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ABSTRACT 
1 I 

^^■Heasured decay rates and flutter speeds for two-degree-of~freedom 

hydrofoil models with finite aspect ratio are compared with those predicted 

by two-dimensional airfoil theory applied in a stripwise manner. The 

flutter speed of one of the experimental configurations is also predicted 

by means of three-dimensional lifting-surface theory. Both theory and 

experiment indicate that flutter speed increases as aspect ratio is de¬ 

creased. However, the non-conservative discrepancy found previously 

between measured and predicted two-degree-of-freedom flutter speeds in 

two-dimensional flow persists in these three-dimensional results. { ) 

KEYWORDS 

Hydroelasticity 

Flutter 
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NOMENCLATURE 

ratio of spanwise reference length to chordwlse 
reference length 

A, B,C, parameters defined in Equation (67) 

b o reference semichord length 

e o dimensionless distance from y-axis to rotational 
axis in 
is aft 

units of b , positive if the rotational axis 

'VW1* 

H 

K(x,y;S,T];U)) 

K,(x,y>t;S,V) 

k 

LirL12’L2rL22 

M 

harmonic hydrodynamic derivatives from two-dimensional 
strip theory 

t h j displacement mode shape 

hydrofoil planform area 

vrr 
kernel function for calculating harmonic response 
at frequency to 

kernel function for calçulating indiciai response 

to bo/U = reduced frequency 

harmonic hydrodynamic derivatives from three- 
d¡mensional theory 

indiciai hydrodynamic derivatives 

total mass of hydrofoil configuration 

genera 1ized mass 
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Mx.y.t) 

Pj (x,y,<") 

PNC(x’y) 

pQS(x,y) 

pus^x,y,t^ 

Q.(t) 
fell 

qj(t) 

s 

T 

T (t) 

t 

U 

x.y 

O' 

Z(x,y) 

unsteady pressure-loading on hydrofoil 

harmonic pressure-response function 

non-cIrculatory component of indiciai pressure 
response 

quasi-steady component of indiciai pressure response 

unsteady component of indiciai pressure response 

f h 
generalized force in j degree of freedom 

t h generalized coordinate in j degree of freedom 

dimensionless radius of gyration of hydrofoil 
configuration about rotational axis, in semichords 

spanwise reference length 

taper ratio (tip chord/root chord) 

time dependence of hydrofoil motion 

time 

forward speed of hydrofoil 

flutter speed 

orthogonal Cartesian coordinate system 

dimensionless distance from rotational axis to 
center of gravity in semichords, positive If CG 
is aft 

space dependence of hydrofoil motion 

viii 
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midchord sweep angle 

density ratio 

critical density ratio 

fluid density 

dimensionless natural frequency in rotational 
degree of freedom 

response frequency 

, t fl uncoupled natural frequency in j mode 
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INTRODUCTION 

1,2 
In two earlier hydroelastic studies at the Davidson Laboratory, 

measured response characteristics and flutter speeds of several two-degree- 

of~freedom hydrofoil models in two-dimensional flow were compared with 

corresponding results predicted by two-dimensional airfoil theory. These 

models were tested over a range of density ratio and center-of-gravity 

location,2 while other parameters were held constant. The results show 

that the. theory overestimates the decay rate of the two-degree-of-freedom 

hydrofoil model near the critical density ratio, leading to a non-conserva¬ 

tive prediction of flutter speed in the range of density ratio of interest 

for hydrofoi Is. 

In the third investigation3 of this series of two-degree-of-freedom 

hydroelastic studies, measured and predicted values of response character¬ 

istics and flutter speeds were compared for three models with varying 

planform characteristics over a range of density ratio. The results show 

that the non-conservative discrepancy between measured and predicted decay 

rates and flutter speeds again appears when sweep and taper have been in¬ 

troduced, in the two-degree-of-freedom system. There is, however, no 

reason to suspect that the qualitative trends predicted by the theory are 

incorrect. Calculated values of flutter speed .based on two-dimensional 

strip theory for the two-degree-of-freedom model show that increasing sweep 

angle or decreasing taper yields higher flutter speeds as well as higher 

values of critical density ratio. 

The investigation of measured and predicted response characteristics 

and flutter speeds is extended In the present study to Include the effects 

0f three-dimensional flow with the basic two-degree-of-freedom system used 
1 2 3 in the first three investigations. ’ ’ Measured flutter speeds are com¬ 

pared, in this report, with flutter speeds predicted by two-dimensional 

strip theory, as well as with those predicted by means of three-dimensional 

lifting-surface theory.The difficulties encountered in solving the 

double integral equation, which arises in lifting-surface theory, are 

1 
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discussed. Methods of alleviating these problems are suggested, so that 

accurate predictions of hydroelastlc response characteristics can be 

obtained for hydrofoils of finite aspect ratio. 

Computations were carried out in part at The Computer Center of 

Stevens Institute of Technology, which Is partly supported by the National 

Science Foundation, 

2 
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THEORETICAL ANALYSES « 

EQUATIONS OF MOTION 

The equations of motion for a two-degree-of-freedom conservative 

system with general ¡zed coord ¡nates q^t) and q2(t) can be wr itten3 

2 

V ^(t) + “"j2 Mjjqj(t) = j = i»2 0) 

where the generalized masses are obtained from the distribution of 

mass, m(x,y), which participates in the motion through 

M. 
J i m(x,y) fj(x»y) dxdy (2) 

and where the generalized forces Q. in the present study are obtained, 

from the unsteady hydrodynamic pressure distribution Ap(x,y,t) due to 

the unsteady motion, by 

H 

Ap(x,y,t) fj(x,y) dxdy 

and where uj is the uncoupled natural frequency of vibration in the jth 

degree of freedom in vacuum. In Equations (2) and (3), Mx.y) is the 
a. l_ J 

mode shape of displacement in the j degree of freedom, and the range of 

integration is taken over the hydrofoil planform area, H . 

For the particular configuration of this investigation, the generalized 

coordinates and are selected as the translational displacement 

of the rotational axis of the foil and the rotational displacement about 

this axis, respectively — both measured at the root section of the foil. 

3 



The displacement of any point on the foil Is then 

2 

Z(x,y)T(t) = fjU.yJq.it) (4) 

where mode shapes are taken as 

1.0 ; j = i 
(5) fj(x,y) 

-X + boeo ; J = 2 

in which b is the semichord at the root of the foil and e is the 
o . c . 

distance from the y-axis to the rotational axis In semi chords, positive 

If the rotational axis is aft, as shown in Figure 1. 

When one combines Equations (5) and (2), it becomes apparent that 

M » M 11 

(6) 

where M is the total mass, Xq, is the distance in semichords from the 

rotational axis to the center-of-gravity location, and r^ is the radius 

of gyration about the rotational axis, in semichords. 

Now the introduction of Equations (5) and (6) into the equations of 

motion (l) leads to 

Mqj - xabQ Mq'2 + uJ^Mqj = Q (7) 

and 

(8) 

To proceed further with the solution of these equations, it is neces¬ 

sary to choose a method of representation for the unsteady hydrodynamic 
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pressure distribution Apixjy^t) • Two of the available methods lead to 

entirely equivalent solutions. 

The first method Is used for flutter-speed predictions. The time 

dependence in Equations (7) and (8) is required to be harmonic; then the 

hydrodynamic pressure Ap(x,y,t) can be determined by means of the harmonic 

pressure-response functions which,in effect, correspond to pressure re¬ 

sponses due to unit amplitude oscillations in each degree of freedom, The 

flutter speed can then be found from the equations of motion. The harmonic- 

response technique is used in the next section of this report to predict 

the flutter speeds for the experimental configurations. 

The second available method of describing the unsteady hydrodynamic 

loads is by the use of indiciai pressure-response functions which are the 

responses to unit step changes in downwash in each degree of freedom. The 

actual pressure response can then be described by means of the Duhamel 

superposition technique. By introducing harmonic time dependence, this 

procedure becomes identical with the harmonic-response technique. The 

indiciai response functions will be used subsequently to study the critical 

value of density ratio for the two-degree-of-freedom system. 

FLUTTER ANALYSIS 

Harmonic time dependence is introduced in Equations (7) and (8) by 

qj(t) = qj (u))eIU}t; j = l,2 

Ap(x,y,t) = Äp (x,y,u))elüjt (9) 

Qj (t) = Qj (u))eIU)t; j = 1 j2 

where the barred quantities are the complex amplitudes of the respective 

functions at the unknown frequency w . After cancelling the common 

5 
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factor e'^1" , Equations (7) and (8) become 

(iJUj2 - + œ2xaboMq2(iu) = (w) (10) 

+ (w22 - “)2)b02 ra2 Hq2(u)) = Q2N (ll) 

(Equations [lOj and [ll] could also be obtained from the Fourier 
transform of Equations [7] and [8].) 

The unknown pressure Ap(x,y,u)) is expressed in terms of the harmonic 

pressure responses Pj(x,y,(u) for a unit amplitude translational oscilla¬ 

tion (j = l) or rotational oscillation (j = 2), by 

2 
Mx.y.tu) = Pj(x,y,(") q j (10) (12) 

j=l 

Several methods are available for calculating these harmonic-response 

functions, p, . However, the most accurate one for three-dimensional-flow 
J 

conditions employs lifting-surface theory, in which the response functions 
4 5 

are related to the displacement by the integral equation * 

(iU)+ Ug^) f j (x,y) = p^(§,11,œ) Kix.y;?,'!!;!!)) dSdTl 

(13) 

where the kernel function K is taken as presented by Watkins, Woolston, 

and Cunningham ^ for infinite fluid. (The corresponding kernel function 

for operation near a free surface at arbitrary Froude number has been 

derived by Tsakonas and Henry. ) Substituting Equation (5) for fj(x,y) 

in Equation (13), yields 

U) = 
4TTpU J p.iM.w) K(x,y;§,T|;u)) d§dT| (14) 

and 

6 
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¡U)(“X + b e ) - U 
o o 

1 
ifTTpU ~PZ(SM K(x,y¿Üj'l’ljw) clgdll 

(15) 

But P2 can be considered as a linear combination of the responses to 

each term on the left-hand side of Equation (15). This gives 

-¡»X = I J Pz*15'1’'“’1 d5dT| (|6) 

i^b e 
0 0 4TTpU 

J J p^UJ.cu) K(x,y;§,Tl;a)) d§dll (1?) 

- U = 4TTpU 0H 
~P2{Z\îM K(x,y;§,Tl;a)) d§dll (18) 

and then 

^(M.w) = P2X + F>2^ + (19) 

Comparing Equations (17) and (18) with Equation (14), we see that 

d ^ ^ = b e p, , 
v2 ooKl 

(20) 

and 

- (2) 
P2 

U - 
iu) P1 

(21) 

Then, from Equation (19)* 

PoiS.W = 
- V /1U , \ “ p + (— + b e )p 
K2 iu 0 0 r 

(22) 
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Combining Equations (12) and (22) gives 

Ap(x,y,u)) = ^(x.y.ujjq^iu) + ^(x.y.U)) + + Pjix.y.ujJJ q2(tu) 

(23) 

where the harmonic-response functions Pj and p2” are found from the 

integrai Equations (14) and (16). Equation (23) is the desired represen¬ 

tation of the unknown pressure distributor Ap in terms of the harmonic- 

response functions p^ and p2". 

The equations of motion (id) and (il) are now put in dimensionless 
3 2 4 2 

form by dividing by npb^iu s and npbQ œ s , respectively. This gives 

and 

[(¾ -.], 1 r+ vq2= 
o ,3 2 npbQ a) s 

^ 1 r ^ i p 
V b“+ [(“} - '] ro' m2 = ,4 2 

rrpbo eu s 

(24) 

(25) 

where s is the span of the model and |i is the density ratio defined by 

P 
M 

TT U 2 npbo s 
(26) 

In the present study, the rotational axis is parallel to the y-axis, so 

that eQ is constant along the span. 

The hydrodynamic forces in Equations (24) and (25) can be written in 

terms of the three-dimensional harmonic hydrodynamic derivatives, which 

are defined by 

L 11 

r\ n 

u u 
H 

P] (x,y,tu) 

npb^jj2 

[Cont'd] 

8 
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* ^ PÓ'(x>y>u>) 

12 ,2 2 
TTpboU) O 

21 o u 
H 

> u 2 b s 
o npbQ(A) o 

L22 

Pp(x,y,o)) . 
—- h ü- d jL .f .2. i 

d b û s k L21 
o 

u j .22 
U O TTpbo(ü 

(27) 

where k = tub /U is the reduced frequency and where the harmonic-response 
0 

operators are found from the dimensionless forms of Equations (14) and (16), 

which become 

4i 
k U 

H 

Pj 

npbo<ji)2 
b s 

o 
K(x,y;Ç,Tl;uj) (28) 

and 

-41 x_ 
k b 

o npb^uD 
g-g bosK(x,y;e;,11;tu) d^dl] (29) 

The dimensionless generalized forces are then given by 

1 
.3 2 b -11 

TTpb^üJ s O 
L’1 + ^2(Ll2+ 

(30) 

Q2 qi /‘ ' ‘ LlP + ^2 [L22 + eo(L2l + Ll2) + eoLll] (3,) FT - b ^L2l + e< 
rrpb m s o 

o 

9 
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so that the equations of motion can be written in the homogeneous form 

{ [’ ' ^ ^ ] ^Lll} + {" ^ + L12 + eoLll} = 
(32) 

r + L21 + eoLn} + ^2 { + L22 + eo(L2l+L12)+eoLn} = ° 

(33) 

For a non-trivial solution of Equations (32) and (33)i it is required that 

the determinant of the coefficients vanish, to yield the flutter determinant 

œ 2 a) 2 

[' - (^) ] ^ + L 11 

n* + L21 + eoLl 1 

’U*» + l12 + e0L| i 

r ^ 21 2 
[l - (^) J + L 22 

+ eo(L2l + l*l2) + eo Ll 

= 0 

(34) 

The solution of Equation (34) for the unknowns k and is 

obtained by letting M> be an unknown for specified values of k . The 

flutter speed can then be determined, at each k , from 

^F 
bœ. U) (35) 

However, the evaluation of the three-dimensional harmonic hydrodynamic 

derivatives in Equation (34) is in itself a major undertaking, for which 

two methods are here presented. The first method utilizes two-dimensional 

flow results in a stripwise manner, and the second method utilizes the 

numerical solution of the integral equations (28) and (29). 

IO 
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Two-Dimensional Stripwise Technique 

If the span of the hydrofoil is large, and if the mode shapes, rota¬ 

tional axis location, and planform geometry change slowly in the spanwise 

direction, then the hydrodynamic force and moment per unit span can be 

closely approximated by those of two-dimensional hydrofoil sections with 

the same properties at each spanwise station. This approximation was 

carried out earlier by the authors,^ and it was shown that the flutter 

determinant (31*) reduces to 

In the earlier work,3 the authors also presented the procedure for solving 

this equation as well as expressions for the hydrodynamic forces Fh., 

in terms of the Theodorsen function C(k) . 

Three-Dimensional Lifting-Surface Theory 

In order to utilize the three-dimensional harmonic representation of 

the unsteady hydrodynamic forces, the integral equations (28) and (2g) are 

solved numerically and the three-dimensional harmonic hydrodynamic deriva¬ 

tives are evaluated by means of Equation (27). These integral equations 

are of the form 

w'(x,y) = JJ p'tS.TDK'íx.yíS.'Tl) dSdH (37) 

where w1 and p1 are the dimensionless downwash and pressure distributions 
4 

and K1 is the dimensionless kernel function given by 

11 
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K'(x,y;§,Tl) 1 _x^J_ 

(y-1!)2 V (x-5)z + (y-Tl)2 

-lk(x-§) 
+ -e-— 

(y-’H) 
-ik| y-T|| 

+ k I y-T] I Kj(k | y-T1 I ) + i ^ k I y-T) I 

* [l jík I y-Tl I ) - Ljik I y-Tl I ) ] 

Teîk I y-Tl I T 

^ I + T2 

where Kj(z) , 1^(2) , and Lj(z) are the fin '-order modified Bessel 

functions, of the first and second kind, and tlv- modified Struve function, 

respectively. The numerical procedure for evaluating K1 and for solving 

Equation (37), as described by Watkins et al., hAS been programmed for 

use in this investigation. The flutter speed can \.hen be found from 

Equation (35) in conjunction with (27) and (3^), c!;re the solution of the 

integral equations (28) and (29) are obtained at the chosen value of re¬ 

duced frequency. The numerical work, however, is quite complicated and 

requires extreme accuracy. These points are discussed at greater length 

in another section. 

QUASI-STEADY ANALYSIS FOR CRITICAL DENSITY RATIO 

1 2 3 5 0 In earlier flutter analyses, * * the flutter speed was found to 

have asymptotic behavior for density ratios, fi , in the range of practical 

interest for hydrofoils. Along this branch of the flutter-speed curve, 

one finds that k 0 as Up c° . As a result, the critical value of 

density ratio, , at which the asymptote occurs, can be predicted by 

using the quasi-steady approximation of the circulatory lift. (If the 

added mass is neglected as well, i.e., k = 0 in the equations of motion, 

12 
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the resulting solution gives the static divergence speed.) Applying the 

limit k - 0 to the circulatory parts of Equations (27), or in the integral 

equations (28) and (29), is a cumbersome task because the added mass and 

circulatory parts are not easily separated. With the indiciai response 

functions, however, this separation is very easily introduced; therefore 

a method for predicting , using these functions,is presented here. 

The unknown pressure Ap(x,y,t), with arbitrary time dependence, is 

related to a displacement Z(x,y)T(t) by the integral equation 

(Tt + "it z(x’y)T(t) 

7 
where Kj is the kernel function derived by Drischler. (The corresponding 

kernel function for operation near a free surface at arbitrary Froude num¬ 

ber is derived in an earlier work by Henry. ) 

Because of the linear properties of the governing equations of the 

system, the total pressure response Ap can be divided into a component 

Ap^ due to the downwash ZòT/òt and a component Ap^ due to UTöZ/öx 

These two components of pressure are then the solutions of the integral 

equations 

= -¡k Ap^) (§,T1,t) Kj(x,y,t;§,Tl,T) dÇdlf) 

(40) 

AP(x)(S,V) KjíX.y.tíS.V) dSdTl 

(41) 

One could proceed to solve these integral equations numerically. A more 

fruitful procedure, however, is first to find the corresponding indiciai 

response functions p.^ and p.^ and then obtain a representation 

for Ap through the Duhamel superposition principle. 

To find the indiciai response functions, the time dependence on the 

left-hand sides of Equations (4o) and (4l) is replaced by the unit step 

function Hj(t), and the functions P¡^ and P¡^ are int0 

13 
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6 
added-mass, quasi-steady, and unsteady components, such that 

pj^Xjyjt) = (x,y)6(t) + p^(x,y)H](t) + p^(x,y,t) 

and (^2) 

p!x^(x,y,t) = pJjP (x,y)ô(t) + Pqs^ (x^y)H1(t) + 

where 

function 

6(t) is the Dirac delta function and Hj(t) is the unit step 

in this analysis to find , we are only interested in the 

non-circulatory and quasi-steady parts of the lift; hence it is assumed 

that p^g) and p^ are zero for all time. Then Equation (42) can be 

rewritten as 

P-^tayjt) = P^(x,y)6(t) + Pqs^ (x;y)Hj (t) 

p[X^(X;y;t) = (x,y)6(t) = p^(x,y)Hj(t) 

(43) 

The integral equations for the indicia] response functions are then 

, nt 

z(x*y)Hi(t) = dT Jl JH d 
(5^)0(^) + P^Í^^H^t)] K, dgdTl 

(44) 

u h /t) ôz(x,y) = _]_ 
U Vt; òx 4np 

dT 
H 
J P^S.W) + Kj d§d4 

(45) 

At t = 0+ , Equations (44) and (45) yield 

Z(x,y) = 
4ttp PfSc^^^ Kjix^y^O^,71,0) d^dll 

Sx 4np c 
H 

J P^Í^H) K^x^,0;Ç,T1,0) dldT) 

(46) 

(47) 

14 
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whereas when t 03 they reduce to 

¿ <4° (5-¾ I im 
t-»C3 

K, drdgdTI (^8) 

H 9Z(x>y)= JL 
S* 4rrp 

H 

1 im 
t-*» 

t 

K, (x^y^t ;Ç,T1,t) drdSdTl 

o 

(49) 

The necessary components of the indiciai pressure-response functions can 

be found from these four integral equations. By introducing the Duhamel 

superposition principle, an expression for the quasi-steady and added-mass 

contributions to the actual pressure response due to the time dependence 

of the. motion T(t) is obtained. 

Ap(x,y,t) = 
fi 2 
P-^ (x,y,t"T) ^-|(T)dT + 

1 
-CO 

U 
-CO 

p[X^ (x,y,t-T) “(T)dx 

= (x,y) 6(t-r) ~(T)dT + P^(x,y) 

-CO 5t 
V 
-CO 

6(t-r) |J('r)dT 

+ Pqs5 (x,y) H,(t-T) ~(T)dT + Pq5^ (x,y) H1 (t-r) —(T)dT 

-CO -CO 

Carrying out the Indicated operations leads to 

Ap(x,y,t) = pj^ (x,y)t‘(t) + P^ (x,y)f(t) + p^(x,y)f(t) + p^(x,y)T(t) 

(50) 

The above procedure Is applied to the two-degree-of-freedom system 

by introducing Equation (4) into Equations (46) through (50), and dividing 

15 
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the indiciai pressure responses into components for each mode of displace¬ 

ment. This gives 

f¡(x,y) J P$M) K^x.y.OjM.O) d§d11; J ï ^ I (51) 

afj (x,y)^ , 

Sx ~ 4ttp J JPNCJ 
H 

K, (x)y,0;§,Tl10) dW, j=l,2 (52) 

fj (x^y) 
1 

4ttP JJp^ii^Tl) lim QSj t-KO 
KJx^jtj^Tl^) dTdT); j = l, 2 (53) 

afî 
U^x.y) 1 

JJp^(^Tl) Um QSj t-*CO 
Kj ^ ^1;^) d^d§dTl; j = l,2 

(54) 

2 

Ap(x,y,t) = 2 [pfScji^yJqjit) + P,Sc](x,y)qj(t) 

+ + PQSj(X,y)qj 

(55) 

Many simplifications arise when Equation (5) is used in Equations (51) 

through (55). leading to 

1.0 1 
4rrp 

K,(x,y,0^,^1,0) d§dT) (56a) 

•x+b e 
o o 

... 
HTTP 'NC2 Kl(x'y>0^*^’0) d§dTl (56b) 

16 
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0 = i|>.. w 

HTTD np J 
pW K, (x,y, 0;5,^l,0) dgdTl (56c) 

U = ^ i 
H 

J PnC2 d§dT1 
(56d) 

t 

JKsi lim Jkj (x,y,t dTd§dT| (56e) 

H t"*" o 

t 

•xb e 
o o VrP , 

(t) ,, 

P(iS2 [Z o 
K,(x,y,155,11,t) dTdldll (56f) 

o = iJNsl ;i:u 
H « 

K, (x,y, t ;Ç,11,t) dTdgdll (56g) 

-U = JJPQS2 JilTI JKl(x>y>t!^,,li'r) dTdÇd11 ^56h^ 

From Equations (56c) and (56g), we see that 

p(x) PNC1 
n(x) _ o 
PQS1 “ 0 

while from other similar comparisons we find that 

P 

P 

P 

P 

(t) 
NC2 

(x) 
NC2 

(t) 
Q,S2 

(x) 
QS2 

(0* 
’NC2 

(t) 
PMri + boeopNCl 

U^NC1 

+ boe0pQSl 

Up (t) 
Q.S1 
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where (0* n(t)* 
PNC2 nd PQ.S2 

are the solutions of 

-X = ^rrp J PNC2*Kl(x’y,0;ÇA0) dÇdT) (57a) 

H 

and 

n 
-X = 

•(t)* .. 
P«S2 "" „ ^ t-KO ^ 

K,(x, drdgdTl (57b) 

>CO 

The quasi-steady pressure response for the two-degree-of-freedom system, 

Equation (55), now reduces to 

Ap(x,y,t) = p^l'q, + p^jq, + [p^,f + b^p^]] q2 - Up^ 

+ [pQS2 ' + boeoPQsi] ^2 - UpQ,s!c*2 
(58) 

where the four indiciai response operators p^ , pQb- p^2 » and 

pQS2,f are 0,3l:aîned ^rom the inte9ra1 equations (56a (56e), (57a), and 

(57b), respectively. 

The corresponding generalized forces are found by inserting Equation 

(58) Into Equation (3). In the resulting expressions, the dimensionless 

quasi-steady and added-mass indiciai derivatives are defined by 

Li- = “ 
q. 

(t) 
n "Mi dxdI 

^ u Pb0 b s' 
H 

M- 
P P(t) 
lñ-Md 

b pb b s 
0 0 o 

(t) 

pU bQ s ' 
M 

(t)* 

P PpMC2 x V 
-i!£f-dï-df, H 
pUb^ 0 ^0 ^ 

V Mi d d ^ 
b pU b s 

o M 0 

(t)* 
n px PNC2 , x 

b-—Tdrds 
0 pUb o 

o 

(59) 

[Cont’d] 
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,(t)* 

!âS2,K_Hl 
pUb 

d T— d 
b s 

o 
M. = - 

(t)* 

ü- !as2. d x_ d I 
b pUb a b s 

O O O 

Combining Equations (3), (5). (58), and (59) then leads to 

5— = - b* q, + L* q, - (!_•• +e L" )q0 + (!_• +L- +e L- )0- - L• q_ 
2.-- q, 1 9i 1 q2 O q, 2 ' q0 q, o q/H2 q,^2 pU bs ^1 1 ''l 

r o 2 M1 w ^1 

(60) 

-(M- +e L-• ) q i + (M • +e L* )q. - Fli” +e (M- +L J+e^L** Iq 
'q, O q, 1 q, oq/^1 Lq2 o'qj q2' oqjT 2b2 ' q, o q • ■ q, o q 

K O 

+ Fm. +M*» +e (M• +L* +L-» ) +e^L• |q_ ~ (M* +e L» )q( 
L q2 ^i 0 ^i ^2 qi oqj2 q’ oq’ ; q, o q, 2 

(61) 

2 2 2 
Dividing Equations (7) and (8) by pU b^s and pU bQ s respectively, and 

introducing Equations (60) and (6l), yields the homogeneous quasi-steady 

equations of motion 

^1 2 2 
(TT^Lq^l ' ‘-qjV^fc;) ß ql+("TTtiVLq2+eoLqI),q2 

%+\+eo\^2 + l^^ = ° (62) 

(-rriix +M” +e L• Jq. - (H- +e L- )q. + +e (M* +L- », 2. |q 
« q| 0 q, I q 1 ° q I I L^cyq0o'q1 q0)+e^l-JM; 1 “ I ^2 o q 

" [VVeo(VLqo+Lq,) + eoLq ilq2 + U^+Mq+e^.jJcg = 0 (63) 

where ft = w2b/U . Introducing the Fourier transform as 

F(k) = 
2rr 

F(t)e“lktdt 

■CO 

(64) 

19 



R-1170 I 

where t is the dimensionless time and k is the reduced frequency, the 

transforms of the equations of motion (62) and (63) are then reduced to the 

homogeneous algebraic equations 

r-k2(-rr|J,x +U +e L-- ) - ik(L- +L-. +e L- )+1- 1 q = 0 
L « q2 0,, ,2 ,, oq,' q]J12 

(65) 

ik Tm* +M- +e (M +L* +L-* )+e^L 1 +e L* )1 = ^ L q2 qj o qj q2 q j o q j J N ^ o' q, o q/J H2 q, o q, 
(66) 

A non-trivial solution of these equations for qj and q2 exists only if 

the determinant of their coefficients vanishes. The expansion of this 

determinant leads to a fourth-order characteristic polynomial in k . 

Expressions for the two unknown Ü and k in Equations (65) and (66) can 

then be found from the real and imaginary parts of the characteristic 

polynomial. 

To find the conditions at which Up 03 , an expression for 1/0 Is 

obtained from the characteristic polynomial and the denominator of this 

expression is set equal to zero. The resulting equation gives the value 

of density ratio at which Up “♦ 03 . This critical value of density ratio 

is given by 

(U, 2 
B(—) (Ma +enlA - L; ) 0 q q, q2 q2q, 

CR 
n ["c(M- +e L- +x L- )-A(—) (M- +e L- )1 

L q t 0 q, a q j; \jo2' v q ^ o q / J 

(67) 
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where 

P P 
A = M* +M*# +e (M'+L +L#' )+e L» +r L* q2 qi o q, q2 q, oq, CV q, 

+ X (M- +L> +L-* 2e L- ) + L* M" +1-- M- L- M-- -L-- M- 
0 q, q2 q,“ ° q, q, q2 q, q2 q2 q, q2 q 

B = - L- M- + e (L• ) 
q, q| 0 q| 

c r2L + 
a q i 

U) i 2 p 
(_) +e (m. +j_. +L 
VU)2; L qn q! ov q, qG '2 ^1 ^1 

Here again, as in the flutter analysis, the solution of the equations 

of motion is straightforward. In contrast, the calculation of the hydro- 

dynamic derivatives appearing in Equation (67) Is a major task. 

Two-Dimensional Stripwise Technique 

The generalized forces have been derived by the two-dimensional strip- 

wise technique in an earlier work by the authors. Expressions for the 

indiciai derivatives defined in Equation (59) can be obtained from the 

generalized forces given In Equations (43) and (44) of that study. For 

the case of a hydrofoil with midchord sweep angle A , taper ratio T , 

and span-to-chord ratio A , the indiciai derivatives obtained from two- 

dimensional strip theory are given by 

q 1 

tt(1-T3) cosA 
3(1-T) 

-rr( 1 -T2)cosA 
(1-T) 

.„^O-Ih^tVosA „aslnAn-5TW) 

12^"T) 20b (1-T)2 

neo(l-3T2->2T3)cosA ^ s inM| 

Lï, MÑT) 6bo(l-T)2 
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M.. = L. 
q, < 

•2. „,3 
neo(l-3Tc+2ncosA nA s inAn V+3T4) 

L* • + ... 0"/"i"V\.. "** .. .r\ M 
3(1-T) 6b (l-T) 

M. 
„(1-rW n.g(l-10T3-H5Ti,-6T5)cosA 

40(1-T) 30(1-T) 

k ^ fi 
TreoA sinA(l-15T +24T3-10T ) 

30b (l-T)2 

+ rr(A tc.nA)2co5A(l-21T5+35T6-15T7) 

105(l-T) 
3 

M. 
q 2 

Tie 2(1-6T2+8T3-3T4)cosA 2rreoA s lnA(l-10T3+15T4-6T5) 

15bo(l-T) 

_ rr(A tanA)2cosA(l-15T4+24T5-10T^) 

30(1-T) 
(68) 

Equations (67) and (68) then lead to the two-dimensional strip theory 

prediction of . 

These results can be reduced to the expression for M»rD in two- 
1 2 

dimensional flow * by letting T 1 and A = 0 . Equations (68) then 

become 

L 
q i 

TT 

L • =5 -2rr M* =-77 
q, q, 

M» = rr/8 
q2 

L. 
q 2 

n 

(69) 
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Substituting Equations (69) into Equation (67) leads to 

U> CR 

[r«+(¿} eo(? 

For the case ^,/^2 = 0 , this equation reduces to 

1 

+ X 
01 

(70) 

which is in agreement with the results presented in two of the earlier 
1,2 

stud i es . 

Three-Dimensional Lifting Surface Theory 

In order to utilize the three-dimensional indiciai representation of 

the hydrodynamic forces, the integral equations (56a), (56e), (57a), and 

(57b) must be solved numerically, and the three-dimensional indiciai hydro- 

dynamic derivatives must be evaluated by means of Equation (59). These 

integral equations and the corresponding kernel functions were derived and 

discussed at greater length by Henry.^ The indicia 1-response technique 

is the subject of a subsequent investigation not yet completed, so that 

numerical results are not available at this time. 

It should be noted that the indiciai response has a much wider range 

of application than is used here. When introduced in the equations of 

motion, the indiciai response functions, together with the Duhamel super¬ 

position principle, yield expressions for the hydrodynamic forces in terms g 
of the unknown motions. The resulting equations can be used to study a 

wide variety of problems associated with the transient response of hydrofoil 

craft. These include: (1) flutter analysis; (2) prediction of mode shapes 

and natural frequencies in the flying condition (including the effect of 

forward speed); (3) elastic and rigid body response to free-surface wave 

excitation, pressure waves from underwater explosions, control deflections, 
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Internai vibration sources, etc.; (4) digital or analog hydrofol1-boat 

simulation; and many others. 

24 



EXPERIMENTAL ANALYSIS 

The Davidson Laboratory flutter apparatus, which was used in these 

tests, has been described in the first of these hydroelastic studies. 

The lower end plate was removed in order to obtain three-dimensional flow. 

The flexure system described in the second study was used to support the 

models of the present study (the thickness of the flexures in the rotation 

flexure beams was reduced to 0.025 in.). The properties of this apparatus, 

with no weights or models attached, are given in Table 1. 

Three models were tested. Two had rectangular planform, with 6-in. 

chord, 12-in. span and 6-in. chord, 6-in. span, respectively. The third 

had a 15-dcyree sweep angle, a taper ratio of 1/3, 6-in. root chord, and 

12-in. span normal to the flow direction. The plastic model described 

in the first investigation of this series1 was used as the first model, 

then was cut in half for use as the second one. The third model was 

machined from aluminum stock by means of an airfoil milling machine. The 

weights and center-of-gravity locations of the models are given in Table 2. 

Two systems of weights were used to obtain the desired values of 

center-of-gravity location, radius of gyration, and natural-frequency ratio, 

as described in the first study.1 Two center-of-gravity weights were used, 

each weighing 0.5 lb and located as shown in Table 3. The positions were 

determined to provide the desired value of center-of-grav1ty location and 

natural-frequency ratio. Each of the additional cylindrical weic "s had 

a radius of 3.285 inches. 

The stiffnesses of the translation and rotation flexures per unit 

span are given in Table 1. With these constants, the density ratio and 

radius of gyration were determined (just before testing each configuration) 

from the uncoupled natural frequencies measured in air for translation 

Wj and rotation * by means of 

4 
K 1 

m. 
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K, 

K.b - 
1 o 

2 

This value of was found to be in agreement with that calculated from 

the known change in mass of the apparatus. The measured frequencies are 
2 

shown in Table 3, together with the values of M* and r^ . 

The model was held away from its equilibrium position while the 

apparatus accelerated, then was released and its resulting motions recorded. 

Test speed was increased in each subsequent run, until an unstable condi¬ 

tion was reached. It was found that when the apparatus was returned at 

a very low speed, the water in the tank became calm very quickly after 

each run. No less than five minutes elapsed between runs. 

Subsequent to each run, the records were analyzed for the frequency 

and logarithmic decrement. After completion of the experiments, these 

calculations were checked, and the reduced speed U/b^ , frequency ratio 

w/Wy , and decay rate c/oj^ were computed. All tests were made close 

to the expected flutter speed; hence only the lightly damped mode of 

response appeared in the records. The results are presented in Table 4 

and in Figures 2, 3, and 4. 
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DISCUSSION OF RESULTS 

Measured values of decay rate, frequency, and flutter speed are 

compared herein with corresponding results predicted by two-dimensional 

airfoil theory applied in a stripwise manner. Using the results of three 

dimensional lifting-surface theory, the flutter speed for one hydrofoil 

model was predicted. 

The dynamic configuration studied here is a hydrofoil elastically 

restrained in translation normal to its plane and in rotation about a 

spanwise axis normal to the stream direction. Three hydrofoil geometries 

were considered: two with rectangular planform, with span-chord ratios 

of 2 and 1; and one with span-chord ratio of 2, midchord sweep angle of 

15 degrees, and taper ratio of 1/3. The geometric, elastic, and inertial 

properties of the tested models are summarized in Tables 2 and 3> while 

the non-dimensional values of speed, frequency, and decay rate (which were 

found from the test records) are exhibited in Table 4. The measured decay 

rate and frequency for Model 1, with rectangular planform and aspect ratio 

of 4 (the effective hydrodynamic aspect ratio is twice the span-to-chord 

ratio, due to the presence of the upper end plate, which was retained in 

these tests), are shown in Figure 2 for the five values of density ratio 

which were tested. The corresponding theoretical results, predicted 

by the two-dimensional methods described in the third of the earlier 

studies,3 are also shown. The predicted frequency is in agreement with 

measured values at all density ratios. The predicted decay rate is in 

agreement with measured values at the density ratios 1.86 and 2.96. How¬ 

ever, at the intermediate values 2.26, 2.37) and 2.5^, the theory predicts 

values higher than those measured. These observations are in agreement 
1 2 3 

with those of the authors' previous studies. ’ ’ 

The same comparison is made in Figure 3, for Model 2 with rectangular 

planform and aspect ratio 2. At this aspect ratio, the measured and 

predicted values of frequency begin to show some discrepancies at the 

higher speeds (U/bm^ > 2.4) . Furthermore, the measured and predicted 
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values of decay rate are not In agreement at any values of density ratio. 

Thus, below aspect ratio 3, the results of the two-dimensional strip 

theory described in the third study must be considered unreliable. 

The measured flutter speeds for Models 1 and 2 are compared in Fig¬ 

ure 4 with values predicted by the stripwise, two-dimensional flutter- 

analysis procedure described previously in this report. In addition, the 

measured flutter speeds for this configuration in two-dimensional flow, 
o 

described in the report of the second study, are replotted here in Fig¬ 

ure 4. These results show that decreasing aspect ratio results in an 

increase in non-dimensional flutter speed, while the critical density ratio 

appears to be unchanged. At aspect ratio 4, the measured two-degree-of- 

freedom flutter speeds show little aspect-ratio effect for rectangular 

planforms. This observation should not be extrapolated to ranges of 

parameters outside those tested here, nor to other planforms and dynamic 

configurât ions . 

Also shown in Figure 4 is a flutter speed predicted for the Model 1 

configuration, based upon the results of three-dimensional lifting-surface 

theory. The non-conservative tendency found here in the comparison between 

measured and predicted flutter speed for this three-dimensional configura¬ 

tion is the same as was found for two-dimensional flow in the first two 
1 2 

of these studies. 9 A considerable number of difficulties were encoun¬ 

tered in attempting to find the numerical solution to the double integral 

equation (37). In fact, many numerical difficulties arise in all the 

methods of solution applied to this surface integral equation.^,^,^> 

In particular, it has been found that the numerical scheme for the chord- 

wise integration must be carried out with extreme accuracy^ and with proper 

accounting for the large curvature of the integrand near leading and trail¬ 

ing edges, the oscillatory nature of the integrand, and the finite jump 

occurring in the kernel function. 

On the other hand, in an investigation now in progress, it has been 

found that by introducing the lift-operator approach, as was done in 

unsteady lifting-surface propeller theory,11 the following advantages are 

gained: 
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(1) The convergence of the series expansion of the induced velocity 

is improved by the introduction of an additional converging factor, 

(2) A desired accuracy of loading can be achieved with fewer loading 

modes, since the specified downwash distribution is obtained in 

a weighted-average sense over the whole chord, 

(3) By introducing an appropriate expansion of the kernel function, 

the chordwise integration can be carried out analytically. 

As a result of 2 and 3, the computer time required to solve the downwash 

integral equation is reduced considerably. Thus, further development of 

the lift-operator technique in the solution of the lifting-surface integral 

equation is of paramount importance. 

A third model with sweep, taper, and finite span was tested in this 

investigation, at one value of density ratio and with effective hydro- 

dynamic aspect ratio of 6. The flutter speed predicted for this model 

by means of two-dimensional strip theory is shown in Figure 5, where it is 

also indicated that no flutter was found at any speed up to 1.5 times the 

predicted flutter speed. In fact, Table 4 shows that, at reduced speeds 

above 2.0, no oscillatory response was observed. This conservative dis¬ 

crepancy between measured and predicted flutter speeds is not in agreement 

with any previous observations. Thus, the application of two-dimensional 

strip theory to this planform is not valid. Therefore, the results of 

two-dimensional theory used in a stripwise manner to predict flutter speeds 

of hydrofoils in three-dimensional flow cannot be considered reliable for 

planforms with sweép and taper. 
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CONCLUSIONS AND RECOMMENDATIONS 

Measured values of decay rates, frequencies, and flutter speeds of 

hydrofoils are compared herein for the case of a two-degree-of-freedom 

system. Three hydrofoil models are considered: two with rectangular plan- 

forms and witu effective hydrodynamic aspect ratios of 4 and 2, the other 

with midchord sweep angle of 15 degrees,taper ratio of 1/3, and effective 

hydrodynamic aspect ratio of 6. The tests with the first two models were 

conducted over a range of density ratios. 

When the measured values of decay rates, frequencies, and flutter speeds 

of these two-degree-of-freedom models are compared with those predicted by 

unsteady two-dimensional airfoil theory applied in a strlpwise manner, the 

following conclusions may be drawn: 

(1) Below aspect ratio 3, the results of two-dimensional strip 

theory must be considered unreliable for use in hydroelastic 

studies of hydrofoils with rectangular planforms in three- 

dimensional flow. 

(2) For hydrofoils with rectangular planforms, decreasing aspect 

ratio results in an increase in reduced flutter speed, while 

the critical density ratio appears to be unchanged, 

(3) At aspect ratio 4, the measured two-degree-of-freedom flutter 

speeds show little effect of aspect ratio for the case of 

rectangular planform. 

(4) The results of two-dimensional strip theory cannot be considered 

reliable in hydroelastic studies of hydrofoils with sweep and 

taper in three-dimensional flow. 

The flutter speed predicted for the rectangular foil with aspect ratio 

4, by means of three-dimensional lifting-surface theory, shows, when com¬ 

pared with the corresponding measured values, the same non-conservative 

tendency found previously for two-dimensional flow. 
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Due to the many difficulties which arise in the numerical treatment 

of the double-integral equation of lifting-surface theory, it Is recommended 

that continued effort on the lift-operator technique be considered of para¬ 

mount Importance, since this method seems to have many advantages over 

other techniques presently used. 
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TABLE 1 

PROPERTIES OF DAVIDSON LABORATORY FLUTTER APPARATUS 

fWith no weights or models; reference span length, 12 In. 
and reference chord length 6 In.] 

Kh = 0.203 lb/in.s 

Kq, = 3.68 in.-lb/in.-rad 

= 13# 28 rad/sec 
o 

cUq, « 48.70 rad/sec 
o 

M* = 0.4)3 o 

= 0.1495 
o 

Xq, = 0.0923 
0 

Model 

1 

2 

3 

TABLE 2 

PROPERTIES OF MODELS 

e 
0 

^3.5 

-0.5 

-0.5 
Taper ratio 1/3 

uescription 

Span-chord ratio 2 

Span-chord ratio 1 

Span-chord ratio 2 
Sweep angle 15° 

m 

0.123 

0.061 

O' 

m 

0.350 

0.350 

0.140 0.647 
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TABLE 3 

MEASURED PROPERTIES OF TEST CONFIGURATIONS 

Pos 11Ion of 
Model CG weights 

0) (2) 
(in.) 

3A 6.2 

a 

0.195 

rad 
sec 

6.44 

5.83 

5.70 

5.50 

5.10 

M- 

1.86 

2.26 

2.37 

2.54 

2.96 

u> a 
rad 
sec 

12.08 

10.92 

10.62 

10.34 

9.57 

a 

0.571 

0.573 

0.580 

0.569 

0.571 

(U. 

ID a 

0.533 

0.534 

0.537 

0.532 

0.533 

-3.2 5.8 0.167 11.48 

10.39 

7.84 

6.56 

5.16 

1.16 

1.42 

2.50 

3.58 

5.76 

22.93 

20.43 

14.89 

12.30 

9.70 

0.504 

0.521 

0.558 

0.571 

0.571 

0.501 

O.509 

O.527 

0.533 

0.533 

-4.9 4.1 O.I90 5.08 2.98 9.52 0.573 0.534 
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Mode 1 

1 

TABLE 4 

MEASURED RESPONSE CHARACTERISTICS 

U/bm 
O' 

«)/(U oib/U a 

1.86 1.64 
2.00 
2.31 
2.63 
2.30 
2.31 
2.62 
2.94 
1.60 
2.34 

0.847 
0.847 
0.847 
0.850 
0.827 
0.833 
0.842 
0.854 
0.854 
0.845 

0.517 
0.424 
0.367 
0.323 
0.360 
0.361 
0.322 
0.280 
0.534 
0.361 

-0.103 
-O.076 
-O.062 
-O.066 
-0.055 
-0.084 
-O.066 
-0.073 
-0.103 
-0.040 

2.26 2.12 
2.57 
2.55 

0.848 0.400 -0.022 
0.845 O.329 +0.011 
0.840 0.330 -0.005 

2.37 2.30 
2.70 
2.24 

0.836 0.364 -0.001 
0.837 0.310 +0.027 
0.840 0.375 -0.006 

2.54 2.33 
1.46 
1.93 
2.38 

0.833 0.358 0 
0.868 0.595 -0.086 
0.837 0.434 -0.039 
0.836 O.35I +0.014 

2.96 I.60 
1.98 
2.40 
2.50 
2.08 
2.22 

O.863 
0.836 
0.845 
0.832 
O.836 
0.832 

0.540 
0.422 
0.352 
0.333 
0.402 
0.375 

-0.093 
-0.040 
+O.OI7 
+0.022 
-0.017 
+0.011 

1.42 1.39 
I.56 
1.75 
2.38 
2.77 

0.827 
0.827 
0.805 
O.827 
0.775 

0.595 
0.530 
0.460 
0.348 
0.280 

-0.185 
-0.194 
-O.I65 
-0.130 
-0.109 
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Table 4 (Cont'd) 

Model 

2 

3 

|i U/bo) (u/(U a a cub/U ct/ou a 

2.50 1.90 
2.39 
2.74 
2.56 
2.18 

0.824 
0.814 
0.839 
0.811 
0.817 

0.433 
0.342 
0.306 
0.317 
0.375 

-0.054 
0 

+0.013 
+0.041 
-0.015 

3.58 2.34 
2.43 
2.27 
2.16 

0.818 
0.814 
0.818 
0.826 

0.350 
0.335 
0.360 
0.383 

+0.013 
+0.021 
-0.008 
-0.020 

5.76 2.05 
2.50 
2.26 

O.860 0.420 -0.070 
0.910 0.364 +O.OI7 
0.830 0.367 -0.027 

2.98 KSI 1.16 0.768 -O.27O 
1.58 1.20 O.76O -0.389 
2.06) 
2.45> No oscillatory response! 
2.91) 
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SECTION A-A 

FIGURE I. SCHEMATIC DIAGRAM OF HYDROFOIL MODEL WITH 
DEFINITION OF PARAMETERS AND COORDINATE 
SYSTEM 

R-1170 



I i¡ 
i 

U/bw„ a 

FIGURE 2. RESPONSE CHARACTERISTICS - MODEL I 
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FIGURE 3. RESPONSE CHARACTERISTICS - MODEL 2 

R-II70 



2 

O L* 
O 

EXPERIMENT 

MODEL ASPECT RATIO 

2 2 

I 4 

REF. 2 CO 

THEORY 

STRIPWISE, 2D 

LIFTING-SURFACE,3-D 

5 

FIGURE 4. EFFECT OF ASPECT RATIO ON FLUTTER SPEED 
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FIGURE 5. EFFECT OF TAPER AND SWEEP ANGLE ON FLUTTER SPEED 
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