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ABSTRACT

'The method of characteristics is applied to the set of equations which

governs the propagation of axially symmetric torsional shear waves in non-

homogeneous elastic media. The wave velocities, characteristic equations,

and the equations governing the propagation of abrupt changes (discontinuous

wave fronts) are derived in closed form. Numerical integration along the

characteristic directions was carried out for several examples on an

electronic computer. The solutions of three specific examples calculated

show general agreement with existing solutions by other methods. For certain

problems, the method of characteristics yield additional results which cannot

be obtained by the Laplace transform method.e

NOMENCLATURE

c = (G/p)1/2 = shear (or distorsional) wave velocity

G = shear modulus (function of i
= GG

r = radial distance

r = inner radius of plate

= r/r 0

t = time

t = ct/r0
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v = tangential displacement

vt  = av/at = particle velocity

v = av/3r = shear strainr

= GoV/T r

p = density of material (function or r)

p p/Po

T - -torsional shear stress

i = T/T°

Subscript

o = properties at r

INTRODUCTION

The problem of shear wave propagation due to a suddenly applied rotary

disturbance in a homogeneous elastic plate was solved by Goodier and Jahsmanl.

The corresponding problem in a nonhomogeneous plate was solved by Sternberg

and Chakravorty2. In both these cases the Laplace transform technique was

used. Except in a few cases of special radial distributions of the shear

modulus, all their solutions are in integral form which can be evaluated only

by numerical integration. A solution obtained by the Laplace transform

technique is applicable for only one type of initial and boundary conditions.

To solve for a different type of condition, the problem must be reinitiated

and techniques for inversion developed. In their study of the nonhomogeneous

plate problems Sternberg and Chakravorty were mainly interested in the quali-

tative effect of the variation of shear modulus; therefore, a simple

exponential variation was selected. Solutions for other types of radial

distribution of the shear modulus are not available. For these reasons there

is a need for other methods in tieating shear waves in nonhomogeneous plates.
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-! In this paper the propagation of cylindrical shear waves in nonhomogeneous

elastic bodies is treated by the method of characteristics. By using this

method, the distribution of wave velocity (physical characteristic), the

characteristic equations, as well as the equations governing the propagation

of abrupt change in stress -(step input), may be determined in, closed form.

Numerical integration for the determination of' the stress field behind the

wave front may-be accomplished readily for any type of input; and for any

type of radial distribution of the shear modulus and density. As examples,

materials with simple exponential distribution of the shear modulus under

step input in stress are presented. For a certain class Diedia, the Laplace

transform method yields results only up to a certain critical time;-whereas

the method of characteristics yield-solutions beyond this critical time.

In Ref. 3, the method of characteristics was applied 'to cylindrical and

spherical dilatational waves in a homogeneous elastic material. The present

paper is an extension of the method, not only to the case of shear waves, but

also to nonhomogeneous media.

GOVERNING EQUATIONS

The governing equations in cylidirical coordinates for elastic torsional

shear waves under axisymmetrical loading conditions are,

a• + LT T = 2V

r v)
ar rG@ "v v (2)

where r is the radius; t)I"he time;-p is the density; G is the shear modulus;

is the torsional shear stress; and v is the tangential displacement. The
T istetrinlsersrs;adv stetneta ipaeet h

.* shear modulus and the density are in neneral arbitrary functions of the radius.

Substituting eq. (2) into eq. (1), we obtain a single second order equation
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; 2 v av 1 2G vV 1 D2v
+ _ G_ ar .r (3)

where c a (G/p)1/2 is the torsional shear wave velocity. it may be noted

that since only shear stress is involved, these equations are exact for both

a plate (plane stress) and a hollowed infinite body (plane strain).

In the application of the method of characteristics, we may use either

eqs. (1) and (2), the stress approach; or eq. (3), the displacement approach.

The governing equations for both approaches will be given below; while the

numerical procedures for the displacement approach only will be presented.

CHARACTERISTIC EQUATIONS

In the displacement approach, we apply the method of characteristics to

the single second order equation, (3), and obtain the following two physical

characteristics

dr (G/p)1/2
= - (4)

which will be called the I+ and I- characteristics, respectively. Notice that

eqs. (4) are of the same form for both homogeneous and nonhomogeneous materials.

For homogeneous materials, the physical characteristics are two families of

straight lines of constant slope, whereas for nonhomogeneous materials, they

are two families of curved lines in the r,t-plane. In both cases, once the

distribution of G and p are given, the physical characteristics are determined

independent of the loading and solution of the problem.

The characteristic equations of (3), with vt for Bv/at, vr for 3v/ar, are,

v) dr dG
d(vt) c d(vr) ±C(vr r r + (s)

along the I+ and I- characteristics, respectively. For homogeneous material,

the term containing dG vanishes in (5).

In the stress approach, we differentiate eq. (2) with respect to time and
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rewrite (1) and (2) as

3T 2- av t  (6)
ar +2r Vt

.3 T av t v t)

- G r rT- (7)

These may be considered as two first order equations in terms of T and vt *

Applying the method of characteristics to eqs. (6) and (7), we obtain two

physical characteristics identical to (4). The corresponding characteristics

equations are

-G -G drdr " cd(vt) = (-2T.Gv)r (8)

along I+ and I-, respectively. Unlike eqs. (5), the form of eqs. (8) is the

same for both homogeneous and nonhomogeneous materials. It can be shown

readily that upon substitution of (2) into (8), eqs. (5) are obtained.

For the present problem, the stress approach and the displacement approach

yield identical results. This is different from the problems of spherical and [
cylindrical dilatational waves 3 and the problem of cylindrical flexural waves

in a plate 4. In both those cases, the stress approach produces one extra

physical characteristic, dr/dt = 0, which has an associated characteristic

equation equivalent to a restatement of the static stress-displacement relations.

PROPAGATION OF DISCONTINUITY

Across the physical characteristics the second derivatives of v (or the

first derivatives of T and vt) may be discontinuous. Discontinuities of the

first derivatives of v (or T and vt themselves) may also exist across the

physical characteristics, but these will not be governed by eqs. (5) or (8).

In Ref. 3, the equations governing the discontinuities in the first derivatives

(jump conditions) of the displacement variable in dilatational waves are

derived by using the stress approach. In Ref. 4, a similar set of jump

'p -5-



conditions are derived for flexural waves by using the displacement approach.

In this paper, we shall follow the displacement approach and derive the jump

* condiions for shear waves in nonhomogeneous materials.

Let A and B be two points on a I- characteristic as shown in Fig. 1.

The- two I# characteristics passing through A and B are represented by I+ and

I2l respectively. If a discontinuity of vt across I+ exists, then VtA vt v
+ +

is finite but different from zero as 12 is allowed to approach I+, or as dr

approaches zero. Writing eq. (5) (with the lower sign, for I-) and integrating

from A to B, we have

(vtA - vtB) + - - - (9)Ac d(Ar) A r C( r r iA -r

As B approaches A, the right hand side of (9) vanishes, since the integrands

contain bounded values of c, vr, and v, provided the domain in the physical

plane does not include the line r 0. Integrating the left hand side integral

by parts, and keeping in mind that vr is bounded, as B approaches A eq. (9)

becomes

v + c - 0 (10)

where brackets are used to designate jumps. The variations of [vt] and [vr]
as they propagate along the I+ is obtained by writing (5), with the upper

+ +n

signs, along 12 and I+, and subtracting one from the other. As B approaches

A, we have

d[vtI - c = rr dG

where the condition [v] = 0 has been utilized. Eliminating [vr] from (11) by

(10), we obtain

d[vti 1 dr d c + dG

T -r c (2

which may be integrated to give

[vt] -K6
= (Gr) (6-



Equations (10) and (13) then yield

j [v * K (~1/2 (14)

The corresponding jump in T obtained from (2) and (14) is governed by

KG 1'

Equations (13) to (15) are for jumps across, and the propagation along,

a I+ characteristic. Fol-lowing the same procedure, equations for those across

and along a I- characteristic can be shown to be

IVi ] +K( (..L_) 1/2 (6

--'1 " +K (s-) 1/2
Th am eto eutin I] tor (116)alob eivdfo tesrs

cr

The same set of equations (13) to (16) may also be derived from the stress

approach.

INITIAL AND BOUNDARY CONDITIONS

Thbe elastic body under consideration will be either an infinite sheet

with a circular hole, or an infinite hollow cylinder. These configurations

can be represented by r. < r < -, where r0 is 9. constant. Initially, the body

is not loaded, thus the stress and velocity are zero. For time greater than

zero, the input is applied at the boundary r = ros either suddenly or

gradually. This input can be in the form of specified time functions of any

one of the three variables, vt, vr, or T.

NUMERICAL PROCEDURE

It is convenient to introduce non-dimensional quantities as follows:

r=r/ro  , t /r GI= GoV/Tor TIT
00 0 0' or0 (17)

-p/pos ,c/c
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Thus, the results in terms of these quantities are true for materials of

any values of GO, PoD and ro.

A numerical technique for stepwise integration along the physical

characteristics is developed. In the rj-plane, the region between i = 1

and i = 1 + Rt is divided into a grid system by the two families of

characteristics. The displacement approach is used, thus at each grid

point values of v, vt, and Vr are calculated. Since only continuous v is

considered for all regions in the physical plane, we may write the continuity

equation

6 = t di + r di (18)

along any directions. In our numerical work, this continuity equation along

the I- characteristics is used. Values of the three variables , t, and Vr

at a typical interior point 1 of Fig. 2 may be calculated from eqs. (5) and

(18), expressed in finite-difference form, if all quantities at the neighboring

points 2 and 3 are known. Along the leading I+ characteristic passing through

(1,0), all three variables vanish if the prescribed boundary condition at (1,0)

is continuous. For jump input at (1,0) values of ;r and t along the leading

characteristic are calculated from eqs. (13) and (14). Along the boundary

= 1, either t or 7 is specified; correspondingly, the I+ characteristics

to the left are absent leaving two equations for two unknowns.

In the numerical calculation, the characteristic grid system was constructed

by choosing points on the leading I+ characteristic with equal horizontal

distance, as shown in Fig. 2. The I- characteristics are constructed from

the reflections of the I+ characteristics from the boundary r - 1.

SPECIFIC EXAMPLES

A few specific examples of various inputs at i = 1 are calculated and the

results compared with existing solutions by other methods. Although all the
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equations and the numerical procedures discussed in this paper are applicable

to bodies with arbitrary radial distribution of G and , in the specific

examples presented below a special distribution is selected, i.e.,

G a , = 1
(19)

S (i;)1/12 ; "

where a is a constant. With these functions of G and , our results may be

compared directly with those of Refs. 1 and 2. For a unit step stress input,

the long time asymptotic solution of stress should approach the corresponding

static solution, i.e., 1 l/r2 , regardless of the elastic properties of the

medium.

Homogeneous Medium

For a homogeneous medium, a = 0, results of our calculation are shown in

Fig. 3, for a unit step ; input at the hole. On this figure, the results

obtained by Goodier and Jahsman1 is also shown. Figure 3 is a plot of';

against time, at three different radial locations. As far as the arrival

time, the magnitude of the peak stress, and the asymptotic static values of

the stress are concerned, our results and those of Ref. 1 are in agreement.

However, a slight discrepancy in T exists during a time period after the

arrival of the wave front.

It is interesting to note that for homogeneous media, the governing

equation in terms of displacement, eq. (3), is of the same form as the

corresponding equation for cylindrical dilatational waves, eq. (10) of Ref. 3.

If the input at a 1 is in terms of prescribed velocity, then the solutions

(displacement and velocity) for the dilatational wave can be used as those

for the shear wave, if the value of the wave velocity is properly adjusted.

The stresses must be calculated from the proper stress-displacement equations

for each case separately.

-9-



Nonhomogeneous Medium, a-= 1

With a value of a a 1, the physical characteristics are curved lines as

shown in Fig. 2. With a constant increment in i along the leading I+

characteristic, the grid segments along the I- characteristics are not of

constant length. The change in length of the segments is not evere, and

is believed to be tolerable in the numerical calculation within the region

of interest. Our calculated stress distribution is shown in Fig. 4. On

this figure, the results obtained by Sternberg and Chakravorty2 are also

given for comparison. Again, correct values of arrival time, peak stress,

and long time asymptotic stress are obtained by both methods. A slight

discrepancy exists for stress during a time period after the arrival of the

wave front.

Nonhomogeneous Medium, a = 10

This is a case of particular interest because an exact closed form

solution exists. 2 For a unit step stress input, closed form solutions

exist for those media with the following values of a,

aU2(2k-,1)(k-0 l pse)2)
a 3(k 20, ± ±2, ... ) (20)

where a x 10 is a special case corresponding to k a -2. As shown in Ref. 2,

the Laplace transform of the displacement is a modified Bessel function which

degenerates into elementary functions if a is given by (20). These elementary

functions can be inverted into closed form functions of i and i.

For problems with a > 2, the Laplace transform method yields a critical

time t", where solutions exist only in the time interval

0 < i < iw (21)

Ile shall show that solutions above this critical time can be obtained from

the method of characteristics.

-10-
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[ Integrating the dimensionless physical characteristic with c given

by (19), we have the equation for the leading I+ characteristic

2-a {(2-a)/2- (22)

This characteristic has an asymptote at * 2 /(4-2), where r 4

In Fig. 5, this leading I+ characteristic fcr a 10 is labeled as curve OA.

As , the wave speed Z and the stress i all approach infinity. In the 1>

Laplace transform method, the transformed displacement is governed by an

ordinary differential equation with i as the independent variable, which

cannot tolerate unbounded boundary values. Consequently, no solution can be

obtained for t> i from the Laplace transform method.

From the principle of domain of dependence in the method of character-

istics, if proper values of v is prescribed along OB (Fig. 5), which is not

a characteristic, and proper values of v and vt are prescribed on OA, then

the solution is uniquely determined in the region OAB, where AB is the I-

characteristic passing through A and B. Notice that point B is at a time

larger than t which is 0.25 for a = 10. Along the leading I+ characteristic,

values of and r increase without bound as i increases. The.domain withr

which the solution can be obtained is therefore bounded by line CD, the I

characteristic asymptotic to the line t - E. In applying the numerical

integration along characteristics, accurate solution cannot be obtained for

points very close to the line CD; because the characteristic grids are greatly

distorted for large r and the values of and r are too large.

Results of our calculation and those of Laplace transform are shown in

Fig. 6, in the form of 7 agains' t at different radii. For < i , the Laplace

transform solution indicates ; is constant for fixed radius. The results from

method of characteristics are in complete agreement with this for r = 1.1 and

1.2. The Laplace transform solution stops abruptly at t = 0.25; whereas the

method of characteristics yields results beyond this time, and the stress

~-11-



remains constant for t > 0.25 at r z 1.1. For large values of r, or for

values of i close to the curve CD, our results show an increase in stress,

which is probably due to the inaccuracy introduced by the large distorted grids.

DISCUSSION

For the case of a a 0 and a = 1, the numerical results from the method

of characteristics deviate slightly from the curves presented in Refs. 1 and

2, which were obtained by the Laplace transform technique. The curves presented

in Refs. 1 and 2 were in rather small scale without enough resolution for

accurate evaluation. Therefore, the discrepancy may be due to either inaccuracy

in plotting and reading of curves; or inaccuracy in one or both of the numerical

results. The basic procedure of the present calculation remains unchanged for

different values of a; and for the case of a = 10 the present calculation is

very accurate. This seems to give a certain degree of confidence in the

accuracy of the present method.
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