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FOREWORD 

The following constitutes a technical report concerned with research 
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the funds for typing the manuscript and publishing the report under 
Task 1M121401D14414,  Purchase Order AMC(T)-01-66-16.    They would 
also like to express their gratitude to Dr.  R.   T.  Eppink for his invaluable 
suggestions and Mrs.  Ann Symmers and Mrs.   Barbara Little for typing 
the final manuscript. 



ABSTRACT 

This report presents an analysis of the dynamics of supercritical shafts on 
many flexible supports in terms of a so-called "transmission line 
analogy".    The primary objective of the study is to develop a direct 
analytical approach for optimizing the support conditions,   in terms of 
minimum flexural vibration behavior,   for supercritical shafts flexibly 
supported on mass-spring-damper units at different locations along the 
shaft.    The approach is based on the traveling wave concept as used in 
electrical transmission line theory.    The governing differential equation 
used in this analogy includes terms which account for the effects of 
rotating inertia,   gyroscopic motion,   and shear deformations. 

If the solution of the governing differential equation is rnanipuiated by 
means of rather complicated matrix algebra,   the dynamic response of 
the rotating shaft can be expressed in traveling wave form,   which leads 
to the criterion for impedance matching and optimized support conditions. 
The impedance at each supporting location corresponding to minimum 
vibration response must equal the characteristic impedance of the shaft. 
This condition is termed a "matched" condition. 

A weaker than optimum form of impedance matching ir the "quasi- 
matched" condition,   in wlrch only the predominant term of the reflection 
matrix for a support is made to vanish. 

A rotating shaft with three supports is used to illustrate the matched 
impedance concept for determining optimum support conditions for 
multisupported hypercritical shafts. 

The study has led to the following specific conclusions: 

1. The transmission line analogy can be extended to shafts having 
any number of interior supports.     However,  the solution is 
considerably more complicated for shafts having more than 
one interior support. 

2. For the shaft with both end impedances matched with the 
characteristic impedance of the shaft,   no intermediate 
support is needed to assist in the minimization of vibration 
response. 

3. If it is physically impossible or impractical to terminate a 
shaft in its characteristic impedance,   quasi-matched end 
impedances,   or quasi-matched interior supports when end 
conditions are not available for optimization,   should provide 
good performance. 

4. When the shaft and end support impedances are not matched 
and only one interior support is used,   two approaches may 
be employed to assist in the minimization of vibration response: 

m 



a. If both ends have the same configuration, the matched 
interior support may be placed at the mid-span. 

b. If one end support is different from the other, the closer 
the matched intermediate support is placed to one of the 
ends,  the more effectively it will minimize the vibration 
response of the shaft. 

5. When the shaft and end support impedances are not matched, 
the use of two matched intermediate supports placed closely 
to the ends of the shaft is recommended. 

IV 
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CHAPTER  1 

INTRODUCTION 

OBJECTIVES 

For any rotating shaft,  there exists a series of discrete speeds at which 
centrifugal forces resulting from mass unbalances cause progressively 
greater shaft deflections.    The elastic restoring forces developed as the 
shaft deflects are overcome by these ever-increasing centrifugal forces. 
Extremely large deflections and even destruction of the shaft and its 
bearings can result from operation at these speeds,   called critical speeds. 
For this reason,   designers of power-transmission equipment normally 
avoid the problem by operating shafts below their first critical speed. 

There are,   of course,   disadvantages to restricting operation to below the 
first critical speed.     For transmitting a given horsepower,  torque and, 
consequently,   shaft size must be increased as operating speed is reduced. 
In the case of long shafts,  the shaft size must be increased above the size 
required to transmit the torque simply to raise the first critical speed 
above the operating speed range;   alternatively,  the shaft size may be 
determined by the torque loading,   but additional bearings must be installed 
to support the shaft and thereby to raise its first critical speed.     The 
major disadvantage of these conventional practices, especially as applied 
to aircraft,   is the weight penalty. 

It has been shown that shafting can be operated consistently far above its 
first critical speed,   with consequent savings in shaft and support weight 
(references 5,   11,  and 21).    In short,   supercritical-speed shafting,  with 
its associated advantage in weight,   is a very practical and feasible means 
of transmitting power.    With today1 s high-speed power sources,   it is 
especially attractive,   sinr-e considerable weight could be pared from 
engines and bearings by transmitting power at the same speed as it is 
produced. 

Transmitting large horsepowers with small-diameter shafts presents 
the problem of controlling shaft vibration at the critical speeds.    Success- 
ful operation of flexible shafts is usually achieved by balancing to reduce 
dynamic forces and also by introducing support conditions (spring, 
damping,   mass) which tend to minimize runout amplitudes and/or bearing 
loads at the important critical frequencies (references  11 and 21).    Both 
of these techniques should be employed simultaneously to bring about 
smooth shaft operation through the critical speeds.    Although the 
provision of appropriate spring,   damping,   and mass coefficients (imped- 
ance) at the supports,   alone,  may permit the rotor to negotiate the 
critical speeds in an acceptable manner,  the ease with which this may 
be accomplished will be greater for the better balanced (less crooked) 
shaft.    Balancing of a supercritical shaft may be achieved by either the 
proper attachment of counterweights or the placement of greater restric- 
tions on the fabrication tolerances of the shaft. 



From a theoretical poi it of view,  different mathematical formulations 
(reference 8) have to be developed to implement the two techniques.    The 
analysis of a supercritical shaft supported at various points along the 
length of the shaft by flexible damping bearings is represented with good 
accuracy by the steady-state solution of the equation of motion for the 
beam vibrating in two mutually perpendicular planes.    This solution   has 
been used to simulate the performance of the rotating shaft under actual 
running conditions in which the shaft defects (unbalance,  and initial 
crookedness) provide distributed forcing functions.    The approach provides 
a means to study the effects of imperfections and balancing on shaft 
performance. 

On the other hand,  the solution can be interpreted also in terms of "a trans- 
mission line analog".    This approach is based on the recognition of the 
existence of an analog between the amplitude response of the vibrating 
beam and the voltage amplitudes in electrical transmission lines.    The 
shaft runout is treated as a series of deflection waves (voltage waves) 
traveling along the shaft (transmission line).    These waves are in part 
absorbed and in part reflected at the supports (loads).    In other words, 
the dynamic responses are expressed in traveling wave form along the 
shaft in a manner analogous to the treatment of electrical response waves 
in transmission line theory (references 3,   13,   and 16).    The transmission 
line analogy solution is particularly useful for the direct establishment of 
the support conditions needed for optimum shaft operation through the 
critical speeds. 

The purpose of this report is to present the development of a general 
analysis of the multisupported,  supercritical shaft in terms of the trans- 
mission line analogy and to indicate the usefulness of these tools.    The 
conditions of optimized supports corresponding  to minimized dynamic 
responses will be established. 

SCOPE 

The basic mathematical concepts upon which the transmission line analogy 
proposed in this report is based    were originally developed by Nelson in 
terms of a shaft on end supports only (reference 14).    Liu,   Friedericy, 
and Eppink extended this work to apply to shafts having one additional 
intermediate support (reference 8).    The studies discussed in this report 
are concerned with an extension of Nelson' s electrical transmission line 
analogy for supercritical shafts,  to include the effects of any number of 
intermediate supports.    The derivation of the equations of motion of 
supercritical shafts with respect to fixed reference axes incorporates the 
effects of rotational inertia,  gyroscopics,   and shear deformations. 

Independent of the University of Virginia work,   Voorhees and coworkers 
(reference 5) formulated their version of a transmission line analogy.     In 
this version the fourth-order differential equation of motion for beams has 
been reduced to an approximating second-order equation which is 
completely analogous to the second-order equation which governs electrical 
network behavior.    This reduction in order requires that a one-to-one 
relationship shall exist between moments and deflections of the shaft.    Such 



a relationship can only be brought about by the introduction of compromise 
boundary conditions at the supports.    However, the approach has the ad- 
vantage that all the terminology and computational aids developed for the 
electrical transmission line problem can be utilized directly in the design 
of supports for supercritical shafts.    The support optimization formulas 
in the Design Manual for Supercritical-Speed Power-Transmission Shafts, 
prepared by the Battelle Memorial Institute for the U.  S.  Army Transpor- 
tation Research Command and the U.  S.  Air Force Research and 
Technology Division (reference 2) are based on this direct approach,  and 
they are extremely convenient for designing supercritical,   power trans- 
mission shafting because of their simplicity and straightforwardness. 

In the transmission analogy of this report,  the fourth-ordev differential 
equation which governs supercritical shaft behavior is solved in an exact 
manner and the various component terms to the solution are worked into 
standing wave forms which are analogous to voltage wave forms.    The 
optimization of support conditions is then performed in the same manner 
as loads are optimized in the electrical transmission line problem. 
Usually,  the supports are formed with rotational and translatxonal masp- 
spring-damper units and these are interpreted as impedances to the 
standing waves. 

The development of simple formulas for the determination of optimum 
support values has been attempted;  however,  due to the complexity of 
the solution of the multisupported shaft,   a shaft with only one interior 
support has been used as a specific illustration.    The various formulations 
developed in the illustration should be useful in the design of optimum 
support conditions of supercritical shafts on three flexible supports and 
should complement the equations and results in the Design Manual men- 
tioned earlier.    The three support formulations of this report allow for the 
determination of optimum interior support parameters in terms of end 
supports which are not just fixed and simply supported,  but may consist 
of rotational and/or translational mass-spring-damper units.    Specific 
results can be found in Chapter 4 of this report. 

ASSUMPTIONS AND NOTATIONAL CONVENTIONS 

It is shown in Figure 1 that the mathematical model of a pris- 
matic shaft is embedded in a right-hand orthogonal normalized 
space coordinate system with fixed axes X.,  X,,   X_.    Let S_ represent 

the shaft with elastic curve S.    Let A- and Bn,  where the end supports 

are attached,   represent the end bodies with elastic curves   A   and   B, 
respectively.    A,   S,  and B coincide,   at rest,  with the intervals [a,   0], 
(0, i    ),   and   [ (.   ,  h],  respectively,   on the X.-axis,   where a<0<Jf   <b. ' n n 1 n 

A closed interval and an open interval with end points CK,   ß on the X.-axis 

are represented by [of,  ß]   and (a ,  ß),   respectively.   Except for their 
common connection (the shaft,   S_),  A    and B- are dynamically independent. 
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The intermediate supports are attached atx=   i. ,  j = I,   2,   ...,n-l, 

where 0<£   <f       .   .<£        <it    .    Force,  torque,  and motion along the 

X.-axis are assumed to be zero.    Constant angular velocity,   small 

transverse motion,  axial symnnetry,  and linearity are assumed through- 
out. 

Where C denotes complex numbers,   let C      denote the n-dimensional 

vector space over a field of complex numbers with the elements,   or 
vectors,   of C     being thought of as   "column vectors".    In the following, 
the appearance of a bar (possibly together with other symbols) over a 
quantity indicates that it is an element of C    for some n>l (usually n = 2). 

Let ASB denote collectively the bodies A-,  S-,  B0.    Let d(x) be that 

portion of ASB which,  at rest,   has X.-coordinate   x   on [a,  b] . 

A "mass element on [a,   b] "   is that portion of ASB which lies between 
d(x - dx/2) and d(x + dx/ 2) where dx   is small.    The normal to a 
differential mass element is the vector normal to   d(x)   at its intersection 
with the elastic curve,  with positive orientation being the same a.* that 
of the X.-axis.    (See Figures 2 and 3.) 

For pc ints on elastic curves A,   S,   B,   "position" as the vector is defined 
as follows: 

Y*   = 

YT 

Y! 

Y*     +   i Y* xll        1 x12 

Y*     +   i Y* 1Zl        1  I22 

This is a continuous function of   x   and t   to C2,  i.e. ,   2-dimen8ional 

vector space over a field of complex numbers,  where x   is on   [a,  b] . 
"* " denotes the unnormalized variables.    Y?.   and Y?2   are the pro- 

jections of the c>flections at a general point of the elastic curves A,  S,  B, 
ontheX.X, —,  X.X_-planes,   respectively.    The normal to a differential 

mass element has projections on the planes X.X-,   X.X_,  which are 

inclined at acute angles with respect to the X.-axis.    These angles of 

inclination are   Y?. ,   Y?,,   respectively,  where the positive senses of 

rotation are from Xy,   X»,   respectively,  to X..    (See Figures 2 and 3.) 
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Similarly,   "force" as a vector is defined as follows: 

QT 

LQ?J 

Q*     +   i Q* Wll U12 

Q*      +   i Q* 
L u21 W22 J 

This is also a function of   x   and   t   to   C-,,   and   x   is on   [a,   b] .    Qt. and 

Qf-,   are the components of force along the X,-,   X.-axes,   respectively; 

and Q?.  and 0?^ are the components of torque along the -X--,   X?-axe8, 

respectively. 

External forces on (0, ft   ) will be restricted to a series of concentrated ,        n 

driving forces which are caused by the mass eccentricities.    The force 
vector 

p*     = 
1 

P* ^2 

P*      +   i P* 
^11 1 ^12 

p*      +   i p* 
^21 1 ^22 

denotes the "driving fore",   a function of   x   and   t   to   C?   where   x   is 

on (0, i   ),   which vanishes at a finite set of points.    These points are 

•   .   ; k(j), where located at   x   =   a .• j = 1,   2, . ;   n   and   k =  1,   2, 

k(j)   means that   k   may be a different integer for different spans.    (See 
Figure  1. ) 

Similarly,   "internal force" as a force vector i'- defined as follows: 

p» 
FT 

F* 
2 

p*      +   i p* 
11        1 M2 

F*n  + * F?2 
This force vector is equal to the force applied to the differential mass 
element at   x - dx/2.    F is a piecewise continuous function of  x   and 
t   to   C?,   where   x   is on [a,  b] ,   and the magnitude of each upward jump 

at a point of discontinuity equals the external concentrated force at that 
point.    (See Figures 2 and 3. ) 

Throughout the following equations,   a quantity with "#" above it is,   unless 
otherwise specified,  a 2 X 2 matrix with complex entries,   and the inverse 



of such a matrix will be denoted by attaching the superscript "-1".    A 
tilde (perhaps together with other symbols) above a quantity denotes the 
Laplace transform of that quantity;   e. g. , 

(x,   s)   =    J       g(x.   t)e   S c 

where   g   is a function of   x   and   t   to   C.   where   x   is on  [a,   b] . 

Assume throughout that Y^x,   t) = 0   and dY  (x,   t)/ dt = Ö   at   t = 0 
{Ü is the null vector in C.,).    Physically,  this means that the system 

is initially at rest or that the initial transverse deflection,   angular 
deformation,   transverse velocity and angular rotation are zero;  the 
initial position of the shaft is coincident with the X.-coordinate of the 

fixed reference frame.    Thus,   the solution will be limited to steady- 
state conditions by applying the Laplace transform technique to solve 
the governing differential equation,   and the transient state is assumed 
to vanish automatically. 

Let Q  be an external force vector applied to   d(x)   as defined before; 

let   Y   be the position vector of   d(x).    Because of axial symmetry,  the 

relation between the force vector,   Q ,   and the position vector,   Y ,   may 
be written in either of the two following forms: 

Q  = s   Z Y 

or Y =   —-  M "Q 
s 

where "~M denotes the Laplace transformation variable.     Z   and M   are 

called,   respectively,   impedance and mobility in 2 X 2 matrices with com- 

plex entries.    If   Z and M  are non-singular,   Z M = M Z = I,   where   I 
is the 2X2 identity matrix.    Impedance and mobility are functions of s, 
and their evaluation depends solely on the parameters of the dynamic 
system itself.     Impedance is usually referred to as a transfer function 
in mathematics.    It is assumed that the impedance or mobility at every 
support location is a known quantity or can be calculated. 



CHAPTER 2 

TRANSMISSION LINE ANALOGY SOLUTION OF THE 

SUPERCRITICAL SHAFT 

WITH ANY NUMBER OF INTERMEDIATE SUPPORTS 

CONFIGURATIONS 

A physical model of the shaft,   which corresponds to the mathematical 
model in Figure I,   is presented in Figure 4.    All the parameters used 
in the following theoretical analysis will be assumed to be positive in 
the sense indicated in the figure.    The shaft end conditions and the 
conditions of all intermediate supports may be described as impedances 
or mobilities;   however,   for convenience,   only impedances will be used 

throughout.    The impedances of all supports are denoted as   Z   (ü), 
# # U 

ZJS..),   .   .   . ,   Z   (P   ) where 0,   ft.,   C,,   .   .   .,   ü      indicate the locations II n    n 1       Z n 

of Bupports measured from the left end support.    All the support 
impedances are assumed to be given. 

P (a, )   is the k      driving force in the   j        span where j = 1,   2,   .   .   . ,   n 
JK 

and k -  1,   2,   ....   k.    The value of  k   may be different in different spans, 
depending on each span length and on how many differential mass elements 
are assumed to exist in each sj.   n.    Hence,    k   will be written as   k(j), 
which means that the value of   k   depends on the span number. 

EQUATIONS OF MOTION FOR THE SHAFT 

The equations which govern the behavior of rotating shafts include the 
effects of gyroscopic motion,   rotational inertia,   and shear deformations. 
The projections of an infinitesimal element of the shaft,   of length   dx 
and with all the forces acting on it,  are shown in Figures 2 and 3.    The 
symbols used in these two figures are listed as follows: 

* =        the unnormalized variable 

w*        = angular velocity of the rotating shaft 

I =        moment of inertia of the shaft cross-sectional 
area about a diameter 

p =        mass density of the shaft material 

A = area of the shaft cross section. 

Under certain conditions,   such as at very high rotating speeds,   not only 
the centrifugal forces of the infinitesimal rotating mass but also the 
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movements of the axes of the rotating mass are of importance and should 
be taken into account.     The mathematical derivations of the expressions 
for the moments due to angular movements (rotatory ar ' gyroscopic 
effects) and the expressions of inertia forces are included in Appendix A. 

If the projection on the X-X^-plane,  which is treated as a real plane,   is 

considered,  the following two equations can be obtained by applying 
equilibrium conditions and by neglecting higher order terms (see Figure 
2): 

By summing moments, 

By summing forces, 

Ffb- + pAYTut = 0   ; ^ 

By applying shear relationship, 

Fri=K,AE
B(-Ytix-ySi> = 

where 

K'        = numerical factor depending on the shape of cross section 

average shearing stress on cross section 
shearing   streos at neutral axis 

,   where   Q   is the moment of cross-sectional area AQ 

of shaft above the neutral axis with respect to this axis, 
and   d   is the thickness of section at the neutral axis,   in 
this case the diameter of the circular section 

E = shear modulus of shaft material 
s 

Y*       = slope of deflection curve 
1 Ix r 

Y*       = slope of deflection curve when shearing force is neglected 

- Y,*,   -Y?,      = chance of slope deflection curve due to shearing force 
1Ix      £l , only. 

The preceding equation may be rearranged as follows: 

Fti+K,AEs<YTix + y!i) = 0 • (3) 

1 1 



By applying the bending relationship, 

F* f 21 

Y* 
Zlx 

E   I 
y 

where 

F* r21 

Y* 'Zlx 

moment on the differential mass element 

change of slope of deflection curve 

Young' s modulus of chaft material. 

The above equation may be rearranged as 

F*   +E   IY*       = 0. ^.1        y       Zlx 

Similarly,   if the projection on the X.X.-plane,   which is treated as an 

(4) 

imaginary plane,   is considered,  and if the preceding arguments are used, 
the following four corresponding equations are obtained (see Figure 3): 

F*    -   F* r12      r22x pIY*7ff +2pI"*Y*lt = 0 

F*       + n A Y* r 12x      ' 12tt 

22tt 

= 0 

F*2.K.AEs(Y*2x + Y*2) = 0 

F*    + E    I Y* 22 y        22x 0. 

If each pair of equations is considered,   in complex variable form the 
corresponding four equations are obtained: 

(Ff, + i F*2) - (F*lxr iF*2x) - pI(Y»Ut+ 1Y»2tt)+ 2ipI-;(Y*u + iY*2t) = 0 

(Fllx+iF12x' + PA<YTu, + iY?2t.' = 0 

(FTl + iFf,) + K. AE6 UY*^ + iY*2x) + (Y*, t iY*,) 

If the notations for position vector and force vector as defined on page 8 
in Chapter I are applied,   the equations may be written in more compact 
forms in referring to the framework of a 2-dimensional vector space 
over a field of complex numbers as opposed to the more general space 
of four dimensions over a field of real numbers. 

1Z 



FI Ix - PIY?tt + 2iPIWSY?t ' 0 

F?x + pAYrtt = o 

Ff + K' AE   (Y*    + Y*) = 0 
1 s *   Ix 2' 

F* + E IY*    = 0     . 
c y     Zx 

For normalizing these equations of motion,    R, ,  E A,   and R, / c    are used; B ^ b     y Ty    s 

they correspond to unit length,  unit force,  and unit time,   respectively. 
R, ,  c    are,   respectively,   radius of gyration in bending and the velocity of 

sound for the shaft material.    Note that   c    =     yE/ p.    By applying the 

standard procedures for rormalization,   the differential equations of 
motion may be written as follows: 

Fl-F2x- Y2tt + 2iW0Y2t 

Ix Itt 

0 

F2   + Y2x = 0 

e'F,  + Y,     + Y, = 0 I Ix 2 

>     (5) 

where e'   = (l/K1 )(E / E ), which is a numerical coefficient depending on 

the shape of cross section and the shaft material,  and where <»)„    is the 

angular velocity about X,-axis,  as before      Y,,  Y^ are,   respectively, the 

transverse position and the inclination of normal of the elastic curve of 
shaft.    Since all the initial values of the parameters appearing in Eqs. (5), 
i. e. ,  the right-hand limits at t = 0,  are null vectors,  Eqs.  (5) in the 
Laplace transform are as follows: 

Fl - F2x + 8<2iü,0 "  S) Y2 

F,    + s  Y, = 0 
Ix 1 

F2 + Y2x = 0 

e'F. + Y,     + Y, 
1 Ix 2 

(6) 

13 



In Eqs.  (5),  if F.,  F?,  and Y? are eliminated, the governing 

differential equation in terms of Y. (transverse deflections) of the dynamic 
system may be obtained in the following form: 

Ylxxxx + ^.t - (' + '' )Ylxxtt ^' Vum + 2i"0(Ylxxt - .' Ylttt) = 0 (7) 

If,  as has been noted,   all the initial values for Y.,  Y. ,  Y,    ,   and Y, 

are zero,  and if the Laplace transform is used again, Equation (7) may 
be transformed as follows: 

Y, +8 Ixxxx 2iu   - 8(1+e1 ) Y,      +s 1 + se1 (s - 2iun) Yi = 0 (8) 

The solution of Eq.   (8) corresponds to the steady-state solution of Eq.  (7), 
in which a solution is assumed in the form of 

Y, - y(x)eiUt 

where w   is the frequency of the driving force and   y(x)   is of the form 

/  v      A   mix , „  m2x . -,  mßx , „ m4x 
y(x) = Ae    1   + Be    ^    + Ce    J    +De    ^ 

where m.,  m,,   m,,  and m.    are roots of the characteristic equation of 

the governing differential Eq.  (7).    A,   B,   C,   and D are arbitrary 
integration constants which may be determined by applying boundary 
conditions. 

SOLUTIONS FOR THE EQUATIONS OF MOTION 

With reference to Eq.   (8),  let 

Y1=Aemix + Bem2x + Ce
m3X + Dem4x     . 

Then,  if the above expression is substituted into Eq.  (8),  the following 
characteristic equation is obtained: 

1 + se1  (s -  2i« ) 

■" ■ 

m    + s L 2iü,o ■ 8(1 + e') 
2 J m    + s 

which y ields 

mj,  m2    =   ±   iej    ^/w" 

where 

u> -is   or   s = iu    (« is the frequency response which 
is the same as the frequency of driving force,   i. e. , 
the angular velocity <»>„ of the rotating shaft itself) 

14 



-\ /l/ e, + e1 co 

1 + a2    + a 

and 

m   ,  m     =  ±   e2Y" 

where 

e' co '2     \ri 

The replacement of   s   by ioj     corresponds to the steady-state solution. 

If the relationships in Eqs.   (6) are applied,  the following general solutions 
f>j rsj f** 

for   Y,,   F.,   F? are obtained: 

Yl   =   Aemlx + Bem2X + Cem3x + Dem4X 

Y     =  u) 
2 

1/2 i        A   mix.     i        t,   m^x       3 ^  mox ,       3   ^ rriAX  Ae    1   +  Be    c Ce    3   +   De    *^ 
e1e3 e1e3 

e, 

e- 

e. 

e. 

U) 

F2   = « 

3/2 1   ,,.  m-jx      1 A_Aemix + _^_Bem2x + _LCem3X __i_ Dem4X 
el el e2 e2 

._J_Ae^lx. _L Bem2x + e,Cem3x + e,Dem4x 

e, e- 3 3 

If the following set of arbitrary constants (q.,  q^,   r.,   r^,) is introduced: 

A i      P+1 
A = w r     e.e.r. 

s 13  1 

i  P+1 B = -—coP  e1e3q1 

i  p+1 
— <o ^  cr, 
s      Z Z 

T^    i  P+1 D = - —co ^ 
Z^Z 
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where   p   is an arbitrary real number which,   once chosen,   remains the 
same,   and where q,,   q?,   r.,   r? are complex numbers;  therefore,  the 

expressions for Y.,   Y^,   F.,   F^    can be rewritten as follows: 

iei"^*>x ..    -eZsü x 
Y 

1      P =    —CO F 

1 s 
ese,&>e  "l q^ - re^u e q^ 
13 

iei^x e? "^ x 
leje-We    1        r. -ie2we   ^ r^ 

Y? = -^a,P 
2       s 

3/2   - iei"^ x 
(o '    e q,  -  ie3ü) 

3/2   - ez^ii} x 

0} 
3/2   ieiN/ux 3/2   C^N/WX 
'   e     1        r, +ie-u) '    e  ' r. 

1        .5 ^ 

F, =   w 
3/2   -ieiN/wx      .    3/2    -e?N/co x       , 

ie-,w        e       1        q, +w '    e     ^ q    + 

3/2  iei^ox 3/2  e?^ x 
le. w      e1        r, - « '   e  ^ r. 

i 1 < 

w e, w e 
iei"^ x q.  -  e?e^w e 

e ?Vco  x 
q, + 

ielVu x sfii 

By defining 

^1 

^2 

e? ^C4) x e,« e r . - e?e-U) e   ^ r2 

and 

(9) 

as two arbitrary constant vectors in a 2-dimen6ional vector space over a 
field of complex numbers,   and by recalling the expressions of the position 
and the force vectors as defined under "Assumptions and Notational 
Conventions" in Chapter 1,   Eqs.   (9) may be rewritten in a much more 
compact form,   as follows: 
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Y -A-!: 

0 

0 

# 

'c 11 t 
12 k(x) 

21 22 
# 
0 

# 
0 

R(.x) 

(10) 

#       #      #        # # If 
where C      C,,  CJJ,   C.y,   Cyit  and C22 are as shown in Appendix B,   and 

is the 2X2 null matrix. 

The "propagation matrix",    R(0(),   is a function on the real numbers 
defined by 

R(a)    = 

eis (e.^ a) 0 

exp(-e:>'s^ a) 

where 

eis 9   =   e       =   cos ö   -t-   i sin 6 

exp 9   =   e 

R(0)   =   I      . 

Simply by expanding trie matrix form of Eq.   (10),  this equation may be 
verified as being identical to Eqs.   (9). 

BOUNDARY CONDITIONS 

By applying the boundary conditions at   x = 0, i.,  Hj,   .   .   .,  I   ,  and a., 

on the X.-axis,  the integration constants appearing in the general solution 

of the governing differential Eq.   (8) can be determined.    (See Eq.   10. ) 

At Lelt End Support 

The boundary condition at   x = 0-0,  i. e. ,  the left end support,  may be 
obtained by considering the impedance at this point.    (See Figure 5. ) 

Since F at x = 0-0 is in the negative direction,   according to the sign con- 
vention defined in Chapter 1,  the boundary condition of the left end is ex- 
pressed as: 

-  F(0)   =   sZ0(0)Y(0) (H) 

which should be satisfied at   x = 0-0;    -0 denotes the left-hand limit. 

17 



n 

I --=i-**. 
I i 

F(0) F(0) 

Figure   5.  Left End Support 

At Right End Support 

The boundary condition at x = £  +0,  i. e. ,  the right end support,  may be 

obtained in a similar way,  as follows: 

F(£  ) =   s Z  ('  ) Y(f  ). x n' n*  n'     *  n' (12) 

Note that F is in the positive direction at x = I   +0; also,   +0 denotes the n 

right-hand limit.    Eq.   (12) is the condition that should be satisfied at 
x = f  +0.    (See Figure 6.) 

G  

77777 

C 

x»ßn-0    x«!,,-»-© 

2n<«n) 

F(ln)    F(in) 

Figure 6.  Right   End   Support. 
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At Intermediate Supports 

The boundary conditions at   x = i.,  j = 1,   2,  .   .   . ,  n-1,  may be obtained 

by considering the continuity of the deflection curve and the force equilib- 
rium at every intermediate support.    (See Figure 7. ) 

■( .-—-J—X.        C 

777777 

x=ij -0 f^j/0 

3 

?(Äj -0) Fiij +0) 

Figure   7.  Intermediate   Supports. 

If the impedance is isolated at   x = ft. and if the net force applied at x = i. 
J J 

is F(i.'0}-F(U0) imd if the deflections at   x - S..-0   and at x = £. +0 

are the same,  the boundary conditions at x - I.   are as follows: 

¥(1-0)   =   Y(je.+0)   =   Y{L) 

%{L~0)   -   F(l+0)   =   si.(l.)Y{L) 
(13) 

j      =    1,   2,   ....   n-1 

where +0 and -0 denote right-hand and left-hand limit,   respectively. 

At Driving Forces 

The boundary conditions at the locations where driving forces are being 
applied may be obtained in a similar manner.    If it is assumed that a 

I 
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Single concentrated driving force,  P (a., ) is applied at   x = a., (i. e. , the 
JK JK 

th f V> 
k     driving force in the j      span), the corresponding boundary conditions 
at   x = a,,   are as follows (see Figure 8): 

Y(ajk-0)   =   Y(a.k+0)   =   Y (^ 

(14) 

F (a.k-0)   +   P (ajk) -    F (ajk+0)   =   0     . 

REFLECTION MATRICES AT SUPPORTS IN TERMS OF IMPEDANCES 

If all the boundary conditions except those at   x = a.,   are applied,  as JK 

mentioned in the preceding section, some useful functions can be found 
during the process of evaluating boundary conditions,    (See the complete 
mathematical derivations in Appendix C. ) 

At   x = 0   on the X.-axis,  the reilection matrix (looking to the left at 

x = 0) is defined in terms of end impedance by 

f-. ,(») C22 + z0(G)C12 

-1 

2rzo c:;,. ir.(o)c11 (15) 

where 

A 
Z 

# 
E Z E. 

1 

0 

0 

1 

z 
^ 

# 
F Z F, 

N/W 

At   X-*,,     *■ p> •!        ,_]» 

the left are defined as follows; 

,   It      ,, the reflection matrices looking to 
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P(aj|() (assumed in a 
i positive   direction) 
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ZjCijl 

77777 

P(o,kl 

1 

1 

F(oJk-0) F(ojk + 0) 

Figure  8.     Forces  at X'a^. 

21 



*U ('^'[-^l^l^u]'1^!- tuVÄi 

hM-*czz+*zt(lzA. 
-1 

CZ1- ^21^2^11 

rü-0*^j-l)=   '^ZZ+Z{j-1)^*3-0° 12 
W i\ . - . IT 
c2r z(j-0*( J-I)CH 

(16) 

^(n-l)£^n-l)=   ■C22+*(n-l)«^n-l)C12 C2r %-l)i^n-1)C11 

where subscripts   1,  2 j-1,   .   .   . ,  n-1 indicate the locations of 
supports;   subscript i   indicates that the reflection matrices are being 
looked at to the left of  x = i.,  I,.   .... I.   ...... I     ,  , 1      2' '    j-1' n-1 

t     l\l^     0'   rePre8ent»   respectively, the total impedance looking to the 

left at   x = i.,,  iy I,,  iy'   ■   •   •» ^i   i»  •  •     >  ^     i»    which are 

defined as follows; , 

•   •   • i 
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*i{('i)   = ^l<£l)   +  ^OJ<{l) 

^2£(«2) = $zv2) + *a(«2) 

Vi)«(Vi' = ^-'«Vi» + ^o-^Vi' 

Vl^n-l'   =   %-l({n-l)    +   *(n-Z)£(4n-l) 

(17) 

where the terms   ZQA^I).   
z ICC^?^' •   "   Z(j-2)*(Vl, V^^^n-^ 

will be explained in the next section. 

At x   =   f     on the X.-axis,  the reflection matrix (looking to the right) 

is defined in terms of the end impedance by 

r (« ) = n*  n' ZZ     ny  n'   1Z 

-1 
C^.-z  (£   )C11 Zl     nx   n7    11 (18) 

At x  =  Vr Vz- •V ,   C.,    the reflection matrices 

looking to the right are defined as follows: 
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r(n-I)r^n-l)= 

# 
r (n-2)r^n-2,= 

# # _ # 
C22+ Z(n-l)r(£n-l)C12 

C22+Z(n-2)r(V2)C12 

# # # 
C2r Z(n-l)r(in-l)CII 

"# # #    ' 
C2r  Z(n-2)r^n-2,Cll 

r. (*.) = 
# # # 
C22+ ^r^j^^. 21      jr* j'   U 

?(19) 

# f  #        # # 
rir^l)=     "^Z^lr^l^IZ 

#        # # 

where subscript   r   indicates that the reflection matrix is being looked at 
to the right of   x = £      j,  I     , £,...,£.. 

Z(n-l)r(Vl^  Z(n-2)r^n-2^   "       •' #W ^^1^   ^present. 

respectively, the total impedance looking to the right of  x = f     ., 

C     ■>, ....  i.,   ....   &t,    which are defined as follows: n-2' '     j 1 

t(n-2)r({n-2)  =   Kjln^   +   V l)r(<n-2' 

>(20) 
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I. {t) = t.(f.) + !L n (£.) 

^^Dr^j»'   • where the terms     z     (J^     ,),    Z/     , \  (^     ■>),   ■   . nr*  n-l7        (n-ljrx  n-Z" 

Z ^0   w^ ^ explained in the next section. 
FTP - 

For each closed interval    0,1.     ,      ^i»   ^7 

on the Xj-axis,  the corresponding reflection matrices looking 

to the left are, respectively,  defined as follows: 

n-1       n 

J"1       J 

# #       # # 
r0(x) = R(x)r0(o)R(x) 

# #        #       # 
rl£(x) = RCx-ü^r^ci^RCx-ij) 

# # # 
>       (21) 

r(n.1)f(x) = RCx-^.i^.ij^^.pRCx.i^,) 

For each closed interval 

o. il1 

St     ., I 
n-1'     n I i n-Z'     n-1 J-1       J 

on the X.-axis,  the corresponding reflection matrices 
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looking to the right are,   respectively,  defined ae follows: 

# # # # 
r (x) = R(« -x)r (e )R(I -X) n* ' *  n    '   n* n'   * n    ' 

# # # # 
T/     n (x)   =   R(i     .-x)!/    ,» (i     ,)RU     ,-X) (n-l)r*  ' * n-1     '   (n-l)r* n-l'   x  n-1     ' 

# # # # 
r. (x) = R{i.  )r. («.)R(I.-X) jr* ' * j-x'   jrx j'   * j 

# # # # 

rlr(x) = RfVOiW^V") 

IMPEDANCES IN TERMS OF REFLECTION MATRICES AND SHAFT 

(22) 

CHARACTERISTIC IMPEDANCE 

It is shown in Appendix D that   zn|(x),    the total impedance looking to the 40l 

left of a generic point   x   where   x   is on 

by the equation 

.    «0£(x)  = On     0, fj 

Similarly, 

0n   V£2   ' ^U W= 

r#       #   #     Tr # 
C21+C22roW 

0,1.     ,  is related 

#      #        -1-1 

tot (,(*) 

c11+c12r0(x) 

-#     #   #      -|r#     #    #      i-i 
c^i+c^r.Wx) '2rv'221 li Cll+C12ri|W 

(23) 
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On 
j-l'    j zG-i)C(x) 

r# -ir# 
C21+C22r(j-l)CW 

#      # 1 -1 
cii+ci2r(j-iKw 

On n-1      n Z(n-l)£(x) 

■# #      # 

C21+C22r(n-l)^x) 

"# #      # 
Cll+C12r(n-l)Je

(x) 

It is also shown in Appendix D that the other similar set of equations 
which represent the total impedance at   x   looking to the right is: 

On 

On 

n-1       n nr' 

In-1'     n-1 

,   I     (x) = 

# 

# #      # 
C21+C22rnW Cll+CI2rnW 

# #      # 

Vl)r(x)=LC21+C22r(n-l)r(x). 

-1 

+ C 

-1 

llT^12r(n-l)r(x). 

On i i 
J"1      JJ 

z.   (x) 
# 
C 21 

# 
+ C 22rjrW U^^^rW 

(24) 

On 0,  I ZlrW 

#     #   #      ■ 

C21+C22rirW 

# #      # 
c11+c12rlr(x) 

The expressions for   ZQ^^J).    
Z
1£(

£
2).   ■      -.    z(j-2)i^j-l^  

»/     •»%« (^     i)   in Eqs.  (17),  and the expressions for   z     (£      ,), (n-2)£ ^ n-l' -»      \    / r nr\  n_i" 

Vl)r(ln-2> tÜ + l)r(tj) ^r'V   '" ^^   (20) ">"« 

obtained from Eqs.  (23) and Eqs.   (24),   respectively.   Eqs.   (23) and 
(24) will also enable us to evaluate the impedance looking both to the 
left and to the right at any location along the shaft. 
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Let 

Z
B~   ^21C11 

(25) 

which is expanded in complete matrix form in Appendix B,   and 

s 
V" 

# 
F Z   F. s 

1        0 

_0   V". 

where Z    is called the characteristic impedance of the rotating shaft.    Note 
#   9 

that Z    is a function of frequency.     The significance of the characteristic s 

impedance will be discussed in Chapter 3. 

COMPLETE SOLUTION IN MATRIX FORM 

If all the boundary conditions beginning on page   17      of this chapter are 
used,    all the integration constants appearing in the general solution can be 
determined.    (See the complete mathematical derivations in Appendix E.) 
The complete solution,  from which one may calculate the dynamic response, 
i.e. ,   deflections and internal forces caused by the single driving force 

P(a., ),   at any location along the shaft,   may be written in the following matrix 

form: 

On 0, r 

8      y 

# 
0 

On i       It r   2 

i   # — c s       y 

i 

# 
0 

c, 

0 

h 
f J 

# 
c 11 

# c 21 

c 
12 

# 
C 22 

R(x)^0(0)F 
1 

k-*}rl 

Cll        C12 

L^Zl        ^22 

R(x)rl£ (o) TZ 

l(.x) r 2   J 

(26) 
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On 
3-2'     j-1 

Y 

F 

i-c# 
8      y 

# 
0 

0 

# 

f c 11 

c 
21 

J 
12 

22 

£<A-2)'(0)?J-1 

On I.   .,  a., 
j-1      jk 

F 

i i —c s     y 

# 
0 

# 
0 

# 

# c 11 

# c 
21 

c 12 

# 
C 

22 
R(.x) r^ 

On 
Jk      J 

F 

1   # 
— C s     y 

# 
0 

9 
o 

# 

# 
c 

# 
c 

11 

21 

# 
c 

If 
c 

12 

22 

^(x) q. 

# # 
R(-x)r.   (O)q. 
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On 

Y 

F 

•    y 

# 
o 

# 
0 

# 

# 
c 

# 
c 

11 
# 
c 

# 
c. 

12 

21       ^22 

R(x) qj+1 

R<-x)rü + l)r(0) *i + l. 
#       # 

(26) 

On 

On 

t 

Y 

i-2' n- 

_1_ 
8 

• 1 

# c 
> 

# 
0 

r 

* 
C12 

1 
R(x)q n-1 

F s 
1 

V .^ 

» 
CZ2. .^•^(n-Dr^Vl. 

n- 

Y 

■ r 1 n 

8 

# c 
y 

# 
0 

# » 
R(x) ,n 

F s V * 
czz . Jt(-x){-n(0) ^ 

where 

?2 ^(V^ii^V^iz]   '[cn^^V^iz]^ V?3 
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'j-r^j-E' *u^-3K<V2)+^2 
#   £ # 
Cll^(j.2)je(ij-2,+C12 R(-V2)Fj.l 

'j-r^V^ri^ü-^V^^^j'l^H^-i^V^^^J^Vi^ 

^r^-jk) f-f1.  (a.,)L   ,v.(a., ) 
Jr   Jk    (j-Uc    jk' 

•# #      # 
r. (a., c,+c 

#     i — 

q.   =R(-a.,) jr     A    jk7 ?-^-i)«(ajk^r(vrrü-iK(V^+*c
+ 

# -1-,   > cf p(V 

ij+r^-V ^l+^2^+l)r<V 11      12 jrx j' 
R(je.)q. 

J     jr 

V^-Vi)  ^11^12^+2)r^ + l)  '\Cn+Kz^ + l)r^^lY^^l 

I 

nn-1      x    n-2' 
'#       #      # 
Cll+C12^(n-l)r^n-2) Cll+C12^(n-2)r(£n-2) R^n-2)V2 

nn     %     n-1' 
#        #     # 

11      12   rr  n- 1' 
-1 "#        #     # 

11      12   (n-l)rx  n-l' R(J2     Jq     , x  n- l/nn-1 
(26a) 

If a superposition technique is used,  the total dynamic responses caused 
by all the driving forces distributed along the shaft can be obtained. 

SOLUTION IN WAVE FORM 

Proceeding with a lengthy matrix algebraic manipulation of the resulting 
Eqs,   (26),  as shown in the preceding section,  and applying the super- 
position technique,  one may express the total dynamic response caused 

by all driving forces P(a.. ),  j = 1,   2,   .  .  . ,   n   and k = 1,   2,   .  .  . ,  k(j) 
JK 

along the shaft in the following traveling wave forms. (See the complete 
mathematical derivations in Appendix F. ) Explanations of the traveling 
wave form solutions will be given in detail in Chapter 3. 
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In the i      span,   or on i-l'     i 

s      y 

0 

I 
0 

c, 

c 

c 

,  i = 1,  2,  .  .   .,  n 

C 
11 \z 

ft 

21 C22 

- 

Ü.Cx) 
»> 

ü.(x) 
(27) 

where 

.th 
tJ (x)     =     total wave traveling to the right in the i      span 

n >» 

«< 
.th 

U .(x)    =     total wave traveling to the left in the i      span 

"     <« 

1 = 1 

If j<i,    j =  1,   2,   .   .   .,   i-l;    then 

>^> » > 
U. (x) = U..(x) + U..(x) 

JJ JJ JJ 

<« << 
U,.(x)   =   U..(x) + U..(x) 
jy jj jj 

^.(x)   ^RCx-a.^C/^Ca^) 
k=l 

H(x-a.k)-H(x-l) 

k(j) 

^jjW 't   R(ajk-^C-Cf"1^a
jk> rH(ajk-x).H(l_rx) 

k=l 
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>>     # r# # #       i-i* 
0.j(x).R(x-£..1(i.r{..1)e(Vl)rr({.,1)J   r^.,^...) 

X 
# # > < 
R(t-i.   JE  (£.)Ü..(£.)+Ü..(£.   ,)    H(x-£.   ,)-H{x-t) 

J    J-1   jr    J     JJX J       JJX J-l J-l J 

<< # 
U..(x)=R(je.-x) 

JJ J 

#  # # 
i-r. (fjr.. M.(£.) 

-1# 
r. (t) 

> 

[^(V^^V'i-i^-D^Vi^^V^. Hix-LJ-Hix-i.) 

>» 
ü

ü+I)J
(X)=R(X

-V I+cnci2rG+i)^V 

>»        # . # <«    ■ 

}y J     11   12 jy y 

<« 

ü
ü+i)jW

=#R(Vi-x)Vi)r(fj+i
)^Vrfj) 

# # ,#   # 

.I+CilC12r0 + l)r<V. 

>» 

. jr J     11  12 JJX y_ 

#.i#   ^ 

>»      # 

iy j-l 
i+c^c.^r. (£. .) 11    12   irx  i-l 

>» #_1#    «-< 
u(i-i)J(£i-i)+ciici2Vi)j(£i-i) 

<«      #       # 
ü..(x)=R(£.-x)r. {i.-L ,) 

'#   #      #     # 
i+c:}ci:>r. (f. ,) 11    12   ir%  i-l' 

-1 

#.1#     ^ 

^(i-Dj^i-i^r^^Voj^i-il 
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If  j =  i,  then 

>» » 
Ü..(x)   =   Ü..(x)   +   U..(x) 

<« « < 
ü..(x)   =   ü..(x)   +   Ü..(x) 

U-^x)   = ^ R(x-aik)C+C;   P(a.k) 

k=l 

H(x.aik)-H(x-^) 

< k(i) ^ ^    ^      ~ 
ÜiiW=Z R(aik-x)C-Cf"lp<aik) HCa^-^-HCi.^-x) 

k=l l- 

»     #        r# # #       1 i # 
üii(x)SR(x^i. ^[i-r^.^(Vi)rir(Vi>|   r(i-i)^£i-1) 

r# #       >        <       • 
R(t..i. jr. (je.)ü..(f.)+ü..(f. ,) x  i     i-l'   ir*  i7   ii*  i7      n* i-l' Hix-i^^-Hix-L) 

« # 
u..(x)=R(je.   ) 

11X    ' *    l-X7 

■# #      # -1# 
r. (i.) 

[üii(ii)4(ci^i_1)r(i_1)|(ii.1)üii(ii_1) Hfx-*.   jJ-HM.) 

If  j > i,    j = n,  n-1 i+1;  then 

>» » 
ü..(x) = ü..(x) + ü..(x) 

JJ JJ JJ 

<« « < 
ü..(x)   =   tT..(x) +ü..(x) 

JJ JJX        JJ1 
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k=l 

H(x-a.k)-H(x-«.) 

k(j) # #    # ~ r 

Ö..(x) = ^    RCa.^^C.C^^Ca.^lHCa.^^-HCi.^-x) 
k=l 

>> # 
Üj.(x)=R(x-f._1) "ü-D^Vi^^V^, 

-1# 
r(J-.)^-l' 

■# #       > 

R^.-f. jr. (£.)ü..(je.)+ü..(je. .) H(x-£    ^-HCx-f ) 

« # 
U..(x)=R(t-x)| 

3) J      ' 

"#   # # 

i-rjr(Vr(j.1)t(V 
1# 

jrv J7 

< > # # 
u..(je.)+R(£.-^ jr.. .^(f. jü..(fi. j HCx-t ^-HCx-f.) 

>» # # # 
0G-irR(x-'j-2)rÜ-2)*(1J-2)R(Vr£j-2) 

'# #      #   # 

.i+circi2rü-2)^-1'. 

■# .# »> <«       1 
c^c^u..^. J+u..(«. J ii   12 JJX j-i7    JJX j-r 

#   >» <« 

<^Vi)j=^-r4*+*n*i24-^(Vi)]"1[t'lllCl2Ujj(£j-l)+üjj(fj-l) 
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>» 

Vx)=R(x-Vi4-i)£(Vi)^i^i-i) 
■# #.1#   # 

I+CJJCJ^.J^^.) 
-1 

<« 

^n^izVDj^i^VDj^^J 
#_1#   ^ 

«< 
U..(x)=R(£.-x) 

ij x i    ' 
I+cnci2r(i-i)^i) 

#_1#  >» «< 

CUC12U(1 + l)j(
f
i'

+U(i+')j(Ci) 

where 

H(p)    = 

# 
0 when   p ^ 0 

when   p > 0 

>     < 

Us   U can be thought of as "incident waves" traveling to the right and left, 
respectively.    They are independent of shaft support conditions. 
»    « 
U,  U can be thought of as "reflected waves" traveling to the right and left, 
respectively.    They are dependent on shaft support conditions. 

»> <« 
U  and   U   are the resultant of the incident and reflected waves traveling 
to the right and left,   respectively.    They may be thought of as "total 
waves". 
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CHAPTER   3 

MANIPULATION OF THE SOLUTIONS 

TRAVELING WAVE CONCEPT 

The steady- state wave interpretation of the solution of Eqs.   (27) provides 
a means toward visualizing the effects of support parameters (mass, 
spring,   damping) and shaft characteristics on hypercritical shaft behavior. 

For the purpose of illustration,   only one driving force,   P(a., ),   will be 

considered in the following discussions. 

By considering the j^*1 span first,   i. e. ,   on i i 
j-l'     J 

,   incident waves 

traveling along the shaft are considered as being initiated by the action 

of the single driving force,   P(a., ),   located at x ~ a., .    U... (x) and U.    (x) 
jk jk'      jjk' jjk' 

are defined,   as before,   respectively,   as incident waves traveling to the 
right and left from x = a    ,    The first subscript incidates the span in which 

the wave is traveling;  the second subscript,  the span from which the wave 
originates or the span in which the driving force is located;   and the third 

subscript,   the location of the driving force.    For example,   U... (x) means 
JJK 

that this wave is traveling to the right on the j span; also, that the 
original wave originated in the j^h span, and that the driving force is 
located at x = ai,'    ^ can be seen from the following expressions that 

the incident waves are independent of support conditions.   (See Eqs.  (108) 
and (109) in Appendix F. ) 

# ^    # 
U     (x)=R(x-a    )C+Cf-   P(a    ) 

jk' jk' 

# #    # 
1; VW^jk-^-S   P(ajk) 

H(x-a.k).H(x-l) 

H^-xJ-H^.j-x) 

(28) 

exists only on a.,,  i. 
Jk     J 

exists only on * •   ,. a.. 
J-l      Jk 
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rrrrnr 
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Figure     9.   Incident   Waves in the  j-**  Span 

With reference to Figure 9 and Eqs.   (28) and (29),  the propagation of the 
wave from the point of application,    x = a.,,  of the driving force 

jk' 
# 

P(a.. ) is described by the "propagation matrix",  R(x-a    ) or R(a    -x),  as 
jk jk' jk 

the wave is traveling to the right or left,   respectively.    For instance, 
> > 

at x = £.,  tT..v(x) = tJ..u(£.) has traveled a distance (jf.-a    ) to the jth 

j'     jjkx jjkx j 

support of the system.     The quantities 

H^-xJ-H^.   rx) 

^x-a.^-^x-«.) and 

simply indicate the regions in which the waves 
#    #_1 #    #_1 

exist.    The quantities C+Cf    and C  Cf     perform elementary transforma- 

tions or operations on the applied driving force and are associated with 
frequency and shaft characteristics as defined in Appendix B. 

» 
A similar interpretation may be given to the quantities Ü.., (x) and 
« JJk 

Ü.., (x),  which are regarded as reflected waves traveling to the right 

and left,   respectively.    They may be expressed as follows (see Eqs.   (114) 
and (115) in Appendix F): 
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» 

U..,(x) = R(x-£.   .) 
■#  # # " 

.I-r(j-l)^i-l)rj^j-l) 
1# 

> 

R(^-£. jr. (t)Xj..M.)+,ü..M. ,) 
J-1 J . 

(30) 

« 

Ujjk(x)=R(£rx) 
#   # 1# 
i-r. {L)rf. np(ij)    r. (!) 

> < 

V(V+*<VV I'^O- o^j-i) W >>) LH(X- £i- i)-H<x-V. 
(31) 

Both exist only on 
j-l'    j 

The second term in Eq.  (30) or Eq.   (31) may be related to an infinite 
series: 

«"# # # 1-1 

^(J-D^Vi'Wi' 

'V -11 111- 

"r(j- ix« V I'VV ^K-DI^-AA- A>-m(l>-A{i>-1' + 

IV 

V D^i- .>i(£j- Aw{ii-A<ii- A- D^-AAS 

«#   # 

/!>/ 11 111 

#    # # # # # # 
=i+r. {ijT,. n*(M+r. («or,, n«^)?. (je.)!.. ,v.(je.)   + 

jr    J     (j-U*    J      jr    J    (j"1)*    J    jrv J7  (j"1)*    J 

(32) 

■iv 

# # # # # # 
r. iDT,. nr(«.)r. {DT,. ,.0{i.)T. {Dr.. 1^(fi.)+ (33) 
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If the first term is called   i,    the second   ii,   etc, ,   as noted above,  the 
» 

expression for U... (x) 

restricts the range of the waves to   \ £.   , ,  (.. 

Consider the first term   i   of the expansion for 

» 

can be obtained.    Again,     K(x   0.   .)-H(x-ß.) 

1  .   L      J" 
#   # i 
i-f.   M.^. jr. (L .) 

> 

-1 

< 
The last quantity,   U... (f.    .),   represents an incident wave traveling to the 

left at the point   x = C.   .,   i, e. ,  the left end of the j      span.     If the 
# j-i 

quantity   T,.   |\fl(^-   i) (which is a function of the configuration parameters 

of all the supports located to the left of   x - *..   ,  +0 and also of the 

associated shaft characteristics) signifies that this wave has been 
reflected at x = ^.   ,,  then the reflected wave now traveling to the right 

has propagated a distance (x-^.   .) as indicated by R(x-£.   .).    Simila- 
J ;> J ~ * 

the last quantity of the first term,   U.., (*.), represents an incident 

which is traveling to the right and is located at   x = Q..,   i. e, ,   the right •    u 

th ^ support in the j      span.    The quantity   F.   (P.),   a function of the configura- 

tion parameters of all those supports located to the right of   x = ^. - 0 

and the associated shaft characteristics,   signifies reflection of this wave 

to the left at   x = C..    The   .ext term,   R(J2.-£.   ,),   signifies propagation 
J J J 

of the reflected wave   to the left through a distance (H.-l.   .),   i.e.,  length 

of the j      span,   until the wave reacnes   x = JC .   ..    The wave is now 

fleeted again to the right as indicated by F/.   i\f{^-   i),   and R(x-£.   .) 

gnifies propagation through a distance (x-S..   .) to the point under 
» J-1 

investigation.    Thus,  the term U... (x)     . represents the contributions of 

two reflected waves to the right immediately following the initiation of the 

re 

si 
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< 
incident waves,   Ü... (x)   and U... (x).   This is illustrated in Figure 10. 

Consider the second term,   ii,   of the expansion for 

#   # #1-1 
i-Tt. ..*{&. jr. (it. .) 

» 

^.M 
»   > 

which may also be written as follows (see Eqs.   (22)): 

» 

V« 
# # # # # 

..=R(x-f. jr,. lU(£. jR^.-t jr. (e.)R(je.-f. J 
ii    x     j-i' (j-i)£x j-i'  x j   j-r jr^y     j   j-r 

# ff #        > 
xr,. M«^. jR(f.-c. jr. (^)tJ..,(£.) + 

# # # #      # # < 
R(x-C.   JE.   ,.JL   jR(je.-f.   JE   (£.)R(£.-C.   JE.   .^(f.   Jü..,(f.   J   . x       J-l    (j-l)*'-    J-l     XJ     J-l   jr    J        J    J-l    (j-l)*    J"1     Jjk   J-l 

» i 
If the same reasoning is used for the analysis of Ü... (x)    ., the added 

terms correspond to a wave propagating and reflecting an additional two 
more times,  with the final reflected wave again traveling to the right. 
This is shown in Figure  1 i.    Similar reasoning may be applied to the 

» 
remaining terms.    These remaining terms in the series,   i.e.,   ü..u(x) 
» » 

iv" 
etc.,  together with Ü.., (x) 

» 
and üyk(x) account for all 

ii 

iii' 

of the reflected waves traveling to the right.    The summation of all of the 
waves traveling to the right is complete if the incident wave is added to the 
above;   i. e. , 

>» » » 
Ü..,(x)--Ü..,(x)^Ü...(x)   .+ü..,(x) 
jjk       jik      JJK    h   jjk 

>        » 
= Üjjk(x)+üjjk(x) . 

» 
..+D...(x)|..+ n     jjkx   'I in 
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^fllk) 

# # # #      >        fuiikW 

'RU-/|.|)r0.|)l(i|.l)Rtii-/J-,)r|r(ipuJ|k(i|)l 

Figure   10.    First-term Propagation  of Reflected Waves 
in the   [/j-r^]]  Portion  of the Shaft. 
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Hoik) 

*('i> 

v r» i^^—       < l 

R(x-^-,)   UjjKdj.,)    » 
# >      M        fUjj^x) 
•RU-I,.,)-^^.,) 

3 

ii 

Figure  II.  First-and  Second-term  Propagation   of  Waves 

in the [^j-l* ^ j]  Portion of the Shaft. 
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Similar results may be obtained for Ü... (x).   That is, 

« « 
ajk(x)=D..k(x) 

« 
.+tT..,(x) 

« 
..+ü..,(x) 

111 
(35) 

« 
The summation of   tJ... (x),  the refle :ted wave traveling to the left in the 

<        JJK 

j     span,  with   U.., (x), the incident wave traveling to the left,  accounts JJK 

for all the waves traveling to the left as they are observed passing point 
x   in the jt'1 span of the shaft. 

at point   x can be determined by The complete response on 
j-1'     j 

properly combining all of the waves traveling past point   x   in both the 
left and right directions (see Eq.   (127) in Appendix F).    That is, 

On i i 
J"1      J 

Y 

F 

s       y       Ü 
#        J        # 
0 C 

# 1» 

> 
C12 

.    C21 
CZZ 

r 
• >» 

J      L 

^ 

W 
or (36) 

1   # ' #   >» #    <« 

CllVx)+C12tJJjk(x). 
# ■#    >» #    <« 

Czi^jkW^zzV^. 

Eq.   (36) indicates a relatively direct manner in which the waves are 
combined to obtain the total response at point x. 

By examining the portion of the shaft on 
>» <« y Vi in terms of a single 

driving force   P(a.k),  U/. + 1v.k(x)  and   U(j-|.i)ik(x)   may be thought of as 

"modified total waves" which are initiated by the driving force at x = a... 
>» «< [" 1 Jk 

As soon as the total waves,   Ü... (x) and VJ.., (x),  on    i     ,,   H.     travel to 
jjkx jjk1 L J"1       JJ 

t Vi x = x.,  the waves are modified or refracted by the j      support and pass 
J >» <« 

through as indicated by   "/ixii-vW   an^ ^/• + lVk^   traveling in the 

(j + l)th span (see Eqs.   (138) and (139) in Appendix F).    Thus, 
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>^> # # # , #   # -1 >»        # . # <« 
U/.xnJxhRCx-je.) HC: c^F/.^» (C)     ü..,(£.)+c; c17ü...(i.)     (37) 

(j + l)jkN  '     ^       j'..        11    12   (j + l)rx j'J     L    Jjkx j7       11    12   jjk'  j'J 

<« 

üoM)jkW--^Vrx)#r(J+i)r(f
J^

)R(VH-fj) 
# # ,#   # 
I+CilC12rG + l)r(VJ 

r>»        # . #   <« 
jjkx j'      11    12   jjkx j' 

(38) 

where,   as before,  the first subscript,  j + 1,   indicates that the wave is 

traveling in the (j + l)      span;  the second subscript,  j,   indicates that 

the original wave originates in the j      span where the driving force is 
located;  the third subscript,   k,   indicates the exact location of the 
driving force. 

An explanation of traveling wave behavior similar to the previous 
>» <« 

discussion may be applied to   U/.   ,\.,(x)   and   ^/• + i\ic(
x)   in the (j + l) 

span.    Note that the second term of    Ü/. . .v.. (x)   can be restated a 

th 

s an 

infinite series; 

.I+CnC12r(jH)r<V. 
- I 

11 

#   ,#      # 
-\^" 111 

#   ,#     # #   ,# 
= H-c;;clpr(.ul)r(f.H-c;;c12)rG+1)r(f.)(-c-i;c12)r0+1)r(£j)   + 

#_1#    # 
  IV 
#_1#    # ^_1#    # 

(-CriS2)r(jH)r<V(-CilC^)r(j + l)r(V(-CllC12)rG + l)r(V     + 

(39) 

^£a th 

/,,' 

>» 

Ü 

^rder of the terms is indicated by   i,   ii,   iii,  etc.    Considering 

-nd taking,   for the time being,  only the first term   i   of the 

boV:    tKDJt .ibSlOn, 

rR(x^j)[oj.k(..)+c-i;c12üjjk(V (j + Ojk (x) 
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where the last term signifies that the total wave in the j      span passes 

through the j     support and enters into the (j + l)      span as a modified 
w 

wave.    R(x-£.) signifies that the modified wave has propagated to the 

right a distance (x-J?.).    This is illustrated in Figure 12. 
J 

Consider now the second term,   ii,   ot the e-cpression for 
r# # ,#   # i-i 
I+ciici2rGW 

>» # # , #    # >» # , #  <« 
lJü+i)jkWirR(-£

j)«-ciIcu)rü+,)r(VV{j)+cnci2VV, 

which may be rewritten as follows (see Eqs.  (22)): 

>» 

Vi)*w 
# #      #       # # # 

..=R(x-M(-C:}ci:>)R(0    ,-1)1^        (^.jR^.i-t) 
n    x     3y    11   12'  x j+l   y (j+Ur1 j+r   x j + l   y 

>» #_1#  <« 

[W^H^^V'i'J 
If the same reasoning as before is followed,the added terms correspond 
to the wave propagating to the right after being reflected twice, first at 

the (j + l)     support and then at the j     support.    Appendix G shows that the 

term (-C. iC.-,)   corresponds to a reflection matrix of a fixed end support. 

th 
This means that the j      support acts as a one-way fixed support which 
completely reflects modified waves coming from the right after being 

reflected back from the   (j + l)      support,  but which permits waves 
traveling from the left to pass through.    This is illustrated in Figure 13. 
The same analysis may be applied to the remaining terms of the series. 

<« ^ 
Also,   similar reasoning may be applied to   tL.. ,x., (x),  the modified wave 

traveling to the left as indicated in Eq.  (38). 

The complete response at point   x   on 
J      J + 

due to P(a., ) can be 

determined by properly combining all of the waves traveling past point   x 
in both the left and right directions (see Eq.   (140) in Appendix F).    That 
is, 
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Figure 12.    First-term   Propagation  of Modified Total Wave 
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on 
* ■ v." i 

[■c* s      y 
# 
0 

# 
0 

# 
cf 

# 
cll 
# 
C

21 

# 
C12 
# 
C22 

>» 

<« 

or 

Y(x)= 1 # 
C s      y 

r#  ^> #  <« 
CllU(j + l)jkW+C12ü(j + l)jkW 

^      # r#   >» #   <« 
F(x)=Cf C21ü(. + l).k(x)+C22üü+1).k(x) 

}    (40) 

used for the The same manipulation of traveling wave concept 
explanation of the dynamic response in the (j + 1)     span may be extended to 
explain the dynamic response in the (j+Z)*-" span as well;  it also can be 

extended to explain the response in the (j+3)     span,  and so forth,  until the 

n     span is reached.    Similar argument also can be used for the dynamic 

response in the (j-l)     span,  in which the modified waves (see Eqs,  (135) 
and (136) in Appendix F) are as follows: 

>>> # # # r# #   #  # i.i 
u(j.1).k(x)=R(x-£j_2)r(j,2)£(Y2)R(«j.r^.2)[i+cnc12rü_2)£(£..1) 

#   #  >>> <« 

LSl^VV^VVi'J (41) 

«< ^     #      j* # 

^ii-i^^^j.r^^iz^zn^il 

X 
#   # >>> <<< 

L^i^uVVi^W^ (42) 

The term 

infinite series as 

#   #      #      # 

I+C]lC12r(j-2)^Vl)- 

-1 
can be restated in terms of an 
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■ 

'##.,#   # 

.^c'licu^-2)^-1). 

#### #      #        # #      #        # 
=i+(.c-1|c12)rü.2)i(t..1)+(-c-1{c12)r(..2)£(tj.1)(-c-i;cu)r(j.2K«j.1) + 

# .#    # # .#    # # .#    # 

(-cnci2)I(j.2)|(|j-iM-c"i}cu'I(j-2)<(Vi)(-ciici2)r(i-2)'(1i-i)+--- 
(43) 

Again, the order of the terms is indicated by   i,   ii,  iii,   etc.    Considering 

U*. + .v., (x) and taking,  for the time being,    only the first term   i   of the 

above expression, 

>» 

^(x-Vz^.^vAj-i-V*' 
<^< r# ,#  >^ 

c"nci2u
jjk

(Vi)+V(£J-i) 

where the last term signifies that the total wave in the j      span passes 

through the (j-l)      support and enters into the (j-2)     span with modified 
fr 

wave.    R{S..   .-S..   y) signifies that the modified wave has propagated a 
■I J 

distance {i.   .-i.   ,) and then is reflected to the right by the (j"^)     support, 
j-l    j-t # # 

as indicated by the reflection matrix   IV   y)^'   ?)'    ^(x"^-   7^   a8ain 

signifies that the reflected modified wave has propagated a distance 

(x-£.   _),  and then the wave is at the point under investigation.    This is 
J - ' 

illustrated in Figure 14t 

Consider now the second term,  ii,   of Eq.   (41),   corresponding to the ii 
term of the expansion of 
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# #_1#   # 

_I+CllC12r(j-2)i^j-l). 

>» 

Vi)jkw irR<x-V2)r{i-2)8(V2)R('j-l-1J-2)(-CHC12)I(i-2)«(1J-l) 

#_,#       # 

<« 

'n^VV^VVi' 

which may be rewritten (see Eq.   (22)) as follows: 

>» 

%iy3^uA*~*}-A.^^ 
#_1#    # 

^G^^V^^j-rV^ 
■#_1#   >» 

<« 

s.SzV^-'^VVi' 

If the same reasoning as before is used,   the added terms correspond to 
the wave propagating to the right after being reflected two more times. 
Again,   the (j-lP    support acts as a one-way fixed support.    This is 
illustrated in Figure 15.    The same analysis may be applied to the 
remaining terms of the series.    Similar reasoning may be applied also 

<« 
to U/.   ,»., (x),  the total wave traveling to the right. 

The complete response at point   x   on 
J-2'     j-1 

due to   P(a.1 )   can 

be determined by properly combining all of the waves traveling past 
point   x   in both the left and right directions (see Eq.   (137) in Appendix F). 
That is. 

on 
j-z'   j-i 

1     * 
— C s      y 

# 
0 

# 
0 

# 
c. 

11 

21 

a 
c 

# 
c 

12 

22 

»: 
Ü 

(j-l)jk (x) 

«< 
Ü 

(j-Ojk (x) 

Y(x)= 
s     y 

#     >» #    <« 
cnü(i-i)^cizü(hi)^\ 

# r# >» # <« 
F(x)=C^C21tT(j_l)jk(x)+C22ü(j.1)jk(x) 
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The same manipulation of traveling wave concept used for the explanation 

of the dynamic response in the (j-1)     span may be extended to explain the 

dynamic response in the (j-2)      span as well;  it also can be extended to 

explain the response in the (j-3)     span,   and so forth,  until the 1      span is 
reached. 

The above analysis is based on the assumption that a single driving force, 

P(a.. ),   acts on the shaft.    For driving forces distributed along the shaft, 

the traveling wave solution for each individual driving force is combined 
to give the total response at any point x by direct superposition. Com- 
plete solutions are given in Chapter 2 under "Solution in Wave Form". 

IMPEDANCE MATCHING 

The dynamic response of the shaft system shown in Figure 4 in terms of 

distributed driving forces, P(a., ),    j = 1,   2 n,  k = 1,   2,   .   .   . ,  k(j) 

is expressed by Eq.  (27) in Chapter Z,  In the ith span,  or on  [£.      , ü.], 
i = 1,  2,  .   .   .   ,   n 

s      y 

#" 
0 

■# 

cll 
# 
C12 

»> 

# 
0 

# 
cf 

# 
C21 

# 
C22 

«< 

By proper control of the conditions at both ends and intermediate supports, 
the reflected waves and modified waves may be eliminated,  or at least 
minimized,   such that the dynamic response consists solely,   or 
principally,   of incident waves which are independent of support config- 
urations.    The mathematical representation of the above statement is as 
follows: 

>'> > <« 

ü.ixh ^.(x)        and        ü.{xh tJ.fx) 

or 
» « 

ü.fx) = ü.(x)S 0 (45) 

where     i =  1,   2,   .   .   . ,   n. 

It can be seen from examination of the reflected and modified wave terms 
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» « 
in Eq.   (27) that the condition   U.(x) = U.(x)= 0,    i 

satisfied by setting 

1.   2, ,  n,   is 

and 
# # # 

nx  n'     {n-l)rv  n-l7     (n-2.}ry  n-Z' 

# # 
.=rlr(^)so 

(46) 

Physically,  this is equivalent to setting the impedance at each support 
looking both to the left and to the right cf the support point equal to the 
shaft' s characteristic impedance.     This manipulation is analogous to 
load matching in electric transmission line theory,   in which a line is 
terminated by a load equal to its characteristic impedance;  i.e.,  there 
is no reflected voltage wave.    The proper ratio of input to output voltage 
in the incident wave is satisfied at the boundary,   such that there is no 
need for the presence of a reflected wave to satisfy the boundary 
conditions.    The existence of reflection waves stems from a need for 
satisfying boundary conditions.    A mathematical verification of the above 
statement may be obtained from Eqg.   (23) and (24),   which are expressions 
of impedance in terms of reflection matrices and shaft characteristic 
impedance as shown in Chapter 2 on pages 26 and 27   .    These relation- 
ships show that by letting all reflection matrices vanish,   i. e. ,  conditions 
of Eqs.   (46),  the following set of equations holds: 

#     # 

KW-^J-A^- '   ■   •   =Vl)*(*n-l)=C21CU 
and (47) 

t (^ )=z/   n (f   i)=*/   r (£   7)= ■ • • =*, (je1)=c71c:! n*  n'     (n-l)rx  n-l'     (n-2)r*  n-2/ lrx   1'      21    11 

where s C^.C...    The quantity   z     is called the characteristic 

impedance of the rotating shaft.    In this case,   all impedances appearing 
in Eq.   (47) are termed "matching" or matched impedances. 

If Eqs.   (46)    or Eqs.   (47) are satisfied by proper control of all support 
conditions,   the solutions of the dynamic response of hypercritical shafts 
in wave form due to distributed driving forces as expressed in Eq.   (27) 
may be simplified as follows: 

In the i th span,  or on *•   ,,   *• i-l       i 
i= 1, 2, n 
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s       y 0 cll 

# 
C12 

r > 

Ü.(x) 

0 
# 
cf C21 C22. 

< 

Ü.ix) 

(48) 

where 

ü.M-l ü..(x) 
j=i 

n 

ö^jT ü..(X) . 

Note that the expression for   U-:(x)   and   U. (x)   are given in Eq.  (2?), 
< ^ < > 

except that each wave function   U/.   i \ (x) U..(x),   and    U/.   ,v.(x), 

....   U..(x)=0. 

DISCUSSIONS ON IMPEDANCE MATCHING 

Examination of Eq.  (48) in the preceding section permits the following 
observations to be made.    If the impedances looking both to the left and 
to the right at eacn support are matched to the shaft1 s characteristic 
impedance or,   in other words,   if all the reflection matrices looking 
both to the left and to the right at any support are equal to null matrices, 
the dynamic  response will contain only the incident waves due to driving 
forces.    This means that incident waves simply pass through all supports 
without any modification.     This is consistent with the mathematical 
explanation,   since 'he incident waves are independent of support conditions. 
Hence,  Eqs.   (46) or Eqs.   (47) may serve as a criterion for the 
determination of the support conditions for shafts which are subjected to 
incident waves only.    Supports which satisfy Eqs.   (46) or Eqs.   (47) are 
termed optimized,   since the dynamic response is minimized;   no amplitude 
buildup due to reflected wsves can take place. 

It can be concluded,then,   from the above observations that if both end 
impedances are m itched with the shaft characteristic impedance,  i. e. , 

ro(0)=rn(fi   )s 0,or    z0(0) = zn(C
nH

:
21

Cn- V   the effects of intermediate 

supports on the dynamic response of the rotating shaft are redundant. 
However,   the presence of intermediate supports does raise the frequencies 
at which the critical speeds occur,   including the fundamental frequency. 
Actually,   one could place a predetermined number of intermediate supports 
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along the shaft hufficient to    raise the fundamental frequency above the 
operating frequency of the shaft.    Obviously,  this would involve the 
acceptance of a y- >nalty in added support weight. 

Further inspection of Eq.   (48) shows that even if the intermediate 
support conditions are not optimized,   their effect is redundant.    Thus,   if 
end impedances can be matched to the characteristic impedance of the 
shaft,   nothing is gained from the optimization of the intermediate supports 
in terms of minimum vibration control.    Thus,   one or two matched end 
supports should more than adequately suppress any excessive vibration 
response in hypercritical shafts of any length.    The impedance values for 
the supports of the shaft, whether supported at one end or at both ends, 
are the same;  the difference lies in the deflection amplituder,   where 
those of the single-ended shaft are twice those of the double-ended shaft. 

The matching of end impedance with the shaft charactei istic impedance is 
a formidable task,   not only because impedances are a function of frequency 
but primarily because of the uniqueness of all the conditions required to 
control these impedances.    Moreover,   in practical applications,   the choice 
in end support configurations is limited,   since they usually are governed 
by such factors as transmission gears,   couplings,   and unwieldy mouiitings. 
Thus,   the intermediate supports have to be employed for optimization 
purposes,   since the matched end impedances are not available. 

If all supports are optimized except those at both ends,   i. e. ,   if all 
# #     i   ^     # 

reflection matrices are equal to null matrices except    ro(0).   I  (^   )^ 0, 

the dynamic responses due to distributed driving forces,  Eq.   (27),   may be 
expressed in the same form as Eq.  (48) except for those pertaining to the 

1      and n     spans.    Those responses may be listed as follows: 

On [0 •V ,   or the  1 sp an. 
_ _, 

■'      #           #   " 

— C          0 s      y 

# 
Cll 

# 
C12 

>» 

#                # 
0           cf 

# 
C21 

# 
C22 

<« 

ü^x) 

(49) 

where 
»; n 

ü1(x)=]rü1.w 

«<       " <« 

U1(x)=2] Uj.fx) 
i=l 
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>» <« 
The expressions for   U.^x)   and   U.^x)   can be obtained from Eq.   (27) by 

letting   i   be   1   for   j = i,  and then letting   j = n,  n-1 2   for j>l.    It 
« 

should be noted that the expression for the reflected wave function   Ü. ,(x) 
# > > ll 

= 0,  and that the terms    Ü/.   .^.(x),   ....    tJ2.(x)   vanish also. 

On 
i.  n- 1       n 

,   or the n      span, 

F 

where 
>» 

1    # 

— C 
s     y 

# 
0 

# 
0 

# 

c il 

LC21 

12 

22 J 

»> 
Ü (x) n*  ' 

«< 
Ü (x) 

n* 

(50) 

n >» 
ü (x)=y ü .(x) 

nx  '     Z—      nj^  ' 

«< n <« 
ü (x) = y ü .(x) . 

nx  '      Z_      nj*  ' 
j = l 

>» <« 
In this span, the expression for   U .(x)   and   Ü .(x)   can be obtained from 

Eq.   (27) by letting   i   be   n   for   j =i,  and then letting   j   be   j =1,   2,   .   .   . , 
»       # < 

n-1 for j <n;  also,  the term   Ü     =0,  and each term   ^...».(x)  
< ^ nn (J + 1)J 

VI)JW=0- 
It may be observed from the above expressions that only incident waves 
can exist in every interior span except for the two end spans,   in which 
incident waves originated by driving forces are partially reflected at the 

>» <« >» <« 
end bupports as indicated by the   tJ..(x),    Üj.(x),    Ü  .(x),  and Ü .(x) terms. 

J J J J 

The existence of partially reflected waves in both end spans is an 
unavoidable situation,   since both left and right end supports are not 
optimized,  i.e. ,  are not matched withlhe shaft characteristic impedance. 
Thus,   incident waves traveling from the interior spans to   X=J2.    and 

x=^     .   simply pass onto    To,   ^. |  and [4     i»   ^ 1  >   respectively,   never to 

return to     J?,,  i      A  again.    These waves will then propagate back and 

forth in the     0,   f.     and  H     i«   ^        intervals,  to be damped out eventually 
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by the unmatched impedance at   x = 0-0 or at   x = i +0,   respectively.    It n 

should be remembered from the first section of this chapter "Traveling 
Wave Concept" that for the reflected waves in the 

| 0,   (. 1    and 14     ,,   S.    I   intervals,  the supports at   x = 4,    and   x = ft     . 

act as fixed supports which will reflect completely all incoming reflected 
waves,   respectively,   from the left and right.     Thus,   since reflected 
waves and modified waves vanish along the shaft,   except for both end 

spans,  the shaft system is optimized on    £., £      .    ,  but not on   0,i^ 

and    [*     ,,   ^   1    • L   n- 1       n J 

The minimization of vibration response in a shaft having end supports 
that do not lend themselves readily to optimization may be accomplished 

by letting the 1      and the (n-1)      intermediate supports approach, 
respectively,  the left and right ends of the shaft as closely as possible. 
In this case,  the reflected waves will be restricted to very short end 
spans and,   if all intermediate supports are matched with the shaft' s 

impedance,   only incident waves will exist in the      £.,   £     ,        portion of 

the shaft.    Mathematically, the above statement is indicated in Eqs.   (49) 
>» <« 

and (50),  where as i.  and {ft  -0.     .) approach zero,    U.^x),    U.^x), 
>» <« 1 n     n-1 ij ij 

Ü  .(x), and   tJ  .(x)   also approach zero.    It can be said, then, that the 
J J 

closer the matched   1      and (n-1)     supports are placed to the left and 
right end supports,   respectively,  the more effective the amplitude 

suppression will be in the end portions,    0,  £.        and   8.     .,  I ,   of the 

shaft. 

It has been observed earlier that matched or unmatched interior supports 
would be redundant if the end support impedances are matched to the 
characteristic impedance of the shaft.    By the same reasoning,   inspection 
of Eq. (48) should show also that for the case in which the two outermost 
interior supports are matched,  all supports interior to these two supports 
are redundant.    From all this discussion, the conclusion may be made 
that in the case for which the end supports are not available for optimization, 
one or two matched intermediate supports placed very close to the end 
supports should more than adequately suppress excessive vibration response 
for shafts of any length.     The impedances of the interior supports should 
be the same for the shaft with one interior support placed close to one 
end and the shaft with two interior supports placed close to the ends.    The 
only difference in behavior between these two shaft systems exists in the 
amplitude response.    It is larger in the case of the shaft with one interior 
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Support;  how much larger this value of the amplitude response will be 
depends on the amount of wave reflection that will take place at the far 
end support.    In the case of the shaft with two interior supports placed 
close to the end supports,   no such reflection of incident waves will take 
place at either end,   and the resulting deflecting amplitude response 
should be less than that for the single interior support case. 

DETERMINATION OF THE MATCHED IMPEDANCES OF INTERIOR 
SUPPORTS 

The optimum impedances,    Z.{(..),    j = 1,   2, .   . ,  n- 1,    of interior 

supports are determined from the following conditions; 

rj«(V=0' j = ^2' 

and 

,  n-J 

# # 
rjr(£j)=0'    j = n"1'   n'2 1 

(51) 

It may be shown as before (see Eqs.   (47)) that the above expressions are 
equivalent to setting 

A #     #_1   # 
z 

V(V=C2iCn 
and 

j=l,  2, n-1 

zjr(V=c2icirzs'      j=n'1' n'^■ , 1 . 

(52) 

A # The details of   %.*(£.)   and   z.   {(..)  are summarized in Eqs.   (17) through 

(24). 

From these equations,   a set of supports can be uniquely determined such 
that the shaft will have minimum dynamic response characteristics. 
However,   it should be noted that the shaft1 s characteristic impedance is 
a function of frequency, a) ;   hence,   all matched support impedances must 
necessarily be functions of frequency.    To provide these supports,   in 
reality,  with matched impedances is a formidable task,   not only because 
they are a function of frequency,  but primarily,   as has been stated before 
in the preceding section,   because of the uniqueness of the requirements for 
these impedances.     Each support must be a translational and rotational 
mass-spring-damper unit with a built-in frequency dependency to meet 
these requirements.    This is a physical situation that is not easily attained. 
Hence,  from a practical point of view,  the possibility of imposing weaker 
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conditions on support requirements for minimum vibration response of 
hypercritical shafts should be investigated. 

QUASI-MATCHING 

A compromise approach,   "quasi-matching",  to minimizing critical speed 
vibration may be realized in the form of weaker conditions on impedances 
at support locations.    By examining the expressions of reflected and 
modified waves,   some interesting observations may be made.    First,   by 

> 

writing out the expression for the incident wave   Ü..(x) in Eq.   (27) in 

complete matrix notation. 

> kji) 

k=l 

iejVw (x-a^) 0 

2Vir(x-aik) 

# # ^ 
c

+
cf p(aik) 

x[H(x-aik)-H(x-^)" 

The term 

-iejVw" (x-aik) 
= cos(e1V^'(x-aik))-i    sin (e^{x-c^)) 

is a complex entry which affects only the phase relation of the wave as the 
-e2V"(x-aik) 

argument   (x-a., ) increases.    The other term,    e ik 
,  is a 

function for which the numerical value decays exponentially as    (x-a., ) 
-e2V^{x-aik) 

increases.    Generally,  this term^ e ,   is very small when 
^-^(x-a^) 

compared to the first term,   e ,  which does not decay.    Hence, 
it may be neglected with very little effect on the solution.    Second,  by 

- th examining the expression of reflected wave   U..(x) in the i      span as given 
11 « 

by Eq.   (27),   the term,  which corresponds to       lT..(x) (see Eqs.  (33) 

and (35)),   can also be written out in complete matrix notation: 
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R(£.-x)r. (£.)ü..(£.) 

k(i) 

k-l 

(e ^ l    lkr.  (^)11)e 1          x x
 ir*  I'll' 

(e 1 '    lkr.   («.)71)e 2           1 

(e 2V l 1     lk rir(^)12)e 1           1 

(e 
-e,Y^(^-a4J i    ik' r. (f.)?Je 

e^il.-x) 

#   #     — 
c

+
cflp(aik' 

In the reflection matrix   T.  (B--),  the only element not modified by an 
ir'  i 

exponential decaying function is   T.   (^K,.    Thus,  for cases in which 

these elements become negligible with increasing w ,  only the element 
which is not modified by an exponential decaying function need be 
considered.    This leads to the simpler expression: 

x  i    '  ir' r   iix i7 

k(i) 

E C
+

Cf   P(aik) 

The same manipulation may be applied to all the other reflected and 
modified waves.    Hence,  as a logical conclusion,  the shaft matching 
conditions as stated in Eqs.  (51) can be replaced by weaker ones as 
follows: 

Ti(<lihrTzt<^ u ■ • • r(n-l)«(1n-l'ir0 

and 

T/   ,\ (^   i),i=r/   7x (^   .,),,= ...= r, (JL)=O (n-l)rx  n-l'll     (n-Z)rx  n-Z'll Ir*   1' 

(53) 

where the subscript "11" indicates the element of the first row and the first 
column of each reflection matrix.    If all interior supports are designed 
such that the above conditions are satisfied, then the shaft is termed 
quasi-matched.    By examining Eqs.   (23) and (24) and their related 
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expressions,  it is evident that under the condition of quasi-matching,  each 

term  £,<(«,).   ^{(£2) VU«''-'''   Vo^n-1'' Vz^n-z'" 
ir'   1'*  aPProachefl   z    = CjjCjjtEqs.  (47)),  which relates to shaft 

characteristic impedance (i. e. ,  matched conditions) as exp(-e2 yw (A ,-a..)) 

or   exp(-e2 yw (J?.-x)),  i= 1,   2,   .   .   .,11, tends to zero,  where a,,    or   x 

is on 

The application of the criteria given in Eqs.  (53) for the quasi-matching 
of interior support impedances to the characteristic impedance of the 
shaft to the design of several support configurations will be illustrated 
in Chapter 4.    For convenience sake,  a shaft with only one interior support 
and two end supports will be studied. 
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expressions,   it is evident that under the condition of quasi-matching,  each 
A A A U M 

term   z^),    z2£(£2) ^-lU^n-l).    VO^n-l^  Sn-Z^n-Z*' 

.   .   . , I.  (£,),   approaches   I    = C21Cj1(Eqs.  (47)),  which relates to shaft 

characteristic impedance (i.e. ,  matched conditions) as exp(-e2Y<»> (f.-a.. )) 

or   exp(-e2 yw  (jf .-x)),  i = 1,   2,   .   .   . ,  n,  tends to zero,  where a.,     or   x 

is on 

The application of the criteria given in Eqs.   (53) for the quasi-matching 
of interior support impedances to the characteristic impedance of the 
shaft to the design of several support configurations will be illustrated 
in Chapter 4.    For convenience sake,   a shaft with only one interior support 
and two end supports will be studied. 

63 



CHAPTER IV 

TRANSMISSION LINE ANALOGY SOLUTION OF THE 

SUPERCRITICAL SHAFT WITH ONE INTERMEDIATE 

SUPPORT--USED AS AN ILLUSTRATION PROBLEM FOR 

QUASI-MATCHING 

DESCRIPTION OF PROBLEM 

A. uniform rotating shaft with one interior support will be used in this 
chapter for the development of equations for different support config- 
urations in terms of quasi-matched conditions.    These expressions 
should be useful to the designer in that impedance values termed "best11 

for the supports may be established directly without an excessive 
amount of computations. 

The criterion for quasi-matching of the interior support impedance with 
the shaft impedance,   looking to the left and right of   x = ^,    is,   referring 

to Eqs.   (53). 

^0 

(54) 

r1^1)11 

rir<*i)ir0 

u u 
In general,    1^(0 ^ ^ Fj r(4 ^ j,    or   T^^J^FJ^J);  the condition 
£ # 
r]«(^])=ri   (f ,)   exists only if the interior support is placed at the midpoint 

(£ . = 1/2 £,) of the shaft span,   and both end supports have the same 

configuration. 

A physical model of the shaft used for the analysis in this chapter is 
shown in Figure 16.    This corresponds to the general case shown in 
Figure 4 by 1 itting   n = 2.    If a shaft is used here having identical end 
support configurations, 

Z0(0)=Z2(£2)    . (55) 

By direct substitution of Eq.   (55) into the expressions of   Fi «(^ i)    and 
# 
r   (£,)   and assuming that   S., = l/Z i^,  it can be shown that (see Appendix 

H) 
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Figure   16.     Uniform  Shaft With One Interior   Support at the 
Midpoint   of   Total Span. 
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# # 
ric(*i)srir(V 

ra^iisrir^Vii • 

(56) 

The conditions of Eqs.   (55) and (56) will be used in the development of 
a number of example problems of this chapter. 

REFLECTION MATRICES AND SUPPORT IMPEDANCES 

Reflection Matrices at Supports in Terms of Impedances 

A set of corresponding equations for the shaft system shown in Figure 16 
(£.^ l/2 H?) can be obtained from Chapter 2 simply by letting   n = 2   in 

Eqs.   (15)-(22),  as follows: 

# # 

-C22^0)C12 

-1 # 
c21-^0(o)c11 

rl^l)= 

# 
rir^l): 

r2«2)= 
where 

# 
C22+Zl^l)C12 

#      # #     ~ 

#      # #    ' 
C22+Z2^C12 

c2rzi£ ^i^cii 

■#    #       #   ^ 

C2rzlr^l^Cll 

C2rZ2^2)Cll 

zi^£i)=zi^i^zo^£i) 

r#    #   # 
z0^£l)=[C21+C22r0^l) 
M        r#    #   #     ' 
f2r^l)=LC21 + C22r2(£l) 

# # #        # 
r0(^)=R(£1)r0(o)R(£1) 

#     #   # 
Cll + C12r0^l) 

-1 

"#        #     #       >1 
Cll + C12r2^1 

# # # # 
r2(£1)=R(«2-£1)r2(£2)R(£2-£1) 

(57) 
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Impedances in Terms of Reflection Matrices 

A set of corresponding equations for the shaft system shown in Figure 
16 {i.^l/Z i?) can be obtained from Chapter 2 simply by letting n = 2 

in Eqs.   (23) and (24),   as follows: 

On iO.  S. L 
A    /  x zoftW 

"#        #     #       ' 
C21 + C22r0(x) Cll + C12r0(x) 

On [v e. 
A 
zU(x)= 

Onffj.  t 

z2r(x)= 

On To,   i] 

zlr(x)= 

#    #   * 
C21 + C22ri£W 

#        #      # 
C21 + C22r2^x^ 

"# #     # 
Cll + C12ri^x) 

-1 

,1- 

C21+C22r IrW 

l+CI2r2Wj 

c11+cI2rlr(x) 

SOLUTION IN WAVE FORM 

(58) 

From Eq.   (27) in Chapter 2,   the corresponding solution in traveling 
wave form for the shaft system shown in Figure 16 (£.^1/2^,) can be 

obtained as follows: 

On 0. c,!    , 
"J 

s      y 

#   - ' # # 
Y 0 cll C 

ryl # # # # 
F 0 cfJ -C21 c 

On   [£1(   ^j      . 

§ 
— c s     y 

# 
0 

0 c 

# 
c 

11 

21 

12 

'22 

C 

c 

12 

22 

>» 
IJJCX) 

<« 
_   tJjCx) 

>» 
ü2(x) 

«< 
Ü,(x) 

(59) 
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where 

>»        »> X> 

U1(x)=U11(x)+U12(X) 

<«       <« <;« 

U1(x)=U11(x)+U12(x) 

>»      >» >» 

Ü:
2(x)=Ü21(x)fÜ22(x) 

<«        <« <« 

ü2(x)=ü21(x)+ü22(x) 

»> » > 

U11(x)=U11(x)+U11(x) 

<« « < 

U11(x)=U11(x)+U11(x) 

k(l) #   # 
Vn{x)= Y   R(x-alk)C+C^1P(alk)[H(x-alk)-H(x-£1)] 

k=l 

k(l); #    § 
Vnix)=Yt  R(alk-x)C_Cf-1P(alk)H(alk-x) 

k=l 

«       ^    r^ ^     # 
uu(x)=R(x)li-r0(o)rlr(o) 

i# 
r0(o) m1)Tlr{i1)vll{il)+\j11{o) 

XH(£rx) 

U11(x)=R(£1-x) ^IrVlW 
-1# 

r lr 

> # #        < 
üll{il)m{il)^io)Vn{o) H^j-x) 
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>» » > 
Ü22(x)=ü22(x)+Ü22(x) 

<c<        «: < 

Ü22(x)=U22(x)+U22(x) 

> k(2) § f   f     ~ 

Ü22(x)= £   R(x-a2k)C+Cf-1P(a2k)H(x-a2k) 
k=l 

U22W=  I   R(a2k-x)C_Cf-1P(a2k)[H(a2k-x)-H(f1-x) 
k=l 

» # #  # # -1# 
\j22{x)=R{x-i1)[i.ra{i1)r2iil)\  r^^j) 

HCx-ij) 

<<        # 
U„(x)=R(^-x) 

22' 

X 

2 

> 

#   # # 
i-r2(f2)ru (£2) 

i# 
r2^2) 

# # < 
u22^2HR(^-i1)r1Je(£1)ü22(£2)jH(x^1) 

>» <« 
ü12(x)=R(x)r0(o)R(ü1) i+c-Jc^r^j)     ci1

1c12ü22(£1)+t722(i1) 

<« 

XH^j-x) 

-1 <« #   #      #      # .    ,       „ 

^12W=R(£r4I+CnC12r0^1>J     LCnCl2Ü22(V+tJ22MH<VX) 
# ,#  >» 

>»      # 
tT21(x)=R(x-je1) Hcjjcj.r^j) 

r>» # ,#  <« 
üll^l)+CUC12üll^l) HCx-^j) 

<« # # # 
t721(x)=R(f2-x)r2(£2)R(£2^1) 

#  #   ,#     # 
I+CilC12r2^l) 

1 

»> #   ,#    <« 
üii^i)+cnci2üii^i) HCx-üj)     . 
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The preceding Eqs.   (57),  (58),  and (59) give the pertinent formulas 
required for the optimization of support conditions of the two-span 
shaft with the interior support at position i, and two general support 

configurations at the ends.    Also from Eqs.   (59),  the dynamic response, 
i. e. ,   the induced deflections and forces due to distributed driving forces, 
of the shaft under investigation can be calculated directly. 

DETERMINATION OF THE QUASI-MATCHED IMPEDANCE AT THE 
INTERIOR SUPPORT 

In the subsequent set of example problems for the shaft on three supports 
it is assumed,   for convenience sake,   that both end supports have the 
same configuration so that Eq.   (55) holds.    In addition,  the interior 
support is assumed to act at the mid-span (JP  = l/2 lt?) of the shaft such 
that 

^(«1)^lr«1). 

or in terms of the quasi-matching condition for the impedance of that 
support to the characteristic impedance of the shaft, 

riA)ii^rir^ir0 (60) 

Since E *(£,)= T,   (^J,   only the condition E   (^,)=0 needs to be consider 

in the following analysis to determine design criteria for the interior 
support meeting the requirements for quasi-matching.    Thus the proper 

# A 
values will be obtained for both   Z.   (£,) and Z   Ji  )   which are the 

impedance quantities the interior support must provide,   respectively, 
looking to the right and left of the support for a minimum vibration 
response of the symmetrical shaft. 

The matrix forms for the impedance at each support are as follows 
(see Appendix H for explanations): 

ed 

At x=0, 
# 

Zn(0) = 

'0(11) 

-Z 

At   x=i MV 

0(21) 

1(11) 

-Z 0(12) 

'0(22) 

0 

1(22)J 
(61) 
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At  x= C2, 

'2(11) 2(12) 

/2(21)        ^2(22) _ 

where   Z0(0)5 !.,(*.,).   i.e.,    Z       dO^Z       JIJ,  i.  j=l.   2 

If the following equation, 

#        # # 
rir^l)=   -C22 + Zlr^l)C12 21 ir<ei)c II 

and its related expressions (see Eqs.   (57) and (58)) are used,   then 

F.   (^i)i i=0   leads to the following expression which corresponds to 

a quasi-matched interior support (see the mathematical derivations 
in Appendix I): 

(1 + e3HZlr(22)+iele2Zlr(ll)He1e^ie2)(zlr(l2)Zlr(2l)-zlr(ll)zlr(22)) 

-e3(e2+ie1)(Zlr(12)-zlr{21))-(eI+ie203)=0 

where 

(62) 

^l)= 

lr(ll)        Zlrn2) 

lr(21)        Zlr(22) 

Zlr(lirZl(ll)+ 

O+eJ) 

det Cll + C12r2^l) 

-2ie.V^(^-^) 
?(ll)^2)e 2      1   "^ 
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Zlr(12)   : Zlr(21) 
det 

1        #      # 
Cll+Cl2r2^l) 

-(e2+iel)r2(ll)^2)e "        H^-ie^ 

ie, t 
Zw^ + 

r2{l + e3) 

lr(22) - "l(22)T  Pi r~F 
det c^+c.-r^fj 1       12   2V   1' 

-2ie  N/co(jf   -f   ) 

det Cll+C12r2^l) •ele3 

-2ie  \^(jf?-f   ) 

ie. 
-2ie /^(K-Jf.) 

e ! r2(ll)^2)-   1 

r2(ll)^2) 
1 

det -42+l2^2)Cl1 

(l+e3)(z2(22)+ie1e2z2(11))   + 

det ■c22+^2)ci; 

(ele3+ie2^Z2(12)Z2(2l)"Z2(ll)Z2(22p 

e3(e2+ie1)(Z2(12)+z2(21)).(e1+ie2e^) 

=    (ie3+ie1e3Z2(11) + z2(12))(e2e3-ie2z2(21)He3z2(22)) + 

(e1+ie1e3z2(21)+z2(22))(l-ie2z2(11)+ie3z2(12))     . 

Tt appears from the preceding discussion and equations that the example 
problems have been severely limited to several simple cases of the 
symmetrically supported shaft.    That this is not so,  however,  will become 
apparent,   if the following principles are understood; 

Consider the case 

«1^2 

then. 
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this means that besides establishing  I.   (f,), a second set of conditions for 

z.   (JP.) must be met by the interior support.    Equations ior evaluating 

z. JH) may be developed in accordance with the steps indicated in Appendix 

I.    To control the shaft' s minimum vibration response completely, it is 
necessary that the interior support consists of two sets of impedances, 

each optimized for its own set of standing waves:   z     (jP   ) for the wav< 'es 

A traveling to the right and originating in the [0,  Q A   span,  and  z..(f.) for 

the waves traveling to the left and originating in the [It,,  H ?]   span.    As has 

been suggested in the preceding chapter,  page 58 ,  optimized interior 
supports act as one-way filters in that they let incoming incident waves 
through,  but block the reflected waves approaching from the other side, 
except in the case when the support exhibits impedance characteristics 
which satisfy conditions for incoming waves from both the left and right 
sides.    In general,  it is not easy to build supports meeting such conditions. 
Therefore,   it is suggested that the interior support be placed as close to an 
end support as possible so that it,   in effect,  replaces that support.    In the 
example problems of this chapter it would mean placing the interior support 
in close proximity of the right end support since Eq.   (62) is given in terms 

of the components of z.   (f.). 

It follows from these arguments that Eq.  (62) can be applied also to 
problems in which the interior support is not placed at midspan,  but placed 
in close proximity of the right-hand end support.    In this case, f . & H-, $ 

and inspection of Eq.  (62) shows that the effect    of the right end support is 
essentially eliminated since the term  T-w, , Jf.,)  must vanish for  H,  = H? • 

The terms in Eq.  (62) simplify to: 

Z,     /, , v   =   Z, 

■e1e3+ie2 

•lr(ll)      'l(ll) 2 

e1e3- 

e^-iej) 
= z 

lr(l2)        lr(21) 2 

-e1e3+ie2 

ie1e2(l+e3) 
Zlr(22) = Zl(22) + 2 

-e1e3+ie2 
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which together with E j.  (62) are the equations which Nelson derived for 
single span shafts (reference 14).    Thus, the results for the symmetry 
cases of the shaft can be used for or extended to the problems in which 
the interior support essentially replaces one of the end supports.    It should 
be noted here that Eq.  (6Z) and associated expressions for  z.   /.iv»   z,   /i^w 

z.   /-».y  and  z.   ,,,.   could be worked into relatively simple design formulas 

in terms of specific support conditions,  such as translational supports or 
rotational supports,  especially in cases for which the shear deformation, 
rotational inertia,  and gyroscopic terms are neglected; i. e. ,  when 
ei  = e2 = e3 = 1. 

EXAMPLES 

To illustrate the existence of many quasi-matched interior support 
impedances yielding a "best" vibration response behavior,  and to show the 
manner in which the impedance at each support is calculated,  some specific 
examples will be studied. 

Three-Support Shaft System with Specified Interior Support Configuration 

As a first example,   consider a shaft with both ends having the same 
configuration, and with its interior support consisting of both a translational 
and a rotational spring and damper unit of negligible mass as indicated by 
K 

IT' 
K1R,  C1T,  C1R This shaft system is shown in Figure 17.  Consider 

an infinitesimal shaft element at x = f    ; all forceis acting on this element 

are also shown in Figure 17. 

Since,  from Figure 17, all forces are assumed to be in the positive sense, 
the following force equilibrium condition exists at x = f.   as 

Ff^-O) - FUj+O) = -RUj) 

and 

-RU,) = 

CITVCI)+KITYI(CI' 

ClRY
2t(1l)+K

1R
Y2(«l) 

If the above relationships are restated in Laplace transform form, 

ry *v »y 

FUj-0) - F^j+O) = -RUj) 

and 
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Figure 17.   Three* support   Shaft System   With Specified 

Interior   Support  Configuration. 
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■RUj) = s 

C
1T

+tKlT 

C1R+7K1R 

*(«!> 

If this expression is substituted back into the first relationship for the 
force equilibrium conditions at x = jP.   and if this expression is compared 
with Eq,  (13),  which may be written as 

FC^-O) - F(£1+0) = 8Z1{f1)Y(jf1)     , 

it is concluded that 

# 
ZI^l)- 

C1T+7K1T 

C1R+7K1R 

(63) 

which is the interior support impedance.    If Eq.  (61) is used and if Eq.  (62) 
is satisfied,  the values for  K.-,,   K.p ,  C.^, and C.^   can be obtained; 

the "best" vibration response possible for the shaft supported by the type 
of supports shown in Figure 17 will result, provided that the impedance 
values of the end supports are known. 

Three-Support Shaft System with Floating Ring Damper Assembly as the 
Interior Support 

A second and more complicated configuration of the interior support is 
shown in Figure 18,    In this case,   the impedance of the interior support is 
as follows (see the mathematical derivations in Apoendix J): 

s4M M.C+s^M  M.(K,+K  )+s[(M +MJK (K,+K  )+M K.K ] ab a   T)x   b     c'     l v    a      b'   ax   b     c'      a   b   cJ 

Z,(V = s3MuC+82M, (K.+K )+s(K +K )C+(K K,+K, K +K  K ) b T)v    b      c'     v    a      c'      v   a   b     be      c   a' 

+ s[(M  +MJK  (K,+K )+M  K.K   ]+K  K  C+-K  K.K L v    a      b'   ax TD     C'      a   b   C
J
      a   c      S     a   b   C 

0 

0 
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Figure   18. Three - support  Shaft  System With Floating Ring 
Damper   Assembly as the  Interior Support. 
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This rather general configuration can be used to represent a wide variety 
of actual support configurations.    In this case,  it was selected to serve as 
an idealization of the floating ring damper bearing assembly (reference 8). 
Again,   Eqs.  (61) and (62) should be used to establish the "best" values for 
M. 'V K   , K,  ,  K    and  C. a       b'      c 

Three-Support Shaft System with Specified Support Configurations 

A third and more specific shaft system is the one shown in Figure 19. For 
simplicity, all supports are assumed to have the same configuration. The 
support impedances which can be derived in the manner shown in Appendix 
I can be expressed as follows (see Eq.  (63)): 

Z (o) = ov   ' 

Z0(11) 0 

z1U1) = 

z2U2) = 

Since 

'0(22) 

C0T+7K0T 0 

C0R+7K0R 

Zl(ll) 0 

1(22) 

C1T+7K1T 

Z2(ll) 0 

'2(22) 

C2T+7K2T 

C1R+7K1R 

>  •     (64) 

C2R+7 K2R 

1 = 
'11 

72 

*JZ '11 

4Zz 22 

(65) 

then ^11)=^ ^(11)     ' Zk(22) = ^ Zk(22) 

where    k = 0,  1,  2  and  s = iw . 

By substituting Eqs.  (64) and (65) into the quasi-matching condition as 
expressed by Eq.  (62),  the "best" values for the support parameters for 
the shaft system shown in Figure 19 can be obtained.    Thus, 
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2,. 

^ 
[ie1e2(l+e3)-(e1e3+ie2)Q22](ClT-i;K1T) + 

^[(l+e^)-(e1e^ie2)Q11J (C^-^K^)- 

(e1e^ie,)[(C1T-i;K1T)(C1R-iK1R)] + 

[   (l + e2){Q22 + 1e1e2Qli)-2e3(e2+ie1)Q12+(e1e^ie2)(Q;2-Q11Q22) 

(e   +ie?e   )]    = 0 (66) 

where 

Q 
(1+^) 

11 
det 

n—sn— 
Cll+C12r2(fl) 

r2(ll)(Cz)e -1 

Q,, = 

ie1e2(i+ep 

det 11+C12 
c+c^Uj) 

Q 12 
det 

rf—s—I—! 

C11+C12W 

r2(11)U2)e       ^ ^1 

-2ie1N^(f2-jC1) 
•(e2+ie1)r2(ll)(f2)e ' +<e2-ie1) 

det 
'#        #      # 
Cll+C12r2^l) =-ele3 

•Zie^^-fj) 
r2(ll)^2) + 1 

ie. e 

L 

■2ie1N^(f2-£l) 

^(ll)^)"1 

r2(ll)^2) 
det -C22+ it^jC,, 

('+<) •^
C

2R-^
K

2R'
+ 

ie, »i 

' ^C2T" u K2T^ 
N/W 

-(e1e^ie2)(C2T- ^K2T){C2R- ± K2R)- 

(e1+ie2e3) 
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det C22+ l2(t2)ci; = -ie. 1 + 
»fÜ ^CZT'uKZT^ 

e2+i^C2R- (o . 2R/ i-K. 

ie. 

Vw 
(C2T' ^ZT) el^C2R--;K2R) 

As can be seen from the above expressions,  the only unknowns involved 
are  K. _, ,  K.p,   C.—,   C1R   of the interior support,   provided that both end 

support configurations are given.    Hence,   Eq.   (66) provides a means of 
establishing the values that should be used for the unknowns   K.-, ,   K,R , 

C1T ,   and C.p   in order to satisfy the quasi-matching condition for the 

interior support in the shaft system shown in Figure 19     The interesting 
point here is that the set of values for  K. „, ,  Kir>>   Cirr>  C...   required to 

11 IK. 11 IK. 
satisfy Eq.  (66) is not unique.     This permits a wide range of selection of 
these parameters to match the feasibility and availability of various damper 
and spring materials and configurations. 

For a shaft system similar to the one shown in Figure 19, but which has no 
rotational spring and damper units attached to its supports,  the quasi- 
matching condition of the interior support can be written simply by setting 
KkR = CkR = 0 and k = 0'   l'   Z'  in Ec*-  (66): 

;1X "K^ + Q= 0 IT     u     IT (67) 

where 

Q = 
N^ 

ie1e2(l+e3)-(e1e3+ie2)Q22 

(l+e3)(Q22+ie1e2Q11)-2e3(e2+ie1)Q12 + 

(e1e^+ie2)(Q^2-Q11Q22)-(e1+ie2e^) 

Q11,   Q22I  Ql2.  det 

Eq.  (66), 

'#       #      # 
have the same expressions as in 

1 r2(ii)^2)=—pi—: ir 
-c22+l2(f2)cL det 

ie1e2(l+e3) 
(C2T-3K2T)-(el+ie2e3) 

det C224^2)CI< 

•ie1e2(l+e3) 
(C2T-^K2TWerie2e3) 
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The quantity  Q is a given constant which relates to end configurations, 
shaft characteristics,  and rotating speed.    Eq.  (67) demonstrates the 
usefulness of the transmission line analogy by qua si-matching;   C.-,  and 

K.rp are the only unknowns appearing in a linear equation and can be 

determined directly. 

In the cases for which the interior support is placed in close proximity of 
the right end support, Eqs. (66) and (67) can be used also for establishing 
the optimum impedance terms of the interior support by letting  F^/, ix^?) 

Simplification of Qua si-Matching Conditions by Neglecting Rotary Inertia, 
Shear, and Gyroscopic Effects 

It can be verified that the differential equation accounting for the bending 
effects in the shaft only can be obtained from Eq.   (7) simply by setting 
e    = e? = e    = 1 ,    In practice,  if the rotating speed is not extremely high, 

the terms for rotational inertia,  shear deformation, and gyroscopic effects 
can be neglected.    When the above argument is used, the qua si-matching 
equations for a shaft with one interior support may be simplified accord- 
ingly.    With reference to Eq. (62) and Figure 16, 

2(zlr(22)+izlr(llp+(1+i)(zlr(l2)Zlr(21)-Zlr(ll)Zlr(22)-Zlr(l2)-Zlr(21)"1)=0 

(68) 
where 

=   Zw, ,x + zlr(n) " Zl(ll) r2{11)U2)e 
•2iNq£2-jP.1) 

-1 

Zlr(l2)     Zlr(21) 
1  L 

-2iN£U  -*,) 

■(1+i)r2(ll)^2)e +(1-i) 

= z 
2i 

lr(22) - *1(22)      A 

^W^K-C.) 
r2(ll)^2)e +1 

Al = 
•2i^2-*l) 

r2(ll)^2)+1 - i 
■ziNq^-t,) 

r2(U)(f2) " ' 

^(ll)^ =~~   2(z2(22)+iz2(ll))+(1+i^z2(12)Z2(21)"Z2(ll)Z2(22)" 
^2 L 

i2(12)"Z2(21)"  ^ 
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i+ iZ2(ll)+Z2(12) 

1 + iz2(21)+Z2(22) 

1 " iz2(21)+iz2(22) 

1 " iz2(ll)+iz2(12) 

For the specific shaft configuration of Figure  19i  the corresponding quasi- 
matching condition can be rewritten in the following simplified form (see 
Eq. (66)): 

1 2i-(l+i)Q22 <CIT4KIT)W" 2-(l+i)Q 
11 (ClR"w K1R) 

(l+^ClT-^KlT)(ClR-iKlR) + HQzz+iQn) + 

(l+i)(Ql2-Q11Q22-2Q12-l) = 0 

where 

rll 

2i 
'22 

12 

-2i\^({   -f   ) 
r2(11)U2)e ^1 

-2i\^(jf2-J?1) 
r2(ll)^2)e +1 

-2i\^(f -r) 
-(l+i)r2(11)(f2)e +(l-i) 

^ 

•2i^(f2-£1) 
r2(ll)(f2) + 1 

-2i^(f2-Jf1) 
r2( 11)^2) -  1 

r2(U)<f2)=7-« 

(i+i) 

,^(C
2R-i;K2R) + -p-(C

2T-;K
2T) 

(
C

2T-!;
K

2TH
C

2R-^
K

2R)
+1 

(69) 

% 
-1 1 + -F-(C2T-6KZT' 

*/CJ 

,+W^(C2R-HR) 

1 - __ (c;,T- - K7T) 
'2T   ^     2T; 1 

+
 ^(

C
2R-!;

K
2R) 
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For the simplified shaft configuration in which no rotational springs and 
dampers are being used,  a very simple quasi-matching equation for 
determining optimum damping and spring coefficients in the interior 
support can be obtained.    With reference to Eq.  (67), 

'IT u     IT (70) 

where 

4Z 
2i-(l+i)Q22 

2(Q22+iQ11)+(H-i)(Q^-Q11Q2r2Ql2-l) 

Q 11 Q, 2' Q  ,   have the same expressions as in Eq.  (69), 

r
2(n)({2)=T- L VU) 

A2 = -  -p-(C2T-^K2T) + (l-i) 
vco 

Thus,  fairly straightforward solutions have been obtained which permit the 
designer to obtain in a direct manner the spring and damping coefficients 
required in the interior support for the minimum vibration response 
operation of a hypercritical shaft on three flexible supports.     To suit cases 
other than those discussed specifically in this report,  Eq.   (68) can be 
manipulated.    Again, it should be noted that for the cases in which the 
interior support is placed close to the right end support,  Eqs.  (68), (69)» 
and   (70) can be simplified further by letting   r^/, IXUT) - 0 .    It should be 

pointed out also that the effect of mass in the interior support can be 
included directly in Eqs.   (66),  (67),  (69),  and (70) by replacing the spring 
coefficients: 

K 
IT = (K IT 

(/MJ) 

K 2T = (K2T"W M2) 

K1R =(K1R "w Il) 

K2R = (K2R " w y     ' 

where M.   and M, are,  respectively,  the mass of the support systems at 

x = f ,     and x - C~ , and I.   and I2  are,   respectively,  the mass moments 

of the support systems about their center of gravity at x = JP.   and x = £2 

of the shaft. 
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Design Formula for the Shaft with Its Interior Support Placed in Close 
Proximity of One of Its End Supports 

For the case in which the shaft is being treated essentially as a two-support 
system (i. e. ,  the interior support is placed in close proximity of one of the 
end supports),  it is possible to develop a very convenient formula for the 
determination of the optimum quantities (in terms of quasi-matching) which 
the interior support must provide for a minimum vibration response of the 
shaft.    In this case, it is assumed that  e 

1 e2 = e3 = 1 If the impedance 

of the interior support is considered to act in a translational fashion only, 
the impedance matrix of the interior support can be written as follows: 

zi(V- 

CIT4(KIT-"2MI)     0 

Substitution of this condition in Eq.   (70),  andletting  T,/, ,,(£,) = 0,  results, 

after some algebraic work,  in the following formula: 

3/2 + ?/xx     Z K
      ) 1T; 

l\ 1/2 (71) 

where 

C 
IT 

CITC
S 

E  A 
y 

CO 
**** 

M, 
M 

PARb 

K 
IT 

KlTRb 

E  A 
y 

=7? 
Also,  C jT,   Mj ,  and K1T  are,   respectively,  the dimensional quantities 

for the damping coefficient,  mass,   and spring coefficient of the interior 
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support,  and w* is the dJ' .ensional quantity for the angular velocity of the 
shaft, 

Eq.  (71) will calculate the optimum damping coefficients for preselected 
sets of masses, and spring coefficients in the support in terms of the 
angular velocity of the shaft.    It rhould be note-: that the values for  C,™ 
are independent of the impedance conditions of the end supports and that 
the values for optimum damping for two interior supports placed close to 
each end support are the same as that for one interior support placed close 
to one or the other end support. 
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CHAPTER 5 

CONCLUSIONS 

EXTENSION OF TRANSMISSION LINE ANALOGY 

The transmission line analogy can be extended to shafts having any number 
of interior supports.    However,  the solution is considerably more compli- 
cated for shafts having more than one interior support. 

MATCHED END IMPEDANCES 

For the shaft with both end impedances matched with the characteristic 
impedance of the shaft, no intermediate support is needed to assist in the 
minimization of vibration response. 

QUASI-MATCHING 

If it is physically impossible or impractical to terminate a shaft in its 
characteristic impedance,  quasi-matched end impedances or quasi-matched 
interior supports (when end conditions are not available for optimization) 
should provide good performance.    Quasi-matching involves the selection 
of support conditions in such a way that the predominant F, .   term of the 

reflection matrix vanishes.    The concept of quasi-matching is based on the 
assumption that  exp(-e2^r (£.-£._.)) « 1   , which is true as u increases. 

ONE OPr IMUM INTERIOR SUPPORT 

When the shaft and end support impedances are not matched and when only 
one interior support is used,  two approaches may be employed to assist in 
the minimization of vibration response: 

1. If both ends have the same configuration, the interior support may 
be placed at the midspan, provided the conditions of this interior 
support obey 

rir(ll)^   rif{ll)^l)=0 

as indicated by Eq. (62). 

2. If one end support is different from the other,  the closer the 
matched intermediate support is placed to one of the ends,  the 
more effectively it will minimize the vibration response of the 
shaft with provision that: 

a. If the interior support is placed close to the left end, it should 
be arranged such that rie/ii^i) = 0 * 

b. If the interior support is placed close to the right end, it 
should be arranged such that F.   /ii\U|) ^ 0 •    T*16 equation 
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for  r.   /iixUi) = 0  will have the same form as Eq.  (62), 

except that JL   (see Figure 4) indicates the actual location 

of the interior support. 

TWO OPTIMUM INTERIOR SUPPORTS 

When the shaft and end support impedances are not matched,  the use of two 
matched intermediate supports placed close to the ends of the shaft is 
recommended.    This is equivalent to letting n = 3  for the shaft system 
shown by Figure 4, in which H. ,  ft-,   should approach 0,11,   respectively, 

and the 1     and the 2      interior supports should be designed in terms of 
configurations which satisfy the conditions 

rU(ll)^l) = 0 

and 

r2r(ll)^2) = 0    ' 

In other words,   only the incident wave exists on [i, , fi?]  , which is 

almost equal in magnitude to [ 0 ,  ft-A , namely, the whole portion of the 

shaft. 
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APPENDIX A 

MATHEMATICAL DERIVATIONS OF THE ROTATORY 
AND GYROSCOPIC EFFECTS 

In Figures 20,  21 and 22, a right-hand screw convention is used to indicate 
the positive directions of the applying torques on the differential mass 
element of a rotating shaft.   If it is assumed that the transverse deflections 
(Yl".   and Y*,) of the shaft during vibration are very small and that the 

center of gravity,  o,  of the differential mass element coincides with the 
axis of the shaft,  the position of this element will be completely determined 
by the coordinates   Yt.   and Y^  of its center of gravity, o,  and by the 

angular rotations,   Y*.   and Y*2 . 

The conditions assumed here correspond to the case of a vertical shaft 
when the weight of the differential mass element does not affect the 
deflections of the shaft.    Under these conditions, if W  equals the weight 
of the differential mass element and if only the elastic reaction of the shaft 
is taken into consideration, the equations of motion of the center of gravity 
of the differential mass element are as follows (see Figures 21 and 22): 

In -X-  direction. 

Inertia force = — Y* 

In -X,  direction, 

W 
'2tt 

g 

W 
Inertia force = — ^titt 

8 
W where — = pAdx 
g 

The equations of relative motion of the differential mass element with 
respect to its center of gravity, o, will now be obtained by using the 
principle of angular momentum, which states that the rate of increase of 
the total moment of momentum of any moving system about any fixed axis 
is equal to the total moment of the external forces about this axis.   In 
calculating the rate of change of the angular momentum about a fixed axis 
drawn through the instantaneous position of the center of gravity« o, the 
relative motion alone can be taken into consideration. 

In calculating the components of the angular momentum, the principal axes 
of inertia of the differential mass element will be taken.    The axis of 
rotation, oo, is one of these axes.    The two other axes, oa and ob, will 
be any two perpendicular diameters of the element. 
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Figure 22.   Projection    on Plane   X.X^ 
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Let 

I' = mass moment of inertia of the mass element about the 
m 

axis  oo, 

I = mass moment of inertia of the mass element about a 
m ,. diameter. 

Observe that 

I' = 21 m m 

I*   ui = component of angular momentum about the axis  oo, 

-I    Y*.     - component of angular momentum about the axis   oa, 

I    Y4?       = component of angular momentum about the axis   ob. 

Since  Y*.   and  Y^,  are assumed to be small,  then Y4.     and Y*_    will be 

approximate values of the angular velocities about the diameters  oa  and 
ob.    If components of the angular momentum on the fixed axes   oXl  and 

oXl  are projected through the instantaneous position of the center of 

gravity, o,  the resultants of the angular momentum in the  X--   and X-,- 

directions can be obtained.    It is shown that  cosY*?  and cosY*   w 1  and 

that  sinY*2 « Y*,  and  sinY*    ~ Y*     . 

In the  X^-direction,  with reference to   X.X.--plane projection (see Figure 

21). 

(-1    Y*1.)(cosY*:,)-(I' u) )(sinY*9) » -I    Y4.  -I' ui Y*,     . x    m   21t/v ZZ'  x m  oM 22' m   2lt    m o   22 

In the  X,-direction,  with reference to   X, X?-plane projection (see Figure 

22), 

^mY^t^-^^-^m-oK81^!) % ^Zt-^o^l     ' 

Then, from the principle of angular momentum and since  I'    = II    .  the 
m m 

following can be shown: 

In X,-direction, 

21       .^  v    m   ?.lt    m o   22' 
dt 

or 
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21 m   Zltt      m  o   2Zt 

In  X-,-direction, 

F*, = —(I    Y4, -I'   co  Y*,) 22 ,..     m   22t    mo   21' 
dt 

or 

F^=ImV?2tt-Z!m-oYllt     • 

If I  is the moment of inertia of the cross section of the differential mass 
element, 

I      = pldx 
m      r 

or 

I*    = 21     = Zpldx     . 
m m        r 

Then,  the above expressions for moment of momentum may be rewritten 
as: 

In X,-direction, 

^l^lltt^^o^t** 

In X,-direction, 

F!2 = PIY!2,tdx-2I"o',YSitdx 

which were shown in Figures 2 and 3 in Chapter 1. 
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21 m   Zltt      m o   ZZt 

In X^-direction, 

FU, = —(I   Y*, -I'   a) Y*.) 22 ,.      ni   22t    m o   21' at 

or 

F*, = I    Y*,   -21   OJ  Y*_     . 22       m   22tt     m o   21t 

If I is the moment of inertia of the cross section of the differential mass 
element, 

I = pldx m     r 

or 

II = 21     = 2pldx    . m m 

Then,   the above expressions for moment of momentum may be rewritten 
as: 

In X^-direction, 

F^l = P^Sltt^^oPY^t^ 

In X^-direction, 

Fh - PIY!2ttdX-2IwoPY!ltdx 

which were shown in Figures 2 and 3 in Chapter 1. 
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APPENDIX B 

IMPORTANT FUNCTIONS 

«3=. /1 + 

e,  =    /— + e1 w 

e2 = 

-\J l+e'oXZw -u)) 

1 

where w = -is and ü>   = u for steady-state condition. 

# 
C 11 

-le1e3       -le2 

-le. 

# 
C 12 

# 

1 

0 

1 

11 

1/e, 

-e3/e2 

#        # 
C    = C 

2(He*) 

1       0 

0     -1 

# 
c 22 

ie-        -1 

Lel        "e2e3 

# 
C 21 

-1        0 

22 

cySJ> 

0        1 . 

w       0 

0       (jt 
III 

cfs^ 

U) 

Lo 

3/2       0 

U)  J 

where p is an arbitrary real number which, once chosen, is the same for 
each p. 

8      -K 

1 0 

Zs 
0 ^_ 

1       0 

o     *JZ 
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Z   = characteristic impedance of the rotating shaft 

*. = c2ici; 

t =(- 

l+e! 

2.24 
e2+ele3 

) 

(ele3+ie2) 

K -e- (e,e,+i 

2    2  2 
.e2-cle3 

1+e! 

;(«, 
-e,{ e, e,+i- 

2    2  2 
e2"ele3 

3^1^ ) 
l+e" 

) eie2<e2"iele3) 
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APPENDIX C 

MATHEMATICAL DERIVATIONS OF APPLYING BOUNDARY 
CONDITIONS AT SUPPORTS 

GENERAL SOLUTION 

The general solution of the equations of motion is shown in Eq.  (10) as 

F 

, # # 
-C 0 s    y 11 

# 
C 12 

# # 
C21 C22 

R(x) 

# 
0 

**              " 1 

# 
0 q 

# 
R(-x) r    | 

and is written out as 

1   * 
Y(x) =-C 

#      # #      # 
CjjRvxlq+C^Rt-x)? 

r x) = C, 
'#      # #     # 
C21R(x)q+C22R(-x)7 

> ::ie general solution is applied to each span,  the following set of _ 
q, 

• • • • i 

equations can be obtained with integration constantsi  q. ,   q2 ,   . . . , i-_, » 

i' "^jrj  Vl Vl'  V   V 72 Tj-1' 7jC' ~ 
rn-l '  rn ^See figure 4): 

For  [0..  fj]   , 

Y(x) =-C v  '     s    y 
C11R{x)q1+C12R{-x)r1 

F{x) = Cf 

^r  [£..2.  *hl] 

#     # #     # 
C21R(x)qi+C22R{-x)71 

1   ff 

V(x) = - C x  '     s    y 

#    # #      # 
ciiR(x)qj.i+ci2R^x)7j-i 

F(x) = CflLC21R(x)q..1+C22R(.x)7._1 

For  [f.^.  ajk]   . 
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Y(x^ = ^ C * s     y 

#    # #     # 
C11R{X^+C12R<-X)7j^ 

F(x) = Cf 

'#     # #      # 
C21R(x)q.f+C22R(-x)7jJ? 

For  [a.k.  £.], 

1  " 
Y(x) = - C 

#   # #     # 
C.-Rfxh.   +C1,R{-x)r. 11   v   /njr      12   v     '  jr 

F(x) = Cf 

For  Uj.^j] 

C0.R(x)q.   +C,0R(-x)r. 21    '   '^jr      22   v      '   j] 

Y(x) =-C x '     s    y 

#    # #     #       _ 
C11R(x)qj4      .:i2R(.x)rj+1 

F(x) = Cf 

'#    # #     #        _ 
C21R{x)qj + 1+C22R{-x)r.+ 1 

For  [It     ,  . JM 1   n-1        nJ 

i * 
Y(x) = i Cy 

'# # # # 
C11R(x)^+Cl2R{.x)7n 

F(x) = Cf C21R(x)in+C12R(-x)7n 

APPLYING THE BOUNDARY CONDITION AT  x = 0-0 

-F(0) = 8 Z0(0) Y{0)     . 

If x = 0 i8 substituted in the general solution for [ 0 ,  f. ]  and if R{0) = I , 
then 
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Y(0)4C CllVC12rl 

F(0) = Cf C2lVC22Fl 

and then substituting back into the boundary condition, 

# 

or 

r#  _ #  _■ 
C21ql+C22rl 

# .   # 

0V   ' s     y 

r#   _   #   _* 
Cllql+Cl2rl 

C21ql+C22rl 
#,-l # 

Cllql+C12rl = Cf   Z0<0)Cy 

By direct matrix algebraic operations, 

E-^- FZF=  Cj   ZC       , F - 
^ f      y   ' 

Hence, 

Czi^l^ZZ7! = 4o(0' 
'# # 
Cllql+C12ri 

0 

or 

# # 
C21+4o(0)Cll V c2A(0)ci; ri = 0 

By definition (see Appendix B), 

-1 

0 C224oW 

oW 

By premultiplying 

1 

0 

1        0 

0     -1 

1        0 

0     -1 

0    # 
C q,+ 

-d 12J' 
-1 

0 

# 
c 

11 rl = 0 • 

C21 + 
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•1        0 

0     -1. 
C22 + 

_0     -L 
*n(0) 

1        0 

0     -1. 

1- 
12 V 

1 

L 0 

0 

■u 
c21^ 

1 

.0 

0 

-1. 
^(o) 

1 

L0 

0 

•u 
§ 
c 11 rl = 0 

Since 

' # # 
-c22+*0(o)ci; 

1 0 
A 

1 0 

0 -1_ 0 -1_ 
= EAE = A 

"l* 

# # 
-c21+*0(o)cn ri=0 

If the "reflection matrix" (looking to the left) at x = 0 is defined as 

-1 # 

V0) = 
# IA   # 

.C22+z0(0)C12 C21-^0)C11 

then the preceding equation may be rewritten as 

q, = r0(o)r1 

which forms the basis for Eqs. (72).   If this expression is substituted back 
into the original genered solution for [0 , l.], 

Y(x) = i C x  '     s    y 

'UM u U        U 

cnR{x){r0{o)7l)+clZRi-x)7] 

# 
R(-x)71 

or 

1  # 

Y(x) = -1- C v  '     s    y 

~#     #      #        #         #     ' 
c11R(x)r0(o)R(x)+c12 

By defining 

#             #      #        # 
r0(x) = R(x)r0(o)R(x) 

then 

1   # 

Y(x) = - C v  '      s     y 

"#     #         #    ' 
CliroW+Cl2 R'-x)^ 

for   [0 . fj 
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Similarly, 

Fix) = C, C2lVX)+C22 R(-x)r1     . 

APPLYING BOUNDARY CONDITIONS AT  x = f . ,  j - 1,  2,   . . . ,  n-1 

If the general solution is substituted directly into 

Y(f .-0) = Y(JP , + 0)     , 

then 

1 # 

-C s     y 

' #     # #     ft 

c11R(e.)q.+cl2R{-,ej)7j = - c 
s     y 

#      # #    # 
C11R(rj)qj+1+C12R(^j)7j+1J 

or 

Cuk(f .)qj+C12R(-C.)7j-C11R(«.)q.+ 1-C12R(-{j)?.fl = 0 

j  = 1,   2,    .    .    .    ,   n-1 

which forms the basis for Eqs. (73).    If the general solution is substituted 
directly into 

F(f.-0)-F{C.+0) = sZ.(fj)Y(jPj)     , 

then 

#  #       # #    # 

f   21     jv  j'   y   11. 
R'f.)q.+ 

# #    #      # #    "]# 
cfc?:,-z.(r)c c,, Rr-c.)r.- f   22     jv  j'   y   12J    •    j7 j 

,-1 

#  #     # # #    # 
CfC21R({.)i. + 1-CfC22R(-f ^.^ = 0 

If C, ^  is premultiplied and if Cf    ZC    - z   is used again,  then 

1-ij(«j)c11 R^.)q." 1   J/MJ -C22+ 
y y  i' 

R(-f .)r.- 

C21R^Vl"C"RHjSl=0 j = 1,    2. .   ,  n-1, 
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This equation forms the basis for Eqs.  (74). 

APPLYING BOUNDARY CONDITIONS AT x = i   +0 n 

FU   ) = sZ {H   )Y(f   )     . y  tr nv  n'   v  n' 

If x = f     is substituted into the general solution for  [f     i  »  jf   ] .   then n 6 L   n-1        nJ 

1 # 

Y(^   ) =-C v  n7      s    y 

'#      # #      # 
C..R{ll   )q +Ci:>R(-jP   )r 11    x   n' nn      12   v    n'  n 

# r#   # 
v  n'        f 

#     # 
C21R^n)VC22RHn)rn 

If these expressions are substituted back into the boundary condition 
equation,  then 

#     # #     # 
C71R{|   )q+C,7R(-f   )r    = z (jf   ) 21    "   n'Ti     22   x     n'  n        nv   n' 

which may be rewritten by solving for  r    as 

cnR(f„)Vci2R(-1
n)'n 

n 

r    = R{f   ) n n' ■C22
+! 

r# 
KWlZ   'l   ^l-K^n^U WJ% 

If the reflection matrix (looking to the right) at x = f     is defined as 

r U  ) = nv  n7 

then 

•C22
+! (f )c17 "1  c,.-! (f )c11 nx  n'   12 21    nx  n'   11 

# 
r    = R(f  )r (f   )R(f  )     , 
n v  n' ir  n'   x   n' 

which may be rewritten as 

by defining 

T (x) = RU  -x)r (f  )R(f   -x)     . 
rv   ' x  n    '  nv  n'   v  n     ' 
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The next to the last equation forms the basis for Eqs. (7 5).    If r    = r (0)q 

is substituted back into the original general solution for  [i     , » f   ] » then 

, # r#    #   # 
Y(x) = i C x '     s    y Cll+CUrn<'')R;x)\ 

Similarly, 

F{x) = Cf 

'#        #      # 
C21 + C22rnW ^{x)qn 

Before going any further, all the equations obtained from boundary 
conditions of all supports are summarized as follows: 

qj = ro(0)r1 

## ## ## #     # 
C11R(f1)q1+C12R{-£1)71-C11R{jf1)q2-Cl2R(-jf1)72 = 0 

## §     § ## §     § 
Cnmz)\+ClzR{-l2)r2-CnR{lt2)^-ClzR{-t2)-T3 = 0 

(72-1) 

(73-1) 

(73-2) 

## ## ## ## 

Cll^^-l^-l^U^^J-l^-l^H^VlS^U^^j-l^ 

C11R(£j)q.r412R(.£p7jr.C11R(£j)qj+1.C12R(.£.)7.+1 = 0 

= 0 

(73-(j-l)) 

(73-j) 

Ü       u #        # §        § # # 

CllR'£n-l)Vl+C12R<-Vl)7n-l-CllR^n-l)VCl2R(-fn.l)7n = 0 

(73-(n-l)) 

107 



■#    .      # ■ # 

■Kz^iV^y. K-t^r 

#     # #     # 
C21R({l)VC22R(-{l)T2 = 0 

Czi-K(h)'cu mzfi2 
» 

CzzAv^i Ri-h)'2- 

# # # # 
C21R(f2)q3-C22R(-f2)73 = 0 

(74-1) 

(74-2) 

c2i-Vi(Vi)cii ^^j-i^j-r 

#  # # # 
(74-(j-l)) 

r# 
c2i-VVcn R(^)^r ■C22+! iU^J ^(-'j^r- 

u     u #     # 
c21R(.r)qj+rc22R(-f.)7.+1=o (74-j) 

C21-4„-l(Vl)Cll R((n-i)%-r •C22+V,1Un.l)C1, 

where 

#     # #     # 
C21R^n-l)VC22R^n-l)V0 

R(-fn-l)Vl- 

(74-(n-l)) 

(75-n) 
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# 

V0)= - Kz^Az -1 
^c21-^

0)^ii_ 

r (f ) = 22     nv   n7    12 
-1 C-.-l U )c11 21    ir n'   11 

#              #      #       # 
r (x) = R(x)r (o)R(x) 
# ^ #           # 
r (x) = R(£   -x)r (f   )R(£   -x)     . 

Now,   Eqs.  (72-1), (73-1),and (74-1) will be considered first. If (72-1) is 
substituted into (73-1), 

RH^ = 
' #    #        #   ' 
CUr0(tl)+C12 

C11R(£1)i2+C12R(.f1)72 

If (72-1) is substituted into (74-1), 

1 
# # 
c21-t1U1)c11 

#     # 
RU^O)^)- r^22+li^i)S; ^{^])rl 

#    # #     # 
= C21R(^1)q2+C22R(-f1)72 

Again, if the underlined terms are substituted, 

I 
[L 

#       #    # 
C22+C2ir0<£l) •!,(«,) 

»        #      # 
C12+CuW c1E+c11r0(£1) -i 

~## ## i     #    # ## 
CllR^1^2+C12Rt-fl)72    =C21RM2+C22R^l)72     • 

or 
s 

-1 

Lo  Ü1 
'#     #   # 
C21+C22r0^l) 

'#        #     #        ' 
C11+C12W 

-1 1        0 

0      -1 

1        0 

0      -1 

-1 

Ml) 
1        0 

0     -1 

'#       #    # 
Cll+C12r0(£l) 

#    # #     # 
C11R(£1)q2+C12R(-f1)72 

■1        0 

0        1 
C22R(£1)q2+ 

•1        0 

0       1 

#    # 
C21R(-f1)72     . 

'Jj 
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so that 

r#     #  #     " 
C21+C22W 

" #        #     # 
Cll+C12ro(fl) ■'^(t,) I C12RU1)i2+C11R{-l1)72 

#    # #    # 
= C22R(f1)q2-HC21R(-£1)72 

It will be shown in Appendix D that 

"#        #      # 
c21+c22r0(x) 

t     »    » 
cu+c12r0(x) -1 

or 

V'l'' 
'#        #     #       ' 
C21+C22

ro(£l) 

# # # ' 

Hence, by substituting, 

V*i)+*i<'i) 
r#    # #    # 

ClZ^l^^ll^^l^Z 
'#     # #     # 
C22R{f1h2+C21R(-f1)72 

By observing that the total impedance at x = JL+O ,  looking to the left,  is 

then 

V,) 
'#     # #     # 
Cl2RU1)q2+C11R(-f1)72 

#     # #     # 
= C22RU1)q2+C21R(.£1)72 

Solving for   q? , 

q2-R(-f1) ■C22+*«(1
1)CU 

-1 C2rzi£^i)cii RC-^)- 

By defining the reflection matrix at x = ft. , looking to the left,  as 

r1^1) = -C22+Vl)C12 C2r*u^i)cii 
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and 

# # # # 
rH(x) =R(x-£1)rlje(je1)R(x-£1)   . 

the previous equation can be written as 

^2= rije(0)r2 (72-2) 

If Eq.  (72-2) is substituted back into the general solution for [S.. , 0. J   , 

Y{y) = - C x 3    y 

'#     # #     ' 
ClirH<x)+C12 

# 
R(-x)r2 

Similarly, 

F(x) = Cf 

'#    # #    ' 
C2iru(x)+C22 R(-x)r2 

If Eqs. (72-2),  (73-2) and (74-2) are used and if the same mathematical 
operations as before are followed, the following set of similar expres- 
sions can be obtained: 

*uw = #       #     # 
C21+C22rif<x) 

#        #     # 
Cll+C12ri«W 

-1 

22*(jf2) = total impedance at x = K+O looking to the left 

r2«(f ,) = reflection matrix at x = Jf2 looking to the left 

c22^(£2)c12 -1  c21-^(£2)c11 

# #       #       # 
r2je(x)   =R(x-je2)r2jp(f2)R(x-f2) 

^3 = r2^0)r3 
(72-3) 

ill 



Y(x) 

F(x) 

1 # 

-C s    y 

'#     # # 
Ciir2^x)+Ci; 

C2ir2X<X)+C22 

# 
R(-x)r3 

R(-x)7, 

Now, if the same mathematical operations are followed again, Eqs. (72-3), 
(73-3) and (74-3) can be solved; this must be repeated until the solutions 
of Eqs. (72-(j-l)), (73-(j-l)) and (74-(j-l)) are obtained.    These are 
expressions associated with waves traveling to the left. 

Similar mathematical operations can be used in the derivations of expres- 
sions associated with waves traveling to the right; however, it is suggested 
that the right end of the rotating shaft will be considered first.    That is, if 
Eqs. (75-n), (73-(n-l))and (74-(n-l)) are used and if Eq. (75-n) is substi- 
tuted into Eq, (73-(n-l)),  and so on.    The important relationships derived 
in this appendix are summarized in Chapter 2,  Eqs. (15)-(22). 
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APPENDIX D 

MATHEMATICAL DERIVATIONS FOR IMPEDANCES 
IN TERMS OF REFLECTION MATRICES 

The general solution for  [0 , JP   ]   can be written as 

Y(x) = - C CliroW+Cl2 R(-x)r 1 

R(-x)r1 

(76) 

(77) 

x-0    x+O 

^ 
I 3- 

F(x) 

Figure  23.   Forces  at x   on [o, ^J 

Since F(x) is in the negative direction at x = x-0, the impedance 
relationship at this point can be expressed as (see Figure 23): 

-F(x) = sZft,(x)Y(x) or (78) 

where 

Z0.(x) = total impedance at x = x-0 on [ 0 , f,] looking to the left. 

From Eq. (76), 
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'#    # #    ' 
CliroW+C12 

# Ä 1-1 
C   lY{x) R(-x)r1 = s 

and substituting back into Eq.  (77), 

-      # r#  #     # * 
F(X) = 8Cf c21r0(x)+c22 

#     # # 
c11r0(x)+c12 C/ Y(x) 

If this expression is compared with Eq.  (78),  it can be concluded that 

# # 

zofW = -Ci 
'#    #       #   ' 
C2ir0<X)+C22 Clir0^+Cl2 y 

or 

t«(x) 'Of 

'#      # #    ' 
C2iro(X'+C22 c21r0(x)+c22 

If the matrix relationships in Appendix B are used, then 

*o*W' 
1        0 

0     -1 
c12r0(x)+ 

1 

0 

0 

-1_ 
r- 

# 
cll 

-1 

-1        0 
^ -< 

0 1_ 

#     # 
C22roW + 

•1 

0 

# 
c 21 

Premultiplying 

1       0 

0     -1 
kM 'Oft 

1 0 

0 -1 

1 0 

0 -1 

' #     # #   ' 
C12roW+Cll 

0     -1 

'#     # # 
C22roW+C2] 

Then, on  [0 , i ^ , 

zoje(x) ■[4. 
#      # 

+c22r0(x) 
#     #    # 
Cll+C12roW 

-1 

If similar mathematical manipulations are followed, the remaining 
expressions for total impedance on each interval, as listed in Eqs.   (23) 
in Chapter 2, can also be obtained. 

One may begin with the right end span, 1, e,, on [£,.£] f first,  and 
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recalling that the general solution for  [j^   _. , jM   is 

Y(x) = i C s   yL 11 
#     #   # 
c,,+c 12rnW 

# 

ca 

F(x) = Cf 

"#       #     #     ' 
C21+C22rnW 

# 
*{*)% 

(79) 

(80) 

M s  0 

0   x+O 

i s 1 

FU) 

»-X, 

7777 

Figure 24.  Force   at  x   on [in-|. ^nJ 

Since F(x) is in the positive direction at  x = x+0 , the impedance 
relationship at this point can be expressed as follows (see Figure 24): 

F(x) = 8Znr(>    f^ (81) 

where 
# 
Z    (x) = total impedance at x = x+0 on U     i f  JM   looking to the right. nrx  ' L  n-1       nJ 

From Eq. (79), 

H*)\ = 
r#    #  #    • 
C-.+c ,r (x) 11      i2  nw 

-1   ff-l 1 C   1 Y(x) 
y    v ; 
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and substituting back into Eq.  (80), 

ca 

F(x) = 8Cf 

'#        #     #      ' 
C

2l
+C22rnW 

#        #     #      • 
Cll+C12rn(X) 

-1 #-l" 
C/ Y(x) 

When this expression is compared with Eq. (81), it can be concluded that 

# # 
Z    (x) = C. nrx '        i C21+C22rnW 

#        #     #       ' 
Cll+Cl2rn^ 

1  #-l 1 C 1 

y 

or 

I    (x) = nrx  ' 

#   ,# 

f      nr (x)C x   '   > 7 

#        #      #      ' 
C

2l
+C22

rn<x) CU+C12r„W 
-1 

Now, the following equation can be written 

On [l     , , H  ]  , t    (x) = L   n-1       nJ nr-\  / nr' 

#       #     # 
C21+C22rnW 

#       #     # 
Cll+C12rnW 

-1 

If similar mathematical steps are followed, the other expressions of total 
impedance on each interval, as listed in Eqs. (24) in Chapter 2, also can 
be obtained. 
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APPENDIX E 

MATHEMATICAL DERIVATIONS FOR THE COMPLETE 
SOLUTION IN MATRIX FORM 

The general solution in Appendix C may be rewritten in matrix form as 
follows: 

On    [0, It j] Y 

F 

1 # 

-C s     y 

# 
0 

# 
0 

# 
c. 

11 

21 

c 

# 
c 

12 

22 

r0(x)R(-x)71 

# 

On[^2.  ^.i]    . 

On[£j_1.  a.k] 

Onla.k.i.] 

On[£ri.+1] 

F 

1 # 

- C s    y 

# 
0 

0 

# 
C, 

C 

# 
C 

11 

21 

# 
C 

# 
C 

12 

22 

r(._2)f(x)R(-x)rhl 

# 
R(-x)rhlJ 

1 # 

- C s    y 

# 
0 

Y 

F 

1 # 

-C s    y 

# 
0 

1   # 

- c s    y 

# 
0 

# 
0 

# 
c. 

11 

21 

# 
c 

# 
c 

12 

22 

# 
0 

# 
c 

11 

21 

# 
0 

# 
c. 

11 

21 

# 
C 

c 

12 

22 

# # 
r(j.1)je(x)R(-x)7w 

# 
R(-x)rkf 

R(x)qjr 

# # 
r.r(x)R(x)q.r 

# 
c 

# 
c 

12 

22 

# 
R(x)qj+1 

# # 
r(j+1)r(x)R(x)qj+1 
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o^Vi^J 
1# 

-c 

# 
0 

# 
0 

# 

11 

'21 

# 
c 

# 
c 

12 

22 

# 

rn(x)R(x)^ 

(82) 

If the terms in the column matrices in Eqs.  (82) are examined, the 
following relationships are obtained: 

#        # 
r^Rf-x)^ 

#     #     #    #      _ 
R(x)ro(0)R(x)R(-x)r1 

#      # 
R(x)r0(o)71 

#       #      _ 
ri£(x)R(-x)r2 

# # # 
= R(x-je1)ruu1)R(x-je1)R(-x)72 

# # # # 
= R(x)RH1)rifU1)R(-J?1)r2 

# # 
= R(x)rlje(0)72 
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# # #     # 
r(M)l(x)R(-*)'jf = R(«)r(j-i)«(0)7jl 

# # # # # # 
r.r(x)R{x)q.r = R(jej.x)r.r(jej)R{jej-x)R(x)q.r 

#       #       # # 
= R(-x)R(f ^F.^f .)R(jf .^^ 

= R(-x)rjr(o)qjr 

# # #        # 
r(j+1)r{x)R{x)q.+ 1 = R(.x)r(j+1)r(0)qj+1 

# # # # 

If the above-derived relationships are used,  Eqs.   (82) may be rewritten 
in the matrix forms given by Eqs.  (26) in the text. 

The integration constants of the matrix relationships given by Eqs. (26) are 
determined as follows: thus far, the only boundary conditions that have not 
been used are those at x s a., , the locations of the driving forces.    The 

boundary conditions at these points are as follows (see Figure 8 in Chapter 
2): 

at ü 

YV0) = Y( V0) 
F(a.k-0) + P(a.k).F(a.k+0) = 0 

(83) 

(84) 
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If x = a.,   and is substituted into the corresponding general solution, as 
JK 

given by Eqs.  (82),  then 

1 # 
at x = a., -0 ,        Y(a.. ) = - C 

'#     # #    ' 
ciir(j-i)je(ajk)+ci2 R(-ajk)7jje 

^jk) = Ci 
'#      # 
C2ir{3-I)lt^+CIZ\R^TJI 

f 

and at x = a.. +0  , Y(a.1 ) = — C jk      ' x  jk'     s    y 
# r#    #    # 

c^.+c^r. (a.,) 11      12  jrx  jk' R(ajk)^jr 

F(ajk) = Ci 
'#       #    # 1* _ 
C2l+C22rj^

ajk)  R^% 

(85) 

(86) 

If Eqs.  (85) and (86) are substituted into Eq.  (83), then 

ciir/-   i\«(aJ+C,,  R(-a.,)r./,=  C-.+C.^F. (a..)  R(a., )q. 11   (j-l)r jky      12J   v    jk7  jjf   [_   11      12 jrv  jk'j    v  jk'^ji (87) 

Premultiplying C.. 

##.!## 
I+C, |  C^T. (a.J  R(a..)q. 11      12 jrv  jk'J    v  jk/njr r(j-l)^ajk)+CllCl2 R(-ajk)rj£ = 0 (88) 

If Eqs.  (85) and (86) are substituted into Eq. (84), then 

C2ir(j-l)je(ajk)+C22. l(-a.k)rj^?(ajk)- 

# 
C, 

#       #     # "|# 
C21+C22rjr<VjR<ajk)<ljk = 0 

Premvütiplying C,     , 

'#        #     # 
C+c^r. (a.,) 21      22  jr^ jk' ^^k^j. 

"#    # #     " 
C2ir(j-l)je(V+C22 ^-jk^rS p(ajk) 

(89) 

Premultiplying C2,   , 
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'# ^jf   # ^-1^ ' * # r# 

(90) 

#.-ii-i. 

From Eq.  (88) and Eq.   (90), 

# # # 
T.  (a,jR(a., )q.   -R(-a Jr.. = Lt2lCllC12"C22j 

lff-l 

It may be verified by direct matrix algebraic operations that: 

C
+ 

= 

C    = 

C2rC22C12Cll 
-1 

C21C11C12 " C22 

Hence, 

a #        # #   ^j^ 

(91) 

(92) 

From Cj2  (Eq.  (87)), 

#   !#        # # #   ,#      # #_ 
C  'C-.+F. (a..)  R(a.Jq.  -  C-iC-.r,.   n^a.J+I r.fl =0 _   12   11     jrv  jk'J    x  jk/njr  [12   11   (j-l)*v  jk7    J  jf (93) 

,-1 From C22   (Eq.  (89)), 

L^&i+vvJ^w 
#_,#   # 

LSzCzi^-Dt^jk)« 

From Eq.  (93) and Eq.  (94), 

#        _      # # ^ 

^V^r-^j-lK^j^^^jk)^ 
# #     #_!# 
C2rC22C12Cll 

(94) 

- 1       -1 

By using relationship (91) again, then 

# # # # #^ 
(95) 
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Now,  Eqs.  (92) and (95) can be solved simultaneously to yield: 

V = ^V 
#  # 
i-r. (a.jn. ^Aa,)       r. (a.JC.+C L     jrv jk' (j-l)£x jk'J     L jrx jk'   +     -J 

#    # 

''f"lp<V 

«jr = R(-ajk)[I-r(j.l)j(Vrjr(ajk)J"lr(j-l)f<ajk)C-+C
+. 

If Eqs.  (72), (75) are again considered, 

ql = ro(0)ri 

# 
q2 = rlje(o)r2 

#-i" 
cf ^jk) 

(96) 

(97) 

qJ-i=r(M)f(0)rM 

qjf = rj£(o)rj£ 

r.    = P.  (0)q. jr        jr   /njr 

_ # _ 

*>i = r(j+1)r(o)qj+1 

rn-l=r(n.l)r<0)Vl 

7n = rrt0K 

(72-1) 

(72-2) 

(72-(j-l)) 

(72-j£) 

(75-jr) 

(75-(j+l)) 

(75-(n-l)) 

(75-n) 
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and subsequently combined with Eqs.  (73),   then 

VR<*i) 
■#   #       # 

CllVll)+C12 
"#    # #     # 
C11R(f1)q2+C12R(-X1)72 (98-1) 

ü     ü u    ~]     r u    u §    U 

'J-1 - "Cj-l)   C1i
r(J-2)j"j-1)+<:i2j"1[CllR(tj-l)^+C,2R(f j-l^jf 

(98-(j-l)) 

(98-(j+l)) 

^n^H,.!) 
'#        #    # 

11      12  nv  n-l7 CU^fn.l)Vl+Cl2^-Vl)7n.l 
(98-n) 

If Eq. (72-2) is substituted into Eq.  (98-1),   then 

r1 =RU1) 
'#      # #    ' 
ciiro(fi)+ci2 

CUri«(fl'+C12R(-|l)r2 

Similarly,  if Eq.  (72-3) is substituted into Eq.  (98-2), then 

r2 = R<f 2) 

#      # # 
Cliri^2)+C12 

1 #     # # 
CllVf2)+C12 R(^2)r3 

If these calculations are continued until Eqs. {ii  jH) and (98-(j-l)) have 
been reached,  the complete set of relationships between integration 
constants,  r,  is obtained. 

If Eq   (75-(n-l)) is substituted into Eq.  (98-n), then 

%-R^n.l) 

"#        #     # 

11      12  nx  n-1' 
-1 # #      # 

C-.+c.^r,   n (l   ,) 11      12  (n-l)rx  n-l^ R(*n-l)%-l 

Similarly,  by substituting Eq.  (75-(n-2)) into Eq.   (98-(n-l)) and continuing 
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until Eqs.  (75-jr) and (98-(j+l)) have been reached, the complete set of 
relationships between integration constants, q,  can be obtained. 

By combining the previously derived relationships with Eqs.  (96) and (97), 
the complete set of relationships   is   given as Eqs. (26a) in the text. 
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APPENDIX F 

MATHEMATICAL DERIVATIONS FOR THE COMPLETE 
SOLUTION IN TRAVELING WAVE FORMS 

If the complete solution in matrix form is referenced,  i. e. ,   Eqs.  (26) and 
(26a) of Chapter 2,and if the following matrix relationships are used,  the 
solution in traveling wave forms, can be rewritten. 

The relationships used below are: 

-1 ~# #1 
I - A 

'# ## 
1 - AB 

-1 

# # 
K'\a) = R{-a) 

#   #[ 
= I + A 

#     #" 
I - A 

-1 

,   #       # r# # #i 
1 A- A I - BA 

-1 

(99a) 

(99b) 

(99c) 

The expressions for   r..  and q.     will be considered first (see Eqs.  (26a)); 

i. e. , 

#   # 
r.£ = R(a.k)Ll-rjr(ajk)r(..1)£(a.k)J      ^(a.^+C. 

# #     #1 f.^' 
Cf

AP(ajk)     . 

Substitution of relations of Eqs.  (22) into this equation yields 

rjC = R(ajk) 
'#  » I 
I-R(-a.k)r.r(0)r(j.1)t{0)R(a]k) 

l^JLii/r^m.-^c^, Cf
lP(ajk) 

With relationship (99b),   A 
# # # 
I-BA 

#  ## 
I-AB 

-1 
A , and taking 

A = R(a.k)     . 
#       # # # 
B = R(-ajk)r.r(o)r(._1)£(o)   . 

rjr ^0Vl)H ^ [^/^r^^^j-^^^V^- 
#-1^ C/P(a.J     . 

jk' 
(100) 

Also from Eqs.   (26a), 

# 

VR(-ajk) 
# # # jf* 

^^j-i^^VWJ Lr(J-iK(Vc-4C
+Jcf p(V 
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Substitution of Eqs.  (21) yields 

^jr = ^•^-bAi-mWWW-^ 
-1 

M ii ü ü ü ä 

|_R(..k)R(.i..1)r(j.1)1W..1)R(ajk-f..1)C.+C+J 

With relationship (99b),   A 
# ## 
I-BA 

#   ## 
I-AB 1 A , and taking 

#     # 
A = R(-ajk) , «= ^V*o-i)«(0)V0) 

q
jr = 

'# # 

'^(j-DlC^rC)       R(-Vl)r(J-l)l(fJ-l)R(V£J-l)C-+ 

# # 
R(-ajk)C+ Cf-'^a^)    . (101) 

If Eqs.  (100) and (101) are substituted into the last terms of the matrix 
expressions of Eqs.  (26) on [£•_! » a.,]   and [a., , S. .], the following 

manipulations can be shown: 

#   # #  #        r# #     # 
RWr(j.m(o)7.{ = R(x)r(..1){(0)[i-r.r(o)r(..1)t(0) -1 

mjr^m^csH^cj cf"lp<V ■ 

With relationship (99b),   A 
# ## 
I-BA 

#   ## 
I-AB 1 A , and taking 

A = r(..1)f(o).        B = rjr(0), 

# # # 
R(x)r(..1)je(0)7jf =R(x) 

# # -i, [i-R(-iJ.1)r(j.1)ia..1)R{-i,.1)rjr(o)J ^(-tj.,) 

*-i°', Cf
lP(ajk), X   '(j-Dt^j-l' ^(-^.^[»(^^{«^((j-V^^a.^C. 

With relationship (99b), 
## # 
I-AB A = A 

# # # 
I-BA and taking 
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»   » #   # #        # 

R(£j-lj.1)rjr»j)l(fj-a.k)C++R(a.k-1..1)C Cf'^^jk) • 

Also, 

(102) 

"# #        # 
R(-x)r.£= ^ R^)i^)r.rU.)RU.)r{hl)^ ^U.)rjr(£.)R(frajk)c++ 

#      # 
R(-x) "jr<04-l)Ä(0) ■^(a^cJcVpta^) 

With relationship (99b), 

#     # 

# ## 
I-AB 

#      # 
A = A 

# ## 
I-BA ,   and taking 

A = R(i .) . I4.^.)m.)r{._ini0), 

# 
^-x)^^ R(-x)R(£.) 

# # -1 .r.r(£j)R(£j)r(..1)?(o)R(^)J 'r.rU.) 

#   # # # 
XR( £ .-a .k)c++R(-x)^i-r.r(o)r(h 1)f (0) 

#   # 

^(a^C. ^cV^) 
# # 

With relationship (99a), 

A = V0)r(MK(0)' 

#    # 
I - A 

-1 = I + A 
#     # 
I - A 1 ,  and taking 

rf # 
R(-x)rjfi=    RU.-x) 

#      # 

^^r^^O-l)^^)     irjr(l.)R(Xj.ajk)C++R(ajk.x)C.+ 

#  # 
R(.x)R(fj)rjrU.)R(fj)r(j.1),(o)Li-R(^)r.r(VR(£j)r(..lK(o) 

#   I i^^ 
XR(ajk)C.JCf

4P(a.k) 

With relationship (99b),   A 
# # # 
I-BA -1 # ## 

I-AB -1 A ,  and taking 
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u        u M        ü UM 

A=rjr^Wj)r(M)f(0)' B = R(V' 

R(-x)r.f = <j R(JP.-X) 
■#   * # 

.» 
r# 

I-VfJ)r(J-lK(t
J)J"'rir(1j)LR('i-VC

+
+ 

^j-'j-i'^j-i^j-iW^-'j-i'6- 

# #   i //     ^ 
+R(a^-xyC_ fC^PCaJ   .      (103) 

jk jk' 

Also, 

#   # 
R(x)qjr=R(x)^  [i-r(j.1)£(o)r.r(o)J-lr(j.1)r(o)R(a.k)c_ + 

-1. 

# # -1 #   1 J.!^ 
^VD^^Jr^^^t-V^^f^V 

With relationship (99a), 

*=*(j-i)i(o)yo) 

I-A -1 §      # 
= I + A I-A ,  and taking 

R(x)q.r=R(x)^I-r{j.1)((0)r.r(0)J-T(j.1)f(0)R(a.k)C,+R(-a.k)C+f 
# # 

i-(j.1)(«')rjr(o)[i-r(j.1)l(o)r.r(o) -1 ' i» R(-Vc+f ^"'^V • 

With relationship (99b),   A 
# # # 
I-BA -1 

#      # # 
A = r(M)^0)V0)' 

# # # 
I-AB 

6=1, 

-1 A ,  and taking 

R(*)qjr= ■! R(x) 
#   # 

R(a.k)C.+ LI-r(j-l)t(0)rJr(0)J"r(j-1)l(0) 

# # # ft      1        § §       ]     # ^ 
R(*j)rjr('j)R«j-

aik)C+J+R(It-ajk)C+/
C£lp<ajk)     • 

By following the same matrix algebraic operations as those used in the 

evaluations of R(-x)r.-  ,  the preceding equation can be transformed to: 
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# » 

H^jt-<K^irl) ^-r,..,^^..,^^^^   'r^i^-O 

# # # # ft # 
X R(a..-L  AC +R(^.-f.   Jr. (£.)R(t.-a.jC. 

#   1 #_1^ 
R(x-a.k)C+    VP(ajk) (104) 

Also, 

R(-x)rjr(o)qjr4(.x)^j)rjr(fj)R(.fj)p.r(rl)f(o)RUj)r.r(f.)R((j) 

X 
# # #        # 
r0-i)c(0'R(Vc-+R("a*)c+Jcf'P<ajk' 

# 1 ».,- 

With relationship (99b).   A Ll-BAJ"1 = Ll-ABj   'A . and taking 

A = r.r(tj)R(£.) , B = ^.,^(0)^^) 

#    #        #      r# #     # 
R(-x)r. (o)q. =R(f.-x)   i-r. (f.)r/. noU) \   / jr\ /njr   

v j   ' L    jrx j' (j-i)jev j7. 
1 r. (f.) 

x|R(f.-1..1)r(..1)e(l..1)R(ajlt-f..1)C.+R(f.-ajk)cJ C^1^) .   (105) 

Eqs.  (102), (1C3), (104),  and (105) are the complex entries of the right-hand 
column matrix of Eqs.  (26), 

OnU^.  ajk] 

1   # 

s    y 

# 
0 

0 

# 

11 

21 

# 
c 

# 
c 

12 

22 

#      # 
R(x)r(j.1)f(o)7jf 

R(-x)l 
j* 

On[ajk. f.]  . 
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1# 

-c 
s   y 

# 
o 

# 
0 

# 

# 
c 

# 
c 

11 

21 

# 
c 

# 
c 

12 

22 

# 
R(x)qjr 

#        # 
R{-x)rjr(o)i.r 

Also,  if the identity of the various parts of Eqs.  (102),  (103), (104), and 
(105)    is observed,  the following relationships can be obtained: 

# # # # #   #     ^ 
R(-x)7jJ? = RC-^r.^O^^+RCa.^^C^J^a^) 

# #       # # 
R(x)qjr = R(x)r(j.1)je(0)7.f+R(x-a.k)C+Cf ^(a^) 

#   #^ 

(106) 

(107) 

From the above-derived equations,  some useful functions related to the 
concept of traveling waves can be defined.    On [ft._, ,  H.]   , the incident 

j J 

waves,   caused by the single driving force P(a., ),  traveling to the right 
JK 

and to the left,  respectively,   are as follows: 

#   #   j« 
U.jk(x) = R(x-a.k)C+Cf ^(a^HH^-a.^-Hfx-f.)] 

exists only on [ a., , £ .] 

< # #   # 

(108) 

.-1. Ujjk(x) = R(a.k-x)C.Cf 
1P(a.k)[H(a.k-x)-H(£._1-x)] 

exists only on [jf-i > a.,] 

(109) 

If the expressions for incident waves are used,  Eqs.  (102), (103),  (104), 
and (105) can be rewritten as follows: 

-i. RWr(j.1)1(o)7.1=R(x-t..1)[i-r(j.1)1(U,.1)rjr(i..1)J-r(j.1)1Uj.1) 

x[RU.-1..1)rjr(ij)^jk(ij)+üjjk(«j.1) (110) 
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RMr-^RU.-x) 
#   # # 

[i-ri*mi-i)i{itt w 
-i. 

Lujjk(xj)+R(fj^j.1)r{..1),(i..1)ujjk(^.1)J+ujjk(x) (in) 

On [ajk, i.]   . 

§   # -1 R(x)ojr=R{x-rj.1)Li-r(j.1)£(ij.1)rjr(ij.1)J  '^..^C«..,) 

.R^j-^.^r^d^VV^J^'j-i'J + ^Jjk^) (112) 

*<^r(0)V*(Vx) Kr<v'o-l)l(VJ 
-1 r. (f.) 

LV^w^-'j-p'o-ixCj-iVj-i)] 
From an examination of the above expressions,  the reflected waves. 

(113) 

originated from the single driving force  P(a.. ) ,  traveling to the right and 

to the left,  respectively,  can be defined as follows: 

» '#  # 

V^^j-^ L^ü-WIWIJJ VD^J-I* 
-i, 

Raj-«j.1)rjr(lj)Ujjk(l.)+Ujjk(£j.1)J[H(x-Jj.1)-H(x-fj)J (114) 

« # 
Ujjk(x)=R(fj-x) 

# # -1 r. (f.) 

VCj^J^-i'^-Di^j-i^Wk^j-ilH^j-i)-"«"-^'] 

both exist only on [ j?.   , , X . 1 

(115) 

When the expressions for reflected waves are used,  Eqs. (110),  (HI). 
(112), and (113) can be rewritten in much more compact forms as follows: 
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#       # ^ 
R(x)r(._1)f(0)7j£ = u.jk(x) 

R^x^ = V^ + V(x) 

On [ajk. «.]   . 

RCx)qjr ^jjk(x) + ü-.jk(x) 

R(-x)r. (0)q.    = U..Jx) . 

(116) 

(117) 

(118) 

(119) 

Now, if the above expressions are substituted back into the matrix form, 
the dynamic response on [ JP.   . , jf.]   can be expressed as follows: 

J J 

OnUhl. a.k]   , 

Y s   y 

# 
0 

# 
C12 

» 
U...(x) 

Si 

F 
# 
0 cf C21 C22 "ijk^^^jjk^) 

(120) 

On[a.k.f.]  . 

s   y 0 
■# 

cll C12 

"»            > 

0 cf C21 

# 
CZ2 V 

(121) 

From the following observations, 

> 
Uj.jjx)  exists only on [ajk> i.] 

< 

and ^iik^x^  exi8ts only on  t^i-I ' aik^ 
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additional terms may be included in the preceding matrix expressions 
without changing their original nature,  as follows: 

OnU;. I ' 
ajkl  • 

\  'H 

[^ 
#  1 r# # 

Y 0 c,, C s   y ii \ 

:* 
~ 

# # * # 
F 0 Cf C21 c 

1     J L. •J *- 

On [a.k, y   , 
r 

^ 
"^ 

# 1 \ # # 
Y o 1 Cn c s   y 11 

^ 
"" # # #' # 

F 0 cfJ LC21 c 

'12 

'22 

» 

Ujjk(x)+Ojjk(x) 

12 

22 

L 

» 

(122) 

Ujjk(x)+U.jk(x) 

^jk(x)+Tjjjk(x) 

(123) 

It is obvious that the above two matrix equations are completely 
identical;  hence,  they may be combined as follows: 

OnLI..,.!.] 

F 

1# 

s   y 

# 
0 

# 
0 

# 

# 
c 

# 
c 

11 

21 

# 
c 

# 
c 

12 

22 

» 

^jjk(x)^jjk(x) 

(124) 

This matrix equation suggests that the total traveling waves,  originated 

from the single driving force P(ak) »  traveling to the right and to the left, 

respectively, are as follows: 

>» » 

VX)=TVX) + V(X) 

and 
<« « 

TTjjk(x) = U^^x) + u.jk(x) . 

(125) 

(126) 

Hence, the final expression of the dynamic response caused by the single 

driving force  P(a., )  on [£._., J? .]   is as follows: 
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Y 

F 

4 s   y 

# 
0 

0 

# 

# 
c 

# 
c 

11 

21 

# 
c 

# 
c 

12 

22 

(127) 

If the superposition technique is used, the dynamic response on[j?.   . , H. 

caused by all the driving forces,   P(a.,) , k = 1,  2,   .   .   .   ,  k(j) , in this 

span is as follows: 

Incident waves on [f.   , , A.]   : 

> Ä^     # #   #   ,« 
UJJ(X) = L     R<X-aJk)C+

Cf   ^jk) Htx-^^-HCx-i.) 
k= 1 

(128) 

and 

VX) = E     ^^k-^C.C;1^)^»   .x).H(l      -x) 
k=l 

Reflected waves on [ J? •_, , f • ]   : 
J J 

» 

k=l 

(129) 

(130) 

and 

« 

k=l 

(131) 

Total waves on [f.  . , jf .1   : 
J-l      y 

^.(x)^     V^=Z     V^jjk^ 
kM k=l 

and 

(132) 
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<c< W) «c Hi)  *       < 

Vx) = E v(x)=Z vx)+v(x) • 
k=l k^-l 

(133) 

The solution of the dynamic response on [£•   , »  ft.] is as follows: 

Y 
s   y 

# 
0 

# 

cll 

# 

C12 

at 
F 

# 
0 

# 
cf C21 C22 

<« 

tr^x) 
(134) 

Now,  the traveling wave forms in other spans of the shaft will be 
investigated. 

On [1.^,1.^]   (see Eqs. (26)) 

Y 1# 

s   y 0 
# 

Cll 

# 
C12 

#      # 
RC^r^.^^o)?.^ 

Si 

F 
# 
0 Cf 

# 
C21 

# 
C22 

# 

Rf-^j-i 

From Eq. (26a),  the following equation can be obtained by substitution: 

> 

"#   # # 1 #        _  1 

From Eq. (82), 

R(x)r(..E)1(o)r..1=R(x.f..2)r(..2)|(«j.2)R<fj.l-tj.2) 

"# # # i.,r#  # #i 
X [Cur(i-Z)^i-i)+Cu\     [Clirü-l){(ij-l'+C12. 

X s C#ii*(j-l)£(1j-l)+C12j"Cy'Yaj.1+0)     . i'-i- 

135 



#   !# #_!# 
From Eq. (134), and since C.^C     = C.-C^ 

R(x)r(j.2)je(o)7j.1 

# #_! #     ,# 

#    # >» «< 

11  i2 jr J-I7    JJ  J-I7 

-i 

The total wave traveling to the right on [i.  ? ,  l.   ,]   , i.e.,  the (j-1) 

span,  can be defined as follows: 

th 

X» 
^..„^x) = ^..^(Ojrj., 

or = R(-V24-2)i(,J-2)^-i-'j-2)r*n*i2V2)«(ij-i)J 
<«: 

-1 

(135) 

Similarly, the total wave traveling to the left on [ i.   7 , X.  ,1   , i. e., the 
th ^ ■'' 

(j-1)     span,  can be obtained as follows: 

<« 

Vi)J(x)aR(-x)7M 
# df.j*    # 

=R(^.1-x)Li+ci;c12r(._2)f(ij.1)J i[ci;c12ujj(fj.1)+u..(£hl) 
-] #.1#  ^        ^ 

.(136) 

Hence,  the dynamic response on [^i2' ^i.iJ   » i« «.,  the (j-1)     span, 

caused by driving forces  P(a.J ,  k = 1,  2,  .  .   .   ,  k(j) , on [f.   , , jM 
th JK J"1       J 

i. e.,  the j     span,  can be expressed by the following matrix equation: 

<« 

V.)j(x) 

Y 

=»; 
F 

1# 

-i-C s   y 

0 

0 

# 

c 11 

c 21 

# 
c 

# 
c 

12 

22 

(137) 
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With the same mathematical manipulations,  the following set of matrix 
equations can be obtained: 

th 011 [^ 1-3 » ^ i-zl    .   i-e.,  the (j-2)      span 

Y 
s   y 

# 
0 cii C12 

>» 

u(j-2)j(lt' 

F 
# 
0 cf c

2i 

#  ; 
C22 

<« 

where 

«< #        r# #   #   # 
ü(j.2)j(x)=R(£..2-x) i+c;;c12r(j.3)£(.r.2) -i 

X 
#-1 * ^ <« 

Ci^iaUa-D^j-a)^-!)/^^) 
th 0n tjej-4' ^j-a^   •   i-e-' t*16 0-3)      sPan 

«< <« # #  #    .#     # #      #     >» 
U3j(x)=R(f3-x)|_I+C;Jci2r2je{i3)J-1[c;Jci2ü4j(£3)+U4j(l3) 

.nd On [£. , f2]   , i.e. ,  the 2      span, 

2»; 

Y 
,# # 
ic 0 
s   y 

# # 
0 c, 

11 

# 
c 12 

21 

# 
C22 

>» 

U2j(x) 

«< 
U2j(x) 

where 

<« #   #_1#     # 
ü2j(x)=R(f2-x)|_i+ci;c12rlfU2)J  1[ci;c12U3^2)+U3j(C2) 

i #-1* ^      <<K 

St 
On [ 0 , I. ]   ,  i. e. ,  the 1      span, 
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Y 

F 

1# 

-C s    y 

# 
0 

# 
0 

# 

11 

21 

# 
c 

# 
c 

12 

22 

>» 

tyx) 
<« 

U,^) 

where 

<« 
Tjlj(x)=R(je1-x) 

# # ,#   # 
I+C11C12W 

-1 #-1^  ^ <« 

cuc12u2j(«1)+u2j(«1) 

Similar mathematical manipulations can be applied to other portions of the 
shaft. 

0n[ f, i      ]    (see Eq. (26)). 
J J 

Y 
"l# 

s y 

# 
0 cll 

# 
C12 R(x)qj+1 

F 
# 
0 

# 
cf C21 

# 
C22 R(-)r(j+1)r(o)qj+1 

From Eq.  (26a),  the following equation can be obtained by substitution: 

#„#f#       r### "1. 
R(x)qj+1=R(x)jR(^j)[cil+C12r(.+ 1)rU.)J-1 

"#       #    # 1 # 
C-.+c.^r. (£.) R(f.)q 11      12  jrv j'J    x  j/njr 

From Eqs.  (82), 

# # f 

^Vl^^V^ll^l^V^^jJ^Kl^U^r^j). 
"#       #      # 

'C/YU.-O)   . 

#.!# #_!# 
From Eq.  (134), and since C^C.. = ^ii^\z ' 

#        #      r#    #  #        i s**>      #,#<«<    ' 
R(x)qj+1=R(x-ij)[c11+c12r(j+^.)J-|uj.(ij)+c;;c12ITjj(£j) 
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.th The total wave traveling to the right on [JT ,i      ]   , i. e. ,   the (j+1)      span, 
J J 

can be defined as follows: 

>» 
TJ(j+1)j(x) = R(x)q.+ 1 

=R(x.fj) 
#        #      # >» # ^ ^5 

[Cll+Cl2r(j+l)r^j)J   1W+C11C12WJ (138) 

Similarly,  the total wave traveling to the left on  [f. , J?.. .]    ,  i. e.,  the 
th ^       ^ (j+1)      span,  is 

«K 
TJ(j+1)j(x) = R(.x)?(j+1)r(0)Vl 

=R(^+1-x)r{.+1)rUj+1)R(f.+ 1-£.)Li+c11c12r(.+ 1)r(fj)J 
# #.1#    # 

>» 
T7..(r)+c: c17"ü..(f.) L  jr J'   11  12 JJV yj (139) 

th 
Hence,  the dynamic response on [ It. ,   f-.i]    .  i. e. ,  the (j+1)      span, 

caused by driving forces   P(a., ) ,  k =  1,  2,  .   .   .   ,  k(j) ,  on [ J?.   , ,  S..] 
^ JK J"A       J 

i. e. ,  the j      span, can be expressed by the following matrix equation: 

Y 

'a 
F 

1# 

s   y 

# 
0 

# 
0 

# 

11 C12 

21 C22 

>» 

G(J+.)J(X) 

(140) 

With similar mathematical manipulations, the following set of matrix 
equations can be obtained: 

th 
On [fj+1. ^j+zl   ' i•e••  theii+z)      span, 

Y s   y 

# 
0    | 

* * 1 
C12 ü(J«)i(X' 

a; 
F 

■^ # 
0 

# 
cfJ 

* 

r21 
#     1 

C22 [Ü(J«)J(X). 
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where 

<« # # it 
ü(jt2)j(x)=R(f.+2-x)r(jt2)r(fj+2)R(ij+2-lj+1) 

X 
'#   #_!#      I r»> fj*  <« 
I+CnC12V2)r(^H)  '    ^(j+l)/Vl)+ CnC12tTÜ+l)j(Vl) 

f V» 
On [ £ .+2 , f .+ 3 ] ,  i. e. , the (j+3)      span. 

<« # # # 

(n-Z)jv  '     v   n-2     ' (n-2)rx   n-Z'   x  n-2     n-i' 

11    12 (n-2)rv  n-S' 
-1 

th 

>» #   1 #   «< 

(n-3)jx   n-i7      11    12   (n-3)jv n-S' 

On[fn_2, f     j]    ,  i.e.,  the (n-l)      span, 

, # # 
•ic 0 s   y 

# 
0 

11 C12 

21 C 22 

>» 

ü(n-l)jW 

U,     , x (x) (n-l)jv ' 

where 

<« # # # 
U/   1..(x)=R(f   .-x)^   .v (je   JRCJP   ,-f   ,) (n-l)jx  '     x  n-1     ' (n-l)rx  n-l'   x  n-l     n-Z' 

11    12 {n-l)rv  11-2^     [_    (n"2)j   n-2'      11    12   (n-2)jv n-2/ 

On [ jf     . , H   1   ,  i. e. , the n  l span, ^   n- 1       n J 

#   ,#    «< 

J # 
-k:       o 
s   y 

# 
0 

# 

11 

21 

# 
c 

# 
c 

12 

22 
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U   .(x) njv  / 

<« 
TT .(x) 

njv   ' 



where 

Ui.(x)=R(jf   -x)r{jf   )R{jf  -Jf     ,) 
#   #   , ^     # 
i+c^c.^r {i ) 

11    12  nv  n' 
-1 

X 
>» §ml§    <<< 

_   (n-l)jx n-r      11    12   (n-l)jv n-l'. 

Again,  if superposition techniques are applied,  the total dynamic response 

on any span due to all the driving forces  P(a.. ) ,j=l,   2,   .   ..   ,n, and JK 
k = 1,  2,  .   ,   .  , k(j) ,  in traveling wave forms is as follows: 

On [i.   ,  ,li.]   .i.e.,  the i       span, 

(141) 

Y 
,  #         # 
~C         0 s   y 

# 
cii 

# 
C12 

>» 

^V 
"" 

#            # # # <« 
F 

. 0           Cf .C2i 
C22. ^(x) 

where 

> » A >» 

<« n <« 

Eq.  (141) is written out in detail in Chapter 2. 

»       «     >»      <« 
The subscripts, i and j ,  for  U.. ,  U. ., U.. , U.. » U.. ,  U..   denote that: K J ij'      ij'     ij '     ij *     ij'      ij 

If      i = j ,        the wave is originated from the driving forces in the same 
span as where the wave is located. 

If      i /■ j ,        the wave is originated from the driving forces in other spans 
and is modified when the wave passes through supports into 
the span under investigation. 
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APPENDIX G 

EVALUATION OF THE REFLECTION MATRIX OF A FIXED END 

For a fixed end, at x = 0-0 , the boundary condition is 

at 
Y = 0 

Hence, from Eq. (10), 

* 1   # 

Y(0) 4 C 
"#    # #     # 
C11R{0)q1+C12R(.0)7] = 0 

or #.!# 

^1 S<-CllC12)rl (142) 

For an end support which is not specialized, it was shown in Appendix C 
that 

# 
qj = r0(0)71   . 

Comparing this expression with Eq. (142), it can be concluded that for a 
fixed end at x = 0 , the reflection matrix is 

# #   .# 
ro<0) = -cnci2   • 

Similarly, it can b * proved also that 

# #  ,# 
r (i ) - -c'Jc,, nx  n7 11   12 

for a fixed end at x = jf    . n 
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APPENDIX H 

NOTES ON SUPPORT IMPEDANCES 

# # 
To simplify the calculation of end impedance  Zn(0)   or  Z ({   ) f where 

n = 2 for the shaft system shown in Figure 16,  it can be assumed that An 

and B-  are rigid bodies (see Figure 1).    It has been shown (reference 14) 
# 

that if  Z (x.)  is the j     concentrated impedance,  where H   < x. < b , the 
c   j u n       j 

concentrated right end impedance  Z (jp   ) may be calculated by the following 

relationship: 

# 
Z {f  )=y S'if   -x.)Z  (x.)S(f   -x.) .       x. on [ It    ,  b] nv   n'   ^.j      v  n    j'   cv  j7   v n    j' j L   n       J (143) 

Similarly, the concentrated left end impedance   Z_(0)  may be calculated 

from 

Z0(0)=^S'(-xk)Zc(xk)S(-xk). 

k 

xk on [ a ,  0]     , (144) 

# th 
where  Z (x,)  is the k     concentrated impedance,   a< x,  < 0 ,  and 

# 1 V 
s(v) = 

^0 1_ 
is real 

# # 
and S'fy) is the transpose of S(^) . 

If both ends have the same configuration, i. e. ,   Z  (x, ) = Z (jf   + Ix, I ) , 

where a < x,   < 0 ,  Eqs. (143) and (144) can be used to calculate the con- 

centrated end impedances as follows: 

# # 
Let  Zc(xk)-Zc(^n+|xk|)= 

'ell 

0 
c22 

a < < 0 

If Eq.  (143) is used and if Ix. j  = y ,  since x,   is a negative value, then 
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# # #   # 
znUn) = s'(-v)zcz(-v) 

Z (i  ) 

1        0 

-V      1 

z 

z 11     0 cl 1 

ell 

Jc22 

•vz 

0        1 

ell 

•VZ   , ,        Y   Z   , ,+Z  ,, ell ell      cZZ 

(145) 

From Eq. (144), 

# # #  # 
Z0(O) = S'(Y)ZCS(Y) 

V 1 

'ell 

*ell 

'cZZ 0        1 

vz ell 

VZ   ..        V   Z   ,.fZ  ,, 
ell ell      eZZ 

or 

zo(0) = 

1 0 

0 -1 

'ell YZ ell 

VZ   . .        Y  Zä1,+Z  ,, ell ell      eZZ 

A 
Zn(0) = 

'ell -YZ ell 

•YZ 
ell 

Y   Z   ..+Z  ,, ell     eZZ 

-1 

(146) 

If Eq.  (145) is eompared with Eq.  (146),  it ean be eoncluded that 

A # 
Z0<0) = Zn^n) (147) 
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provided both ends have the same configuration. 

With reference to Eqs.  (57), 

ru(i 

riA 

*u^i 

lr(fl 

^r^l 

•C22+zU^l)Cl2, 

#       „ # 
CZ24lr^l)Cl2 

= Zl^l)+Vl) 

= ll^l) + t2r^l) 

-1 

C21-zU^l)ClL 

2l"älr(fl)Cll 

"#        #      # 
C21+C22r0^l) 

"#        #      # 

LC21+C22r2^l)JLCll+Cl2r2(fl)J 

"#        #      # 
Cll+C12r0^l) 

"#        #       # 

# # #        # 
r0(f1) = R(f1)r0(o)R{£1) 

# # #       # 
r2(£1) = RU2-£1)r2(£2)R(f2.£1) 

and 

r0(o) = 

r2{£2) = 

#     ^     # 
-C22+z0(Ö)C12 

#   A     # 
C22+z2(f2)Cl2 

"#     A        # 
C21-z0(0)C1 

'#      A #   • 
C2l-2(f2)Cll 

Eq. (147) implies that  zJO) - t2(f2) ; hence,   Eq. (152) give 

# # 
r0(o) = r2U2)   . 

If i7-f ,=4,   and if Eq,  (153) is used,  then,  from Eq.  (151), 

(148) 

(149) 

(150) 

(151) 

(152) 

(153) 
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# # 

which also implies (see Eq.  (150)) that 

From examination of the matrix form for Z.{i,)t  i. e. 

or 

Zl(ll) 0 

t 

0 Zl(22) 

in be shown that 

w - 
1        0 Zl(ll) 0 1 0 

= 

zl(ll) 0 

0       -1 0 Zl(22) 0 -1 0 Zl(22) 

A 
Zl^l) = 

which implies that    zi(f i) = *i(^i) 

From the above relationships,  it can be concluded from Eqs.  (149) and (148) 
that 

# # 
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APPENDIX I 

MATHEMATICAL DERIVATIONS FOR THE QUASI-MATCHED 
IMPEDANCE AT THE INTERIOR SUPPORT 

First,  all related equations pertaining to the upcoming derivations can be 
summarized as follows (see Eqs.  (57)): 

rlr(^)= •C22+ilr^l)Cl2  "ICzr^r^lAl 

SlA)4l^l) + l2^l) 

^r^ 

#        #      # 
C2l+C22r2^l) 

#       #     # 
Cll+C12r2(Cl) 

-1 

# # # # 

r2(^) = .c2242(fz)c1( C2142^2)C11 

154) 

155) 

156) 

157) 

158) 

where 

z2U2) = 
Z2(ll) Z2(12) 

'2(21)        Z2(2 2) 

r2(^) = 

r2^2)ll r2^2)l2 

I2^2)21 r2^2)22 

If direct matrix algebraic operations are used in Eq.  (158), 

r2U2) = 
det -C22+ KWl. 

X 

e2e3"ie2Z2(21)+ie3Z2(22)        " 1+ie2Z2( 1 l)"ie3Z2(12) 

el+iele3Z2(2l)+Z2(22) ■ie3"iele3Z2(ll)"Z2(12) 
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•ie3+iele3Z2(ll)_Z2(12)        1 + ie2Z2(ll)+ie3Z2(12) 

el+iele3Z2(21)"Z2(22) 'e2e3+ie2Z2(21)+ie3Z2(22) 

(159) 

Examination rf Eqs.  (156) and (157) shows that 

# # # # 
r2<*l)=R<VW2)R<V*l) 

-ie1^(£2-jf1) -ie^ {H ^H^ 
!       ' r2^2)lle 

-ie1N/J'(C2-jei) -e2<r (f 2-jej) 

^^2)2 le 

•e?N/J7(je2-jei) -e ^(VfJ 
r2(Vl2e 

The only element not being modified by an exponential decaying function in 
the above matrix is the one in the first row and the first column.    For 
quasi-matching, only the element not being modified by an exponential 
decaying term needs to be considered; i. e. , 

# #      . # # 
r2(£1)=RU2-f1)r2(^)R(^-f1) 

« 

-2ie1N4ir(f 2-JP1) 
r2(£2)11     0 

From Eq.  (159), 

Wu 
det 

1—:—r 
•C22+I2^2)C12 

2.. 

T[(l + e^)( Z2(22)+iele2z2(ll)) + 

(ele3+ie2^Z2(12)z2(2l)"z2(ll)z2(22)) " 

e3(e2+ie1)(Z2(12)+z2(21))-(e1+ie2e^)]     , (160) 
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where 

# # 
det -C22+t2{f2)Ci; 

= -{ie3+ie1e3z2(11)+z2(l2))(e2e3-ie2z2{21)+ie3Z2(22)) + 

(e1+ie1e3z2(21)+z2(22))(l-ie2z2(11)+ie3z2(l2))     . 

With reference to Eq.  (156), 

' #        #      # 
C21+C22r2^l) 

ie- 1 

.e2e3 

ie^        -1 

e2e3 

•216^   (^-Jtj) 
r2(£2)l 0 

0 

xe. 
-2ie1Vü) (£2-f,) 

r2^2)ll-1l      1 

elle 
.Zie^ii^lJ 

r2(f2)11 + i -e2e3 

Similarly, 

#       #      # 

LGll+Cl2r2<£l)J 

.ie1e3 ■ie. 

■ie. 

-ie1e3        -ie2 

ie. 

Ziel^Z{iz-il) 
r2^2)ll     0 

-ie1e3 

-2ie1^U2-f1) 

-   e 
•2ie1«^r(£2-f j) 

r2(f2)11 + i|    -ie, 

or 
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det Cll+Cl2r2^l) =  -6^3 
I -2ie1N^(je2-je1) 
e 

\ 

•Zie^C^-Xj) 

Wn + i   - 

ie2le - r2U2)11 - 1 

then, 

#        #     # 
Cn+Ci2r2^i) 

1 _ 1 = —n—rnr 
det cn+ci2

r2(fi) 

-ie- ie. 

'-    ' Wir1- 
-Zie.N/w (je2-f1) 

iele3e r2^2hl + 1i 

Hence, 

W'I) = 
det 

-1 1 1 : 

X 

(1 + 4) 
-2ie1N^(f2-jf1) 

r2^2)ll  " l 

-2ie1N^(£2.jf1) 
-e3(e2+ie1)e r2(f ^ j + e^-icj) - 

-2ie1vAir(f2-£1) 
e3(e2+ie1)e 

r2^2h 1 + e3^e2"iel) 

/  -2ie  N^(je2-jf  ) \ 
ieje^l+e^je r2^2)ll + V 

From Eq.  (155), 

*ir(v-*i(*i)+y'i) • 
or 

Zlr(ll)        Zlr(12) 

zlr(21)        zlr(22) 
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(l+e.) 
;i(ii)+    FI   m 

-2ie1'^(X2-jf1) 

det Cll+C12r2»l) 

Wzhi - lj 

det 
fi—r~7 
Cll+C12r2^l) 

•(e^ie^e r2^2h l+(e2"iel) 

-2ie1N^{i2-l1) 

•(e2+iel)e r2^2hl+(e2"iel) 

Zl(22) + 

ie1e2(l+e3) 

'#        #     # 
det 

-2ie^(L-^1) 
!      1 l^zhi + l 

This relationship gives the expression for each element of  2.   {i ,) , since 

two matrices are equal to each other if and only if each corresponding 
element of these two matrices is identical.    Thus, 

Zlr{ll)=Zl(ll)+ 

(1+4) 

det Cll+CUr2(fl) 

•ZiejN^TU 2-jej) 
r2^2)ll-1 

ie1e2(l+e3) -2ie1\^(£2-£1) 

lr(22)"zl(22)T        r|        |     I 
det Cll+C12r2^l) 

r2Uz)nn 

Zlr(12) = Zlr(2l): 

det 
n—i—i—: 
C
ll+C12r2^l) 

-2ie N^U^-jf   ) 

•(e^ie^e r2^2)ll + ^e2"iel) 

Similar to the way Eqs. (158) and (159) are solved, Eq.  (154) can be 
expanded in complete matrix form,as follows: 

(161) 
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1 

det 
fl T" 

C22+flr^l)Cli 

e2e3"ie2zlr(21)+ie3Zlr{22)        ■1+ie2zlr(l l)"ie3Zlr(12) 

el+iele3Zlr(2l)+Zlr(22) ■le3"lele3Zlr(ll)"zlr(l2) 

'ie3+iele3Zlr(ll)"Zlr{l2) 1+ie2zlr(l l)+ie3Zlr( 12) 

el+iele3Zlr(21)"Zlr(22) "e2e3+ie2Zlr(21)+ie3Zlr(22) 

Hence,  the quasi-matching condition F.   (^1)11 = 0 gives Eq.  (62) in the 

text wher» 

Eq.  (161). 

text where   z,   /,,»,   z,  /.-jx  ,   z,   i-,,\,   z.   /,,»   can be calculated from lr(ll)        lr(12) lr(21)        lr(22) 
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APPENDIX J 

MATHEMATICAL DERIVATIONS OF THE IMPEDANCE OF A FLOATING 
RING DAMPER ASSEMBLY AS THE INTERIOR SUPPORT 

With reference to Figure 18,  a free-body diagram can be drawn for an 
infinitesimal mass element at x = £. , as shown in Figure 25.    When the 

equilibrium condition at point   (T) is considered, 

K Y    = C(YK. - Y  J + K, (Y,   - Y )     , c   c        x   bt        ct' DX   b        c' 

of which the Laplace transform is 

'S* l**J f^t l>J 

K Y    = sC(Y,   - Y  ) + K, (Y,   - Y ) c   c v   b        c' bx   b        c' 

or 

sC+Kv 
Y    = 

c 
'C+Kb +K 

When the equilibrium condition at point   (Z)   is considered, 

Ka(Yl - Yb) = KtbYbtt + C(Ybt - Yct) + Wh - Yc)    ' 

of which the Laplace transform is 
f**t 'Nrf /Srf *s/ 

Ka(Yl ■ V = 8  MbYb + 8C^b " Yc) + Kb^b " Yc) 

(162) 

If Eq. (162) is substituted into the above expression, 

Yb = 

KJ sC+(Kb+Kc)] 

s3MbC+s2Mb(Kb+Kc)+sC(Ka+Kc)+(KaKb+KbKc+KcKa) 

Yj   .   (163) 

When the equilibrium condition at point  (3)   is considered, 

MaYltt+Ka(Yl-Yb) 
-5(1,) = 

of which the Laplace transform is 
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-mj = 

/■w ^w 

(s  M +K )Y1-K Y, v a     a7    1     a   b 

If Eq.  (163) is substituted into the above expression, 

s5MaMbC+84MaMb(Kb+Kc)+s3[ MjK^Kj+N^Kj C 

.R(jf1) = 
s3MbC+s2Mb(Kb+Kc)+8(Ka+Kc)C+(KaKb+KbKc+K Ka) 

+£[ (Ma+Mb)Ka(y Kc)^MaKbKc] +sKaKcC+KaKbKc  ~ 

(164) 

When the equilibrium condition at point   (4)   is considered, 

cy ai 2* 

FUJ-O^FUJ+O^-RUJ)    . 

If Eq. (164) is substituted into the above equation, 

F^j-O) -F^j+O) 

84MaMbC+33MaMb(KbfKc)+82[Ma(VKc)fMbKa]C 

s3MbC+s2Mb(Kb+Kc)+8(Ka+Kc)C+(KaKb+KbKc+KcKa) 
= s 

+8[(Ma+Mb)Ka(Kb+Kc)*MaKbKc] +KaKcC+ i KaKbK( 

YUj) 
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If the above expression is compared with 

F(i1-0)-F(l1+0)=.Ziai)YU1)    , 

it can be concluded that the support impedance at x = J?.  is 

# 
Zl<*l) 

s3MbC+82Mb(V
Kc)+8(Ka+Kc)C+<KaKb+KbKc+KcKa) 

s[(Ma+Mb)Ka{Kb+Kc)+MaKbKc]+KaKcC+ i K^^ 

0 

(165| 
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