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ABSTRACT

This report presents an analysis of the dynamics of supercritical shafts on
many flexible supports in terms of a so-called "transmission line
analogy'. The primary objective of the study is to develop a direct
analytical approach for optimizing the support conditions, in terms of
minimum flexural vibration behavior, for supercritical shafts flexibly
supported on mass-spring-damper units at different locations along the
shaft. The approach is based on the traveling wave concept as used in
electricai transmission line theory. The governing differential equation
used in this analogy includes terms which account for the effects of
rotating inertia, gyroscopic motion, and shear deformations.

If the solution of the governing differential equation is manipulated by
means of rather complicated matrix algebra, the dynamic response of
the rotating shaft can be expressed in traveling wave form, which leads
to the criterion for impedance matching and optimized support conditions.
The impedance at each supporting location corresponding to minimum
vibration response must equal the characteristic impedance of the shaft.
This condition is termed a '"'matched' condition.

A weaker than optimum form of impedance matching ic the ''quasi-
n.atched' condition, in which only the predominant term of the reflection
matrix for a support is made to vanish.

A rotating shaft with three supports is used to illustrate the matched
impedance concept for determining optimum support conditions for
multisupported hypercritical shafts.

The study has led to the following specific conclusions:

1. The transmission line analogy can be extended to shafts having
any number of interior supports. However, the solution is
considerably more complicated for shafts having more than
one interior support.

2. For the shaft with both end impedances matched with the
characteristic impedance of the shaft. no intermediate
support is needed to assist in the minimization of vibration
response.

3. If it is physically impossible or impractical to terminate a
shaft in its characteristic impedance, quasi-matched end
impedances, or quasi-matched interior supports when end
conditions are not available for optimization, should provide
good performance,

4, When the shaft and end support impedances are not matched

and only one interior support is used, two approaches may
be employed to assist in the minimization of vibration response:

1i



a. If both ends have the same configuration, the matched
interior support may be placed at the mid-span.

b. If one end support is different from the other, the closer
the matched intermediate support is placed to one of the
ends, the more effectively it will minimize the vibration
response of the shaft.

When the shaft and end support impedances are not matched,

the use of two matched intermediate supports placed closely
to the ends of the shaft is recommended.

iv
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1
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Young's modulus for shaft material

Normalized internal force vector (column matrix

with complex entries)
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partial differentiation with respect to variable t
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CHAPTER 1

INTRODUCTION

OBJECTIVES

For any rotating shaft, there exists a series of discrete speeds at which
centrifugal forces resulting from mass unbalances cause progressively
greater shaft deflections. The elastic restoring forces developed as the
shaft deflects are overcome by these ever-increasing centrifugal forces,
Extremely large deflections and even destruction of the shaft and its
bearings can result from operation at these speeds, called critical speeds.
For this reason, designers of power-transmission equipment normally
avoid the problem by operating shafts below their first critical speed.

Therc are, of course, disadvantages to restricting operation to below the
first critical speed. For transmitting a given horsepower, torque and,
consequently, shaft size must be increased as operating speed is reduced.
In the case of long shafts, the shaft size must be increased above the size
required to transmit the torque simply to raise the first critical speed
above the operating speed range; alternatively, the shaft size may be
determined by the torque loading, but additional bearings must be installed
to support the shaft and thereby to raise its first critical speed. The
major disadvantage of these conventional practices, especially as applied
to aircraft, is the weight penalty,

It has been shown that shafting can be operated consistently far above its
first critical speed, with consequent savings in shaft and support weight
(references 5, 11, and 21). In short, supercritical-speed shafting, with
its associated acdvantage in weight, is a very practical and feasible means
of transmitting power. With today's high-speed power sources, it is
especially attractive, sinre considerable weight could be pared from
engines and bearings by transmitting power at the same speed as it is
produced.

Transmitting large horsepowers with small-diameter shafts presents

the problem of controlling shaft vibration at the critical speeds. Success-
ful operation of flexible shafts is usually achieved by balancing to reduce
dynamic forces and also by introducing support conditions (spring,
damping, mass) which tend to minimize runout amplitudes and/ or bearing
loads at the important critical frequencies (references 11 and 21). Both
of these techniques should be employed simultaneously to bring about
smooth shaft operation through the critical speeds. Although the
provision of appropriate spring, damping, and mass coefficients (imped-
ance) at the supports, alone, may permit the rotor to negotiate the
critical speeds in an acceptable manner, the ease with which this may

be accomplished will be greater for the better balanced (less crooked)
shaft, Balancing of a supcrcritical shaft may be achieved by either the
proper attachment of couzterweights or the placement of greater restric-
tions on the fabrication tolerances of the shaft,



From a theoretical poiat of view, different mathematical formulations
(reference 8) have to be developed to implement the two techniques. The
analysis of a supercritical shaft supported at various points a.ong the
length of the shaft by flexible damping bearings is represented with good
accuracy by the steady-state solution of the equation of motion for the
beain vibrating in two mutually perpendicular planes. This solution has
been used to simulate the perforrnance of the rotating shaft under actual
running conditions in which the shaft defects (unbalance, and initial
crookedness) provide distributed forcing functions. The approach provides
a means to study the effects of imperfections and balancing on shaft
performance.

On the other hand, the solution can be interpreted also in terms of 'atrans-
mission line analog'. This approach is based on the recognition of the
existence of an analog between the amplitude response of the vibrating
beam and the voltage amplitudes in electrical transmission lines. The
shaft runout is treated as a series of deflection waves (voltage waves)
traveling along the shaft (transmission line). These waves are in part
absorbed and in part reflected at the supports (loads). In other words,
the dynamic responses are expressed in traveling wave form along the
shaft in a manner analogous to the treatment of electrical response waves
in transmission line theory (references 3, 13, and 16). The transmission
line analogy solution is particularly useful for the direct establishment of
the support conditions needed for optimum shaft operation through the
critical speeds.

The purpose of this report is to present the development of a general
analysis of the multisupported, supercritical shaft in terms of the trans-
mission line analogy and to indicate the usefulness of these tools. The
conditions of optimized supports corresponding to minimized dynamic
responses will be established.

SCOPE

The basic mathematical concepts upon which the transmission line analogy
proposed ir this report is based were originally developed by Nelson in
terms of a shaft on end supports only (reference 14). Liu, Friedericy,
and Eppink extended this work to apply to shafts having one additional
intermediate support (reference 8). The studies discussed in this report
are concerned with an extension of Nelson's electrical transmission line
analogy for supercritical shafts, to include the effects of any number of
intermediate supports, The derivation of the equations of motion of
supercritical shafts with respect to fixed reference axes incorporates the
effects of rotational inertia, gyroscopics, and shear deformations.

Independent of the University of Virginia work, Voorhees and coworkers
(reference 5) formulated their version of a transmission line analogy. In
this version the fourth-order differential equation of motion for beams has
been reduced to an approximating second-order equation which is
completely analogous to the second-order equation which governs electrical
network behavior. This reduction in order requires that a one-to-one
relationship shall exist between moments and deflections of the shaft. Such

2



a relationship can only be brought about by the introduction of compromise
boundary conditions at the supports. However, the approach has the ad-
vantage that all the terminology and computational aids developed for the
electrical transmission line problem can be utilized directly in the design
of supports for supercritical shafts. The support optimization formulas
in the Design Manual for Supercritical-Speed Power-Transmission Shafts,
prepared by the Battelle Memorial Institute for the U, S. Army Transpor-
tation Rescarch Command and the U. S. Air Force Research and
Technology Division (reference 2) are based on this direct approach, and
they are extremely convenient for designing supercritical, power trans-
mission shafting because of their simplicity and straightforwardness.

In the transmission analogy of this report, the fourth-orde differential
equation which governs supercritical shaft behavior is solved in an exact
manner and the various component terms to the solution are worked into
standing wave forms which are analogous to voltage wave forms. The
optimization of support conditions is then performed in the same manner
as loads are optimized in the electrical transmission line problem.
Usually, the supports are formed with rotational and translational mass-
spring-damper units and these are interpreted as impedances to the
standing waves.

The development of simple formulas for the determination of optimum
support values has been attempted; however, due to the complexity of

the solution of the multisupported shaft, a shaft with only one interior
support has been used as a specific illustration. The various formulations
developed in the illustration should be useful in the design of optimum
support conditions of supercritical shafts on three flexible supports and
should complement the equations and results in the Design Manual men-
tioned earlier., The three support formulations of this report allow for the
determination of optimum interior support parameters in terms of end
supports which are not just fixed and simply supported, but may consist

of rotational and/ or translational mass-spring-damper units. Specific
results can be found in Chapter 4 of this report,

ASSUMPTIONS AND NOTATIONAL CONVENTIONS

It is shown in Figure | that the mathematical model of a pris-
matic shaft is embedded in a right-hand orthogonal normalized

gpace coordinate system with fixed axes Xl’ XZ' X3. Let S0 represent

the shaft with elastic curve S. Let A, and B

0 0’ where the end supports

are attached, represent the end bodies with elastic curves A and B,
respectively. A, S, and B coincide, at rest, with the intervals [a, 0],
(o, £ n)’ and [En, b)], respectively, on the Xl-axis, where a <0< ln<b.

A closed interval and an open interval with end points &, P on the Xl-a.xis

are represented by [, B] and (@, B), respectively. Except for their
common connection (the shaft, SO), AO and BO are dynamically independent.
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The intermediate supports are attached at x = ﬂj' i=1 2, ..., n-1,
where 0 <ll <f2 CRF <2n_ ! <En . Force, torque, and motion along the
Xl-axis are assumed to be zero. Constant angular velocity, small

transverse motion, axial symmetry, and linearity are assumed through-
out,

Where C denotes complex numbers, let cn denote the n-dimensional

vector space over a field of complex numbers with the elements, or
vectors, of C_ being thought of as ''column vectors'. In the following,
the appearancé of a bar (possibly together with other symbols) over a
quantity indicates that it is an element of C_ for some n>1 (usually n=2).

Let ASB denote collectively the bodies A, SO' B,. Let d(x) be that

portion of ASB which, at rest, has X, -coordinate x on [a., b].

1

A "mass element on [a, b]'" is that portion of ASB which lies between
d(x - dx/2) and d(x + dx/ 2) where dx is small. The normalto a
differential mass element is the vector normal to d(x) at its intersection
with the elastic curve, with positive orientation being the same as that

of the X, -axis. (See Figures 2 and 3.)

For pcints on elastic curves A, S, B, ''position' as the vector is defined
as follows:

* * *

L& Y, *iYy,
T* - -

» * x

Y3 Yo, * 1Y,

This is a continuous function of x andt to CZ' i.e., 2-dimensional

vector space over a field of complex numbers, where x is on [a, b].
'"* ' denotes the unnormalized variables. Y¥, and Y’l'2 are the pro-

jections of the ceflections at a general point of the elastic curves A, S, B,
on the X, X, —, X X3-p1anes, respectively. The normal to a differential

1772 1
mass element has projections on the planes XIXZ' X1X3, which are
inclined at acute angles with respect to the Xl-axis. These angles of

inclination are Ygl. Y;Z, respectively, where the positive senses of

rotation are from XZ’ X3, respectively, to Xl. (See Figures 2 and 3.)
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Similarly, "force' as a vector is defined as follows:

* * %
o Q7 Qp, * 1QY;
W ] ]
Q7 Q7 +1Q3,

This is also a function of x and t to CZ' and x is on [a, b]. QTI and
Q'{'Z are the components of force along the XZ—, X3-axes, respectively;
and Q;l and Q;Z are the components of torque along the -X3-, Xz-axes,
respectively.

External forces on (0, En) will be restricted to a series of concentrated

driving forces which are caused by the mass eccentricities. The force
vector

p* P* + i p*

1 11 12
p* - =
* i p¥
PZ PZl + 1P22
denotes the '"'driving forc.'", a function of x and t to C2 where x is

on (0, Qn), which vanishes at a finite set of points. These points are
located at x = ajk;jz 1,2, .. .;nand k=1, 2, ... ; k(j), where

k(j) means that k may be a different integer for different spans. (See
Figure 1.)

Similarly, "internal force' as a force vector i~ lefined as follows:

* * .k
o i Fip 1 iFy,

»

FZ FZI + 1F22

This force vector is equal to the force applied to the differential mass
element at x - dx/2. F is a piecewise continuous function of x and
t to CZ’ where x is on[a, b], and the magnitude of each upward jump

at a point of discontinuity equals the external concentrated force at that
point. (See Figures 2 and 3.)

Throughout the following equations, a quantity with "#' above it is, unless
otherwise specified, a 2 X 2 matrix with complex entries, and the inverse



of such a matrix will be deroted by attaching the superscript '"-1". A
tilde (perhaps together with other symbols) above a quantity denotes the
Laplace transform of that quantity; e.g.,

g(x, s) = f g(x, t)e-Stdt
0

where g is a function of x and t to CZ where x 1s on [a, b].

Assume throughout that ¥(x, t) = 0 and dY (x, t); dt =0 at t =0
(0 is the null vector in CZ)’ Physically, this mcans that the system

is initially at rest or that the initial transverse deflection, angular
deformation, transverse velocity and angular rotation are zero; the
initial position of the shaft is coincident with the Xl-coordinate of the

fixed reference frame. Thus, the solution will be limited to steady-
state conditions by applying the Tl.aplace transform technique to solve
the governing differential equation, und the transient state is assumed
to vanish automnatically.

Let Q be an external force vector applied to d(x) as defined before;

~~r

let Y be the position vector of d(x). PBecause of axial symmetry, the

relation between the force vector, Q, and the position vector, Y, may
be written in either of the two following forms:

] #':_'
@ = sN2 TN
o 1#:2
or Y:TMQ

where '"~ ' denctes the Laplace transformation variable. Z and M are
called, respectively, impedance and mobility in 2 X 2 matrices with com-

plex entries. If g and K/l are non-singular, # 1\#/}1 = ﬁ/[ g = # where ?
is the 2 X 2 identity matrix. Impedance and mobility are functions of s,
and their evaluation depends solely on the parameters of the dynamic
system itself. Impedance is usually referred to as a transfer function
in mathematics. It is assumed that the impedance or mobility at every
support location is a known quantity or can be calculated.



CHAPTER 2

TRANSMISSION LINE ANALOGY SOLUTION OF THE

SUPERCRITICAL SHAFT

WITH ANY NUMBER OF INTERMEDIATE SUPPORTS

CONFIGURATIONS

A physical model of the shaft, which corresponds to the mathematical
model in Figure 1, is presented in Figure 4. All the parameters used
in the following theoretical analysis will be assumed to be positive in
the sense indicated in the figure. The shaft end conditions and the
conditions of all intermediate supports may be described as impedances
or mobilities; however, for convenience, only impedances will be used
#
throughout. The impedances of all supports are denoted as ZO(O),

it

#
él(ﬂl), A Zn(fn) where 0, ﬁ], QZ’ . .Qn indicate the locations

of supports measured from the left end support. All the support
impedances are assumed to be given.

P (ajk) is the kth driving force in the jth span where j =1, 2, . . ., n

and k =1, 2, . . ., k. The value of k may be different in different spans,
depending on each span length and on how many differential mass elements
are assumed to exist in each sp n. Hence, k will be written as k(j),
which means that the value of k depends on the span number.

EQUATIONS OF MOTION FOR THE SHAFT

The equations which govern the behavior of rotating shafts include the
effects of gyroscopic motion, rotational inertia, and shear deformations.
The projections of an infinitesimal element of the shaft, of length dx
and with all the forces acting on it, are shown in Figures 2 and 3. The
symbols used in these two figures are listed as follows:

* = the unnormalized variable
w"(') = angular velocity of the rotating shaft
I = moment of inertia of the shaft cross-sectional

area about a diameter

P mass density of the shaft material
A = area of the shaft cross section.

Under certain conditions, such as at very high rotating speeds, not only
the centrifugal forces of the infinitesimal rotating mass but also the

9
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movements of the axes of the rotating mass are of importance and should
be taken into account. The mathematical derivations of the expressions
for the moments due to angular movements (rotatory ar- gyroscopic
effects) and the expressions of inertia forces are included in Appendix A,

If the projection on the Xlxz-plane, which is treated as a real plane, is

considered, the following two equations can be obtained by applying
equilibrium conditions and by neglecting higher order terms (see Figure

2):

By summing moments,

FYy - Fhix - P1VEe - 2p005 Y35 =0 (1)
By summing forces,
F¥ . teAYY =0 (2)
By applying shear relationship,
Ft; =K' AE (Y], - Y3))
where
K' = numerical factor depending on the shape of cross section
_ average shearing stress on cross section
shearing stress at neutral axis
= —[I\—%, where Q is the moment of cross-sectional area
of shaft above the neutral axis with respect to this axis,
and d is the thickness of section at the neutral axis, in
this case the diameter of the circular section
Es = shear modulus of shaft material
Y'l'lx = slope of deflection curve
Yzl = slope of deflection curve when shearing force is neglected
-Yl*lx-Ygl = (c):ir’lge of slope deflection curve due to shearing force

The preceding equation may be rearranged as follows:

» * » ) -
F¥ +K'AE_(Y¥ +Y%)=0 . (3)

11



By applying the bending relationship,

»
_ F* - Yle
21 E I
Yy
where
Fgl = moment on the differential mass element
Y'Z'lx = change of slope of deflection curve
Ey = Young's modulus of shaft material.

The above equation may be rearranged as

F,1+Ele 1 =0 (4)

Similarly, if the projection on the X1X3-p1ane, which is treated as an

imaginary plane, is considered, and if the preceding arguments are used,
the following four corresponding equations are obtained (see Figure 3):

F¥ - F% - plY¥  +2plo¥Y¥ =0

12 22x 22tt 0" 21t
%
FIZ +pA Ytht 0

] WK * * _
F12+K AES(YIZ +Y ) 0

* =
FZZ + EyIYZ?x 0.

If each pair of equations s considered, in complex variable form the
corresponding four equations are obtained:

% 2 X > 3 0 : -
(FY) +iFY) - (FY) 7 iF%, ) - pl(Y3 ) 4 Y35 )+ 2ip 10 (Y3 +i¥3, ) = 0
- . ) -
(F i HiFTg) t A (YY) # 1Y 5) = O
(F%, +iF%) +K' AE [(Y'{‘1 thi e o) H(74 “Y*z)] =0
* * g )=
(F +iF 2)*EYI(Y21 +1Y22 )= 0

If the notations for position vector and force vector as defined on page 8
in Chapter 1 are applied, the equations may be written in more compact
forms in referring to the framework of a 2-dimensicnal vector space
over a field of complex numbers as opposed to the more general space
of four dimensions cver a field of real numbers,

|2



[ 2 L T
S
F‘fx+pAY

pIY*

-
Itt

2tt

0

+ Zipr(*)Y

» » *Y -
F¥ + K'AE_(Y¥ +Y%)=0

1

4
2t

- 0

» .
FZ + Elezx 0

For normalizing these equations of motion, R_, EyA’ and Rb/ cg, are used;

b

they correspond to unit length, unit force, and unit time, respectively.
Rb, c  are, respectively, radius of gyration in bending and the velocity of

sound for the shaft material. Note that c = \/Ey/ p. By applying the

standard procedures for rormalization, the differential equations of
motion may be written as follows:

BoRE R +2iw Y, =0 )
Fig " Y e = O L

(5)
F, +Y, =0

e'Fl+le+Y2=O /

where e' = (1/ K' )(Ey'/ ES), which is a numerical coefficient depending on

the shape of cross section and the shaft material, and where @, is the

angular velocity about Xl-axis, as before Yl’ Y2 are, respectively, the

transverse position and the inclination of normal of the elastic curve of
shaft. Since all the initial values of the parameters appearing in Egs. (5),
i.e., the right-hand limits at t = 0, are null vectors, Egs. (5) in the

Laplace transform are as follows: N
F,-F, * s(leO - 8) Y, =0
F +sZY =0
F2 + sz =0
e'Fl +le+Y2 =0

13



In Eqs. (5), if F F?, and Y, are eliminated, the governing

1’ 2
differential equation in terms of Y, (transverse deflections) of the dynamic
system may be obtained in the following form:

Y +Ym-(1+e')Y te'Y +2iw (Y -e'Y, . )=0 . (7)

Iaexexx 1xxtt 1tttt 0' "1 xxt 1ttt

If, as has been noted, all the initial values for Yl' Ylt' Yltt” and Ylttt

are zero, and if the Laplace transform is used again, Equation (7) may
be transformed as follows:

~y

. : 4 2 . -
lexxx+s[2w0-s(l+e')] Y . t8 [l+se'(s-21w0)] Y, =0 . (8)
The solution of Eq. (8) corresponds to the steady-state solution of Eq. (7),

in which a solution is assumed in the form of

Yl - y(x)elwt

where w is the frequency of the driving force and y(x) is of the form
y(x) = Ae™1* + Be™2* + Ce™3* + De™4
where m,, m,, m,, and m, are roots of the characteristic equation of

the governing differential Eq. (7). A, B, C, and D are arbitrary
integration constants which may be determined by applying boundary
conditions.

SOLUTIONS FOR THE EQUATIONS OF MOTION

With reference to Eq. (8), let

Yl = Ae Xy Bemzx + Cem:)’x + Dem4x

Then, if the above expression is substituted into Eq. (8), the following
characteristic equation is obtained:

m4 +s8 [Ziwo - s(1 +e')} m2 + 8 [l + se' (s - Ziwo)] =0
which yields

ml, mZ = % 1el V“’
where

w = -is or s = iw (w is the frequency response which
is the same as the frequency of driving force, i.e.,
the angular velocity w, of the rotating shaft itself)

14
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where

The replacement of s by iw corresponds to the steady-state solution.

If the relationships in Eqs. (6) are applied, the following general solutions

for YZ' Fl' FZ are obtained:
’;.l = AeMIX,geM2X | - M3X |  Mygx
i 1/2 i m 1 mox 3 m €3 m |
Y, = w - Ae P4 Be 2. —-Ce™ 3+ —= DTN
€1%3 €1°3 €2 €2
.
~ n
F. = m3/2 A peMmixy i p mex, lcem3x_ 1 De™4%
1 e e} e e
1 2 2
F, = w -—lAemlx - Be™M2* te_ Ce™M3* + ¢_De™4*
2 e e 3 3

3 3

If the following set of arbitrary constants (ql, q,, Ty, rZ) is introduced:

As- o p+le1e3’1
B=-wPlleen
SIS ls“’ pHezrz
D:=-—uw p+lezq2



where p is an arbitrary real number which, once chosen, remains the
same, and where 4, 4, Ty, T, are complex numbers; therefore, the

expressions for Y,, Y,, F., F, can be rewritten as follows:

) A 4 N
v - P -1e Now x _ —eZ\@ x -
s s [“51"3“’e 177q) - de,ue 9
ie 1V . Vo
iele3melel wxrl - 1€:2wee2 xr2
'{; I S w3/2e—ie1\/t':> Xq - e w3/Ze-eZ\/c—u Xq, -
2 8 3
c.’3/Zeie1’\/c_nxr tie w3/2 eeZ%xr
1 3 2
r(‘))
; - wpr_ie w3/2e-iel\/(—a)xq +w3/2e-e2\ﬁu xq 4
1 | -1€3 1 r
L
ie,w3/2eiel wx_ _w3/2ee2\/(:) X
3 1 2
. _..P -iel"/(_o > S -ez’\/c_n x
2O [elwe QlE € aiiis q *
iel\/c-n X ez\ﬁn X
1@ € 1 €283% € 2}
/
By defining )
- q _ r. |
q = . and = 1

as two arbitrary constant vectors in a 2-dimensional vector space over a
field of complex numbers, and by recalling the expressions of the position
and the force vectors as defined under "Assumptions and Notational
Conventions' in Chapter 1, Eqs. (9) may be rewritten in a much more
compact form, as follows:

16



o : )
T T T I P A
= (10)
# .
0 R(-x r
] £1 1L 1L ()J |

here &, & & b & : - -
where v C¢ C1p Crp CZl' and C22 are as shown in Appendix B, and

=R

R
O

K is the 2 X 2 null matrix.

The '"propagation matrix", g(a), is a function on the real numbers
defined by

— -

cis (el‘\/;) a) 0

R(a) =
0 exp(-ez\/(:a a)
where - )
cis 0 = ei9 = cos 0 + isginb
exp 8 = e6
ko) = 1

Simply by expanding tne matrix form of Eq. (10), this equation may be
verified as being identical to Eqs. (9).

BOUNDARY CONDITIONS

By applying the boundary conditions at x = 0, ll' 12, . e ln’ and ajk
on the Xl-axis, the integration constants appearing in the general solution
of the governing differential Eq. (8) can be determined. (See Eq. 10.)

At Le.t End Support

The boundary condition at x = 0-0, i.e., the left end support, may be
obtained by considering the impedance at this point. (See Figure 5.)

o
Since F at x = 0-0 is in the negative direction, according to the sign con-
vention defined in Chapter 1, the boundary condition of the left end is ex-
pressed as:

o # o
- F(0) = s24(0) Y(0) (11)
which should be satisfied at x = 0-0; -0 denotes the left-hand limit.

17



1=0°0,.0.~

[
0 || [
Z,(0)
. I N
F(o) FlO)
77777

Figure 5. Left End Support.

At Right End Support

The boundary condition at x = ln+0, i.e., the right end support, may be

obtained in a similar way, as follows:
o # o
F(ln) = 8 zn(ln) Y(ln). (12)

o
Note that F is in the positive direction at x = ln+0; also, +0 denotes the

right-hand limit. Eq. (12) is the condition that should be satisfied at
x = £ _+0. (See Figure 6.)

x28,-0 x:£,+0

#
T
Zply) F(L,) Fe)

Figure 6. Right End Support.
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At Intermediate Supports

The boundary conditions at x = lj' j=1,2, ..., n-1, may be obtained

by considering the continuity of the deflection curve and the force equilib-
rium at every intermediate support. (See Figure 7.)

x:li;o x:lj*o

EE=r=3—, | |, ——

Z]lfjl'

(8j-0)  FUEj+0)

777777

Figure 7. Intermediate Supports.

If the impedance is isolated at x = £. and if the net force applied at x = Qj
or o
is [F(Ej-O) - F(2j+0):| ond if the deflections at x = £.-0 and at x = lj +0
L T4
are the same, the boundary conditions at x = £. are as follows:

3 J
Y(4-0) = Y(+0) = Y(L)

(13)

H

o ] g o
F(£.-0) - F(L, +0) = s 2.(2.)Y(L.)
J J J' ) J
j =12, ..., nl
where +0 and -0 denote right-hand and left-hand limit, respectively.

At Driving Forces

The boundary conditions at the locations where driving forces are being
applied may be obtained in a similar manner, If it is assumed that a

19



o
single concentrated driving force, P (ajk) is applied at x = ajk(i. e., the

kth driving force in the jth span), the corresponding boundary conditions
at x = 3, are as follows (see Figure 8):

Y (ajk-O) = W (ajk+0) = Y (ajk)

(14)

(-4 ~e o2
F(ajk-O) + P (a F(ajk+0) = 0

i) -

REFLECTION MATRICES AT SUPPORTS IN TERMS OF IMPEDANCES

If all the boundary conditions except those at x = ajk are applied, as

mentioned in the preceding section, some useful functions can be found
during the process of evaluating boundary conditions. (See the complete
mathematical derivations in Appendix C.)

At x =0 onthe X, -axis, the reilection matrix (looking to the left at

1
x = 0) is defined in terms of end impedance by
f A # -l # A #
f‘o(O) = |:- C22+z0(0)C12} [CZI-ZO(O)CII (15)
where
A # (1 0]
Z = EZE, E = ,
. 0 -1
1 0]
# ! i
zZ = FZF, F =
Vo K Vo |
At x = 21, QZ' C e lj-l' C ey Eq—l’ the reflection matrices looking to -

the left are defined as follows:

20



Left End Support o
/ Plajk) (assumed in a
positive direction)
0"
— == =" ——
*
Zj 4 z;0L
WJW‘ 77777
)
£ —
o~
Ploj)
Flo, -0) Flap + 0)
Figure 8. Forces at x=a,k.
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-1 .
byl -Etb, [ & ety

# -1 ¢ ]
f‘zl“z)= ['sz+ %zz(lz)élz] [CZI' é\?.2(2?."@11_

# , (16)

¢ # 1 #
r(_j-l)l(ij-l)=['é22+ (j-l)l(lj-l)clz] [CZI'%(_j-l)l(lj-l)Cll]

# # -1 # #
i"(n- 1)ty 1) [‘sz é(n- el 1)012] [CZI' %(n- 1)e(2n 16 1]

y

where subscripts 1, 2, . . ., j-1, . . ., n-1 indicate the locations of
supports; subscript £ indicates that the reflection matrices are being

looked at tothe leftof x =2, 2., . . ., ¢ ., ..., 1%
1’ 72 j-1

2000 B0, L Byl )

n-1"

9(n_ l)l(ln- l), represent, respectively, the total impedance looking to the

left ati =R s, . . ., Bl o o L o

12 e -1

defined as follows: 2

, Wwhich are
n-1
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A
20(0)) = 80 + 25,02

A A
Zo0(8;) = £,(0,) + T (L))

. . . )
z-netl) = zj-l(ﬂj-l) MEETTIPIVICRY

%(n-l)l(ln-l) - %n-l(ﬂn-l) i %(n-Z)ﬂ(ﬂn-l) )

where the terms %02(21), 911(22)' N %(j-Z)l(Qj-l)' C e %(n-Z)I(ln-l)

will be explained in the next section.
At x = ln on the X, -axis, the reflection matrix (looking to the right)

is defined in terms of the end impedance by

# # # # I #
r() = [-c22+ zn(cn)clz] [CZl-zn(Qn)C“ : (18)
At x = En-l' in-Z' S Ej' S Ql. the reflection matrices

looking to the right are defined as follows:
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- '

# [ # # # al # #
r(n- l)r(in-l)= _—CZZ+ %(n- l)r(ln-l)clld Car- %(n- l)r(ln-l)cll

-

# [ # # , f -1 # # #
r(n-Z)r(In-Z)= Sz z(n-Z)r‘zn-Z)CIZJ Ca21- z(n-Z)r(In—Z)Cll

# A $ -174  # # ' ((19)
r. (2) = [-CZZ+ zjr(ﬂj)CIZ] [C - zjr(ﬂj)cll}

Jr- ) 21

# # # # -1y # # #
I (8)=1-Chotz (2))C, Cor- 2. (8))C,

)
where subscript r indicates that the reflection matrix is being looked at
to the right of x = £ , £ R S A

n-1" "n-2 j 1
# #
z(n-l)r(ﬂn—l)' z(n-Z)r(En-Z)' T zjr(ﬁj)’ ! glr(il) HERIEESIERL,
respectively, the total impedance looking to the right of x = Qn-l’
{ , . .., L, ..., 2, which are defined as follows:
n-2 j 1
g @ =% (@ )+48 @ ) \
(n-1)r' "n-1 n-1'""n-1 nr' n-1
ﬁ(n-l)r(ﬂn—l) ) tn-Z(z ) * 4(n l)r n- 2)

o
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tjr(cj) - ﬁj(zj) + ioﬂ)r(zj)

tlr(ﬁl) = t1"21) * ﬁzral)

#
where the terms znr(ln- ) Q(n- l)r(in—z)'
tzr(fl) will be explained in the next section,

For each closed interval rO, ¢ , | e,, 2
L 1 1’ "2

/

SUTE TORTI (D N

R I S A R
[t

Iifn_l, anl on the Xl-axis, the corresponding reflection matrices looking

to the left are, respectively, defined as follows:

# TR
T(x) = R()T,(0)R(x)
# : §

#
T o(x) = R(x-2,)T, (¢ )R(x-L,)

# # # #
r(j-l)l(x) - R(x-lj_l)r(j_l)l “j-l)R(x'!j_l)

¥

# # #
Cionelx) = Re-E T 4y, PR(x-2 )

For each closed interval{f ., £ |, |4 ,
n-1’ "n n-2

) (21)

/
‘n-l] o [ej_,, 1j].

1) [O, Ql] on the X, -axis, the corresponding reflection matrices
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looking to the right are, respectively, defined as follows:

# # b
T (x) = R(_-x)T (¢ )R(L -x)

# # # #
1ﬂ(n- l)r(x) - R(ln- l-x)r(n- l)r(ln- l)R(ln- l-x)

# # .z # . # , '
rjr(x) - R( j-x)rjr( J)R( j'x)
# " #

#
r, r(x) = R(ll-x)rlr(ll)R(ll-x)

/

 (22)

IMPEDANCES IN TERMS OF REFLECTION MATRICES AND SHAFT

CHARACTERISTIC IMPEDANCE

It is shown in Appendix D that eol(x). the total impedance looking to the

left of a generic point x where x is on [0, ll:I , is related to }‘O(X)

by the equation

1 a # f # 1r # # # -1
On [0, !l , zol(x) =[C21 + szro(x) [C“ +Cy, ro(x)]
Similarly,

On [21'22

-

5 IR R R APREL
, 2 (x) =[Czl"czzru"‘)] Cu*clzru"‘)]

]

 (23)
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p A # # # # # # -1
On[lj_l, Jj| , z(j—l)Q(x) :[C21+C22r(j-l)ﬂ(x):||tcll+C12r(j-l)l(x)j,

' A bR R g
on\l G z(n-l)l(x)=[C21+C22r(n-l)ﬂ(x)][cll+C12r(n-l)1(x)] '

/

It is also shown in Appendix D that the other similar set of equations
which represent the total impedance at x looking to the right is:

[ 4 # # # # # # -1
OnL_In-l' 2n ! nr(x)= C21+C22rn(x) C“+C12rn(x)

~

] 4 [# # # ][# # # ]-l
On{ & o Lo1])r Zno1)e®) = Co1 €2l (1) ™) €11 C 12  (n-1) o)

; boob A -1 (24)
On lj-l’ lj , zjr(x)= C21+C22rjr(x) C11+C12rjr(x)

| , " ¥4 # -1
on|0, 4,1, 2, (x)=C, +C,,I (x)|| C);+C|,T") (x)

The expressions for %02(21), %12(22), ., %(j-Z)laj-l)' C
e(n-Z)l (‘en-l) in Eqs. (17), and the expressions for tnr(ﬂn-l)’

g(n-l)r(ln-l)' o e ey t(_ﬁl)r(l_))' o ol olg t?.r(il) in Eqs_ (20) can be
obtained from Eqs. (23) and Eqs. (24), respectively. Eqgs. (23) and

(24) will also enable us to evaluate the impedance looking both to the
left and to the right at any location along the shaft.
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Let

F ot L1 (25)

#
where Zs is called the characteristic impedance of the rotating shaft. Note

#

that ZS is a function of frequency. The significance of the characteristic

impedance will be discussed in Chapter 3.

COMPLETE SOLUTION IN MATRIX FORM

If all the boundary conditions beginning on page 17 of this chapter are
used, all the integration constants appearing in the general solution can be
determined. (See the complete mathematical derivations in Appendix E. )
The complete solution, from which one may calculate the dynamic response,
i.e., deflections and internal forces caused by the single driving force

~

I—D(ajk), at any location along the shaft, may be written in the following matrix

form: 3 3

7] : —;—-gzy ] ré“ ¢, F koot 005, |

| |0 &l LG Eull kewr,

on [ 2, ;zz] , (26)
y ] %éy b1E, &, - sz(x)’fm(o);_,_-
r| |8 . LE, &l L Ao,
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11 |~11

F, ¢=ﬁ(ajk)[§-fjr(ajk)f"(j_ l)ﬂ(ajk)il- l[%jr(a'jk)éwL 18 ] 1B (o)

By k(- ak)[ f(j-l)c(ajk)%jr(ajk)}-lﬁ"(j-m(ajk)é- +’é+] *éf'l?a(ajk)
ﬁ( 2)[éll 12%(J+1)r( )] [él #121&31-( )}R(“q

- # -
9;42=R(- +1)[é & 1&0+2) (¢ +1)] l[ +é ft(“,+1)r J+1)] (85410354,

- ¥ # # Sl # # # -
CIBES A CLONPY) [Cl 1+C12#(n- 1)rln- z)] l [Cl 1+C121&(n- 2)r(2n- 2)] R(L, 2ay,_»

¥ . MR —_—
4 R(-2, 1) C117Cp2 nun Y [C11+C12r(n-1)r(2n-1)]R(2n-1)qn-1
(26a)

If a superposition technique is used, the total dynamic responses caused
by all the driving forces distributed along the shaft can be obtained.

SOLUTION IN WAVE FORM

Proceeding with a lengthy matrix algebraic manipulation of the resulting
Eqs. (26), as shown in the preceding section, and applying the super-
position technique, one may express the total dynamic response caused

by all driving forces E(ajk), j=1,2, ..., nandk=1, 2, ..., k(j)
along the shaft in the following traveling wave forms. (See the complete

mathematical derivations in Appendix F.) Explanations of the traveling
wave form solutions will be given in detail in Chapter 3.
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In the ith span, or on [Qi-l' ﬂi} NI 2 . n
[ ~ , # 4 { # # >
Y| |4c, o cl s T (x)
=7 A # # # >
F _o cf_ - C, CZ?_J Ui(x)~
where
>
- : . : .th
U (x) = total wave traveling to the right in the i span
1>
=) UK
j=1
S a
ﬁi(x) = total wave traveling to the left in the i span

D«
Z U, () -
j=1

i<d, j=1, 2, ..., i-l;
> > >
U. =U..(x)+ U..
) = Uglx) + U )
<L <& <
U.. = U..(x)+U..(x
JJ(X) JJ(X) JJ(")
> kG) 4 b
U..(x) =) R(x-2,)C,C; 'Pla,
k=1
K,
UJj(x) =Z R(ajk—
k=1

then

LA
)c)(,_Cf P(ajk) [H(ajk-x)-H(ﬂj_l—x)]

k) [H(x— ajk)- H(x- ﬂj)}

J

32

(27)



> #

= [# # # -1#
Ujj(x)=R(x' ! (J 1)2(2 )T r( j-l)] r(j-l)i(lj-l)
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x[a(zj-:zj_ l)%r(ﬂj)ujj(ﬂj)wkujj(ij_ 1 )] [H(x )-Hx-L )]
s - [# # f ]-1#
U5y GI=RUE I T3, (B aye ()] TielE)
> # # <
x[ﬁjj“j)”‘”j'“j-l’r(j-l)ﬂ‘ SIS 1’][H‘x 1"“""21‘)]
> # # # # # - 1> # 1# <<
U 541);0)=R(x- !Z)[Hc“clzroﬂ)r( )] [ (£)+C) . (n)}

11 12

<\< # # # # # -1
U1)x)=R I, x)r(_,+1) (¢ +1)R('Z 17| T#C11C 12T s 41)e )

>/> # 1# <<<
U;(L)+C 1€ ,T55(8)

> ¢ SR A <
Uy 0)=R0e- 4 )| +CC LT (8 )] 000y #C10 6020y 1)

<« 4 f AR 1
U (x)=R(L-2)L; (£;-8; )| 1+C) €\ ()

> # l# <<<
X[U(i-l)_](l 1)+Cll 12 (1 l)j(li-l)]
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If j =i, then

> P> z

Ui(x) = Tyi(x) + Ui(x)

<< << <

Uii(x) = Uii(x) + ﬁii(x)

> k(i) y b oF o~

T, 60 =) Rlx-a,)C,C; lP(aik)[Pl(x-aik)-H(x-ﬂi)J
k=1 -

i k(i)# # # -1'_\_4

U,;60 =) Rlay-%IC_C; 'P(ayy) [H(aik-x)-n(ci_l-x)]
k=1

> # f# # -1#
Uji(x)=R(x-£;_ l)[l'r(i- el r; (g 1)] Ti-ne®y)

# # > <
x [R(li-li_ T, (£)T..(2.)+T, (2. l)} [H(x-li_ - H(x-li)]
< b [HE “14
Uii(x)zR(li-x)[l-rir(li)r(i- l)l(li)] r; (&)

> # # <
X[Uii(ﬂi)ﬂi(ﬁi-li- l)r(i— l)l‘li- l)ﬁ"(li- l):| [H(x-li_ l)-H(x-li)] :

11

If j>i, j=n, n-1, . . ., itl; then

> > >
0,:(x) = T,.x) + T (x)

<< < <

Ujj(x) = Ujj(x) + Ujj(x)
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ﬁjj(x) = R(x- 2 )C C P(a )[H(x a. ) H(x- £ ):l
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£

Ujj(X)szl R(a -x)C C P(a )[H(a X)-H(fj_l-x:l

> # [# # # -1#
U (EIeR ) I-F(j_l)g(ﬂj,l)Fjr(ﬂj_ﬁ] - 1)05.1)
[# # > < M ]
x| R(E-2, )T, (8T, (E10, (8 ) || Hx- £, )-Hex- L)
< 4 )[## " 14
O, ()=R(E-x} 1T, (€T, m(ej)} I, )

> # # <
[U (ER(L-0, ) (8 )T (2, )] [H(x-ij_l)-H(x-ﬂj)]

> # 7 # # 4 # # -1
j-2)

-1
05 1) =RO- 4 oI oyell R -8 )| 1+C 71 LT ol )

# l# >> <«
[c“clzu (cJ 1 u (z )]

# >> <<
Doy # # % # #
T 197 x)[1+c“clzr0 YL ] [é 1€12055(4_ )40, (L 1)]
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S : # TR 1
U3500)=RO-85 0T gy e85 IR(G-4 )| 1+HC1 €T 5 )0 (E)

[#_l# >> <«
*1C11C1203+1)08)4 Oy (29|

# # > <<
<< # ¥ # # # 3 -1 — 3
U -1 oG (24T, (2.
Uij(x)zR(ﬂi'x)[“Cl1C12r(i-1)!2(£i)} [C“CIZU(HI)J( 7 0(i+1);( 1’]
where

H(p) = when p <0

3O

when p>2¢C

> <

U, U can be thought of as "incident waves'' traveling to the right and left,
respectively., They are independent of shaft support conditions.

> <

U, U can be thought of as "reflected waves'' traveling to the right and left,
respectively., They are dependent on shaft support conditions.
p> <<

U and U are the resultant of the incident and reflected waves traveling
to the right and left, respectively. They may be thought of as ''total
waves'',
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CHAPTER 3

MANIPULATION OF THE SOLUTIONS

TRAVELING WAVE CONCEPT

The steady- stute wave interpretation of the solution of Egs. (27) provides
a means toward visualizing the effects of support parameters (mass,
spring, damping) and shaft characteristics on hypercritical shaft behavior,

~

For the purpose of illustration, only one driving force, P(ajk), will be
considered in the foiiowing discussions,
By considering the ith span first, i.e., on[ﬁj_l, Qj] , incident waves

traveling along the shaft are considered as being initiated by the action
~ > <

of the single driving force, P(ajk), located at x = ik ﬁ—jjk(x) and ﬁjjk(x)

are defined, as before, respectively, as incident waves traveling to the
right and left from x = Aoy The first subscript incidates the span in which

the wave is traveling; the second subscript, the span from which the wave
originates or the span in which the driving force is located; and the third

subscript, the location of the driving force. For example, Ujjk(x) means

that this wave is traveling to the right on the jth span; also, that the
original wave originated in the jth span, and that the driving force is
located at x = ajk' It can be seen from the following expressions that

the incident waves are independent of support conditions. (See Egs. (108)
and (109) in Appendix F.)

e # F ¥ o

Ujjk(x)zR(x—a.jk)C+Cf P(ajk) [H(x-ajk)—H(x-ﬁj)] (28)
exists only on [ajk' Ej]

< # # #_13

UJ.J.k(x)=R(ajk-x)C_Cf P(ajk)[H(ajk-x)-H(ﬂj_l-x}

exists only on|:ﬂj_l, ajk}
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Figure 9. Incident Waves in the jltl Span.

With reference to Figure 9 and Eqs. (28) and (29), the propagation of the
wave from the point of application, x = ajk’ of the driving force

~ #

P(ajk) is described by the ''propagation matrix', R(x-ajk) or R(ajk-x), as

the wave is traveling to the right or left, respectively., For instance,
> >
. h
atx={., U, (x) = U...(L.) has traveled a distance ({.-a.. ) to the it
j JJk( ) JJk( J) ( j Jk) J

support of the system. The quantities {H(x-ajk)-H(x- ﬂj) ] and

Fl(ajk-x)-H(lj l-x):l simply indicate the regione in which the waves
) ¥ # # #
1

exist. The quantities C+C; and C_CE perform elementary transforma-

tions or operations on the applied driving force and are associated with

frequency and shaft characteristics as defined in Appendix B.
>

A similar interpretation may be given to the quantities Ujjk(x) and
<

Ujjk(x)’ which are regarded as reflected waves traveling to the right

and left, respectively. They may be expressed as follows (see Eqs. (114)
and (115) in Appendix F):
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> # # # # 14
Ui =R x- £ ’[“’o-ne‘%-l’ ‘Jl’i Tg-1el-0)

# # <
X[R(fj-lj_l)r (€. )U' k(ﬂ )+T... (L. _1)] [H(x-ﬂj_l)-H(x-ﬂj)] (30)

r i jik
< # ; [# # , # ( -1# ;
o (x)=R(L.-x)| I-T. (LT, Iy
U sR)=R(E; -x) 1T ( iTg-nettid ) Ty (8)

> : <
X [Ujjk‘“j) PRI TGy el )T 1)] [H("‘ SR H""Rj)]
(31)
Both exist only on [Ej-l' ﬂj].

The second term in Eq. (30) or Eq. (31) may be related to an infinite
series:

## # -1
[I'r(j-l)ﬂ“j (5. 1’]

A 1i e iii N
## # #

#
=I+r(j_1)g(ﬂ )I" (R 1)+F(J l)g(ﬂj 1) _]r(_] l)r( 1)2(2 l)r (EJ 1) +

iv . N
Ty . ey T DTG et )+

—

(32)
[# # 4 . ]-1
L TG - el )
AP ﬁ? mﬁ b )
,# 7 iv ; ~
r_]r(ﬂ_])r(_] 1)2(2 )r (2) (5- 1)2(2 )r (Q ) (j- l)ﬂ(ﬁj)+ . . . (33)
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If the first termn is called 1, the second 1ii, etc., as noted above, the
>

expression for Uj .k(x)

can be obtained Again, "H(xﬂ- Qj- l)-H(x- Qj):l
L
restricts the range of the waves to |£ . Q .l

L Yirk ¢ -1
Consider the first term 1 of the expansion for| I- r( 1)Q(ﬁ_] l)r (Qj-l) ,

> # f# # N
J_]k(x)l R(x 5o 0TG- el RIG-4 T (L ’UJJk( )
# # =
Rbe )T el DTl )

<
The last quantity, U‘jk(ﬁj 1), represents an incident wave traveling to the
; =
left at the point x = Qj—l’ i, e., the left end of the jth span. If the

quantity F(i-l)ﬂ(ﬂj-l) (which is a function of the configuration parameters

of all the supports lociated to the left of x = zj-l +0 and also of the

associated shaft characteristics) signifies that this wave has been
reflected at x = Qj- 1’ then the reiflected wave now traveling to the right

has propagated a distance (x»-ﬂj_ 1) as indicated by rEl(x- ﬁj- l). Simila -

the last quantity of the first term, éjjk(qj)’ represents an incident

which is traveling to the right and is located at x = ﬂj' i.e., the right . J
support in the jth span. The quantity I&jr(ﬂj), a function of the configura-
tion parameters of all those supports located to the right of x = Ej -

and the associated shaft \haracteristics, signifies reflection of this wave
to the left at x = ﬂj. The .ext term, Ig(ﬂj-fj_]), signifies propagation

of the reflected wave to the left through a distance (Qj-ﬂj_ l), i.e., length
of the jth span, until the wave reaches x = Qj-l' The wave is now
reflected again to the right as indicated by #(j- 1)2“3'- 1), and g(x-ﬂj-l)
signifies propagation through a distance (x-ﬁj_ l) to the point under

>>

investigation, 'Thus, the term [_Ijjk(x) ; Tepresents the contributions of

two reflected waves to the right immediately following the initiation of the
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A\
A

incident waves, Ujjk(x) and ﬁjjk(x)' This is illustrated in Figure 10,

Consider the second term, ii, of the expansion for

Ef' # # }-1
Ir(_) l)f(ﬂ Jr(lj 1)

> # # 4 "
Ui | 37RO )Gy (0 T3 1yl I)R(2 -2 4)
# >
RRTARTTAC
# # # <

R(x e l)r( )Q( 1) ( I)F(J-I)Q(QJ-l)ﬁjjk(ﬂj-l)

which may also be written as follows (see Eqs. (22)):
T X :' x-1 I [ 2.-¢ . (€ £.-2
U-o - » R = 3 . . R . . 13 . R -- -

i ? y g -t i [ ] {
- +
AT el R s )

# # # # # # <
Rlx- 0 5 yyg (8 RO -2, DG (RS- T y0 (85 ) T35(8 )

>
If the same reasoning is used for the analysis of Ujjk(x)

i’ the added

terms correspond to a wave propagating and reflecting an additional two
more times, with the final reflected wave again traveling to the right.
This is shown in Figure 11, Similar reasoning may be applied to the
>
remaining terms. These remaining terms in the series, i.e., U..k(x)
>> > > J
x) | ;o0 €tc. to ether with U.. (x)| . and U.., (x
(x) g )] and Ty ()

iii’

account for all

JJk

of the reflected waves traveling to the right. The summation of all of the
waves traveling to the right is compolete if the incident wave is added to the
above; i. 2.,

>0 > > I >\ >> I
Ujjk(x): k(") JJK(“)Ix k(") ii jjk(")l e T
> >>
e = 34)
Ujjk(x)+Ujjk(x) . (
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Figure 10. First-term Propagation of Reflected Waves
in the [tj-,-,c,] Portion of the Shaft.
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<
Similar results may be obtained for 6jjk(x)' That is,

< << << <<
Ujjk(x)zﬁjjk(x) i+Ujjk(x) ii+Ujjk(x) iii+ .. (35)
<<
The summation of ﬁjjk(x), the refle ~ted wave traveling to the left in the
<

i*P span, with Ujjk(x)’ the incident wave traveling to the left, accounts

for all the waves traveling to the left as they are observed passing point
x in the j':h span of the shaft,

The complete response on ﬂj- 1’ l;l at point x can be determined by

properly combining all of the waves traveling past point x in both the
left and right directions (see Eq. (127) in Appendix F). That is,

On (£. ., 2.1,
-1 7 |

S _l_é #} # # . T

LTS o] S G| | T

F 0 ch 5, C,, [LUjjk(x)

or ) (36)
l# f > . # <

Y(x)=? Cy |:C1 lUjjk(x)+C 1 ZUjjk(x)j,
# # > # <«

F(x)ch[czlUjjk(x)+CZZUjjk(x)i|

/

Eq. (36) indicates a relatively direct manner in which the waves are
combined to obtain the total response at foint X.

By examining the portion of the shaft on |{., £, +1J in terms of a single

- > <<
driving force P(ajk), ﬁ(jﬂ)jk(x) and I—J(j ol )jk(x) may be thought of as

"modified total waves' which are initiated by the driving force at x = LI
> <L

' 8]
As soon as the total waves, ﬁjjk(x) and Jjjk(x), on [Ej-l’ ﬂj] travel to
x = £., the waves are modified or refracted by the jth support and pass
J p3> <<
through as indicated by U(j+1)jk(x) and U(jﬂ)jk(x) traveling in the

(i+1)t" span (see Eqs. (138) and (139) in Appendix F). Thus,
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i # [# # o # - >>> #l# <<
U(J'“)J'k(x):R(x'ﬁj) 1e, C 1H(+l)r(ﬂj) k(“ ‘112 'jk(ij) (50

< # # [# #_1# # -1
U541)50 ) R(ﬁ ¥y e ROG -2 THCT €T 1) (4)

>> #- 1 # <
xrujjk(ej)ml 1 clzﬁjjk(lzj)} (38)

where, as before, the first subscript, j+l, indicates that the wave is
traveling in the (j+l)th span; the second subscript, j, indicates that

the original wave originates in the jth span where the driving force is
located; the third subscript, k, indicates the exact location of the
driving force.

An explanation of traveling wave behavior similar to the previous
>>> <<

discussion may be applied to U( +1); (x) and U( +l)jk(x) in the (j+1)th
span. Note that the second term of (j+l)jk(x) can be restated as an

infinite series:

# # # # -1
[“C Cl?r(J+1)r(Q)]

’1 ——— ii N7 111 —

TN L # o
= TH(-C1 1€ Ty D C G ) C 1 G () 4

iv

# # # # # # #_l# #
(- Cl?.)r( 1)e{5C Clz)r(j+l)r(£j)(-cllCIZ)r(jH)r(Qj) T
(39)
P g3 . the srder of the terms is indicated by 1, ii, iii, etc. Conside?‘ing

(oo Q . .
.+ . ") and taking, for the time being, only the first term i of the
Qb»'« Loe Ry ’bslon
>>>

# .
(J“)k(x) -R(xﬂ) k( )+C11 <<

PLUS{ 3
1€ JJR(QJ)]'
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where.the last term signifies that the total wave in the jth span passes
through#the jth support and enters into the (j+l)th span as a modified
wave, R(x-lj) signifies that the modified wave has propagated to the
right a distance (x-lj). This is illustrated in Figure 12,

Consider now the second term, ii, of the e.cpression for
#_ 4 # ’ ‘l-l
I+C 1 C1aT 41y j)J '

>>

Og+1)510

# #_l# # >>> # 1# << }
3= REL)-CC TG4y (8)] T (8)4€1 1€ T5Ey)

which may be rewritten as follows (see Eqs. (22)):

# # . #

>>> . # # #
iizR("'ﬂj)('cl lCIZ)R(ﬂjH'lj)r(jH)r(£j+l)R(£j+l-£j)

Og+1)j)

>> # g << ]
X Ujjk(ﬂj)J'CllchUjjk(Qj)

If the same reasoning as before is followed,the added terms correspond
to the wave propagating to the right after being reflected twice, first at

the (j+l)th support and then at the jth support. Appendix G shows that the
#

term (-CiiClz) corresponds to a reflection matrix of a fixed end support.

This means that the jth support acts as a one-way fixed support which
completely reflects modified waves coming from the right after being

reflected back from the (j+l)th support, but which permits waves
traveling from the left to pass through, This is illustrated in Figure 13.
The same analysis may be applied to the remaining terms of the series.

Also, similar reasoning may be applied to g;jﬂ)jk(x)' the modified wave
traveling to the left as indicated in Eq. (38).

The complete response at point x on [Ej’ le} due to ;(ajk) can be
determined by properly combining all of the waves traveling past point x

in both the left and right directions (see Eq. (140) in Appendix F). That
is,
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Figure 12. First- term Propagation of Modified Total Wave
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Portion of the Shaft.

47



%(Olk)

L b
# #
Z)(0 ) 2+ 04 p
77T TTTIITITT
X :‘] X s EI.H
#

Pt

Total wave traveling to
the right in the jth
span

# U+
R AT\ A
ftkl ¥\ ‘“.“
(x)

Yag+np ™|

Figure 13. Second-term Propagation of Modified Total Wave
Traveling to the Right in the [l'j. Zi*"]
Portion of the Shaft.

48



1T 1T 1T ]

~ A 4 # >>>

Yo ws O €11 C12 U(i+1)6)

= # # # # <<

F 0 C C C T, . v (%)

ol £] |2l 22 | | “(G+1)jk

> (40)

or

l # # > # <<
Y(") y[cllU(j+l)jk(x)+clZU(jH)jk(x)]

= #r¥# > #
F(x)=C [ (j+1)jk(x)+C22U(j+l)jk(x)]

The same manipulation of traveling wave conce R used for the
explanation of the dynamic response in the (j+1)'? span may be extended to
explain the dynamic response in the (j+2)th span as well; it also can be

extended to explain the response in the (_j+3)th span, and so forth, until the
nth span is reached. Similar argument also can be used for the dynamic

response in the (j- l)th span, in which the modified waves (see Eqs. (135)
and (136) in Appendix F) are as follows:

> # # # [# #-l t ]-1
Uy- 1)) =RO- G G oyg (8 RIR(E, (- H) 1+C11C1pT 2y (850 0)

¥ # >>> <
[c c,,U. k(ij_l)mjjk(ﬂj_l)] (41)
« # [# LR LA -1
U(j_l)jk(x)=R(ﬁj_l-x) 1+cllclzr(j_2)2(1j_l)]

[# # > << ]
C“C UJk(ﬂJ l) UJk(lJ l) . (42)

# 4 K # 1
The term [ I+C, ICI?_I"(J 2)2(2 - 1)} can be restated in terms of an

infinite series as
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14C11C o0 2)0(8 1)

"R Ry A e

¥, # LR ¥
( C Clz)r(] 2)1(2 l)( C Clz)r(J 2)2(1 )( C C Z)F(J 2)2(2 l)+ (43)

Again, the order of the terms is indicated by i, ii, iii, etc. Considering
>>

ﬁ(jﬂ)jk(x) and taking, for the time being, only the first term i of the

above expression,

> # # #
05195 | 7RO& M oyt JREE -2 )
# l# >> <<
[CIICIZUJJR( LT O 1)]

where the last term signifies that the total wave in the jth span passes
through;he G- l)th support and enters into the (j-Z)th span with modified
wave. R(lj_ l'lj-Z) signifies that the modified wave has propagated a
distance (lj_ l-Ej_z) and then is reﬂect#ed to the right#by the (j-Z)th support,
as indicated by the reflection matrix r(j-z)l(lj-z)‘ R(x-lj_z) again
signifies that the reflected modified wave has propagated a distance
(x-lj_z), and then the wave is at the point under investigation. This is

illustrated in Figure 14,

Consider now the second term, ii, of Eq. (41), corresponding to the ii
term of the expansion of
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Portion of the Shaft.
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+C1C 02008

# # # F ot #

>>
T5- 19500 15RO 4 )T oy (8 IR, -8 5)(-C4 CIZ)F() 2)0(&; 1)

{# *o> <« jl
L.
C.1S: lJJ ( ) GJk( J_1)

which may be rewritten (see Eq. (22)) as follows:

# f bt

>> #
ﬁ(j-l)jk(x) ii=R(x-£j_2)r(j_Z)l(lj_Z)R(!zj_ - )( c c 2)R(!z - j-Z)

# # #o 4 > S
xr(j-Z)l(lj-Z)R(ﬁj-l'pj-Z)[CllCIZUjjk( S 1)]

If the same reasoning as before is used, the added terms correspond to

the wave propa atmg to the right after being reflected two more times.

Again, the (j- lﬁ support acts as a one-way fixed support. This is

illustrated in Figure 15, The same analysis may be applied to the

remaining terms of the series., Similar reasoning may be applied also
<

to U(j- l)jk(x)’ the total wave traveling to the right.

=

The complete response at point x on [ﬁj—Z’ Qj_ljl due to P(ajk) can

be determined by properly combining all of the waves traveling past

point x in both the left and right directions (see Eq. {137) in Appendix F).

That is,
on [Qj-Z’ lj-l] ,

[~ ] R # [ > l

E e Sl 2 UG- 1))

~ T | # # # # <<

FpooL° S| 1% a2 ] | Yot ]

‘ (44)
# [# > <<

Y(x) —--(' CJIU( 1)j k(x)+C12U( 1)j 1((x)

~ # [# S>> # << J

F(x)=C ( )ik (x)I-C U(j-l)jk(x)
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The same manipulation of traveling wave concept used for the explanation
of the dynamic response in the (j- l)th span may be extended to explain the
dynamic response in the (j-Z)th span as well; it also can be extended to

explain the response in the (j-3)th span, and so forih, until the 15¢ span is
reached.

The above analysis is based on the asswnption that a single driving force,

~

P(ajk), acts on the shaft. For driving forces distributed along the shaft,
the traveling wave solution for each individual driving force is combined
to give the total response at any point x by direct superposition. Com-
plete solutions are given in Chapter 2 under "Solution in Wave Form".

IMPEDANCE MATCHING

The dynamic response of the shaft system shown in Figure 4 in terms of

~

distributed driving forces,f’(ajk), j=1, 2, ...,n k=1,2, ..., k()

is expressed by Eq. (27) in Chapter 2. In the itP span, or on [ﬂi 1 ﬂi],
i = l, 2' « o o n I

[~ [, # #] # #] [>» ]
Y TS o ¢ 12 U.(x)
o~ # # # # <<

i FJ ] 0 Cf- C, CZZ_ g Ui(x)J

By proper control of the conditions at both ends and intermediate supports,
the reflected waves and modified waves may be eliminated, or at least
minimized, such that the dynamic response consists solely, or
principally, of incident waves which are independent of support config-
urations., The mathematical representation of the above statement is as

follows:

> > < <

Ui(x)z Ui(x) and Ui(x)s Ui(x)

or

> <<

ﬁi(x)= Ui(x)z 0 (45)
where i=1, 2, . .., n.

It can be seen from examination of the reflected and modified wave terms
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> <
in Eq. (27) that the condition ﬁi(x) = I_Ji(x)s 0, i=1,2, ..., n, is

satisfied by setting

# # # # #

FO(0)=FIQ(QI)=FZQ(QZ): . .= (n-l)ﬁ(ﬂn-l)g 0

and (46)
# # # # #
I-‘n(cn):r(n-l)r(ﬂn-l)zlﬁ(n-l)r(ﬂn-z): T 'zrlr(ﬂl)E 0

Physically, this is equivalent to setting the impedance at each support
looking both to the left and to the right of the support point equal to the
shaft' s characteristic impedance. This manipulation is aralogous to
load matching in electric transmission line theory, in which a line is
terminated by a load equal to its characteristic impedance; i.e., there

is no reflected voltage wave. The proper ratio of input to output voltage
in the incident wave is satisfied at the boundary, such that there is no
need for the presence of a reflected wave to satisfy the boundary
conditions. The existence of reflection waves stems from a need for
satisfying boundary conditions, A mathematical veritication of the above
statement may be obtained from Eqgs. (23) and (24), which are expressions
of impedance in terms of reflection matrices and shaft characteristic
impedance as shown in Chapter 2 on pages 26 and 27 ., These relation-
ships show that by letting all reflection matrices vanish, i.e., conditions
of Eqs. (46), the following set of equations holds:

# #
A g A A L A _ -1
2(0)=2) (€)=25p(L5)= - . . =2 1yg(, 1)=C31C1)
and (47)
#
# _# _# _ _# _ -1
zn(ln)-z(n-l)r(en-l)—z(n—Z)r(ﬁn-Z)_ o=z (0)=C5Chy
N 4
where ts = CZICll' The quantity z_ is called the characteristic

impedance of the rotating shaft. In this case, all impedances appearing
in Eq. (47) are termed "'matching' or matched impedances.

If Eqs. (46) or Eqs. (47) are satisfied by proper control of all support
conditions, the solutions of the dynamic response of hypercritical shafts
in wave form due to distributed driving forces as expressed in Eq. (27)
may be simplified as follows:

In the i'" span, or on[ﬂi_l, fi}. i=1l, 2 ...,n



[~ ; # # # # >
Y |%¢ ° 11 ‘12 U;(x) (48)
~ # # # # <
I FJ 0 s Ca1 €22 U;(x)
where
> LI
O.(x) =) U,
j=1
n
< <
Ul(x)= L Uij(x)
J=1
> <
iJote that the expression for ﬁij(x) and ﬁii(x) are given in Eq. (27),
. ] < >
except E\hat ea#ch wave function U(j+1)j(x)' C e ﬁ-ij(x), and ﬁ(j-l)j(x)’
35 Uij(x)=0.

DISCUSSIONS ON IMPEDANCE MATCHING

Examination of Eq. (48) in the preceding section permits the following
observations to be made. If the impedances looking both to the left and

to the right at eacn support are matched to the shaft's characteristic
impedance or, in other words, if all the reflection matrices looking

both to the left and to the right at any support are equal to null matrices,
the dynamic response will contain only the incident waves due to driving
forces. This means that incident waves simply pass through all supports
without any modification. This is consistent with the mathematical
explanation, since ‘he incident waves are independent of support ccnditions,
Hence, Eqs. (46) or Eqs. (47) may serve as a criterion for the
determination of the suppcrt conditions for shafts which are subjected to
incident waves only. Supports which satisfy Eqs. (46) or Eqs. (47) are
termed optimized, since the dynamic response is minimized; no amplitude
buildup due to reflected waves can take place.

It can be concluded,then, from the above observations that if both end
impedances are mitched with the shaft characteristic impedance, i.e.,

o4 LN ot . g
ro(o)zrn(ﬂn); 0, o zO(O)=zn(Qn):(,21Cll =z, the effects of intermediate
supports on the dynamic response of the rotating shaft are redundant.
However, the presence of intermediate suppcrts does raise the frequencies
at which the critical! speeds occur, including the fundamental frequency.
Actually, one could place a predeterrnined number of intermediate supports
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along the shaft sufficient to raise the fundamental frequency above the
operating frequency of the shaft. Obviously, this would involve the
acceptance of a ronalty in added support weight,

Further inspection of Eq. (48) shows that even if the intermediate

support conditions are not optimized, their effect is redundant. Thus, if
end impedances can be matched to the characteristic impedance of the
shaft, nothing is gained from the optimization of the intermediate supports
in terms of minimum vibration control. Thus, onc or two matched end
supports should more than adequately suppress any excessive vibration
response in hypercritical shafts of any length. The impedance values for
the supports of the shaft, whether supported at one end or at both ends,

are the same; the difference lies in the deflection amplitudes, where
those of the single-ended shaft are twice those of the double-ended shaft.

The matching of end impedance with the shaft characteiistic impedance is
a formidable task, not only because impedances are a function of frequency
but primarily because of the uniqueness of all the conditions required to
control these impedances. Moreover, in practical applications, the choice
in end support configurations is limited, since they usually are governed
by such factors as transmission gears, couplings, and unwieldy mouitings.
Thus, the intermediate supports have to be employed for optimization
purposes, since the matched end impedances are not available.

If all supports are optimized except those at both ends, i.e., if all

# # #

reflection matrices are equal to null matrices except ro(o). I"n(ﬂn)# 0,

the dynamic responses due to distributed driving forces, Eq. (27), may be
expressed in the same form as Eq. (48) except for those pertaining to the

1% and nth spans. Those responses may be listed as follows:

On [0, Q]], or the 15t span,

=  # # # # [ >t.;>( : ]
Y —C 0 C C x
o # # # # <«<
F 0 C; C,, C,, ] Ul(x)_
where
pOOS e
ACEDIRHE
J_
<« N«
T, (x)= Zlﬁlj(x)
J:
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The expressions for I—jlj(x) and ﬁlj(x) can be obtained from Eq. (27) by

letting i be 1 for j=i, and then letting j=n, n-1, . . ., 2 for j>1. It
<
should be noted that the expression for the reflected wave function Ull(x)
# > >
=0, and that the terms U(j-l)j(x)’ o W oW UZj(x) vanish also.
On [ﬂ , 1 ], or the nth span,
n-1 n
[~ b ] # >
~ # # # # <«
% g Cel [Ca1 Co2) L Upt¥) |
where
T (x) -Z 0 )
n
(x - Z
) >> «<

In this span, the expression for U (x) and U (x) can be obtained from

Eq. (27) by letting i be n for j=i, and then lettmg j be j=1,2, ...,
>> 4 '

n-1 for j <n; also, the term U__ =0, and each term U r (x), .. .,
< # L2 (G+1);
U(n_ l)J(X)=0.

It may be observed from the above expressions that only incident waves
can exist in every interior span except for the two end spans, in which
incident waves originated by driving forces are partially reflected at the

>> << >> <<
end supports as indicated by the Ulj(x), ﬁlj(x), Unj(x), and Unj(x) terms.
The existence of partially reflected waves in both end spans is an
unavoidable situation, since both left and right end supports are not
optimized, i.e., are not matched withthe shaft characteristic impedance.
Thus, incident waves traveling from the interior spans to xzﬂl and
x=fn_l simply pass on to [0, Ql] and [ﬂn-l' ln] , respectively, never to
return to [21' fn_ l] again. These waves will then propagate back and

forth in the [0, Ql:l and [Qn-l' Qn] intervals, to be damped out eventually
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by the unmatched impedance at x = 0-0 or at x = En+0, respectively, It

should be remembered from the first section of this chapter '""Traveling
Wave Concept' that for the reflected waves in the

[0, ll:l and [Qn-l’ Qn; intervals, the supports at x = 21 and x = En-l
act as fixed supports which will reflect completely all incoming reflected
waves, respectively, from the left and right. Thus, since reflected
waves and modified waves vanish along the shaft, except for both end

spans, the shaft system is optimized on [Ql’ Qn-l] , but not on [O,!l]

and [ﬂn-l’ ﬂn]

The minimization of vibration response in a shaft having end supports
that do not lend themselves readily to optimization may be accomplished

by letting the 15t and the (n-l)th intermediate supports approach,
respectively, the left and right ends of the shaft as closely as possible.
In this case, the reflected waves will be restricted to very short end
spans and, if all intermediate supports are matched with the shaft's

impedance, only incident waves will exist in the [ 21, ﬂn_ l] portion of

the shaft. Mathematically, the above statement is indicated in Eqs. (49)
>> <<

and (50), where as £, and (£ -£ approach zero, U,.(x), U,.(x),

v ( ) iy 1 ( o n-l) PP l_]( l_](

ﬁnj(x), and Unj(x) also approach zero. It can be said, then, that the

closer the matched 15t and (n- l)th supports are placed to the left and
right end supports, respectively, the more effective the amplitude

suppression will be in the end portions, [0, 21] and I:Qn-l' ln] , of the
shaft.

It has been observed earlier that matched or unmatched interior supports
would be redundant if the end support impedances are matched to the
characteristic impedance of the shaft. By the same reasoning, inspection
of Eq. (48) should show also that for the case in which the two outermost
interior supports are matched, all supports inte>ior to these two supports
are redundant. From all this discussion, the conclusion may be made

that in the case for which the end supports are not available for optimization,
one or two matched intermediate supports placed very close to the end
supports should more than adequately suppress excessive vibration response
for shafts of any length. The impedances of the interior supports should

be the same for the shaft with one interior support placed close to one

end and the shaft with two interior supports placed close to the ends. The
only difference in behavior between these two shaft systems exists in the
amplitude response. It is larger in the case of the shaft with one interior
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support; how much larger this value of the amplitude response will be
depends on the amount of wave reflection that will take place at the far
end support. In the case of the shaft with two interior supports placed
close to the end supports, no such reflection of incident waves will take
place at either end, and the resulting deflecting amplitude response
should be less than that for the single interior support case.

DETERMINATION OF THE MATCHED IMPEDANCES OF INTERIOR
SUPPORTS

#

The optimum impedances, Zj(ﬂj), j=1,2, ..., n-1, of interior
supports are determined from the following conditions:

# # N
rJQ(QJ)=0' )= 1' 2’ O ©° oo n-1]

and (51)
# #
rjr(lj)zo, j=n-1, n-2, ., ., 1, }

It may be shown as before (see Eqs. (47)) that the above expressions are
equivalent to setting

# # #
A i -1_ =
_]Q( _])_Cllcll_zs , j=1, 2, , n-1 W
and (52)
# # #-l # _
zjr(ﬂj):CZICllzzs’ j=n-1, n-2, . . ., 1

/

The details of %je(ﬂi) and ﬁjr(ﬂj) are summarized in Eqs. (17) through

(24).

From these equations, a set of supports can be uniquely determined such
that the shaft will have minimum dynamic response characteristics.
However, it should be noted that the shaft' s characteristic impedance is

a function of frequency, w ; hence, all matched support impedances must
necessarily be functions of frequency. To provide these supports, in
reality, with matched impedances is a formidable task, not only because
they are a function of frequency, but primarily, as has been stated before
in the preceding section, because of the uniqueness of the requirements for
these impedances. Each support must be a translational and rotational
mass-spring-damper unit with a built-in frequency dependency to meet
these requirements. This is a physical situation that is not easily attained.
Hence, from a practical point of view, the possibility of imposing weaker
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conditions on support requirements for minimum vibration response of
hypercritical shafts should be investigated.

QUASI- MATCHING

A compromise approach, '"quasi-matching', to minimizing critical speed

vibration may be realized in the form of weaker conditions on impedances

at support locations. By examining the expressions of reflected and

modified waves, some interesting observations may be made. First, by
>

writing out the expression for the incident wave ﬁii(x) in Eq. (27) in

complete matrix notation,

( e-iel'\/:n— (x-aik) 0

Q=
QO =%
R

(a.,)
f ik
e-eZVw (x-aik) *

- =

X [H(x-aik)-H(x-ﬂi)]
The term

-ie VQT (x-a. )
e 1 ik :Cos(elvw—(x-aik))-i sin (el'\/hT(X-é-ik))

is a complex entry which affects only the phase relation of the wave as the
-e\fw (x-a.,)

. 2 ik’ .
argument (x-aik) increases, The other term, e , is a
function for which the numerical value decays exponentially as (x-aik)

-e Vw X-a,
increases, Generally, this term, e 2 = , 18 very small when
ey (x-ay)
compared to the first term, e , which does not decay. Hence,
it may be neglected with very little effect on the solution. Second, by
<

examining the expression of reflected wave 6ii(x) in the ith span as given
<

by Eq. (27), the term, which corresponds to Uii(x)

(see Eqgs. (33)

i

and (35)), can also be written out in complete matrix notation:
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# # >
R(L;-x)T; (2,)T (L)

[ e w(2.,-a,,) -ie '\/t—o-(l.-x)
k(l) (e lv_ 1 ik rir(ll)l l)e 1 1
) - sie Vo (L.-a,,) ce, Vo (L,-x)
k=1 ) (e 1 1 ik r1~(21)21)e 2 1
-e, Vw (£.-a, -ie'\/: £.-x)
(e Z_V-( 1 lk)r (l)lz)e 1 ( 1 # #-lf_\_,
e C,C¢ Play)
e Nw(l-a,) -e Vw_(ﬂ.-x)
(e s I (8550 : =
#

In the reflection matrix rir(ﬂi), the only element not modified by an
exponential decaying function is rir(li)“. Thus, for cases in which

these elements become negligible with increasing w , only the element
which is not modified by an exponential decaying function need be
considered. This leads to the simpler expression:

# # >
R(;-x)T; (2,)T,,(L))

-ie Vo (2,-x)

[
-ie V-;(l.-a. )
k@ | (e T HT (8))))e 0

b H,
B Z C,C; Play)

3 0 0 |

TR

The same manipulation may be applied to all the other reflected and
modified waves. Hence, as a logical conclusion, the shaft matching
conditions as stated in Eqs. (51) can be replaced by weaker ones as
follows:

Y VT RPYICPUTEI, (n-l)ﬂ(ﬂn-l)llzo
and 1'53)

(L, 2= - - =T (E)=0

I.‘(n- l)r(in- l)l lzr(n- 2)r
where the subscript ''11'" indicates the element of the first row and the first
column of each reflection matrix. If all interior supports are designed
such that the above conditions are satisfied, then the shaft is termed
quasi-matched. By examining Eqs. (23) and (24) and their related

62



expressions, it is evident that under the condition of quasi-matching, each

term %ll(ll)' %ZI(QZ)' e }l(ﬂn 1) g(n l)r(‘e l) t(n Z)r = z).

, gir(ll)' approaches g =C, C“(Eqs (47)), which relates to shaft
characteristic impedance (i. e., matched conditions) as exp(-ez\/w (li-aik))
or exp(-ez'\/w (li-x)), i=1, 2, ..., n, tends to zero, where a, or x
is on [0, [ ]

n
The application of the criteria given in Eqs. (53) for the quasi-matching
of interior support impedances to the characteristic impedance of the
shaft to the design of several support configurations will be illustrated

in Chapter 4. For convenience sake, a shaft with only one interior support
and two end supports will be studied.
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expressions, it is evident that under the condition of quasi-matching, each

term £,(0,), £,,(L,), . . ., %91_1 0o Ao ) Yoo 2)e o)

# -1 :
C e tir(ll)’ approaches z_= C,,C, (Eqs. (47)), which relates to shaft

characteristic impedance (i. e., matched conditions) as exp(-ez\/w (ﬁi-aik))

or exp(-esz (ﬂi-x)), i=1,2, ..., n tendstozero, wherea, or x

is on [0, Qn]

The application of the criteria given in Eqs. (53) for the quasi-matching

of interior support impedances to the characteristic impedance of the

shaft to the design of several support configurations will be illustrated

in Chapter 4. For convenience sake, a shaft with only one interior support
and two end supports will be studied.
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CHAPTER 1V

TRANSMISSION LINE ANALOGY SOLUTION OF THE

SUPERCRITICAL SHAFT WITH ONE INTERMEDIATE

SUPPORT--USED AS AN ILLUSTRATION PROBLEM FOR

QUASI- MAT CHING

DESCRIPTION OF PROBLEM

A uniform rotating shaft with one interior support will be used in this
chapter for the development of equations for different support config-
urations in terms of quasi-matched conditions, These expressions
should be useful to the designer in that impedance values termed ''best"
for the supports may be established directly without an excessive
amount of computations.

The criterion for quasi-matching of the interior support impedance with
the shaft impedance, looking to the left and right of x = Ql is, referring

to Eqs. (53),

Ty p(2))),70
(54)
02,0

# 4
In gencr#al, rlﬁ(al)llil rlr(ﬁl)“, or rlﬂ(ﬂl)#rlr(gl); the condition

t

1
(L,=1/21¢

Q(ﬁl):rl r(Ql) exists only if the interior support is placed at the midpoint

2) of the shaft span, and both end supports have the same

configuration.

A physical model of the shaft used for the analysis in this chapter is
shown in Figure 16, This corresponds to the general case shown in
Figure 4 by l:tting n = 2, If a shaft is used here having identical end
support configurations,

A #
Z,(0)=2,(L,) . (55)

By direct substitution of Eq. (55) into the expressions of Itu(f l) and
#
I"]r(Ql) and assuming that ﬂl=l/2 QZ' it can be shown that (see Appendix

H)
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Figure 16. Uniform Shaft With One Interior Support at the
Midpoint of Total Span.
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# #
rl.ﬂ(ﬂl)grlr(ql)

rlﬂ(ﬂl)llgrlr(gl)ll

(56)

The conditions of Eqs. (55) and (56) will be used in the development of
a number of example problems of this chapter.

REFLECTION MATRICES AND SUPPORT IMPEDANCES

Reflection Matrices at Supports in Terms of Impedances

A set of corresponding equations for the shaft system shown in Figure 16
(Ql# 1/2 22) can be obtained from Chapter & simply by letting n =2 in

Eqs. (15)-(22), as follows:

# oo -1[# A K
Iy(0)= |- C,,tZH(0)C | | Cpp-2,(0)C,
# # A # -1 # A #
Tp(8))=]-Coatz g(1))C 51 (€20 (£))C),

> (57)
# # # # -1 # # #
rlr(ﬂl):['czzhlr(il)clz Co1-21.(8))C
# # # # -1 # # #
Ty(22)=|-Copt2p(2,)C 2| | Car-2a(ER)C )
where
A

zli(ﬂl)zgl(ll)"%oi(“l)

er(nl)Jl(zl)AZr(zl)

A # K F

22°0
# #
t00)-

#
# # £ #
ro(ﬁl)zR(ﬂ P (0R(L,)

(@,)

Ox Q=™

C,11Co.T,

(t))

#

# .
Tp(8))=R(L, €T (L,)R (2 L))
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Impedances in Terms of Reflection Matrices

A set of corresponding equations for the shaft system shown in Figure
16 (21# 1/2 22) can be obtained from Chapter 2 simply by letting n = 2

in Eqs. (23) and (24), as follows:

o) [o !z]
A Fo# 4 #o # -1
200 (X)F[C o1+ C T | € 1%C ), To(x)

2
O“[ﬂl' Qz] ;
A (4 4 # # 4 -1
21000)=| C21*Capl 10 ()] | €1 1€ T )
On[ﬂl, [ ]
¥ (4 4 4 BN
22p ()= C21C5,15(x) LC11+CIZFZ(X)J

On [0, 21 ,
# 4 (@ # # # 4 -1
2y (%)= C31+C,,T (%) C11+C12F1r(")]

SOLUTION IN WAVE FORM

(58)

From Eq. (27) in Chapter 2, the corresponding solution in traveling
wave form for the shaft system shown in Figure 16 (ﬂl;é 1/2 22) can be

obtained as follows:

On |0, Ql] ,
= p P # # # >
Y ) [?Cy 0 C,1 <, Ul(x)
~ # # # # <<
F 0 C, C,, €, U, (x)
On [21, QZ] ,
[~ ] Fl # 4 1T # ¥ 1 >
Y _ ?cy 0 Ci1 Sy, U,(x)
~ # # # # <«
F| 0 Ce || Co o2 U,(x)
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where
>> > P b
U, (x)=Ul 1 (x)+U 1 2(x)

<< < ASGS
U, (x)=Ul 1 (x)+U1 Z(X)

DO >> )
Uz(x)= U5, (x)+U22(x)

< << <&
Uz(x)= UZ 1 (x)+U22(x)

> > >
U, (x)=0, (x)+ U0 (x)

< < <
U, (x)=U0,, (x)+ U (x)

> k(1) y ¥ o# o~

T, (%) Z R(x-alk)c+c;‘p(alk)[H(x-alk)-n(x-ﬁl)]

k=1

> k(1) 4 ot
T, (%)= Z R(a;, -x)C_C; P(a,, )H(a, -x)
k=1

< 4 [h# 4 S (4 # > <
T, ,(=R()| 1-To ()T _(0)] T,(0)| R(L,)Ty (2,)T, (2, 1+T, (0)

X H(ﬂl-x)

< # ## # -1+4
Ull(x)=R(ﬁl-x) I-FIr(ﬁl)ro(ll) rlr

> # 4 <
x[Ul1(21)+R(21)15(0)ﬁ“(o) H(!Zl-x)
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> > 2
UZZ(x)=Uzz(x)+UZZ(x)

i<< <—< <
Uzz(x)=U22(x)+ﬁZZ(x)

> k(2) 4 fE_ >

U,,(0= ) Rlx-a,)C,Cp ' Play )Hlx-2,,)
k=1

< k(2) 4 ¥ F =

T,,(x)- Z R(a_,_k-x)c_c;‘p(aZk)[H(aZk-x)-H(z l-x)]

k=1
> # # # # -1#
Uzz(x)=R(x-ﬂl) 1-1‘12(21)1“2(21) rlﬂ(el)
¥ LA <
X| R(£,-2 )5,(2,)T,, (8,047, (2 ) | H(x- L))
< ¥ F# o 4 14
Uzz(x)=R(lZ-x) I-I‘?_(lz)l‘12 (22) l"z(lz)
E # o<
X| Tpp ()4 R(2,-2))T,4(2))T,,(2,) | H(x-2,) )
> 4 # [# A h S1[H > « ]W
Ulz(x)=R(x)l"0(0)R(ll) 1+c“clzro(£l) Lcllclezz(!Zl)+U‘,_?_(£l)
>
XH(Z,-x)
< 4 LA '-1[#_1# » o« }
T, ()=R(L,-x)| 1+C71C,To(2)) ) [C]1C;,T,,(0))+T,,(2,) ] H(2, -x)
>3 # # #-l# # 1-1>> #-l# << T
0,1 ()=R(e-2))| 1+C11C ,Tp(8)) || Ty (4)+CT1C 0 (8)) | Hx- )
<< f R LR, -1 S
U, 1 (x)=R(L-x)T,(£,)R(L,-£))| +C 1 €, T5(24) {
>> #-l# <«
X U“(El)+cllCIZU“(ll) H(x-il) )
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The preceding Eqs. (57), (58), and (59) give the pertinent formulas
required for the optimization of support conditions of the two-span
shaft with the interior support at position 21 and two general support

configurations at the ends. Also from Eqs. (59), the dynamic response,
i.e., the induced deflections and forces due to distributed driving forces,
of the shaft under investigation can be calculated directly.

DETERMINATION OF THE QUASI-MATCHED IMPEDANCE AT THE
INTERIOR SUPPORT

In the subsequent set of example problems tor the shaft on three supports
it is assumed, for convenience sake, that both end supports have the
same configuration so that Eq. (55) holds. In addition, the interior
support is assumed to act at the mid-span (ﬂlz 1/2 ﬁz) of the shaft such
that

f“12(111) - %lr(ﬂl)’

or in terms of the quasi-matching condition for the impedance of that
support to the characteristic impedance of the shaft,

T g2y =T) (2)),=0 . (60)

# # #
Since rlﬂ(ﬁl)z I r(ﬁl)’ only the condition Fl r(El)z() needs to be considered

in the following analysis to determine design criteria for the interior
support meeting the requirements for quasi-matching. Thus the proper

values will be obtained for both er(ﬂl) and Zu(ﬂl) which are the

impedance quantities the interior support must provide, respectively,
looking to the right and left of the support for a minimum vibration
response of the symmetrical shaft.

The matrix forms for the impedance at each support are as follows
(see Appendix H for explanations):

\

4 i Z0(11) 'Zo(lz)—
At x=0, Z,(0) =
| Zo(z1)  Zo(22) |
, Z1(11) 0o
At x:ﬂl, 21(21)=
oz [
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Zan)  Z2(12)

#
At X= ezv ZZ(‘E&):

Za21)  %2(22) |

where %0(0)5¥2(22). i.e., Zo(ij)(o):zz(ij)(ﬂz), i, j=1, 2.

If the following equation,

# # # # -10# # # "l
I (¢ ).[-cZ tz, (£,)C, } [(:Zl-zh_(ﬁl)cllJ ;

and its related expressions (see Eqs. (57) and (58)) are used, then
rlr(fl)] 1=0 leads to the following expression which corresponds to

a quasi-matched interior support (see the mathematical derivations

in Appendix I):

lte.)(z +1 + 2 -

( 3)‘ 1r(22)"'®1°2%1r (11)) (ee +1'32)(71r(12)zu(.21) zlr(ll)zlr(ZZ))

—e.(e,tie, )z . )- (e, +ie,c2)=0 (62)
3% 2 1 %1 (12) T1r(21) 12— 3

where

—zlr(ll) 21r(12) |
er(ﬁl):
Z1r(21)  ZF1r(22)
(1+¢5) -2ie Vo (2,-2,)
2111 *1(11)" ¥ § 15(11)(22)e l ¢V
det[C“‘rCerz(ﬁl)]
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€3

1r(12)

%1r(21) Ff +
det|C | +C ,I(L))

r

-Zie'\faﬁz-ﬁl)

x| =(eqtie )Ty (L) He,-ie))
iele2(1+e§) -Ziel\/c:(ﬁz“ﬂl)
21 p(22) zl(ZZ)+ T —F FZ(II)(QZ)e +1
det'LC“+Cl2F2((‘l) L

T# & # -Ziel'\/;(ﬁz-ﬂl)
det Cll+clzr2(f1) = -e

“le Lyla) +1|-

2

€3
-2ieNw(l,-£,)

z[:e et Lnyfz) - 1

ie
1

2 .
FZ(II)(QZ) = " 7 I:(l+e3)(z2(22)+1elezzz(ll)) +
det [’szJ'gz(”z)Clz]

2
(eyestie N2y 15)22(21) %2 (11)%2(22)) -

: . 2
e3(e2+1el)(zz(12)+z2(21))-(e1+1e2e3)]

# 4 #
detj -C,,+ Z(QZ)CIZ]
= cuegtie) ez t2a12))(28 370 %) e 32 22))

(e)tieye32521) 25 (22)( ie2 %511y o3 22 1 2)

Tt appears from the preceding discussion and equations that the example
problems have been severely limited to several simple cases of the
symmetrically supported shaft. That this is not so, however, will become
apparent, if the following principles are understood:

Consider the case
b, # 1,
then,
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this means that besides establishing tlr(ﬁl)' a second set of conditions for

2
lr

QM(Q) may be developed in ar.cordance with the steps indicated in Appendix

(21) must be met by the interior support. Equations for evaluating

I. To control the shafi's minimum vibration response completely, it is
necessary that the interior support consists of two sets of impedances,

each optimized for its own set of standing waves: glr(f l) for the waves

traveling to the right and originating in the [0, £,] span, and %l 0(!2 l) for
the waves traveling to the left and originating in the [21. £,] span. As has

been suggested in the preceding chapter, page 58, optimized interior
supports act as one-way filters in that they let incoming incident waves
through, but block the reflected waves approaching from the other side,
except in the case when the support exhibits impedance characteristics
which satisfy conditions for incoming waves from both the left and right
sides. In general, it is not easy to build supports meeting such conditions.
Therefore, it is suggested that the interior support be placed as close to an
end support as possible so that it, in effect, replaces that support. In the
example problems of this chapter it would mean placing the interior support
in close proximity of the right end support since Eq. (62) is given in terms

of the components of ﬁlr(fl)'

It follows from these arguments that Eq. (62) can be applied also to
problems in which the interior support is not placed at midspan, but placed
in close proximity of the right-hand end support. In this case, ﬂl R 22 '

and inspection of Eq. (62) shows that the effect of the right end support is
essentially eliminated since the term 1“2(“)(2,) must vanish for £ =, .

The terms in Eq. (62) simplify to:

(1+e§)
Z1r(11) - 21(11) T

-ele3+ie2

_ ej(e,-ie))

%1r(12) - Z1r(21)

-ele3+1e2

: 2
i} 1ele2(l+e3)

+

“1r(22) T %1(22)

-ele3+1e2
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which together with Ej. (62) are the equations which Nelson derived for
single span shaits (reference 14). Thus, the results for the symmetry
cases of the shaft can be used for or extended to the problems in which

the interior support e:sentially replaces one of the end supports. It should
be noted here that Eq. (62) and associated expressions for zlr(ll)’ zlr(lZ)’
zlr(Zl)’ and zlr(ZZ) could be worked into relatively simple design formulas
in terms of specific support conditions, such as translational supports or
rotational supports, especially in cases for which the shear deformation,
rotational inertia, and gyroscopic terms are neglected; i. e., when

e, T e, T ey = .

EXAMPLES

To illustrate the existence of many quasi-matched interior support
impedances yielding a ""best' vibration response behavior, and to show the
manner in which the impedance at each support is calculated, some specific
examples will be studied.

Three-Support Shaft System with Specified Interior Support Configuration

As a first example, consider a shaft with both ends having the same
configuration, and with its interior support consisting of both a translational
and a rotational spring and damper unit of negligible mass as indicated by

KlT , KlR , ClT’ CIR' This shaft system is shown in Figure 17. Consider
an infinitesimal shaft element at x = 21 ; all forces acting on this element

are also shown in Figure 17.

Since, from Figure 17, all forces are assumed to be in the positive sense,
the following force equilibrium condition exists at x = ﬂl as

?(21-0) - F(L,+0) = -ﬁ(!zl)

and

CypY {8 K 1Y, (2))
-R(ﬂl) =
CirY2e (€ )¥K g Y, (2))

If the above relationships are restated in Laplace transform form,

;(21-0) - ;(£1+o) = -E(!zl)

and
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X
z;.lﬂl Cr K 1 ZEUZI'
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jl
12=21, .‘
F(4,-0) F(2,+0)
- R(L)) R = Reaction of the
R‘lﬂ' interlor support
2 (4))

Figure 17. Three- support Shaft System WIith Specified
Interior Support Configuration.
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R()) = s ()

1
0 C1R+EK

IR |

If this expression is substituted back into the first relationship for the
force equilibrium conditions at x = {. and if this expression is compared
with Eq. (13), which may be written s

~ ~ # ~
F(¢,-0) - F(£,+0) = sZ,(£,)Y(2,)

it is concluded that

#
Z (L,)= , 63
() . (63)

o
O

IR IR

which is the interior support impedance. If Eq. (61) is used and if Eq. (62)
is satisfied, the values for KIT’ KlR . ClT’ and ClR can be obtained;
the "best'" vibration response possible for the shaft supported by the type
of supports shown in Figure 17 will result, provided that the impedance

values of the end supports are known.

Three-Support Shaft System with Floating Ring Damper Assembly as the
Interior Support

A second and more complicated configuration of the interior supportis
shown in Figure 18. In this case, the impedance of the interior support is
as follows (see the mathematical derivations in “.povendix J):

~

4 3
s"M_M, Cts"M_M, (K, +K_)+s[ (M_+M, )K_(K +K_)+M_K,K ]

#
|3 2
Z (1)) =| s7M, C+s"M, (K, +K )+s(K,+K_JCHK_ K, +K K _+K K_)

0

1
+s[ (M +M K, (K, +K )#M_K K _]+K K _C+= K K K_
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43 Mg, My are masses

Ka, Kb' Kc are spring constants
/xz C is damping coefficient
/,
-
— - - - - - i - >
| X
7 = #,
Ka
TrrrrT I
Mp
c Kp
Kp

2, .

Figure 18. Three- support Shaft System With Floating Ring
Damper Assembly as the Interior Support.
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This rather general configuration can be used to represent a wide variety
of actual support configurations. Inthis case, it was selected to serve as
an idealization of the floating ring damper bearing assembly (reference 8).
Again, Eqgs. (61) and (62) should be used to establish the '"best'' values for
M, M’b' K ,» Ky, K_and C.

C

Three-Support Shaft System with Specified Support Configurations

A third and more specific shaft system is the one shown in Figure 19. For
simplicity, all supports are assumed to have the same configuration. The
support impedances which can be derived in the manner shown in Appendix
I can be expressed as follows (see Eq. (63)):

) )
| [T 1
# Zo(11) 0 Corts Kot 0
Zo(o) e | E
1
ot Zo22)] | Cor*s Kor |
[ 1 1
4 Zyy O Citts Kit 0
Z () = = 1 L . (64)
e Z1(22)] . Cir*s Kir
[ 1 1
4 Z2(11) 0 Corts Ko 0
ZZ(QZ) = = 1
Y Z2(22) 0 C2rts Kor |
Since
z 0 Lz 0
g | ™ | w5 -
0 55 0 N Z22
! =No 2z

sten z1<(11)=Ezk(11)' Z1(22) 1(22)

where k=0,1, 2 and s " iw.
By substituting Eqs. (64) and (65) into the quasi-matching condition as

expressed by Eq. (62), the '"best" values for the support parameters for
the shaft system shown in Figure 19 can be obtained. Thus,
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1 . i
— [ ie e (l+e )- (e e3 +1e ) 22](C1T-;K

w

1 lT)

’\/5[(1+e§)-(ele§+iez)Q“J (Cp- =K, g) -

2 ]
(eyegtie;) [{Cp- o Ky pN(Cp- S Kyp)] *

[ (1+e§)(QZZ+ielelel)-2e3(cz+1e )Q, +(e1e2+1e )(Q -Q,,95,) -
(el+ie2e§)] =0 (66)
where
2 ) 1
(l+e3) _Zlelﬂgz-ﬂl)
Q.. = ) (€,)e -1 :
11 # & # 2(11)\"2
det[Clli-ClZI‘z(Fl)] -
: 2 . ]
1ele2(l+e3) -21e1\/<:(22-ﬂ1)
Qo2 L

= T Lonyllz)e
det[Cll+C12TZ(ﬁl)] -

e

Qe " —FFr 7 7F {'(ezﬁel)rz(u)uz)e
det[C“-i-Clzl"z(Ql)]

#  # # 2 -Zielﬂﬂz-ﬂl)
det C“+CIZI‘Z(Q1) =-eje;|e 1"2(“)(92)+1 -

-2ie Nw(l,-£ )
ie, [e ! 2 1r2(11)<£2) - 1i| 5
# 1

Loyl = [ 7 7 } {(”eg)[“’aczlx'%xm)*
det

-Zielﬂfz-fl)

ﬂez-iel)] A

'CZZ+§2(QZ)C12

181132

i i i
- (Cop- 5K )} “(e)e “e 2NCop- T K p(Cor- 5 Kor)-
2
e, tie e ,
(e tied) N



-~

dtéﬂﬁﬂ# -'21+elc-iK HNGIC, - - K +
€ 2(£5)C 5| = -ieg E( o1 5 Kop)|| e2tiwlCog- 5 KoR)

ie, i
[1‘ N (Cor- 3 KZT)] [eleZR- ° KZR)}

w

As can be seen from the above expressions, the only unknowns involved

are KIT’ KlR’ clT’ ClR of the interior support, provided that both end
support configurations are given. Hence, Eg. (66) provides a means of
establishing the values that should be used for the unknowns KlT : KIR :

ClT , and ClR

interior support in the shaft system shown in Figure 19. The interesting

point here is that the set of values for KlT ; KlR 5 ClT ; ClR required to

satisfy Eq. (66) is not unique. This permits a wide range of selection of
these parameters to match the feasibility and availability of various damper
and spring materials and configurations.

in order to satisfy the quasi-matching condition for the

For a shaft system similar to the one shown in Figure 19, but which has no
rotational spring and damper units attached to its supports, the quasi-
matching condition of the interior support can be written simply by setting

KkR=CkR=0 and k=0, 1, 2, in Eq. (66):
i E
Cir-oKptQ=0 (67)
where
- Nw 2
Q= 2 (l+e3)(Q,2+1e eZQ“) 2e3(e hel)QlZ +

2
1ele2(l+e3) (e, e5tie;)Q;,

2 . 2
(e e hez)(le-QlIQZZ)-(el+1e2e3) ]
# # #
Qi 9y Q) det C“+C121"2(ll) have the same expressions as in
Eq. (66),
ie e2(1+eZ

) i
rZ(ll)(QZ) = T lg ¥ L = 2 (CZT - ZT) (e tie
det[ 2(Iz) }

2
283) |
-C,,t Ci2

# f # -ie e2(1+e§) ; o
fet(Cant Z(QZ)CIZjl = (Cop-3 Kpp)Hle mieyes)

w

82



The quantity Q is a given constant which relates to end configurations,
shaft characteristics, and rotating speed. Eq. (67) demonstrates the
usefulness of the transmission line analogy by quasi-matching; ClT and
KlT are the only unknowns appearing in a linear equation and can be
determined directly.

In the cases for which the interior support is placed in close proximity of
the right end support, Eqs. (66) and (67) can be used also for establishing
the optimum impedance terms of the interior support by letting FZ( ] l)(12)
=0.

Simplification of Quasi~-Matching Conditions by Neglecting Rotary Inertia,
Shear, and Gyroscopic Effects

It can be verified that the differential equation accounting for the bending
effects in the shaft only can be obtained from Eq. (7) simply by setting

e, = e, = e;= 1. In practice, if the rotating speed is not extremely high,

the terms for rotational inertia, shecar deformation, and gyroscopic effects
can be neglected. When the above argument is used, the quasi-matching
equations for a shaft with one interior support may be simplified accorg-
ingly. With reference to Eq. (62) and Figure 16,

22y 22y 21 (1) TN Z 12) 21 0(21) " 21 (11) 20 £(22) " 212(12) 22 0(21) " 170
(68)
where
5 -2iN( 2,9 )
“1e(11) T 210" Layale -
1
1 . -2iNll,-0))
ﬁr02)=zlﬂzn:=:;‘ (1)1 1y(Lp)e H(1-1)
1
2i -2iNw{L,-2)
“12(22) © *1(22) T Lanlzle Ve
1
2,1 ,) [ -2ide,-0)
a =-|e 1"2(11)(22)+1 -ifle rZ(ll)(ﬂZ) -1
ré(llﬂnz):zzi'[2(22(22)+izz(11ﬂ+(l+ix22(12)22(21)"2(11)‘2(22)'

22(12)"%2(21)" lﬂ
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- T

A, = -Li + iz2(11)+z2(12) I izz(21)+izz(22)] +

[

— -

1 +1iz

2(21)%2(22) | ! - iz2(11)“%(12)}

L

—

For the specific shaft configuration of Figure 19, the corresponding quasi-
matching condition can be rewritten in the following simplified form (see

Eq. (66)):

—IT[Zi-(Hi)QZZ] (Cyp- 2K )+ v;'[z-(m)ol J (Cig~ S K g) -

w

(14)(C - 18 K, (G g & Kjp) * LZ(szJ'in U
(Hi)(ofz'Ql1022'2012'1)} =0 (69)
where
: -21G (£,1 ) }
Q,=—|T (£,)e -1
1 Ai 2(11)42)
[ -2iNw (£,-4,)
Q, =‘i1‘ Lanlzle = *J
l _
LT . -ZiN/B(IZZ-Ql) .
Q,* _A_ -(1+1)r2(“)(!22)e + (1-1):'
1 -
-2iN© (0,74 ) -2iNw (£,-0,)
& = '[e T ¢ IJ ’i[e L) - {l
| i, 1 1
Lt "A:{Z [‘f“—’(czn' 3 U s KZT)] -
(1+i) [(CZT-I;KZT)(CZR SKop) t 1} }
B, = -i[l + \/—é—-(CZT-i;KZT)}[I +iNG (Cyp - i;KZR)] +

[‘ - \/—%‘ (Cap- iSKZT)J[‘ # VG (Cpp-t KZR)]
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For the simplified shaft configuration in which no rotational springs and
dampers are being used, a very simple quasi-matching equation for
determining optiinum damping and spring coefficients in the interior
support can be obtained. With reference to Eq. (67),

1 -
Cip-c¥iptQ=o (70)
where
@ = 2l 2(0,,410, H1N0T,70), 0,20,
2i-(1+1)Q -
22
Qll , Q’Z’ le have the same expressions as in Eg. (69),
1 21 1 .
1y (ﬁ)=——|:——(c --K )-(1+1)}
2(11)\"2 A, N 2T| @ &T
- 21 o .
by = - E'(CZT -5 Kpp) +(1-0)

Thus, fairly straightforward solutions have been obtained whick permit the
designer to obtain in a direct manner the spring and damping coefficients
required in the interior support for the minimum vibration response
operation of a hypercritical shaft on three flexible supports. To suit cases
other than those discussed specifically in this report, Eq. (68) can be
manipulated. Again, it should be noted that for the cases in which the
interior support is placed close to the right end support, Eqs. (68), (69),
and (70) can be simplified further by letting 1"2(11)(22) = 0. It should be

pointed out also that the effect of mass in the interior support can be
included directly in Egs. (66), (67), (69), and (70) by replacing the spring
coefficients:

- 2
KIT-(KIT-“’MI) 3
Kym = (Kym - ZM)
2T 2T ~ W M2l
K = (K -mZI)
IR 1R 1/
K, =(K -wZI)
2R 2R 2!

where M, and M, are, respectively, the mass of the support systems at

1 2
X = Ql and x = Qz, and I, and I, are, respectively, the mass moments
of the support systems about their center of gravity at x = fl and x = 22

of the shaft.
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Design Formula for the Shaft with Its Interior Support Placed in Close
Proximity of One of Its End Supports

For the case in which the shaft is being treated essentially as a two-support
system (i. e., the interior support is placed in close proximity of one of the
end supports), it is possible to develop a very convenient formula for the
determination of the optimum quantities (in terms of quasi~-matching) which
the interior support must provide for a minimum vibration response of the
shaft. In this case, it is assumed that e ~e, =e;= 1 . If the impedance

of the interior support is considered to act in a translational fashion only,
the impedance matrix of the interior support can be written as follows:

5 2

# Cit-5(Kypo M) 0
Zy(4y) =

0 0

Substitution of this condition in Eq. (70), and letting 1“2(“)(22) = 0, results,

after some algebraic work, in the following formula:

oy 3 3/2 2 241/2
R O LR -w}} T
[1%]
where C*
c - lTCs
1T
E A
y
w*R.b
0.) =]
C
S
M|
M, =
PARy
*
” _ K 1Ry
1T~
E A
y
E
e =/ X
& P

* * *
Also, C \ T’ M1 , and KIT are, respectively, the dimensional quantities

for the damping coefficient, mass, and spring coefficient of the interior
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support, and w* is the di:>.ensional quantity for the angular velocity of the
shaft.

Eq. (71) will calculate the optimum damping coefficients for preselected
sets of masses, and spring coefficients in the support in terms of the
angular velocity of the shaft. It should be note-! that the values for ClT

are independent of the impedance conditions of the end supports and that
the values for optimum damping for two interior supports placed close to
each end support are the same as that for one interior support placed close
to one or the other end support.
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support, and w* is the dimensional quantity for the angular velocity of the
shaft,

Eq. (71) will calculate the optimum damping coefficients for preselected
sets of masses, and spring coefficients in the surport in terms of the
angular velocity of the shaft. It should be noted that the values for Cl T

are independent of the impedance conditions of the end supports and that
the values for optimum damping for two interior supports placed close to
each end gupport are the same as that for one interior support placed close

to one or the other end support.
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CHAPTER 5

CONCLUSIONS

EXTENSION OF TRANSMISSION LINE ANALOGY

The transmiss.on line analogy can be extended to shafts having any number
of interior supports. However, the solution is considerably more compli-
cated for shafts having more than one interior support.

MATCHED END IMPEDANCES

For the shaft with both end impedances matched with the characteristic
impedance of the shaft. no intermediate support is needed to assist in the
minimization of vibration response.

QUASI-MATCHING

If it is physically impossible or impractical to terminate a shaft in its
characteristic impedance, quasi-matched end impedances or quasi-matched
interior supports (when end conditions are not available for optimization)
should provide good performance., Quasi-matching involves the selection
of support conditions in such a way that the predominant I"ll term of the

reflection matrix vanishes, The concept of quasi-matching is based on the
assumption that exp(-ez'w/J (ﬂl-ﬂi_l)) <<'1 , which is true as  increases.

ONE OP’ [MUM INTERIOR SUPPORT

When the shaft and end support impedances are not matched and when only
one interior support is used, two approaches may be employed to assist in
the minimization of vibration response:

1. If both ends have the same configuration, the interior support may
be placed at the midspan, provided the conditions of this interior
support obey

L)) = Trgy(ey) =0

as indicated by Eq. (62).

2. If one end support is different from the other, the closer the
matched intermediate support is placed to one of the ends, the
more effectively it will minimize the vibration response of the
shaft with provision that:

a. If the interior support is placed close to the left end, it should
be arranged such that r‘li(“)(ll) =0.

b. If the interior support is placed close to the right end, it
should be arranged such that I} l_(11)(2 1) =0 . The equation
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for rlr(ll)(ﬂl) = 0 will have the same form as Eq. (62),

except that 21 (see Figure 4) indicates the actual location

of the interior support.

TWO OPTIMUM INTERIOR SUPPORTS

When the shaft and end support impedances are not matched, the use of two
matched intermediate supports placed close to the ends of the shaft is
recommended. This is equivalent to letting n = 3 for the shaft system
shown by Figure 4, in which ﬁl ; QZ should approach 0, 23 , respectively,

and the 13t and the an interior supports should be designed in terms of
configurations which satisfy the conditions

Tigan)) =0
and

Lr11)2) =0

In other words, only the incident wave exists on [ll , EZ] , which is

almost equal in magnitude to [0, 23] , namely, the whole portion of the

shaft.
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APPENDIX A

MATHEMATICAL DERIVATIONS OF THE ROTATORY
AND GYROSCOPIC EFF ECTS

In Figures 20, 21 and 22, a right-hand screw convention is used to indicate
the positive directions of the applying torques on the differential mass
element of a rotating shaft, If it is assumed that the transverse deflections
('Y‘fl and Y"l‘z) of the shaft during vibration are very small and that the

center of gravity, o, of the differential mass element coincides with the
axis of the shaft, the position of this element will be completely determined
by the coordinates Y’h and Y’{Z of its center of gravity, o, and by the

angular rotations, Yzl and YEZ g

The conditions assumed here correspond to the case of a vertical shaft
when the weight of the differential mass element does not affect the
deflections of the shaft. Under these conditions, if W equals the weight
of the differential mass element and if only the elastic reaction of the shaft
is taken into consideration, the equations of motion of the center of gravity
of the differential mass element are as follows (see Figures 21 and 22):

In -X3 direction,

Inertia force = Y-VYT?_“
In -XZ direction,

Inertia force = k.4 Y,iltt

where L= pAdx .,
8

The equations of relative motion of the differential mass element with
respect to its center of gravity, o, will now be obtained by using the
principle of angular momentum, which states that the rate of increase of
the total moment of momentum of any moving system about any fixed axis
is equal to the total moment of the external forces about this axis. In
calculating the rate of change of the angular momentum about a fixed axis
drawn through the instantaneous position of the center of gravity, o, the
relative motion alone can be taken into consideration.

In calculating the components of the angular momentum, the principal axes
of inertia of the differential mass element will be taken. The axis of
rotation, oo, is one of these axes. The two other axes, oa and ob, will
be any two perpendicular diameters of the element.
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X ———;dx"_

Figure 2I. Projection on Plane X,X5-

| ]
£* ImY22¢
12 22 =

Y;(projoction of angle ¢)

h:.

X N1y —

Figure 22. Projection on Plane xlxz.
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Let

I'm = mass moment of inertia of the mass element about the
axis oo,

Im = mass moment of irertia of the mass element about a
diameter.

Ohserve that

I'm = ZIm

I'mwo = component of angular momentum about the axis oo,
-Imyzlt = compenent of angular momentum about the axis oa,
ImY§2t = component of angular momentum about the axis ob.

Since Yil and Y’EZ are assumed to be small, then Y?.lt and Y?’:Zt will be

approximate values of the angular velocities about the diameters oa and
ob. If components of the anpular momentum on the fixed axes oX'2 and

|}
oX3

gravity, o, the resultaats of the angular momentum in the X3~ and X,-

are projected through the instantaneous position of the center of

directions can be obtained. It is shown that cosY§2 and cosY§1¢8 1 and
that smY?Z ~ Y’EZ and sinY’il B Y’gl .

In the X3-direction, with reference to X1X3-p1ane projection (see Figure
21),

- = = [} o - 5 =T

(-1, Y% HcosY3,) (1w NsinY3,) & -1 Y4 -I) o Y%,

In the X
22),

(I, Y3 (cos Y% )-(I] w MsinY% ) = 1 Y4, -1 o V%,

Z-direction, with reference to XIXZ-plane projection (see Figure

Then, frorn the principle of angular momentum and since I;n = lIm, the

following can be shown:

In X3-direction,

_d
-F;.I - gt— (-ImYﬁlt-I;non’EZ)

or
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In X,~direction,

= _d.. b <T! 9
FEZ - i (ImYZI‘Zt Imonél)

or
F,‘él S ImY§2tt-ZImon)5 1t

If T ie the moment of inertia of the cross section of the differential mass
eleinent,

n

I

i pldx

or

I' =21 = 2pldx
m m

Then, the above expressions for moment of momentum may be rewritten
as:

In X3-direction,

F4) = oI} pdxtelo pY%, dx
In Xz-direction,
F3, = oY}, dx-2lo pY% ) dx

which were shown in Figures 2 and 3 in Chapter 1,
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FEI = ImYﬁltt+ZImqu§2t
In X,-direction,
_ d ,
310 ;t— (ImYEZt-I'monE l)
or
Y " I Y3207 im0 Y31t

If T is the moment of inertia of the cross section of the differential mass
element,

Im = pldx

or
= =
I' =21 = 2pldx

Then, the above expressions for moment of momentum may be rewritten
as:

In X, -direction,

3
TR T P
In Xz-direction,

F3p = pl¥p dx~2lo oY% dx

which were shown in Figures 2 and 3 in Chapter 1.
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APPENDIX B
IMPORTANT FUNC TIONS

s J ‘[*‘—z—l)]z [+< —z—‘>]

VT

e

€2
1

where = -is and Wy, =W for steady-state condition.

# r-iele3 -iez # Pie3 =1
Ci1 7 Cs2 ®
i 1 -ie3 _el -eze3
1 o -1 o0
# # # #
Cp2 = i Ca s C;.
LO "l L l
ie l/e W 0
3 1 #
c, = &
# 1 -e /e2 0 w3/2
C, ==
+
2(l+e3)
I L . W20
C_ = C+ Cf = Up
0 -1 0 W

where p is an arbitrary real number which, once chosen, is the same for
each p.
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N =

characteristic impedance of the rotating shaft

# #-l
=Culn
I eZ-eZe2
2 .2 173
1+e2 (ele3+1ez) -e3(elez+1
( 2 ) l+e§
ez+e2e4 ez-eze2
2 173 .2 173 .
-e3(e1e2+1 ) elez(e2-1ele3)
lte
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APPENDIX C

MATHEMATICAL DERIVATIONS OF APPLYING BOUNDARY
CONDITIONS AT SUPPORTS

GENERAL SOLUTION

The general solution of the equations of motion is shown in Eq. (10) as

o Ca . - o
; lé f) é é ’I’Ux) #(*) q

sy 11 12 : q
~ | |# # # 4 # # _
_FJ LO C, 4 _CZI CZZJ | 0 R(-x)i | T

and is written out as

i

A . T S
(x) == CY C“R\x)q‘rClzR(-x)r'
’

1

# (8 # _# #
ix) = C, CZIR(x)q+C22R(-x)r ]

.t the general solution is applied to each span, the following set of __
equations can be obtained with integration constants Qs Qo oeeo qj-l 3

Ej’ qjx:_’ qj+l’ veen Qg G Ty Tos eee s rj-l’ rjﬁ’ rjr’ rj+1'

r o1 T (see Figure 4):

For [0, 21] R

101



21
For [ajk : lj] .
o~ . DA U . S
Y(x) = e Cy C“R(x)qu+C12R(-x)rjr ,

>~ # (¢ # _ # # _
F(x) = C; CZIR(x)qu+CZZR(-x)rjr :

APPLYING THE BOUNDARY CONDITION AT x = 0-0

~ # o
-F(0) = 8 2,(0) Y(0)
# #
If x = 0 is substituted in the general solution for [C, 11] and if R(0) = I,
then
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~ L h[H o # ‘
¥(0) =2 C 1Cy19*C,Ty
>

o ¥ [# #
F(0) = GGy, a,+C,,T,
/
and then substituting back into the boundary condition,
#r# # # 1 # r# #
~Cy C219,*Co27y| = “Zo(O)ECy[cxlq1+Clz 1]
or
# # #-l # # # #

"|C2191*C2271| = Cp Zo(0)Cy| Cy19)+C,T,
By direct matrix algebraic operations,

#
FZF

¢

— Cf ZzC 0 F =
No y

Hence,

# # g # #
-[€219,%C;571 | = %(0)] €1 ,9,%C),T)

or

¥ ¢ # |_ |# 4 L
C21%%0(0)Cy1 |9 ¥ C2%%4(0)C 5|7 = 0
By definition (see Appendix B),

-1 o)+ 1 o] # -1 0
C,,+(0)

o 1 0o -1

£(0)

By premultiplying )
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Since

1 Ol # |1 0 # A
A =EAE=A ,
0 -l 0o -l

# % # - # 8 # |
~C222y(0)C 5 | 9)#| -C; ¥2y(0)C )| 1) = 0
If the "reflection matrix" (looking to the left) at x = 0 is defined as
¥ # # = # A # 1
Tol0) =1 =C3,*Zo(0)C 5 | 7| C217%(0)Cyy)

then the preceding equation may be rewritten as

#
q, = I‘O(O)rl

which forms the basis for Eqs. (72). If this expression is substituted back
into the original general solution for [0, ﬂl] R

R R N
Y(x) = ¢ C, [c R{x)(T,(0)T)+C, ,R(-%)T

11
or
~ ] #[# # # # # # _
Y(x) =§Cy C“R(x)l"o(O)R(x)+C12 R(-x)r1
By defining
# ¥ # #
Ly(x) = R(x)T,(0)R(x) for [0, ¢,] ,
then

& 'BAEA. # # _
Y(x) =;Cy C“l"o(x)+C12 R(-x)r1
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Similarly,

= #1# 4 # # _
F(x) = CfLCZIIb(x)+CZZJ R(-x)rl

APPLYING BOUNDARY CONDITIONS AT x = QL JERITNZ 4 =T E soas ]

If the general solution is substituted directly into

~ ~

¥(2,-0) = Y(4,%0)

then

L S S T N I S _}
s S, CHR;Qj)qj+C12R(-.QJ.)rj =5 S, Cl1R‘\!Zj)qj+1+C12R(-£j)er

or

A S B SR S S S S
Cp RULHGHC HR(-2)r;-C | Rif ., ~C o RI-E)Ty, =0
j=1,2, ..., n-l

which forms the basis for Eqgs. (73). If the general solution is substituted
directly into

~ ~ # o

F(£.-0) - F(£.40) = sZ (£ 5
F(£;-0) - F(£;+0) = sZ(£)Y(4))

then

## # ¥ # |4 _ # ¥ 4 # # # _
= (g \ = = -
CfC21 Zj(ﬁj)CyC11 R{{.}q.+ CCsy, Z.(ij)CyC12 R({ IZj)rj

#
If C;' is premultiplied and if C

TN }# NP
[c?_l- {08 )| RUHT- |-Cppth(0)C, | R(-0 )T

— #o
C,,R(~f )r.,., =0 j=1, 2, .. . , n-l.

o
Ca1RiEpa 41 ~CoaR{=E )T



This equation forms the basis for Eqs. (74).

APPLYING BOUNDARY CONDITIONS AT x = £n+ 0

~ # ~
F(2_) = sZ (2 )Y(¢ )

If x = £ _ is substituted into the general solution for [£2 ., £,], then

n n

> Ht £ _ # # _ )
Y(¢ ) =;Cy C“R(Qn)qn+ClzR(-f )r

R

n

N
(2,) = Cf[czlR(Qn)qn+CZZR(-Qn)rn] N

If these expressions are substituted back into the boundary condition
equation, then

A N 2 S T B
CZIR"ln)qn+CZZR(-Qn)rn - zn(ﬂn) ClIR(Qn)q'l'1+CIZR(.'In)rn

which may be rewritten by solving for ?n as:

_# # # o # 14 _
r, =R I}C22+§nun)c12] [CZl-gnun)cll] R('Zn)qn

If the reflection matrix (looking to the right) at x = ln is defined as

# # ﬁ # o # g #
I‘n(in) - -C22+ n(ﬂn)CIZ CZl- n(ﬂn)cll '
then

_ #

T = R({)T (L )R(L) ,

which may be rewritten as

- ¥ _

Tp = Tn(0)q,

by defining

# # # #
I"n(x) = R(ln-x)l"n(ﬂn)R(Qn-x)
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#
The next to the last equation forms the basis for Eqs. (75). If ;n = l“n(O)'a_n

is substituted back into the original general solution for [ﬂn-l : ﬁn] , then

= V¥ [ ¥ % &
Y(x) = = Cy Cll+-ClzI‘n(x)R(x)qn
Similarly,

~ # 1 # # # #
F(x) = C, C21+C22I‘n(x) R(x)q_n

Before going any further, all the equations obtained from boundary
conditions of all supports are summarized as follows:

-

# # _ # ¥ _ & K # -
CllR(ll)ql+C12R(-ﬁl)r1-CllR(ﬂl)qZ-ClzR(-ﬂl)rz =0 (73-1)
# # K # _ ¢t _# 4 _

C, R(£,)3,+C ,R(-1,)T,-C| | R{L,)T;-C ,R{-L,)T; = 0 (73-2)

# 4 # #

P " _ _ _

Cp R )G O RIS )75 1= CpRU L )5p=CppRI5 )Ty = 0
(73-(j-1))

# # _  # # _ ¥ ¥ # # _ .

Cy RIL)T, +C) ,R(~£ )7, -C) | RI)T,y, -C R(-L )T, = 0 (73-3)

bk ko W b _

CpRU L )9 O 2RO )T "G RUE )9y C R, )7y =
(73~(n-1))
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" b1k T# bo1E
[Czl'glul)cu] R(2y)q;- ['C22+§1(21)C12] R(=£y)r,-

' S SN S
C, R(£,)3,-C,,R(~L )T, = 0 (74-1)

oy RYE Ty
C,17%,(,)Cy | R{E,)a,= |-Cypt2,(L,)C 5 | RI-L,)r, -

'R S T S
C, R(£,)d3-Cy,R(~L,)F, = 0 (74-2)

# " # 14 _ # " o4 -
¥ # _ # # - .
Co R(;_ )35 -CppR=L;_ )T = 0 (74-(-1))

ATPAN AN TR L
[Czl‘ j(zj)c“J R(L)q;, - [-c22+ j(ij)Clz] R(-L)T, -

VI SR SN S |
Cp RUL)Tjy ~CopRI-L )T,y =0 (74-j)

, b1 F " Y _
[CZI-Qn-l(Qn-l)cll] R, )0 [}C22+¢n--l(£n-l)C12} R(-Lpe1)7per -

#o# R _
Co R, )9, -CppR(-L )T =0 (74-(n-1))
_ b
r, = Ihl0)e, (75-n)
where

108




# N RN #
r,(0) = [-c22+z0(0)clz] [CZI-QO(O)CIJ

# # # # #
I-‘n(gn) = [-CZZ+¢n(En)C12]-1{CZI-Qn(En)CIJ

# # 4 #
I‘O(x) = R(x)l"o(O)R(x)
# # # #

L (x) = R(£ n-x)l"n(ﬂ n)R(ﬂ o

Now, Egs. (72-1), (73-1),and (74-1) will be considered first. If (72-1) is
substituted into (73-1),

# _ # # #o.. 0t # _ 4 # _
R(-2,)r, = [C“I‘O(Ql)i-clz} [C“R(ﬂl)q2+C12R(-£l)r2]
If (72-1) is substituted into (74-1),

# "R S S # # o
{ [cu-tl(n 1)c“] R(£,)T,(O)R(L )~ [-c22+§1(nl)c12]} R(-f )T,

= CZ R(II)EZ+C22R(-£l)rZ
Again, if the underlined terms are substituted,
# # # g # # # R # # # -1
Co2*tCaiTolty)| -2,(2)) [C12+Cllr0(£l)J [ClzJ'C 1Toly )}

# # #

x(c (R(2,)8,#C ,R(=0 )T, | = C, R(L,)q,*+C,,R(=4,)T,

or

Fo# #
7|
-10[###]10§10###
o Co1tCaaloley) | * | 1“1)0 i, C111C 2oL y)
' Vo
[c +c12r0(11) { J | R(2,)3,4C R(—Ql)rz]
id
C

-1 0 #( -1 o]l # # s
= R(£,), C, . R(-£,)T, ,
0 LR U A R B B L
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so that
# # # # # -1 A # # _ % # _
[C +C221‘0(£ )jI[C -l~C12 0(2 )] +zl(2 ) |:C12R(£1)q2+clIR(-Il)r2

' S S S
= C,,R(£,)3, + C,R(-2,)T,

It will be shown in Appendix D that

A # ¥ # ¥ # # -1
ZOQ(X) C21+CZZI‘(x) C11+C121"0(x)

or

Foo# b4 # i
2,02 = [C21+C T, )][c +C |, T2 )]

Hence, by substituting,

A 'R TN T USSRt N SN S S
[%bl(ﬂl)+zl(ﬂl)] [CIZR(Ql)qZ+CllR(-£1)r2:| y [szR(Ql)qz+C21R("1)’z
By observing that the total impedance at x = £1+0 , looking to the left, is

912(21) = 91(11) +8 oglfy)

then

# #

. bo# #o# _
= C,,R(L,)3,+C, R(-2 )T,

%12(’21)[C12R(11)32"011}‘('21);2
Solving for EZ ,

! . FlafF A 14
2, = R(-£))[=Cpp#8),(£,)C 5| 71| G, -2, ,(8))Cy, | R(-2 )T,

By defining the reflection matrix at x = 11 » looking to the left, as
# # # # #

- Jay -1 E
Lply) = [ C22+ZIQ(RI)CIZ] [021 912(11)011]
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and

# # # #
T (%) = R(x-2 )T ,(2)R(x-2,)

the previous equation can be written as

_ # E
q, =T ,(07, . (72-2)

If Eq. (72-2) is substituted back into the general solution for [21 v £,

~  F [ # # ¥ _
Y(>) = ;Cy C“I"M(x)~l-C12 R(-x)r,

Similarly,

~ #[# 4 ' I
F(x) = C;|C, I (3)+Cpp | R(-x)T, -

If Eqs. (72-2), (73-2) and (74-2) are used and if the same mathematical
operations as before are followed, the following set of similar expres-
sions can be obtained:

o # [# # # ]_1
10(¥) = | C21*CaaTp(x)] | C1¥C1pT (0)

%21(22) total impedance at x = £,+0 looking to the left

2,(0,) + 2,(8,)

#
I‘zl(lz) = reflection matrix at x = £, looking to the left

# AR #
['sz+ zz“z)cxz] [Czl' zﬂ“z)cu]

# # # 4
Tp(x) = R(x-,)T,,(£,)R(x-L,)

#

63 = ru(o)?3 (12-3)
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= L H[E # # ¥ _
Y(x) =-;Cy C“r‘u(x)-r(:lZ R(-x)r3
= #[# # # # _

F(x) = C; CZII‘Z'Q(x)i-C22 R(-x)r3 .

Now, if the same mathematical operations are followed again, Eqgs. (72-3),
(73-3) and (74-3; can be solved; this must be repeated until the solutions

of Eqs. (72-(j=1)), (73-(j=1)) and (74-(j-1)) are obtained. These are
expressions associated with waves traveling to the left.

Similar mathematical ocperations can be used in the derivations of expres-
sions associated with waves traveling to the right; however, it is suggested
that the right end of the rotating shaft will be considered first. That is, if
Eqs. (75-n), (73-(n-1) and (74-(n-1)) are used and if Eq. (75~n) is substi-
tuted into Eq. (73-(n-1)), and so on. The important relationships derived
in this appendix are summarized in Chapter 2, Eqs. (15)-(22).
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APPENDIX D

MATHEMATICAL DERIVATIONS FOR IMPEDANCES
IN TERIMS OF REFLECTION MATRICES

The general solution for [0, £ ] canbe written as

e AL # # _ ]
Y(x) = CY Clll"o(x)+C12 R(-x)rl (76)
>
o ## # # 74 _
F(x) = Cf[CZIFO(xHCZZ] R(-x)r1 : (77)
x-0 x+0
— l E——3—>x

# Flx)

ZD{U:'

777777

"___ x

Figure 23. Forces at x on [O,I'].

1

~
Since F(x) is in the negative direction at x = x- 0, the impedance
relationship at this point can be expressed as (see Figure 23):

o~ # ~
-F(x) = sZM(x)Y(x) (78)
where
#

ZOQ(X) = total impedance at x = x-0 on [0, £,] looking to the left.

From Eq. (76),
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' ¥ # LIRS
R(-x)rl =8 C“]I‘o(x)+C12 CY Y(x)

and substituting back into Eq. (77),

o A L T R | T I O
F(x) = 8C; |C, Ty(x)+C,, || €y T+ Cp, |77 €27 ()

If this expression is compared with Eq. (78), it can be concluded that

" BTH b T b Tk
ZOQ(X)'= -Cf Cz].l"o(x)*i‘C22 Clll"o(x)+Cl.2 ("y
or

g # #. # # # #

000 Ca T(x)+C;5 | = | Cy Ty(x)1C,, |

If the matrix relationships in Appendix B are used, then

1 0| # # 1 o] #
AN N O N Y
-1 of # # -1 #
= - 0 szl‘o(x)+ . CZl
1 0
Premultiplying ’
0o -1
1 0 1 oif# # # 1 off -1 # # #
. ﬁoﬂ(x) A [clzro(x)m“] = - o -1l o [szl"o(x)+C2;|.

Then, on [0, 21] ’

# ¥ #

A S TRE
Zog(®) = [C21+szro(x) C11*Cy2h(x)

If similar mathematical manipulations are followed, the remaining

expressions for total impedance on each interval, as listed in Eqs. (23)
in Chapter 2, can also be obtained.

One may begin with the right end span, i.e., on | nn-l . Rn] , first, and
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recalling that the general solution for [ln-l 2] is

o 1 ¥ [# # # # )

Y(x) = = Cy C11+C121"n(x)] R(x)qn L (79)
#

F(x) [ +C22F (x)] R(x)qﬂ . (80)

xt 0
x-0 x+0

ho—— - —-B - cosmmm— e cemed -— e - . DX.
F (x)

Zall,)
o 7777
Figure 24. Force at x on [ln-p 'tn].
o

Since F(x) is in the positive direction at x = x+0, the impedance
relationship at this point can be expressed as follows (see Figure 24):

o # ~,«.
F(x) = san('r f{nd (81)
where

#

an(x) = total impedance at x = x+0 on [Qn-l » £_] looking to the right.
From Eq. (79),
# ¥ # ¥ # o~
R(x)qn = 8[C11+C T, (x)] y Y(x)
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and substituting back into Eq. (80),

o~ AL A I T B

F(x) = sC, C21+C22I‘n(x) Cll+Clzr‘n(x) Cy Y (x)

When this expression is compared with Eq. (81), it can be concluded that

# # (4 # 4 A S S D
an(x) = C; C21+C221"n(x) C 1 1C 2T, (%) Cy

or
P L N . A N R
nr(x)—cf an(x)C‘/— C21+C22rn(x) C“+C12I‘n(x)

Now, the following equation can be written:

" ok
On [¢ 0], § (x)=]|C,,+C,,T (% C“+C12I‘n(x)J

n-1' "n

If similar mathematical steps are followed, the other expressions of total
impedance on each interval, as listed in Egs. (24) in Chapter 2, also can
be obtained.
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APPENDIX E

MATHEMATICAL DERIVATIONS FOR THE COMPLETE

SOLUTION IN MATRIX FORM

The general solution in Appendix C may be rewritten in matrix form as

follows:

) [ # [ # ko# ]
On [0, ¢ l] 3 s ZCY 0 1lC),; Ci> I"O(x)R(-x)rl
~ 7| # |14 # #o
F| |0 ch €0 | R(-x)7)
=] [ 4[4 # o |[# oo
On[ﬂj_z. ﬁj_l] P Y ;Cy 0 Cll C12 F( j-Z)ﬂ(x)R(-x)rj-l
~ 17| # # || # # o
LF |1 0 Cf- uCZI CZZ‘_ R(-x)rj_1
(=] [, # # [t # [ # L
on[f; ;> ayd Y| 135S, 0[S, Sy I"(j_l)ﬂ(x)R(-x)rkﬁ
~ || # || # # b
LF_ I 0 Cfﬂ LC21 CZZ_ L R(-x)rkﬂ-l
(=) [ ¢ # |[# N I
On[ajk, !j] b Y -S-CY 011Gy, Ci2 R(x)qu
~ |7 | # #o||# # }# IR
LF... I 0 CfJLCZI C,, LI'jr\x)R(x)qu-J
(=~ [, ¢ # ][ ' b
On[ﬂj, ﬂj+1] ) Y ;CY 0 [|Cy; ©Ci2 R(x)qj+l
~| | # # || # # oo
LF L E CfJ Ca1 Caz Lr(j+1)r(x)R(x)qj+1_
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on[e__,, 2]

If the terms in the column matrices in Eqs. (82) are examined, the

- - ~

=< R

R

1
8

#
C
1 4
#
0

Q= O

following relationships are obtained:

¥ # _ k¥ # _
I"O(x)R(-x)r 1= R(x)l"o(O)R(x)R( - x)r1

#

# #

#

= R(x)ro(O)'r'1

# #

I‘m(x)R( -x)?z = R(x~-{ l)1"12(1 1)R(x-ﬂ 1)R(-x)rZ

#

#

J
R
=

#

*x Q

Q

11

= R(x)R(-£,)T; ,(2,)R(-£ 1);2

# #

# # #
L _
R(x)I‘M(O) T,
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12

22 |

L.

R(x)qTl
'
fn(x)R(x)qn

(82)




# ¢ L _
1‘(j_1)2(x)R(-x)rj£ = R(x)r(j-l)ﬂ(o)rjﬂ

# t # # # #

1"jr(x)R(x)qjr = R(Ej-x)I"jl_(.ﬁj)R(Qj-x)R(x)'ﬁjr
# # # £

= R(-x)R(Rj)Fjr(Qj)R(Rj)qu

"
= R(-x)l"jr(O)qu
# # # #

I(j+1)(®R(x)q, ) = R(-x)r(j+l)r(o)aj+l

# # ¥ t
l"n(x)R(x)qn = R(-x)I‘n(O)qn

If the above-derived relationships are used, Eqs. (82) may be rewritten
in the matrix forms given by Eqgs. (26) in the text.

The integration constants of the matrix relationships given by Eqs. (26) are
determined as follows: thus far, the only boundary conditions that have not
been used are those at x = ajk’ the locations of the driving forces. The

boundary conditions at these points are as follows (see Figure 8 in Chapter
2):

\

Y(ajk-o) = Y(ajk+0) L (83)
F(ajk-O) + P(ajk) - F(ajk+0) =0 . (84)
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If x= a. and is substituted into the corresponding general solution, as

given by Eqgs. (82), then

| ~ TR # 4 ]
at x = ajk-O , Y(ajk) Sl Cy Cllr(j-l)l(ajk)+C12 R(-ajk)rjﬂ

. #rH " P
Flajd = Cg|Ca1T(- 1)@ Cra  RU-25d75

=il

###]#_

#
!
= T e )
and at x = a, +0 (a5) =5 cy[cu+clzrjr(ajk, R(a; )9,

~ KTh o # b
F(a,) = Cg Co1*Caalj2pd| Rlasp ),
If Eqs. (85) and (86) are substituted into Eq. (83), then
b T I .
Cr1T(j-1)ejd* Crz JR{=253)739=| €11 #C 5Ty (2 ) | Rlag)a;,

#

Premultiplying C.l

11
[##_1## ]# __[# by # ]# ~
I+C) ) CraTelapd) Rl2 595~ T-1)0(251 ¥ €11 Cr2 JRU-3y, )75 = 0
If Eqs. (85) and (86) are substituted into Eq. (84), then

# (4 # # ]# o~

C, Cer(j-l)Q(ajk)+C22 R(-ajk)rjf+P(ajk) =

I .

Ce[Ca1*C22Tj l25 | Rlaa, = ©

#
Premultiplying Cf1 ’

bk # b [## b #
Co17C22 () | R Tje ™ | C21 T(5-1)0( 250 FC22 [R(-23)T 59 = C¢

#
Premul tiplying C, i )
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B, o [# B b 1k
HCZICZerr(ajk)_] R(ajk)qu- r(j-l)Q(ajk)+c21022 R(-ajk)rj£=C
From Eq. (88) and Eq. (99),

# b _ [# SN }.1#-1u

T pladRla e, -R{-a  Jr;p = =| €51C11C1,-Cpp) "C¢ Play

It may be verified by direct matrix algebraic operations that:

R NER ]
Cr = 1%217C22%2%n |
RN R
C = LC21C11C12 - Caz]

Hence,
# # # # # .~

= - -1
R(-ajk)rjil = rjr(ajk)R(ajk)qu+C-Cf P(ajk)

#
From C], (Ea. (87)},

o # #]

# . # # #
-1 - | £ ==
[CIZC11+Fjr(ajk)] R(ajk)qu'[clzcl1r(j-1)¢(ajk)” Tig =0

¥
From CZ;. (Eq. (89)),

From Eq. (93) and Eq. (94),
b b [ ]k
R(a;,095, -T2 1)0 (B R=250 750 5| €217C22C12Cyy| G Plagy)

By using relationship (91) again, then

# # # koo

R(ajk)ajr =T(5-1) Q(ajk)R(-ajk)?j (+C +Cs¢ P(ajk)
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AL ]# _ [#_1# # #]# _
C2C21 #1250 Rl3;3d 95,7 C22C 21 (- 1) ¢ 2 TR (=240 759 2Ca

(92)

(93)

-1=
Cs P(ajk) $

(94)

(95)



Now, Eqgs. (92) and (95) can be solved simultaneously to yield:
# [# N ]_1[# b ]#_lz
= R(ajk) I-rjr(ajk)r(j-l)l(a'jk) I‘jr(ajk)C++C_ C; P(ajk) (96)
- # ¥ # # L LA
er = R('ajk) I-T, ( ),Q(ajk)r (a _]k) I‘(j-l)ﬁ(ajk)c-+c+ Cf P(ajk) . (97)

If Eqs. (72), (75) are again considered,

= 1
q, = I“O(O)r1 (72-1)
- ¥
9, = rlg(o)rz (72'2)
#
T-1)200)7. (72-(j-1))
— o
.o =I. (0)r. -3
qu Jl( ) it I (72 Jﬁ)
- ¥
Tip = I‘jr(O)qu (75-jr)
- # -
‘i1 " Nyenye (°)%+1 (75-(j+1))
- # -
a1 = Nne13e(090-) (75-(n-1))
- ¥
T, s a0y (75-n)
)

122



and subsequently combined with Eqs. (73), then

b [H ' Vb

r, = R(ll)[C“I‘o(IIHCIZ] [CIIR(ll)qZ+C R(- ll)rz] (98~1)

¥ bo# y vo# bo#

rj-l:R(Qj-1)[Cllr(j-2)!uj-l)+cl] [CuRu 1)95%CR(- L, 1)r]
(98-(3-1))

¥ oo bo# Vo 1

q, -R(ﬂ)[c 11C12 (J+1)r(‘ )] [clln(z )q +012R(2)r J
(98-(j+1))

o oK N . _

9 - R(-In-l)[cll+(':12rn(1n-l)] [CuR“n-l)%-l’LclzR('ln-1)’n-1}'

(98-n)

If Eq. (72-2) is substituted into Eq. (98-1), then
_ # ¥ # LA # # ¥ # _
r =R(£l) C11F0(21)+C12 Cii M(I )+C R(-ﬂl)r2
Similarly, if Eq. (72-3) is substituted into Eq. (98-2), then
_# # # # } ## #|# _
T, =R(£,)|Cy Ty p(€3)4C 5 | CraT2p(£2)7C 5 JR(-L5)Ty

If these calculations are continued until Eqs. (7<- jf) and (98-(j-1)) have
been reached, the complete set of relationships between integration
constants, r, is obtained.

If E¢. (75-(n-1)) is substituted into Eq. (98-n), then

_ ¥ ¥ # # # t # # _
G ° R(-ﬁn-l) C11+612rn(2n-1) C +C12r(n l)r(ln-l) Run-l)q'n-l
Similarly, by substituting Eq. (75-(n-2)) into Eq. (98-(n-1)) and continuing
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until Eqs. (75-jr) and (98-(j+1)) have been reached, the complete set of
relationships between integration constants, q, can be obtained.

By combining the previously derived relationships with Eqs. (96) and (97),
the complete set of relationships. is given as Egs. (26a) in the text.
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APPENDIX F

MATHEMATICAL DERIVATIONS FOR THE COMPLETE
SOLUTION IN TRAVELUING WAVE FORMS

If the complete sclution in matrix form is referenced, i.e., Egs. (26) and
(26a) of Chapter 2,and if the following matrix relationships are used, the
solution in traveling wave forms can be rewritten.

The relationships used below are:

(# 4], o k[ H]

I-A] =I+A|I-A . (99a)
(b wH] 0w oA

1- AB A= Al|l-BA . (99b)
#y #

R (a) = R(-0d) . (99¢)

The expressione for ?jﬂ and Ejr will be considered first (see Eqs. (26a));

i.e.,

# it # # -1 # ¥ 4] #
T © R(ajk) I-rjr(ajk)r(j-l)ﬂ(a'jk) F (a k)C tC_ C P(a )
Substitution of relations of Eqs. (22) into this equation yields

# ¥ 4 4 # N
= R(ajk)l:I-R(-ajk)I‘jr(o)F (- 1)ﬂ(o)m(ajk)]

Tit
A bR R
X R(-ajk)R(QJ)I‘Jr(Q )R(ﬂ -a, 1WC41C_|C; P(ajk)
#l##4# -1 T4 ## _1#
With relationship (99b), A|I-BA | ! = LI-AB A, and taking
# 4 # # # #
A=Ray) B = R(-a )T, (00T ;_1)g(0)

3 S - #o# # 4o~
T [Tl 0T - 1) (0) R(EJ)I:]r(Q )R(p 2;,JC, HR(2;,)C_| Cf " Playy)
(100)

Also frem Eqgs. (26a),

_ #o# # 1 b~
B "M 1T la )I‘.r(ajk)J I 1ef2dC.+Cy  Cf T Playy)
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Substitution of Eqs. (21) yields

o " ¥ =
q._ = R('ajk)[l -R(a. k) (j- )Q(O)I’ (0)R(-a ):]

)T
[# # # # # #] b=
X R(ajk)R(-ﬂj_I)I‘(j_l)ﬁ(ﬁj_l)R(ajk-lj_1)C_+C+ C; P(a

j
#l# #4# -1 # #4# = #
With relationship (99b), A|I-BA = |I-AB A , and taking

$o# bo# o # #
A=R(-a,) , B = R(a; )T )p(0)T;,(0)

_[## # # # # #
9, [ I(5-1)0(0)T; (0)] [ R(-5_ )T(51)g (- R385

# # 14,
R(-2;,)C, |C; Plajy) (101)

If Eqs. (100) and (101) are substituted into the last terms of the matrix
expressions of Egs. (26) on [Qj-l ‘ ajk] and [ajk' g j], the following

manipulations can be shown:

# # _ # # ¥ # #
R(x)I“(j_l)ﬂ(O)rj R(x)I‘( )Q(O)[I T. (0)1"(J 1)2(0)]

[### o4 #]#

R(£.)T. (£ )R(l -a, 1 C4tR(a, k)C C P(a k)

#i#HH -1 4 ## gt
With relationship (99b), A|I-BA = LI-AB A, and taking
# # # #

THenel® e B0
¥oo# Y " # R
R(x)r(j_l)l(O)er = R(x)| I-R(-¢ l)r(j-l)ﬂ(ﬂj-l)R(-ﬂj-l)rjr(o) R('Qj-l)
# # t# # # #|#
Ty ey) ROy )| RUDE, (R 8 2,08 40, k)C]c Play,).

¥ ## -l# # ### -1
With relationship (99b), | I-AB A= AlI-BA » and taking
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# #

# #
SV B=L (85 )R(-2; )T (0) ,

A = plxt 1o vi-1 (o
R 0-1)e ()7 =R(x fJ-l'LI Iﬁ(J'-l)RuJ'-l)rjr(fJ-l’J RIS

# # # # # # #_1'!
X R(Qj-ﬁ )I‘ (ﬁ )R(Q a )C +R(a J._l)C_ Cf P(ajk) . (102)
Also,
# # [# # # # # # # # #
R(-x)rﬂ: R(-x)LI-R(IJ) Jr(l JR(L . )I‘( )Q(O)] R(¢ )I" (ﬂ )R(Q -a )C +

# [# # # ] . L4, =
R(-x) I-Fjr(o)r(j-l)l(o) R(ajk)C_ C; P(a, k)

LALAINE ##4# -1
With relationship (99b), |[I-AB| A = A I-BA , and taking

b ¥oo# 4
A=R(L), B = T, (£)R()T; 1),(0) ,

¥k ¢ [## 4 # R
R(-x)rﬂ:{R(-x)R(ﬂj) -y (£)R(E)T 51, ORI | T 1 (4))

# # # ¥ # # ¥ # #o
XR( ij-ajk)C++R(-x) I-rjr(o)r(j-l)i(o) R(ajk)C_ C P(a k)
# 1.y ¥ #|F H
With relationship (99a), - A =I+A[l-A , and taking

# # #
A= r (0) (J 1)2(0)

# af # # # #
R(-x)r {R(I -x) |1 P (2 )I‘J l)ﬁ(l )] I‘jr(ﬂj)R(ﬁj-ajk)C++R(ajk-x)C_+
# # # ¥ # ## & L -1

R(- x)R(ﬂJ)I‘Jr(.Q JR(L . )r(j-l)ﬂ(o) I-Ruj)rjruj)Ruj)r(j-1)2(0)

# oL
XR(ajk)C_ C P(a k)

#l#4H#|_ -1
With relationship (99b), A |I-BA = |I-AB| "A, and taking



# # L

¥ 4
A= I (LIRUE)T 1 (0) B =R(),

¥ (4 [# booo# o f # #
R(-x)T;(=¢ R(2;=3) | I-Ty (€075 1) o(0) T3, (0) | R(E -2 5,)C  +

(4

# # #

# 4 Holh
R(ij-gj-l)r(j 1)2( e l)R(a j l)C_}+R(a.jk-x)C,_JCf P(ajk) . (103)

Also,
# # # SNRE. P
R(x)qu=R(x) LI'r('-l)Q(O)rj (0) r(j-l)ﬂ(O)R(a")C +

## #o]lF # 14,2

{# Bl 4 #[##]
With relationship (99a), LI- A_J =1+A|I-A , and taking

$o# ¥
A =T (0T (0),
¥ # |’# #o# #
R(x)q;,=R(x) { | I-T; th(o)r (0) 775 4y(0) R(a WC_*R(-a)C

# # 4 # ¥ #ol# =~
T -1 (00T (0) | I-T 51 (0T, (0)] ' R(=2,,)C, 1 G 'Pla,

#|#H# -1 ### -1 #
With relationship (99b), A|I-BA = {I-AB| "A, and taking
# # # # #
0)I. , B =1
A = I"(J 1)2( )IJI‘(O)

b (# # # #o ] b4
R(x)q;, = § R(x) | I-T5_130(0)T;,(0) | T 'T5 1 o(0)[R(a ) C_+

-5

# # # # # #1#.~
R(Ej)l“j r(ﬁj)R(Qj-ajk)C+J +R(x-ajk) C,(Cq P‘(ajk)

By following the same matrix algebraic operations as those used in the

#

evaluations of R(-x)?jﬂ , the preceding equation can be transformed to:
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# # [# # # o f
R(x)qu= R(x'i' ) (J 1)2(2 )F ( j-l)] r(j-l)f(ﬂj-l)

# ## # # # ]+
x -{. ~f. R . -a,
[R(ajk QJ-I)C-JrR(QJ EJ-l)ﬂr(QJ)R(QJ aJk)C+

# # 1 H >

R(x-ajk)C_*}Cf P(ajk) : (104)
Also,
PG SN S # [## i #]_1
R(-x)15,(0); =R{-xR(£JT (LIR(E ) | 1-T5_ 1y p(O)R(L,)T (L )R(L,)

[# I # 1 #_
%I Ty (OR(a)C_#R(-2)C, | Cp P(a )

# [# # #]_1 [# ##]_1#
With relationship (99b), A [I-BA = LI-ABJ "A, and taking

AN boo# #
A =T (LRI B = Ij;_)g(OR(L)

I (25

i # # #o# #] #_ >
XROE,~25 )T 1008 IR(2 ;85 )C #R(L;-2,,)C, | C Blay) . (105)

#oo# [# # # ] L #
R(-x)T;(0) =R(£;-x) | I- T3 (£)T5_y,(£))

Eqs. (102), (103), (104), and (105) are the complex entries of the right-hand
column matrix of Eqs. (26),

On[ﬁJ l; a‘]k] ’
() [ 4 [s [ # e
Y ECY 0 Cll C12 R(x)r(j-l)ﬂ(o)rjf
~| T #o# # _
. F. L 0 Cf‘ _CZI CZZ_ i R(-x)rjn |
On|a ﬁj] )
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) B ar ar h

o I | P A3
sy 11 12 jr

~[ 7] # # || # | O

F 0 Cs1|Cyy cZZJ R(-x)r‘jr(O)qjr

Also, if the identity of the various parts of Eqs. (102), (103), (104), and
(105) is observed, the following relationships can be obtained:

# _ # # o #o#o =
R(-x)rjﬂ = R(-x)l"jr\O)qj1_+R(a.jk-x)C_Cf P(ajk) (106)
L # # _# #o#o
R(x)qu = R(x)I"(j_l)ﬁ(O)rjﬁ+Pu(x-ajk)C+Cf P(ajk) (107)

From the above-derived equations, some useful functions related to the

concept of traveling waves can be defined. On Hj-l , lj] , the incident

waves, caused by the single driving force P(ajk), trav:ling to the right

and to the left, respectively, are as follows:

21 # ## =~

Ujjk(x) = R(x-a.jk)C_'_Cf P(ajk)[H(x-ajk)-H(x-ﬂj)] (108)
exists only on [ajk , & j]

< # ## >

Ujjk(x) = R(ajk-x)C_Cf P(ajk)[H(ajk-x)-H(ﬂj_l-x)] (109)

exists only on [ﬂj-l ; ajk]

If the expressions for incident waves are used, Egs. (102), (103), (104),
and (105) can be rewritten as follows:

On [Qj-l , ajk] ,
# # I [# # # ]-l#
RT3 1)0 (073 "RO-Ly ) [ X0 0)0 (W T8y ) Fso ) 80)
‘ pox <
x[R“J"IJ‘-1)Fjr“j)ujjk(“j’*”jjk“j-1) (110)
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# # ¥ # # #
R(-x)T ) =R(2;-) [1 T3, (4T 1y (n)] I (L))
> # # < <
XLUjjk(ﬁj)+R(£j'!j-l)r(j-l)ﬁ(ﬂj-l)Ujjk(Qj-1)] +T (%) (111)
On [ajk’ ﬁj] ,
¥ # [# # # ]_1#
ROJGG RO 5 ) T e 0T34 5-0)) gonpeltyen)
¥ # > < >
N [R(l LT (2)T Jk(zj)+ﬁjjk(nj_l)]+ T, (%) (112)
#o4 bt o f
R(-x)Pjr(O)qu=R(£j-x) [I T (2 ) (J l)ﬂ(ﬂ_]) I‘Jr(ﬂ_])
> # # < ]
X[Ujjk(‘j)m(fj“j-1)F(j-1);z(fj-1)Ujjk“j-1) : (113)

From an examination of the above expressions, the reflected waves,

originated from the single driving force P(ajk) , traveling to the right and
to the left, respectively, can be defined as follows:

> [# # ; ]_1
Ui 0=RG-2500) | BTGy 00 8- 0558500 | T g-1)088500)

¥ # > <
[R(l -{. l)r‘ (2 )U k(l )+U. k(!lJ 1)] [H(x-ﬂj_l)-H(x-lj)] (114)

< # ## # o f
T 2)=R(L;x) [I-rjruj)r(j_ 1)1“,-)] Iy, (L))
> i <
x [ujjk(nj)m(zj-nj_l)r(j_ m(nj_I)Ujjkuj_l)][n(x-nj_1)-H(x-cj)]

(115)

both exist only on [Bj_l ' lj]

When the expressions for reflected waves are used, Eqs. (110), (111),
(112), and (113) can be rewritten in much more compact forms as follows:
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On [ f.J-l ] ‘ljk] »

# # _ >
RO 5100750 = Ugjpd)

LA -
R(-x)rjl = Ujjk(x) # Ujjk(x) .

o> >
R(x)qu = J_]k( ) + J_]k(x)
# 4 <<

(116)

(117)

(118)

(119)

Now, if the above expressions are substituted back into the matrix form,

the dynamic response on ”j-l ; ﬂj] can be expressed as follows:

On [Qj-l’ ajk] ,

o NN ¥l
Y Oy 0 G Crz||Ynd=
=~ || 4 ¥l # b= <
_FJ h 0 Cfd C,, G5, U‘.jk(x)+Ujjk(x)J

On [a,, £.],

n[aJk J]

[~ [ ¢ ## # ][> > ]
Y :C, 0[S, ¢, Ujjk(x)+Uij(x)
~ |7 | # # 1| # # ||«

From the following observations,

\Y%

ﬁjjk(x) exists only on [ajk’ ij]

<
and -ﬁjjk(x) exists only on [fj-l 3 ajk] ,
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additional terms may be included in the preceding matrix expressions
without changing their original nature, as follows:

On uj-l’ ajk] ,

[~ —1 # # 1 # # 1> 2 )
Y -S-CY 0 11C;;  Cp2 Ujjk(x)+Ujjk(x)
~ |51 # 18 |l < (122)
F 0 C.l|C C,, [|U..(x)+0 .. (%)
I f.a L 21 ZZ_H_ 3k jjk .J
O ar g L s
n | jk J]
(=] [ #][# ¢ 1> >
Y ECy 0 Cll C12 Ujjk(x)-l-Ujjk(x)
~ |71 # 41 # 4 << < (123)
F C C,, || U, (x)+U..
- ) i 0 Cf_ - Zl ZZJ ; JJk(X) JJk(x) ]
It is obvious that the above two matrix equations are completely
identical; hence, they may be combined as follows:
On [Qj-l , ﬂj] ,
=] [, 4 #][+# ¢ |[>> S
Y1 13Cy  04|C  Crzf| UpdxtUpd=)
~5| ¥ #||# bl < (124)
F| { O Cf C21 CZZ- _ Ujjk(x)+Ujjk(x)

This matrix equation suggests that the total traveling waves, originated

~4

from the single driving force P(ajk) » traveling to the right and to the left,

respectively, are as follows:

>>> > i

T = T () + Ty () (125)
and

<< < <

Ujjk(x) = Ujjk(x) + Ujjk(x) i (126)

Hence, the final expression of the dynamic response caused by the single
~

driving force P(ajk) on [{ j=1 [ j] is as follows:
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~| [, #][# v 1> ]
Y1 156 9 [[C11 Cizf|Uju®)
¥ e N | PRI | P (127)
FLOLY Cf[Car Caaf| Ty
If the superposition technique is used, the dynamic response on[lj_l , ﬂj]
caused by all the driving forces, ;(ajk) yk=1,2, ..., Kj), in this
span is as follows:
Incident waves on [{. ., £.] :
=177
T (x) = Z R(x-a;,)C,C{ P(aJk) [H(x 2y )-H(x-2, )] (128)
k=1
and
T (%) = Z R(a;-¥)C_C; 'p(a, 1 [H(ajk-x)-H(lj_l-x)] . (129)
k=1
Reflected waves on [Ij-l , lj] :
> M) »
U0 =) Tl (130)
k=1
and
«  4) «
T (%) = Z Tdx) - (131)
k=1
Total waves on [Ij-l ' £ j]
Ujj(x) = ; Ujjk(x = 2_, Jk(x) fka(x) (132)
=1 k=1
and
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U

U..(x) = o (X) = U.. (x)+U,. :
ik Zl i) Z Ujindx*U 5 2) k122)
The solution of the dynamic response on uj-l ’ Qj] is as follows:
[~ (6 ][4 #OIp>
Y| 56, ©|[C; Cpf|Tx
~T 8 k| (134)
. F 0 Cel|Cay  Caa||Ty®

Now, the traveling wave forms in other spans of the shaft will be
investigated.

On [£;_ 5, 0; ] (see Eqs. (26)),

=] [ 4[4 p|[¢ 4 _
Y 3Gy O [|C11 Ciz||ROITj2)0(00T
= | # #{|# # ¥

- F-J - 0 Cf- __CZI CZZ_ i R(-x)rj_l -

From Eq. (26a), the following equation can be obtained by substitution:
# # - # # # # # # -1
R(X)P(j_Z)I(O)rj_1=R(x)1"(j_2)2(0) R(ﬁj_l) Cllr(j-z)n“j-l)"clz

v oo b1 _
X [Cllr(j-l)!uj-l)+clz R("Zj-l)rjﬂ}

From Eq. (82),

Y # # # #
R(T( 5. 2)g (005 “ROX-L5 )T 5 gy (150 RUE ) =25.)

' # [t ¥ i
XCnT(y-2)e85-1*Crz| [ CiaT(j-1)045-14Ch2

$o# LA L
X 8 Cllr(j-l)l(lj-l)+cll cy Y(ﬂj_l+0)
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N
C,,=C

# #
. 1
From Eq. (134), and since C.2C; 1112 *

¥ # -
R(x)I‘(j_Z)!(O) T

4 4 4 TR, )
“R(x-; 50052y 20R(E; 1 =45 5) 1+CIIC12 (j-2)285-1)

oo :»> <<
x[c“c 54541 vJJ(QJ-l)]

The total wave traveling to the right on [lj_z : lj_l] , i.e., the (j-l)th

span, can be defined as follows:

>> ¥ #
T(5-1)4%) = ROOT5_50(0)7;

# # # # # #
or = R(x-lj_Z)I"(j_z)ﬂ(lj_z)R(ﬂj_l- Z)[HC Ci (J Z)I(Ij-l)] )

# 1 # > <«
X (135)

1275 (QJ V)t JJ(QJ 1)]

Sumlarly, the total wave traveling to the left on | 2 Rj-l] , i.e., the

(j- l) span, can be obtained as follows:

«« #
(J l)J(x) = R(- x)r
# # 44 4 # # >=> «
=R(Q -x) I+C (‘121"() 2)1“; l) “ JJ(lzJ Pt UJJ(QJ 1)] . (136)

s . \th
Hence, the dynamic response on [£J 20 J l] , i.e., the (j-1)" span,

~
caused by driving forces P(ajk) » k=1,2, ..., Kk(j), on [Ej_l ) lj] ,

. span, can be expressed by the following matrix equation:

i.e., the )
[(~] [, # ][ # >
Y1 13 0 ]IS Cppf| T
~| e k|| # P S (137)
F‘ - 0 ij .C“ CZZJ _-ﬁ(j_l)j(x) |
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With the same mathematical manipulations, the following set of matrix
equations can be obtained:

) . th
On [!ZJ 3 ﬁj_z] , i.e., the (j-2) " span,
[ =] o4 # 10+ #o]> ]
Y1 1% % Ciz|| Y-
~ |7 # # || # # o -
F 0 C,.||C C U,. (x
] J ] fJ } 21 22_.L (J-l)_] |
where

<i< # ## # # -
T, . .(x)=R(£j-2-x)|tI+C Clzr(j_:;)ﬁ(fj_z)j\

(i=2)
. # > <«
X[CI 19129 (5- l)juj-z)m(j-l)j“j-z)]

: . ath
On [EJ 4° ﬂj_3] , i.e., the (j-3)  span,

« y AR A o» <
Us;(x)= R(£3-%) 1+C} )G, Ty (L) C11C12Ugyl83)4U,5(25)

On [ﬂl , 22] , i.e., the gnd span,
~] [ 4+ ][¢ ¢ |[>
Y1 158y 0 |1 CpaffUzy®
~ || # # || bl
LF 0 o} Lczl sz“Uz,-(x) d

where
« f Fh_ b # g
Uzj(x)=R(£2-x)I:I+C 16,27 11(22):] [Cl C, (22)+U (QZ)

On [0, ,Ql] , i.e., the 1 8¢ span,
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~
b 4

-3

where

<« #

~
F

Ulj(x)=R(I

shaft,

On[ (.,
.

<R -

-

ol

L
ans-
O =

L

[#
x)| 1

#

y

O

#
C

f

1 ¥
+C 11250

e

Q=

11

Q ==

21

Qj_l] (see Eq. (26)),

r

11

:Q:O#:

21

# [
R

>

12| U1

<<
T, ()

Ox QO=

22

12
# #

QOx QO=

22

¢ >
129258170, (4

<<

#

R(x)q

i+l

R(-2)T] 541)2(0)954

)

Similar mathematical manipulations can be applied to other portions of the

-

F{om Eq. (26a), the following equation can be obtained by substitution:

#

R(x)d;, R(x)

From Egs.

#
1=R(x-2j)

#
><Cl

From Eq. (134),

LA
R(x)q;,

#
R(x)q4

#

<e,,

_#
R(x-ﬁj)

|

#
Ll

# #

#

tC, r‘(l

(82),

#

12 jr

and since

bo# )
1+C 12T +1)r(2j)]

Yy
)| R(L;)a;,

¥ #

alt
C, +CIZF(J+1)I‘(2 ) Ct

e
(1)] .

##
17C 12

Jj
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The total wave traveling to the right on [ﬂj 'ﬁj+l] , i.e., the (j+1)th Spany

can be defined as follows:

>> ¥
Tsen)x) = Rlxjag,

¥ [# o4 ]_[>>> #1# &< ]
=R(x-))|C)1¥C T30y (L5) || Tjil85)4CY C 12038 - (138)

Sumlarly, the total wave traveling to the left on [2 j+1] , i.e., the
(J+l) span, is

« . _
Tse1)(%) = RO 2T (0)a5,

# # # [## S }_1
“ROL; 41 00Ty L RO 2 TFC ) CppT 1) (25)

[»> 4 1# «< ]
X Ujj(fj)+c IZ'GJJ(JZJ) ! (139)

Hence, the dynamic response on [ﬂ. : £j+l] , i.e., the (_j+l)th span,

~

caused by dl:-unng forces P(a. k) =1,2, ..., k(j), on [QJ 1 Qj] ,
i.e., the j span, can be expressed by the following matrix equation:
[ ~] [, ¢ #][# ¥ ]
Y ;Cy 0 Cll C U(j-l-l)j(x)
N L Y b || (40)
F 0 Cfl|C1  C22 U(j+1)j(")J

With similar mathematical manipulations, the following set of matrix
equations can be obtained:

. ., o th
On [Qj-l-l' 2j+2] , i.e., the (jt2) span,

- - -y

- - -

| [, #  #][# #o|[>>
Y |3C 0 {1 Crzl| Tjra)®
> (=] # # || # # DO
FI1°  %ffar ©2| Tje2)fx ) |

139



where

<< # # #
Uje2) 07 R 42 =0T 30y (2R (E 54272 54)
R = 4 1# w
X|1+Cy CIZF(J+2)r(9j+l) U(j+l)( ARY! O 5+1)5(85+1)
: . ., .\th
On [Qj+2' ﬂj+3] , i.e., the (j+3)  span,
<<< # # #
= (H -
(n Z)J(X) =R(£ n- x)r(n-Z)r(in-Z)R(Qn-Z Qn-3)
¥ # # ¥ -1 >>> #_1 # <<<
X|HCy C12r(n 2)rn-3)| | Yn-3)2n-311C11C 12V n-3){En-3)] -
on{f_,,%_ ] ,ie., the (n-1)™ span,
HEN T -
1 15% %I Sz Yin-10
~ T # ¥4 EIRIESS
= 8 ij _C21 szJ HU(n-l)j(x) d
where
« # ¥ #
(n l)J(X) =R(£ n- -x)I‘(n l)r( n- I)Run 1- n-Z)
[# F_ b4 ]_1[2> o f <<
XI*C1 12T 1)en-2)] | Yin-2)i{Ln-2)*C) ClZU(n-Z)jun-Z) .
On [ﬂn 1» £,], i.e., the nt span,
=] [0 w4 b
L Ecy 0 c11 ClZ Unj(x)
~ || # # 1 # # <«<
FJ i 0 Cf--CZl CZZJhUnj(x)J
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where

« ¢ i [# #oo b # ]_1
Unj(x)=R(ﬂn-x)rnun)R(ﬁn-‘qn-1) I+C“C121"n(ﬁn)

[>>> #o # =< ]
(n l)J(ﬁ )+C ClZ (n-1 )Jun-l) :

Again, if superposition techniques are applied, the total dynamic response

r~)

on any span due to all the driving forces P(a ) y j=1,2, ..., n, and

"k=1,2,..., Kkj), in traveling wave forms is as follows:

On[l l'ﬁi] , i.e., the ith span,
=] [, ¢ # ][+ ¢ [
Y| [5G, 0/C  Cp,f T
=158 k|4 bl (141)
LF‘ ] 0 Cf_ ‘_CZI CZZJ_UI(X)_
where
>> L >
-Ui(x) = Z Uij(x) ’
J=1
<« N«
U.(x) = Z Uij(x)
J=1

v
A
v
A
Y
A

The subscripts, i and j, for Uij’ Uij' Uij A Uij " Uij ’ Uij denote that:

=, the wave is originated from the driving forces in the same
span as where the wave is located.

f i ;‘ 3 the wave is originated from the driving forces in other spans

and is modified when the wave passes through supports into
the span under investigation.
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APPENDIX G

EVALUATION OF THE REFLECTION MATRIX OF A FIXED END

For a fixed end, at x = 0-0, the boundary condition is

Y=0

‘Hence, from Eq. (10),
o~ l# # # _ # # -
¥(0) =3 C_|C,R(0)q +C |, R(-0)F)| = 0

or #l#

al = ('C-

11€12)7) (<)

For an end support which is not specialized, it was shown in Appendix C
that
#

El = 1‘0(0)'17l

Comparing this expression with Eq. (142), it can be concluded that for a
fixed end at x = 0, the reflection matrix is

# #_. #

s
Ip(0) = -C11Cp,

Similarly, it can b~ proved also that
# #_l#
Llly) = =€)

for a fixed end at x = In
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APPENDIX H

NOTES ON SUPPORT IMPEDANCES

# #
To simplify the calculation of end impedance ZO(O) or Zn(ﬂn) , where

n = 2 for the shaft system shown in Figure 16, it can be assumed that Ao

and B, are rigid bodies (see Figure 1). It has been shown (reference 14)

#

that if Zc(xj) is the jth concentrated impedance, where ﬂn< x; < b, the
# -

concentrated right end impedance Zn(fn) may be calculated by the following

relationship:
# # # #
= ' = =
Zn”n) Z S (ﬂn xj)Zc(xj)S(fn xj) , X;on [Qn, b] (143)
J
#
Similarly, the concentrated left end impedance ZO(O) may be calculated
from
# # # #
ZO(O)=Z S'(-xk)ZC(xk)S(-xk) , X, on (a, O] , (144)
= .
¥ th
where Zc(xk) is the k' concentrated impedance, a< Xy <0, and
# 1
S(y) = ’ y is real ,
0 1
# #

and S'(y) is the transpose of S(y) .

# #
If both ends have the same configuration, i.e., Zc(xk) = Zc(1n+ lxkl ),
where a <x, <0, Egs. (143) and (144) can be used to calculate the con-

centrated end impedances as follows:

# # chl 0
Let Z (x,)=Z (¢ + |x.kl )= : a<x <0
0 Z
c22
If Eq. (143) is used and if kal =y, since X, 18 a negative value, then
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# # ¥ #
Z (8) =S'(-V)Z _Z(-y)

1 0 chl 0 1 -y
_'Y 1 0 Zc22 0 1
# Zen YZen
z (2)= : (145)
YZeir o Y ZenntZe
From Eq. (144),
# £ #H
- Qt
Z,(0) =8'(v)Z _s(v)
1 0 chl 0 1 Y
-Y 1 0 Zc22 0 1
chl Yz'cll
YZ YZZ t+Z
cll cll “c22
or
-
A 1 0 chl Yzcll 1 0
Z,(0) =
2
-0 -1 Yzcll Y chl+zc22 ' 0 -1
[ -
A Ze11 YZeq
Z,(0) = (146)
2 +z
Y2 Y ZentZe
If Eq. (145) is compared with Eq. (146), it can be concluded that
A #
Zy(0) =2 (2 ) (147)
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provided both ends have the same configuration,

With reference to Eqs. (57),

)
# boA _1[# At J
g2y = [-CZZ+ZIQ(£1)C12] C217219(2,)C L

¢ ! bl g
)= -c22+tlr(£l)clz Co17%8))Cy ] |

Y

A A A
z)g(2)) = Z)(2)) +2,(2;)

ANTRERATRES SN

A BRI
0g{ty) = | C21%C22T0) || €11%C12TolLy)
- = >
y SRR
2:l81) = [C21%C220 ) || € 14C 22l 8y)) J
¥ # # # )

Ty(£,) = R(£)T4(0)R(4))

4 # ¥ #
T,(2,) = R(£,-0,)T,(L,)R(2,-2 )

J
and

# #oa #7404 & # ‘
L(0) = |=C;,+24(0)C 51 71 Cy -24(0)C

" oA kT A
L(£;) = [-C35%2,(8,)C 51 1 C5-2,(£,)C )

Eq. (147) implies that %0(0) = tz(lz) ; hence, Eq. (152) gives

# #
FO(O) = rz(lz)

If {,-2,30, <ndif Eq. (153) is used, then, from Eq. (151),

147

(148)

(149)

(150)

(151)

(152)
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# #
To(f,) = T,(2,)

which also implies (see Eq. (150)) that

%OI(‘QI) = gzr(’zl)

#
From examination of the matrix form for ”,l(ﬂl), i.e.,
# iy
Zl('gl) i ]
| © Z1(22)
it can be shown that
A 1 0 Zl(ll) 0 1 0 Zl(ll) 0
Zl(ll) = =
or
A #

Z,(2,)) =2,(2,))
e . A - t
which implies that zl(ﬂl) = 1(ﬁl)
From the above relationships, it can be concluded from Eqs. (149) and (148)

that

# #
Tty =1 (8))

148




APPENDIX I

MATHEMATICAL DERIVATIONS FCR THE QUASI-MATCHED
IMPEDANCE AT THE INTERIOR SUPPORT

First, all related equations pertaining to the upcoming derivations can be
summarized as follows (see Eqs. (57)):

# # AR 4
rlr(ﬂl)z[-C22+élr(£l)C12:| [CZI'glr(cl)ClJ (154)
AIRENIRES NN (155)
A b ]
ng(Ql)z Co1tCo2 150} €1 ¥C T R(0) (156)
# # # #
T,(2,)=R(0,-0 )T (8,)R(F,- 1) (157)
' 4 Nt :
L,(0,)= |-C,,+4,(2,)C c,,-5,(0,)¢,, (158)
where
# Pz?.(n) 22(12)
Zz(ﬂz)'-'
“2(21)  *2(22)
¥ LU L)y,
ry(t,) =
(0),, Tty

If direct matrix algebraic operations are used in Eq. (158),
# )|

5(L,) = 7 F
det{ C, +§2(Q 12]

{eZeB-le (Zl)he 2 (22)
bt

“1Heza11)71%3%2(12)

Lel+‘ele372(21) %2(22) legtie; e32,11)7%2(12)
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l1+ie

miegtie)e32,011)7%2(12) 2%2(11)Me3%2(12)

X

tie,z

e tie e3Z21) %222) "%2f3ie2%2(21)M03%2(22)

(159)
Examination cf Eqs. (156) and (157) shows that

# # # #

T,(8,) = R(2,-2 )T,(£,)R{L,-£ )

[ -ie Vo (2,-2)) -ieNo (0,72))

e ! L(2;)),¢
-iel\/(—a)—(QZ“Ql) -eZK[J (22-21)

e ,(0;);,¢

-

e Nw (£,-2,) "e"«/m(ﬁ“ﬂ)1
e 2 2 1 rz(ﬂz)lze 1 2 "1

-e,Nw (2,-£,) -e,Nw (£,-2,)
e 2 2 "1 1_,2(22)226 2 2 1

The only element not being modified by an exponential decaying function in
the above matrix is the one in the first row and the first column. For
quasi-matching, only the element not being modified by an exponential
decaying term needs to be considered; i. e.,

# # # #
rz(z 1) = R(!ZZ-R l)1“2(122)11(2?_-!2 l)

e (8, O

From Eq. (159),

1 2 .
L(85)),° [# ¥ J [(”e3)(22(22)+“"1e222(11))+
det |-

C,.+4,18,0C,,
2,
(ee3tie)(2512)%2(21) %2 (11)%2(22) -
e3(e2+iel)(z2(12)+z2(21))-(e1+ie2e§):| . (160)
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where

#

#
det [—c22+§2(22)c12]

= ~(legtie)eqz, ) 2p10)) (0203710252 1y ey 22 (22)) ¥

(e)tie ey 51y 252N 1-iep 251 1) o325 (1 2))

With reference to Eq. (156),

# # #
C,,7C,, (L)
A _ 1
-ie3 1 ie3 -1 e
= +
e) -e2e3- i e -e2e3J L
[ ( -2ie Nw (2,0 ) )
iejle 1‘2(22)ll -1 1
) -2ie Nw (£,-£,)
1 2°%1
I€1 (e L)y +1
Similarly,
[# o ]
G)*C) L))
- 1 - -
-iele3 -ie2 -iele3 --ie2 e
.l -ie3_ L-l ie3 I
| | ( -2ie,NG (£,-1))
-ie e e (L), !
= -2ie N (£,-4,)
1 27%
: - (e L(25), - l)

or
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# 4 # 2 -Ziel'JJ(ﬁz-ﬂl)
det|C, ,+C,,T5(L,)| = -e eq|e

L), t 1) -

-2ie Nw (2,-£,)
iez(e . 2, - 1) :

then,
# ¥ # -1 1
ChtCl)| 73
det[cll+clzrz(fl)]
-ie3 ie2
X
-2ie NG (£,-0,) ) ( ~2ie Na (£,-1,)
1 2 1 . 2 1
e L(2,), 1Y \-ieje;e . I“Z(QZ)“H
Hence,
. 1
tZr(ll) - % K #
det[C“+C121"2(ll)]
-2ie Nw (£,-1,)
2 1 2 71
(l+e3) e FZ('QZ)II -1
X
-Zielﬁ(lz-il)
i -e3(e2+iel)e I‘Z(IZ)ll + e3(e2-iel) =
-Ziel'\/r.:(lz-ﬂl)
e3(e2+ie1)e FZ(IZ)II + e3(e2-iel)
-2ie No (£,-¢,) .

. 2 1 2 1
1e1e2(1+e3) e 1‘2(22)ll +1 ]

From Eq. (155),

URESNURES AR

or
1:(11)  *1r(12)

“1r(21)  Z1r(22)
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(1+e3) ( -2ie NG (4,-4)) )
2y ¥ F ¥ © T(f)yy - 1
act [Cll+clzr2ul)}
e, -Ziel‘\/a)-(ﬂz-ﬂl)
7 7 -(e2+iel)e r2(12)11+(e2-ie1)
. det[CHJrGlzl‘z{ﬂl}]
e, -Ziel\/&-(ﬂz-fl)
7 # 7 -(e2+iel)e I“Z(ﬂz)“+(e2-iel)
det[Cll+C,lzI‘2(ﬂl)]
. 2 .
1e1e2(l+e3) -21e1'\/5(f;2-11)
z # e r£,),, +i
1(22) M 22
det C“+C12I‘2(11)

This relationship gives the expression for each element of #l r(ﬁ 1) , since

two matrices are equal to each other if and only if each corresponding
element of these two matrices is identical. Thus,

(l+e§)

21r(11) 2101 TTTF F F
det[c“mlzrz(ﬂl)]

-2ie Nw (£,-£,)
e ! : lr.z(fz)u")

. 2 .

_ ie e (1tey) ( -Zlel\/;(ﬂz-ﬂl) )

21r22) 2122 T F € Tle5),1
det[C1 l+C121"2(1 l)]

e

_ ) 3
1r(12) %11(21)” [# F ¥ }
det

Cy17¢2T()

-2ie NG 0=
xl:-(e2+iel)e 1 it L

Similar to the way Eqs. (158) and (159) are solved, Eq. (154) can be
expanded in complete matrix form,as follows:
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# 1

I 8y) = F y T
d‘“['c.zz’r 1r(’21)clz]

e,e,~ie +1e z -l+ie,z -ie,z

2%371€22 1 21)H®3%1 1(22) 2%1r(11)"1%3%11(12)
X

e tieresZ r21) 21r(22) “ie3tie €3z (1) %1x(12)

iegteeszian fir(12)  MMe2%1r11)M%3%11(12)
X

e tie; €32y r(21) " %11(22) -eze3tie 2 a1)tie3Z 4 (22)

Hence, the quasi-matching condition T r(ll)ll = 0 gives Eq. (62)in the
text where zlr(ll)' zlr(lZ) ’ zlr(Zl) : zlr(ZZ) can be calculated from
Eq. (161).
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APPENDIX J

MATHEMATICAL DERIVATIONS OF THE IMPEDANCE OF A FLOATING

RING DAMPER ASSEMBLY AS THE INTERIOR SUPPORT

With reference to Figure 18, a free-body diagram can be drawn for an
infinitesimal mass element at x = Il , as shown in Figure 25. When the

equilibrium condition at point @ is considered,
KcYc B C(th i th) ¥ Kb(Yb ) Yc) !

of which the Laplace transform is

~

K.Y, =8sC(Y, - Y )+ Ky (Y, -Y)

or
> sC+Kb ~
Yc = ——— Yb (162)
sC+Kb+KC
When the equilibrium condition at point @ is considered,
Ka(Yy = Yp) = MpYpee ¥ OV - Yoo + Kp(Yy - Y )
of which the Laplace transform is
~ ~t _ Z ~ ~ ~ ~ ~
Ka(Yl - Yb) =8 MY, + sC(Yb - Yc) + Kb(Yb - Yc)
If Eq. (162) is substituted into the above expression,
~ K_[sC+(K, +K )] ~
Y, = a BEE Y, . (163)

87M, C+s°M, (K, +K )+sC(K, +K )HK, K, +K K_+K K_)

When the equilibrium condition at point @ is considered,
MY et Ka (Y- Yy)
-R(¢,)) = ,
0

of which the Laplace transform is
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Fd-0) F(2 +o0)

—o— Kal¥, -¥,) "
MpYbi I
Yc 1 J
__] e IR
C‘Y.'.YC') Kb(Yb°Yc) Yc

Tol N J
5

Figure 25. Free -Nody Diagram for Forces Existing
at x =.¢' of a Floating Ring

Damper Assembly.
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-E(’Ql) =

~ ~

2
(s“M_ +K_)Y -K_Y,

o

If Eq. (163) is substituted into the above expression,

5 4 3
8 MaMbC+s MaMb(Kb+KC)+s [Ma(Ka+KC)+MbKa]C
3 2
-;(!2 . 5" M, C+8"M, (K, +K )+s(K_+K _)CHK_ K +K K +K K,)
1
L 0
5 ]
+s [(Ma+Mb)Ka(Kb+Kc)+MaKch]+SKaKcC+KaKch ;
1
d
(164)
When the equilibrium condition at point @ is considered,
~ (=1 >
F(£,-0) - F(¢,t0) = -R(¢,)
If Eq. (164) is substituted into the above equation,
o~ o
F(QI-O) - F(Ql+o)
st M Cts MM (K, +K )+92[M (K. +K M K _]C
aM‘b a "b'''b "¢ a‘t"a ¢ M‘b a
s3M, C+s°M, (K, +K )+e(K, +K JCHK K, +K K _+K K_)
=8
8 0
1
+s] (Ma+M.b) Ka(K.b+KC)+MaKbKC] +KaKcC+ 5 KaKch :
Y(ll)
0
J
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If the above expression is compared with
o~ o~ # o
F(2,-0) - F(£,+0) = sZ,(£,)Y(¢,) .

it can be concluded that the support impedance at x = 11 is

#
Z,(¢,)

-

s *M_ M, C+s>M_M, (K +K _)+s°[M_ (K +K J*M K ] C

MO M (K HR (K 1K JOHE K K HKCK,)

L 0
s[ (M, +M)K_(K, +K_)+M, K K ]+K K _C+ = K K K_
' 0
0
(165)

158



DISTRIBUTION

US Army Materiel Command

US Army Aviation Materiel Command

US Army Aviation Materiel Laboratories

US Army R&D Group (Europe)

US Army Research Office-Durham

US Army Test and Evaluation Command

US Army Medical R& D Command

US Army Combat Developments Commmand, Fort Belvoir

US Army Aviation School

US Army Infantry Center

US Army Tank- Automotive Center

US Army Armor and Engineer Board

US Army Aviation Test Activity, Edwards AFB

Air Force Flight Test Center, Edwards AFB

US Army Field Office, AFSC, Andrews AFB

Systems Engineering Group (RTD), Wright-Patterson AF3
Systems Engineering Group (SEFDP), Wright-Patterson AFB
Air Force Flight Dynamics Laboratory. Wright-Patterson AFB

Air Force Aero Propulsion Laboratory, Wright-Patterson AFB

Naval Air Systems Command

Chief of Naval Research

Marine Corps Liaison Officer, US Army Transportation School
Ames Research Center, NASA

Lewis Research Center, NASA

NASA Scientific and Technical Information Facility

NAFEC Library (FAA)

Defense Documentation Center

US Government Printing Office

159

o p—

— O NN = o e W) W = e e BN e e DN NN = N e e = N W U O



UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security clessification of title, body of ebstrect and Indexing annolalion must be entered when the oversll teport ia classilied)

1 ORIGINATING ACTIVITY (Corporate author) 2a ACPORY SECURITY C LASSIFICATION
University of Virginia UNCLASSIFIED

School of Engineering and Applied Science 26 cmour

Charlottesville, Virginia 22903

3. REPORY TITLE

Analysis of the Dynamics of Superc ritical Shafts on Many Flexible Supports
Using Transmission Line Analogy

4. DESCRIPTIVE NOTES (Type ol report and inclusive dates)

S AUTHOR(S) (Last name. firet name, initial)

Liu, Y. N.; and Friedericy, J. A.

6. REPORT DAYTE 7a. TOYAL NO OF PAGES 7b NO OF REFS
September 1966 176 21
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)
AMC(T)-01-66-16
b PROJECT NO USAAVLABS Technical Report 66«44
<. Task No., 1M!121401D14414 "0 QInER nERORT NO(S) (Any other numbers that may be asaigned
d

10 AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Department of the Army
U.S. Army Aviation Materiel Laboratories
Fort Eustis, Virginia 23604

13 ABSTRACT

This report presents an analysis of the dynamics of supercritical shafts on
many flexible supports in terms of a so~called "transmission line analogy." The
primary objective of the study is to develop a direct analytical approach for
optimizing the support conditions, in terms of mirimum flexural vibration
behavior, for supercritical shafts flexibly supported on massespring~damper
units at different locations along the shaft. The approach is based on the travelin
wave concept as used in electrical transmission line theory. The governing
differential equation used in this analogy includes terms which account for the
effects of rotating inertia, gyroscopic motion, and shear deformations.

If the solution of the governing differential equation is manipulated by means
of rather complicated matrix algebra, the dynamic response of the rotating shaft
can be expressed in traveling wave form, which leads to the criterion for
impedance matching and optimized support conditions. The impedance at ach
supporting location corresponding to minimum vibration response must equal the
characteristic impedance of the shaft, This condition is termed a ""matched"
condition,

A weaker than optimum form of impedance matching is the '"quasi-matched"
condition, i1 which only the predominant term of the reflection matrix for a
support is made to vanish,

A rotating shaft with three supports is used to illustrate the matched
impedance concept for determining optimum support conditions for multisupported
hypercritical shafts, |

DD "% 1473

Security Classification



T
Secunty Classiéication

14
KEY WORDS

—

LINK A LINK B LINK C

wT HOL{TQ

ROLE wTY ROLE wT

éupercr-itic'al shafts

elcctrical transmission line analogy
minimum f{lexural vibration behavior
traveling wave concept

impedance matching

optimized support conditions

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over
all security classification of the report. Indicate whether
‘“Restricted Data’’ is included Marking is to be in accord
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200. 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 s author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifice-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriste, enter the type of
report, e.g., interim, progress, summary, annual, or {inal.
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of suthor(s) as shown on
or in the report. HEnter last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year; or month, year. 1f more than one date appears
on the report, use date of publication. )
7a. TOTAL NUMBER OF PAGES: The total page count

should follow normal pagination procedures, i.e., enter the
number of pages containing information. a

7b. NUMBER OF REFERENCES Enter the total numbef of
references cited in the report.

8a. CONTRACT OR GRANT NUMBEP: If sppropriste, enter
the applicable number of the contract or grant under which
the report was writfen :

8b, 8¢, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

92, ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the documen: will be identified
and controlled by the originating activity. This number must
be unique to this report.

95. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this nymber(s).

TNSTRUCTIONS

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim
itations on further dissemination of the report, other than those
imposed by security classification, using standard statements
such as:

(1) ‘'Qualified requesters may obtain coples of this
report from DDC.'’

(2) ‘Foreign announcement and dissemination of this
report by DDC is not authorized.’’

(3) ‘‘U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

"

(4) ‘'U. 8 military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

”

(5) ‘‘All distribution of this report is controlled Qual-

ified DDC users shall request through

= If the report has been furnished to the Office of Technical
Services, Department of Commercs, for sale to the public, indi-
cate this fact and enter the price, If known.

1L SUPPLEMENTARY NOTES: Use for additional exptans-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the depe tal project office or laboratory sponsoring (pay~
ing for) the research and dévelopment. Include address.:

13. AESTRACf: Entér an abstract giving & blief and factusl
summary of the documgnt indicstive of the report, even though
it may also appear eisewhere in the body of the (ochn‘fll re-
port.’ If additional space is required, a centinuation sheet

, shall be sttached.

It is highly desirable that the abstract of classified re-
ports be unclassified. Each parsgraph of the sbatract shall
end with an indication of the military security classification

- of the information in the paregraph, represented as (TS), (S),
(C), or (V).

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that charscterize a report and may be used as
index entries for cefaloging the ropc‘n. Key weords must be
selected so that no necurity classification is required. Iden-
fiers, such as equipment mode! designation, trade name, mili-
tary project code name, geographic location, may be used as
key words but will be followed by an indication of tcchpicnl
context. The assignment of links, rules, .and weights is
optionsl. .

UNCLASSIFIE D

Security Classilication

604366



