn , linn, tttn, tttn, ttt n, tilt, 
(ttt\ ttt'i', i< '"T. These 17 parts need to be considered independently. 

(b) II is convenient to read the tables from the right to the left considering 
first the molecular group, then the symmetry species of the four particular normal 
vibrations under investigation in order to deduce the form of the corresponding 

operator and the nonvanishing coefficients k. 
The nonvanishing coefficients k appearing in F2i are listed in Table I. The 

presentation of this table is similar to the presentation used in Ref. 1. The sub¬ 
script is written between brackets in A(d , A(d , R(d , R(2> in order to recall that 
this subscript is not defined for the groups II. In this table and in Table II we 
use the condition n < n < n" < n", assuming furthermore that the nonde- 
generatc vibrations are labelled (n = l, 2, 3 • • • ) in such a manner that the 

- Tins statement holds for all the tables given in this paper. 
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smallest values correspond to vibrations of species A and the largest values to 
vibrations of species B. 

Table II gives, in relation with the symmetry species of the normal coordinates, 
the nonvanishing coefficients appearing in3 

{ X) ^Hnn(Çil “b Qti) 
n t 

+ QtiQt'i) -f k*rnn((jtiqi'ï — Qi^]i'i)]\qn 

tftt' 

+ EfEi* tlnn' (</n + 0q2n) + 2k t Inn'QtïQti} 
nn' t 

n<n' 

(5) 

+ tCnn* (qnQt'i + Qqtiíifí) + ktt’„„>(qnqc2 
11 ' 

w 
Ö 9<2</ci)] }çn9n' • 

Vn (as well as F2i , F23, and F24) is a sum of quartic forms which are totally 
symmetric. In these forms, 6 and 0' are equal to +1 or —1 depending upon the 
symmetry species of the normal coordinates.4 The values of 6 and 6' are given in 
Table II. To each quartic form of the coordinates which is totally symmetric 
corresponds a coefficient written as or k'^ or ktbcd. To designate the two 
coefficients k,Aed and k^ we use also the notation {3 = 0,1 ) where the index 
j gives the number of superscripts “prime.” 

For a definite combination of vibrations abed, it can be seen from Table II that 
either kabot or kabcd can possibly be nonvanishing for molecules belonging to a 
group I if the vibrations have the proper symmetry species given in the table. 
Under the same circumstances, both kabcd and k*bcd or both and kabcd can be 
nonvanishing when the molecular group is a group II. More precisely, the co¬ 
efficients kft'nn are nonvanishing only for groups II (provided t and t' belong to 
species Em = Em> ; n belonging either to species A or to species B). If n, n, 
t, t' belong to the symmetry species (/1(.) or B(.), /1(., or B0), Em , Em> respec¬ 
tively) required by Table II, and ktt'nn' will be nonvanishing 

—for groups II, 
—for groups I, only if n, n belong to species s, s or a, a; 
under similar conditions, kunn' and k(t'n„' will be nonvanishing 

1 The symbol means that for each pair of values of the indices t, t' we write 
only one term in the sum, the two operators kn»n{quqn + qi^)qA and *:2i,,n(çji?ii + ÇîïÇu)?«*, 
for example, being identical. The other summations ^ involving two, three, or four 
indices which appear in Eqs. (6) and (7), are defined in the same manner. 

4 They should be written as 0((nri- , or Btt nn' and . The subscripts are omitted in 
the tables for the sake of simplicity. The same remark holds for (Table III), aiatatOHai 
(Table IVa), /3i ---/38 (Table IVb), 71 ---79 (Table IVc), ii • • • Sn (Table IVd), ei • • • <u 
(Table IVe). 
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TABLE I 

Nonvanishing Coefficients k Appearing in F» 

Nonvanish- Symmetry speçies of 
ing coeffi--Molecular group 

cient« « »' h" 

kmnn arbitrary I II iV arbitrary0 

knnn'n‘ arbitrary arbitrary I II N arbitrary0 

A(d 
A(î) 

ß(n 

Am 

■4(2) 
Bin 
■ß(2) 

II1* 

IF 

N arbitrary 
N arbitrary 
W = 2,4 ... 2p ... 
A = 2,4 .. 2p ... 

k nnn 

Mm 

arbitrary ( '1<2) 
I öd) 
I ß(2) 

4 a) 
■4(2) 

ß(l) 
#(2) 

îlll- 
^llh 

;V arbitrary0 
N arbitrary0 
N = 2,4 ... 2p ... 
N = 2,4 ... 2p ... 

í-4(u 

! 4(2) 
4,,, 

ß(U 
j ß(2) 

knn'n"n"’ | ß(l) 
¡A,,, 
14,i, 
t 4(2) 

! 4,2) 
v4(i) 

4 d, 

4(2) 

4(,) 
Bn) 
ß,2> 

ß„) 

4,1) 
4,1) 
4(2) 

4 (2) 

4 (2) 

4(i) 4(i) 
4(2) 4(2) 

4(2) 4(2) 

ß(l) ß(l) 

ß<2) Ba, 
ß,2) ß(2) 

ß(l) ß(H 

ß(2) ß(2; 

ß(l) ßo, 

ß(2) ß(2) 

ß(l) ß(2) 

r 
iJii,j 

ii 
i H1- 

î; 
i 
i 
Oiih 
I 
I 

.V arbitrary 
N arbitrary 
N arbitrary 
.V - 2,4 .. 2p 
\ = 2,4 ... 2p 
.V = 2,4 ... 2p 
A = 2,4 ... 2p 
A’ = 2,4 ... 2p 
A = 2.4 ... 2p 
N = 2.4 ... 2p 
V = 2,4 ... 2p 

* 

» Set* Footnote 2. 
When II is written once for two, three or five rows, it means ‘imf the combi* .itions 

oi soe- ies written on these rows are not different from each other wh- . • he molécula*- group 
belongs to group category II. 

0 .V is arbitrary when n and n' belong to species Ao, or 4,2) ; n, isf be even ir -t (or 
n') Vrelongs to species ßm or ß<2) . 

for groups II, 
for groups I,5 only if n, n belong to species s, a or a, s. 

In order to illustrate the meaning of Table II, let us consider as an example the 
totally symmetric form which can be written with two nondegenerate vibrations 
n, n and one twofold degenerate vibration t taken twice. Depending upon the 

4 In this event the superscript prime can be omitted in k’ without producing any am¬ 

biguity. 
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TABLE II 

Nonvanishing Coefficients k Appearing in Vn 

Nonvanishing 
coefficients 

Symmetry species* of 
6'-Molecular group 

n n' W 

k linn 

klt’nnk i I'nn^ 

k ttnu ' + 1 

k 0» 
ttnn 

,c -1 

B<.> 

m arbitrary 
m arbitrary 

tf £ 3 
N = 4,6 ... 2p ... 

A{.) 
«<) 

m = m' Ar £ 3 
m - m' A' = 4,6 .. . 2p . .. 

A(.) 
A(„) 

ß(j) 

A (,) 
A (o> 

ß<.) 
B(o) 

m arbitrary 

m arbitrary 

iV ^ 3 

Af = 4,6 ... 2p ... 

A(.) B,., m = ^Ar Ar = 4,8 ... 4p ... 

k </) 
tt'nn 

tc +1 +1 p1 ’ 
»(.) 

-1 -1 A,., 

A(.) 

ß-., 
ßr., 

m = m' 
m - n' 
m + m' = \^N 

A £ 3 
Ar = 4,6 ... 2p ... 
N - 4,6 ... 2p ... 

* See Footnote 2. A(.) is written . r Af,) or A(0) (i.e., A, or A0 in groups I; A in groups 
II); Z?,.) is written for ß(,) or B(«) . The symbols s and a are defined in Ref. 1. 

b k*t>n„ is nonvanishing only r groups II. 
e For groups I, j = 0 if n, n' be v. g to species s, s or o, a; j = 1 if n, n' belong to species 

s, a or a, s. For groups II, ./ = 0 and 1. 

TABLE III 

Nonvanishing Coefficients k Appearing in Fjj 

Nonvan- Symmetry species* of 
ishing V w v ---——— Molecular group 

coefficients n ^ * 

A(.) 3m = N 
B(.) 3m = }^N 

A = 3,6 ... 3p ... 
A = 6,12 ... 6p ... 

+ 1 A(.) 

+ 1 B(.) 
— 1 A(.) 

-1 B(.) 

m' = 2m 
m' - 2m - 
2m + m' = A 
2m -f m' = i^A 

A è 5 
A - 6,8 ... 2p ... 
A = 3; A â 5 
A = 6,8 ... 2p ... 

+ 1 Ai.) m" = m + m' A è 5 

A: o) b + 1 
-1 
-1 

B,.) 
A(.) 

B(.) 

m" = m + m' — ^A 
m + m' 4- m" = X 
m + m' + m" = >,¿Ar 

A = 6,8 ... 2p ... 
A = 3; A è 5 
A = 6,8 ... 2p ... 

• See Footnote 2. A , ) is written for A,,) or A(0) (i.e., A, or A0 in groups I; A in groups 
II); B*.) is written for /?<,) or B(0) . 

b For groups I, j = 0 if n belongs to species A, or B, ; j = 1 if n belongs to species 
A, or B„ . For groups II, j = 0 and 1. 
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molecular group and the symmetry species of nn and t, this form (when it does 
not vanish) is one out of the following four: 

W = kunn>{q2ti + q)i)qnqn’ , 

X — ktinn'^qtl Qt'i'jqntfn' > 

y ~ 2kttnn’<InqtífÍnQn' > 

Z = kttnn'iqtl qii^nQn' “I“ 2kt inu’QtiqtiqnQn' • 

W occurs, for example, when the symmetry species of n, n, t are, respectively, 
AiAiE in group Csk or Du , AAE in group C3 or C4, BBE in group G\ , or B-ßiE 
in group Du • X occurs, for example, for A\B\E in group Du , Y for A\B>iE in 
Du ,5 and Z for ABE in . 

TABLE IV* 

Nonvanishing Cokkficients k Appeabinu in V21 

a Nosivaiiishing coefficients kùh 

b. Nonvanishing coefficients 

Group 1 I ond I Groups U 
Spmmnry Species 

of II' 

! 

Moleculir Groups 

t ß, ß* ß3 ß. ß5 ß6 ß; ß. 

0 1 -1 3 -3 -1 -1 3 3 

m' * J m N » 7 

m' « 3 m - N NmS,H»7 

0 -1 -1 3 
3 

. - . 

-1 1 -3 3 
3m » m'- N 

( J..I m-m’. —■ 1 

N»S 

0 1 1 1 

. 

0 

1 

1 

0 

1 

1 -1 -1 1 m. m> iL N>3 ; N»S * 

0 

1 

1 

0 

1 

0 

1 

0 
— 

-1 

0 

0 i c 

I 
1 -1 

1. ... 

m.m'n ü. 
4 

. 

N.4,e...4p. 

IVb 
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Table III gives the nonvanishing coefficient k appearing in3 

he “ { X! [^<nn(9u — 3çn<?<2) + ktttniqu — 
n t 

+ US [ktwniqnqt'i ~ quri -f 2r¡qnqriqr2) 
t t' 

t ' ?ét 

+ kut'n(q2tiqt’2 — q2tft'2 — 2r)'q nq tiq n)] (6) 

■f S[ [ktrrniqnqt'iqri — qttfetfiri + yqnqriqri + yqr/jrtfjri) 
<*f V¿* 

+ ktt’rjqníir-iqri — q^r^ri — yqnqrtfln — yqnqriqry^q» , 

where y and y ai^ equal to +1 or - 1 (see Table III) and where klltn = kttt'„ = 
ktt'fn = 0 if n belongs to species Aa or Ba while k'utn = k'tir'n = ¿(Vr» = 0 if n 
belongs to specues A, or B, (in groups I). The presentation of Table III is very 
similar to the one of Table II. 

The part of the quartic potential which involves four twofold degenerate nor¬ 
mal coordinates can be written as follows:3, fi 

Vv 
he S Í^<íí/(«i</n + atfiU H- atífiiq^i) 

“b kfttticttffiiqa + cw/uç^)] 

+ SS [k\i\t'(ß\qi\qi'i + ß'iq'viqt'-i “b \qr/lt-2 + ßiqnqrflt'i ) t i ' 
< v< 

+ kutJt'(ßf,qhq,’2 + ßtf/rjjfi + ß-qt^ittficx + 1^7117/2^2)] 

i V1' r/ O) ,22, 22, 22 
+ Z- l«///'«'(7i7/i7/'i i y/jt/jf-i -r y.\<¡i\<iL<-¿ 

11 ' (7) 

2 2 
+ 74<?z27<'i + 757/i7'27/'i7<'2) 

+ k*tt’\• (7e7a7<'i7i'2 777/2^//^7/'2 

+ 787/17/27''1 "b 787'i7'27/'2 u 

+ S S' [/- ■/«/'/' (5i7ii7/'i7''i “b ¿27/27 /'27 "2 “b ¿;í7/i7/'27/*2 
/ / '/' 

/ Vi:'"^/ 

*b òi<fr>(iriqri “b faqnqrfii'xqri "b ¿c7/i7'27/'27«"i ) 

6 In addition to the comivent made in Footnote 4, it needs to he noted that, for the 
sake of simplicity, a superscript (j) has been omitted in the various coefficients <*•••* 
which should actually he written as uuluotiutt ■ ■ ■ «ieícr i " • 
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+ /.• iu\’(h(i\\<¡fi<¡r2 4" àtffttflctfiri + ô//í27/^/(- 

4- bu/Jitflrtflri 4- ànfJn(li^Jt'i</ri 4~ òitfjnílitfjrtfjrí)] 

1111"i " ' 
/^/ Vi V( ' ' 

4- ttfln<!V\<¡(-1/1 c--1 4" U<lci<lt'2<lr\<ici 4- ¢57(1^/(^//-17/---2 (7) 

4“ í67/27í'i7'"-7('''í 4" t-f/tiflc/ln/Jc-i -f i^¡ci(¡t'\<¡r\<lc'i) 

I , I -T h tcr¡ "i t-;<¡i\<ir\(¡r\(it'"2 4“ 

4- ¢117/-//(-27(-17(---^ + ¢127(27(-27(-27/---1 4* ¢1:17/17/-27/-17/---1 

4- ¢1-17(27/-17(^7(^1 4- tib<¡n<jr¿<jr‘>(i¡"'i 4- ¢167(27/-17/-27/---2)] ¡. 

Tli(> non vanishing coofiicicnls á)]], , Ám’,- , , /r,(^r , and kÜh-r" are given 
in Tallies JVa, IVh, I\rc, I\rd, and IVe, respectively, together with the values of 
coefficients «, ß, 7, Ô, ¢. The totally symmetric quartic forms involving ala2a:iß\ß2 
■ ■ ■ d¡7i ■ • • 7.-.01 ■ ■ • 5«fi ■ • ■ ts may occur for a molecule belonging to a group I 
or II, while those involving aAabßbßR ■ • • ß*ye ■ ■ ■ yj,- ■ ■ • ¿I2ei| • • • e,6 occur for 
molecules belonging to groups II. The anhannonic coefficients are designated 
by /,• in the former case and by /,* in the later case. 

The Tables IV are divided into sections by horizontal lines. The symmetry 
species of the degenerate vibrât ions are defined by conditions on the m’s. It should 
be noted that condit ions writ ten in different horizontal sections are not com¬ 
patible. Accordingly there is zero or one horizontal section to consider for each 
combination of four given degenerate vibrations. The same remark holds for 
symmetry species of degenerate and nondegenerate vibrations in Tables II and 
III. 

It may happen, as can be seen from the tables, that more than one symmetric 
form can Ik- built with four given coordinates. Any linear combination of these 
symmetric forms is of course also a symmetric form. One could then define 
other anhannonic coefficients k which would appear as linear combinations of 
ours. This situation is <|iute common for molecules belonging to groups II. It 
concerns only coefficients related to four degenerate coordinates when the mole¬ 
cule belongs to a group I. 

Let us consider, for example the term in To, corresponding to two degenerate 
vibration." / and / (each of them being taken twice). We shall assume that the 
molecule belongs to a group f'A, or l)s with N - or õ, (i, 7 • • • and that t and 
I belong to the same species . According to Eq. (7,) and Table IVe, the term 
under considérât ion can be written as 
. 00 •» -i 0 00, 

( 7' i7'' i 4- 7 ' -’V ' ' 4~ 7(/4--.- 4“ 
./ 0 •* «»o 

4“ kt tr r(tft\<fr\ 4- kri'lri + -7/17/27/-17/-2)- 
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Actually this formula can be rewritten for example as 

Kuct'iqhqU + qWt'i - ‘¿qixq^lfxqri) + K'twi'iqWrx + qWn + '¿qnq^lrxqt-i) 

with 
Kth'r — ktu'i' , 

Kttt'r = kurt' "b kurt' ■ 

Remark 
In Ref. / we tiave written the cubic anharmonic potential using coctticients 

k^’c'^o’ and we have given the relations which exist between these coefficients 
when they are nonvanishing. In the present paper we have found it more con¬ 
venient to emphasize on the totally symmetric forms and to write the quartie 
anharmonic potential using coefficients k^X*,'" (or k*,(1X’")- The two presenta¬ 
tions are of course equivalent. The cubic anharmonic potential can very well be 
written with coefficients Âv«* (and possibly A*,-s- for molecules belonging to a 
group II), since me totally symmetric form (for groups I) and possibly two (for 
groups II) can be built with three given normal vibrations. In the quartie anhar¬ 
monic potential a larger number of symmetric forms can be built with four given 
normal vibrations when these are twofold degenerate and the presentation used 
in this paper proves to be more convenient than the one used in Ref. 1. 

II. ASYMMETRIC MOLECULES 

The nonvanishing coefficients k for an asymmetric molecule can be obtained 
very easily since, for such molecules, there are only nondegenerate normal 
vibrations n, n , n , n . The coefficients Ann'n'n"' will be nonvanishing if among 
the four coordinates nnnn" there are zero, two or four characterized by sym¬ 
bols B, 2, u or double prime. These results can be found in Table I if A is taken 
equal to 1 (groups Ti , (\ , (\) or to 2 (groups C2, ('-¿i, , (1^ , lh , Aa). 

III. LINEAR MOLECULES 

In Tables I, II, and IV the rows marked with stars indicate the anharmonic 
coefficients which are nonvanishing for a linear molecule. For the symmetry 
species of the nondegenerate vibrations nnn'n", one has to replace Am or Au) 
by zL+ wMe ^ie degenerate vibrations belong to species II The symbols 

a»d II hav0 t0 be <*onipleted with a subscript g or u if the group of the 
molecule is /)**, . Here again, a nonvanishing coefficient k may involve zero, two, 
or four vibrations u. 

■ The group is identical to (’4 . 
* For groups Di and Dik the common nomenclature of symmetry species is AHJiJh 

instead of AxAiHiB\ used here. 
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PART 2 

COMPUTATION OF LINS FREQUENCIES 

The results obtained foi the rotation-vibration energies of 

polyatomic molecules and described in Part 1 have been used to compute 

the'frequencies of lines in rotation and rotation-vibration spectra. 

Rotation Spectra 

The rotation spectrum of ax'iaiiy symmetric molecules in an 

excited state vr = i ft beeing a twofold degenerate vibration) has been 

studied in two papers : 

- M.L. GRENIER-BESSON and G.AMAT, J. Molecular Spectroscopy, 

8, 22, 1962 

- P. KUPECEK, J. Phys. Rad., ¿5, 831, 1964 

refering respectively to molecules with a threefold symmetry axis and 

to molecules with a fourfold symmetry axis. In Chapter II, we shall 

give the results obtained for molecules belonging to a symmetry group 

C3V 



Rotation-Vibration Spectra 

Our work on the computation of rotation-vibration lines in 

the spectra of linear and axially symmetric molecules is in the pro¬ 

cess of being published as a Monograph by the National Bureau of 

Standards. 

The case of spherical tops (tetrahedral XY4 and octahedral 

XYg molecules) requires special attention due to the high symmetry of 

the force field. Two papers have been published on the threefold dege¬ 

nerate fundamental bands of such molecules : 

- J.MORET-BAILLY, Cahiers de Physique, 15, 237, 1961 

- J.MORET-BAILLY, J.Molecular Spectroscopy, 15, 344, 1965 

We shall study this problem in Chapter III hereafter. 
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CHAPTER II 

Rotation Spectrum of Moletules with Cav Symmetry in nn 

Extitod Vibrational State vt_1 

I. INTRODUCTION 

The rotational transitions J + 1 of a nulccule wi H axial symmetry in 
an excited vibrational state vt = 1,/(= ±1 were calculated for the first tune in 
1950 by Nielsen (/). The formula obtained made it possible to interpret the 
transition ./= 1 —► 2 of the excited vibrational state vH = 1 observed in the 
microwave spectrum of methyl cyanide and methyl isocyanide by Kessler et al. 
(2). Nielsen introduced into the energy matrix, on the one hand, the matrix 
element (vt, It, K \ h¿ \ v, ,lt ± 2, K ± 2) oi the second-order transformed 
Hamiltonian, responsible for /-type doubling and /-type resonance “2,2” and, 
on the other, certain diagonal elements of the third-order transformed Hamil¬ 
tonian. 

Gordy and his co-workers (5, 4) extended Nielsen’s formulation to the case 
of transitions corresponding to higher values of J. They thus interpreted the 
transition ./ = 2 —» 3 of methyl acetylene and the transitions J = 4 —» õ and 
,/ = 8 —> 9 of trifluoromethyl acetylene in the excited state t’10 = 1. 

Nielsen’s theory was satisfactory for accounting the general aspects of the 
rotation spectrum of molecules with a threefold axis belonging to the group 
C-ir . However, some of the frequencies calculated in accordance with this theory 
differed significantly from the observed frequencies; moreover, for certain coeffi¬ 
cients, and Djk in particular, it led to values in disagreement with those 
obtained by other methods (study of rotational transitions at the lowest vibra¬ 
tional level and analysis of the rotation-vibration bands observed in the infra- 



27 

red). These difficulties suggested that the matrix used for the energy was not 
complete. 

A systematic inventory of the matrix elements having become possible as a 
result of the general calculation of rotation-vibration energy by Amat el al. (5), 
Maes (6) reconsidered the interpretation of the transition J = 1 —> 2 in the 
excited state ^ = 1 of the methyl cyanide and methyl isocyanide molecule. To 
represent the energy, he employed a matrix containing all the diagonal elements 
of the third-order transformed Hamiltonian, and also the elements of i-type 
resonance “2,-1” calculated by Grenier-Besson (7). This new formulation 
led to reasonable values for the Coriolis coupling coefficients fsisi of the methyl 
cyanide and methyl isocyanide molecule. Experience has shown, however, that 
more accurate determinations of the f coefficients and other molecular constants 
are obtained more safely from transitions corresponding to higher values of J, 
in view of the availability of the measurements of a large number of lines for 
the computation. 

II. FREQUENCY OF LINES FOR A TRANSITION J —>+ 1 

The object of the present article is to generalize Maes’s results so as to obtain 
a formula expressing the frequency of the lines for an arbitrary rotational transi¬ 
tion 1 of a molecule with C3l symmetry in an excited vibrational state 
vt = 1. However, the matrix employed for the energy is rigorously valid only 
insofar as the rotational quantum number ./ is not too large and also when 
there is no accidentally strong resonance (see below, (b) ). In writing this matrix 
account has been taken of the symmetry properties of the molecule (8) and the 
order of magnitude of the contributions of the various matrix elements to the 
rotation-vibration energy (.9). 

The frequency of the transition ./-+./+1 for a molecule with (\v symmetry 
in the excited vibrational state vt = 1 is given by the equation: 

y - 2B*(J + 1 j - MJjU -t- l)'1 - 21)jk(J + 1)(/(/- I)' 

+ ^ 

±4c/j(J + 1) 
or 

kj/iJ +J)3 

(//,. — (',. + (+ <;)(KÏ — \) 

+ 2p*(J + 1)(/(/ — 1) 

if /(/= + 1 

where 

~ Djk + Vu + 
12r 

//, - - 2C, ^ ’ r J 

(D 

ÏÏKI* + 1, 

(2) 

2qj 8r‘ a* = rjtj — 21) ¡K + ~>J + P T B" _(1" + (<^ ^ Bv_ Cv _ 2Cv f (3) 



■ R nnH C destenate the constants of inertia; Dj and 
n the Coriolis coupling escient 

S7 ’;t, the — of f-type doubling -2,2", ‘"e constant of - - - 

nance2, — 1”; and ,w , the coefficient of the term m Kt J(J + ') n> the th.rd 

order energy (see Ref. 6). /ï mnv be obtained 
The equation that follows from the earlier theory (1,3, 4) n V 

by substituting in Eq. (1) : 

T?fJ 2(2Dj + I)jk)Ï, 

0 

^r'tlrd riUhrvàüdhy If K,,. (1 ), -WO remarks must be made: 
(")"/» writing tht matrix of the energy, only those matrix elements that 

make a sixth-order contribution have lieen retained, m aceordance with he 
diilsiol in Ref. 9. The order of magnitude of the various matnx elements 
a 1 it-f‘ict unon the value of the rotational ciuantum numbers, and \n( a\( 
depends in fact upon the vanu « . j values of the rota- 
assumed that J and K are small (J = K = \). _ K ^ \) 
tional quantum numbers (d = K = 30 and, especially, J 1 »; 
•idditional matrix elements may contribute to the energy. The xalu , 
K t 30 beyond which new terms must he added to the equations vanes fom 

0n(b)'/ntil:;!1 «¡dar cuati™, a perturbation method has been used to 

ÍLT r 
smkll in relation to the differences betwwn the corresponding diagonal ciernen ., 

which implies the following two inequalities: 

1^,^ ,./(./ + t) « I R* - + C'ï I ’ 

I r j VÃTTV « I " C’ " 2C*r 1 • 
1 kVv.f n result of particular values of the molecular constants, 

“ mÄ ^ ÄthTno longer holds beyond a certain value of 
or th oth,1 ’f ^ 1 resonance”). 1« this case, the contnbution 

J{7 7 n-d matrix elements cannot be calculated by a perturbation 

met'luxl'.'ai'idTis neekssary to pro««! to a numerical solution of the secular 

equation. 

, A, m h» shown, the l-type doubli,« constant varies with J: 

q, *= qn - H + 

,.„„s,„nts ... . are identical with the coeliicients f" and & of Ret. 7. 
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HI. APPLICATION TO THK IXTKRPRETATIOX OK THE MICROWAVE 
SPECTRUM OF TRIFLUOROMETHYL ACETYLENE 

With the aim of verifying the above formulation, we have studied the rota¬ 
tional transitions .! = A -• õ and ./ == 8 ^ !) of the excitad vibnitional level 
i’u) = 1 of trifluoroiiK'thyl acetylene. As stated above, thest' transitions have 
been observed in the microwave region by Anderson < / al. (.^) and interpreted 
in the light of Nielsen’s theory. The agreement between theoretical and observed 
frequencies was not completely satisfactory. 

In the excited vibrational state vt — 1, the 2(./ -f- 1) lines belonging to the 
transition ./ —»./ T 1 are arranged in the following fashion: 2 ./ lines are grouped 
together in the middle of the interval separating the two extreme lines. These 
two lines, which are rather far from the central group, correspond to Kl — \ = 0 

Fio. 1. Transition - 8 —* 9. The slope is equal to -18 D 
UK 

TABLE I 

Moi.ki u.k cf, -- c eu 

Our rosllits Results of A,'I',8,0 

r, = 1 () 

RC 
Ru — o,, -f c„f 

Ojk 

/)./ 
p 1./-1) 

2SS:L 15» Me 
4Õ5 ± 10 Me 
0 001)25 Me 
0 <HK)22 Me 
0 025, Me 
0.90; Me 
0.90; Me 
0.574 ± 0.005 

2888.40 Me (B„ = 2877.948 Me) 
458 Me 

. 0.0070 Me 0.0063 Me 
’ 0.(XK)2Me 0.00024 Me 

0.90., Me 

I 5 



30 

and are affected by /-type doubling. The lines of the central group correspond 
to Kl — 1 0. In interpreting them, it is convenient to distinguish ./ — 1 
doublets, for which | if/ - 1 | = 1,2, • • • , J - 1, and two singlets, correspond- 

ingto/C/ — 1 = + 1)- 
Th? differerce and half-sum of the frequencies of the lines Kl - 1 = 0 im¬ 

mediately give ({j and vu = 2B*(J +1)- ^Dj(J + 1) : the half-sums of the 
components of the central group give ./ — 1 equations depending only on DjK and 

The frequencies of the two singlets and the differences between the components 
of the doublets of the central group give J + 1 equations which (r/j lieing known) 
depend only on p* and ( B, — Cv + CVf ). 

This method applied to the transition ./ = 8 -> 9 allows us to determine the 
five constants ry(y„H, , ^8\ Djk , p* and (Br - C, + C¿) from 18 experimental 
frequencies. 

From the curve of Fig. 1, it is seen that the plot of the halt-sums of the fre¬ 
quencies of the components of the doublets versus, {Kl 1) , gives a stiaight 
line. Intersection of the straight line with the vertical axis and its slope are, 
respectively, and-18 Djk ■ (/=4) 

The same method applied to the transition ./ = 4 õ yields values of iV “ ' 
and 10 Djk ; we thus know two values of from which we may deduce B* 

and Dj. 

Transition Observed (Me) Calculated by us Calculated (A,T,S,G) No, 

J = 9 

i = ±r K = o 
I = ±1 A = -Cl 

51,900.04 
51,903.42 

51,900.04 
51,903.39 

51,900.09 
51,903.55 2 

3 
4 
5 
0 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

I = ±1 A = 4=2 51,901.68 
I - ±1 A = ±2 51,890.86 
Í = ±1 A = =F3 51,899.99 
¿ = ±1 A = ±3 51,899.44 
i = ±1 A = ^4 51,898.01 
' = ±1 A = ±4 51,899.99 
I =» ±\ A = T5 51,896.86 
/ = ±1 A = ±5 51,899.99 
I = ±1 A = TO 51,894.95 
/ = ±1 A - ±0 51,899.44 
I *= ±\ A = 4=7 51,892.88 
Í = ±1 A = ±7 51,898.01 
Í - ±1 A = 4=8 51,890.62 
/ = ±1 A = ±8 51,897.63 

51,901.87 
51,8.)0.89 
51,900.36 
51,899.26 
51,898.77 
51,899.68 
51,896.00 
51.899.42 
51,895.04 
51,898.74 
51.892.71 
51.897.72 
51.890.42 
51,890.39 

51,901.66 
51,896.74 
51,900.14 
51,899.33 
51,898.57 
51,899.95 
51,890.87 
51,899.90 
51,894.99 
51,899.45 
51,892.94 
51,898.09 
51,890.64 
51,897.00 
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Il we pul 

ßv* = /i/ - /),* + p 

P 
* p — 2Djk + iï 

- c, + C„ f ’ 

we can calculate Bv+ and p, constants which can he simply expressed in terms of 

the molecular parameters. 

F3C-C--CH Vl0 = l J = 8*9 

Fio. 2. The numbers 1 and 2 refer to frequencies calculated by Anderson et al. and by 
us, respectively. 

TABLE III 

Transition Observed (Me) Calculated by us Calculated (A,T,S,G) No. 

./ = 4-5 

I = ±V K = 0 
/ = ±1 K = Tl 

/ = ±1 K = ± 1 

/ = ±1 A' = ^F2 

/ = ± 1 A’ = ± 2 
/ = ±1 A = =F3 
/ = ±1 A = ±5 
/ = zfc 1 A = :-F4 
Í = ±1 A = ±4 

28,835.26 
28,834.45 

Í28,816.48 
128,852.61 

[28,833.81 

28,833.22 
28,834.20 
28.832 ± 1 
28,834.20 

28,835.26 
28,834.46 

/28,816.52 
/28,852.65 
28,833.83 
28,833.79 
28,833.15 
28.834.21 
28,832.38 
28.834.22 

28,835.31 1 
28,834.65 2 

i28,816.52 3 
128,852.72 4 
28,833.94 5 
28,833.78 6 
28,833.19 7 
28,834.12 8 
28,832.48 9 
28,834.03 10 
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Ar 
o + _ d . _Br, Bs - Br + B _ c _ 2CV f 

nu + 
8r2 

ß,, - Cr - 2Cr r ' 

If the equilibrium eonfigumtion of the moleeule ie known the inertia constant 
C can be calculated. Using B.+ and C. as approx,mate values of R and C., 
Ls*then possible to obtain f with excellent accuracy from the value o 

(B. - r, + r,() 

“fgitTur results together with those previously obtained by Anderson 

el al. This table suggests the following remarks: transition 
(l) The value 6.25 kc g,ven for »„ s that obtamed ^rom ^ 

s»” r,trrhJie; LL 

-TZ krloes not df^tly "e value for this constant 

“kt valul ,0 kc given by 

Anderson et al. for the state vt 1 • 

calculated 2 

observed 

calculated I 

28,832 28,833 

F3C - C = CH 

28,835 

J = 4^5 

, , an(1 o refer to frequencies calculated by Anderson et al. and by 
us,XecJveV:"cúl"dn2o,rÍt,e üae bl 9 in the nerved speetru-n i, very peor (±1 

Me). 
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(2) Further experimental results would be necessary to determine with 
certainty the variation of q with J. The data utilized are not precise enough to 
justify the assertion that the difference of 4 kc observed between the values of 

and q^“^ is significant. 
Ci) The two quantities (Bv - Cv + Cv{) and p* may be determined by using 

either the transition ,/ = 4 —► 5 or the transition J = 8 —> 9. Since these transi¬ 
tions furnish 10 and 18 experimental frequencies, respectively, the values deter¬ 
mined from the latter are much more exact than those determined from the 
former. The values of (ßB - Cv + ) and p* given in Table I were obtained 
from the 18 experimental data of the transition J — 8 —> 9. 

(4) In calculating the coefficient f, the value Cv = 5700 ± 50 Me has been 
used for the constant of inertia Cv. Precision on f is very good, and the value 
obtained, f = 0.574, seems more likely than that given by Anderson ei al. 
(f = 1.5), which is incompatible both with the value of (Bv — Cv CVÇ) ob¬ 
tained by the same authors and with the requirement 0 < | f | < 1. 

Having thus determined (Table I, column 2) the constants that occur in 
Eq. ( 1 ), we have calculated the theoretical frequencies of the lines of the transi¬ 
tion J -= 8 9 and obtained the results presented in Table II. They are in very 
good agreement with he observed frequencies. Figure 2 shows the experimental 
lines, the lines calculated by us and those calculated with Nielsen’s equation by 
Anderson et al. This comparison exhibits the progress that Eq. (1) introduces 
in the interpretation of the spectrum. The same constants have been used to 
calculate the lines of the transition ,/ = 4-+5. Table III and Fig. 3 show that 
the agreement is still very good. To avoid crowding, only the lines of the central 
group (Kl — 1 7*0) are represented in Figs. 2 and 3. 
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CHAPTER III 

Cfllculotion ot The Frequencies of the Lines in o Threefold 

Degeneróte Fundamento! Bond of o Sphericol Top Molecule 

I. QUANTUM NUMBERS 

The vibration-rotation energy levels are characterized by the following quan¬ 
tum numbers: (a) a vibrational quantum number vx for the nondegenerate vi¬ 
bration; (b) two vibrational quantum numbers and A for the twofold de¬ 
generate vibration; (c) three vibrational quantum numbers vt, (, and m, (s > 2 ) 
for each threefold degenerate vibration; (d) three rotational quantum numbers 

J, K, and M. 
Suppose here that the value of the vibrational quantum numbers is zero ex¬ 

cept possibly for three of them (v.(,m,), corresponding to one threefold degener¬ 
ate vibration characterized by a definite value of the subscript s. These non¬ 
vanishing quantum numbers are designated as v, (, m, omitting the subscript. 

As the energy of a free molecule does not depend on the quantum number m, 
it is necessary to consider only the five quantum numbers v, l, tn, J, and K 
The quantum number v, will have the value y = 0 in the ground state and the 
value y = 1 in the excited state. In the first case, ( and m are zero; in the second 
case, they have the values ( = 1 and w = 0 ± 1; / is a non-negative integer, 
and K has integral values such that —J £ K £ T. 

Quantum numbers ¿and J give the lengths of the vibrational angular momen¬ 
tum 1 and of the total angular momentum P. The symbols m and K quantize 
the projections of 1 and P on an axis bound to the molecule. 

Rut m and K are not good quantum numbers, and are replaced by a set of 

new quantum indices, namely, 
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(i) a rotational quantum number R related to the length of the pure rota¬ 
tional angular momentum R = P — 1. A* is a positive1 integer (or zero) such that 
{J - () ^ R ^ J + (■, 

(ii) a quantum index C which is one of the symbols of the irreducible repre¬ 
sentations of the molecular group: for the A')’4 molecules (T,i group), 

C = AuA,,E,Fx,F2- 

for the Xmolecules {Oh group), 

{ A ¡a, A if¡, /li«, -Ii'/, Eu , Fu, b ¡u i 1’ in, A in , b ’¿fi . 

(iii) a (luantum index a with two possible values <r = 1, 2 when (7 = 
E (or EuEi, ) and three possible values a = 1,2, 3 when C = F¡F> ( or F¡,¡F¡„F->UF^I ). 
Different values of a correspond to various components of degenerate basis. As 
the energy does not depend on the quantum index a we shall always omit it. 

(iv) a quantum index n (n = 0, 1, 2 • • • ) that is used to characterize different 
states belonging to the same species, i.e., states that have the same values of 
V, t, J, R, C, and <r. In fact, we shall designate these different states by symbols 
C, 0,0,--, etc. (for instance A¡ , AÍ, Ai , ---)- where the number of primes 
is equal to n. 

Often, for the sake of brevity, we shall replace the two symbols (C, n ) by a 
single letter p. 

II. SELECTION RULES IN THE INFRARED 

The selection rules for electric dipole absorption or emission between two 
states a and b are : 

R,i = Rb 0„ = Ob n„ = rib ( 1 ) 

but the rule R„ = Rb is not rigorous, and there are weak lines corresponding to 

R„ Rb ; (\, = ('b (2) 

without any rule for nu and rib. 

III. ENEIKiV LEVELS 

A) 0hound State 

In the ground slate, the Hamiltonian matrix is diagonal in the representation 
defined above. Since f = 0, the (planturn numbers R and ./ are identical. The 
energy is given by the formula 

E%,p) = a + ßnR( R + 1) + ylfiR + 1 )2 + *R:'(R + 1 V 

+ [{'2R - 3)(2// - 2)---(2// -f .V>ry + pn//(/Z + l )}(-])" F^R,., 
Aipp ( 3 ) 

+ [(2// - 3)(2// - 4)---(2// -f 7)]1 V( -1 )" 
A¡pp 
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In this formula appear (a) molecular constants a , ß , (their order 
nitude will be given in the following section), (b) the quantum number R, (c) 

Clebsch-Gordan coefficents or adapted to the cubic sym¬ 

metry. A table of numerical values of these coefficients has been, calculated (Í ). 

B. Hxcited State 

The Hamiltonian matrix is not diagonal in the representation used here, and 
the energy levels are obtained by a perturbation calculât ion. 

In a first approximation, the off-diagonal matrix elements can be neglected; 
so the energy is given by the diagonal matrix elements of the Hamiltonian. 

« + 2> + 65 + (0 + 2\ + 106 + 2x)(ft + 1 ) 

(ß + 48 + 4x + yHR + D* + Uy + + l4* + 7r) 

(R +1 v' 

+ (7 + 4i// q- ¡fir)tR + n4 + Ziri R + ns + Trtff + i)6 

+ + 20« - 8m -h ( 18« - 4m + ^ - 90r)(/e + 1 ) 

+ (4« + a - 20r)( R + 1)" + 22p(R + 11" + 4p(/? + I)4] (4) 

l(2R - 8)(2/f - 2) • • • (2/^+ 0)112 ( _! )/^ y^RR) 
X ^ (2R + 2)(2R + 3) A'P P 

+ \r1 + 2WR + \) 4-4i(/?4-1)'] 

\(2R - ö)(2ß - 4_) (2R + 7))' * ( _1)/i pitiRR)' 
X _ (2R 4- 2)(2R + :-1) AiPP' 

a + 2\ + 0Ô 4 td - $à + 2x)Ri R 4-1) 4-(7- WR\R 4- D2 

+ irli'iR 4- n" 

4- (I()m - 40« - 2<f 4- < 4- 40r -f 4t)R(R - 1 ) 

+ 1pR2(R 4- I)2] 

{{2R - ‘¿)(2R - 2) ••• (2R + õ)]12 yH R R) (5) 
x 2R(2R 4- 2) A'PP 

, \{2R - ó)(2R - 4 ) • • ■ (2R 4- 7J)‘/2 
+ [-2t? + 4í/f( R + 1 )1 2RÍ2R + 2). 

(-1") 
(b R R) 
Mpp ’ 



WO-ä-i.a,, = a + 2\ + 6¿ - (/3 + 2X +10Í + 2X)R 

+ (/3 + 4ô + 4x + 7)Ä2 ~ (2y + 2x 4* 14^ + 7r)n3 

+ (7 + 4^ + 37r)ß4 - 37TÄ5 + 7TÄ6 

4- (v? + 20e — Sju — ( 18e — 4^ 4- o' ~ 90r)ß 

-M4i + <r - 20r)ß2 - 22pß3 4- 4pß4] 

^ [(2Ä — 3)(2ß — 2) (2Ä + 5)]1/2 ft (4ÄÄ) 
(2R — l)(2ß) " 1 1 Aipp 

[{2R - ->)(2R - 4) • • • (2ß 4- 7)]1/2 

(6) 

4- [7? - 24£ß + 4^ß2] 
(2R - l)(2R) 

.(_l)Ä/r 
Aipp' 

In those formulas, the meaning of the letters is the same as in formula (3). The 
approximation which is obtained is poor, and so, there is no point in taking into 
account the small terms written in Eqs. (4)-(b). With the orders of magnitude 
given in the following section, one sees that it is sufficient to calculate, in place 
of Wj'K'p the simplified expressions 

Wj-ä+i,«,p = a 4~ 2X + 6Ô 4- (/3 4" 2\ 4- 10Ô 4- 2x)(ß 4~ 1) 

4- (/3 + 4ö + 4x + 7)(ß+ D2 

4- W + 20t - 8p 4- (18e - 4p 4- - 90r)(ß 4- D 

4- (4e + - 20r)(R + I)2] 

^ [(2ß — 3)(2Ä — 2) ••• (2ß + ö)]1'2 « (4Äß) 

' (2Ä 4- 2)(2ß + 3) “ ~ ^ } AlPp 

or 

= a 4- 2X + bö 4- (ß - 8a 4- 2X)R(R 4- 1 ) 

+ [IbM - 40t - 2<p + (-2(7 4- 40r -r 4t)ß(ß + 1)] 

[(2ß — 3)(2ß — 2) ••• (2ß + r))]1/2 „ (4ÄÄ) 
2R(2R + 2) ^ AlPp 

(8) 

or 

W!U-i.*.P = a + 2X 4- bö — (/3 4~ 2X 4- 10Ô 4- 2X)R 

4- (/3 4* 46 4~ 4x 4- 7 ^ß2 

4- Iv 4- 20t — 8m — (18t — 4m 4- <7 — 90r)ß 4- ( It 4- o- 

- 20r ) ß2] 

[(2ß — 3)(2ß — 2) (2ß4-.ri)],;2 w (4ßß) 
(2ß — lK2ß) ^ } Aipp ' 

(9) 
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It is easily seen that the same app.mimation couhl he obtained in the smund 

^^^second^appjoxhnationl's'siven'hy a^second-ordor p)‘rturbation ealcidation : 

ir).«., 
H ,i ,u' .i Wj M ,i>. > ■p'.’’■V' :':K'P 

p K*K' Wj.K.r - " JX 

(10) 

iir ,r 0f tiu> ofi'-diagonal matrix olenuMits 
The products U j n,p..r.n' p'^ J .K1 .p'-i xp 

have the following values: 

for ft = ^ - 1; ft' = + 

;r¡ [( 12« - om + - ^(2J + irl (U ) 

(2./ - :1)(2./ - 2) • • - (--/ + '>> 
X (2./ + 1)2(2./)(2./ +2) 

, (4 ./ + 1 •/ - lV 
. 11 P p 

for ft = ./ - i; ft = •/) 

_ :» ¡¡v, 20« - 8|U + (8« - 8m)./|‘ - -1^ ! 

(2,/ -4)(2./ -8) • • • (--/ + 4) 
X 

,(-1 •/ ./-1)T 

(12) 

4/-(2./ + 1)(2./ + 2) 

for ft = ./; /?' = -/+ 1. 

_ ¡i, _ 12« + 0M + ./(8^ - ^)12 - ^(--/ + -)2 
o 1 

/li P V J 

(2./ - 2)(2./ - H • ■ ■ (2./ + 0) 
(2./ + 2)-(2./)(2./ + 1) 

/• 
,(4 ./+1 •/)' 

• U V P 1 

(18) 

f /11 \ 11 ‘t-} .)r(' exchaniied, the thn-e ('xpic-ssions If p ami p in the expressions ( 11 M 18 ) ai( < xenau^ , 
obtained emrespond, respectively, to: 

/; = d + 1; «' “ 1 " '' 

ft = ,/; It' = •/ - 1, 

11 = .1 + 1-, K'--'- 

, tlm,, approximation eonu, fro.n a third-order perturbation calculation 

in.,. 
V- Wj.H.p.-IX-p' \\ 

H .1 ,H .1’ + 11.l 11r ' , . ’ //^«' 11 j.it r — ■' ■'< r 
Ur , dll 

v \V.,,,t.P.i.H .p; Wjx:yy'x\y nj.H'.p :.>.n.p' 

+ ( ir).n.p - p ) ( _ irl'1 
H' II " 
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where the product Wj,H.P\j.P'Wj,H-,P-.j.h'.p-jm-,p-.j.k.p of three off-diagonal 
matrix elements is, for Ä = 7 — 1 ; R' = J \ ft" ^ J + \ . 

J ,J ,p' W j ,j+l,p--,j j-\'P 

. 3/2 

( 12í d- (f) [41 (2,/ -(- o ) -f — 2,/ ( ju -(- e ) I 

X [4¢(2./ -(- 3 ) — 2,/( V — ¡jl)\ 

(2./ - 4)Vi(2J - :-0((2,/ - 2)(27 -- 1) • • • (27 + 4)} 3 - 2 

X 
X (27 + 5)(27 -f ()! 

[27(27 + 1)(2./ 4- 2)]2 

X ^-1 -'t1) F(iA J,J-X) 
Al [) J) Ay p p 

X f 
,(4 7 7 -(- 1) 

/h p P 

( 15, 

This formula is not changed by any permutation of the three systems of 
indices (7, 7 — 1, p), (7, 7, p ), and (7, 7 + 1, p ) on the left side. 

IV. OHDEKS OF MAONITUDE 

The calculations are done by successive approximations. In the beginning, it 
is convenient to neglect the smallest matrix elements. So, we shall give the orders 
of magnitude of the various terms in formulas (4) to (15). The values of the 
orders of magnitude given by Nielsen and Amat are used here (#). They have 
defined an index of magnitude corresponding to the various terms of the expan¬ 
sion for the energy 

// = //° + //1 -f • • • . 

A large value of the index of magnitude corresponds to a small value of the 
energy; an increase by one unit in the index of magnitude means roughly a de¬ 
crease in the energy by a factor of about ) 30- 

The frequency of a line is proportional to the transition energy (difference 
between the energies of the two levels involved in the transition). 

Equations (10) or (14 ) give the energy levels as functions of diagonal matrix 
elements and products of off-diagonal matrix elements The latter are given by 
formulas (11), (12), (13), and (15), and the former by formulas (3), (4 ), (5), 
and (()). All these formulas contain sums of terms on the right-hand-side of the 
various equations. In each one of these terms, a coefficient expressed by a letter 
(or a product of such coefficients) is multiplied by a function of rotational 
quantum mumbers R and 7. 

In Table I, one finds: 
(a) the indices of magnitude of the various coefficients a", 0 , ■ • 0, • •• ; 
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(b) the indices of magnitude of the corresponding terms appearing in formulas 
(3)-(6). These indices depend on the value of the rotational quantum number 
Ä. Two special cases: Ä — 1 and Ä ~ 30 have been considered; 

(c) the indices of magnitude of contributions to the energy levels. Equations 
(10) and (14) show that the same coefficient can give a contribution to the 
energy either through a diagonal matrix element or through an off-diagonal 
matrix element. In the first case, the indices of magnitude are the same for the 
energy and the matrix element; they are generally different in the second case; 

(d) the indices of magnitude of the transition energies. If a term is the same 
in the lower state (ground state) and in the upper state (excited state) of a 
transition, the transition energy does not depend on this term. This fact shows 
that the index of magnitude of a contribution to a transition energy can be 
larger than the index of magnitude of the contribution to energy levels. Except 
for « and a the index of magnitude of a difference of two coefficients that differ 
only by the superscript zero (for instance ir and it0) is larger by two units than 
the index of magnitude of any one of these coefficients (for instance, ir - r has 
the index 12, r having the index 10). 

V. PRACTICAL CALCULATION 

First Approximation 

If the off-diagonal matrix elements and fourth- or higher order diagonal con¬ 
tributions are neglected, the transition energies are given below for lines belong¬ 
ing to P, Q, and R branches: 

for the P branch (v = 0, R, J = R-> v = l, R, J = R - l), 

(P/)(U„Ä a - a° + 2X - (0 + 0° + 2X + m)R 

+ k + (4/i — 16e)Ä] 

+ (0 - 0° + 45 )R2 - (4y + 2x)Ä3 

£)ä][(2ä-3) ••• (2ß + 5)r j v« „(4 R R) 
■,K> (2R-~ijm-{~l) FAiPP ’ 

(16) 

for the Q branch {v = 0, R, J = R -> v = 1, R, J = R)t 

(Q«P)dia« ^ a — a -f 2X + 65 + (Æ —- /8° — 85 -f 2x)R(R + 1 ) 

F(i RR), ^7) 

for the R branch (v = 0, R, J = R -* v = 1, Ä, 7 = Ä + 1) 

(Â/)diuK - a -f 2X + (0 + 0° + 2X + 105)(Â + 1) 

+ (0 - 0° + 45)(ß + l)2 + (47 + 2X)(ß + l)3 
(18) 

+ [<p — (4/1 — * f(4 R R) 
A\p p 
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The true problem is not to calculate the frequencies or the energies of the 
transitions, but knowing these, to obtain the values of the molecular constants. 
It may be seen that it is very easy to obtain the independent constants of formu¬ 

las (10)-(18). 
For a given value of the quantum number R, {Pa )diB«, (Vr )dia*, and 

, . W4ÄÄ). (ÄRP)dia« are linear functions of A = (-1) * AlJ)p ■ 

(PrP)dia* = UhX + *>R ) 

{Qa )diaR ^ fR i 

(RhP)aí^ = CrX + da . 

(19) 

(20) 

(21 ) 

By plotting the experimental values P«p, Qrp, and RHP of the transition energies 
versus X we obtain curves (F) which are approximately straight lines, and 
we can deduce from them starting values for as , 6« , • • • • 

From Eqs. ( 16), ( 17)-(21), we obtain 

da-i + ba 

= 2(a — a° + 2X) + 2(/3 — /3 -1-40)P, 
(22) 

(l/ß)(dÄ_i — ba) ^23) 

= 2(/3 + /3° + 2\ + 105) + 2(47 + 2x)R\ 

fH== a - a° + 2X + 65 + (|8 - |80 - 85 + 2X)R(R + D. (24) 

!2ß(2ß - 1 )/[(2ß -3)--- (2ß + '))HaR (2f)) 

= {An — 16i)ß, 

¡2P(2ß -F 2)/[(2ß -3)--- (2ß + 5)^2}^ 

= 16 n ~ AOt — 2v?, 

|(2ß + 2)(2ß + 3)/[(2ß - 3) • • • (2ß + ö)]1'2}^ 

= ip — {An — 16e)ß. 

These functions are linear in ß, ß2, or ß(ß + 1). Experimental curves can be 
drawn, using the starting values of aH , bH , , and so the following combina¬ 
tions of molecular constants are obtained. 

a - a° + 2X, 5, /3 - /3°, /3 + 0° + 2X, x, y,<P, M, ¢- 

To have the values of /3, /3°, and X it is necessary to use other experimental 
results; this can be done by observation of weak lines obeying the selection rule 
(9) (4) [For these lines, it is very easy to establish, from Eqs. (3)-(6), formulas 

similar to (16), (17), or (18).] 

1 For the general theory, see Reference 3. 
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8econi> and Following Apphoxi.mations 

Having thesp approximate values of molecular constants, and neglecting v, we 
can use formulas (10) to (FI) to obtain experimental approximate values of 
off-diagonal contributions in a second order perturbation calculation. Subtract¬ 
ing these from the experimental values of energy levels, we obtain “corrected 
energy levels” which obey formulas (4) -(0) with a better accuracy than true 
energy levels, So, we are able to construct (O curves with a better precision 
than in the first approximation, and obtain better molecular constants. 

Performing the computation once more, we can take into account third-order 
perturbations [formulas (14) and (lõ)]. 

Then, trial values of the constants that were neglected will be used, if neces¬ 
sary. 

VI. CONCLUSION 

The constants we use have no obvious physical significance. So, we shall 
compare them with the constants that are used in more simple formulas: In a 
first approximation, the energy level E in the excited state is 

E = Er -F hc\BJ{J +1) + IXJ\J + I)2 + «], (28) 

with 

a = + 1) 

a = 0 

and 

for J - R + 

for J = R, 

for J = R - l. a = -2(Bt)J 

We have the approximate relations: 

a = Ev~o (vibrational energy in the ground state), 

a = Ev~x (vibrational energy in the excited state), 

(l/he) (a — a° + 2\ + (jô) 

= oi (center of the vibration-rotation band), 

ß/hc = Br and tf'/hc = Bv-0 (inertia constants), 

\/hc - —(BÇ),., f being the Coriolis coupling constant, 

—y/hc = Dr (centrifugal distortion constant). 

X is connected with the variation of f with rotational quantum numbers. 
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PART 3 

ANALYSIS OF INFYARED AND MICROWAVE SPECTRA 

The theoretical results presented in Part 2 have been used in 

order to explain anomalies met in the analysis of actual rotation and 

rotation-vibration spectra- 

The various problems dealt with are listed hereafter together 

with the references of papers where they were first published : 

i ) - 

la) Interpretation of the rotation spectrum of trifluoromethyl 

acetylene in the excited vibrational state v10 = 1. 

- M. I,. TR2NIER-BESSON and 3. AMAf (Technical note NR. 2 Contract 

NR.61 (o? .■ January 1961 and J. of Mol. Spectr. 8, 22, 1962) 

ib) The anomalous rotation spectrum of fluoroform in the vibra¬ 

tional state Vg = 1. 

- 3.MAES and G.AMAT (Can. J. of Phys. 43, 321, 1965. In French). 

The first topic (la) has been described in Part 2 of the pre¬ 

sent Report as an illustration of our general study of rotation spectra 

of molecules with C^v symmetry in an excited vibrational state. 



2a) Anomalous rotational structure of level 0311 in the rota- 

tion-vibration spectrum of C 0? . 

- M.H.ANDRADE e SILVA and G.AMAT (Technical note NR.l Contract 

NR.61 (052)-369 January 1961 and J. of Mol. Spectr. 9, 354, 1962). 

2b) Rotational structure of the fundamental band v6 of methyl 

cyanide. 

- G.AMAT and H.H.NIELSEN (Molecular orbital in chemistry, phy¬ 

sics and biology. Academic Press, 1964, p.293). 

2c) General discussion of Fermi resonance in Carbon dioxyde with 

a new assignment of vibrational levels. 

- G.AMAT and M.PIMB ERT (J. of Mol. Spectr. 16, 278, 1965). 

2d) Study of the fundamental v4 in methane. 

- J.MORET-BAILLY (Thesis. Cah. Phys. 130, 237, 1961. In French) 

The first three topics above (2a-2b-2c) will be treated in the 

present section of the Report as Chapters IV, V, and VI, respectively. 
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CHAPTER IV 

Anomalous Rotational Structure of Level 03 11 

13 16 in the Rotation-Vibration Spectrum of C 0, 

INTHODIXTION 

Courlov (/), in stndvhu; thr hoi band Ol’O-Od’l in tlu> vibration-rotation 
qx'ctrun' of the moUriilc, has observed that the level (U 1 is alleeted b> 
a rotational perturbation. He has shown that, anions the ditlerent rotational 
subl(>v('ls of onlv those that correspond to an even ./ are alleeted; m othei 
words, in th(‘ /' and // branches of the band in question the lines corresponding 
to an even ./" occupy normal positions, while those corresponding to an odd ./ 
occupv anomalous positions. Courtoy suggests that the perturbation is due to a 
resonance between the level Od'l and the level dl/'O which has nearly the same 
energy. In the lirst part of this paper, we propose to study trom a theoretical 
point of view the xtmnij resonance which takes place between these two le\es. 
We shall see however that the off-diagonal matrix elements involved in this 
effect are also responsible for urah perturbations in other rotation-vibration 
levels of the ipolecule. These perturbations will be studied in the second part. 

I. l.EYKI.S :t()"0 AND (tt'l 

]f the perturbation of the level Od'l appears indeed to be due to the proximity 
of the level d()"0, it nevertheless seems impossible to explain the “C’ourtoy 
resonance” by a direct interaction between ih ' two levels. 1-or a resonance 
between two'levels .1 and B to have an observable effect two conditions are 
necessary: (ai the nonperturbed levels A i and hu must have nearly the .-vaine 
energy, and (b) the matrix (dement of coupling ( /1 | // j B) must be sufliciently 
large. Now in the present case the simplest vibrational operator with nonvanish- 



ing matrix elements ol the îorm (031! \ H \ 30°0) is r/rsVs, where r,(s = 1, 2, 3) 

designates either a normal coordinate qa<r or its conjugate momentum p,a. In 

addition, the resonance taking place between a S state and a II state, the coupling 

matrix element is off diagonal in l. Then, the Sayvetz’s relation ( = p2, i.e.: 

K = l) shows that the responsible operator must contain at least one Pa (pro¬ 

jection of the total angular momentum on an axis bound to the equilibrium 

configuration). It follows that if we consider a direct interaction between the 

two levels 0311 and 30°0 the simplest operator that could be responsible for the 

coupling is of the form r?r2r¿Pa . But such an operator does not appear before 

the sixth-order terms in the expansion of the Hamiltonian ; its matrix elements 

are consequently much too small to account for an effect of the magnitude 

observed by Courtoy. 

Up to this point we have taken no account of Fermi resonance. Now the 

level 03'1 is coupled with ll'l (FI diad), while the level 30°0 is coupled with 

22°0, Rn0 and 0G°0 (2+ tetrad). It follows, taking Fermi resonance into account, 

that a matrix element corresponding to an interaction between any level of the 

II diad and any level of the 2 ^ tetrad may contribute io the Courtoy resonance 

just as well as the element (031! | H | 30°0) considered above. We are thus led 

to consider the infiuence of the following eight matrix elements: 

Cn 
Cu 
Ci6 

Cl6 

Cn 
C'24 

C»b 

C26 

(ll1! 

(ll'l 
(ll'l 
(ll'l 
(03'1 

(03*1 

( 03' 1 

( 03' 1 

30°0) 

22°0) 

14°0) 

or/'o) 
30°0) 

IP 
IÍ 
H' 
H' 
H' 
H' I 22°0 ) 

11' 
//' 

14°0) 

Od’O ) 

( 3rd order) 

(2nd order) 

(3rd order) 

ttith order) 

(6th order) 

( 3rd order ) 

(2nd order) 

(3rd order), 

the order of magnitude of each element being indicated in parentheses. In the 

matrix elements cl} the index i — 1, 2 corresponds to a level of the II diad, and 

the index j = 3, 4, õ, 6 to a level of the 2+ tetrad, where these levels are num¬ 

bered in decreasing order of V\ for each polyad. All the above matrix elements 

are calculated by using the eigenfunctions of the operator //o as basic func¬ 

tions : 

c,, / ^,0 //V;° dr, (1) 
*'r 

where H' d(>signates the transformed Hamiltonian H' = THT 1 (of which, in 

the absence of resonance, the matrix elements, nondiagonal in v,, make only a 

fourth-order contribution1 ). 

‘The contact tnuiHformation //' THT 1 has been defined for the general case by 
Shaffer et al. \ß) and by Herman and Shaffer (3). Actually, the operator H’ that we employ 
here differs slightly from that employed in the general case, in order to take account of 
Fermi resonance (4, 5). 
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Taking Fermi resonance into account, the matrix element of coupling between 

the levels 0311 and 30°0 is given by 

(2) 
•y — J 2 H Ÿ 3 > 

where the perturbed wave functions * are linear combinations of the non- 

perturbed functions 

\J/2 = i 

6 

fo = IL a3ítj ' 

(^) 

,»3 

whence 

y — ll^a3jc ' ! 
n 

o) 

As Fermi resonance is strong in the case of the CO, molecule the coefficients 
at, are all of the same order of magnitude. Consequently m Fq. (4) «e may 
neglect the c„ elements of the third and sixth order and, retaining only those of 

the second order, write : 

y = 02lil34Cn 4* Ü22Ö35C25 • (Õ) 

Taking the degeneracy inf of the II levels (f - ±1) into account, we have 
then four matrix elements c,> to calculate: 

11+11 
H 
he 'Ci) 

These four matrix elements are of the lorn. 

Cl + 1, + It Cd -- 1,6 4-4 
/ , H 
V'> • , F . f= Ac ) 

with . = ±1. The transformed second-order Hamiltonian ht’ has, as we have 
observed, matrix elements of this type. They come from the operator 

£ £ r,r,mV15-’i-.P,.P. 
a-x,y 0,-1.2 L _ ( ® ' 

4- X (,-02)17,^ 3 2( (ln 'In’ P<. 4- Pa <la' <la’ > J F0 , 
a 

with- a, «' * 1, 2ff, 3 or 2a, 1, 3 or 3, 1,2c. 



It can easily be shown that 

hz 

( V! V2 V3 (2 

with 

he ) ^1+ 1, + 1,7-3 ~ 1, /2 + € 

— Z\[J(J -\- 1) — 4(4 + e)](i7i + 1)(^2 + «4 + 2)î>3}1/2 

(9) 

Z = 
8 V2 TTC 

[h (^)(2)1^ ' ' + ( P) (2) 1^1,3 + h (F) (2? Y 21,3 — h (^)(2)^1,211, (10) 

where (^)(2)^ designates a coefficient that has been corrected to take account of 
Fermi resonance. The matrix elements (9) usually contribute to the energy 
only in the fourth order of magnitude. Due to accidental resonance they can, for 
the molecule C^Oj0, possibly contribute in the second order. We shall then write 
them in the energy matrix. 

Equation (9) shows that the matrix elements (6) originating from the operator 
(8) are equal. Their common value is 

c = 2Z y/jU + 1). (11) 

The Exekgy Matrix 

Figure 1 gives the matrix that represents the transformed Hamiltonian H\ 
using the eigenfunctions of /4 as basic functions. 

We have included in this matrix all the levels that are coupled, either directly 
or indirectly, with the levels 30°0 and 03'1, with matrix elements of coupling 
belonging to the first or second order. The coupling matrix elements can be 
either diagonal in vs (4type doubling or 4type resonance) or off diagonal in 

(accidental resonances). In the latter case they can originate from the Fermi 
operator he kmqi( qn + ql-i) or from the second-order Coriolis operator given by 
1)((. ¡8). In Fig. 1 diagonal elements are designated by E, 4type resonance 
elements by L, elements responsible for 4type doubling by £, Fermi resonance 
elements by F and Coriolis resonance elements by c. The levels affected by 
Courtoy resonance arc indicated by arrows in the upper part of Fig. 1. 

The matrix of Fig. 2 is obtained from the preceding one by replacing the basic 
functions by symmetric and antisymmetric linear combinations: 

\p(\sym.) = (\/V2)(\hlt -F t-<) 
(12) 

^/(antisym.) = (1/^/2)(^+/-^-()- 

It is important to notice that in the “symmetric” matrix two levels (OS1! and 
30°0) have about the same energy. We shall show that they are coupled through 
a strong resonance. On the other hand, in the “antisymmetric” matrix, one 
cannot find any level close to the level 031!. Consequently, the level OS’l anti- 
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Ui 
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c» 
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O0P2 033 1 1111 031 1 30P0 22°0 I4P0 oePo 2 220 I420 0620 I440 0640 0660 

r,V 
r* * 
*27 

t'? A 21 A22 r2“4 r» T26 
p ••• 
"25 Tae 

TiV A21 ba r,4 Tis Tie r,4 r,5 Tie 

r27 A22 ?2 r r24 r25 ^26 T24 Tas Tae ..— 

r,^ y P3 A 34 A 35 A 36 

r,4 r24 f4 A44 A45 A 46 

r25 !?5 A54 A55 A56 

^16 1*26 5e A&4 Aes Age 

rU r,4 r¿4 A34 A44 A54 A64 Ü_ 
A45 Aie 

rA f|5 Tas A35 A45 A55 Aes €5 A 55 Age 

r?; r¿6 A 36 A46 A56 A66 % Ag5 Agg 

r2“5 
A 45 A55 Ags P5 ^56 

r¿6 A46 A56 Agg % Agg 

1 Agg Agg ffe" 

Fm;. 3 

symmetric will not he displaced by the resonance as the level (ti ^ 
is This result is in agreement with Courtoy's observation. In what fo lows uc 
shall consider the matrix obtained by retaining only the symmelnc levels ... 

^ThiMnatrix oH'ig. 1) is obtained by diagonalizing the Fermi submatrices that 
is to say, by substituting linear combinations of the type ( .i ) for the basic fum - 
ïions7l2) in each Fermi-resonance polyad. The matrix elements c must then 
be replaced by new matrix elements (linear combinations of the r s , which 
are ocsignated by P or y in the matrix of Fig. 3. Likewise, the elements o , , 
c", L, / ', l" must be replaced by linear combinations which we have respec- 

tivelv ciesienated by F , F , A, A , A . 
The element y couples two levels whose energies are very close to one another. 

We thus "ve b, deal with a near-degenerate problem, the solution ol winch 

requires that, we first diagonalize the sub-matrix : 

ÍS27I (13) 
It fbj ' 

0 
We then obtain the matrix of Fig. 4, in which 

8+ £2 -f , 62 - £: ‘ï i 2 + 7 
(14) 

2 For low valut's of .¡AW iukI r. - corns 
tivt'ly, for high vuluos of J, and l 

rosiH’Ctividy. 

pond to the port orbed levels 03‘1 and .3Ü°0, respec- 
correspond to the perturbed levels 30°0 and 031', 
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ocPz 033l M1 1 + 2 2°0 14° 0 0 6°0 

0 CM 1 4Z0 0^0 
4 

14 0 
4 

0 6 0 0^0 

r * ‘♦7 r-7 

A2| A *2 A-2 r24 r25 r26 r25 r26 

Tr Ag, r.r r." r,4 r(5 ri6 Tw r,¿ r,¿ 
r.*7 a!2 nT r. r.4 r*5 r.6 A »4 A*5 A.6 

r-7 A.*2 r.r t. r.4 r.5 r.6 A.4 A-5 A *6 

r,4 r.4 r.4 e4 A44 A45 A 46 

r,5 Es r-5 A54 A55 A 56 

r,6 r * r * A64 A65 A66 

r24 r,; a:4 a:4 A44 A54 a64 54 A45 A46 

r25 r.5 a:5 a.*5 A45 A55 A 65 a» A 56 

r,6 a:6 A-6 A46 Age Aee 
1 

Aes 
» 

Aee 
r25 A45 A55 A¿5 P5" Age 

r26 A 46 A¿6 A 66 ?6 A66 

A'56 A'ee fe" 

Fio. 4 

F* designates linear combinations of the elements T and A* designates linear 
combinations of the elements A and F. 

The elements A* and F* couple levels whose energies differ sufficiently for 
these matrix elements to be studied by means of a perturbation method. 

It follows that the perturbed energy of the levels (3000, 0311) is given by the 
equation 

/•••, = (£,4El) ± i/(^J 
i _l_ 7 + z 

(¾)1 
* Si — 8* 

+ £ 
(AÎ.)2 

8± - Zk 
(15) 

in which, by virtue of Eqs. (5) and (11), 

7 = nVT{.j + i), (16) 

where 

N = 2Z(02l034 “f fl22035) (17) 

(the coefficients a2l and a^j are all real). 

Discussion of Eq. (15) 

An examination of Eq. ( 15) will allow us to replace it by a simpler formula 
for practical use. 
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la) Note first of all, that when we are far from resonance the radical can he 
expanded in a series. The first two terms in Ei,. (ir.) can be written as 

The difference S, - 6, is of the form Ac, + Aß./ (./ + 1 ) (J + 1 
the largest values of ./ observed in the spectrum the term A ./(./ + 1) is Urge 
than A./ and ADJ2(J + 1 )“■ It follows that, as y is equal to N ./(./ + 1), tilt 
^ "v(6 - " vants little with respect to ./. This term accounts for the 

practically'constant gap observed in fig. 1 of Kef. /2 between the unbroken-hne 

CU(b<) aThe rV’s areof the same order of magnitude as r, the t.± - 8. are much 
larger .Iran L“- 8,, ; hence ^/.8,. - 8,) is large compared to the t urd term o 
he right side',>f Et, (IS)- Consenucntly this third term ,s neghgiblc compared 

to ^ second when we are far from resonance. This result ts s.,11 more valid ,n 

th^l“"hè right side of E, (Ifi) depends on / in a very 
complex manner. Nevertheless when we are far from resonance the wave fun - 
lions corresponding to S_ and 8. are very close to those .hat correspond to 
8, and 8,. It follows that the elements from 1' ig. 4 can be replaced '»X <«n^ 
soonding elements from the fig. S. More precisely, the elements A*, ran be 
replaced* by An or An . In these conditions, the contribution ol the last term 
Eq (15) lies in S'lJ'V + 1 )'■ It represents the influence ot the C-lype 
on the centrifugal distortion constant //. for computing the coclhcient «, 
convenient to use the formula given in Ref. 10 instead of E,p ( 1.) . 

The last term of Eq. (15 ) makes no important contribution to th, cn , gj 
excerU m lirg" values of ,/, that is to say, far fron, resonance. We sind no 
Sri explicitly calculate its contribution to the energy m the neighborhood 

^Tirsummarize, Eq. (15) may be replaced by the following: 

f+f * vF í;'‘T+ (18) 

til:» 
where y -r A x' -l ( -/+1)- 

.T1,C elements ri, c! anil contain the 

• “r,". ' ‘'v1';“;';:,;, » ti-nn'; Jay+.,.. ^ ,w« tem»«.^»...,, .h» ,»■„ 
::::+,0,:-:.,1.:0 :,,,0,,,,,.,,,, « 4.0,4,,, !.,+ 

Deff ** T) — Son • 
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Numerical Calculation of N 

The numerical value of the constant N can be. computed by means of Eq. 
(17), in which the coefficients Z and <22, , «3/ are defined by Eqs. ( 10) and (3), 
respectively. Expressed as a function of the molecular parameters,5 Z is given 
by the equation 

Z = - 
iw r.r) 

7 fri22<¿>2 “b km<p* ] iX* (X2 X3)1 /4 

where 

(19) 

<Pi 
_1_fx^-xi2] 

2(2X2/2 -b X!/2) L (X2X3)1'4 J 
2(X2X;i)14 

X3 — Xi 

2XJ/4X3/4 

^ Xl/2(4X;t -X) + X2,4(4X3 - Xl) 

— (X2X3) 

V 3/4 
A3 

.,4 /J_ 

\4X3 — Xi 

X3/4(2Xa - Xx) 

Xl72xr(4x7- Xx)' 

We Kaoe. computed^ the numerical value o| the constant M , by ustn^ |or 

ike molecular paramettri, the values given by Courtoy . This leacls to : 

|N|= 0, 011 cm-4 (20) 

5 The relations between the and the usual coefficients («K are given in Ref. 6; 
the coefficients (2)F are given in terms of the molecular parameters in Refs. 6 and 7. Fi¬ 
nally, we recall (8, 9) that for a linear and symmetric triatomic molecule Ärl’2 the only in¬ 
teraction coefficients ,v-»» , a“?, J-,,,.,-. different from zero are 

km Oi(* aîx = ai'V) * 2 II12 

kl33 f22, 3 “ fs. 21 = 1 

kl22(* k¡, 21, 21 = kl, 22, 22) fh. Î2 œ 1 

Remarks: (1) The above values correspond to a clearly defined choice of the sign of the 
normal coordinate qi : is positive when the distance between the two oxygen nuclei is 
larger than the equilibrium distance. 

(2) By virtue of Sayvetz’s equation {Pt = p,), ,2 does not figure in the calculations. 

6Smct l-Kisjlirsl computation it has appeared toas that the molecular parameters 
OÎC0* should be revised (See Ref -il and ChapterVI hereofter). A ntuJ 
computation o| N is in progress using the revised value». 
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Courtoy itiiil Triaille have shown 112) that Kqs. (18) and (10) lead to com¬ 
puted energy Ii vHh in good agreement with experimental values provided we 

put 

|iV| = 0.014 cm“1. (21) 

In Fig. 1 of Ref. 12, the circles represent experimental points and the dotted-line 
curve7 the theoretical values obtained by using Eqs. (16), (18), and (21). 

Considering the uncertainty of the various molecular parameters used in 
calculation, the theoretical value (20) that we have obtained is in excellent 
agreement with the value (21) determined by Courtoy on the basis of his ex¬ 

perimental results. 

II. OTHER LEVELS 

As we have just seen, the matrix elements (9) of the operator (8), which 
usually contribute to the energy only in the fourth order of approximation, 
contribute in the second order for the levels 30°0 and 0311. In the usual perturba¬ 
tion calculation, the effect of the second contact tiansformation {18) is to sup¬ 
press the operator (8) in the second order and to replace it by an operatoi 
having diagonal matrix elements on the fourth order. I his proceduie cannot be 
used here : we need to keep in the second-order Hamiltonian an operatoi having 
the same matrix elements (9) as (8), its other matrix elements being howevei 
zero. This result can be obtained by a slight change in the S function of the 
second contact transformation (4, -5). In other words, since we wish to keep in 
the second-order Hamiltonian matrix the elements (9f involved in the strong 
resonance of levels 30°0 and 0311, we cannot avoid keeping them everywhere in 
this matrix. Theoretically, the influence of matrix elements (9) has then to be 
I a ken into account in the computation of every energy level of the molecule 
which can be done by a perturbation method for every level but 30 0 and 03 1. 
It can be seen that the main effect produced by these matrix elements is a term 
in .1( J -f 1 ), i.e., a change in the inertia constants 11. This correction has been 

studied in detail by Courtoy and Triidlle ( 12). 

! The unbroken-line curves correspond to Kj* and Ca*, that is to say, values calculated 
without taking account ot the elements c. 
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CHAPTER V 

Bntntionol Structure of the 

Fundamental Bond of Methyl Cyanide 

I. Introduction 

The infrared absorption spectrum of methyl cyanide been Prev'ou^y 

studied by Venkateswarlu (1950,1952, and by a"d Dick and MeU- 
then with a higher resolving power by Parker el al. (1957), by Dlcj\a"d™ 
ter (1960) by Yarger (1960), and by Nakagawa and Shimanouchi (1962). 

The Ldamenta, v6 is a perpendicular band observed m . e re ,0 
hptween 1300 and 1600 cnT1. It is the most intense of all the observed bands 
of ThTmethy. cyanide spectrum and it corresponds to an ant,symmetric 
a f tmn nf the C-C~H angles. The rotational structure shows near y 
“iu' Ah S,,,, ,,,1,,, 0, a. >[«■“" 1"««“ 
ä S, jz i. « >? r" z 
The first perturbation is a maximum in the regio ... nn an(i Rn 
evident effect is a doubling of the two branches described as ^ 
iParker et al 1957; Nakagawa and Shimanouchi, 1962). 
hfs oerturba ion b a resonance between v6 and the combination band 

this perturoaaon y hiaannal in K) A second perturbation 
v7 4- Vy (Fermi-type resonance, i.e., diagonal in a;. ^ 



can be observed in the region of 1390 cm-1; its effect is a considerable 
broadening of the Q branches which can be explained by a resonance between 
v6, and the parallel fundamental v3 (Coriolis-type resonance which is off- 
diagonal in K). 

II. The (v6, v7 + v8) Resonance 

The perturbation of the rotational structure in the region of 1490 cm-1 
was first pointed out by Parker et al. They observed that two Q branches near 
the center of the band occur as “twins,” namely RQi (split into two lines, 
60 and 58) and Rd2 (split into two lines, 50 and 52). They furthermore 
observed that “a plot of the lines in this region versus a running number K 
results in two progressions, one ending abruptly with 52, and the other ending 
with 58” and “that the two sections exhibit different curvatures” (Parker et al. 
(1957), Fig. 3). The authors suggest that the perturbation could be related to 
an unexplained interaction between v6 and v3. However, neglecting the 
irregularities observed, they draw (see their Fig. 3) the best straight line that 
fits their data and obtain from this treatment the value (6 = -0.39. 

Actually the curve shown (Parker et al. (1957), Fig. 3) becomes much 
easier to understand if one adds one unit to the K values assigned to the lines 
of the second progression (the one which corresponds to larger wave numbers 
and ends at line 58) without changing the K assignment for the lines belonging 
to the first progression. This results in a translation of the second progression 
by 1 unit toward the right and the two progressions now look like the two 
branches of a hyperbola, which is the usual pattern for the lines of two bands 
of which the upper levels interact through a vibrational (Fermi-type) reson¬ 
ance. This is furthermore supported by the fact that the two progressions 
actually do not end abruptly with lines 52 and 58. As Yarger has already 
pointed out, less intense lines can be found in the spectrum that continue the 
two progressions beyond lines 52 and 58. 

Figure 1 shows the two progressions. The spectrum is the one given by 
Nakagawa and Shimanouchi (1962); both identification numbers used by 
Parker et al. (1957) (PNF) and by Yarger (1960) (Y) are listed. It can 
be seen that all the most intense lines can be included in one or the other 
of the two progressions. 

Figure 2 shows the plot of the lines belonging to the two progressions 
versus a running number K. Since there is some uncertainty on the position 
of the band origins, we do not give definite K values on Fig. 2 but rather a new 
set of identification symbols abc ... wx, the same symbol being used for two 
resonating lines belonging to the first and the second progressions. These 
identification symbols are also reproduced in Fig. 1. 
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The next step is to find the level which interacts with the upper level of the 
v6 transition. The only cold bands expected in this region of the spectrum are 
v3> v7 + v8, and 4v8. The parallel band v3 can immediately be ruled out: The 
upper levels of v3 and vb belonging to species and E, respectively, can only 
interact through matrix elements off-diagonal in K. The largest among these 
is the first-order Coriolis matrix element from K to K ± 1. Since it is propor¬ 
tional to [/(7+ 1) -K(K± 1)]1/2, the perturbation would be /-dependent, 
which means that the / structure of the Q branches would be spread out by 
the resonance. No sharp Q branches would be observed any longer in the 
resonance region. We shall see that such an effect is indeed observed close to 
1390 cm-1 : The Q structure of the band v6 disappears precisely in the region 
where Parker, Nielsen, and Flechter have located the center of the band v3 
from its envelope which can be observed on their spectrum. On the other 
hand, both v7 + v8 and 4v8 can interact with v6 through a vibrational 
Fermi-type resonance diagonal in K. However, the coupling between the 
upper levels of v6 and 4v8 is of third-order importance; it would probably 
give rise to a very small perturbation observed in one single Q branch of v6. 
The kind of perturbation described by Fig. 2 is more likely due to the first- 
order Fermi-type resonance (v6, v7 + v8). We shall obtain a confirmation of 
this hypothesis later by measuring the slopes of the asymptotes on the hyper¬ 
bola of Fig. 2. 

The major part of the operator responsible for the coupling between the 
upper levels of v6 and v7 + v8 is that portion of the cubic potential which 
contains the terms q()aqla-q%0- It can be seen from Henry and Amat (1960) 
that this operator is in fact 

= ficfc678(i|6i<77i<?8i — ^61^72^82 — ^62^71^82 — ^62^72^81) (I) 

By direct computation or by using symmetry consideration (Amat, 1960), one 
finds that the only nonvanishing matrix elements of Jf are those conforming 
to the rule À/6 + A/7 + A/„ = ±3. Then if we consider the set of quantum 
numbers v6 /6 v7 /71>8 /8 the coupling matrix element originating from Jf will be 

hcic 
hc!X0 = (1 + 1000 \Jf\ 00 1±1 1±1)= ±—(2) 

Actually other operators with a smaller order of magnitude will also con¬ 
tribute to the coupling. The second-order transformed Hamiltonian h2 
contains operators qaqbpcPt and PaPbPcPz where t and c refer to the 
vibrations 6, 7, and 8 (or any permutation of these), these operators have 
matrix elements, similar to those of/T, which can be written as oq* where oq is 
much smaller than ocq. Finally the coupling matrix element can be expressed as 

hca = hcctQ + ftcoqK + • * • (3) 

where the second term can be neglected for small values of K. 
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Let E6 and £78 be respectively the unperturbed energy levels correspon¬ 
ding to the values 1 ^ 1 00 00 and 00 1 ± 1 1 ± 1 of the quantum numbers 
v616 v1 /7 üg /g. The perturbed energy for the same levels is given by the secular 
equation 

£6-e hcoc =0 (4) 

hcct £78 - « 

whence 
e = i(£j + £„) + (<5/2)[(£6 - £,,)2 + 4/i2c2a2]1'2 (5) 

where Ô can be either +1 or -1. If now we consider instead of the energies 
E the wave numbers v of the Q branches 

t(JK') - E0(JK") (6) 

he 

where K' = K” + \ or K” -1 and where E0 is the energy of the ground 
state, we find that the perturbed v and unperturbed v6, v78 in wave numbers 
are related by the equation 

V = i(v6 + v„) + (<5/2)[(v6 - V,,)2 + 4a2]1/2 (7) 

where account has been taken ot Eqs. (2) and (3). In this equation the un¬ 
perturbed wave numbers can be written as : 

v6 = v6° + 2[i46'(l ~ C6) - ^6']^ 

+ (í46' — Aq — B,' + B0)K2 + (B6' — B0)J(J + 1) ^ 

V78 - v78 + 2[4478(1 + C7 + Cs) ” ^7s]^ 

+ (^78 ~ — ^78 + ^o)^2 + (^78 ~ Bq)J(J + 1) 

where v0 is an unperturbed band center; A' and B\ A0 and B0 are inertia 
constants of the excited and the ground state, respectively. 

Before comparing the Eq. (7) with the experimental curve of Fig. 2 it is 
necessary to make a choice for the band origins. This choice is not an obvious 
one since the intensity alternation which characterizes the molecules with a 
threefold axis is obliterated here by the perturbations and the overlapping of 
lines belonging to the two progressions. We came to the conclusion that the 
most reasonable choice was to identify RQ0 with line / in both progressions, 
RQi with line m, PQ1 with line k, and so on. This choice agrees with the one 
made by Thompson and Williams (1952), Parker et al. (1957), Yarger (I960), 
and Nakagawa and Shimanouchi (1962). It should be pointed out, however, 
that there is some uncertainty about this choice. 

The comparison of Eq. (7) with the experimental curve of Fig. 2 leads to 

the following conclusions: 
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(a) Since B0 =0.31 cm-1 and A0 = 5.28 cm“1 in methyl cyanide, it is 
reasonable to neglect B' - in the third term of Eqs. (8). The curvature of 
the asymptotes can then be used to compute /r78 and Ab'. The asymptote 
associated with v78 is the one with the larger slope, while the asymptote 
associated with v6 is the one with the smaller slope. We have obtained the 
value A6' = 5.23, while for reasons which will become apparent later the 

value of í478 is more uncertain. 
(b) The coefficient of the terms linear in K in Eqs. (8), i.e., the slope of 

the asymptotes in the vicinity of the band origins, gives the values: 

¢7 + ¢8=1-2 (9) 

¢6 = -0.35 

The value obtained here for Ç? + (8 is in fairly good agreement with the best 

known values of C? and Cs [¢7 = 0.42 from infrared data (Parker et ai, 1957) 
and (g = 0.88 from microwave investigations (Venkateswarlu, 1961)]. This 
agreement supports the interpretation we propose here that the perturbation 

is due to a resonance between v6 and v7 -1- v8. 
(c) The determination of the asymptotes of the hyperbola permits the 

evaluation of the unperturbed band origins v6° and v78. These quantities can 

be used in the vibrational analysis. 

v6° = i (Ej16 - £volb) + At‘(i - 2C6) - B6‘ 

v?8 = i (£78 - E5lb) + ^8(1+ 2Í7 + 2{8) - «78 

(10) 

where 

he 

1 

(Elib - £ÿb) = 0Je° + x66 + xl6l6 
ill) 

— (EVs — ^o,b) - C07° + w8° + X77 + x88 + x78 + xhh + x(#Jb -I- x/7j8 
he 

We have found for the values of v6° and v% the following: 

v6° = 1462 cm (12) 

v78 --= 1445 cm“1 

This value of v6° is to be compared with 1454.2 from Parker et al. (1957) and 
1453.53 from Nakagawa and Shimanouchi (1962), where the K assignment of 
the rQq line is the same in all cases, no account having been taken of the 

resonance in the case of the latter two references. 
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» 

We have already pointed out that there is some uncertainty on the 
assignment of the RQ0 line, so that the values we give for the band origins 
v6° and V78 could possibly be revised after further experimental investigation. 
In that event the values obtained for Ç6 and C7 + Cscou^ be slightly modified, 

(d) In Fig. 3, the half-differences A/2 between spectral terms of resonating 

Fio. 3. Differences between resonating levels in v« and v? + vs plotted against K. 

levels belonging to the two progressions are plotted against K. The experi¬ 
mental points lie on a hyperbola as expected from Eq. (6): 

j = ± 2~) +,^678 + 2otl^2] (13) 
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The comparison of this equation with the observed data permits obtaining the 
value of the cubic force constant /c678: 

fe678 = 13.2 cm“1 v»4) 

On the other hand, by using the half-difference A/2 between spectral terms of 
resonating levels and the half-sum of these spectral terms, which is not per¬ 
turbed by the resonance, it is possible to compute the unperturbed frequencies 
v6 and v78 from lines in the resonance region. For v6° and v78 this procedure 
leads to values which agree with the values of Eq. (12) within 1.5 wave 
number, while the values obtained for (6 and (7 +(8 are -0.37 and 1.1, 
respectively, which are in fairly good agreement with the values of Eq. (9). 
It can be seen, however, that this agreement is not excellent, and neither is the 
agreement between the value of Ç7 + (s obtained here and the values of Ç7 
and C8 derived from other studies. Various reasons reduce the accuracy on 
the numerical values which can be obtained from the spectrum : 

(1) There is some uncertainty on the frequency of a number of lines due 
to the overlapping of the two progressions and due to the background 
corresponding to unresolved P and R lines. 

(2) The Q branches being unresolved, the J value corresponding to the 
maximum of absorption in the profile is not known. This gives rise to a 
systematic error in the determination of v0 through the last term of Eq. (8). 
If the value of J for which the maximum occurs varies with K, further errors 
can be expected. 

(3) The rotational perturbation which will be discussed in the next section 
considerably broadens some of the Q branches in v6. 

(4) It is possible that the frequencies v78 given by Eq. (8) are furthermore 
perturbed by a resonance between v7 + v8 and 4v8. This resonance would be 
of the same kind as the one between v7 and 3v8, which is the only possible 
interpretation of the perturbation in the rotational structure of v7 reported 
by Yarger (1960). 

(5) As it has been already pointed out, there is some uncertainty on the 
identification of the branch RQ0 in both progressions. 

(6) Finally, the accuracy on v7 + v8 is certainly smaller than on vb, for the 
Q branches are not observed for very high K values in the former band, 
which has a weaker intensity than the latter far from the resonance region. 
On this last point, some further experimental studies of the wings of the bands 
with higher gas pressures would be very useful. 

.III. The (v6, v3) Resonance 

As we have already mentioned, the perturbation in the region of 
1390 cm“1 can be explained by a resonance between the upper levels of v6 
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and v3. The coupling operator is now the first-order Coriolis operator: 

JT Í3.62 
1/2 

QÁPúlPx - PòlPy)- 

1/2 

Q 61P y) 

(15) 

If we consider the set of quantum numbers vò /61/3 K, the coupling matrix 

element is 

(IT i 0 K \JT\ 00 1 K ± 1) 

= hci*wB? --‘fri W + 1) - K(K ± l)]1/J (16) 
(2a}^ü)by,¿ 

This matrix element is /-dependent and so also will be the perturbation. 
When the resonance is strong, we shall not observe sharp Q branches but 

their J structure will be spread out. 
Figure 4 shows, for a given value of /, the relative position of the un¬ 

perturbed upper levels in bands vf) and v3 ; the values of /6 and K are given for 
these levels as well as the identification of unperturbed absorption lines 
which would end up at these levels. It has been assumed that the J = K-0 
level in the upper state of v3 lies at 1389 cm'1 in a cordance with the esti¬ 
mation of Parker et al, (1957). It can be seen from Fig. 4 that PQS, and to a 
smaller extent pQb, are the most strongly perturbed Q branches of v6. This 
is in excellent agreement with the observations, for these two branches are 
considerably spread out. The perturbation is weaker for PQ1, PQS. it can be 
expected from Fig. 4 that the various lines of these branches will be displaced 
toward smaller wave numbers with an increasing displacement for increasing 
/ values. This will result in a shading of these branches toward smaller wave 
numbers. For the same reason a shading toward large wave numbers is 
expected in the branches PQ4 pQi. These expectations are well borne out. 

IV. Conclusion 

The study of the band v6 gives a very clear illustration of the two kinds of 
perturbations due to accidental resonances which can be encountered in 
rotation-vibration spectra: Fermi-type vibrational resonances where the 
matrix element of the coupling is diagonal in K and does not depend upon 
rotational quantum numbers; Coriolis-type rotational resonances where the 
matrix element of the coupling depends upon rotational quantum numbers 
(this matrix element can be either diagonal or off-diagonal in K, the latter 

being thé one observed here). 
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K I, K 

Fio. 4. Energy diagram for the excited levels in va and v«. 



69 

Microwave studies2 have led, for the Coriolis coupling coefficient (8, to 
the value 0.88, which is smaller than the value 0.93 previously obtained from 
the ( sum rule 

Cs + Cf> + C? + (s - 1 + r“7 - 103 (17) 
2A 

and from the values of (5, £6, and (7 derived from infrared spectra, so that the 
C sum rule seemed not to be verified any longer. 

The present study of the band v6 suggests that the value3 of (6 is larger than 
had been believed (-0.35 instead of -0.39). The Ç sum rule is fairly well 
verified by the best Ç values currently obtained ((5 = 0.07;Ç6= -0.35; 
C7 =0.42; Ca =0.88). 
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CHAPTER VI 

Generol Discussion of Fermi Resononce 

in Corbon Dioxyde 

with o New Assignment of Vibrational Levels 

mu-uuL nu.\ 

Cuurtoy (/, 2) has determined, for the carbon dioxidi; molecule, spectroscopic 
constante which permit the computation of all the rotation-vibration energy 
levels ot C 02 and of the various other isotopic species (C13C)216 C,20I60'8 
etc ) The agreement between observed and calculated energy levels is excellent! 
but, two difficulties are met as far as the internal consistency of the spectroscopic 
constants is concerned. 1 

(1) The relations for isotopic substitution are well satisfied by the constants 
’ x,s' ’ ' V obtained for the different isotopic molecules, with one major excep¬ 

tion, namely, the one of the Fermi coupling coefficient We. The values of the 

ÄTSS ( " W’)/W' °f ,hiS "0ef,i"ient 111 is0t0'>¡'! «'bstitulions arc 

{We We)/We 

c13o26 
c12oiSoIS 
C12OJ8 

Obs ( %) 

-10 
+2.3 
+4.4 

Calc ( %) 

— 3 
- 2.2 
-4.4 

As can be seen from this tabulation the best values of We* determined for each 
molecule from observed data, do not agree with the values calculated from V. 
of C 0 using the theoretical formulas for isotopic substitution. 

(2) The coefficient 4,.,. appearing in the cubic part of the anharmonic potential 



71 

expanded with respect to normal coordinates can be obtained very easily from 
We, since 

W t = — fci22/\/2, (1) 

which gives a reasonable value of km. On the other hand, this same coefficient 
can, in theory, be derived from the values of the anharmonicily constants in 
and Xi.^ [whose definition will be recalled in Eqs. (3) and (4)], since1 

2¾ + = —~ 1/2(2ü>2 + wi)J. (2) 

Actually the best values {1,2) of in and xÍ2¡J lead to an imaginary value for km . 
The starting point of the study reported here has been an attempt,to overcome 

these two difficulties. 

A. Vibrational Analysis 

(a) The vibration energy of levels which are not perturbed by Fermi resonance 
(i.e., levels with | /21 ) is given to second order by the formula 

Ev == ' Us Vs 4- ^ ] Xss'VsVs' 4- QtHï , (3) 
« tt* 

where s and s' designate one of the normal vibrations 1, 2, or'3 and where 

022 = Xhh - B (4) 

Although Eq. (3) cannot be used for levels perturbed by Fermi resonance, it 
holds for the sum of the energies of ail the levels belonging to a given Fermi 
polyad. By using two singlet S states, two singlet II states, one singlet A state, and 
the sums of the levels of two diads 2, of one diad II, of one triad 2, as those listed 
in Fig. 1, it is possible to obtain six of the ten constants appearing on the right 
side of Eq. (3) and three linear combinations of the remaining four constants. 
It can be shown that taking into consideration additional Fermi polyads would 
lead to linear combinations of the nine quantities “framed” in Fig. 1 without 
bringing the tenth independent information necessary for a complete knowledge 
of the constants appearing in Eq. (3). Any new linear combination of u?, Xn , 
x22, and 022 can be chosen for the unknown parameter. We shall actually consider 
Xi2 — 4.r22 as being this unknown parameter which needs to be computed in 
order to know the ten constants cosn, , and gn . 

(b) For this purpose we need to take Fermi resonance explicitly into account; 
in addition to the diagonal elements (3), we introduce in the energy matrix the 
Fermi coupling off-diagonal elements: 

1 Let us reeull (4) that 

X¡¡.j = ?^Ä"j222 — Ai22 [1/2«i + 1/8(2o>2 + 

~ —1'2^2222 + kl22/8(2coi + Wi). 
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*n (*}1 +4X 22 

Fig. 1. Determination of vibrational constants from energy levels or suma of energy levels 
not perturbed by Fermi resonance. 

W = (tWît>*| H/hc |t>i - 1, t>2 + 2, l&i). (5) 

Up to second order, they can be written 

w = + 2)’ - (6) 

with Wt given by Eq. (1). 
Ixit us now designate by 1 and 2 the two levels 10¾ and 02¾ of a 2 diad, by A 

the difference E\ — Ez between the vibrational energies of these two levels, 
computed taking Fermi resonance into account, and by Ao the difference Ei° — Et 
between the unperturbed vibrational energies of the same levels given by Eq. 
(3). A which is known from the spectra is related to the unknown quantities 

Ao and W as written below: 

A* - Ao* -I- 4IF2. (7) 

For a 1 diad, 

W = Wt= -WV2. (8) 

On the other hand, the difference 

Ao = wi° — 2mj° + Xn — 4x22 + (^u — 2x2s)wj (9) 
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can be expressed in terms of the known constants framed in Fig. 1 and of the 
unknown parameter xn — 4¾ ; then Ao appears as a known linear function of 
this parameter. Therefore the curve representing Eq. (7 ) considered as a relation 
between km and (xn — 4¾) is an ellipse. Equation (7) holds also for II, A, • • • 
diads; in the case of a II diad,2 for example: 

W = WeV2 - -Am, (10) 

Ao — oil — 2o)2 + Xn + Xi2 — 8x22 + (*r 13 — 2x23)1)3. (11) 

Ix*t us now draw on the same diagram ellipses corresponding to the various diads 
2, IT, • • • for all the values of v¿ for which these diads have been observed. 
(Ellipses can also be drawn for the triads but it is much less practical.) The 
intersection of the various ellipses should give in principle the value of both 
(X12 — 4x22) and A-122. These ellipses are drawn on Fig. 2 and 3 for C12OÎ6 and 
C'W, respectively (curves marked 2, II, A); it can be seen from these figures 
that this procedure is very disappointing, because the ellipses do not give a 
well-defined intersection point. There is instead a wide region where the curves 
run almost parallel and very close to each other. (It is reasonable to think that 
they would appear almost superimposed on each other in this same region if the 
higher order terms listed in the “Remark” below would be taken into account.) 
Instead of a determination of both (xi2 — 4x22j and Am we obtain only a relation 
between these two parameters. This shows that there are an infinit/of óet5of vibra 
tional constants w/x^^Am which will enable one to compute the correct values 
of vibrational energy levels. In other words the fact that a set of vibrational 
constants permits the computation of energy levels in good agreement with 
experimental values does not necessarily mean that these constants are the right 
ones. We shall describe in Sec. B and C two possible ways of selecting the right 
set of vibrational constants. 

Remark 
The second-order vibrational analysis described in the present section is only 

a first approximation. In order to obtain a very good fit with experimental 
data, the calculation must be carried to fourth order, which means that additional 
terms must be included in the energy matrix: 

(1) Terms of degree three with respect to vibrational quantum numbers v, 
and /2 need to be written4 at the right end of formula (3). The coefficients of these 
terms are traditionally designated by y with three subscripts. 

2 For a It diad, we define as follows: 

Ao = — E-P — Eü pu,) -- Afos1»!) • 

3 In all these sets six out of the eleven constants, namely, u*0 <*>3° Xu x.™ xu and Xu keep, 
of course, the same values (see Fig. 1). 

4 Consequently such terms will obviously also appear at the right end of Eqs. (9) and 
(U). 
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12 16_ 
C 0, 

Fig. 2. Determination of fan - 4x2s) and /:122 for C12OÍ6 

(2) In formula (6), We must bo replaced by (5, 6): 

— We + \yVX -|- X‘2(f2 + 2)4- + +2)* (12) 

(3) In triads, tetrads, • • • new resonance matrix elements must be included 
in the secular determinants: 

(v\ V‘i U V3 
he 

vi - 2, v2 + 4, ¿2 v3) 
(13) 

— «{[(^2 + 2)2 — /22][(ti2 + 4)2 — lî]vi(vi — 

(For the definition of operator see Ref. 7). It is probably worthwhile to 
point out that, while the first two kinds of terms [(1) and (2) above] have been 
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Fio. 3. Determination of (2:12 — 422:) and A'm for C130í6 

taken into account in the best vibrational analysis (Í, 2) of CO2, the third kind 
((3) above] has not been considered to the best oí our knowledge. 

B. Utilization of Rotational Constants 

Due to Fermi resonance, the inertia constants B are linear combinations of 

unperturbed constants //' with5 

R0(i>iC22C;,) = ßo° — and — a2id — <XiV$. (14) 

Tor t he 2 diad 10°0, 02°0, we can write, using for levels 1 and 2 the convention 

s In the case of 11 levels, formula (14) holds for the half sum of the constants ß° corre¬ 
sponding to the two sublevels of the /-type doublet. 
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made in Section A : 

Bi° = B°(iuoo) = Bo’ — «i, (15) 

Bj0 — B(02«o) = Bo° — 2a¡. (16) 

If the Fermi coupling would be an exact resonance with degeneracy of the un¬ 
perturbed levels (Ei° = #20, i.e., A0 = 0), the mixing of the states 1 and 2 would 
be complete and the rotational constants B would be equal for the two perturbed 
states as shown in Fig. 4a: 

B = HB^ + HBl (17) 

(In the case of exact resonance there is no possibility of designating the perturbed 
levels as 1 or 2.) In fact the resonance is not exact (A0 ^ 0) ; the situation is then 
the one shown in Fig. 4b. The mixing of states 10°0 and 02°0 being not complete 
we can without ambiguity call 1 and 2 the perturbed states which contain the 
largest fraction of 10°0 and 02°0, respectively. 

Bi and B2 are linear combinations of B? and B2 and it can be shown (8 9 2) 
that 

(«! - /Í2)/(£i0 - ß2°) = (E? - Ei )/(Ei - Ei) (18) 

or 

wit h 

An important implication 

if 

if 

and 

if 

if 

Application to the labelling of the states for COt 
For the 2 diads of C1202 and C1«)^ experience shows definitely that, if one 

considers two bands in which the upper levels are members of the same diad 
the spacing of the lines is smaller in the band with the higher frequency. In 
other words, the level with the larger vibrational energy has the smaller B con- 

AB = (A»/A) AB« (19) 

AB = B,- Bi, 

AB« = Bi - Bl 

of the situation described on Fig. 4b is that 

E\ > Ef then Ex > E2 

E\ < Ei then Ei < E¿ 

(20) 

(21) 

Bi° > Bi then Bi > B2 

Bi° < B2° then Bi < B2. 
(22) 
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staut. Thon 

oit hör Ex > E-i and 7Í, < II, 

or E\ < E> and B\ > II,. 
(23) 

Kxporionoi1 dohnitoly shows also that, in 2 diads of and Cl:t()i'’, 

B? < Bl (24) 

Indood if ono inoasuros the inertia constants B in levels (X)'’0, OI1«, 02w0, 10°0, 
1 ho first two levels are not perturbed by Fermi resonance and the last two levels 
belong to the same diad; therefore: 

Ff(0(|Ou) = B[\ , 

B(\\xH)) = fit -- a-i , 

^(i()°(i) T /^(()2®i)> — B\‘ -F Il¿1 
(25) 

= 2/?oü — «i — 2a¿. 

Jt is easy to obtain first III «i , a>>d «2 from the four experimental values, then 
to compute /ii° and B? by using Kqs. ( 15), ( Hi), and, as a consequence, to estab¬ 
lish relation (24). 

Now it we use the relations (24), (22), (23), and (21 ) (in this order), we come 
to the conclusion that 

¿O000) > A''’,,,..,,, (26) 

and that the labelling shown on Fig. 4b is correct. 
A pplicalion to the determination of vibrational constants 
Since A and A/2 are known directly from the spectrum and since AZ20 can be 

obtained as we have just described. Eq. ( 19) gives Au from which the value of the 
unknown parameter X|2 — 4¾ can be obtained. 

This value is shown by point C on 11 e horizontal axis in Fig. 2 and 3. The in¬ 
tersection ol the vertical straight line D with the ellipses permits then to obtain 
a value of km . The arguments given in the present section were used by Courtoy 
in his fourth-order determination of vibrational constants of CO2 (/, 2) and his 
method is essentially equivalent to the one described here. As we have said his 
constants permit the computation of energy levels in excellent agreement with 
experimental values but they lead <0 the two inconsistencies pointed out in the 
Introduction. 

(-. Utilization of Relations Between Vibhational Constants 

Since the discrepancies are due to the fact that certain theoretical relations 
are not verified by the vibrational constants, it seems suitable to take these 
relations into account from the beginning in the analysis. 
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(1) Let us consider relation (2). The left side 

.1*22 -f- = .T22 + 3(/22 + 3/i (27) 

can be expressed in terms of the inertia constant /f, of the known quantities 
framed in Fig. 1 and of the unknown parameter ¿12 — 4¾ • It can furthermore be1 
shown that aa and a>2 appearing on the right side of Eq. (2) depend only upon the 
known quantities framed in Fig. 1, so that Eq. (2) considered as a relation be¬ 
tween (2-,2 — 4.¾) and km is the equation of a known parabola (curve P on 
Fig. 2 and 3). The intersection of this parabola with the ellipses drawn in Sec. A 
gives values of .r12 — and km ■ It can be seen that these values are d.fièrent 
from those obtained in Sec. B, leading then to a different set of vibrational con¬ 
stants which is expected to give as good agreement between observed and cal¬ 
culated levels as the first one with the additional advantage that Eq. (2) will 
be verified. 

The fact that the straight line D has no intersection with the parabola 7' on 
Fig. 2 and 3 explains why using Eq. (2) to compute km from the values of xr¿ 
and obtained in Sec. B leads to imaginary values of ku<< . 

(2) If the method of paragraph ( 1 ) above is used for and independently 
for C'W it is found that ky¿2 and A"i22 obtained, respectively, for these two 
molecules have the good theoretical ratio expected for this isotopic substitu 
lion: 

A122/A,22 — 002 /002 — CO:, /cv’:t (28) 

This can be seen on Fig. 2 and 3 where y/2km has been used as ordinate on bot h 
diagrams [relation (28) making possible a transformation from k*™ to km before 
drawing Fig. 3]: The intersection of 7> with the ellipses has about the same 
ordinate on both Fig. 2 and 3. The fact 1 hat the intersection of I) wit h t he ellipses 
does not correspond to the same ordinal«' on lug. 2 and 3 explains why the values 
obtained for the constants A,22 and kta by the method of Sec. B do not give the 
right ratio for the isotopic substitution from (,l2 to C1'. 

To summarize, the vibrational constants obtained in Section B give the correct 
inertia constants but do not satisfy the equation (2) and do not give the right 
ratio for kv& in isotopic substitutions, while the vibrational constants obtained 
in the present section satisfy the equation (2) and give the right ratio tor km 
in the isotopic substitution from C12 to C13 but do not seem to give the correct 
LnCftio. ccnitonts Vie .<hall i*ft in Stc.D kowtotr that ,¡.0 tkc cas« o| a strong Fermi rtSo- 

nanc«-;the formulas u.sed fkuí j^arin tkt computation o| inertia constants require 

mocii ficabon , luiiick will then permit ont to ouercomii. this dillicultij. 

(3) We have already pointed out that Ao is a known linear function of Xi2 — 
4*22 • The point 0 on the horizontal axes in Fig. 2 and 3 indicates the value of 
ar12 — 4x«2 for which An vanishes. One sees that in the case of 01¾6. the new 
value of X12 — 4.T22 (abscissa of the intersection of P with the ellipses) gives a 
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B 

B 

ab c 
Fio. 4. Influence of Fermi resonance on vibrational energies and inertia constants B. 

In each diagram the unperturbed values (with superscripts 0) are shown on the left and 
the perturbed values are shown on the right, a. exact resonance Ä\° = AV, b. case where 
A’i° > AV, c. case where AV < A’A 

negative value for Ao so that in this scheme 
I’O , T,l0 

tj (02*0) , (29) 

which means that the current assignment of tp and 2(¾ should be reversed. If we 
come back to the discussion of Sec. B, the propositions (2I), (23), and (24) 
cannot be questioned so that the only possibility is to admit that the proposition 
(22) does not hold, giving then the picture shown on Fig. 4c. The theory to be 
developed in the next section has to explain this crossing of the inertia constants 
when going from the unperturbed to the perturbed values. In the case of ClsOj9, 
the position of the point 0 in Fig. 3 shows that we still have the situation cor¬ 
responding to relation (20), i.e., to Fig. 4b. 

Remark 
The arguments developed in Sec. B and C are not the only ones which can be 

used in order to find the correct assignment of vi and 2c2 and to obtain the right 
vibrational constants: 
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(1) In the earlier studies on Fermi resomtnee Í10), the relative intensity of 
the two Raman bands py and was used in support of the hypothesis (20) 
foi (y O2. We must admit that this observation is in appariait eontradietion 
with the conclusions obtained in the present section. However, we arc inclined 
not to consider this argument as a decisive one because the theory of intensities 
of Raman transitions is rather uncertain, especially when Fermi resonance occurs. 

(2) Theie is a iclalion between 0¾ and /ri-w . However, the accuracy of 
being rather low, it seems more reliable to use Eq. (2) in order to determine 
Ai»* and then to check that the value obtained is compatible with the observed 
value of «2. 

F). Computation- of I.vkrtia Constants in the Case of a Strong Feumi 
Resonance 

It can be seen on Mg. 4 that, as an elici t of Fermi resonance, A/i « A/i(i. 
While ABJ(J + I ) belongs to second order. A#./(J -f 1) will belong to a higher 
order, so that a correct computation of the inertia constants B in the case of 
I ermi resonance could, even in the lowest approximation, involve operators 
belonging to terms with an order of magnitude higher than the second in the 
expansion of the Hamiltonian. 

Reside the third- and fourth order vibrational corrections listed in the Remark 
at the end of Section A, various fourth-order (diagonal) rotational corrections 
can be taken into account. One of them will change slightly the computed B 
values: it consists in adding terms 7..,, (>,/ .■ at the right end of Eq. (14). This 
four!h-order correction has been taken into account in previous analysis; but it is 
one or two orders of magnitude smaller than the effect we are looking for. 

Hov\over Maes (0) has pointed out that third-order ofT-diagona! contributions 
should also he taken imo consideration; they come abom from the fact that the 
matux element (0) varies with ./ so that a term FI) must be written 
on the right end oí Eq. ( 12 ). Ihis effect has so far never been taken into account. 
It can easily be seen that it introduces an additional term in relation ( Hi), which 
lor a A diad’ becomes, up to third order, 

AB = ( Ao/ A )ABq T Í 4 IF,/A )(5. (30) 

A/i„ and 5 are, respectively, the coefficients of terms in ,/(«/ -f 1) eommg from 
second-order and third-order Hamiltonians; ;f A„ and 4IF, have about the same 
order of magnitude, the second term on the right side of Eq. (30) is much smaller 
than the first one; then Eq. (19) holds with a very good approximation If, on 

* The general formula for any diad (i'iil'i'jjU'i - 1, r,. -f 2^, v3) is 

A/Í — 4- (H r/AjÆpf'.j -f- 2)5 — (.’"¡Ci . 

' Equation (ItO) (am still be used on a higher approximation, provided the fourth-order 
terms monlioncd above are included in and Mi,, , ami provided H\ is replaced by if,. 
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the other hand, A0 is one order of magnitude smaller than \Ve, as it happens for 
CO2, the two terms on the right side of Eq. (30) have the same order of magni¬ 
tude. If the second one is larger in absolute value than the first one and opposite 
in sign, then AB and AB0 will have opposite signs which corresponds to the situ¬ 
ation shown in Fig. 4c with a crossing of the values of the inert ia constants when 
going from t he unpert urbed to the perturbed case. 

Effective values in agreement with the experimental ones can be computed 
for the inertia constants B of the various diads of C1202fi by using the vibrational 
constants obtained in Sec. C and by assuming 

0^-2 1(T4 cm-1, (31) 

which is a very reasonable order of magnitude for such a constant. 
The considerations above overcome the main difficulty encountered in the 

approach described in Sec. C. This approach leads then to conclusions which 
appear to be much more satisfactory than those obtained in Sec. B. 

CONCLUSION 

from a general viewpoint, the three following considerations seem to be 
important: 

( 1 ) The fact that a set of vibrational constants permits the computation of 
energy levels in good agreement with experimental values does not mean neces¬ 
sarily that these constants are the right ones. 

(2) The theoretical relations existing between the vibrational constants must 
be used from the beginning in the vibrational analysis in order to obtain the 
correct set of vibrational constants. 

(3) The variation of the Fermi coupling element with J must be taken into 
account in the computation of rotational constants, principally when the Fermi 
resonance is very strong. 

When the considerations above are applied to carbon dioxide, they suggest 
that the traditional assignment of ^ and 2v2 should be reversed in the case of 
C12OÎ8. However it is only when vibrat ional energies, effective rotational constants 
B and D, and intensities have been recomputed on this new basis for all the 
observed levels and shown to agree with experimental values that the scheme 
proposed in Sec. C of this paper will possibly appear to be the right one. 

Preliminary results obtained in collaboration with Courtoy show chat it could 
very well be so. 
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