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PREFACE 

This Memorandum was   prepared  as   part   of  PJ\ND'S  continuing 

study  of advanced   radar   signal  processing methods.     It  extends 

previous  work on optimum signal   processing methods   for  determining 

the  characteristics   of a  radar   target   by  analyzing  the  target's 

radar   signature.      The  results  of  the  study  are  applicable   to   the 

analysis  of   earth  satellites  and,   suitably   extended,   could  be 

applied   to  radar  astronomy and  radar  reconnaissance. 



SUMMARY 

A problem of considerable interest in a variety of applications 

is that of estimating the characteristics of a radar target by 

analyzing its radar signature.  Applications of interest include 

satellite identification, radar astronomy, and radar ground mapping. 

Target characteristics of interest include not just range, range rate, 

and range acceleration, but also dimensions, shape, and rate and axis 

of rotation. 

Although many techniques have been developed to attack these 

problems, the theory of optimum signal processing methods and of the 

optimum estimation accuracies to be expected, as a function of the 

noise level, the data set, and the a priori knowledge of the target 

parameters, is still not well developed. 

This Memorandum extends the inventory of techniques for defining 

optimum signal processing methods and predicting the accuracies 

achieved.  Chief attention is given to estimation of linear or quad- 

ratic functionals of the scatterer amplitudes (such as the average 

scattering cross section attributable to specific regions ou  the 

target); however, the estimation of other target parameters is also 

treated.  The analysis is carried farthest for the signature analysis 

of rotating targets. 
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I.  INTRODUCTION 

The analysis reported in this Memorandum was initiated to 

develop a theory which would predict the accuracy with which the 

characteristics of an extended radar target can be determined by 

analyzing its radar signature.  "Extended" means extended compared 

to a wavelength, not necessarily compared to a radar resolution cell. 

In fact, some of the interesting cases are those in which the target 

dimensions are much smaller than a spatial resolution cell of the 

radar.  Of primary interest are rotating targets, although considera- 

tion will not be entirely restricted to this case.  Characteristics 

of interest to determine might include size, shape, rate of rotation, 

axis of rotation, or radar cross section of specified portions of the 

body.  This problem is of interest in identification of earth 

satellites and in radar astronomy, where the target is extended but 

isolated; and also in ground mapping, where the target is an extended 

continuum.  (In ground mapping, and in signature analysis of stabilized 

satellites, the targets are not, strictly speaking, rotating.  However, 

even in these cases, the relative motion of the target with respect 

to the radar can often be considered, to a good approximation, a 

rotation about the line of sight, after mean translatory motion has 

been corrected for.)  Another type of problem which can be considered 

within this framework is the estimation, in the presence of noise, of 

the illumination pattern of a rotating antenna by observations of its 

far field. 

A great deal of literature exists on this subject.  Many special 

methods have been evolved, and a certain amount of theory has been 



developed   to  predict   the   effects  of various   relevant   factors  on  the 

success which can be  obtained.     Nevertheless,   it  cannot be  said   that 

a   satisfactory   theory has  been  developed.     By  a   satisfactory   theory, 

is meant one which will   specify  good or optimum  signal  processing 

methods   to   determine   target  characteristics,   and   will  also predict 

the  accuracy  or  reliability with which   target  characteristics  of 

interest  can be  estimated,   as  a  function of 

a. types  and  statistical  characteristics   of  errors, 

b. characteristics   of   the   data  set,   and 

c. degree  of  a  priori  knowledge  of   the   target. 

Types  of  errors might  include,   for  example,   additive noise 

errors,   phase  errors,  multiplicative   amplitude  noise,   nonlinear 

distortions,   etc.     Characteristics  of   the  data   set would  include 

waveform  design,   types (s)   of  radar   (monostatic,  multistatic,   inter- 

ferometric),   extent of   frequency ar1 polarization  diversity, 

scattering matrix  elements   to be measured,   degree  of  coherence   (not 

only   temporally,   at  one   sensor   location,   but   from  sensor   to   sensor), 

and  length of observation interval or  intervals.     A priori knowledge 

about   the   target might   take   the  form,   to  cite  just a  few examples, 

of knowledge   that  it  is   (from  the electromagnetic viewpoint)  a 

spherical  surface,   as  in radar astronomy;   that  it  is  a  stabilized 

body;   or  that it is a  long,   slender body. 

At present,   there  are many  relatively  simple  questions,   in 

relatively  simple contexts,  which cannot be  satisfactorily answered 

by  existing  theory.    An example  closely  related  to  the  situations 

which   this Memorandum analyzes  is   the "low resolution"  signature 



analysis of radar targets such as earth satellites.  It is 

well known that various characteristics of a target of this type, 

such as dimensions and to some extent shape, can be estimated rather 

well if the target can be viewed over a reasonable set of angular 

aspects, preferably but not necessarily including the broadside aspect; 

and that such estimation can be performed even if the spatial radar 

resolution cell is much larger than the physical dimensions of the 

target.  Moreover, this does not necessarily require phase-coherent 

methods.  However, there is at present no theory which will predict 

how the ability to estimate specified target characteristics depends 

on the noise level and on the set of aspects over which the body is 

observed.  The effect of these factors must be determined empirically, 

by submitting signature records to analysts. 

A satisfactory theory must also have the property that answers 

may be obtained in reasonable time and at reasonable cost on digital 

computers. 

This Memorandum by no means succeeds in establishing a fully 

satisfactory general theory of target identification by radar signature 

analysis.  In fact, a look at the problem rather quickly reveals that 

it is difficult to identify problems which are based on reasonable 

models of situations of practical interest and which, at the same time, 

can be solved, even using digital computers.  The objective of this 

study is to contribute to the methodology available for attacking 

these problems by considering examples based on models reasonably 

near to physical reality—at least in the sense that the results 

obtained would give considerable insight into realistic situations-- 
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and for which it is feasible to carry out the required calculations. 

Thus, what is derived here is not a general theory, but it is an 

addition to the arsenal of special theories for this class of problems. 

The actual implementation of the indicated calculations requires 

(except in very special cases) computer programs for solving certain 

integral equations; this has not been done as yet, although it will 

be clear that the necessary computations are well within the realm of 

feasibility. 

POSSIBLE APPROACHES 

Theoretical approaches to the class of problems just stated 

include the following: 

o  Modeling the electromagnetic signal scattered from the 

extended target as a noise process, and estimating the 

parameters of the noise statistics (such as parameters of 

the covariance function). Reference 1 provides good examples 

and a reasonably comprehensive, bibliography. Essentially, 

this amounts to a model of the target as a reasonably numerous 

collection of independent scatterers. 

o  Modeling the scattered signal as depending predominantly on 

a finite set of parameters which can be identified with 

characteristics of the target motion or configuration., and 

applying parameter estimation theory, usually based on 

maximum-likelihood methods and Cramer-Rao bounds (equivalently, 

"information matrices") for estimating attainable 

(2 3) 
accuracies.  *   For example, the target might be considered 

to consist of some reasonably small number of rigidly 



connected point scatterers; the unknown parameters would 

then include the radar cross sections and relative positions 

of these scatte.ers. 

Although many useful results have been obtained by these approaches, 

both have drawbacks when applied to the problem at hand.  While the 

treatment of the signal as a noise process does not absolutely require 

the assumption that the received signal process is Gaussian or 

stationary, those treatments which attempt to define optimum signal 

processing methods, and to determine lower bounds on the estimation 

errors, usually assume that the noise is Gaussian, and often assume 

stationarity or quasi-stationarity in some sense. 

However, many examples of the class of problems under considera- 

tion are characteri2ed by the fact that the signal statistics are not 

Gaussian, or, even if they can reasonably be modeled as Gaussian, they 

are highly nonstationary. Moreover, this non-Gaussian or non- 

stationary behavior often involves essential aspects of the problem. 

For example, the signal may have a significant or dominating 

component arising from a very small number of scatterers.  Or, more 

important for the examples to which this Memorandum is mainly 

devoted, the scatterer may act essentially as a line source or a 

plane source,  i.e., there may be a small set of aspects (perhaps only 

one or two) at which all scatterers are in phase, producing what is 

called a "specular flash"; this specular flash is of great importance 

in the problem of estimating target characteristics. 

The parameter estimation approach, insofar as it is based on 

Cramer-Rao bounds, inforrition matrices, and maximum likelihood 



methods,  has   the  drawback   that it  is  often difficult,   in cases  of 

nonlinear dependence  on   the parameters   to  be  estimated,   to  say whether 

the accuracy bounds   thus  obtained are  informative;   that  is,   it  is 

difficult  to  determine whether  the Cramer-Rao   lower bounds  on error 

variance are  reasonably  close   to   the actual minimum attainable 

variances.     In regular estimation cases,   the  Cramer-Rao variance  bounds 

are asymptotically   the minimum variances;   "asymptotically" means   for 

sufficiently  large  signal-to-noise  ratio   (SNR).     However,   as  pointed 

out in Ref.   3,   there are many pitfalls  in  determining how large   the 

SNR must be  for  the  Cramer-Rao bounds  to be  reasonably close  to   the 

minimum variances  even if   the  estimation problem is  "regular."     It  is 

definitely not  true   that  output SNR which  is   sufficient  for reliable 

target detection is  sufficiently  large  to  be  in  the asymptotic  region 

just referred  to.     In fact,   there are relatively simple,  practical, 

and regular parameter  estimation problems   (a  small,  highly non- 

exhaustive  set of  examples   is  given in Ref.   3)   in which  the Cramer-Rao 

bound may be highly  uninformative  for SNRs  which are adequate  for 

detection purposes   (i.e.,   the bound may be  a  small  fraction of minimum 

attainable variance).     This  difficulty is  even worse  in more complex 

estimation problems,   such  as   those  involving   the  estimation of  con- 

figuration parameters  of  connected sets  of point  scatterers. 

The Bayes or Barankin approaches  to parameter estimation avoid 

these pitfalls  in  theory,   but ordinarily   the  computational  difficulties 

associated with  them are  formidable.    Nevertheless,   the approach 

selected here  is  a Bayes  approach.     This  approach  is based on  the 

minimum mean  square  error  criterion.     Theoretically,   results  can be 



obtained for any signal-to-noise ratio.  This is also practical in a 

number of cases of interest.  In the interest of computational 

feasibility; hov^ever, it will in other cases be necessary to reintroduce 

some form of strong-signal assumption.  The Bayes approach also has 

the advantage, over that of maximum likelihood, that it is possible 

to deal directly with functions of the unknown parameters; usually, 

functions of the parameters, rather than individual parameters, are 

of greatest interest. 

Since a priori statistics must be associated with the unknown 

parameters in a Bayes approach, it is  also possible to say that the 

scattered signal is considered to be a random process.  Although most 

of the results will be derived under assumptions leading co a priori 

Gaussian statistics of the signal, some of the results can be extended 

to cases where the a priori signal statistics are mixtures of Gaussian 

statistics, i.e., they result from choosing a Gaussian probability 

measure from a specified set of such measures, with a probability 

distribution over the set of possible Gaussian measures.  Also, it is 

possible to deal with cases in which there are peculiar forms of non- 

stationarity, e.g., those in which specular flashes occur.  In addition, 

the models to be analyzed also are capable of reflecting various degrees 

of a priori knowledge of target characteristics. 

Section II contains the derivation of the general methods to be 

employed.  The target models under consideration in that section are 

not confined to rotating targets.  Section III states, for a selection 

of rotating target models, the form taken by the more general expressions 

of Section II. 



II.  GENERAL RESULTS 

A.  INITIAL FORMULATION AM) RESULTS 

In the present section, the class of problems to be considered 

will not be restricted to rotating cargets.  Initially, it is supposed 

that the received signal, in the presence of additive noise, can be 

represented by 

S(t) =^cv(x(i)) F(t, x(i)) + s(t) (1) 

i 

where e(t) is additive noise.  s(t) is observed over a known time 

interval or intervals. 

Here, a is a function of the argument x, which in turn is a 

possibly multicomponent vector, ranging over a finite set of known 

vectors [x   i,  i = 1, ..., n.  This could be regarded as an approxi- 

mation to the representation of S(t) as an integral, although such an 

interpretation is not always necessary.  If such an interpretation is 

adopted, the required limiting procedures must be handled with great 

care (see Section II.C). 

The parameter t represents time, although here, too, it is 

possible to consider t to be a multicomponent vector (although this 

will not be reflected in the notation).  For example, if there are 

K different sensors, it would be possible to have t = (t1 , ..., r ) 

with t ranging over the observation times of the k  sensor. 

Similarly, if a given sensor observes several different cross- 

polarizations, this could be formulated by considering t to be multi- 

dimensional.  The vector $ will represent primarily position co- 

ordinates with respect to a coordinate system fixed to the target. 



Other components may be adjoined to >^ to represent internal velocity 

components of the target, if any, and also to differentiate between 

two phase components of the signal scattered from any given point on 

the body.  This will all be illustrated by concrete examples in the 

next section. 

The set of unknown parameters is a(x  ),  i = 1, 2, ..., n. 

The problem which will primarily be addressed is the estimation of 

real-valued functionals of a,   and most important, of linear and 

quadratic functionals of ». 

It is assumed that the a priori statistics of both [a(x)]  and 

[e(t)] are Gaussian, and that {a(x)} is statistically independent of 

{e(t)].  The assumption of Gaussian a priori statistics makes 

S(t, a)  a Gaussian process; later, cases will be considered in which 

F depends on additional unknown parameters \,   in which cases S would 

no longer be a Gaussian process. 

It will further be assumed, for expository purposes, that 

[a(x)]  and {e(t)} have zero ensemble means, and that 

[*(x3 ai^h] = A,. 

E [e(t) ed') 

h  |a(x(i)) e(t)' 

= cp(t, t ) 

= 0 

(2) 

(3) 

(4) 

The assumptions about the statistics of [a(x)\  are assumptions 
about the a priori state of knowledge used in forming Bayes estimates, 
and do not necessarily apply to any particular scattering target. 



10 

It is then possible to state the conditional (a posteriori) 

probability density function (p.d.f.) of a  given S: 

-R ^ 
p(a 1 S) = (2TT)2 1 det B (5) 

x exp {-h   I    B.. [a(x^) - SCx^bl [.(x^)) _ ^(xÜ))] 

i»j 
where 

B. . = A?1 + lim V T)   F(t , x(i)) F(r . x(j)) 

M,,U 

(7) 

Tl . ::= (M-J 
U
)   element of matrix inverse to ^(t , t )     (8) 

In these formulas, lim implies the limit as the points It J 

become dense in the observation interval.  Such limits are rigorously 

defined if {e(t)} is continuous in the mean and the functions 

F(t, x  ) satisfy certain regularity conditions.    In Eqs. (6) and 

(7), Bi  and A^^  refer to the (i, j) elements of the matrix inverses 

of B and A.  There is a large body of literature on methods of 

evaluating expressions of the type appearing in Eqs. (6) and (7); 

Ref. 3 contains a partial summary of such methods. 

It will prove convenient to write Eqs. (6) and (7), and similar 

equations below, in vector-matrix notation: 

a = B'1 FT Ti S (9) 

B = A"1 + FT Tl F (10) 
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Here,  a  is   an n-component vector with elements a(x       );  A and B 

are n  x  n  matrices;   and 

(FT T]   F). .   =  lim    )     T]       F(t   ,   x(l))   F(t   ,   x(j)) (11) 

(i) T](t,   t')   F(t,   xU;)   FCt',   x{V)   dt  dt' (j) 

(FT T]   S).     =   lim   Y    T]        F(t   ,   x(l))   SCt.) 

l^,^ 

J 

(i) TKt,   t')   F(t,   xU;)   SCt')   dt  dt' 

(12) 

The superscript T denotes a vector, matrix, or operator transpose. 

T](t, t ) is the operator inverse of cp(t, t ), here written symbol- 

ically as an integral kernel. 

Now let ß be any real-valued functional of a  having a finite 

second moment with respect to the a priori p.d.f. of cf-  Then 0, the 

Bayes optimum estimate of ß, is the expected value of ß with respect 

to p(a 1 S).  In particular, let linear and quadratic functionals be 

defined: 

ßl =^>(K3 LCxJ
1') = 1 a (13) 

Then, 

ß0= Y *(x(i)) «(x(j)) Q(x(i). x(j)) =aTQ*        (14) 

1,J 
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ßL=^L(x(i)) ;(x(i)) =L-a (15) 

0 = Trace I B~ Q + a    Q a (16) 

These formulas are obtained simply by taking the expected values 

of ßT or ß with respect to p(a j S) .  Note that (3  is not formed 

(i) only by inserting the estimates a(x  ) into the expression for ß ; 

an additional term is necessary.  In a similar manner the Bayes 

estimates can easily be written down for third, fourth, or higher 

order forms in a,   applying well-known formulas for higher moments of 

Gaussian distributions in terms of their means and covariances.  These 

formulas would be applied to find expected values with respect to 

piot   | S) ; the resulting estimates would be functionals of a1 and B 

These constitute a class of nonlinear estimation cases in which solutions 

valid for all signal-to-noise ratios are available. 

B.  DEPENDENCE ON ADDITIONAL PAJIAMITERS 

It is of interest to see what happens when the signal statistics 

depend nonlinearly on an additional unknown parameter vector \.  This 

may happen if F(t, x), A. ., or cp(t, t ) depend on additional para- 

meters.  We will be chiefly concerned with the case where F(t, x) 

depends on X, but neither A. . nor cp(t, t') do so.  The approach to be 
—> i J 

taken will reflect the effect of such additional unknown parameters 

on the Bayes estimates of a  and will also consider the question of 

optimum estimation of the components of X itself. 
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In general, let 

p(S, ct,   \)   =  joint a priori p.d.f. of S, a, and X (17) 

p(S, a,  X) = p(S | a,  \)  p(a 1 X) q(X) (18) 

Here, S is considered finite-dimensional.  The function q(X) is the 

a priori p.d.f. of \. 

Mow, define 

via,  X | S) = joint a posteriori p.d.f. of (a,  X) given f        (19) 

P(S, a,  X) 

r " 
I I P(S, a,  X) da dX 

p(a'   1   S)   = marginal  a  posteriori   p.d.f.   of a  given S (20) 

=   [ p(a,   X   1   S)  dX 

p(a  I   S,  X)   = conditional a posteriori  p.d.f.  of a given S and X     (21) 

P(S   I a, A)  PC»  I A) 

I   P(S  |  a, X)  p(a   I  X)  d« 

q(S   1   X)   = conditional  p.d.f.   of   S  given X (22) 

= f P(S  1 a, X) p(a  I  X)  dbr 
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q (\  S) = a posteriori marginal p.d.f. of >. given S 

PC«, X 1 S) da 

q(S j X) q(X) 

q(S | X) q(X) dx 

(23) 

P(X) = conditional Bayes estimate of p given X (24) 

0(a) p(a      S, x) da 

=  overall Bayes optimum estimate of ß(a) (25) 

^ ^ p ^' i ' S^ ^ dL 

ß(cy) p(a  S) da 

Then, it is verified by direct substitution that 

ß = i 0(X) q(X   S) dX (26) 

q(S | X) q(\) dX 
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Equation (26) says that the overall Bayes estimate is the 

expected value of the conditional Bayes estimate, given \, with 

respect to the marginal a posteriori p.d.f. of \  given S.  However, 

the function of q (S | \)   can be determined; this is done, in fact, 

by following the same procedure used to derive Eq. (5), carefully 

keeping track of all the terms involved. 

The result is 

^ I ^ = ) P^ I v,  \)  Pia   1 X) äa (27) 

-h -N      -h 
=   (det A B)   (2TT) "2 (det cp) 

x exp \-h  I ST T] S - ST T] F B"1 FT T] S]\ 

where A, B, cp, T), F may be functions of \.     Equation (27) applies to 

the case where the observation times are restricted to a set of N 

points 11 ]"• 

Let us now assume that cp, the covariance function of the additive 

noise, is independent of \.  Then, when Eq. (27) is substituted into 

Eq. (26), (det Cp)  and (2rr) 2 drop out, so it is possible to go to the 

limit as ", t ( becomes dense.  Also, the following formula may be used: 

a(\)  =  B^a) FT(x) T) S (28) 
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The result is 

ß = 

Jß(X)[ det A(X) B(X) i  exp \h  aTa) B(\) a(X) q(X) dX 

r^ 
det A(x) l^kf     exp [% a   (X) B(X) g(X)l q (x) ^X 

(29) 

In some special cases which will be of interest in later 

sections it is found that not only A but also B is independent of \ 

In such cases 

ß = 
J §(X) exp ^ gT(x) B a(X)} q(\) dX 

exp \h  aT(X) B ^(X)} q(X) dx 

(29a) 

The expression Eq. (27) for q(S 1 X) can also be used to deter- 

mine Bayes optimum estimates for functionals of X-  Thus, suppose 

Y(X) is any real-valued functional of \.     Then, if T\   is independent 

of X 

Y = 
I^)[ det A(x) B(X) 

-h 
2xp [% ^T(x) B(X) a(X) q(X) dx 

[det A(x) B(x) exp h a   (X)  B(x) a(X) q(X) dX 

(30) 

Y = 

If A and B are independent of X 

J Y(X) exp \h  gT(X) B a(x)] q(X) dX 

j exp \h  aT(X) B J(x)] q(X) dx 

(30a) 
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C.  ALTERNATIVE METHODS OF EVALUATING a  and ß 

An alternative method for evaluating a  and ß for various 

functionals of a  can be obtained from linear optimum signal esti- 

mation theory.  Starting with Eq. (1), suppose the goal is to estimate 

cy(x  ), given S(t).  The correlation function of a(x   ) with S(t) 

is 

[a(x
(i)) S(t)' 

L   ij 
j 

The autocovariance  function of  S(t)   is 

^ A. . F(t, x^h (31) 

cp (t, t ) = E |_S(t) S(t )J (32) 

= cp(t, t') + 7' A  F(t, x(j)) FCt', x(k)) 

(i)   (4) 
Then, the Bayes optimum estimate o1 (x   ) is  ' 

^x(i)) =lA..   lim I    ^F(V x^)) S(tu) (33) 

where 

Tl       = u,   u      element of matrix  inverse  to cp   (t   ,   t  ) (34) 

This may be written 

* T 
cp = cp + F A F 

*        *  -1 
Tl = (9 ) 

A "J    * 
a = A F Ti S 

(35) 

(36) 

(37) 
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In this form, it is iinmediately apparent how these expressions 

may be generalized when the sum in Eq. (1) is replaced by an integral. 

Specifically, suppose 

S(t) = J CY(X) F(t, x) dx + s(t) 

X 

and let 

(la) 

A(x, x7) = E | a(x) oi(x') (2a) 

Then,   Eqs.    (35)-(37)   still hold,   but with 

F A F     = F(t,   x)  A(x,   x')   F(t/,   x')   dx  dx' 

X X 

A FT  =   f A(x,   x')   F(t,   x')   dx' 

X 

and  so   forth. 

Still   another alternative   expression for ty can  be   stated  for 

the  cases   represented by Eq.   (1),   using   the  finite   sum  expression, 

when A  is   a   diagonal matrix.     Suppose   it  is  desired   to   estimate ^(x       ) 

The  sum over  j   r   i  can be   treated  as  additional  noise.     Thus,   the 

problem  as   given by Eq.   (1)   can  be   replaced by an  equivalent   one  in 

which 

(38) 

(39) 

S(t)   = cy(x(i))  F(t,   x(i))  +7(t) (lb) 

where 

9   (t,   t')   = E [7(0 7(t')] = cpCt,   t')   +   V    A..   F(t,   x(j))   F(t',   x^)) 
1 L J £JJJ-~ — 

(40) 

j^i 
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This gives rise to an equivalent problem in which the matrix B. 

is a scalar.  I'm formula for a(x  ) becomes 

^x
(i>) ■ ■ 

'JHt. s(i)) i.(t, c') s(t') dt dt' 
X 

^ii^1 + j j F(t'     ^(i))  ^i^' t/)     F(t''     ^(i)) ^    dt;/ 
(41) 

where the integrals are symbolic representations of limits of finite 

sums over |i,u of the kind used above. 

In many cases, the matrices cp. are virtually independent of i 

(i.e., the addition of terms involving i to the sum in Eq. (40) 

would be negligible); in such cases, the result would be 

cp % cp + F A F (42) 

and 

where a is defined 

S(x(i)) = 
,,(!)> + ~T a(xv 0 + (F T) F). . 

a(x«) . A(x(1)) x»')"! 
-1 

(43) 

(44) 

Both the expressions for a  given here and those given in 

Section ILA are useful.  Those in Section II .A are most useful if 

the scattering body can be represented as relatively few scatterers 

(mo e precisely, if there are relatively few positions x   which are 

candidates for the position of a major scattering center); or if 

T       -1 
(F T) F + A ) is for other reasons relatively easy to invert.  On 

the other hand, the expressions in the present subsection are useful 
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T 
if cp ■•■  F A F     is   relatively   easy   to   invert   (say,   if   the   total   time 

of  observation is very  short). 

Finally, it is of interest to discuss alternative evaluations of 

jB and the manner in which these generalize to the case in which S(t) 

is   given by  an integral   expression of   the   form Eq.    (la). 

First,   when S(t)   is   given  by a  finite   sum,   ß     is  given by 

Eq.    (16).     Either of   the   expressions  Eq.   (9)   or   (37)   can be  used  for 

A 
a   (if A is diagonal, Eq. (41) can also be used), but B is still 

given by Eq. (10).  Also, if Q depends on only one point x   and 

A is diagonal, then B in Eq. (16) can be replaced by a scalar: 

B. = -!- + FT n . FT (45) 
i  A. .    i 'i  i 

11 

The manner in which the expression Eq. (16) for ß generalizes 

to the cases where S(t) is given by the integral expression Eq. (la) 

is not completely obvious.  Here, (3 is defined 

ß  = f f a(x) Q(x, ::') Q-U') dx dx' (14a) 

T       ^ 
There is no difficulty in generalizing the term &    Q a in Eq. (16)-- 

this is simply carried over with a  given by Eq. (37).  The problem 

is in deciding how to generalize B  in Eq. (16). 

This problem can be approached as follows.  Comparing two 

expressions for a,  Eqs. (9) and (37), it can be seen that 

-IT       x * 
B  F T! = A F T) (46) 
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Thus 

-1      T *    T     -1 
B  = A F T]  F(F X]  F) (47) 

In this form, the expression generalizes to the cases represented by 

_ i 

the integral expression Eq. (la).  The interpretation of B  in such 

cases is 

B'^x, X') = A(x, y) F(t, y) T\*(t,   t') (48) 

X F(t/, z) U(z, x') dy dz dt dt' 

where 

U'^x, x/)= J F(t, x) Ti(t, t') F(t/, x') dt dt' (49) 

These are all symbolic expressions for operators. 

Expressions for p when P is a higher order form in a  can 

similarly be developed for the integral case represented by Eq. (la). 

One can regard B , given by Eq. (47), as the covariance function of 
AM. 

the (Gaussian) conditional distribution of a  given S; and a,   given 

i\ 

by Eq. (37), as the mean-value function.  The expressions for p 

for higher order forms are then obtained using the well-known 

expressions for the higher order moments of a Gaussian random process 

in terms of its means and covariance function. 

D.  M3MENTS OF ESTIMATION ERRORS 

Often the problem of primary interest is to determine the mean 

square estimation error. Of course, given the expressions for the 

estimates themselves, the mean square error can be estimated by 
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Monte Carlo techniques.  It is much preferable, however, to use 

analytic expressions. 

Such expressions can be stated for linear and quadratic functionals 

of a',   it is easy to see how they could also be stated for higher order 

functionals by extending the same techniques in an obvious, though 

tedious, manner.  These statements are made assuming no dependence 

of F on additional unknown parameters.  If such dependence exists, 

the problem of writing expressions for mean square error is much 

more complicated; of course, lower bounds can be obtained by using 

the expressions which assume the unknown parameters to be known 

(or by using Cramer-Rao inequalities). 

The mean square error expressions of interest are the conditional 

mean square error, given that a  has a definite value a   ;   and the 

unconditional mean square error, given an arbitrary "true" statistical 

distribution of a-     Cases of interest must include those in which the 
MM 

"true" statistical distribution of Q- differs from the a priori distribu- 

tion assumed for purposes of forming the Bayes estimate, although a 

special case of interest arises when these two distributions coincide. 

It may also be of interest to determine mean square error when the true 

covariance of the noise ie(t)} differs from that assumed in forming 

the Bayes estimate. 

First consider the means and second moments of p and p 

conditional on a  = Ot   ■     Kecall that 

S = F a + e (50) 
.VM      MM  -m Q       «M 
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Thus, using the formulas of Section II.A for a, 

-1   „T E I $T    I   a 1  = L B       F1  Ti  F o (31) 

and 

r 
K  i  (ßT    -   ßT)' ff 

oj 

-IT -IT 
=  LB       FTicpTlFB       L 

+ i L B"1 FT Tl F ry ß (a-o0^ 

(52) 

Here, cp (t, t ) is the "actual" covariance of e; of course, if this 

is also the covariance assumed in the Bayes estimation, then 

Tl 9n n = T] • 

If the assumed a priori distribution of cy has vary large 

variances, i.e., if the estimates depend mainly on the observed 

signal and only weakly on the a priori mean values, then 

-1  T 
B  F ri F ~ I and the second term in Eq. (52) vanishes, while the 

right side of Eq. (51) becomes simply ß (ff ). 
A^sO 

The moments  of ß^  conditional  on rf = ff    can best be  determined 
Q «v      ~.o 

as  follows.     First 

ßn  -  ßn(ff  )   = e     M e  + R e + W 
Q Q-o ~ ~- 

(53) 

where 

-1 -1     T 
M = TiFBQBF    T] 

T     T 
R = 2 a    F    M 

-o   -     ■" 

W = ^ FT M F ff     -  ßn(a„) 

r -i    n 
+ Trace [I"1 2" 

(54) 

(55) 

(56) 
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Therefore, 

E L^Q I ^c = Trace 
-11   T 

B  Q+Q1 FMFQ- 
.—   -« I   ««0 <•» »«I «« -^o 

+ Trace i M ^o] 

(57) 

and 

[(BQ - eQ)2 I So] " E L(£-T M I'' I 2o] 
+ E L(--)2  I 2oJ 

FT      
n 

+ 2 W E e Melcy L- - - i ~oJ 

(58) 

Using standard formulas for fourth order moments of Gaussian 

processes, 

r A    2   - r      -2 
E  (0n - ßn)  | » 1 = Trace M cp 

_ Q   Q    -oJ  L     - -o_ 

+ 2 Trace (M cp M cp ) x~ Jo - lo 

-I- R cp R 
~ io ~ 

+ 2 W Trace [Hep 1 
L** ~oJ 

(59) 

Now, suppose it is desired to obtain the unconditional expectations 

with respect to sor^e given "actual" statistical distribution of a   , 

which can be denoted dP(a )•  All such moments are simply the 

integrals of the conditional expectations with respect to dP(a ). 

If dPO^ ) is Gaussian with covariance A , then the procedure to be 
^-o -"o 

followed is similar to that for determining the conditional moments. 

Thus, all the conditional moments above can be expressed as the sum of 

constants and linear and quadratic forms in a   •  The moments of all 1 -»o 

these can be expressed in terms of the matrix A .  For example r ^.0 IT 
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% 

a    .21 
0Q; J 

Trace (M m ) 

+ 2 Trace (M cp M cp ) 
- ~o - io 

-1 
+ 2 Trace (M cp ) Trace (B  Q 

r     T 
+ 4 Trace A F M cp M F 

L-o - - -o •. 
r    T 

+ Trace [ A (F  M F - Q) 
L-O —   — —    -A . 

(60) 

These expressions all can be generalized to the case where a  is given by 

Eq. (37), and hence to the case where S(t) is given by the integral 

Eq. (la), simply by interpreting B  in all the above expressions 

via Eq. (47). 

These techniques can obviously be extended to determine 

the characteristic functions (and hence the p.d.f.'s) of the 

estimates ßT and p , as well as the moments of estimates of higher 

order forms in a-     However, the necessary algebra becomes extremely 

tedious. 

E.  ADDITIONAL REMARKS 

It is clear how the function Q(x, x ) can be chosen so as to 

yield information about the integrated radar cross section contributed 

by specified sections of the target, as well as to make estimates of 

body dimensions (e.g., by letting Q(x, x ) ^  x   6(x - x), where 

a is a large integer).  It will also be of Interest in this connec- 

tion to form estimates of other functions of ß , or of functions 
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depending on two quadra'ic functionals.  For example, functions of 

r   i1/m r 
the form ßn    or ß /ß  or, more generally, f  ßn 5 ^n I may be 

of interest. 

In many such cases, even though a strong signal assumption may 

not he justified in determining P  from a,   such an assumption 

may be justified for determining f by f = f(ßn , ßn )•  An error 

analysis can then be carried out by expanding f(ßn >   ®o  ]   t0  fi-rst 

^1   y2 

order in the error terms ß   ~ ^n ' ^n  " ^n and theri aPP1yin8 the error 

formulas for ßn and 0  .  (This would require cross-moments of P 
^1 Q2 ^1 

A 

and 0  , which can be determined by the same sort of technique as 
Q2 

used in Section II.D.) 

A possibly useful method of evaluating the expressions for 

At.      A 

a,   P-r,   PQJ   and  so  forth,   alternative   to   those   stated  above,   is   the 

use of  recursive  Bayes  estimates.      ' The application of  recursive 

methods   to   the  problems  considered  in  this Memorandum  is   currently 

under  investigation. 
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III.     APPLICATION  TO  ROTATING  TARGETS 

A.     TARGET MODELS AND  SIGNAL MODELS 

The   target  and  signal models   to be  considered can be  represented 

in   the   following way   (omitting   the  noise   term  e(t)) 

S(t)   =)   a(r.,  cp.)   cos  IUJ     t + r,sin(uj     t + cp  )  -f §    I (61) 
Li       i L  c i r Ti ij 

where 

UJ     = carrier   frequency   (radians/sec) 

U) r 
= target rotation frequency (radians/sec) 

5. = RF phase parameter of signal from i  scatterer 
(further discussed below) 

/     \    i    .    r- . th .        ,. 
(r. , cp.)  = location of i  scatterer m a coordinate system 

i  1 
fixed to the rotating body (further described 
below) 

a(r., 9.) = amplitude (absolute magnitude) of i  scatterer 

In what follows, cp always represents an angular coordinate unless 

otherwise specifically stated and should not be confused with the 

covariance function cp of the observation noise. 

The coordinate system (r, cp) is defined as follows.  Initially, 

suppose that the axis of rotation is normal to ♦'.he line of sight 

to the radar.  Then, the (r, cp)-plane is normal to the rotation 

axis and contains the line of sight.  The coordinates (r, 9) are then 

cylindrical coordinates of a point on the target in a coordinate 

system fixed to the body, in which the axis of rotation is the z-axls. 

At any time t, the angle of the 9=0 axis with respect to a plane 

normal to the line of sight is UJ  t.  (In other words, ua  t + n/2 is 

the angle between the cp = 0 axis and the line of sight.)  The units 
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of  r are  chosen so   that  one wavelength  equals  4TT units.     Otherwise 

a   factor 4TT/X would have   to multiply  r  in Eq .    (61). 

The  same model  can be  applied   to  some   types  of   targets  even when 

the  axis  of  rotation  is  not  normal   to   the   line  of  sight.     Specifically, 

suppose  all   the   significant  scatterers  on  the  body  are known a priori 

to   lie  in a plane v/hich  is  normal   to   the  rotation  axis.     In  such  a 

case,   let   (r,  9)   still   be  cylindrical   coordinates   fixed   to   the  body, 

with   the  z-axis  being   the  rotation axis.     The   signal  can still   be 

described by  Eq.    (61)   if  r.   is   replaced by  r.   sin Y,  where Y   is   the 

angle  between  the  rotation axis  and  the  line  of  sight.      In 

this  case,  iju     t  is   the  angle  at   time   t between   the cp = 0 axis  and 

the   line  of  intersection of   the  plane normal   to   the  line  of  sight 

and  the   (r,  cp)  plane  fixed  to  the  target.) 

The  symbol  5-   denotes  an additional  unknown phase parameter 

associated with   the  signal  reflected from  the  i       scatterer.     It  is 

assumed   to be  uniformly  distributed over   (0,   2TT) •     Thus,   Eq.   (61)   can 

also be written 

w    t + r.   sin(aj     t + cp.) 
L c 1 r 1 

S(t)  =Y a(ri,  cp. ,   1)   sin 

i 

+ )   »(r.,  cp.,   2)   cos \m     t + r.   sin(u)    t + 9.) 

(62) 

where 

a(v. ,  cp       1)  = a(r. ,  cp.)   cos 5. 
11 i      1 1 

cK^,  cpi,   2)   = a(ri,  cpi)   sin ^ 
(63) 
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Thus, the superscript i of Section II is here a pair of indices 

(i, \i)  where i indexes the scatterers and ^ takes on only two values, 

1 and 2.  Also 

x = (r, cp, g,) (64) 

where p, = 1 or 2.  It is assumed that the components of a  have a priori a 

joint Gaussian distribution- 

Since there are no modulating functions multiplying the sum in 

Eq. (61), CW illumination of the target is in effect being assumed. 

However, the same model can also represent the case of a pulse radar 

for which the range resolution of a pulse is much larger than the 

physical extent of the target, and for which the pulse repetition 

frequency is sufficiently high that the maximum distance moved 

by any scatterer in the interpulse period is small compared with a 

wavelength. 

It will be assumed that UJ is known a priori.  This is not an 
r 

unrealistic assumption in many cases (e.g., when the target is known 

a priori to be stabilized and the effective rotation is due to non- 

radial translatory motion of the target with respect to the radar); 

also, it can often be assumed that the rotation rate has bean 

accurately established from prior observations, since rotation rate 

is a parameter often capable of being very accurately established. 

It is clear that the above model implies that a coherent radar 

is used.  This does not imply that signal phase is known a priori, but 

merely that the RF phase of the received signal plus -noise is observed 
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and made use  of.     An  interesting problem is   to  determine   the  effect 

of   lack of coherence,   either  in  the radar  processing or because  of 

phase  errors.     It  is  known  that much  signature  analysis  can be   done 

even with completely   incoherent operation   (e.g.,   even  if   the  radar 

measures  only  signal   amplitude).     The  discussion of   this  question 

is  given  in Section III.E below. 

The   targets   envisaged by   the  representation stated  in Eq.    (61) 

consist of  sets   of  rigidly  connected point  scatterers.     The  potential 

positions  of   the  point   scatterers with  respect   to   the  rotation  axis 

are assumed   to be known a priori   to within approximately  one-half 

wavelength   (one wavelength  in  the   two-way  path).     The additional   unknown 

parameters F     are   included   to allow  the   precise  position of   the   i 

scatterer   to  differ   from   the  position   (r.,  9.)   by up   to  one-half 

wavelength.      (For  some   further cases   treated  below,   it  is   required   that 

all   the  1■'s  be  equal   or  highly correlated.)     It  is  necessary   to  assume 

that   the maximum  separation between potential   positions   (r.,  cp.)   of 

scatterers   is  of   the  order of one-half wavelength.     Strictly   speaking, 

(r.,  cp.)   should be   called   the   i      mean potential   scatterer  position. 

It  is   somewhat  easier   to visualize   the   potential  scatterer 

positions,   projected on   the   (r,  cp)-plane,   as  a  regular rectangular 

lattice,  with 

i       position =   (u  ,  v  ) (65) r m      n 

1  -   (m,   n) 

u    = r.   cos cp. 
mi i 

v    = r.   sin cp. 
n i xi 
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On occasion the corresponding integral form nver the (r, cp)-plane 

will be used. 

The scattering model just stated also applies to sets of rigidly 

connected spheres, even when the spherical radii are larger than a 

■)'<■ 

wavelength.   In such cases, the scattering point on each sphpre is, 

at any instant, the point on the sphere's surface intersected by the 

line connecting the center of the sphere to the radar.  If the center 

of a given sphere describes a circle of radius r, so also does the 

instantaneous scattering point, but the circle is displaced toward 

the radar by the radius of the sphere.  If the scattering spheres 

have different radii, this is accounted for by the phase variables ^.. 

In the models to be treated, it is assumed that each scatterer 

is visible during the whole observation interval.  This might be 

true if the target scatterers were all located on a rotating disk, or 

on a rotating line, with slightly tilted rotation axis; or if the 

target otherwise consisted of individual points which did not shadow 

each other.  A similar model might apply to long thin bodies which 

are sufficiently symmetrical about the lengthwise axis. 

In many cases, one is interested in bodies for which, even if 

they can be reasonably modeled as collections of rigidly connected 

point scatterers, each scatterer is visible only part of the time, i.e., 

is visible over some restricted range of values of cp + w t, as on 

the surface of a rotating sphere.  It will be apparent that the treat- 

ment to be given can be generalized to such cases, but detailed 

evaluations are much harder and will only be indicated. 

It should be remembered that (r., cf^) are possible scatterer 

locations; in any actual case, many of these possible locations might 
be empty, that is, occupied by zero amplitude scatterers. 
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In all cases, it will be assumed that the observation noise is 

"white": 
N 

cp(t, t') =— 6(t - t') 

n(t, t') = ~  6(t - t') 
o 

Two categories of target models will be treated:  first, a model 

in which the potential scatterer positions are not assumed a priori 

to be collinear; and second, a model in which it is assumed that the 

scatterer positions are known a priori to be collinear. 

B.  NONCOLLINEAR A PRIORI SCATTERER DISTRIBUTIONS 

For noncollinear a priori scatterer distributions, the matrix A 

will be taken to be diagonal: 

(66) 

(67) 

AO:., V »,   r.,cp., /) =A. 6^ 

where 6 is the Kronecker delta.  The expressions necessary to evaluate 

the Bayes estimates can then be derived by either of two approaches. 

First Approach 

The first approach will be to calculate B(x, x ) by application 

of the formula Eq. (7).  This requires evaluation of the following 

types of integrals: 

I.. =  sin a)  t + r sin (a) t + cp)J sin m     t + r sin (tu  t+cp) 
L c r       . 

(68) 

dt  (69) 

12 sin W t + r sin (tu t + cp) L  C v  j. T/ cos UJ  t + r sin ((u t + cp ) 
. c r dt  (70) 

I22 = 1 C0G w  t + r sin (u)  t+cp) 
L c r 

cos oi  t + r sin (UJ  t + cp ) 
L c r    T dt  (71) 
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!„-. = same as !..„ with r, cp and r , cp interchanged (72) 

The integrals can be assumed to extend over an interval 

< 
ku  t  = B • without loss of .^neralitv it can be assumed that 1 r  '   M 

t = 0 is the midpoint of the observation interval. 

If (jj is sufficiently large, as it will be in virtually all 

cases of interest, then 

^i'1 
i   r * 

,7  ?_,r  j cos JPI sin (9 + 3 ) 
r 

de 

12 

"21 

2a) j 
r 

sin p] sin (G + 6 ) i de 

— J sin Mp| sin (9 - 6 ) de 

(73) 

(74) 

(75) 

where 

P  = + r  - 2r r cos (cp - cp ) 
h 

r 
*   -i 

)  = tan 
r  sm cp  -   r     sm cp 

r cos cp  -   r     cos cp 

(76) 

(77) 

Now,   the   integrands  can be   expanded 

cos lip     sin   (6 + 
* "I 

= JoUPU + 2   Z   J2n p I     COS 2n(e + 9*)^ 

n=l 

sin p|   sin   (9 + 9   ) =  2    ^    J2n+1  (|p|)sin [(2n +  1) (9  + 9*)' 

n=0 

Consequently,   recalling   that   the   integrals   in 9  = ID     t  are 

(78) 

(79) 

assumed   to  extend  from 9  =  -  9W  to  9  = + 9W, 
M M 
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11 h2'^'AM) + 2-   I    J2n(^!) 
n=l 

* 
cos 2n 9  sin 2n M 

I12 = -1 11 =^ I J2n-fl (lpl) 
n=0 

sin (2n + 1) 0  sin (2n + 1) M 
2n + 1 

(80) 

(81) 

If 9  = K-n, where K is an integer, which is to say, if the 

observation interval is an integral number of periods of the rotation, 

then 

hi = ^2 = ^ J„ ( '•" 
r 

I12 = "^l = 0 

(82) 

(83) 

KTT 
If  9     = —,   with K an integer,   then 

I,,   = I 
KTT 

11 22       2UJ 'oiM) (84) 

ll2  = "^l  =~   I    2^T1 sin ^+1) e"] j2n+1 (iplj 
n=0 

The   formula   for B(x,   x   )   in   terms   of I-,-,,   etc.,   is 

(85) 

B(r,  cp,   1,   r',  cp',   1)   = B(r,  cp,   2,   r',  cp',   2) (86) 

^A(r,  cp) +~I11(r,  cp,   r,  cp),   if   (r,  cp (r  , cp ) 
o 

/       /. 
= jj- I

11(
r'   CPJ   r   ,   cp  ),   if   (r,  cp)  f   (r   ,   cp  ) 

B(r,  cp,   1,   r',  cp',   2)   =^-I12(
r

J  ^P.   *'>  <$'*> (87) 
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B(r,   9,   2,   r   ,   cp  ,   D   = ^- I2i(r'  '■5'   r   '  ^^ (88) 

It:  is   understood   that  r  and cp   take  on only  a  discrete   set  of 

values   r.,   a.. 
i     ^i 

Second Approach 

The   second method will   be  applicable   to  evaluation of  Eqs.   (35)- 

T 
(37).     The  basic   step  is   the   evaluation of F    A  F.     It will  also  be 

assumed   that   the  density  of  possible  scatterer  locations   is  sufficient 

T 
to  enable   the   sums   in   the   expression  for F    A F   to  be   replaced approxi- 

mately  by   integrals.     Thus 

T 
F     A F 

P(r,   cp)-|   cos    UJ     t + r   sin   (uo     t + cp) cos 
/ / 

OJ     t    + r  sin   ('JJ     t    + cp) 
L  c r . 

+ sm uu     t + r  sin   (UJ     t + cp)     sin    U)    t    + r  sin   (UJ     t    + cp) _c vr-r/ |_ c Nr 
r  dr  dcp 

(89) 

where 

iii lit 
A(r,  cp,  p,,   r  , cp  ,  y.  )  = 0,   (r,  cp,   p,)  ^   (r    cp    p. ) (90) 

/        /        / 
= P(rJ cp)   r  d r  d cp,    (r.  co.   u)   =   (r   ,  cp   ,   p,   ) 

It  is  understood  that  r  dr  dcp may  actually   represent a   finite  increment 

of  area,   equal   in size   to   the  area  over whici.   the  a  priori 

distribution of a(r,  cp)   is   significantly  correlated.     The minimum 

size  of  r   dr  dcp would be  about  a  half-wavelength   square. 

Equation   (89)  may be   rewritten 

T 
F    A F (r,  cp)   cos    uo   (t  -   t  )  + r  sin   (^     t + cp) (91) 

r  sin   (UJ     t    + cp) 
r 

r  dr  dcp 
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If   it  is  assumed   that 

P(r,  cp)   = p(r), 0 g ^ < 2TI (92) 

then 

T 
F    A F 

2TT COS ^(t  -   t  ) P(r)   J    <r/2[l   -  cos   v   (t  -   t')]lr  dr (93) 

P(r,   cp)   reflects   the  a  priori  knowledge  of   the   distribution of 

T 
scatterer  intensities.     Some  explicit expressions   for F    A F are 

(1) P(r)   = Po  r" exp     - (7- ' 
L       N      O 

„T  4   ^ n+2  „ 
F    A F = rrr P    cos 
W> vv-     »* O O 

^(t -1)_ r(f + i (94) 

_       n + 2       1 c 
x iFn"~2~ ' 1> - j [ 1    -   COS   0)    (t   -    t   ) 

where     F     is   the  confluent  hypergeometric   function.      For n = 0, 

T 2 r 
F    A F ~ TT  r    P    cos    u>  (t 
-^    .„   -, 00 L c '>] exp 

Z 

COS     L-    (t    -     t    ) 
r (95) 

(2) P(r)  = P    exp 
, \  0/ 

FT A F = 2TT r2  P    cos  \w   (t 
«*     «.   v« OO L-   C 

-   3/2 

t') 1 + 2r    I 1  - cos (ja  (t -  t') (96) 
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(3)       P(r)   = P   ,   0 = r '= r     and  P(r)   =  0,   r  > r 
o o o 

F     A  F   =    2TT  r     P     cos 
i~     —  ~, o     o 

x |2  I 1   -   cos uü   (t   -   t') 

a)   (t  -   t')    J,   ir    li  [1   -  cos uü   (t 
_c JlloY r 

h 

-} 

The   result  just   stated   for  P(r)   = P     exp 

further  interpreted as   follows- 
Vj can be 

(97) 

Denoting   t   -   t'   by T, 

2 
i 

exp     COS    0)       T 
2 r 

2 ' 
r 

O 

2 
exp 

- I) _               _ 

i   n Uü    T 
r 

(98) 

Provided n « 
2 ' 

n\2 

^ c  r 
nroy exp 

V 
(99) 

Thus 

exp -TT-   COS   Hi      T 
2 r 

JJxr 2 
—HTTr 

s- h ! r 
oj        -plf U   (T) 

Vc 
where   6   (T)   represents  a  periodic   Dirac  delta   function with period 

2TT-     The  approximation  indicated in Eq.   (100)   is valid  in  the 

■k 
following sense.  If both the 6  function and the function on the 

left side of Eq. (100) are regarded as kernels of integral operators, 

the result of applying these two operators will be approximately the 

same, provided the function to which they are applied has a Fourier 

expansion (over the interval 2rr/w ) which is negligible for all 

-^ 1.2 
n ^ n where n < < ^ r . o       o       o 

(100) 
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Estimates a(^.,   '-£.)   involve application of this operator via 

Eq. (37) to F(t, r., cp.) .  This function in turn satisfies the 

criterion iust stated only if r. < < r .  Thus, use of expression J i     o 

Eq. (100) would be justified for estimates of &  and functionals of 

cy only for a region r < < r . 
>.»* o 

C.  COLLINEAR A PRIORI SCATTERER DISTRIBUTIONS WITH NO SPECULAR FLASH 

The target model in the cases now to be considered is given by 

S(t)   = )   a(r.)   cos  | '^     t + r.   sin   (u:     t +  9  )  + 5.1 (101) 
zLjiLci roij 
i 

or equivalently 

r1 r -j 
S(t) = ) ^(r. , 1) sin i tu  t + r. sin (UJ  t + 6 ) I (102) 

L, i L c     i      r     o J 
i 

+ /   air. ,   2) cos m  t + r. sin (oi  t + 9 ) 
U        i Lc     i      r     o J 
i 

This is the same as in Eqs. (61) or (62), but with cp, = 0.  Note that 

r. can take on both posiiiive and negative values (otherwise it would 

be necessary to admit two values of 9.). 

The phase factors Z.   are still assumed to be random and independent 

for different indices i; this is what is meant by the statement that 

no specular flash is assumed, a priori, to occur.  This is, however, 

an assumption about the state of a priori knowledge, and does not 

preclude cases in which a specular flash may occur in actual fact. 

A specular flash is, in this terminology, said to occur if there is 

some viewing aspect at which all the scatterers, or a dominant 

portion of them, are in phase. 
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The parameter 9  is the target aspect at t = 0 and is considered 

to be an a priori unknown parameter.  In the notation of Section II.B, 

-i = 8 .  A is still assumed to be given by Eq. (68). 

The first approach of Section III.B can be followed with the 

result 

B(r, 1, r', 1 1 eo) = B(r, 2, r', 2 I eo) 

= LA(r)]"1 + |- ^^r, r | 6^,   if r = r'      (103) 
o 

'F1!!^' r' 1 V  ifr-r' 

B(r, 1, r', 2 1 eo) = -B(r, 2, r', 1 | 9o) (104) 

"f I12(r> '■' 1 eo) 
o 

where I.... and 1^ are given by Eqs. (80) and (81) with 

P = 1 r - r' j (105) 

e^ = 6 (106) 
o 

In particular, if 0  = Krr, i-e., if the observation interval is an 

integral number of revolutions, then 

hi^' r/ 1 V =;rJo(l r -r/ 1) (107) 
r 

I12(r, r' I eo) = 0 (108) 
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Thus, in the case 9,, = KTU B does not depend on 9 .  Therefore 
M      — o 

Eqs. (29a) and (30a) of Section II.B are applicable in these cases, 

has the same meaning as in Section III.B. M 

Finally, when 9W - Kn M 

aT(Q  ) B a(0 ) = 4- V B'^r., r.) 
~  o - - o   „2     L    -        L  J N 

o i, j 

[ j S(t) S(t/) cos 1 Uü (t - L') + r. sin (IU  t + 9 ) 

r. sin (u;r t' + 9^] dt dt' (109) 

This   defines   the  a  posteriori   p.d.f.   of 9     given S via  Eq.   (29). 

D.     COLLINEAR A PRIORI  SCATTERER  DISTRIBUTION WITH A  SPECULAR  FLASH 

A specular  flash would occur  at   some   target aspect   if,   for example 

§,   = §   for  all   i.     However,   xf   this   assumption were made,   the  joint 

probability  distribution of a (r. ,   1)   and ^(r.j   2)  would  not  be 

Gaussian   (even   though   the marginal   distributions   for  any  one   index 

i would be)   unless  also a.   = a   P(i),   all   i,  where P(i)   is   an a  priori 

known  function.     Here  a    has  been written for a(r.). 
i i 

The latter is not an altogether unrealistic requirement, since 

one would generally expect that the existence of an aspect where the 

scatterers are all in phase would not be accompanied by a very 

irregular variation of amplitudes of the individual scatterers. 

For example, the field from a uniformly illuminated antenna would 

be equivalent to a. = constant. n i 

This suggests a model in which the signal from a linear object 

giving a specular flash is represented by Eq. (101), but with 
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5. = I,       all i (110) 

where Z  now represents the phase of a signal reflected from r = 0, 

and 

ai  = a  P(i,   X*) (111) 

/\ 
where ^    is   a  vector  of  unknown  parameters  having  a   small   number of 

components,   such  as   two  or   three. 

In  such  a  case,  o  is  a   two-component vector with  a  Gaussian 

a  priori  p.d.f. 

a*   ~ a  cos 5 

0-2 = a sin ? 

(112) 

(113) 

A can be assumed to be a diagonal matrix, with 

All = A22 = ^ E(a ^ 

A12 = A21 = 0 

The  2x2 matrix  B (0   ,   \  ),   with  components  B,.(6   ,   \   ),   is   derived 
-o-. ijo- 

via the first approach in Section III.B.  To illustrate, consider 

the case 9  = KIT, where the observation is an integral number of 

periods.  The result is then 

B(9 , \)   = B(X*) (114) 
«« o  —      ~ 
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B11(x
yr) = B22i\*) 

\:+!t L p(ri' ^ ^^'^ Jo(i ri - ^ ') ECa")  ^r 
i,J 

(115) 

Vc 
B12a ) - B21(X ) = 0 (116) 

Also, if X = (9 , X ), 

Oj^Cx.) = »1(eo' x, ) (117) 

JB,, (X   )1       C )   P(r. ,   X*)   sin I OJ     t + r.   sin   (UJ     t + 6   ^i  S(t)   dt 
L11~J     J L       i~ l_c i r o 

i 

ctA\) = o9(e    x ) (118) 

2 \ r     , ^i-1 rr *        r -i 
TT)     

B99^   H )   p(r- ,   X   )   cos  I OJ     t + r.   sin   (uu     t + 9   ) '  S(t)   dt 

c?T(X)   B(X)  i(X)   = \    L3!!^]       f   [  S(t)   S^'W )     P^'   ^   p(r-   ^^ 
N      L ' / ^ i    ~ J    -     (119) 

cos wCt   -   t') + r    sin   (UJ     t + 8  )   -  r.   sin   (uu     t' + 9   ) 1 r o i x  r o dt dt' 

It would be  necessary   to use  Eq.    (29)   or Eq.   (30)   in   this   case,   but 

the  expression for  det jB(X)     is very  simple: 

det [B(X)] = [BUO,*)]' (120) 
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Since Lhe total number of unknown parameters in this case has 

been reduced, by assumption, to a rather small number--ry, , a0,  9 , and 

the components of \--the use of the infoi ation matrix to compute 

lower bounds on estimation errors, and the use of maximum likelihood 

estimates, may be an adequate treatment. 

It would also be possible to consider mixed cases, i.e., 

scattering bodies which, a priori, have a component of the type 

considered in this subsection, with a specular flash; and another 

component of the type treated in Section III.B.  It would be 

possible to apply a mixture of the approaches described above.  For 

example, for purposes of estimating \ or 9  for the component which 

provides the specular flash, it would be possible in some cases to 

consider the other component to provide the equivalent of noise 

it 
(changing   the  noise   inverse   covariance matrix   from r)   to T]   ,   but 

integrating  in Eq.   (35)   only  over   the  scatterers   in   the   second 

component).     In certain cases,   the  resulting equivalent noise  could 

still   be  considered white;   see  Eqs.    (98)-(100). 

E.     PHASE  ERRORS AND INCOHERENT PROCESSING 

There are   two  possible   sources  of  reduction  in   the  extent of 

coherence maintained over   the  observation   time:      first,   phase  errors 

(such  as   those  due   to  propagation medium inhomogeneities,   or  to phase 

jitter   in  the  radar,   or   to  uncorrected platform motion);   and second, 

failure  of   the  radar  to attempt   to  preserve phase  coherence over  the 

observation   time.     An extreme  case  of   the  second   type arises when 

the  radar observes  only   the  amplitude  of   the  returned  signal. 
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It is well known that considerable signature analysis is possible 

even with amplitude-only observations, and it is of interest to com- 

pare the results achieved with those achieved by fully coherent 

processing.  The effect of phase errors on coherent processing is 

also of interest.  The following discussion describes a method of 

approach to the analysis of these questions; however, many questions 

remain open, even with regard to tne methodology. 

Let us, for the sake of argument, revert to the signal model of 

Sections III.A and III.B, i.e., to the a priori noncollinear collection 

of scatterers.  However, the signal (free of additive noise) will now 

be represented as 

S(t) = ) a(ri, cp.) cos (JÜ 
L c 

t + r. sin (UJ  t + cp. ) -f § . + C (O | i      r      i     i      J 

= / a(r. , cp. , 1) sin ID  t + r. sin (UJ  t + cp.) + C(t] 
L,        x       i Lc     i      r     i (121) 

+ ) o(r. , cp. , 2) cos UJ  t + r. sin(uj  t+cp.)+C(t) 
/ i   i  i        L c     1      r     i 

where iC(t)j is an a priori unknown random process. 

The distinction between the phase factors %.   and [C(t)j is as 

follows.  The quantities f . are fixed for all time and represent 

relative phases of the (rigidly connected) individual scatterers. 

The quantities C(t) are the same for all i, and represent phase 

deviations common to the whole scattering body, such as those that 

would be produced by motions along the line of sight of the center 

of rotation of the body.  This formulation does not eliminate 
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the contribution of the phase terms r. sin (UJ  t + cp.) to the informa- 
i      r    ri 

tion which can be extracted from signature analysis, even if the 

process (CCO] is uniformly distributed and has very short correlation 

time.  (If the phases were represented as processes [C.(t)], with the 

processes independent for different values of i and having uniform 

distributions and short correlation times, then the phase terms 

r. sin (m  t + cp.) would have no effect and the rotation of the body 
i      r    ri J 

would be immaterial.) 

Three questions of interest can be raised: 

a.  Suppose the radar is coherent (observes both amplitude and 

phase), and in fact forms Bayes estimates predicated on the assumption 

that tC(t)} 2 0, but [C(t)] is in fact not zero.  What estimation 

errors are produced by iCCt)}? 

The analytical procedure to be employed in answering this question 

is as follows.  The estimates a or p are the same as those given in 

Section II, specialized to rotating targets as in Section III-B, 

with [C(t)} assumed to be zero.  Thus, estimates of linear forms in 

a.  are still linear forms in S(t), now interpreted to include additive 

noise [^(t)}, and estimates of quadratic forms in a are still quad- 

ratic forms in S(t).  In determining the moments of the estimation 

error, the same procedure is followed as in Section II.D, except 

that Eq. (50) can no longer be used.  In place of this, one must use 

S = F U] a + e (50a) 

where F {(]] is formed by including the random phase process C in the 

factors multiplying each component of cy. 
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If Qit)   is bounded (with high probability) to less   than about 

one radian over the whole observation time, then F(^) can be ex- 

panded in a first order expansion 

FCr., cpi, u, Q,   t) ^ 

F(r., cp., u, 0, t) + C(t) F^Cr., cp., a,   0, t)      (122) 

where Fr-   represents a derivative in an obvious way.  The estimation 

errors are then linear or quadratic functions of both ie(t)] and 

{^(t)j; their moments can be determined by the same techniques as 

in Section II.D. In such a case, it could not be said that coherent 

processing has been destroyed by (^(t)J, but only that the results 

have been degraded by an additional noise term. 

For coherence to be destroyed, it would be necessary to assume 

that i£(t)} is not bounded to a small value over the observational 

interval.  If [C(t)j is not bounded in this manner, then the first- 

order expansion is not valid.  However, it is still possible to get 

the first and second moments of linear or quadratic forms in S in 

certain cases, e.g., if {C(t)] is a Gaussian process (defined over 

-ao, oo), or if C(t) has a correlation time which is short compared 

with the time in which r. sin (w  t + cp.) changes significantly, for 
i      r     i 

all 1.  Methods for doing this form another entire subject and will 

not be further described here. 

Returning now to the other questions of interest: 

b.  Suppose the Dayes estimate is formed, utilizing the a priori 

representation Eq. (121) for the signal, with some definite a priori 

distribution attributed to [C(t)}-  What are the estimates then? 
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In principle, [C(t)j can be regarded as a parameter vector \   of the 

type treated in Section II.B, but the problem still remains of 

elucidating the effect of this particular type of unknown parameter 

vector.  This in turn is related to the third question: 

c.  Suppose the radar only observes amplitude? 

The Bayes estimate formed by taking into account the presence 

of [C(t)] takes the following form.  Let 

Y = F
T ri F = B - A"1 (123) 

Then, from Eq. (121), if LU is large 

Y(r., cp., 1, r.,  Cfy 2) 

= Y(ri, cp., 2, v.,   cfy 1) = 0 (124) 

and 

Y(r., cp., 1, r., cp., 1) 

= ^r., ^p., 2, r , ?.,   2) 

I  ['    r 
= ZT cos I r. sin (UJ  t + cp.) 

N J    L i      r    Ti 
o 

- r. s in (w  t+cp.)dt (125) 

This is exactly the same as if the process [C(t)] were identically 

T 
zero.  Moreover, it can be similarly verified that F A F is inde- 

pendent of [C(t)], under the assumption that A is diagonal-  Thus, 

the matrices B or T]  entering into the expression for a or p are 

independent of [£(t)]; the only dependence of a or 0 on [C(t:)] 
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arises from the dependence of F on [C(t)], in the expressions 

Eq- (9) or (37).  To be specific, let 

a =  K<*       ,  a      ) (126) 

where the components of a are (y(r. , cp. , 1) and similaily for a 

Also, B consists of two identical blocks corresponding to u = 1 and 

p, = 2; let each of these blocks be denoted simply B.  Also, let 

B(r 
i  yi  j   J    iJ 

»<1)^>'V=«i1) 

.^(r^ V^r (127) 

Then 

J     1J   0 

sin 1 uj  t + r. sin (u)  t + m.) + C(t) | • S(t) dt   (121 
L c     i      r    vi       , v 

1       "« rv -i- 
ij 

N 
o 

cos 1^  t + r. sin(uj  t + -;.)+£(t) 
L c     i      r     i " S(t) dt 

Now further assume that the radar is a pulse radar, subject to 

the following conditions:  (1) the pulses are sinusoids at frequency 

u  and have length much greater than .he a priori range extent of the 

target; and (2) the pulse length T  is such that the radial motion 

of all a priori significant scatterer locations, and the change in 

C(t), are negligible compared to a wavelength during the time extent 

of a pulse.  (Radial motion means motion along the line of sight to 

the radar.; 

ftjttä ■ ■ 
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The  matrix  ß  can  be   found   from  Eqs.    (125)   and   (123);   in   this 

case,   Eq.    (125)   takes   the   form 

nr.,   9i,   1,   r.,   V.,   1)   = '^(r.,  ^,   2,   r. ,   $.,   2) 

=   N      /     COS    i  ^    S^U    ^aJ"    t-   +   C-0- ^ r-    S^n    ^UU-    '-   +   ^^ 
] 

r     n J r     n 
n 

If the further assumption is made that the motion (projected 

on the line of sight) of all a priori significant scatterer locations 

is negligible compared to a wavelength during the interpulse period 

At, then Eq. (125a) can also be expressed 

Y(ri,   cp.,   1,   r.,  cp.,   l)   = Y(r.,  cp.,   2,   r.,   cp       2) 

(125a) 

Ei i 

—   I   cos  I r.   sin   (IJJ     t + cp.)   -  r     sin   (UJ     t + cp  ) 
N    At J Li r i j r j  _ 

dt (123b) 

which is the same as Eq. (125) except for the constant factor T /At. 

To see what form a   takes, let 

S(t) = S-(t) sin uu  t + S„(t) cos u)  t 
i        c     2        c 

(129) 

Then,   Eq.   (128)   becomes 

^v-lifX ,,    ,   iS       cos  , r,   sin  (u)     t    + cp.)   + C 
N   i-j  L  In L  i r    n i 'n 

o  n 

+ S0     sin I r.   sin   (UJ     t    + cp.)  + r    \\- 
2n L  i r     n i ^nJJ 

(128a) 

ai      (&   = )   [tL    ). .   '  I*" )   10lo     cos  [r.   sin   (UJ     t    + 9.)  + £  l 

-  S 
In ,   sin  (a.    t    + cp.)  -1- C i r     n       Ti ton 
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where 

Sln = V^ 

S9  = S0(t ) 
2n   2 n 

Cn-»(tn) (130) 

2  -_2 

1    J 

quadratic form associated with this functional of #•  The term 

2       _, 2 
Next, consider estimates of I {v   '  + a   I •  Let Q   be the 

Trace (B  Q   ) in Eq. (16) is independent of Q.     The second term 

in Eq. (16) becomes 

iT(C) Q(1) S(C) 

> o /  . , ij     ik 
j,k m,n 

x  S„  cos p.  - ST  sin p. 
L. 2n     kn   In     kn 

j ,k m,n *"• 

where 

x j ST  cos p,  + S0  sin p,  | ?       (131) 
L In     kn   2n     knj ■ 

p.n = r. sin (^ tn + cp.) + rn a32) 

This simplifies to 
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aT(0  Q(i) a(0 
*S^\      ^•K       '*** *^   -V- 

2 

N i  / 
o/  . . 

j,k m,n 
i (n.d-1) 

ij Ik 

is  s1 + s„ s„ 
L im  in   Zm     I 

+ ! S  S.  + S„  S. 
L im  2n   2m  in. 

cos  p . 
nj    L j 

r 
in I p. 

- P. J 
m   kn 

(133) 

Similarly, the expression Q- B ot  appearing in Eq. (29a), with 

\   =  b,   is 

a   (C)   B a(C) 

2 

-\f]    1    1   (t1!, {[Sta£l„ + S2B
S2n]c v o /  . .        ij v. -J 

i,j m,n 

+ s. s9 + s9 s. 
_ 1m 2n   2m In 

cos /im" ■Pjn_ 

sin 
r 
LPim- -J (134) 

Taking account of Eq. (132), Eqs. (133) and (134) can be written 

^^   ^^   ^n     **% v%       L—i    mn m   n   mn 
m,n 

5T(C) B J(c) =) n   cos fc   - c + Y 
-^ -»H «. A« «-  4J  mn    \ m   n  'mn 

m,n 

(133a) 

(134a) 

The a priori p.d.f• q(\) in Eq. (29a), with X = C. can be assumed 

to be such that the components C  of C are mutually independent and 
n   -~ 

uniformly distributed over (0, 2TT) .  The evaluation of integrals of 
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the type appearing in Eq. (2.9a), resulting from substitution of 

Eqs. (133a) and (134a) into Eq. (29a), seems to be very difficult in 

general.  The problem clearly amounts to evaluation of the expected 

values of cos * cos C , sin C     sin C   ,   and sin C cos C   ,   with 
m    "n     tom    bn ^m    ton 

respect to the a posteriori distribution of iQ   r implicitly defined 

by inserting Eq. (134a) into Eq. (29a).  However, there are some 

special cases in which such evaluation may be considerably simplified. 

For example, suppose the a posteriori p.d.f. of £ is also such 

that it j- are mutually independent and uniformly distributed.  It is 

clear that this will not in general be true; however, it will tend to 

be true if the sampling interval At is such that a significant portion 

of a priori scatterer positions move along the line of sight by, say, 

a wavelength in time At. 

2       2 r ci^ i (2) 
Then,   the  unconditional   estimate  of | o; + \ a.      \    =  ß. 

L i J   L i .!    i 

would simply be, from Lq. (133), 

ß. = Trace FB"1 Q(i)] 

*(/)2n(n.(m^n)-K'j 
\   oJ . .      ij     ik 

n j,k 

X COS r. sin (uj  t +cn.) _ r. sin (W t + V, ) i (135) 
. j      r n  Tj    K      r n   k J 

2   2 
This depends only on the square amplitudes S.. + S  of the observed 

signals. 

Equation (135) represents the estimate achieved when ^(O i-3 

integrated with respect to the a priori p.d.f. of ^£nJ-  ^t 
is 

tempting to conjecture that this represents, in general, the optimum 
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Bayes estimate of 0. when incoherence is due to the fact that the 

radar observes only the signal amplitudes.  When the components -j ^ r 

are a posteriori, as well as a priori, independent and uniformly 

distributed, this conjectuire must be true.  The author has so far 

been unable to verify the truth of this conjecture in general, and 

in fact it is somewhat doubtful that it would prove to be true in 

general.  It is easy to see that the Bayes estimate when the radar 

observes only amplitude must always be at least as good as the 

estimate given by Eq. (135). 

if iC,    r are not a posteriori independent and uniformly dis- 

tributed (as will be the case when the sampling rate is so high that 

a significant part of the a priori scatterer positions move along the 

line of sight by less than, say, one-quarter wavelength), then 

Eq. (135) does not represent the Bayes estimate if the radar observes 

both amplitude and phase.  There are still cases in whicn it is 

probably justified to assume certain simplifications.  For example, 

suppose the sampling rate is such that a significant part 

of the a priori scatterer positions move along the line of sight by 

the order of a wavelength in time K At, K > 1.  Then, it is very 

probably true that C     is statistically independent of C     if r     ■' in n 

m n I > K, and that the marginal a posteriori p.d.f. of any single 

Q     is  uniform over (0,2rr).  This would permit one to set equal to 
n 

zero all terms for which ] m - n| = K in integrating Eq- (133) with 

respect to the a posteriori p.d.f. of Q. 
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IV.     INITIAL STEPS   TO  IMPLEMENTATION OF  COMPUTER PROGRAMS 

It would be of   interest   to  implement  some  of   the   techniques  by 

programming  them on a  computer.     Two approaches  are  indicated:     (a) 

A 

implementation of   the methods   for  forming   the   estimates   j3,   and   (b) 

implementation of   the  calculation of mean  square   error  for linear 

and  quadratic  estimates. 

The  formation of   the   estimates   themselves  would  be  a Monte  Carlo 

program since  it would be  necessary   to produce   simulated data with 

additive  errors  or phase   errors   (or both).     Mean  square  error could, 

of  course,   be  determined by  repeated  trials  of   such a Monte Carlo 

program.     Calculation of mean  square  error via   the   formulas  of 

Section II would not  require  Monte  Carlo   trials   or  generation of 

simulated  data. 

It would be most practical   to attempt   these   implementations  in 

an ascending order  of  complexity with  respect   to various  features  of 

the   problem,   such as: 

Type  of A Priori Knowledge  of  Scatterer  Distribution 

1. Noncollinear,   radially symmetric  distributions  of scatterer 

locations. 

2. Collinear distributions without a specular flash. 

3. Collinear distributions with a specular flash. 

4. Mir.aire of.   (1) and (3), or (2) and (3). 

5. Surface of an opaque rotating sphere. 
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Observation Interval 

1. Integral  number  of  rotation periods, via Eqs.   (35)-(37),   (95), 

and   (100  ). 

2. Fractional period observation interval sufficiently short so 

that the ratio of observation time to the time required for 

all a priori significant scatterer locations to move along 

the line of sight by a half-wavelength is a small integer. 

The observation times could then be considered, with good 

approximation, to be a small number of instants, and Eqs. 

(35)-(37) could be used with direct matrix inversion to find T\ 

3.  Integral number of rotation periods, with total number of 

significant a priori scattering points (separated by one-half 

wavelength) a small number.  This could be done via Eq. (86) 

with direct matrix inversion to find B 

4-  Fractional observation period with noncollinear scatterer 

distribution, via Eqs. (86)-(88) to compute B 

Degree of Coherence 

1. Completely coherent. 

2. Pulse radar with complete pulse-to-pulse incoherence due to 

phase errors in data (but with radar observation of received 

signal phase), via Eqs. (131)-(135) and (29). 

3. Pulse radar with partial incoherence due to correlated phase 

errors in data. 

These operations can be done for a variety of different quadratic 

functionals and for a variety of assumptions concerning the a priori 

state of knowledge and the true state of affairs.  For example, it is 
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of interest to compare the accuracy with which a true collinear 

scatterer distribution, and the aspect angle 9 of Eq. (101), can 

be estimated, both when the a priori distribution is noncollinear 

and when the a priori distribution ic collinear. 

It is of particular interest to attempt the evaluation of the 

integrals appearing in Eq. (29a), when Eqs. (133a) and (134a) are 

inserted.  This will yield information not only on the comparison 

rA (l)'l2 between incoherent and coherent processing to determine \a. \     + 

1^(2)1 a. ,   but also on the accuracy with which individual phase error 

differences can be inferred, even if the phase errors are independent 

from pulse to pulse. 
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