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ABSTRACT

The backscatter from conducting and dielectric spheres, and to a lesser extent
from conducting spheres with a relatively thin dielectric caating, is considered
in the time domain. Utilizing rigorously computed values af the amplitude and
phase of the continuaus wave backscatter, short pulses of electromagnetic waves
are synthesized by Fourier series. The resultant returns are examined as a func-

tionaf time, and the individual returns campared with some approximate theories.
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BACKSCATTER FROM SPHERES: A SHORT PULSE VIEW

I. INTRODUCTION

The problem of the secattering of electromagnetic waves from a sphere has received
considerable attention due to a large extent to the faet that the rigorous solution has been known
for a long time.* The rigorous solution, known as the Mie series, allows numerical results to
be obtained to a high degree of accuraey. It has, however, various drawbaecks which have led
to the development of numerous approximate or asymptotic solutions. Probably the main failing
of the rigorous solution is that it does not readily allow construction of a physical model of the
phenomena involved. Such a model would be useful for studying the scattering from spheres with
parameters different from those for which computations are available, and eould lead to an under-
standing of eleetromagnetie seattering from other than spherieal shapes. In addition, the con-

N

vergence of the series is relatively slow,’ so that even with the utilization of high speed digital
computers the eases whiel have been eonsidered are limited.
The various approximate techniques — whieh include geometrieal optics,4 the FFresnel-Kirehhoff

’

theory of diffraction,4 Keller's geometrical theory of diffr‘action,5 ereeping wave theory,7’8 and

9,10

IFock theory — are not limited to the sphere. A study of the sphere, however, provides a

good eheek of these theories and models and often indicates how they may be modified or com-

: S i - JE |
bined to handle the specific ease under consideration.” ’ E

Baekscatter from a conducting sphere
now appears to be well under‘stood13 and, as will be shown, the application of physieal optics

and ereeping wave theory leads to results in good agrcement with the rigorous solution. Such is
not the case, however, with the dielectric sphere, where the approximate techniques often have
only limited suecess.

Generally any comparison between the rigorous results and the various models whieh have
been developed is earried out in the frequeney domain; in this report the scattering from con-
ducting, dielectric, and, to a lesser extent, from dielectric eoated conducting spheres, is ex-
amined in the time domain. A consideration of the time domain has achieved considerable suc-
cess in many areas and, as will be shown, appears to lead to an improved understanding of the
scattering from spheres. Utilizing the Mie series, values for the amplitude and phase of the
seattered electrie field for continuous waves are computed. By means of Fourier series, the
response, as a function of time, to an incident impulse or pulse comparable in extent to the size
of the sphere (short pulse) is synthesized. In this report, however, only the short pulse response

will be eonsidered.

* See Logan] far a fascinating accaunt af the histary af this prablem. Reference 2 lists much af the recent wark.

t Generally the number of terms required is slightly greater than 1.2ka, where k = 2m/\ and a is the sphere rc:dius.3



The resultant scattering from most objects may generally be considered to be due to various
components; however, in the frequeney domain it is often difficult to separate or distinguish
these. Different components have often traveled different optical paths and are then distinguish-
able in the time domain. The dispersion of the components is generally small enough so that
appreciable spreading of the pulse does not occur. By these methods the presence of the various
components is vividly illustrated and further insight into the scattering is obtained. For con-
ducting spheres, for example, the validity of the decomposition into optics and creeping wave
components is demonstrated and it is shown that this decomposition is valid to quite large wave-
lengths. It will also be shown that some of the returns, of an appreciable magnitude, from di-
electric spheres, which have generally not been considered previously, appear to have the char-
acter of ereeping waves.

The scattering of short pulses, or impulses, of clectromagnetic waves by means of Fourier
(or Laplacc) transforms has been considered previously by Kennaugh and his co-workors.H_&O
Their primary aim was to approximate the impulse response for targets that were not spherical,
thereby obtaining an estimate of the CW scattering. A limited number of theoretical studies

and some experimental results have also been reported in the lit(*ruture.“_zo

II. SHORT PULSE SYNTHESIS

The plane polarized electric field incident upon the scatterer is taken to be

e(t) eoswct =5 QST
E'(t) = (1)
0 r<|t| €T
where 27 is the ineident pulse length, @, is the carrier angular frequency, and, in this report,

the envelope e(t) is
e(t) = 0.5 [1 + cos (rt/1)} y (2)

A pulse train of period 2T is obtained by expanding Eq. (1) in a Fourier serics

a

EYt) = 5 + & a  cos(mw t) (3)

m=1
where

Bk L
g F
In Eq. (3) use is made of the fact that El(t), as given by Egs. (1) and (2), is an even function. The
eoefficient an of each term in Eq.(3) is the weighting coeffieient of the corresponding frequency
mw in the spectrum of El(t), determined by the values of @ o 7 and T desired. These coefficients
| 3 31
may be found by standard Fourier techniques.
The (complex) electric field scattered at a large distance by a target is then given by
. :" io(me )
- =K ! 5 W 4
E°@t)=K [/ A(muo) e a. cos (m Ot) (4)

m=1



%
where A(mmo) and w(mwo) are the amplitude and phase of the CW scattered electric field at the
angular frequency mw and K is a constant, depending on the range to the target. Equation (4)

was programmed for a digital computer to calculate Es(t) when A(mwo), <p(mwo), T (G

>

(€
and T were input.

Plotting the real, or imaginary, part of (4) as a function of time presents a picture of the
instantaneous electric field as a function of time. Plotting the modulus of (4) presents the en-
velope of the scattered electric field. In this report time is measured in terms of the free space
transmit time of a sphere radius.

For the results presented in this report the required amplitudes and phases wcre numerically
computed on a digital computer by the Mie series. The accuracy of the short pulse calculations
is determined by the increment in a/A at which the rigorous calculations arc carried out, the
point at which the series in Eq. (4) is truncated, and the accuracy of the Mie series calculations.
1t is necessary that the increment in the calculations be small enough to give a reasonably smooth
representation of the CW backscatter cross section as a function of a/A. For the purposes of
this report the Mie series calculations were carried out for increments of 0.01 in a/A. Plots of
the CW backscatter cross section were made to give an indication of the effect of this sampling.
Except for the case of dielectric coated conducting spheres, it is believed that this increment is
small enough to give a reasonably accurate representation of the short pulse response. In fact
the reason for choosing an increment this small was primarily to obtain a reasonably large value
of T in order to obtain a relatively large unambiguous (nonaliased or "nonfolded-over") response
in the time domain. An increment of 0.01 in a/A implies an unambiguous range of 50 sphere radii.
Generally 800 terms were retained in the series given by Iq.(4). This is usually sufficient to
give reasonable results for the present purpose for pulse widths of one sphere radius or larger
and for values of the carrier wavelength }‘c less than or equal to four sphere radii.

The programs utilized for the Mie series calculations are modifications of the program de-
scribed in Ref. 3. The most critical part of the calculation is the cvaluation of the required
Bessel and Neumann functions. The program contains built in checking procedures, which are
independent of the calculation algorithms to insure that sufficient accuracy in these functions as
well as in other parts of the calculation is retained to give at least five significant figures in the
result. The programs have also been extensively compared with hand calculations as well as

various published data.Jr

* The convention employed here relates the amplitude and phase to the backscatter crass section o (mw,) by

o (mw ) io(mw )2
3 o
R A(muc) e

Ta

The phase angle ¢(mwe) is as defined on page 286 aof Van de Hulsf,4 except that the phase reference is shifted a
distance 7 in front of the sphere.

t Of the literature checked the only serious discrepancy noted was in the calculations for a complex index of
refraction given in Ref.32. A considerable number of digital computer as well as hand calculations, utilizing
different algarithms, have led to the conclusion that the published data are in error. In some cases the errar is
as much as a factor of two.



TABLE |

POSITION OF THE MAXIMA AND MINIMA OF THE NORMALIZED BACKSCATTER

FROM A CONDUCTING SPHERE

Position of Position of

Moxima Cross Section Minima Cross Section

(o/N Differences (0 /102) (a/N Differences (o/noz)

0. 1636 3. 65495 0.2775 0. 285041
0. 1981 0.1932

0.3717 1. 96958 0.4707 0. 505600
0. 1942 0.1919

0. 5659 1.58864 0. 6626 0. 634592
0.19219 0.1917

0.7578 1.41043 0. 8543 0.716232
0.1917 0.1915

0. 9495 1. 30698 1.0458 0. 772456
0.1918 0.1916

1. 1413 1. 24023 1.2374 0.813423
0.1918 0.1918

15831 1. 19398 1.4292 0. 844286
0.1918 0.1916

1.5249 1. 16016 1. 6210 0. 868137
0. 1920 0.1920

1.7169 1. 13451 1.8130 0.887011
0.1920 0. 1921

1. 9089 1. 11453 2.0051 0. 902239
0.1922 0.1922

2,101 1.09864 2. 1973 0.914714
0.1922 0.1923

252988 1.08576 2.3896 0. 925057
0.1924

2.4857 1.07515




1. SCATTERING FROM A CONDUCTING SPHERE

The well-known plot of the backscatter cross section of a conducting sphere as a function of
a/X, where a is the sphere radius and A the wavelength, is presented in Fig.1. The data for
this figure, as well as the associated phases, were numerically computed utilizing the Mie se-
rios.33 While this rigorous method provides accurate results it does not lead to an understanding
of the physical phenomena which lead, for example, to the damped oscillations, or ripples, ev-
ident in Fig.1. The general methods of physical optics or geometrical optics also do not pre-

dict or explain these ripples.

-

0N

o/X

Fig. 1. Bockscatter crass sectian af canducting sphere (camputationol
increment 0.01 or smaller ino/N).

The regularity of these ripples, as indicated by Table 1, leads one to suspect that two re-
turns may exist which, through interference, combine to give the calculated curve. According
to L,o,qan,1 I'ranz, upon seeing a curve such as Fig.1, suggested that the ripples could be ex-
plained by assuming that there was interference between waves reflected at the front, specular
portion of the sphere and waves which, by traveling around the rear portion of the sphere as
shown in Fig. 2, had traveled a distance (2 + 7)a further. From this model, with no modifica-
tions, one would expect the maxima, or minima, to be spaced at intervals of 0.194a/\. lv‘ran'/,7’8
and his co-workers, continued working on the problem and developed the now well-known creep-
ing wave analysis of the scattering from spheres and cylinders, although generally they con-
sidered only the scalar problem. Senior and (}oodx‘ioh13 have given the vector solution to the
problem. Such waves are also inherent in the work of l”ockiO and of Keller.”

In such a creeping wave analysis the rigorous Mie series is generally converted into a con-
tour integral by means of a modified Watson transformation. The resultant integral may then,
in turn, be separated iuto two contour integrals. One of these, known as the optics integral,
may be evaluated by a saddle-point technique and gives terms whose phase closely corresponds
to scattering from the specular portion of the sphere. For backscatter the first terms in this

asymptotic series are

* See Logon34 (os of this date Vol.lll of the report referenced in [34] hos nat been issued). See olsa Senior ond
Goodrich .13
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Fig. 2. Diagrom of speculor and creeping wave returns.
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Fig. 3. Short pulse response of conducting sphere (1t =20, T = 25a, o/)\C = 1).
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Aje = [1— -4 s R (5)
2(ka)
where
A 2R
o

The first term: in this series is that predicted by geometrical optics, and simple physical optics
gives the first two terms.

The second contour integral, known as the creeping wave integral, may be evaluated as a
sum of residues of poles. The phase of these terms corresponds to waves which have circum-
navigated the shadow region of the sphere making N + 4, N = 0,1, 2,... revolutions around the
sphere. liquations suitable for the calculation of the amplitude and phase of these returns are
given by Senior and Goodrich.13

Both the optics and the creeping wave returns are evident in the results of calculations of
the scattering of short pulses from conducting spheres as shown in Figs. 3 through 7. In ligs. 4
through 7 the amplitude A, corresponding to the peak of the envelope of each return, is given
above the return, and the position of the peak of the return is presented on the bottom scale of
each figure. The amplitude of the first return agrees closely with that predicted by physical or
geometrical optics for the specular return (x\Z o U/’naz =~ 1.0). The peak of the second return
occurs just slightly further than (2 + m)a behind the first return, corresponding to the increase
in the path length traveled. The slight excess in delay is attributed to the fact that the waves
may be considered as having phase and group velocities less than the velocity of light in a
vacuum, or that these creeping waves may be considered as traveling at a small distance out
from the surface of the sphorc.T

These results, and similar results presented by Kennaugh and Moffmtib-mindicatv that the
separation of the backscatter from conducting spheres into optics and creeping wave terms is
not just convenient mathematically, but that these waves may, in some sense, be considered to
exist physically.

Creeping wave returns have also been observed experimentally on static radar ranges with
high resolution. Foreman and Sodivocz6 and Alongi, Kell and Nowton27 have reported observing
the creeping wave return from conducting cone spheres. igure 8 presents the results of some
short pulse measurements carried out on conducting sphvr‘os,x which also show the specular and
the creeping wave returns. Two of the figures, 8(b) and 8(j), show the return from a flat plate
(half-dollar), and Fig. 8(a) shows the background return, for comparison. The pulse length
emploved for these measurements, approximately four nanoseconds, is relatively long in com-
parison with the transit time of the diameters of the spheres measured. Thus, because of inter-
ference effects, the two returns are not as distinctly seen as in the results of the calculations
presented in Figs. 3 through 7. The presence of the two returns is, however, quite apparent.

The results presented thus far, while illustrating the presence of two returns in the back-
scatter from a conducting sphere, do not lend themselves readily to a quantitative comparison

with the results of theoretical creeping wave analysis. Inorder to conduct such a comparison

* The units ore such thot 0/1:02 - AZ.
t See Von de Hulst,4 p- 368.

1 These measurements were corried out on the short pulse rodor ronge of Generol Dynamics (Fort Warth, Texas),
and were obtained with the help of Mr.D. F. Sedivec of M. 1. T. Lincoln Loborotary.
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Fig. 7. Envelope of short pulse response of conducting sphere (1= la, T = 25a, o/)\c = 4).



H H-POLARIZATION { nsec/cm

TARGET MOUNT HALF DOLLAR 2.5-in.*SPHERE
ATTENUATION (db) 20 20 20
(a) (b) (c)

TARGET 3.0-in. SPHERE 4.0-in. SPHERE 4.5-in. SPHERE
ATTENUATION (db) 26 28 28
(d) (e) (f)

TARGET 5.0-in. SPHERE 6.0-in. SPHERE 7.7-in. SPHERE
ATTENUATION (db) 3 32 34

(q) (h) (i)

* DIAMETER

ATTENUATION (db) 20 JEIRIE

(j)

Fig. 8(a-j). Results of experimentol measurements of short pulse scottering of some conducting spheres.



and to obtain a somewhat different view of the phenomena, each return, the specular and the
creeping wave, was separately transformed back to the frequency domain. The short pulse re-
sponse in the time domain was split into two parts, one of which was nonzero during the extent
of the specular return and the other nonzero only during the extent of the creeping wave return.
These two parts were then separately Fourier analyzed, and the resulting Fourier coefficients,
corresponding to a frequency mw , were divided by the corresponding Fourier coefficients a.
[see Eqs. (3) and (4)] originally employed in the short pulse syntheses. The results obtained
are presented in Figs. 9 through 11. These calculations were carried out utilizing double pre-
¢ision arithmetic on the case 7 = a, }‘c = a. Because of various errors inherent in the compu-
tation, the magnitude of the computed results corresponding to the smaller values of a/\ (up to
a/A ~ 0.05) are probably somewhat in error, although it is believed that the shape of the curve
is roughly correct. Various computations, as well as a consideration of the fact that the com-
puted specular and creeping wave returns should combine to give the return obtained by the Mie
series, lead to the estimate that the error is no more than a factor of two.

Figure 9 shows the cross scction (normalized to 1raz) for the specular return obtained from
the short pulse calculations as compared with that predicted by the first two, or three, terms
of 2g.(5). One of the more interesting features of this comparison is the rather close agree-
ment between the computed frequency response and that given by the first two terms of Eq. (5)
for values of a/A approaching 0.1. As Senior12 points out, the agreement is good even when the
sphere presents an area which is less than the first Fresnel zone (a/x = 0.25). Figure 10 pre-
sents a similar comparison between the creeping wave returns as calculated from the short pulse
response, and those given by Eq. (32) of Senior and Goodrich .13 Five terms in each sum of this

equation were retained. Again the comparison is relatively good for a/A as small as 0.1 or so.

1000
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b 3-22-4881
- O O RESULTS OF SHDRT PULSE
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THREE TERMS OF Eq.S)

PREDICTION BASED DN

Fig. 9. Comparison of cross section of specular
TWO TERMS OF Eq(5)

return as found from short pulse response and as
predicted by Eq. (5).

o/ ra®
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A comparison between the phase of the return as computed from the short pulse response and the
approximate theories is presented in Fig. 11. The figure shows the difference between the phase,
in radians, as calculated from the short pulse response, and as predicted by the first two terms
of Eq. (5) for the specular return and Iq. (32) of Senior and Goodrich for the creeping wave return,
A consideration of these results should give considerable confidence to the results of creep-
ing wave theory, and to the usec of these results in studying the scattering from conducting bod-

ies with other than spherical shapos.”’35’36

IV. SOLID DIELECTRIC SPHERES
A. Introduction

The use of the synthetic short pulse in analyzing the backscatter from a solid dielectric
sphere brings to light many interesting features. Because of the penetrability of such a sphere
many different ray bundles, from the geometrical optics point of view, are possible, and inter-
ferences between these bundles lead to relatively complicated relationships between the back-
scatter cross section and the radius of the sphere. A typical plot of the cross section vs a/ A
for a lossless sphere is shown in Fig.12. Several attempts ‘have been made to find approximate
means for predicting the scattering from diclectric spheres,:': and in some instances good re-
sults have been obtained for a range of a/X. 1t will be shown that, at least in some cases, such
attempts have failed to take into account all of the contributions of an appreciable magnitude.
Even though not all of the returns evident in the short pulse response of a dielectric sphere have
been identified and explained, most of the returns of an appreciable magnitude will be discussed

and a tentative identification given.

B. Prediction of the Position of Returns

Relatively simple ray tracing considerations suffice to predict the position of at least a por-
tion of the contributions to the backscatter from a dielectric sphere observed in the short pulse
response. 1n this section such returns will be described briefly, and the optical path lengths for
each predicted return presented. A more complete discussion may be found in the literature,
A different type of return, not predicted by these techniques will also be discussed.

As in the case of the conducting sphere a specular return due to paraxial rays reflected from
the front surface of the sphere is expected. This is known as the front axial return and is labeled
1 in Fig.13. The optical paths of all other returns will be referenced to this front axial return.

A second return is expected from a ray bundle (labeled 2 in Fig. 13) which also propagates
along the axis. This return, known as the rear axial return, is transmitted at the first bound-
ary, reflected at the rear boundary, and again transmitted at the front boundary. It is expected

to appear a distance I behind the front axial return where
P = 4ma (b)

i the optical path lvngthj m is the (real part of the) index of refraction.

* A description of such work is given by Peters, et o_l.,'37 see olso Chop. 12 of Von de Hulst,4 ond Refs. 38-43.

1 The phose of the return, usuolly presented in the literoture, is determined not only by the opticol poth but olso
by ony phose shifts orising either from reflections or from the presence of coustics. As pointed out by Dr. S. L.
Borison, these phose shifts do not offect the position of the return ond connot generolly be observed in the plots
presented of the envelope of the short pulse response. Such phose shifts moy be observed on plots of the inston-
toneous electric field os o function of time, but will not be considered further here. See, for exomple, Von de

Hulst4 Chop. 12.

113

4,37-43
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2 1:FRONT axiaL Ray  Fig. 13. Diagram shawing several passible scattered
Y . . .
2:REAR AXIAL RAY ray bundles from dielectric sphere.
3: GLORY RAY

14



SPHERE

Fig. 14. Geometry employed in prediction of returns.

While the front and rear axial returns, and additional axial returns which have undergone
2r+1, r=1,2,3,..., internal reflections, are expected from any dielectric sphere, there ex-
ists a set of nonaxial returns whose presence or absence depends upon the index of refraction.
Such a return, for example, is the glory ray, labeled 3 in Fig.13. Referring to I'ig.14 a ray
incident at 0 parallel to the axis is refracted at the surface of the sphere, the ray is reflected
at 1, and then again refracted out of the sphere at 2. In general, the angle © shown in Fig. 14
is given by

© = 2 + p(180° — 23) (7)

where p — 1 internal reflections have taken place, and the angles o and B are related by Snell's

law
sina = m sinpg ; 0°<ea, BEK90° 5 (8)

1If © = 360°N, N =1,2,3,..., then the ray will leave the sphere parallel to the axis and contrib-
ute to the backscatter. The optical path length for such rays, found from the geometry, is

P=2{mpcosg+ (1 —-—cosea)la . 9)
2mpa cos B is the optical path Q traversed in the sphere, and the distance 2a{(1 — cosa) is trav-
ersed in free space.

For given values of p and N,"‘ simultaneous solutions for real values of a and B may be
found for only certain ranges of values of m, indicating that the corresponding rays exist only
for these m. For the single bounce glory ray (ray 3 in Fig.13), p= 2 and N = 1, so that from
I2q. (7), with © = 360°, it is found that ¢ = 28. From Eq. (8)

m sinf = sina = sin2B = 2 sinfB cosf

so that

= cosfp

|3

* The geometry of the problem, as well as the forms of Egs. (7) ond (8) requires thot p > 2N.

15



TABLE I

PARAMETERS OF PREDICTED BOUNCE RAYS, m=1.6

a Optical Path 2 2
p (degrees) (degrees) (sphere radii) | 7
2 73.75 36.87 6.56 1% 107! 7% 1072
-4 -9
5 47.75 27.55 14.8 2% 10 7% 10
-7 -9
7 27.55 16.79 21.7 1% 10 2% 10
-7 -16
8 50. 45 28. 80 23.2 8% 10 2% 10
9 19.75 12.19 28.2 2x10°% | 2x10M
10 36.10 21,61 30. 1 s | g1
11 51.35 29.21 31.5 3% 1077 4x 1072
4 17
12 69.30 35.78 32.4 2% 10 3% 10
N 15, 45 9.59 34.9 s | e ™
-3 =ifd
12 28. 55 17.38 36.8 3% 10 1% 10
13 40.35 23.87 38.5 L A T
14 23.70 14. 55 43.5 4x10° "0 1% 10718
15 33.60 20.24 45. 4 e 5% 10722
16 42.90 25.18 46.9 2x 10”12 2% 10728
17 52.10 29.53 48.1 sx 0" 4 <1970
18 61.85 33.43 49.1 Fx 10712 <0
19 74. 80 37.09 50.0 4x 10~ wieTe
15 10.75 6.72 47.5 2% 10718 e g7
16 20.30 12,52 50. 1 7%x10°"7 | 5%107?
i#2 28.90 17.58 52.1 ex10° " | sx107%
18 36.90 20.05 53.8 1x10°'8 | gx10728
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Since cos <1 we find m £ 2. Also, since

a =283 £ 90°

B < 45°

%>/cos45° :g
thus,

m 2N2

Thus for a ray with p = 2, N = 1, the index of refraction must lie in the interval N2 to 2. Similar
reasoning leads to the result that for p = 3, N = 1,* m must lie in the range 0 to 2/N3.

In order to determine which rays could exist for the cases to be discussed below (m = 1.6
and 2.5), Egs.(7) and (8) were programmed for, and solved on, a digital computer. The results
for all ray bundles whose bptical path is less than 50 sphere radii are presented in Tables II and

¥

I1I, where o' and B8 are the angles defined in Fig. 14, the optical path is computed from Liq. (9),

21

and €, and €, are the power reflection coefficients. The divergence which will be mentioned

1
later is not included.
. 37 . ; ;
According to Peters,” ' stationary rays which also contribute to the backscatter, are pos-

sible and should be considered. That is, a bundle of rays for which, from Eq.(7)

doe
-l e

and © is close to 360°N, N =1,2,3,..., or ©' = ©(mod 360°) ~ 0°, may also contribute to the
backscatter. Ilquations (7), (8) and (10) imply that

Sine _ cosa _
sinf3 = Y cosfB

(11)

This equation was programmed for a digital computer, and the results for m = 1.6 and 2.5 are
listed in Tables IV and V.

The ray bundles listed in Tables II through V are those which previously have received pri-
mary consideration when approximate models for the backscatter from dielectric spheres have
becn developed. It will be shown later that, at least for the cases considered, these ray bundles
do not account for all of the returns observed and some of these unaccounted returns have ap-
preciable amplitude. One possible explanation for these returns is presented below.

In his discussion of the obsvorved ripples of the computed oxtinction§ curve for various di-
electric spheres, Vande llulst‘l" observes that the present theories, based on ray tracing, do
not appear to explain the periodicity of these ripples. e then puts forward a tentative explana-
tion based on surface waves. Because some of the returns observed in the short pulse analysis
appear to fit well with this idea, and do not appear to agree with standard ray tracing results, a

short discussion is presented below.

* This roy bundle is sometimes olso colled a glory ray.
1 The angle a is presented to the closest 0.05 degree.

1 The subscript 1 refers ta parollel or E-plone polarization ond the subscript 2 refers ta perpendiculor or H-plane
polarizatian.

§ The extinction of o body os defined by Van de Holst* (p. 3) is a meosure of the tatal energy removed from the
incident beom by scottering as well as by obsarption.

Reference 4, p.375.
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TABLE [l
PARAMETERS OF PREDICTED BOUNCE RAYS, m=2.5

a B Optical Path 2 2
p (degrees) (degrees) (sphere radii) & )
9 38.85 14. 20 44,0 1% 107 3% 1078
1 27.65 10. 70 54.2 1% 1077 4%1077
12 58.00 19. 83 57.4 2% 107 110717
13 22.00 8. 61 64. 4 4x10”7 2% 1071
TABLE IV
PARAMETERS OF PREDICTED STATIONARY RAYS, m=1.6
a B Optical Path 6 '
P (degrees) (degrees) (sphere radii) (degrees) (degrees)
2 43.90 25.68 6.17 345.07 —14,93
) 63.79 34.11 462. 94 102. 94
4 71.20 36.27 572.20 —147.80
5 70.525 87 NI 13. 66 678. 64 —41.36
6 77.80 37.65 783.76 63.76
7 79.60 37.93 888.15 168. 15
8 80.95 38. 11 992.09 —-87.91
] 8il-i95 38.23 24. 61 1095. 73 15.73
10 82. 80 38.32 1199.17 1 i3 74
11 83.45 38.38 1302. 47 —137.53
12 84,05 38.43 31.33 1405, 65 —34.35
13 84.45 38. 46 1508. 75 68.75
14 84.85 38. 50 1611.78 171.78
[ 85.20 38.52 1714, 76 —85.24
16 85.50 38. 54 42.20 1817. 69 17. 69
17 85.80 38. 56 1920. 59 120. 59
18 86.00 38.57 2023. 46 —136.54
19 86.20 38.58 48. 85 2126. 31 -33.69
20 86. 40 39.59 2229.13 69.13
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TABLE V
PARAMETERS OF PREDICTED STATIONARY RAYS, m=2.5
o B Optical Poth ] '
P (degrees) (degrees) (sphere radii) (degrees) (degrees)
3 85..90 13. 56 530. 41 170. 41
4 53.75 18. 82 19.36 676.95 —43.05
5 62.10 20.70 817.18 97.18
6 67.20 21.64 954.74 -125.26
7 70.70 22.18 33.94 1090. 88 10. 88
8 73.20 152 1226.16 146. 16
9 75.15 22.75 42.25 1360. 88 -79.12
10 76.70 22.91 48.50 1495. 22 55,22
11 VRS 23.108 1627.28 =172.72
12 78.95 23.12 56.25 1763.13 -36.87
13 79.80 23.18 1896. 83 96.83
14 80.55 23.24 2030. 40 -129.60
15 81.20 23.28 70. 65 2163. 87 3.87

I'rom geometrical optics it is well-known that if a ray passcs from a dense to a rarve medium,
the angle of incidence a being smaller than the critical angle of total internal reflection a o Some
of the energy will be transmitted to the rarer medium, and some will be reflected as shown in
ig. 15(a). If, however, «a 1s greater than o c then total internal reflection will take place as
shown in IFig. 15(b). 1If the angle of incidence @ is equal to the critical angle @ [sce Fig. 15(¢))
then some encrgy will be refracted with 3 = 90° i.e., this cnergy will travel along the surface
as a type of surface wave. After traveling along the surface some distance, part of the energy
may again enter the denser medium,

In Fig. 16 a ray strikes the sphere at grazing incidence and begins to circumnavigate the
sphere. At the point A, for example, it may enter the sphere at the critical angle, leaving again
at the point B. A similar situation may occur at A' and B3' and, indeed, along the entire path of

the ray. The optical path through the sphere is m - AB. From Fig. 16

siny sin(‘)O—n(.) = cos @,

t/2 A3

a
¢

and since, from Snell's law

* The intensity of this ray bundle is zero occording to the Fresnel formula; however, o more detailed examinotion
indicates that it may have an apprecioble magnitude. There was a cansideroble discussion of this type of wave
in the Annolen der Physik in the period from 1947 to 1955. See, for example, Refs. 44-4%9 which include exper-
imental as well as theoretical results.
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RARE lﬁ/ \B = 90°

DENSE
= a|a a, |a, a, a,
a<

a
a, a>a, a:=a,
{a) (b} (ci)

Fig. 15. Diagrom of surfoce wave obtoined when ongle af incidence equals critical angle a .

SPHERE

Fig. 16. Geometry far colculatian af optical path
of surface wave.

the optical path becomes

2a

m - AR =

tan : (13)
e
Also, from Fig.16

1/2 AB
>.pp - — Y2AB
Al 13t cos (90 — (y(‘)

AB

R CH R R
sine

From Eq. (12)
AB = 2a cos @
Thus

2R

BB = aee—a=
tan 23

m - AB . (14)

The increase in the optical path due to taking a "short cut" through the sphere rather than stay-

ing on the surface is thus

ha

2a
; ) 15
lzma( - e L
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As the wave travels around the sphere it will take M "short cuts," each time increasing the op-
tical path length by the amount ha. The full optical path around the body, and the delay with re-

spect to the front axial return, which might be expected on a plot of the short pulse return, is
P={2+(2N-1)7+ Mhla . (16)

Van de Flulst states that the number of short cuts taken will probably be close to the maxi-
mum number possible, Mnmx’ which is the largest integer smaller than (2N — 1) n/Zac. Such
a return appears to have many features in common with the creeping wave return from a con-
ducting sphere described earlier. A return of this type is, in fact, obtained in the creeping wave
analysis of a dielectrie cylinder reported by Beckmann and Franz.50 Figure 13 of Reick51 viv-
idly shows the presence of this type of surface wave for a dielectric cylinder. Tables VI and
VIl present optical paths, as given by Eq. (16), for the returns expected for m = 1.6 and 2.5,

respectively.

C. Short Pulse Analysis

Having summarized the returns which might be expected, we shall proceed to analyze the
short pulse response of a dielectric sphere. From the foregoing it is evident that many returns
might be expected, some with very long path lengths, or delays, with respect to the first, front
axial, return. Because a Fourier series representation is employed in this analysis, returns

with tong delays will appear "folded over" and it becomes difficult, if not impossible, to identify

TABLE VI
PARAMETERS OF PREDICTED SURFACE WAVES, m= 1.6
a = 51.4°, h =0.7067

Optical Path

N M (sphere radii)
1 1 5.85
0 5. 14
2 5 14.96
4 14,25
3 13. 54
8 8 23.36
7 22.65
6 21.95
4 12 32. 47
11 31.76
10 30.35
5 15 40. 87
14 40. 18
13 39.46
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TABLE VII
PARAMETERS OF PREDICTED SURFACE WAVES, m=2.5

C % 66.4°, h =2, 264

Optical Path

N M (sphere radii)
1 1 7.41
0 5.14
2 4 20.48
3 18.22
2 15. 95
3 6 3029
5 29.03
4 26.76
3 24.50
4 9 44.37
3 42.10
7 39.84
6 37.58
5 12 57.44
' 1 55.18
10 52.91
) 50. 65
8 48.39
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the returns. IFor this reason a small absorption coefficient, «, was employed, i.e., the index

of refraction n was taken to be complex

n=m+ix
This does not alter the previous analysis to any appreciable extent except that the magnitude of
each return is reduced approximately by the factor I©

F = exp [——"3""‘ -Q-]T (17)

A m
[

where Q is that portion of the optical path P traversed in the sphere itself. This attenuates
those returns with the longer path lengths, eliminating most of the "folded over," or aliased,
returns. The value of x utilized was 0.01. Figures 17 and 18 present plots of the normalized
backscatter cross section (r_"rraz vs a/A for solid dielectric spheres withn = 1.6 + 1 0.01 and
n=2.5+10.01, respectively.

Some typical results of the short pulse calculations showing the scattered electric field, at
a large distance from the scatterer, from a plane wave incident on a dielectric sphere with
n = 2.5+ 1i0.01, are presented in FFigs. 19 through 23. As before, the position of the principle
returns observed in Figs. 20 through 23 relative to the peak of the front axial return, is given
on the bottom scale of the figures, and the normalized amplitude A above the curve ¥ 1n
Table V11l the principal returns observed in Figs. 20 through 23 are identified, primarily on the
basis of their position, and compared with the returns predicted in Tables 11, V and VII. It may
be seen that in general the agreement is good, particularly for those returns having an appreciable
magnitude. The presence of the surface waves also appears to be relatively well established.
The difference between the observed and predicted positions of these returns may, as in the
case of conducting spheres considered earlier, be due to the phase, or group, velocity of these
waves being less than the speed of light in vacuum. The identification of the returns attributed
to statronary rays is quite tentative.

It is believed that at least a part of those returns which are not identified in Table V1I1 are

§

"folded over"® and actually occur at distances greater than 49.5a from the peak of the front
axial return. or example, the unidentified return at 28.25a (a_.-')\(‘ = 2.0) may perhaps be iden-
tified as the folded-over (I = 70.75a) return of the stationary ray (p = 15) predicted at 70.65a.
The question of fold-over could be settled either by emploving a larger absorption coefficient
or by increasing the distance between ambiguities T. 'The latter would require the calculation
of the amptlitude and phase of the CW scattering with increments smaller than 0.01 in a/A.

The identification of some of the returns is also made difficult by the limited resolution
due to choosing 7 = 0.5a for this calculation. Increasing the resolution by narrowing the pulse
width does not always clear up the picture. As the bandwidth increases other complications

arise due primarily to the truncation of the series in Fq. (4) at a/A = 8, corresponding to 800 terms.

* This wos in foct faund to be the case for camputotions corried aut with n = 1.60 +i0.0.

1 Each term, carrespanding to the frequency nug, in the Fourier series is ottenvoted by the foctor exp [(—= 2mx/N) X
(Q/m)]. The form given in Eq.(17) should give reasonable results provided the bandwidtnh is not too large. In
particular, wovelengths longer than A_ are ottenuated less ond wavelengths shorter than A, are attenuated mare
than given by Eq.(17).

i The units are such that a,/ma2 = A2

§A "folded over" return, in the first ambiguity, with a true optical path P will appear on these plots at the
position P* = 2T - 27— P.
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Fig. 17. Backscatter cross section of lossy dielectric sphere with n=1.6 +i0.01.
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Fig. 18. Backscatter cross section of lossy dielectric sphere with n=2.5+i0.01,
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TABLE VIII

* Due ta the calculatianal increment, the resalutian here is 0.025.

COMPARISON OF THE POSITION OF THE PREDICTED AND OBSERVED RETURNS, m= 2.5
Pasitian of Observed Return (relative ta peak
af frant axial return)
ey _(sphere radii)®
o )\c i & )\c i o )\c i o/ )\c =4 Identification P;Z:Itci;id
0.0 0.0 0.0 0.0 front axial 0.0
) 5..35 surface wave N =1, M=0(?) 5.14
o) 7.45 7.45 7.45 surface wave N =1, M = 1 7.41
i ot 9.975 10. 00 10.00 rear axial 10.00
{2 45) 18.45 18.35 18.325 surface wave N =2, M= 3 18.22
not axiol ray
resal vable 19.925 (3 internal reflections) 20.00
20.45 201, 525 20. 525 20.50 surface wave N =2, M= 4 20. 48
22.475 22.55
29.40 surface wave N =3, M= 5 29.03
29,775 29.7Z5
305775 31.60 N 475 31.425 surface wave N= 3, M= 6 329
33.65 331625 33.60 88,575 statianary ray p = 7 (?) 33.9
89111285 39425
42.575 42.625
43.10 43.125 baunce ray
45.10 44.775 surface ray N= 4, M= 9 44.37
46.725 46.70
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Similar results of short pulse calculations for n = 1.6 + 10.01 are presented in IFigs. 24 through
28, and a comparison between the position of the observed and predicted returns is given in Table
INX. Again it appears that the predictions agree fairly well with the calculated results; however
the lack of better resolution makes it impossible to see all the predicted returns clearly, and may
also, due to interferences between returns occurring close together, shift the apparent positions
of the maxima.:z In particular, the rear axial ray and glory ray returns cannot be resolved. The
parameters for the calculations presented in Figs. 27 and 28 were the same except for the pulse
width., With the slightly increased resolution of Fig. 28 the presence of a second return, believed
to be the rear axial return, may be inferred on the leading edge of the largest response, which is
probably the glory ray return.

Iigure 29 shows the results of some attempts to increase the resolution by decreasing the
pulse width, and in Fig. 29(c) the glory ray and the rear axial return can be resolved. These two
returns occur at the predicted positions, viz., 6.40a for the rear axial ray and 6.56a for the glory
r'a.v.Jr Figure 29 also illustrates some of the drawbacks of the present short pulse synthesis. For
the present analysis computed CW scattered amplitudes and phases were available for a/A ranging
Irom 0.01 to 8.00, in increments of 0.01. As the pulse length is shortened the bandwidth is in-
creased and data for larger values of a/A are necessary in order to faithfully present the response.
In addition, increasing the bandwidth gives more weight to contributions from relatively long wave-
lengths.  These contributions Yor small values of a/A are, however, less attenuated for longer op-

i

tical paths and may appear folded-over on these plots.

D. Comparison of Predicted and Observed Amplitudes

The amplitude of those rav bundles predicted by geometrical optics, i.e., the returns con-
, ; ’ : 3 . 4
sidered earlier with the exception ol the surface waves, is generally of the form

A §

1 —
2‘((1+ 6Z)Nl)

1xe

(1 — R e 8

rZ Y (-r
1.2 4 52
: b
where ry and r, are the IFresnel reflection coefficients, and D is the divergence.” The quanti-
ties ¢ and ¢, are presented in Tables 11 and 111. The divergence D takes into account various
[

focusing and defocusing effects.

The problem of predicting the amplitudes of the returns is thus primarily that of predicting
the divergence or spatial attenuation factor. In the literature this has generally been carried

: . ’ . BI7=#3. . ‘

out for only a few of the returns by means of geometrical or physical optics. Sometimes
corrections, based on various other considerations, arc also included. Occasionally one obtains

the impression that these methods do not lead to a straightforward method for obtaining this factor,

* This is evident, for exomple, in the results of the measurements presented in Fig. 3.

1 Far tnhese figures the resolutian due to the calculational increments is 0.01a.
t See foatnate far £q. (17) on p. 23.

§ The subscript 1 refers to parallel ar E-plane polarizotion ond the subscript 2 refers ta perpendicular or H-plane
palarizatian.

37,52

A quantity related ta VD is sometimes called the spatial attenuatian factar.
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Fig. 29(a-c). Envelope of first part of shart pulse respanse of dielectric sphere, n= 1.6 +i0.0t,
with increasing resolution (T = 50a, o/)xc = 4.,0).



and thus a feeling that the techniques are not as satisfactory as would be desired is obtained.
The situation does not appear to be clear, and requires further work.

Utilizing the same general techniques as in his work on the (‘ylindvr‘,r’}'54 }\‘odis,':' in some
as yet unpublished work, has obtained formulae for the amplitudes of all of the axial and bounce
opties rays scattered by a dielectric sphere. This work employs asymptotic, stationary phase,
evaluations of the Mie series. The amplitudes obtained by Kodis for the front axial, rear axial
and glory rays agree with the formulae presented by Atlas and Glovor‘,43 which are based in part

39,98 and others. In the case of the glory ray there is, however, some

on the work of Thomas
difference in the phase of the return. Figure 30 presents the amplitude of the rear axial and

glory ray returns as predicted by Atlas and Glover.t

2

GLORY RAY n =16 + i0.01

REAR AXIAL RAY n=25 +i001

AMPLITUDE

REAR AXIAL RAY n=16+i0.01

43
Fig. 30. Amplitude af rear axial and glary ray returns as predicted by Atlas and Glaver.

In order to obtain some indication of the agreement between the predicted amplitudes and
those observed from the short pulse response, some calculations were carried out in which a
short pulse was synthesized using the predicted amplitudes and phases presented by Atlas and
Glover, rather than those obtained from the Mie series. Only the front axial, rear axial and

glory ray returns were constdered. A typical result for n = 2.5 +10.01 is presented in Fig. 31,

* Persanal cammunicatian.

t The amplitudes, taken fram Table | of Ref. 43, are:

Frant axial A=(m-=1)/m+1) g
Rear axial A=![4m(m = 1)/(m + ])3] [m/A2 —m)]| s
Glary A=1.5Vn/2| m2(m2 —4)(m2 - 2)3/2/(m2 - ])3| \ge'meO

where a = 2ma/\.
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Fig. 31(a,b). Envelape of shart pulse respanse, n=2.5+i0.01, using amplitudes
and phases predicted by Atlas and Glaver (1= 0.5a, T = 50q).

and for n = 1.6 + 10.01 in Fig.32. As before, the rear axial ray and the glory ray are not resolv-
able for m = 1.6, however the return due to the rear axial ray is also indicated. These figures
may be compared with Figs. 20 through 28. A comparison of the peaks of the returns observed
using the optics predictions and the Mie series calculations is given in Table X. The param-
eters 7, T, and the truncation point of the series are the same for both cases. In order
to obtain the amplitude of the rear axial ray for n = 1.6 + 10.01, a series of calculations using
the optics predictions was carried out in which the glory ray return was not included.

Except for the glory ray return, the agreement does not appear to be bad, particularly when
it is remembered that the optics amplitudes were employed even for small values of a/A. At
present the cause for the discrepancy in the case of the glory ray is not apparent. 1t appears

that further work is required in this area.

V. DIELECTRIC COATED CONDUCTING SPHERES

Figures 33 and 34 present the CW backscatter cross section vs a/A for conducting spheres
with relatively thin dielectric coatings. In these figures 6 is the fractional thickness of the
coating, i.e., ad is the thickness of the coating and a(1 — 8) is the radius of the conducting core,
where a is the outer radius of the composite sphere. A comparison with I'ig. 1" indicates that

the presence of such a thin coating changes the character of the curve considerably. Figures 33

* Nate that the ardinate scale af Fig. 1 is linear, while that of Figs. 33 and 34 is lagarithmic.
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Fig. 32(a,b). Envelope of short pulse response, n= 1.6 +i0.01, using amplitudes and phases
predicted by Atlas and Glover (1 =0.5a, T = 50q).
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TABLE X

COMPARISON BETWEEN THE PEAK AMPLITUDES A* OBTAINED USING EITHER OPTICS
PREDICTIONS OR MIE SERIES CALCULATIONS AS THE INPUT FOR THE
SHORT PULSE CALCULATIONS

Frant Axial Ray Rear Axial Ray Glary Ray
c’/)\cT Optics Mie Series Optics Mie Series Optics Mie Series
n=1.6+i0.01
1.0 0.231 0.219 0. 678 1.20 1.50
2.0 0.231 0.231 0.537 1.82 1.67
3.0 0.231 0.231 0.417 1.95 1.20
t
4,0 1=0.5 0.231 0.319 0.325 o8 1.78 0.749
resalvable
1=0.250 0.232 0.232 0.342 0.882
1=0.20a 0.231 0.230 0.354 0. 888
T=0. 150 0.226 0.222 0. 364 ~0.461 1.47 0.886
n=25+i0.01
1.0 0.429 0. 409 1.36 1.12
2.0 0.429 0.430 1.08 1.30 The glary ray
daes nat exist
3.0 0.429 0.429 0.835 0.821 farm=2.5
4,0 0.429 0.428 0.650 0.644

* The units are such that o /ma2 = A2,

T Unless atherwise nated, 7= 0. 5a.

42




-22-6805

M | l‘y . JIW M

=—

r‘\;'“ I ey ‘w

—1
J—

10 Icq,o(a/'naz )

CALCULATIONAL INCREMENT IS5 002 IN a/)

TE lru TE,
I 1
-20 - A

20 a0 60 8.0 10.0
a/ X\

Fig. 33. Backscatter crass sectian of dielectric caated canducting sphere, m = 1,6, & =0.05.

il I q
kA ﬂ'ﬂ

o(a/waz}
- )
————

10 log,

|
CALCULATIONAL INCREMENT IS 0.02 IN a/A
TE,

TE, ™, Lraz lm‘
-0 —

20 an &0 80 100
a/X

Fig. 34. Backscatter crass sectian af dielectric caated canducting sphere, m = 1.6, & = 0. 10.

43



and 34, together with other similar data, have been published pr‘vviously.r)s" At that time a com-

parison was made with a creeping wave analysis by IIolstrom,57~59

and an attempt was made to
explain the basic features of these figures in terms of creeping waves.

Heuristically, the model for scattering from a conducting sphere with a thin dieltectric coat-
ing is that, as in the case of the conducting sphere, there exists a specular return and a creep-
ing wave return. The specular return is effectively the same in each case except that for the
coated sphere interference effects may arise due to rays reflected at the free-space dielectric
interface and the dielectric conductor interface. Creeping waves are also launched which cir-
cumnavigate the sphere one or more times. On conducting spheres, because of the attenuation
due to radiation, generally only the first creeping wave, that which has completed a half rev-
olution around the sphere, has an appreciable magnitude and even this becomes negligible for
a/x > 1. Under some conditions for coated spheres the situation is similar; it is different, how-

ever, when the condition

£ =1 ‘I‘El mode

26(a/A) (m - )2 3 £ w4,2,3 ... (18)
L —1/2 TM, mode

obtains. The creeping waves of the given mode are then propagated with decreasing attenuation.
The triangles along the axis of abscissas of 1"igs. 33 and 34 indicate when the equality of kq. (18)
is satisfied, and at these points the "bursts" of oscillations begin to become apparent. The ap-
parent end of each "burst" as seen in the figures is, however, misleading since it is due to the
size of the increment in a/A (0.02) with which these curves were computed. It is believed that
the resonances continue with increasing a/A, but that they are not apparent because of the mon-
otonically increasing Q (i.e., decreasing width) of the resonances. Even carrying out calcuta-
tions with much smaller increments in a/A may not be sufficient to obtain a smooth curve which
shows all of the fine str‘uct_ur‘e.T

When the conditions of lq. (18) are satisfied, the form of the equation for the backscattered
amplitude of the creeping wave contribution, as derived by Helstrom, is quite similar to the
form which obtains when waves are trapped in a dielectric coating on a plane perfectly conduct-
ing surface. Rays may be considered as propagating by repeated reflections at the dielectric-
free space and dielectric-conductor interfaces. The reflection coefficient at the latter interface
is unity and when the equality in Eq. (18) is satisfied the reflection coefficient at the dielectric-
free space interface is also unity, i.e., the angle of incidence is the critical angle for total in-
ternal reflection a.. These waves do not appear, however, to have the same character as the
surface waves observed on dielectric spheres. When 1:q. (18) is satisfied but moves away from
the equality the angle of incidence a becomes larger than a o S0 that surface waves of the char-
acter considered earlier do not appear possible, unless the coating is considerably thicker.

Typical examples of the short pulse response of a coated sphere are shown in ['igs. 35I '
through 37. Here the reference is taken to be the front surface of the composite sphere. The
specular return has its peak response roughly at the distance 2méa, corresponding to reflection
from the conducting core. 1n addition, the presence of several creeping wave returns, corre-

sponding to pulses which have circumnavigated the sphere one or more times, are indicated.

* Reference 56 presents similor doto for conducting spheres with o thin lossy dielectric cooting.
+ This is demonstroted in Figs. 8 through 10 of Ref. 55.

1 Other examples ore shown in Ref. 60.
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Because the increment in a/A (0.01) at which the Mie series calculations were carried out for
these figures is not sufficiently small to sample all the fine structure of the return, the results
obtained by increasing the resolution, i.e., the bandwidth, or decreasing the carrier wavelength,
become less meaningful, as shown in Fig. 38. However, the presence of a series of creeping
waves is still apparent.

While no quantitative comparison has been carried out here, these examples of the short
pulse response of a coated sphere are consistent with the creeping wave model briefly described
above. As the thickness of the coating is increased, the number of expected returns increases
very quickly. Not only are returns of the type seen in Figs. 34 and 35 expected, but also vari-

37,40,53

ous optics returns, and surface wave returns of the type described in Sec.IV on die-

lectric spheres.

VI. CONCLUSION

In this report the backscatter from spheres in the time domain has been considered. It is
hoped that this survey of an old problem from a viewpoint different from previous approaches
will be of value in improving our knowledge of the phenomena involved. Although the sphere it-
self is only of limited interest it is believed that an examination of the short pulse response may
aid in the development and application of various approximate models to scatterers of interest
for which rigorous solutions are not available.

The results presented indicate the backscatter from conducting spheres is well understood,
and that our knowledge of the phenomena involved is good. The model in which the backscatter
consists primarily of two returns, viz., the specular and the creeping wave returns, appears to
be well substantiated both qualitatively and quantitatively. The short pulse results also show
that the model is valid for smaller values of a/\ than was previously supposed.

The backscatter from dielectric spheres does not appear to be as well understood. The re-~
sults of the short pulse study indicate the presence of the optics returns predicted by simple ray
tracing arguments; however there appears to be a discrepancy between the predicted amplitude
and that observed in the short pulse response for one of the returns, viz., the glory ray. The
short pulse response also indicated the presence of a series of returns not predicted by geomet-
rical opties. It is believed that these returns are due to surface waves which may take short
cuts through the sphere, entering and leaving the sphere at the critical angle of internal reflec-
tion. It appears that further study is necessary to improve our understanding not only of these
surface waves, but of the optics rays as well.

The scattering from conducting spheres with a relatively thin dielectric coating appears to
be only qualitatively understood. The presence of a specular return and a series of creeping

wave returns seems to be verified; however, at present few quantitative statements can be made.
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