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ABSTRACT 

The backscatter from conducting and dielectric spheres, and to a lesser extent 

from conducting spheres with a relatively thin dielectric coating, is considered 

in the time domain. Utilizing rigorously computed values of the amplitude and 

phase of the continuous wave backscatter, short pulses of electromagnetic waves 

are synthesized by Fourier series. The resultant returns are examined as a func- 

tion of time, and the individual returns compared with some approximate theories. 
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BACKSCATTER  FROM SPHERES: A SHORT PULSE VIEW 

I.      INTRODUCTION 

The   problem  of the   scattering  of electromagnetic  waves   from   a  sphere   has   recen 

considerable attention due to a large extent to the fact that the rigorous solution has been known 

for a long time*    The rigorous solution,   known as the Mie series,   allows numerical results to 

be obtained to a high degree of accuracy.    It has,  however,  various drawbacks which have led 

to the development of numerous approximate or asymptotic solutions.    Probably the main failing 

of the rigorous solution is that it does not readily allow construction of a physical model of the 

phenomena involved.    Such a model would be useful for studying the scattering from spheres with 

parameters different from those for which computations are available,  and could lead to an under- 

standing of electromagnetic scattering from other than spherical shapes.    In addition,   the con- 

vergence of the series is relatively slow,   so that even with the utilization of high speed digital 

computers the cases which have been considered are limited. 
4 

The various approximate techniques —which include geometrical optics,   the 1'iesnel-Kirchhoff 

theory of diffraction,    Keller's geometrical theory of diffraction, '    creeping wave theory, '    and 
9 10 

link theory   '      — are not limited to the sphere.    A study of the sphere,   however,   provide 

good check of these theories and models and often indicates how they may be modified or com- 
11  12 bined to handle the specific case under consideration.    '    '   Backscatter from a conducting sphere 

13 now appears to be well understood       and,   as will be shown,   the application of physical opti 

and creeping wave theory leads to results in good agreement with the rigorous solution.    Such is 

not the case,  however,  with the dielectric sphere,  where the approximate techniques often have 

only limited success. 

Generally any comparison between the rigorous results and the various models which 

been developed is carried out in the frequency domain;   in this report the scattering from con- 

ducting,  dielectric,   and,  to a lesser extent,  from dielectric coated conducting spheres,   is ex- 

amined in the time domain.    A consideration of the time domain has achieved considerable suc- 

cess in many areas and,   as will be shown,   appears to lead to an improved understanding of the 

scattering from spheres.    Utilizing the Mie series,  values for the amplitude and phase of the 

scattered electric field for continuous waves are computed.    By means of Fourier series,   the 

response,  as a function of time,  to an incident impulse or pulse comparable in extent to the size 

of the sphere (short pulse) is synthesized.    In this report,   however,   only the short pulse response 

will be considered. 

* See Logan    for a fascinating account of the history of this problem.    Reference 2 lists much of the recent work. 
3 

t Generally the number of terms required is slightly greater than 1 .2ka, where k = 2TT/X and a   is the sphere radius. 



The resultant scattering from most objects may generally be considered to be due to various 

components;  however,   in the frequency domain it is often difficult to separate or  distinguish 

these.    Different components have often traveled different optical paths and are then distinguish- 

able in the time domain.    The dispersion of the components is generally small enough so that 

appreciable spreading of the pulse does not occur.    By these methods the presence of the various 

components is vividly illustrated and further insight into the scattering is obtained.    Kor con- 

ducting spheres,  for example,  the validity of the decomposition into optics and creeping wave 

components is demonstrated and it is shown that this decomposition is valid to quite lar 

lengths.    It will also be shown that some of the returns,   of an appreciable magnitude,   from di- 

electric spheres,  which have generally not been considered previously,   appear to have the char- 

acter of creeping waves. 

The scattering of short pulses,  or impulses,  of electromagnetic v means of Fourier 
I 1-20 (or Laplace) transforms has been considered previously by Kennaugh and his co-workers. 

Their primary aim was to approximate the impulse response for targets that were not spherical, 

thereby obtaining an estimate of the CW scattering.    A limited number of theoretical studies 

and some experimental results have also been reported in the Literature. 

II.     SHORT PULSE SYNTHESIS 

The plane polarized electric field incident upon the scatterer is taken to be 

Ex(t) = 

e(t) cos U>   t       —T •$ t ^ T 

(1) 
T   <   Itl    < T 

e 2T is the incident pulse length,   w    is the carrier angular frequency,   and,   in this report, 

the envelope e(t) is 

e(t) = 0.5 [1 + cos (Trt/r)] . (2) 

A pulse train of period 2T is obtained by expanding Eq.(l) in a Fourier series 

E*(t) = -?  +     I    am cos(mu'ot) (3) 

m= 1 

where 

IT 
uo = T      • 

In Eq. (3) use is made of the fact that El(t),   as given by Eqs. (1) and (2),   is an even function.    The 

fficient a      of each term in Eq. (3) is the weighting coefficient of the corresponding frequen. 

moi    in the spectrum of E1(t),  determined by the values of u.   ,   T and T desired.     I 
o 31 c 

may be found by standard Fourier techniques. 

The (complex) electric field scattered at a large distance by a target is then given by 

i(p(mo;   ) 
ES(t) = K      i   A(mu,o) e °   am cos (mo^t) (4) 

m = l 



where A(m^o) and c/>(nwo) are the amplitude'   and phase of the CW scattered electric field at the 
angular frequency mu Q and K is a constant,  depending on the range to the target.    Equation (4) 

was programmed for a digital computer to calculate Es(t) when A(mu)   ),   (p(mu>   ),  T,  ui   , 
and T  were input. 

Plotting the real,   or imaginary,   part of (4) as a function of time presents a picture of the 

instantaneous electric field as a function of time.    Plotting the modulus of (4) presents the en- 

velope of the scattered electric field.    In this report time is measured in terms of the free space 
transmit time of a sphere radius. 

For the results presented in this report the required amplitudes and phases were numerically 

computed on a digital computer by the Mie series.    The accuracy of the short pulse calculations 
is determined by the increment in a/x at which the rigorous calculations are carried out,   the 

point at which the series in Eq. (4) is truncated,   and the accuracy of the Mie series calculations. 
It is necessary that the increment in the calculations be small enough to give a reasonably smooth 
representation of the CW backscatter cross section as a function of a/x.    For the purposes of 
this report the Mie series calculations were carried out for increments of 0.01 in a/x.    Plots of 
the CW backscatter cross section were made to give an indication of the effect of this sampling. 
Except for the case of dielectric coated conducting spheres,   it is believed that this increment is 

small enough to give a reasonably accurate representation of the short pulse response.    In fact 
the reason for choosing an increment this small was primarily to obtain a reasonably large value 
of T  in order to obtain a relatively large unambiguous (nonaliased or "nonfolded-over") response 
in the time domain.    An increment of 0.01 in a/x implies an unambiguous range of 50 sphere radii. 
Generally 800 terms were retained in the series given by Eq. (4).    This is usually sufficient to 

give reasonable results for the present purpose for pulse widths of one sphere radius or larger 

and for values of the carrier wavelength X    less than or equal to four sphere radii. 
The programs utilized for the Mie series calculations are modifications of the program de- 

scribed in Ref. 3.    The most critical part of the calculation is the evaluation of the required 
Bessel and Neumann functions.    The program contains built in checking procedures,  which are 
independent of the calculation algorithms to insure that sufficient accuracy in these functions as 

well as in other parts of the calculation is retained to give at least five significant figures in the 
result.    The programs have also been extensively compared with hand calculations as well as 

various published data. 

' The convention employed here relates the amplitude and phase to the backscatter cross section <r (mu   ) by 

a (mu   ) 
o 

A(mu   ) e 
i<p(mu   ) 

The phase angle </>(mu0) is as defined on page 286 of Van de Hülst,   except that the phase reference is shifted a 
distance T in front of the sphere. 

f Of the literature checked the only serious discrepancy noted was in the calculations for a complex index of 
refraction given in Ref. 32.    A considerable number of digital computer as well as hand calculations, utilizing 
different algorithms,  have led to the conclusion that the published data are in error.    In some cases the error is 
as much as a factor of two. 



TABLE  1 

POSITION OF  THE MAXIMA AND MINIMA OF  THE  NORMALIZED  BACKSCATTER 
FROM A CONDUCTING SPHERE 

Position of 
Maxima 

(aA) Differences 
Cross Section 

(a/•2) 

Position of 
Minima 

(a/X) Differences 
Cross Section 

(a/wa2) 

0.1636 

0. 1981 

3.65495 0.2775 

0.1932 

0.285041 

0.3717 

0.1942 

1.96958 0. 4707 

0.1919 

0.505600 

0.5659 

0.1919 

1.58864 0. 6626 

0.1917 

0.634592 

0. 7578 

0. 1917 

1.41048 0. 8543 

0. 1915 

0.716232 

0.9495 

0.1918 

1.30698 1.0458 

0.1916 

0. 772456 

1. 1413 

0.1918 

1.24023 1.2374 

0.1918 

0.813423 

1.3331 

0. 1918 

1. 19398 1.4292 

0.1916 

0. 844286 

1.5249 

0.1920 

1. 16016 1.6210 

0.1920 

0.868137 

1.7169 

0. 1920 

1. 13451 1.8130 

0.1921 

0.887011 

1.9089 

0.1922 

1. 11453 2.0051 

0.1922 

0.902239 

2. 1011 

0. 1922 

1.09864 2. 1973 

0.1923 

0.914714 

2.2933 

0. 1924 

1.08576 2.3896 0.925057 

2. 4857 1.07515 



m. SCATTERING FROM A CONDUCTING SPHERE 

The well-known plot of the backscatter cross section of a conducting sphere as a function of 

a/A,  where   a   Is the sphere radius and X the wavelength,   is presented  in Fig. 1.     The data for 

this figure,   as well as the associated phases, were numerically computed utilizing the Mie ae- 
33 

ries.       While this rigorous method provides accurate results it does not lead to an understanding 

of the physical phenomena which lead,  for example,  to the damped oscillations,  or ripples,  ev- 

ident in Fig. 1.    The general methods of physical optics or geometrical optics also do not pre- 

dict or explain these ripples. 

o/X 

Fig.  1.    Backscatter cross section of conducting sphere (computational 
increment 0. 01 or smaller in a/X). 

The regularity of these ripples,   as indicated by Table 1,   leads one to suspect that two re- 

turns ma\ exist which,  through interference,   combine to give the calculated curve.    According 
1 

to Logan,    Franz,   upon seeing a curve such as  Fig. 1,   suggested that the ripples could be ex- 

plained by assuming that there was interference between waves reflected at the front, 

portion of the sphere and v. rich,   by traveling around the rear portion of the spher 

shown in Fig. 2,   had traveled a distance (Z + 7r) a further.     From this model,   with no mod if 
7,8 

tions,   one would expect the maxima,  or minima,  to be spaced at intervals of 0.194a/X.    Fran/ 

and  his co-workers,   continued working on the problem and developed the now well-known creep- 

analysis of thi i ring from spheres and cylinders,   although generallj  I 

• d only the scalar problem.    Senior and (Joodrich       ha tor solution to the 

problem.    Such waxes are also inherent  in the work of Fock      and of Keller. 

In such  a  creeping wave analysis the rigorous   Mie series  is generally converted  in! 

tour inte a modified  Watson transformation.      The resultant integral  ma)  then, 

in turn,   bi ted  into two contour integrals.    One of these,   known as the optics 

evaluated  l>\   a  saddle-point technique  and gives  terms who closelv  CO] 

to scattering from the specular portion of the sphere.    For backscatter the first terms in this 

asymptotic series are 

34 
* See Logan      (as of this date Vol. Ill of the report referenced in 134]   has not been issued).    See also Senior and 
Goodrich.'3 



3-22-1171 

Fig. 2.    Diagram of specular and creeping wave returns. 

< 

Fig. 3.    Short pulse response of conducting sphere (T = 2a, T = 25a, a/X   = 1). 



where 

A   e 
o 

1 - '      ,         1 
2ka '   2(ka)4 

k
         A 

-2ika ... 
e (5) 

The first term in this series is that predicted by geometrical, optics,   and simple physical optics 

the first two terms. 

rhe second contour integral,  known as the creeping wave integral,   may be evaluated ai 

sum of residues of poles.    The phase of these terms corresponds to waves which have circum- 

navigated the shadow region of the sphere making N + \,   N = 0, 1, 2, . . .   revolutions around the 

sphere.    Equations suitable for the calculation of the amplitude and phase of these returns a 
13 

n by Senior and (Joodrich. 

Both the optics and the creeping wave returns are evident in the results of calculations of 

the scattering of short pulses from conducting spheres as shown in Figs. 3 through 7.    In IM: 

through 7 the amplitude A,  corresponding to the peak of the envelope of each return,   is givi 

above the return,   and the position of the peak of the return is presented on the bottom scab 

figure.     The amplitude of the first return agrees closely with that predicted by physical or 
2 2 

geometrical optics for the specular return (A    = cr/7ra" « 1.0).    The peak of the second return 

occurs just slightls  further than (2 + 7t)a behind the first return,   corresponding to the incri 

in the path length traveled.    The slight excess in delay is attributed to the fact that the wai 

may be considered as having phase and group velocities less than the velocity of light In a 

am,   or thai tiiese creeping waves may be considered as traveling at a small distance out 

from the surface of the sphere.t 

These results,  and similar results presented by Kennaugh and Moffatt indi the 

separation of the backscatter from conducting spheres into optics and creeping wave terms is 

not just convenient mathematically,   but that these waves may,   in some sense,   be considered to 

exist physically. 

Creeping wave returns have also been observed experimentally on static radar ranges with 
? A ? 7 

high resolution.    Foreman and Sedivec      and Alongi,   Kell and Newton      have reported observing 

the creeping wave return from conducting cone spheres.     Figure 8 presents the results of s 

short pulse measurements carried out on conducting spheres,   which also show the specular and 

the creeping wave returns.    Two of the figures,   8(b) and 8(j),   show the return from a fl 

(half-dollar),   and Fig. 8(a) shows the background return,   for comparison.    The pulse length 

employed for these measurements,   approximately four nanoseconds,   is relatively long in com- 

parison with the transit time of the diameters of the spheres measured.     Thus,   because of Inter- 

ference effects,  the two returns are not as distinctly seen as in the results of the calculatio 

presented in Figs. 3 through 7.    The presence of the two returns is,  however,  quite apparent. 

The results presented thus far,   while illustrating the presence of two returns in the ba< 

scatter from a conducting sphere,  do not lend themselves readily to a quantitative compari 

with the results of theoretical creeping wave analysis.    In order to conduct such a compari 

2       2 
The units are such that o/ira    = A  . 

tSee Van de Hülst,4 p. 368. 

| These measurements were carried out on the short pulse radar range of General Dynamics (Fort Worth, Texas), 
and were obtained with the help of Mr. D. F. Sedivec of M. I. T.   Lincoln Laboratory. 
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CALCULATIONAL   INCREMENT   ALONG  ABSCISSA   IS  O.Ola 

J 4 S 

DISTANCE   tsphere radii) 

DISTANCE  (relative  to first return) 

Fig. 4.    Envelope of short pulse response of conducting sphere (T = la, T = 25a, a/X   = 1). 
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CALCULATIONAL   INCREMENT   ALONG  ABSCISSA  IS O.Ola 

3 4 5 

DISTANCE  (sphere rodn) 

DISTANCE  (relative  lo lint return) 

Fig. 5.    Envelope of short pulse response of conducting sphere (T = la, T = 25a, a/X   = 2). 
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CALCULATIONAL INCREMENT ALONG ABSCISSA IS OOIO 

3 4 5 

DISTANCE  (sphere  rodn) 

DISTANCE  (relative to first  return! 

Fig. 6.    Envelope of short pulse response of conducting sphere (T = la, T = 25a, a/\   = 3). 
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CALCULATIONAL   INCREMENT   ALONG   ABSCISSA   IS  O.Olo 

3 4 5 6 

DISTANCE   (sphere  radii) 

DISTANCE  (relative  to  first return) 

Fig. 7.    Envelope of short pulse response of conducting sphere (T = la,  T - 25a, a/X   - 4). 
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and to obtain a somewhat different view of the phenomena,   each return,   the specular and the 

creeping wave,  was separately transformed back to the frequency domain.    The short pulse re- 

sponse in the time domain was split into two parts,   one of which was nonzero during the extent 
of the specular return and the other nonzero only during the extent of the creeping wave return. 
These two parts were then separately Fourier analyzed,   and the resulting Fourier coefficients, 

corresponding to a frequency mco   ,  were divided by the corresponding Fourier coefficients a 
[see Eqs. (3) and (4)] originally employed Ln the short pulse syntheses.    The results obtained 

are presented Ln Figs.9 through 11.    These calculations were carried oul utilizing double pre- 
m arithmetic on the case T = a, X = a. Because of various errors Inherent in the compu- 

tation, the magnitude of the computed results corresponding to the smaller values of a/x (up to 
a/X ~ 0.05) are probably somewhat in error, although it is believed that the shape of the curve 

is roughlj correct. Various computations, as well as a consideration of the fact that the com- 

puted specular and creeping wave returns should combine to give the return obtained by tin 
series,   lead to the estimate that the error is no more than a factor of two. 

Figure 9 shows the cross section (normalized to na ) for the specular return obtained from 
tlie short, pulse calculations as compared with that predicted by the first two,  or three,  terms 
of Eq. (s).    One of the more interesting features of this comparison is the rather close agree- 
ment between the cornputed  frequency response and that given by the first two terms of Eq.(5) 

12 for values of a/x approaching 0.1.    As Senior      points out,   the agreement is good even when the 
sphere presents an area which is less than the first Fresnel /.one (a/x = 0.25).    Figure 10 pre- 

a similar comparison between the creeping wave returns as calculated from the short pulse 
13 .   and those given by Eq. (32) of Senior and Goodrich.        Five terms in each sum of this 

equation were retained.    Again the comparison is relatively good for a/x as small as 0.1 or so. 

s-;?-im| 

Fig. 9. Comparison of cross section of specular 
return as found from short pulse response and as 
predicted by Eq. (5). 

O    RESULTS   OF  SHORT  PULSE 

CALCULATIONS.  AS 
DESCRIBED   IN   TEXT 

PREDICTION BASED ON 
'THREE   TERMS OF  Eq.(5) 

PREDICTION   BASED ON 
'TWO  TERMS  OF  Eq(5) 

I  1 
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O    RESULTS   OF  SHORT  PULSE 
CALCULATIONS,  AS 
DESCRIBEO IN TEXT 

PREDICTION   BASED ON 
"CREEPING  WAVE  THEORY 

(Senior and  Goodrich) Fig. 10. Comparison of cross section of 
first creeping wave return as found from 
short pulse response and as predicted by 
creeping wave theory. 

I 
I 
I 

°h CREEPING WAVE RETURN 

SPECULAR   RETURN 

1-—=y 

Fig. 11 .    Difference between phase predicted and that found 
from short pulse response. 
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A comparison between the phase of the return as computed from the short pulse response and the 

approximate theories is presented in Fig. 11.    The figure shows the difference between the phase, 
in radians,   as calculated from the short pulse response,   and as predicted by the first two terms 

of Kq.(5) for the specular return and Eq.(32) of Senior and Goodrich for the creeping wave return. 

A consideration of these results should give considerable confidence to the results of creep- 
ing wave theory,   and to the use of these results in studying the scattering from conducting bod- 
ies with other than spherical shapes.    ' 

IV.   SOLID DIELECTRIC SPHERES 

A. Introduction 

The use of the synthetic short pulse in analyzing the backscatter from a solid die] 

sphere brings to light many interesting features.    Because of the penetrability of such a spl 
many different ray bundles,   from the geometrical optics point of view,   are possible,   and  inter- 
ferences between these bundles lead to relatively complicated relationships between the back- 
scatter cross section and the radius of the sphere.    A typical plot of the cross section vs a/\ 

for a lossless sphere is shown in Fig. 12.    Several attempts have been made to find appri 
ns for predicting the scattering from dielectric spheres,    and in some instances good re- 

sults have been obtained  lor a range of a/x.    It will be shown that,   at least in SO] ;uch 
attempts have failed to take into account all of the contributions of an appreciable magnitude. 

Even though not all of tin- returns evident in the short pulse response of a dielectric sphi 
been identified and explained,   most of the returns of an appreciable magnitude will be discussed 
and a tentative identification given. 

B. Prediction of the Position of Returns 

Relatively simple ray tracing considerations suffice to predict the position of at least a por- 
tion of the contributions to the backscatter from a dielectric sphere observed in the short pulsi 
response.    In this section such returns will be described briefly,   and the optical  patl or 
each predicted return presented.    A more complete discussion may be found in the literatuj 

A different type of return,   not predicted by these techniques will also bo discus 

n the case of the conducting sphere a specular return due to paraxial rays roil 

the front surface of the sphere is expected. This is known as the front axial return ani 
l in Fig. 13.    The optical paths of all other returns will be referenced to this front; urn. 

A second return is expected from a ray bundle (labeled 1 in Fig. 13) which also propagates 

along the axis.    This return,   known as the rear axial return,   is transmitted at the first bound- 
ary,   reflected at the rear boundary,   and again transmitted at the front boundary.    Ii  is expected 
to appear a distance   P  behind the front axial return wh 

P = 4ma (6) 

is the optical path length,     in is the (real part of the) Lnd< Faction. 

* A description of such work is given by Peters, et a[.;     see also Chap. 12 of Van de Hülst,   and Refs. 38-43. 

t The phase of the return,  usually presented in the literature,  is determined not only by the optical path but also 
by any phase shifts arising either from reflections or from the presence of caustics.    As pointed out by Dr. S. L. 
Borison,  these phase shifts do not affect the position of the return and cannot generally be observed in the plots 
presented of the envelope of the short pulse response.    Such phase shifts may be observed on plots of the instan- 
taneous electric field as a function of time, but will not be considered further here.    See, for example,  Van de 
Hulst,4chap. 12. 



Fig.  12.    Backscatter cross section of lossless dielectric with m = 1.6. 

vFRONT AXIAL RAY        Fig.  13.    Diagram showing several possible scattered 
2 REAR AXIAL RAY ra„ bunc||es from dielectric sphere. 
3: GLORY   RAY 

1   I 



SPHERE 

Fig.  14.    Geometry employed in prediction of returns. 

While the front and rear axial returns,   and additional axial returns which have undergone 
2r + 1,   r = i, 2, 3, . . .,   internal reflections,   are expected from any dielectric sphere,  there ex- 
ists a set of nonaxial returns whose presence or absence depends upon the index of refraction. 

Such a return,  for example,   is the glory ray,  labeled 3 in Fig. 13.    Referring to Fig. 14 a ray 
incident at 0 parallel to the axis is refracted at the surface of the sphere,  the ray is reflected 

at 1,   and then again refracted out of the sphere at 2.    In general,   the angle   Q   shown in Fig. 14 
is given by 

6 = Za + p(180° - 20) (7) 

where p— 1 internal reflections have taken place,  and the angles  o   and  ß  are related by Snell's 
law 

sina  = m sin/3      ;     0° < a,  ß 4 90°       . (8) 

If 6 = 360°N,   N = 1, 2, 3, . . . ,   then the ray will leave the sphere parallel to the axis and contrib- 
ute to the backscatter.    The optical path length for such rays,   found from the geometry,   is 

P = 2 [mpcosM (1 -coso)] a      . (9) 

2mpa cos ß is the optical path Q traversed in the sphere,   and the distance 2a(l — coso ) is trav- 
ersed in free space. 

For given values of p and N,    simultaneous solutions for real values of o   and  ß  may be 
found for only certain ranges of values of m,   indicating that the corresponding rays exist only 
for these   m.    For the single bounce glory ray (ray 3 in Fig. 13),   p = 2 and N = 1,   so that from 
Eq. (7),  with © = 360°,   it is found that o  = 2/3.    From Eq. (8) 

so that 

m sin/3 = sino  = sin 2/3 = 2 sin/3 cos ß 

m „ -y = cos ß 

The geometry of the problem, as well as the forms of Eqs. (7) and (8) requires that p ^2N. 

15 



TABLE  II 

PARAMETERS OF PREDICTED BOUNCE RAYS, m= 1.6 

a ß Optical Path 2 2 
N P (degrees) (degrees) (sphere radii) el e2 

1 2 73.75 36.87 6.56 i x io_1 -2 
7X 10 

2 5 47.75 27.55 14.8 
-4 

2x 10 7X10-9 

3 7 27.55 16.79 21.7 1 x 10"7 -9 
2X 10 

3 8 50.45 28.80 23.2 8 •  10"7 2 •   IO"16 

4 9 19.75 12. 19 28.2 2X10-'° 2x lO-11 

4 10 36.10 21.61 30. 1 3X10"10 6X 10"15 

4 11 51.35 29.21 31.5 
-9 

3X 10 
-24 

4X10 

4 12 69.30 35.78 32.4 2 x 10"6 3x 10"17 

5 11 15.45 9.59 34.9 4X 10"13 -14 
6X 10 

5 12 28.55 17.38 36.8 3X 10"3 ixio-'6 

5 13 40.35 23.87 38.5 7X10-'3 5X10-2' 

6 14 23.70 14.55 43.5 4 < IQ''6 1  •  IO"18 

6 15 33.60 20.24 45.4 5X10"16 -22 
5X 10 

6 16 42.90 25. 18 46.9 2X 10"15 2 X IO"28 

6 17 52. 10 29.53 48. 1 
-14 

5X 10 < io"30 

6 18 61.85 33.43 49. 1 
-12 

7X 10 < io"30 

6 19 74.80 37.09 50.0 4X 10"7 -19 
4X 10 

7 15 10.75 6.72 47.5 2> 10"'8 -19 
6X 10 

7 16 20.30 12.52 50. 1 7XI0-19 5 •  IO"21 

7 17 28.90 17.58 52. 1 6 •  lO"19 8 •  IO"24 

7 18 36.90 20.05 53.8 IX io"18 8 x IO"28 

16 



Since cos ß •$ 1 we find m ^ 2.    Also,  since 

a  = Zß ^ 90° 

/?« 45° 

m ^ ,,- „     N/2" y >cos 45° = — 

thus, 

^"s/2 

Thus for a ray with p = 2,   N = 1,  the index of refraction must lie in the interval \fz to 2.    Similar 

reasoning leads to the result that for p = 3,   N = 1,    m must lie in the range 0 to 2/VJ. 

In order to determine which rays could exist for the cases to be discussed below (m - 1.6 

and 2.5),   Eqs.(7) and (8) were programmed for,   and solved on,   a digital computer.    The n 

for all ray bundles whose optical path is less than 50 sphere radii are presented in  Tables II and 

III,   where a~ and ß are the angles defined in Fig. 14,  the optical path is computed from Eq.(9), 
2 21 

and c,j   and e,     are tne P°wer reflection coefficients.    The divergence which will be mentioned 

later is not included. 
37 

According to Peters,     stationary rays which also contribute to the backscatter,   are pos- 

sible and should be considered.    That is,   a bundle of rays for which,   from Eq. (7) 

dO 
do 0 (10) 

and  6  is close to 360°N,  N = 1, 2, 3, . . .,   or 6' = Q(mod 360°) w 0°,   may also contribute to the 

backscatter.    Equations (7),   (8) and (10) imply that 

cos a .... 
P  »  = m      . 11) sin/3      r cos ß 

This equation was programmed for a digital computer,   and the results for m = 1.6 and 2.5 are 

listed in Tables IV and V. 

The ray bundles listed in Tables II through V are those which previously have received pri- 

mary consideration when approximate models for the backscatter from dielectric sphen 

developed.    It will be shown later that,   at least for the cases considered,  these ray bundles 

do not account for all of the returns observed and some of these unaccounted returns have ap- 

Lable amplitude.    One possible explanation for- these returns is presented below. 

In his discussion of the observed ripples of the computed extinction     curve for various di- 

electric spheres,   Van de Hülst'   observes that the present theories,  based on ray tracing,  do 

not appear to explain the periodicity of these ripples,    lie then puts forward a tentative explana- 

tion based on surface waves.    Because some of the returns observed in the short pulse analysis 

appear to lit well with this idea,   and do not appear to agree with standard ray tracing results,   a 

short discussion is presented below. 

* This ray bundle is sometimes also called a glory ray. 

t The angle a is presented to the closest 0.05 degree. 

% The subscript 1 refers to parallel or E-plane polarization and the subscript 2 refers to perpendicular or H-plane 
polarization. 

§ The extinction of a body as defined by Van de Hülst    (p. 3) is a measure of the total energy removed from the 
incident beam by scattering as well as by absorption. 

1! Reference 4, p. 375. 
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TABLE  III 

PARAMETERS OF PREDICTED BOUNCE RAYS,  m = 2.5 

N P 

• 
(degrees) 

P 
(degrees) 

Optical Path 
(sphere radii) 

2 
£1 

2 
£2 

4 

5 

5 

6 

9 

11 

12 

13 

38.85 

27.65 

58.00 

22.00 

14.20 

10.70 

19.83 

8.61 

44.0 

54.2 

57.4 

64.4 

1 X io"5 

to"7 

2X 10"5 

-9 
4X 10 

3X 10"8 

-9 
4X 10 

1>:,0-'7 

2-10-'0 

TABLE  IV 

PARAMETERS OF  PREDICTED  STATIONARY RAYS,   m = 1. 6 

P 

a 
(degrees) 

P 
(degrees) 

Optical Path 
(sphere radii) 

i 
(degrees) 

9' 
(degrees) 

2 43.90 25.68 6. 17 345. 07 -14.93 

3 63.79 34. 11 462. 94 102.94 

4 71.20 36.27 572. 20 -147. 80 

5 75.25 37. 19 13.66 678.64 -41.36 

6 77.80 37.65 783. 76 63.76 

7 79.60 37.93 888. 15 168. 15 

8 80.95 38. 11 992.09 -87.91 

9 81.95 38.23 24.61 1095. 73 15.73 

10 82.80 38.32 1199.17 119. 17 

11 83.45 38.38 1302.47 -137.53 

12 84.05 38.43 31.33 1405. 65 -34.35 

13 84.45 38.46 1508. 75 68.75 

14 84.85 38.50 1611.78 171.78 

15 85.20 38.52 1714.76 -85. 24 

16 85.50 38.54 42.20 1817.69 17.69 

17 85.80 38.56 1920.59 120.59 

18 86.00 38.57 2023. 46 -136.54 

19 86.20 38.58 48.85 2126.31 -33.69 

20 86.40 39.59 2229.13 69. 13 

in 



TABLE  V 

PARAMETERS OF  PREDICTED  STATIONARY RAYS,  m = 2. 5 

p 

a 
(degrees) 

P 
(degrees) 

Optical Path 
(sphere radii) 

6 
(degrees) 

0' 
(degrees) 

3 35.90 13.56 530.41 170.41 

4 53.75 18.82 19.36 676. 95 -43.05 

5 62. 10 20.70 817. 18 97. 18 

6 67.20 21.64 954.74 -125.26 

7 70.70 22. 18 33.94 1090.88 10.88 

8 73.20 22.52 1226. 16 146.16 

9 75. 15 22.75 42.25 1360.88 -79. 12 

10 76.70 22.91 48.50 1495.22 55.22 

11 77.95 23.03 1627.28 -172.72 

12 78.95 23. 12 56.25 1763.13 -36.87 

13 79.80 23. 18 1896.83 96.83 

14 80.55 23.2/1 2030.40 -129.60 

15 81.20 23.28 70.65 2163.87 3.87 

From geometrical optics il is well-known that if a ray  passes fi rare  medium, 

the angle of incidence   Q   being smaller than the critical angle el' total  internal  reflection a    .   some 

of the energy will he transmitted  to the  rarer  medium,   and  some  will  he  reflected  as  shown  in 

15(a).    If,   however,  a   is greater than a    then total internal reflection will take place 

shown  in  Fig. 15(h).     If the  angle of incidence   n    is  equal  to the  critical  angle o      [see   Fig. 15(c)] 

then some energy will be retracted with ß      90°,   i.e..   this energy will travel along the sur 

as a type of surface wave.        M'ter traveling along the surface some distance,   part of the eni 

ma\  again enter the denser medium. 

In Fig. 16 a ray strikes the sphere at grazing  incidence and begins to circumna\ tgate the 

sphere.     At the point   A.   for example,   it may enter the sphere at the ci itical angle,   leaving  again 

at the  point   B.     A similar situation  ma\  occur at .A'  and  IV  and,   indeed,   along the entire  path of 

th<    ray.      The optical  path through the sphere  is  m •   AH.     From  Fig. 1' 

sin-,       sin (90 -   ii    )      cos (i 

i  .'.  \n 
a 

and since,   from Snell's  law 

1 
sin c 

* The intensity of this ray bundle is zero according to the Fresnel formula;  however, a more detailed examination 
indicates that it may have an appreciable magnitude.    There was a considerable discussion of this type of wave 
in the Annalen der Physik in the period from  1947 to 1955.    See, for example,  Refs. 44-49 which include exper- 
imental as well as theoretical results. 
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RARE ß      ^^ 

DENSE 

a a   \. 

-^=90 
W 

/"z 
a
c\ °c  ^ °C   ^ 

a < ac 

(o) 

a > ac 

(b) 

a- ac 

(c) 

Fig.  15.    Diagram of surface wave obtained when angle of incidence equals critical angle a 

Fig.  16.    Geometry for calculation of optical path 
of surface wave. 

the optical path becomes 

in •   \i; 
2a 

tan a (13) 

,   from  F*ig. 16 

AP      RP 
1/2 AH 

cos (90 — a   ) 

W  '   HI1 AB 

I pom Eq. (1^) 

Al I      2a cos <>• 

Thus 

Al'   i   151' 
2a 

tan a m •   AB (14) 

increase in the optical path due to taking a "short cut" through the sphere rather than 

Lng on the surface is thus 

ha 
2a ,  2a rv tan a c 

(15) 
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As the wave travels around the sphere it will take M "short cuts," each time increasing the op- 

tical path length by the amount ha.    The full optical path around the body,   and the delay with re- 

spect to tlu' front axial return,  which might be expected on a plot of the short pulse return,   is 

P ^ [2 + (2N - 1) IT + Mh]a (16) 

Van de Hülst states that the number of short cuts taken will probably be close to the maxi- 

mum number possible,   M ,   which is the largest integer smaller than (2N — 1) 7r/2a   .    Such r                        max " b C 
.. return appears to have many features in common with the creeping wave return from a con- 

ducting sphere described earlier.    A return of this type is,   in fact,  obtained in the creeping wave 

analysis of a dielectric cylinder reported by Beckmann and Franz.       Figure 13 of Reick      viv- 

idly shows the presence of this type of surface wave for a dielectric cylinder.    Tables VI and 

\ II  present optical paths,   as given by Eq. (16),   for the returns expected for m = 1.6 and 2.5, 

respectively. 

C.     Short Pulse Analysis 

Having summarized the returns which might be expected,  we shall proceed to analyze the 

short pulse response of a dielectric sphere.     From the foregoing it is evident that many returns 

might  he expected,   some with very long path lengths,   or delays,  with respect to the first,   front 

axial,   return.    Because a Fourier series representation is employed in this analysis,  returns 

with Long delays «ill appear "folded over" and it becomes difficult,   if not impossible,   to identify 

TABLE VI 

PARAMETERS DF  PREDICTED  SURFACE WAVES, m = 1.6 

a   =51.4°, h = 0.7067 
c 

N M 
Optical Path 
(sphere radii) 

1 1 
0 

5.85 
5.14 

2 5 
4 
3 

14.96 
14.25 
13.54 

3 8 
7 
6 

23.36 
22.65 
21.95 

4 12 
11 
10 

32.47 
31.76 
30.35 

5 15 
14 
13 

40.87 
40. 18 
39.46 

^1 



TABLE  VII 

PARAMETERS OF  PREDICTED  SURFACE WAVES, m = 2.5 

a   = 66.4°, h = 2.264 
c 

N M 
Optical Path 
(sphere radii) 

1 

2 

3 

4 

5 

1 
0 

4 
3 
2 

6 
5 
4 
3 

9 
3 
7 
6 

12 
11 
10 
9 
8 

7.41 
5. 14 

20.48 
18.22 
15.95 

31.29 
29.03 
26.76 
24.50 

44.37 
42. 10 
39.84 
37.58 

57.44 
55. 18 
52.91 
50.65 
48.39 
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the returns.      For this reason a small absorption coefficient,   K,   was employed,   i.e.,   the  I 

of refraction  n was taken to be complex 

n = m + \K 

This does not alter the previous analysis to any appreciable extent except that the magnitude 

each return is reduced approximately by the factor   F 

F-exp[z^a]t (17) 

re  Q  is that portion of the optical path  P traversed in the sphere itself.    This attenuates 

those returns with the longer path lengths,   eliminating most of the "folded over," or aliased, 

returns.    The value of K utilized was 0.01.    Figures 17 and 18 present plots of the normalized 

backscatter cross section a/na   vs a/X for solid dielectric spheres with n = 1.6 + iO.01 and 

n = 2.5 + iO.01,  respectively. 

some typical results of the short pulse calculations showing the scar (trie field,  at 

a large distance from the scatterer,   from a plane wave incident on a dielectric sphere v 

n      1.5 +  iO.01,   are presented in Figs. 19 through 23.     As before,   the position of the principle 

returns observed in Figs. 20 through 23 relative to the peak of the from  axial return,   i. 

on the bottom scale of the figures,   and the normalized amplitude  A   above the curve.'    In 

Table VIII the principal returns observed m Figs. 20 through l i are identified,  primarily on the 

basis of then- position,   ant! compared with the  returns  predicted  m Tables  111,   Y   and \ II.     It   m 

be seen that in general the agreement is good,  particularly for those returns having ai ible 

magnitude.    The presence of the surface waves also appears to be iy well established. 

The difference between tlie observed and predicted positions of these return as In the 

ease of COnductinj considered earlier,    be  due to the phase,   or group,   velocity of tli 

tig  less  1 ban t he speed of light   in vacuum.     The  identil Of t be  return .ted 

rays is quite tentat Lve. 

It is believed that at least a part of those returns which are not identified in Table VIII are 

"folded over"    and actually occur at distances greater than 49.5a from the peak of the front 

axial return,     lor example,   the unidentified return at 28.25a (a/X    = 2.0) may perhaps be iden- 
i as the  folded-over (P      70.75a) return of the stationary ray (p      151 : I at 70.6! 

The question of fold-over could be settled either by employing a Larger absorption coeffii i 

or by increasing the distance between ambiguities   T.    The latter would require the calculation 

of the amplitude and  | I he CW scattering with increments smaller than 0.01   in i 

The identification of some of the returns  is also made difficult b\  Hie Limited  resolute 

ioosing T = 0.5a for this calculation.    Increasing the resolution owing the pul 

width does  not always  clear up the  picture.     As the  bandwidth increi 'ions 

arise due primarily to tie lion of the scries in I t  a/X = 8, ponding to 800 terms. 

* Tnis was in fact found to be the case for computations carried out with n = 1.60 + i Ü. 0. 

f Each term, corresponding to the frequency nuQ,  in the Fourier series is attenuated by the factor exp [(- 2ir«/Xn)X 
(Q/m)] .    The form given in Eq. (17) should give reasonable results provided the bandwidth is not too large.    In 
particular, wavelengths longer than X   are attenuated less and wavelengths shorter than Xc are attenuated more 
than given by Eq.(17). 

X The units are such that a/rra^ - AA 

5 A "folded over" return,  in the first ambiguity, with a true optical path  P will appear on these plots at the 
position P' = 2T-2T-P. 
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COMPUTATIONAL   INCREMENT  IS 0.01  IN  o/X 
la-?;-6H»l 

5 IB 23 3 0 3.5 4.0 4 3 SO 5.3 6 0 6.3 7.0 7.5 BO 

o/X 

Fig. 17.    Backscatter cross section of lossy dielectric sphere with n = 1.6 + iO.Ol. 

|i-»-»m| 
COMPUTATIONAL    INCREMENT   IS   0.01   IN   o/X 

Fig. 18.    Backscatter cross section of lossy dielectric sphere with n = 2. 5 + iO.Ol. 
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TABLE   VIII 

COMPARISON OF  THE POSITION OF  THE   PREDICTED AND OBSERVED RETURNS ,   m      2.5 

Position of Observed Return (relative to peak 
of front axial return) 

(sphere radii) 

Identification 
Predicted 
Position 

a/X a/X       2 
c 

a/X   =3 a/X   = 4 

0.0 0.0 0.0 0.0 front axial 0.0 

5.5 5.35 surface wave N =  1,  M = 0 ( ?) 5.14 

7.5 7.45 7.45 7.45 surface wave N  - 1,  M      1 7.41 

9.95 9.975 10.00 10.00 rear axial 10.00 

18.5 18.45 18.35 18.325 surface wave N " 2, M     3 18.22 

not axial ray 
resolvable 19.925 (3 internal reflections) 20.00 

20.45 20.525 20.525 20.50 surface wave N = 2,  M     4 20.48 

22.475 22.55 

29.40 surface wave N = 3,  M     5 29.03 

29.775 29.775 

31.775 31.60 31.475 31.425 surface wave N = 3,  M     6 31.29 

33.65 33.625 33.60 33.575 stationary ray p = 7                  (?) 33.9 

39.125 39.25 

42.575 42.625 

43.10 43.125 bounce ray 

45.10 44.775 surface ray N ~ 4, M      9 44.37 

46.725 46.70 

* Due to the calculational increment,  the resolution lere is 0.025. 



Similar results of short pulse calculations for n = 1.6 + iO.Ol are presented in Figs. 24 through 

28,   and a comparison between the position of the observed and predicted returns is given in Table 

l\.     Again it appears that the predictions agree fairly well with the calculated results;   however 

the  lack of better resolution makes  it impossible to see all the predicted returns clearly,   .'mil  maj 

i,  due to interferences between returns occurring close together,   shift the apparent positions 

ol' the maxima.      In particular,   the rear axial ray and glory ray returns cannot be resolved.    The 

parameters  for the calculations presented in Figs.27 and 28 were the same except for the pulse 

width.    With the slightly increased resolution of Fig. 28 the presence of i   second return,  believed 

to be the rear axial return,   may be inferred on the leading edge of the largest response,   which is 

probably the glory ray return. 

Figure i'> shows the results of some attempts to increase the resolution by decreasing the 

pulse width,   and m Fig. 29(c) the glory ray and the rear axial return can be resolved.     These two 

returns occur at the predicted positions,  viz.,  6.40a for the rear axial ray and 6.56a for the glory 

Figure 29 also illustrates some of the drawbacks of the present short pulse synthesis.     For 

the  present  analysis computed CW scattered amplitudes and phases were available for a/A ranging 

from 0.01  to 8.00,   in increments of 0.01.     As the pulse length is shortened the bandwidth is in- 

creased  and data  tor'  larger values of a   A are  necessary in order to faithfully   present the  re- poiise. 

In addition,   iiu reasing the bandwidth gives more weight to contributions from relatively long w; 

lengths.    These contributions for small values of a/A are,  however,   less attenuated for longer op- 

i.iihs and may appear folded-over on these plots. 

D.     Comparison of Predicted and Observed Amplitudes 

The  amplitude of those  ra\   bundles  predicted by geometrical  optics,   i.e.,   the  returns  con- 
4 

sidered earlier with the exception ol the surface waves,   is generally ol the lorm 

1 i—§ 
\       TIM   '   '  >'M>- 

e1.2 

p = 0 

1(1 - <•/ ,) [~Ti 2)
P-1|       p - 1,2,3, 

where r,  and r, are the  Fresnel reflection coefficients,  and  I)  is the divergence.     The quanti- 
2 2 and  (  ,   are presented  in   Tables 11 and  111.     'The divergence   I)   takes into account various 

focusing and defocusing effects. 

The problem of predicting the amplitudes of the returns is thus primarily that of predicting 

the divergeni tial  attenuation  factor.     In the  literature this  has generally been carried 
57-4 • 

out  for only  a  few  of the  returns  by  means  of geometrical or physical  optics. Sometii 

corrections,   based on various other considerations,   are also included.    Occasionally one obtains 

the  impression that  these methods do not lead to a straightforward  method for obtaining this  factor, 

* This is evident,  for example,  in the results of the measurements presented in Fig. 3. 

t For these figures the resolution due to the calculational increments is 0.01a. 

i  See footnote for Eq. (17) on p. 23. 

§ The subscript 1 refers to parallel or E-plane polarization and the subscript 2 refers to perpendicular or H-plane 
polarization. 
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'!A quantity related to vD is sometimes called the spatial attenuation factor. 
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CALCULATIONAL   INCREMENT   ALONG  ABSCISSA  IS OOlo 
|}-»-M0l] 

K: 

(0) 

5 91 6.57 

c -2.303 x 10 ' 

1.4 78  X 10"'- 

J i I I 1  

(b) 
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L 

REAR   AXIAL   RAY GLORY   RAY 

(C) 

DISTANCE   (sphere radii) 6*0 

5T53 656 
DISTANCE   (relative  to first  return) 

Fig. 29(a-c).    Envelope of first part of short pulse response of dielectric sphere,  n= 1.6+ iO. 01, 
with increasing resolution (T = 50a, a/A   = 4.0). 



and thus a fooling that the techniques are not as satisfactory as would be   lesired is obtain* 

Ihr situation does not appear to be clear,   and requires further work. 
S3 S4 

Utilizing the same general techniques as in his work on the cylind Kodis,    in 

;  unpublished work,   has obtained formulae for the amplitudes of all of the axial and bounce 

optics  rays scattered by a dielectric sphere.    This work employs  asymptotic,   stationary pi 

evaluations of the  Mie scries.     The amplitudes obtained by Kodis for the front axial,   n 
43 

lorj  rays agree with the formulae presented by Atlas and Glover,      which arc based  n 
38 39 on the work of  Thomas     '       and others.    In the case of the glory ray there is,   however,   SOI 

difference in the phase of the return.    Figure 30 presents the amplitude of the rear axial and 

turns as predicted l>\   Atlas and Glover* 

l3-;;-69o?| 

GLORY   RAY   n - 1.6 • 10.01 

REAR   AXIAL   RAY   n = 1.6 • lO.OI 

l/> 

43 
Fig. 30.    Amplitude of rear axial and glory ray returns as predicted by Atlas and Glover. 

In order to obtain some indication of the agreement between the predicted amplitudes and 

those observed from the short pulse response,  some calculations were carried out in which ., 

t  pulse was synthesized using the predicted amplitudes and phases presented by Atlas 

Glover,   rather than those obtained from the Mie series.    Only the front axial,  rear axial ai 

glorj  ray returns were considered.    A typical result for n = 2.5 + i 0.01 is presented in 1- i 

* Personal communication. 

t The amplitudes,  taken from Table I of Ref.43, are: 

Front axial A = (m - l)/(m + 1) 

Rear axial 

Glory 

where a = 2na/X. 

A=|l4m(m- l)/(m + l)3] [ m/(2 - m)]|  e"  °* 

A = 1.5V^5| m2(m2-4)(m2-2)3/2/(m
2 - D3K a"e"2m,<a 
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a/Xc = 2.0 

a/A,. = 40 

6.50 x io" 

lb) 

DISTANCE   (sphere radii) 

DISTANCE   (relative  to  first   return) 

Fig. 31(a,b).    Envelope of short pulse response, n = 2. 5 + i 0. 01, using amplitudes 

and phases predicted by Atlas and Glover (T = 0.5a, T = 50a). 

and for n = 1.6 + i 0.01 in Fig. 3 2.    As before,  the rear axial ray and the glory ray are not resolv- 

able for m =  1.6,   however the return due to the rear axial ray is also indicated.    These figures 
may be compared with Figs. 20 through 28.    A comparison of the peaks of the rein; rved 
using the optics predictions and the Mie series calculations is given in Table X.    The param- 
eters T,   T,   and the truncation point of the series are the same for both cases.    In order 
to obtain the amplitude of the rear axial ray for n - 1.6 + i 0.01,   a series of calculations ui 
the optics predictions was carried out in which the glory ray return was not included. 

Except for the glory ray return,  the agreement does not appear to be bad,   particularly when 
it is remembered that the optics amplitudes were employed even for small values of a/A.    At 

present the cause for the discrepancy in the case of the glory ray is not apparent.    It appears 
that further work is required in this area. 

V.    DIELECTRIC  COATED  CONDUCTING SPHERES 

Figures 33 and 34 present the CW backscatter cross section v.s a/X for conducting sp] 
with relatively thin dielectric coatings.    In these figures   ö   is the fractional thickness of the 

coating,   i.e.,  aö is the thickness of the coating and a(l — 6) is the radius of the conducting i ore, 
where  a  is the outer radius of the composite sphere.    A comparison with Fig. 1     Indicate 
the presence of such a thin coating changes the character of the curve considerably.    Figur' 

* Note that the ordinate scale of Fig.  1  is linear, while that of Figs. 33 and 34 is logarithmic. 
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o/X, • 2.0 

CALCULATION*!.   INCREMENT  ALONG  ABSCISSA  IS  O.Olo 

 REAR AXIAL   RETURN 
(not resolvable from 
glory roy) 

CALCULATIONAL  INCREMENT  ALONG ABSCISSA 

IS OOlo 

 REAR AXIAL RETURN 
{not resolvable from 
glory  ray) 

\K 
- 2 31 x 10"' 

lb) 

DISTANCE   (sphere rodn) 

DISTANCE   (relative  to  first   return) 
t*A 65 

Fig. 32(a,b).    Envelope of short pulse response, n=1.6 + i0.01, using amplitudes and phases 
predicted by Atlas and Glover (T = 0.5a, T = 50a). 
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TABLE X 

COMPARISON BETWEEN  THE PEAK AMPLITUDES A* OBTAINED  USING EITHER OPTICS 
PREDICTIONS OR MIE SERIES CALCULATIONS AS THE  INPUT FOR THE 

SHORT PULSE CALCULATIONS 

o/X t 
c 

Front Axial Ray Rear Axial Ray Glory Ray 

Optics Mie Series Optics Mie Series Optics Mie Series 

n= 1.6+ iO.Ol 

1.0 0.231 0.219 0.678 1.20 1.50 

2.0 0.231 0.231 0.537 1.82 1.67 

3.0 0.231 0.231 0.417 1.95 1.20 

4.0 T = 0.5a 0.231 0.319 0.325 
not 

resolvable 1.78 0.749 

T = 0. 25a 0.232 0.232 0.342 0.882 

T = 0. 20a 0.231 0.230 0.354 0.888 

T = 0. 15a 0.226 0.222 0.364 -0.461 1.47 0.886 

n = 2.5+ 10.01 

1.0 0.429 0.409 1.36 1. 12 

2.0 0.429 0.430 1.08 1.30 The glory ray 
does not exist 

3.0 0.429 0.429 0.835 0.821 for m = 2.5 

4.0 0.429 0.428 0.650 0.644 

* The units are such that a/ir a2 = A2. 

f Unless otherwise noted, T = 0.5a. 
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a I \ 

Fig. 33.    Backscatter cross section of dielectric coated conducting sphere, m = 1.6, 6=0.05. 

Fig. 34.    Backscatter cross section of dielectric coated conducting sphere, m = 1.6, 5 = 0. 10. 
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5 5* and 34,  together with other similar data,  have been published previous At that time a com- 
57-59 

parison was made with a creeping wave analysis by Helstrom, and an attempt was made to 

explain the basic features of these figures in terms of creeping waves. 

Heuristically,  the model for scattering from a conducting sphere with a thin dielectric coat- 

ing is that,  as in the case of the conducting sphere,  there exists a specular return and a creep- 

ing wave return.    The specular return is effectively the same in each case except thai for the 

coated sphere interference effects may arise due to rays reflected at the free-space dielectric 

interface and the dielectric conductor interface.    Creeping waves are also Launched which cir- 

cumnavigate the sphere one or more times.    On conducting spheres,   because of the attenuation 

due to radiation,  generally only the first creeping wave,  that which has completed a half r 

olution around the sphere,  has an appreciable magnitude and even this becomes negligible for 

a/\ > 1.    Under some conditions for coated spheres the situation is similar;   it is different,   how- 

ever,   when the condition 

26(a/\) (m - l)1/2 

t - 1 TE^ mode 

1   ' 1,2, 3, ... (18) 
t - 1/2      TM( mode 

obtains.    The creeping waves of the given mode are then propagated with decreasing attenuation. 

The triangles along the axis of abscissas of Figs. 33 and 34 indicate «hen the equality of Eq. (IS) 

is satisfied,   and at these points the "bursts" of oscillations begin to become apparent.    The ap- 

parent end of each "burst" as seen in the figures is,  however,   misleading since it is due to the 

size of the increment in a/A (0.02) with which these curves were computed.    It is believed that 

the resonances continue with increasing a/A,   but that they are not apparent e of the mon- 

otonically increasing Q (i.e., decreasing width) of the resonanci s. Even carrying out calcula- 

tions with much smaller increments in a/\ may not be sufficient to obtain a smooth curve which 

shows all of the fine structure. 

When the conditions of Eq.(18) are satisfied,  the form of the equation for the backsi attered 

amplitude of the creeping wave contribution,   as derived by Helstrom,   is quite similar to the 

form which obtains when waves are trapped in a dielectric coating on a plane perfectly conduct- 

ing surface.    Rays may be considered as propagating by repeated reflections at the dielectric- 

free space and dielectric-conductor interfaces.    The reflection coefficient at the hitter- interface 

is unity and when the equality in Eq. (18) is satisfied the reflection coefficient at the diel. ein. - 

free space interface is also unity,   i.e.,  the angle of incidence is the critical angle for total in- 

ternal reflection a   .    These waves do not appear,   however,   to have the same character as the c 
surface waves observed on dielectric spheres.    When Eq. (18) is satisfied but mov. from 

the equality the angle of incidence  <>   becomes larger than a   ,   so that surface waves of the char- 

acter considered earlier do not appear possible,   unless the coating is considerably tin 

Typical examples of the short pulse response of a coated sphere are shown in Figs. i^> 

through 37.    Here the reference is taken to be the front surface of the composite sphere.     The 

specular return has its peak response roughly at the distance 2möa,   corresponding to refli 

from the conducting core.    In addition,   the presence of several creeping wave ret 

sponding to pulses which have circumnavigated the sphere one or more times,   are indicated. 

* Reference 56 presents similar data for conducting spheres with a thin lossy dielectric coating, 

t This is demonstrated in Figs. 8 through 10 of Ref. 55. 

$ Other examples are shown in Ref. 60. 
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Because the increment in a/X (0.01) at which the Mie series calculations were carried out for 

these figures is not sufficiently small to sample all the fine structure of the return,   the results 
obtained by increasing the resolution,   i.e.,   the bandwidth,   or decreasing the carrier wavelength, 
become less meaningful,   as shown in Fig. 38.    However,   the presence of a series of creeping 
waves is still apparent. 

While no quantitative comparison has been carried out here,   these examples of the short 
pulse response of a coated sphere are consistent with the creeping wave model briefly described 
above.    As the thickness of the coating is increased,   the number of expected returns increai 
very quickly.    Not only are returns of the type seen in Figs. 34 and 35 expected,  but also vari- 

ous opties returns,    '     '      and surface wave returns of the type described in Sec. IV on die- 

lectric spheres. 

VI.   CONCLUSION 

In this report the backscatter from spheres in the time domain has been considered.    It is 

hoped that this survey of an old problem from a   viewpoint different from previous approa<:] 
will be of value  in improving our knowledge of the phenomena involved.    Although the sphere  it- 
self is only of limited interest it is believed that an examination of the short pulse responi 

aid in the development and application of various approximate models to scatterers of interest 
for which rigorous solutions are not available. 

The results presented indicate the backscatter from conducting spheres is well understo 
and that our knowledge of the phenomena involved is good.    The model in which the bad 
consists primarily of two returns,   viz.,  the specular and the creeping wave returns,   appears to 
be well substantiated both qualitatively and quantitatively.    The short pulse results also show 

that the model is valid for smaller values of a/X than was previously supposed. 
The backscatter from dielectric spheres does not appear to be as well understood.    The r 

suits of the short pulse study indicate the presence of the optics returns predicted by simple ray 

tracing arguments;   however there appears to be a discrepancy between the predicted amplitude 
and that observed in the short pulse response for one of the returns,  viz.,   the glory ray.     The 
short pulse response also indicated the presence of a series of returns not predicted by geomet- 
rical opties.    It is believed that these returns are due to surface waves which may take short 
cuts through the sphere,  entering and leaving the sphere at the critical angle of internal refle< - 
tion.    It appears that further study is necessary to improve our understanding not only of th 
surface waves,   but of the optics rays as well. 

The scattering from conducting spheres with a relatively thin dielectric coating app 
be only qualitatively understood.     The presence of a specular return and a series of creeping 
wave returns seems to be verified;   however,   at present few quantitative statements can be made. 
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