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ABSTRACT 
U ' '‘-A 

" A unified performance prediction method has been 

developed for class A diffusers. Class A diffusers are 

those diffusers which have the following flow and geometry 

restrictions r' 

Flow restrictions 

1. Subsonic, l.e., 0 < < Mchoklng , 

2. Inlet Reynolds number. Re > 25,000, 

3. Symmetric inlet velocity profile, 

4. Unstalled, 

5. The flow is divisible into an effective core flow 

plus turbulent boundary layers. (An effective core 

flow is that flow with a uniform velocity profile 

and a flow area equal to the diffuser cross-sectional 

area minus the flow blockage area.) 

Geometric restrictions 

6. General, 

a. Symmetric, 

b. Non-turning, 

7. Structural, 

a. Two-dimensional, 

b. Three-dimensional, l.e., a diffuser with rectan¬ 

gular cross-section and plane walls that diverge 

in both directions normal to the flow direction, 

c. Conical, 

d. Annular. 

The prediction method is a system of linear, first order 

differential equations. These equations embody the momentum 

equation, continuity equation, and two empirical correlation 

equations. The correlation equations, due to von Doenhoff 

and Tetervin, are known to be less than totally adequate for 

boundary layer calculations. However, they appear to be 

sufficient for the present purpose since prediction of 
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diffuser performance is insensitive to the boundary layer 

calculation method. 

In addition to the prediction method, two parameters 

have been developed to characterize inlet conditions and 

separation respectively: is defined as the ratio of the 

inlet boundary layer blockage area to the total inlet area; 

B-l < 0.05 indicates those flows which can be divided into 

an effective core flow plus turbulent boundary layers, ß* 

is a correlation of first appreciable stall in a diffuser; 

it provides a means to terminate analytical calculations. 

The predicted results include: 

1. Performance charts; l.e., contours of constant 

pressure recovery on a plane of area ratio versus 

non-dimensional length; 

2. Predicted effects of Reynolds number, Mach number, 

wall contour, corners, and diffuser geometry on 

pressure recovery for class A diffusers. 
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NOMENCLATURE 

AR 

AR(x) 

AS 

Ae(x) 

A6^ 
B(x) 

B, 

Cp 

Cp (x) 

^P 

Cp1 

Eu 

H 

L 

M(x) 

N 

distance used to define the rate of divergence of 
the core flow of a diffuser (see Eqn. 7) 

- diffuser area ratio, A2/A1 

- local area ratio, AU)^ ; 1 < AR(x) < AR 

- diffuser aspect ratio, b/V^ 

effective core area (local cross-sectional area 
minus the local boundary layer blockage area) 

- boundary layer blockage area 

the ratio of the boundary layer blockage area to 
the total area 

- B(0) or inlet blockage (see table on page 23) 

- distance between parallel walls of a two-dimensional 
diffuser, or the longer of the two inlet dimensions 
for a three-dimensional diffuser 

static pressure recovery. 

ql 
- local value of pressure recovery in a passage 

F(x) - 

- static pressure recovery, —I , based on the 

ql 
centerline dynamic head q1 (without overscore) 

- ideal static pressure recovery based on one¬ 
dimensional, inviscid flow 

- characteristic length for Reynolds number 

^1 two-dimensional and three-dimensional 
diffusers 

R^ for conical diffusers 

AR1 = ^o,l ” ^1,1 annular diffusers 

- local Euler number 

- boundary layer shape parameter, b*/e 

- diffuser wall length 

- local Mach number 

- axial length of a diffuser 
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non-dimensional axial diffuser length 

N/W-. for two-dimensional and three-dimensional 
diffusers 

N/F^ for conical diffusers 

N/AR^ for annular diffusers 

static pressure 

average static pressure at the cross-section. For 
the data taken at Stanford, P is the arithmetic 
average of the static pressure measurements 

dynamic head, (l/2)pU2 
_ _p 

dynamic head based on U , (l/2)pU 

inlet radius ratio for annular diffusers, RT -,/Rn -, 
1,1- u, i 

radius 

difference between the inlet radii for an annular 

diffuser, Ro 1 “ Ri i 

U-jD 
Reynolds number, —TT ,-. * U -i y 
Reynolds number based on momentum thickness, 

local mean velocity 

core flow velocity or maximum velocity 

mass average velocity 

width of two-dimensional diffuser between diverging 
walls, or the shorter of the two inlet dimensions 
for a three-dimensional diffuser 

axial and flow directions measured from the throat 

non-dimensional axial coordinate 

x/W-, for two-dimensional and three-dimensional 
diffusers 

x/R^ for conical diffusers 

x/AR^ for annular diffusers 

distance normal to the wall 

effective wall shape (see Figure 4) 

distance transverse to the flow 

parameter in wall shape equation for wall fairing 
calculations 

a parameter that indicates the probable inception 
of stall 



- boundary layer thickness 
o 

- boundary layer displacement thickness, /(1- ?r)dy 
o u 

- the corner Interference boundary layer displacement 
thickness (see Appendix B) 6 

- boundary layer momentum thickness, / ji(i - H.) dy 

- diffuser effectiveness, Cp/Cpj^ 

- diffuser effectiveness based on the centerline 
pressure recovery, Up/Cpi 

- half angle of the diffuser 

- kinematic velocity 

- fluid density 

- shear stress in the boundary layer 

- the particular wall shear correlation in Eqn. 21 

Subscripts 

1 - diffuser entrance or throat 

2 - diffuser exit 

d - diverging walls 

da' db " dlstlnSuishes the diverging walls in a two-dimen¬ 
sional diffuser with unequal inlet boundary layer 

d^ d2 - che two divergence directions for a three-dimen¬ 
sional diffuser 

p - parallel walls 

pa’ pb " dlstlnguishes the parallel walls in a two-dimen¬ 
sional diffuser with unequal inlet boundary layers 

0, I - outer and inner surface of an annular diffuser 

w - wall 
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GLOSSARY 

- The parameter, , is defined as the ratio of the inlet 

boundary layer blockage area to the total inlet area. 

For "normal" profiles, the blockage area is essentially 

the boundary layer displacement thickness times the 

inlet perimeter. This parameter is a measure of the 

inlet boundary layer thickness. 

ß* - The parameter, ß* , is a correlation of the line a-a, 

the line of first appreciable stall in a diffuser. When 

the value of ß* decreases to 0.48, then first appre¬ 

ciable stall is probable in the diffuser. 

Class A diffusers - Class A diffusers are those diffusers 

whose flows and geometries are restricted as follows: 

Flow restrictions 

1. Subsonic, 

2. Re > 2.5 X 10^ , 

3. Symmetric inlet velocity profiles, 

4. Unstalled, 

5. < 0.05 ; 

Geometric restrictions 

6. General, 

a. symmetric, 

b. non-turning, 

7. Structural, 

a. two-dimensional, 

b. three-dimensional, 

c. conical, 

d. annular. 

Effective core area - The effective core area is the local 

diffuser cross-sectional area minus the local blockage 

area. 
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Three-dimensional diffusers - That class of diffuser geometries 

which have a rectangular cross-section and walls that 

diverge in both directions normal to the flow direction 

are denoted three-dimensional diffusers. 

Maximum pressure recovery - The pressure recovery for a series 

of diffusers with constant non-dimensional length but 

different total area ratios varies as indicated in the 

following diagram: 

The peak in pressure recovery is denoted the maximum 

pressure recovery. 

The following brief descriptions of the major states of 

stall in a diffuser (see Figure 1) are quoted from Reneau 

[1964], 

1. No Appreciable Stall 

This flow regime is confined to small angles and area 

ratios; it is shown as the crosshatched region below line a-a 

in Figure 1. The flow is steady, and although the boundary 

layers may become thick, at most only small areas of stall 

are observed. The pressure and velocity profiles are essen¬ 

tially symmetrical about the center plane and are relatively 

constant in time. Geometries in the vicinity of line a-a 

contain a small amount of stall near the exit; the stall is 

generally seen in a corner. 

The definition of line a-a is that selected by Fox and 

Kline [1962]. At line a-a, 1/5 of the wall height b of 
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one wall is ètalled at times. 

2. Large Transitory Stall* 

This region lies between line a-a and line b-b in Figure 

1. The flow is very erratic and gross fluctuations of the 

whole flow pattern are observed. Stalled regions constantly 

form and wash out of the diffuser. This causes relatively 

large pressure fluctuations throughout the diffuser. 

3. Two-Dimensional Stall* 

For geometries in the region just above line b-b a two- 

dimensional stall exists. It can exist up to line c-c, but 

between lines c-c and d-d jet flow can also exist. The zone 

between line c-c and line d-d is a hysteresis region. 

In two-dimensional stall, the flow separates near the 

throat and follows one wall; a steady, fixed stall covers the 

other diverging wall. The flow is steady except for the 

intense turbulence in the mixing zone between the stall and 

the through flow. The stall is bi-stable; that is, the stall 

is stable on either diverging wall. 

4. Jet Flow 

Jet flow is always observed above line c-c and may exist 

down to line d-d. 

In the jet flow pattern, the incoming stream separates 

from both diverging walls at or very near the throat and 

proceeds straight down the diffuser; a large, fixed stall 

covers each diverging wall. Jet flow is much steadier than 

the large transitory stall. 

Sometimes called three-dimensional stall in the literature. 

^Sometimes referred to as fully-developed stall in the 
literature. 
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CHAPTER 1 

INTRODUCTION 

A. General Remarks 

A diffuser is a device for converting the momentum of an 

incoming flow represented by the velocity into an increase in 

static pressure. Thus, fluid diffusion is often denoted a 

pressure recovery process. 

The pressure recovery process is easily described by 

Bernoulli's equation for the ideal or reversible case; for 

steady flow^of an incompressible fluid along a streamline: 

p + 1/2 p U = constant , 1.e., a decrease in velocity is 

accompanied by an increase in pressure. The details of the 

actual process are difficult to describe or predict because 

real fluid effects lead not only to a complicated coupling 

between the boundary layer growth and the adverse pressure 

gradient in the diffuser, but also to several kinds of flow 

separation which may be transient and three-dimensional in 
nature. 

As a consequence oí these difficulties, many researchers 

have investigated the diffuser pressure recovery process with 

the following three objectives: 

1. To measure the pressure recovery; 

2. To determine the effect, if any, of the various flow 
and geometric parameters on the pressure recoverv 
process; ^ 

3. To determine the overall flow patterns. 

The major results of this long research effort are summarized 

in a brief historical survey in Section C below. The objec¬ 

tive of this work is given in the following section. 

B. Objective 

The objective of this work is the development of a pre 

diction method for the pressure recovery of diffusers. The 

effort has been successful to the extent that a method is 

given which can predict the pressure recovery for one large 
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group of diffusers. This group is called "class A"; it is 

subject to the following set of flow and geometric restrictions: 

Flow restrictions 

1. Subsonic flow, l.e,, the inlet Mach number, M-^ , 

ranges from 0 to choking; 
4 

2. Inlet Reynolds number. Re > 2.5 x 10 ; 

3. Symmetric inlet velocity profiles; 

4. Unstalled flow, i,e., no appreciable boundary layer 

separation in the diffusing flow. The amount of boundary 

layer separation in diffusers can be summarized with a 

flow regime chart where the flow regimes are defined as 

functions of area ratio and a non-dimensional length. 

For example, the flow regime chart for two-dimensional 

diffusers is reproduced from Fox and Kline [1962] in 

Figure 1. The unstalled regime is crosshàtched, and this 

is the flow regime where the theory applies. The line 

a-a, the line of first appreciable stall, is the upper 

bound for this regime; a parameter, ß* , has been 

developed which correlates line a-a and, hence, provides 

a means to terminate analytical calculation of the pres¬ 

sure recovery; 

5. The flow must be divisible into an effective core 

flow plus turbulent boundary layers. To provide a means 

to indicate when a flow can be so divided, another 

parameter, , has been defined as the ratio of the 

inlet boundary layer blockage area to the total inlet 

area. When B1 < 0.05 and the inlet flow is nearly 

symmetric, the requisite division is an adequate flow 

model; 

Geometric restrictions 

6. Non-turning; 

7. Symmetric. 

The method to predict the pressure recovery of a diffuser 
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has been applied to diffusers with the following geometries: 

1. Flat, two-dimensional 

diffusers with straight 

and contoured walls. 

(See Figure 2a,repeated 

from Reneau [1964].) 

2. Three-dimensional 

(divergence in both prin¬ 

ciple directions normal 

to the flow direction) 

rectangular cross-section 

diffusers with straight 

walls. (Square diffusers 

are a subset of this 

class; see Figure 2b.) 

For convenience, this 

diffuser class will be 

denoted three-dimensional 

and a particular diffuser 

of this class will be 

denoted 20dl ; 20d2 ; 

AS ; 3D where 0dl and 

0d2 ar>e the divergence 

half angles, AS is the 

aspect ratio and 3D 

denotes the class. 

3. Conical diffusers 

with straight and con¬ 

toured walls; (see figure 

2c). 
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4. Annular diffusers with 

straight walls; (see figure 

2d). For convenience, a 
particular diffuser of 

this class will be denoted 

by 0O î 0j ; r where 
0O and 0J are the outer 

and inner cone divergence 

half angles respectively 

and r is the inlet radiu 

ratio, Rt ,/R , . 
1,1 0,1 

For convenience, diffusers described by the above set 
of flow and geometry restrictions and with two-dimensional, 

three-dimensional, conical, and annular geometries are denoted 

class A diffusers. 

C. Historical Survey of Diffuser Research 

The first recorded, quantitative diffuser research was 
conducted in the late l8th century by Venturi [1797] and 
contemporaries. They sought to answer the then academic 

question, "What are the geometric specifications for the 
most efficient diffuser?" Venturi's answer was, "A straight, 

conical diffuser with a total divergence angle of 4027'." 

In the early 19th century, the technological problem of 
increasing the overall performance of hydraulic turbines 

stimulated more diffuser research. This research was directed 
specifically toward providing an acceptable means to solve the 

design problem that confronted the turbine builders. When 

the quantitative research results indicated that actual pres¬ 

sure recoveries were much smaller than ideal recoveries, 
researchers began seeking means to improve diffuser pressure 

recovery. Their efforts were only marginally successful in 

that a few devices were found that would increase the pressure 
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recovery of very specific diffusers, but they did not improve 
all diffusers. 

Around 1900, diffuser research was still centered on 
the design problem, but the effect of some parameters on 

pressure recovery were being measured. For example, pressure 

recovery was found to be essentially Independent of Reynolds 

number. Gibson [1910, 1912, 1913] correlated pressure recovery 
with divergence angle for a fixed area ratio. 

With new applications (notably wind tunnels, pumps, and 
ejectors) developing by the nineteen-twenties, more fundamental 
studies of diffuser processes were conducted. The major con¬ 
clusion was that boundary layer separation in internal flow 
could be correlated with the diffuser geometry. The early 

correlations (for example, Nikuradse [1929]) were based on 
one parameter of geometry, which later proved inadequate. 
Peters [193^] qualitatively determined the effect of inlet 

boundary layer thickness and tailpipes on pressure recovery. 
He showed that pressure recovery decreases as the inlet 

boundary layer thickness is increased, but increases with the 

addition of a tailpipe. The tailpipe also stabilizes the 
exit flow in some situations. In 1938, Patterson [1938] 

surveyed all the then available diffuser data, and deduced 
general rules for diffuser design within the limits of 
available data. 

In the nineteen-forties, more details of the diffuser 
pressure recovery process were determined. First, Polzin 

[1940] correctly suggested that the boundary layer separation 
in internal flows could be correlated with two parameters of 

geometry, say, area ratio and non-dimensional length, but did 
not construct the correlation due to a lack of data. The 

graphical representation of the correlation between the 

diffuser geometry and the amount of boundary layer separation 

can be called a flow regime chart. Later in response to the 

jet engine development (where diffusers are part of the air 
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intake system), the effect of Mach number on pressure recovery 

was investigated (for example. Young and Green [1944]). For 

subsonic flows, this effect is small until the diffuser chokes. 

Beginning in the mid-fifties and continuing to the 
present, S. J. Kline and co-workers at Stanford University 

have engaged in several aspects of diffuser research. First 
the areas on the flow regime chart (see Figure 1) were 

established with greater confidence over a wider range of 
geometries as reported in Moore and Kline [1958] and Fox and 

Kline [1962]. The basis for the added confidence was the 

recognition that a spectrum of stall states exists (see Kline 

[1959]). The major regimes of stall indicated in Figure 1 
are: no appreciable stall, large transitory stall, two- 

dimensional stall, and jet flow. These regimes are briefly 

defined in the glossary; more complete definitions appear in 
Fox and Kline [1962]. The concept of a spectrum of stall 

states has been related to flow steadiness and the occurence 
of maximum pressure recovery at constant length (see Kline 

[1962]). 

The effects of inlet boundary layer thickness and the 
inlet velocity profile distortions on the diffuser flow 
pattern and pressure recovery have been reported in Waitman, 

Reneau, and Kline [i960]. In particular, the pressure recovery 
decreases as the inlet boundary layer thickness increases and 
as the inlet velocity profile is distorted from a uniform 
profile. In Kline, Abbott, and Fox [1959],the diffuser design 
problem was defined in terms of four optima: 

1. Minimum total head loss per unit actual pressure 
rise or equivalently, the maximum effectiveness; 

2. Optimum recovery for a given area ratio; 

3. Optimum recovery for a given length; 
4. Best optimum for any geometry. 

Reneau [1964] presented a rational method for designing non¬ 

turning, two-dimensional diffusers. The method is summarized 
with data maps and a survey of the effects of the many flow 

6 



■MMHMMOMm 

and geometric parameters on diffuser performance. Reneau 

also specifically provides data over an exceptionally wide 

range of geometries and inlet conditions as a basis for 

checking prediction methods. 

Recently, the pressure recovery has been predicted for 

some diffusers (Ackeret [1958], Schlichting and Gersten [1961], 

Reneau [196Jr]). The two major disadvantages of all these 

prediction methods are: (i) they apply only to unstalled flow, 

but provide no reliable means to indicate when the flow may 

be stalled; (li) each was applied to only one diffuser shape. 

Reneau did suggest a detachment criterion based on a maximum 

value of the axial gradient of the momentum thickness, 

d0/dx > 0.012 , as a means to terminate calculations. How¬ 

ever, this criterion does not correlate the line of first 

appreciable stall, instead it conservatively estimates the 

line of maximum pressure recovery which occurs after first 

appreciable stall. Moreover, additional calculations show 

it does not work well for units with other than straight walls. 

The major results of diffuser research have been indi¬ 

cated in this brief history. These results plus the place of 

this work in terms of these results will be considered in the 

following section. 

D. Closing Remarks 

The brief historical summary indicates the progress in 

understanding the diffuser pressure recovery process from 

the first efforts to determine the geometry of the most 

efficient diffuser to developing methods that predict the 

pressure recovery of arbitrary diffusers. During this long 

period of research, it has gradually become clear that the 

Important factors affecting diffuser pressure recovery are 

inlet velocity profile and the amount of boundary layer 

separation in the diffuser. In particular, the pressure 

recovery of a diffuser decreases as the inlet boundary layer 
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thickness increases and as the inlet velocity profile is 

distorted from a uniform velocity profile. With all other 

things equal, the pressure recovery decreases with appreciable 

boundary layer separation. In addition, the effects of 

Reynolds number on pressure recovery is small for the Reynolds 

number range of most applications, and the effect of Mach 

number is also small until the flow chokes. Similarly, cross- 

sectional geometry and aspect ratio are unimportant except in 

the most extreme limits. 

Quantitative and qualitative understanding of the above 

effects allow rational design of diffusers. For two-dimen¬ 

sional class A diffusers, the design problem has been reduced 

to selecting the appropriate data map in Reneau [1964], For 

the remaining class A diffusers, the data are not sufficient 

to allow construction of detailed data maps. 

The data maps for the remainder of the class A diffusers 

could be constructed by an extensive experimental program 

similar to that undertaken for two-dimensional diffusers. 

However, this would be a long and expensive process. The 

alternate approach is to use the experience gained in pre¬ 

dicting the pressure recovery for two-dimensional diffusers 

as a basis for construction of analytical methods to predict 

the pressure recovery for the remaining class A diffusers. 

The latter approach does not completely replace an experimental 

program; but, if successful, it will greatly reduce the scope 

of the experimental program required. In this approach, only 

the pressure recovery of a few diffusers must be measured to 

verify the calculated pressure recoveries and to determine 

the useful range of the theory. 

This work does provide an analytical method for predicting 

the pressure recovery of the remaining class A diffusers. 

The analytical methods, which are developed in Chapter 2, 

are based on the momentum equation and the continuity equation 

for a simple, quasi-one-dimensional flow model and on two 
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correlations - the von Doonhoff and Tetervin [19^3] two- 

dimensional shape factor correlation and the Ludwig and 

Tillman [1950] wall shear correlation. These basic equations 

plus the two correlations are combined to produce a system of 

linear differential equations which represent the change in 

Integral boundary layer parameters. These differential 

equations are solved numerically, and the resulting informa¬ 

tion is sufficient to determine the pressure recovery of the 

diffuser. 

In Chapter 3, the predicted pressure recoveries are 

compared to measured pressure recoveries from the widest 

possible selection of published sources. No experimental 

work was undertaken by the author, but all available data 

have been used as appropriate to check the theory. The 

pressure recovery for class A diffusers and several other 

calculated effects are presented in Chapter 4, in Appendix 

D, a few additional experiments are suggested to check the 

present theory in extreme cases for which data do not 

presently exist. 

9 



CHAPTER ? 

ANALYSIS 

Ideally an analytical method to predict diffuser per¬ 

formance would produce numerical pressure recovery values for 

all possible inlet conditions and all diffuser geometries. 

In this sense, the method presented below is far from ideal. 

Only class A diffusers can be simulated with the diffuser 

flow model to be developed in this chapter; they represent 

perhaps half of the cases encountered in technical applications. 

A. Flow Model Motivation 

Before the generalized equations which model the flows 

in class A diffusers are derived, the following discussion 

is presented to motivate the flow model of an effective core 

plus boundary layers. Experimentally, the pressure recovery, 

Cp , of a diffuser may be determined by measuring the average 

pressure difference across the diffusing section, then non- 

dimensionalizing the pressure difference by the centerline, 

inlet dynamic head 

Provided the flow in the central region has only a small 

stream-normal pressure gradient and is without appreciable 

dissipation, equation (l) can be combined with Bernoulli‘s 

equation to give for incompressible flow 

Cp = 1 (2a) 

The compressible case is easily expressed in slightly more 

complex form under the same assumptions 
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k/k-1 

Cp = 

1.0 + k-1 ,,2 

1.0 + 

2 
TTT 

M 
1_ 

M^(x)l 
- 1.0 

1.0 + k-1 M 
P| k/k-1 

■ 

(2b) 

- 1.0 

In equation (2a), the pressure recovery is expressed in terms 

of the centerline velocity ratio. If the velocity ratio can 

be determined, then the pressure recovery can be calculated. 

The velocity ratio can be determined Indirectly from an 

effective diffuser flow. The effective flow is that flow 

with a uniform velocity profile 

and an effective flow area equal 

to the actual flow area minus 

the boundary layer blockage 

area (see sketch). Now, the 

velocity ratio can be deter¬ 

mined by applying the continuity 

equation to the effective flow 

and the pressure recovery can 

be expressed 

Cp = 1 - 
/A 
e, 1 

^e 2 

= actual flow area 
= boundary layer 
blockage area 

= effective core 
area 

(3) 

In equation (3)* Ae is the effective core area. 

The above example demonstrates that the pressure recovery 

of a diffuser can be determined by measuring the boundary 

layer displacement thickness since the core area can be 

calculated once the boundary layer displacement thickness is 

known. In general, the boundary layer measurement method 

for determining pressure recovery is not as operationally 

convenient as the usual pressure measurement method. To 

repeat, under the conditions considered here, the pressure 

recovery of a diffuser is known once the boundary layer growth 
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in the diffuser is known. This idea suggest a reasonable 

approach for analytical prediction of diffuser pressure 

recovery; that is, to predict the boundary layer growth in 

the diffuser and hence, determine the pressure recovery. 

The problem of predicting the pressure recovery for a 

diffuser has now been reduced to predicting the boundary 

layer growth. Here again, the ideal solution would be to 

predict the boundary layer growth for all inlet conditions 

and all diffuser geometries. The basic obstacle to the 

ideal goal is predicting the growth of a turbulent boundary 

layer in an arbitrary, adverse pressure gradient. This 

problem has not been fully solved, nor is a new solution 

attempted here. Instead, the diffuser problem is solved 

with one of the many semi-empirical correiatic ns which have 

been developed to estimate the growth of a turbulent boundary 

layer in an adverse pressure gradient in terms of the 

boundary layer integral parameters, 6* and 6 . These semi- 

empirical methods are known to be less than totally satis¬ 

factory, but they are the best tools available. 

One approach developed for external flows is to combine 

the Integrated, boundary layer momentum equation with a wall 

shear correlation and a shape factor correlation. When the 

external pressure gradient is also specified, the problem is 

well posed, and the change in the integral boundary layer 

parameters can be estimated. 

An approach as general as the above has stimulated many 

researchers to develop a "better" method. Rotta [1962] 

summarizes most of these methods, and indicates that one 

particular method can solve one problem well, but in general, 

all methods that have been developed do about equally well 

(or poorly) for general problems. 

To apply the boundary layer calculation methods of 

external flows to the internal flow in a diffuser, the class 

of diffuser flows must be restricted. The two major differences 
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between internal and external flows with respect to boundary 

layer calculation methods are: (i) the pressure gradient is 

not known a^ priori in an internal flow, (ii) the boundary 

layer on one wall of a diffuser can have a large Influence 

on the boundary layer on the opposite wall. One means to 

avoid both of these difficulties is to consider only those 

flows which can be divided into an effective core plus bound¬ 

ary layers. For these flows, the pressure gradient can be 

determined in a stepwise manner from a differential form of 

the continuity equation applied to the effective core as the 

calculation proceeds down a given diffuser. In addition, as 

long as an effective core exists in which the total boundary 

layer thicknesses on opposite walls do not overlap and the 

flow is unstalled, the boundary layers can be assumed inde¬ 

pendent of mutual interaction. Hence, for the present cal¬ 

culations, the scope of the possible diffuser flows is 

limited to those that can be divided into an effective core 

flow plus boundary layers. 

In terms of the overall problem of predicting the pres¬ 

sure recovery for diffusers, the above result is one of two 

key reasons for expecting the proposed calculating method to 

succeed for class A diffusers. The other reason is the 

insensitivity of the predicted result (l.e., the pressure 

recovery) to a particular means for calculating the growth 

of the boundary layer. The calculation method predicts the 

difference between the ideal pressure recovery and the 

theoretical value; this is a small quantity relative to the 

total value of the pressure recovery as indicated in the 

following sketch: 
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ideal pressure 
recovery 

theoretical 
pressure recovery 

measured pressure 
recovery 

non-dimensional 
diffuser length 

Hence, a large percentage error in calculating the boundary 

layer parameters gives c much smaller percentage error in 

pressure recovery. 

A restatement of the above result is that this work is 

not an endorsement of the von Doenhoff and Tetervin boundary 

layer calculation method. In fact, any reasonable boundary 

layer calculation method could have been used in the method 

to predict the performance of class A diffusers. 

B. Developing Equations for the Flow Model 

Having motivated the flow model of an effective core plus 

boundary layers by the above example, the generalized mathe¬ 

matical expressions for the model will be developed. The 

equations are of two types - basic principles and correlations. 

For this development, the basic principles are the boundary 

layer momentum equation and the continuity equation; the 

correlations are the von Doenhoff and Tetervin [1943] shape 

factor correlation for turbulent flows and the Ludwieg and 

Tillman [1950] wall shear correlation for turbulent flows. 

The necessary equations will be developed in parallel for the 

two subclasses (with regard to boundary layer types) of Class 

A diffusers - two-dimensional and axisymmetric. 

The two-dimensional case was developed completely by 

Reneau [1964]; it is summarized here with the motivation and 

the resulting equations. The axisymmetric case is developed 
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in greater detail. 

The momentum equation is considered first. For the two- 

dimensional case, Reneau started with the time averaged, 

differential boundary layer momentum equations (the turbulence 

terms were neglected since they are small and their general 

behavior cannot yet be predicted in an adverse pressure 

gradient) 

uàu + vàu = _ld£+vdfu ^ 

Òx òy p dx dy2 

and the full continuity equation (the term accounts for 

streamline divergence, Pierce [196l, 1964]) 

du , òv , òw 
3x ïïÿ ïïz 0 

Combining equations (4) and (5) into the usual momentum 

integral form produces the following equation 

dQ _ Tw 
dx “ 2q (H + 2) 

1 
U 

dU 
H7 

Equation (6) is valid for collateral flow down the centerline 

of a diffuser wall, (see Figure 3). Equation (6) contains 

the usual boundary layer integral parameters plus the - 

term. This term represents a correction to the equation 

resulting from the boundary layer interaction with the ideal 

streamline divergence in a diffusing flow. The length 

respresented by "a" is the distance a source flow should be 

located upstream to produce streamlines tangent to the local 

effective wall shape, (see Figure 4). The magnitude of V 

can be determined from the effective wall shape via 

dZ 
1 _ cTx 
ã ' ZT77 (7) 

The effective wall shape can be written in terms of the actual 

wall shape and the boundary layer displacement thickness. 
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For the axisymmetric case, consider the case where the 

boundary layer thickness, 6 , is small relative to the radius 

of the diffuser. The time-averaged, differential, boundary 

layer momentum equation is the same as equation (4). Equation 

(4) is combined with the axisymmetric continuity equation 

(8) 

The momentum integral form becomes 

dR 

(9) 

Equation (9) applies to collateral flow down an element of 

an axisymmetric surface, (see Figure 5). The integral bound¬ 

ary layer parameters in equation (9) have the two-dimensional 

definition. The two-dimensional and axisyrnmetric definition 

of the boundary layer parameters differ by less than 2% for 

£ 0.02 . This difference is within the experimental 

uncertainty of measuring boundary layer parameters. For a 

more fully developed flow with B1 = 0.15 i the differences 

are about 23$. Also note that the ^ R(x) term in equation 

(9) is analogous to the | term in equation (6) and can be 

considered a streamline divergence correction in the same 

sense as . 
a 

In addition to the momentum integral equations (6) and 

(9), the continuity equation is needed separately to provide 

both the velocity change in the effective core as well as to 

express the pressure gradient in a differential form. 

Since the effect of compressibility1’ will be considered 

The compressible flow case is modeled by a compressible core 
flow plus Incompressible boundary layers. To justify this 
model note the empirical result that diffuser inlets choke 
for Mi ~ 0.7 to 0.9 and that the local Mach number decreases 
monotonically in a diffuser. Then knowing that Mach number 
is less than 0.9 at all points in the diffuser; the difference 
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for the core flow, the continuity equation will be considered 

in full generality. The Incompressible case is determined by 

letting the Mach number approach zero. To obtain the effective 

core velocity change, consider the continuity equation in the 

form 

(p U Ae)i = p U Ae (10) 

Solving for U(x) 

“ U1 p(x) Ae(x) 

Assuming the core flow to be reversible and adiabatic, the 

density ratio can be written in terms of Mach number and the 

ratio of specific heats, k ; equation (11) becomes 

or 

1 + 

1 + 

k-1 
2 
FT 
2 

(12) 

U(x) 
1 + 0.2 M2(x) 

1 + 0.2 M2 
k = 1.4 * 

between the compressible and incompressible integral bound¬ 
ary layer parameters is less than the uncertainty in deter¬ 
mining them and the ratio of the friction coefficients is 

i.O > > 0.95 
fi 

cf = 

T 
W 

ipù5 for M < 0.9 (from Figure B13, 

Schubauer and Tchen [1961]). 
% 
The onlv compressible flow data available are for air 
(k = 1.4) at moderate temperatures; this result forms the 
basis for setting k = 1.4 . However, the theory is not 
limited to this value of k . 
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Equation (12) does not express the velocity at the downstream 

station uniquely, but the local Mach number dependence is 
small for subsonic flows and two or three iterations are 
sufficient to determine the velocity with errors of the order 

of 0.001$. For the incompressible case, letting M-^ and M 
go to zero gives 

u<x> = ui 5¡t5T (13) 
"1 fQTT 

The pressure gradient term ÿ is developed from 
another form of the continuity equation 

p U A0 = constant (14) 

Differentiation with respect to x gives 

1 dU = _ 1 dAe _ 1 d£ 
U dx ~ Ag 3x p cfx (15) 

Again, using the isentropic flow relationships, equation (I5) 
can be written 

1 dU 
U dx 1 - M¿(x) A.(x) 

dAe 
33T (16) 

The incompressible form is obtained by letting M go to zero 

1 dU _ _ 1 dAe 
U 3x " Ae(x) dx (17) 

The geometry has not been specified in equations (12), 

(13), (l6), or (I?). This omission has been deliberate to 
indicate the general development of the analytical method. 

The explicit expressions are readily obtained for any desired 

geometry by recalling the definition of the effective core 

area, A0 , which is the local diffuser cross-sectional area 

minus the local boundary layer blockage area. For example, 

the effective core area in a conical diffuser is 
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(18) A (x) = 7T R2(x) - 7t[R(x) - 6#(x)]' 

and equation (l?) becomes 

1 dU 
ÏÏ 3x 

5-(x) J|+ [R(x) 6*(x) ] g|— 

R2(x) - [R(x) - B*(x)]2 
(19) 

Equations (6) or (9), (12) or (13), and (16) or (17) are 

combined with two correlations and one definition to make the 

problem well posed mathematically. The two correlations are: 

(i) the von Doenhoff and Tetervin shape factor correlation 

dH _ 4.68(H-2.975) 
dx " e - e § g| Ia - 2.035(H - 1.286) I 

W (20) 

vWch Includes the apparent wall shear, t , which Is expressed w 
by the Squire and Young [1938] formula 

Ia = [2.558 in(4.075 Ree))2 (21) 
w 

and(ii) the Ludweig and Tillman wall shear correlation 

w „ ™ -I.56IH/- \-0.268 = O.I23 e l(Ree) (22) 

The two wall shear correlations do not represent weak 
analytical logic. The Ludweig and Tillman correlation 

represents the measured values better in an adverse pressure 
gradient while the Squire and Young correlation is part of 

the original von Doenhoff and Tetervin shape factor correla¬ 

tion. Use of both in appropriate places gives more accurate 
results. 

The final expression needed to complete the mathematical 
description is a relationship between the boundary layer 
parameters 

H = 6 
(23) 
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With equations (6) or (9), (12) or (13)* (l6) or (l?)» 

(20), (22), and (23), the flow in a class A diffuser can be 

represented mathematically. To represent an explicit diffu¬ 

ser geometry, the equations for the effective core flow, 

equations (12) or (13) and (16) or (17), are combined with 
the boundary layer equations, equations (6) or (9), (20), 

(22), and (23), for each separate diffuser surface. This 

combination of equations provides a system of at least five 

linear, first order differential equations with non-linear 

coefficients. The following class A diffusers have been 

represented mathematically in this fashion (the equation 

details are tabulated in Appendix A): 

A. INCOMPRESSIBLE FLOW 

1. Two-dimensional 

a. straight walls, Reneau [1964] 

b. contoured walls, Reneau [1964] 

c. correction for corner boundary layer 

d. inlet boundary layer of unequal thickness on 
opposite walls (this case does not satisfy 
the symmetric inlet velocity distribution 
assumption; however, the effect of small 
differences in inlet boundary layer displace¬ 
ment thicknesses can be studied) 

2. Three-dimensional, straight walls 

3. Conical 

a. straight walls 

b. contoured walls 

4. Annular, straight walls 

B. COMPRESSIBLE FLOW 

1. Two-dimensional, straight walls 

2. Conical, straight walls 

3. Annular, straight walls 

For the class A diffusers considered, analytic solutions 

for the describing systems of equations are not known. 

Solutions were obtained numerically with either an Euler 
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integration method or an Adams integration method. Both 

integration methods were quite stable and converged well as 

long as the real diffuser would not have been stalled. Also, 

pressure recovery values calculated independently by each 

Integration method differed by less than 0.01$. 

In summary, the pressure recovery of a class A diffuser 

can be determined from the boundary layer growth in the 

diffuser. In these cases, the boundary layer growth can be 

estimated with a combination of the momentum equation, the 

continuity equation, a wall shear correlation, and a shape 

factor correlation. Hence, the pressure recovery of these 

diffusers can be predicted. 

C. Development of Parameters for Blockage and Stall; 
Relations among Performance Parameters 

Before the predicted pressure recovery values are com¬ 

pared with measured values, three more analytical developments 

will be considered: 

1. Development for a measure of the inlet boundary 
layer thickness in terms of a parameter denoted 

Bi ; 
2. Development of a means to indicate the probable 

inception of stall in the diffuser by a parameter 
denoted ß* ; 

3. Development of relationships between diffuser 
performance factors. 

1. Development of B1 

First consider the development of the parameter, 

which characterizes the inlet boundary layer thickness, 

shown by Peters [1934], Waitman, Reneau, and Kline [I960], 

and others, pressure recovery decreases as the inlet boundary 

layer thickness increases. For a particular class A diffuser 

geometry, the inlet boundary layer thickness, 6* , is suffi¬ 

cient to describe the difference between inlet boundary layers 

in so far as pressure recovery is concerned. However, the 

1 
As 
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displacement thickness alone is not sufficient when the 

pressure recoveries of diffusers with different geometries 

are compared. A more universal parameter is desired. A 

parameter based on the inlet effective flow area should be 

sufficient to characterize the inlet boundary layer since a 

flow model of an effective flow plus boundary layers has been 

assumed to be sufficient to predict the pressure recovery of 

class A diffusers. In more general terms, a parameter based 

on the effective flow area should be sufficient to character¬ 

ize the flow at any cross-section in the diffuser. 

Since a parameter is desired to characterize the boundary 

layer thickness, consider the ratio of the boundary layer 

blockage area, 1,e,, the local cross-sectional area minus the 

effective flow area, to the local cross-sectional area for a 

section of unit depth from a two-dimensional diffuser of 

infinite aspect ratio 

0 W X 1 - (W - 2b*) X 1 
B --wn 

or 

B(x> = -¾¾1 (24> 

B(0) represents the inlet boundary layer blockage and is 

denoted B1 . For the above example, B1 is expressed by 

(25) 

The form of B1 for various geometries of class A 

diffusers is listed in the following table: 
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DIFFUSER GEOMETRY 

Two-dimensional 

Three-dimensional 

Conical 

Annular 

B] 

2_ 

Wn 

e* 

&d,l + PÈ~ 

if i = 6 1 d,l p,l 

26 

W 
1 

1 + 1 1 
ASJ 

2 
W 
1 

+ 
Ddl,l + 

26i r 
¥ 
1 

1 + 
Ä3- 

lf ödl,l ” 6d2,l 

26 

r7 

Sip n 6* , + R_ t 6* ) 
0,1 Ojl Ijl 1,1 

"5-5" 

i - Rt i 0,1 1,1 

26 

R 
1 

0,1 “1,1 
if 6* , = 6* 

o,l 1,1 

The geometric parameters are indicated in Figures 2a, b, c, 

and d. 

To repeat, is defined as the ratio of the inlet 

boundary layer blockage area to the inlet cross-sectional 

area. 

2. Development of ß* 

Next consider the development of the parameter, ß* . 

Since:the analytical method developed here is for unstalled 

diffusers, some means should be provided to indicate when 

the calculated pressure recovery no longer corresponds to a 

unstalled diffuser. The parameter, ß* has been formulated 

to estimate stall inception, ß* has not been developed from 

basic principles; it is a correlation of the line of first 

appreciable stall, line a-a, for two-dimensional diffusers 

(Fox and Kline [1962]; see Figure 1). The form of the 

correlation parameter is assumed to be 
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ß*(x) = 
B, 

Ac # rtj 
A 
X 

e, 1 

(26) 

where $ = x/W-^ for two- and three-dimensional diffusers, 

= x/R1 for conical diffusers, 

= x/AR1 for annular diffusers. 

The power "a" was chosen so that one contour of ß* equal 

to a constant would coincide with the line of first appre¬ 

ciable stall, line a-a, from Fox and Kline [1962]. The value 

is : 

a = 0.536 

with 

ß = 0.48 
crit 

The value of the parameter, ß* j 

is zero at the inlet of a 

diffuser. Proceding downstream 

of the inlet, the value rapidly 

increases to a peak, then 

decreases as indicated in the 

sketch. (Note that the value 

of ß at any given x-statlon 

depends on the predicted flow 

at that station. Hence, the 
* 

value of ß cannot be determined independently of a diffuser 

calculation.) The data show that first appreciable stall is 

probably when the value of ß decreases to 0.48. These 

data are considered in Chapter 3. 

The parameter, ß* , is satisfactory for terminating 

pressure recovery calculations for two-dimensional diffusers. 

Similar parameters are desired for the remainder of the class 

A diffusers. Reliable line a-a data comparable to that 

reported in Fox and Kline [1962] are not available for the 

remaining class A diffusers. Hence, for the present, it is 
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assumed that the parameter, ß* , applies to the other geom¬ 

etries of the class A diffusers with the appropriate change 

in the non-dimensional length. In Chapter 3, indirect evi¬ 

dence will be presented to suggest that this assumption is 

reasonable . 

3. Development of relations between performance parameters 

The last relationships to be developed are between 

diffuser performance parameters. Diffuser performance can be 

specified in many ways;(Sprenger [1959] gives a very detailed 

discussion). At the beginning of this chapter, the diffuser 

performance was indicated by the pressure recovery based on 

the centerline dynamic head 

F2 - F1 
CP = —(27) 

Another measure of performance, the diffuser effectiveness, 

is the ratio of the actual pressure recovery Cp given by 

equation (27) to the ideal pressure recovery, Cp^ 

T = (28) 

Cp, = 1 -^ for an incompressible fluid. However, the 
AR 

centerline dynamic head is not always known or easily deter¬ 

mined. Usually, the mass-averaged inlet dynamic head is 

known since the flow rate and the inlet cross-sectional area 

are known. The ratio of the pressure difference to the mass- 

averaged inlet dynamic head defines Cp (without overscore). 

Thus 

Cp (29) 

The comparable effectiveness is 

(30) 
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The difference in definition of the two pressure recoveries 

is the inlet dynamic head employed in the denominator. The 

ratio of the two dynamic heads for class A diffusers is 

(31) 

Therefore 

Cp = Cp(l - B1)2 (32) 

and 

^(1 
2 

(33) 



CHAPTER 3 

COMPARISON OF DATA AND PREDICTIONS 

A. Objective of Comparison between Data and Predictions 

Before the model, developed in Chapter 2, can be accepted 

as representative of physical reality, the calculated pressure 
recoveries must be compared with measured values. The 
comparison consists of two parts: 

1. Comparison with data that satisfy all the assumptions 
of the theory to determine if the theory is adequate; 

2. Comparison with data that do not quite sâtisfy the 
assumptions of the theory to determine the maximum 
useful range of the theory. 

Satisfactory results from the first comparison provides a 

domain where the model is established and allows interpolation 

between measured pressure recovery values. The second com¬ 
parison indicates the limits for extrapolating beyond the 
region where the pressure recovery has been measured. 

The results of the comparison will be considered in 
Section C. In the following section, the input data require¬ 
ments for the flow model will be considered. 

B. Input Data Requirements for Flow Model 

In principle, the theory can immediately be compared 
with experimental results. The flow model starts with the 
inlet flow and simulates the diffuser. The necessary 

description of the inlet flow is given by the overa 1]. flow 

parameters - core vélocity and kinematic viscosity - and the 

boundary layer parameters - displacement thickness, momentum 
thickness, and shape parameter. In addition, the diffuser 

geometry must be specified including inlet dimensions, and 

divergence angles. In all reported data, the geometry and 

overall flow parameters are either stated or can be inferred 
from other information given. However, the inlet boundary 

layer information usually has not been reported. 
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The available reports can be classified into four groups 

as follows: 

GROUP 
INLET BOUNDARY LAYER THEORY SHOULD 
INFORMATION REPORTED APPLY 

1 

2 

3 

4 

yes 

no 

yes 

no 

yes 

yes 

no 

no 

Reports in group 1 provide the most critical test of the 

theory since large differences in the predicted and measured 

pressure recovery values would invalidate the theory. As 

shown below, the adequacy of the theory is clearly indicated 

by comparisons of this type. 

A very large fraction of available data fall in group 2 

(class A conditions, but inlet boundary layer not measured). 

The information in these reports can still be compared to the 

theory by careful estimation of the inlet boundary layer 

parameters. The estimation is based either on reported esti¬ 

mates of the boundary layer thickness or on a fitting 

technique. The fitting technique assumes that the inlet 

conditions are essentially constant for a given series of 

diffuser tests. The pressure recovery of one diffuser in 

the series is predicted by adjusting the values of the bound¬ 

ary layer parameters at the inlet+ until good agreement is 

obtained between the calculated and measured pressure recov¬ 

eries. These fitted values of the boundary layer parameters 

are assumed to be correct for the remainder of the diffusers 

in that particular apparatus. In this connection, both Copp 

[1951] and Nelson and Popp [1949] reported that the inlet 

boundary layer parameters remained essentially constant as 

the Mach number is increased. This result provides the basis 

T 
Usually by assuming and varying 6* . 
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for assuming that the inlet boundary layer parameters are 

independent of Mach number. 

The third group of reports allow the maximum useful range 

of the theory to be determined. Hence, these reports define 

definite bounds for extrapolation beyond the theoretically 

justifiable limits of the analysis. 

C. Results of the Comparison between Data and Predictions 

The theory has been compared with published data for all 

known class A diffusers. The following table relates each 

geometry with the data source used in the following discus¬ 

sion : 

A. INCOMPRESSIBLE FLOW 

1. Two-dimensional diffusers 

a. straight walls; Reneau [1964], Carlson [1966] 

b. contoured walls; Carlson [1965] 

c. asymmetric inlet flow; Norbury [1959] 

2. Three-dimensional diffusers, straight walls; 
Hudimoto [1952] 

3. Conical diffusers, straight walls; Copp [1951], 
Sprenger [1959], Squire [1953] 

4. Annular diffusers, straight walls; Ainley [1952], 
Nelson and Popp [1949], Sovran and Klomp [1964] 

B. COMPRESSIBLE FLOW 

1. Two-dimensional diffusers, straight walls; 
Young and Green [1944] 

2. Conical diffusers, straight walls; Copp [1951], 
Johnston [1959] 

3. Annular diffusers, straight walls; Johnston [1959], 
Nelson and Popp [1949] 

In the following discussion, the code in the margin 

indicates the particular item of the above outline being 

discussed; for example, A3 in the margin indicates that the 

adjacent paragraphs refer to conical diffusers with straight 

walls . 
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To indicate which data are expected to compare favorably 

with the theory, the following table relates reports, diffuser 

geometry, and the group number indicating the amount of 

boundary layer information reported: 

Report Diffuser 
Geometry Group Comments 

Reneau'[1964 ] 

Carlson [1965] 

Norbury [1951] 

Young and 
Green [1944] 

Hudimoto [1952] 

Copp [1951] 

Sprenger [1959] 

Squire [1953] 

Ainley [1952] 

Nelson and 
Popp [1949] 

Sovran and 
Klomp [1964] 

Johnston [1959] 

2D 1,3 

2D 1,3 

2D 1 

2D 2,4 

square 2,4 

conical 1,3 

conical 1 

conical 2 

annular 1,3 

annular 1 

annular 2,4 

annular & 2 ^ 
conical * 

contoured walls 

asymmetric inlet flows 

0 < M]. < Mchoking 

0 1 1 ^choking 

0 < M1 < Mchoklng 

estimate of given 

0 < M1 < Choking 

Al.a) For incompressible flow in two-dimensional diffusers 

with straight walls, Reneau [1964] has shown that the 

theory satisfactorily predicts pressure recovery for 

in the range 0.0075 to 0.03. For B1 >0.05 , 

deviations can be as high as 20$. In Figure 6,the 

pressure recovery distribution for a two-dimensional 

diffuser with N/W, = 18.0, AR = 2.4, B, = 0.043, 
5 1 l 

Re = 1.5 X 10 , Group 1 is compared with the data 

measured by Carlson [1965]. The agreement is within 

4$ at the diffuser exit. 

-V 
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Al.b) The effect of wall contour on the pressure recovery of 

a two-dimensional diffuser was considered analytically 

by Reneau [1964]; he predicted the effect to be small. 

Carlson [1965] has investigated the effect of wall 

contour experimentally. Carlson's data basically agree 

with the results predicted by Reneau. 

In the following table, the effect of contouring on 

pressure recovery is presented for a diffuser with 

N/V^ = 18.0, AR = 2.4, B1 = 0.043, Re = 1.5 x 105, 

Cp± = 0.827 : 

contour parameter t 

a = + 1.0 

a = 0.0 

a = - 1.0 

Cpm Cpt GrouP 

0.700 0.733 1 

0.679 0.706 1 

0.589 0.637 1 

Both theory and experiment indicate that the highest 

pressure recovery occurs when the largest fraction of 

the pressure drop occurs while the boundary layer is 

The area ratio family considered is given by 

AR(x) = 1 + (AR - 1) ^ll + a(l - |) 

The effect of a is indicated in the following sketch: 
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still thin. Quantitative agreement between data and 

theory is, however, only adequate. 

Al.c) Next consider two-dimensional diffusers with inlet 

boundary layers of different thicknesses. The analyt¬ 

ical method developed above does not strictly apply to 

this case. However, the asymmetry modification can be 

considered a perturbation of the symmetric case. 

The motivation for considering the effect of asymmetry 

is that most inlet flows are asymmetric. For example, 

Norbury [1959] reports the inlet boundary layer param¬ 

eters plus their change for a slightly contoured, two- 

dimensional diffuser.”*’ The inlet boundary layers on 

the parallel walls differed in thickness from 20% to 

70%. In the following table, the measured ratio of 

displacement thickness on one parallel wall to the 

opposite wall is compared with the calculated ratio: 

5* /b* p / p, 
a D measured 

6* /b* 
*a ^b calculated 

0.0 1.219 1.219 

2.0 1.138 1.162 

4.0 I.I51 1.128 

6.0 1.136 I.I05 

8.0 1.100 1.082 

The measured and calculated ratios agree within 3% 

for an initial unbalance of 22$. For greater initial 

unbalance, the agreement is poor. For example, with 

an initial unbalance of 70$, the ratios differ by as 

much as 100$. Of greater importance than the ratio of 

displacement thicknesses is the difference between 

For the calculations, the contour was approximated by two 
straight lines. This approximation produced a diffuser 
with straight walls that had an abrupt change in divergence 
at x/V^ = 2.4 . 
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measured and calculated pressure recoveries. The 

difference is less than 3$ as indicated in the following 

table : 

N/W-l = 8.0, AR = 2.0, B1 = 0.043, 

Re = 5-35 X 106, Cp1 = 0.750: 

measured 

predicted using 
measured B^’s 

predicted using 
average 6*'s 

This comparison indicates that the effect of slightly 

(20$ difference) asymmetric inlet boundary layers can 

be calculated. Indeed, the pressure recovery can be 

calculated from the average values of the inlet bound¬ 

ary layer parameters. 

A2) Only two sources of data are known for three-dimensional 

diffusers. These are the reports of Gibson [1910, 1912, 

1913] and Hudlmoto [1952] both of whom consider square 

cross-section diffusers. The data from Gibson cannot 

be compared with the theory for two reasons: (i) the 

inlet boundary layer thickness is estimated to be in 

the order 2 0.°5 # (il) the effect of the tailpipe 

is unknown. Hudimoto's data contain only one case that 

can be compared to the theory. Reneau estimated 

Hudimoto's inlet boundary layer thickness to be 

B-^ ~ 0.02 - 0.03 . For B^^ = 0.03 the values' of the 

measured and predicted pressure recovery are listed in 

the following table: 

Op 

0.643 

0.624 

0.623 
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N/W1 = 6.9, AR = 2.98, B1 = 0.03, 

Re = 6.0 X lo\ = 0.88?: 

Cp 

measured 0.733 

predicted 0.7^6 

A3) Straight-wall, conical diffusers have been studied 

extensively; several researchers have reported inlet 

boundary layer parameters. The data from three reports 

will be considered here. 

Sprenger [1959] studied several diffusers with many 

inlet boundary layer thicknesses. The measured pressure 

recovery distribution (Fig. 19b, Sprenger; N/R1 = 14.3, 

AR = 4.0, B1 = 0.035, Re = 5.2 x 10^, Group 1) is 

compared with the predicted pressure recovery distribu¬ 

tion in Figure 7. The agreement is good. The remainder 

of the comparison is summarized in the following table: 

N/Rj^ AR B1 

14.3 4.0 0.0465 

14.3 4.0 0.0121 

2.8 1.44 0.0102 

2.8 1.44 0.0349 

2.8 1.44 0.0921 

H, Re Cpm 
1 m 

1.398 3.6x105 0.765 

1.987 3.6x105 0.870 

1.97 5.2xlo5 0.469 

1.47 5•2x10^ 0.424 

I.331 5.2xl05 O.397 

Cpt Cp1 Group 

0.796 0.937 1 

0.849 0.937 1 

0.469 O.518 1 

0.433 O.518 1 

0.446 O.518 3 

The last entry in the table indicates the large 

difference that occurs between theory and data for 

nearly fully-developed inlet flows. The generally 

good agreement between Sprenger*s data and the theory 

indicates that the theory satisfactorily predicts 

diffuser pressure recovery for B1 < 0.047 . 

Copp [1951] reported the inlet boundary layer param¬ 

eters for his conical diffuser study. The range of 
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Mach number for this study was 0.23 to choking. The 

data comparison for low Mach number is presented in 

the following table: 

N/R-l 

4.75 

4.75 

4.75 

4.75 

AR B1 

2.0 0.012 

2.0 0.012 

2.0 0.056 

2.0 O.O56 

Re Mx 

1.45x106 O.237 

2.0x10^ 0.355 

1.45x106 0.247 

1.85xl06 O.327 

Cp m 

0.666 

O.660 

O.558 

O.547 

cPt Cp^^ Group 

0.669 O.75O 1 

O.66O O.77O 1 

0.589 O.750 3 

O.58O O.767 3 

For B1 = O.056 , the difference in pressure recovery 

values is about 7%, again indicating that for B1 much 

greater than O.05 the predictions deviate significantly 

from measurements. 

Squire [1953] reports pressure recovery data for 

several diffusers having an area ratio of 4.0 but with 

different divergence angles. The inlet boundary layer 

parameters were not reported, but the inlet conditions 

for one series of tests were constant^ only the diffu¬ 

sers were changed. Hence, the boundary layer parameters 

were determined by fitting one test of the series as 

described above. The measured and predicted pressure 

recoveries are cornpared in the following table: 

N/R1 

28.6 

22.8 

I8.9 

14.3 

11.4 

AR 

4.0 

4.0 

4.0 

4.0 

4.0 

B1t Re 

0.0075 5xl05 

0.0075 5xl05 

0.0075 5xl05 

0.0075 5xl05 

0.0075 5xlo5 

CPm Cpt 

O.854 O.834 

O.854 O.837 

O.850 O.838 

O.831 O.838 

0.822 0.840 

Cpi Group 

0.937 2 

0.937 2 

0.937 2 

0.937 2 

0.937 2 

^Fitted to one run and assumed constant for 
remainder. 
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A4) Ainley [1952] measured pressure recoveries for annular 

diffusers. The inlet velocity profile was reported 

which allowed the inlet boundary layer parameters to 

be calculated. The measured and predicted pressure 

recovery values are presented in the following table: 

N/AI^ AR Re Cpm Cpt Cp^ Group 

19.25 3.19 0.019 1.12xl05 0.786 0.779 0.902 1 

14.75 3.19 0.019 1.12x10^ 0.808 0.778 0.902 1 

Nelson and Popp [1949] studied the effect of Mach 

number of pressure recovery for two diffusers. The 

effect of the centerbbdy struts was neglected because 

the struts were well streamlined and located at least 

one third of the diffuser length from the inlet. The 

measured and predicted values of pressure recovery 

agree to 4$ or better as indicated in the following 

table : 

N/AR1 

10.0 

10.0 

20.4 

20.4 

Sovran and Klomp [1964] measured the performance of 

many annular diffusers to determine design information 

related to maximum pressure recovery at a constant 

length. The authors estimated = 0.03 for all 

diffusers with an inlet radius ratio of 0.7. Predicted 

and measured pressure recovery distributions are com¬ 

pared in Figure 8 for an annular diffuser with 

N/AR1 = 12.4, AR = 2.20, B1 = 0.03, Re = 6.5 x 105, 

Group 2. The remainder of the data comparison is 
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AR 

1.75 

1.75 

1.75 

1.75 

B1 

0.015 

0.015 

0.015 

0.015 

Re 

3.82x10^ 

5.1xl05 

3.69x105 

4.73x105 

Mi 

0.225 

0.300 

0.217 

0.278 

Cpr Cp, Cp. Group m 

O.618 0.617 O.68I 1 

O.599 O.613 0.689 1 

0.621 0.590 0.681 1 

0.620 0.591 0.688 1 



summarized in the following table: 

N/AR^ AR Re Cp^ Cp^. Cp^ Group 

3.43 1.68 0.03 6.5x10^ 0.^)44 0.565 0.646 2 

3.43 2.05 0.03 6.5x10^ O.544 O.576 O.762 2 

8.5 3.26 0.015 6.5x10^ 0.786 0.801 0.906 2 

In addition to considering the incompressible flow 

in a diffuser, the effects of compressibility were 

determined with a flow model based on a compressible 

core flow plus incompressible boundary layers (see 

footnote, page 16). in the following paragraphs the 

pressure recovery values calculated with this flow 

model will be compared to measured pressure recovery 

value for Mach number from 0.1 to choking. For com¬ 

pressible flow, the pressure recovery is defined as: 

where PQ is the inlet stagnation pressure. 

Equation (34) reduces to the pressure recovery based on 

the centerline inlet dynamic head for incompressible 

flow, 1,e., for M1 < 0.3 . 

Bl) First, the experimental results of Young and Green [1944] 

for two-dimensional diffusers will be considered. The 

boundary layer parameters were not measured for these 

diffusers. However, the total boundary layer thickness 

was reported to be less chan one-quarter inch. Hence, 

the value of B1 was chosen to be O.03 with ^ = 1.4 

In the following table, the predicted and measured 

pressure recovery values are compared: 
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Group N/W1 AR B1 

21.5 ^.0 0.03 

21.5 4.0 0.03 

21.5 4.0 0.03 

21.5 4.0 0.03 

11.8 4.0 0.03 

11.8 4.0 0.03 

11.8 4.0 0.03 

11.8 4.0 0.03 

Re 

2.87x105 

5.74x105 

8.60xl05 

10.0x105 

2.87xl05 

5.74x105 

8.60xK>5 

10.8xl05 

cPm 1 m 

0.2 0.890 

0.4 0.880 

0.6 0.848 

0.7 0.7751, 
0.2 0.840 

0.4 0.837 

0.6 0.818 

0.75 0.745+ 

Cpt Cp1 

0.865 0.937 

0.857 0.945 

0.848 0.952 

0.84o 0.955 

0.858 0.937 

O.851 0.945 

0.836 O.952 

0.821 0.957 

2 

2 

2 

Ü 

2 

2 

2 

4 

The difference between theory and experiment is less 

than 3% until the diffuser inlet begins to choke 
(indicated by t ). 

B2) Copp [1951] reported the pressure recovery values for 

conical diffusers as a function of Mach number. The 

boundary layer parameters were measured and did not 

depend on Mach number. The measured and predicted 

effect of Mach number on pressure recovery is presented 

in Figure 9. The agreement is very good for 

B-^ = 0.012 , but only fair for B1 - O.056. 

Johnston* [1959] considered the effect of Mach 

number on pressure recovery for both conical and annular 

diffusers. The inlet boundary layer parameters were not 

measured, but the inlet was similar for both the conical 

and annular studies. The values of B^ = 0.0075* 

= 1.4 were determined by fitting for the conical 

diffusers. The corresponding value of displacement 

thickness, 5 , was assumed to be a reasonable estimate 

for the values of the annular displacement thicknesses, 

and 5* . The boundary layer parameters were 

Ingersoll-Rand Company has given permission for this data, 
taken from their internal report TN 71* to be published here; 
see letter in Appendix 0. Their generosity is appreciated. 
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assumed to be independent of Mach number. The measured 

and predicted values of pressure recovery are compared 

in the following table for Johnston's conical diffusers 

B1 Re cPm Cpt Cp1 Group 

0.0075 3.17x10^ 0.3 O.872* 0.840 0.941 2 

0.0075 6.34x10^ 0.6 O.854 0.845 0.950 2 

O.OO75 8.97x10^ 0.85 0.840 0.841 0.962 2 

The difference is 5$ or less. 

B3) Before the annular pressure recovery data of Johnston 

can be compared with predicted values of pressure recov 

ery, the effect of the centerbody struts near the inlet 

must be considered. The struts were 0.04 inch thick 

sheet metal and were not streamlined. The correction 

considered here is to add a fraction of the frontal 

area of the strut to the inlet boundary layer displace¬ 

ment area. The apparent boundary layer displacement 

thicknesses for the inner and outer surface of the 

annulus were assumed to be equal and their value deter¬ 

mined to give the necessary blockage area. In Figure 

10, the measured pressure recoveries for two different 

annular diffusers are compared to predicted pressure 

recoveries where 75# and 100# of the strut frontal area 

has been added to the boundary layer blockage area. 

(The predicted curves have been labeled 75# and 100# to 

indicate how much of the strut frontal area has been 

added.) The agreement is good; this suggests that the 

effect of struts near the inlet of an annular diffuser 

is similar to that of increasing the inlet blockage. 

Nelson and Popp [1949] considered the effect of Mach 

number on pressure recovery. The measured pressure 

recovery is compared to predicted pressure recovery in 

Figure 11. The difference is less than 5#. 

N/V^ AH 

15.25 4.0 

15.25 4.0 

15.25 4.0 
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In the above paragraphs, the results of the data compari¬ 

son have been summarized. In the next section the conclusions 

resulting from the data comparisons are considered. 

D. Conclusions of Comparison between Data and Predictions 

The pressure recovery values measured by several 

researchers for diffusers with incompressible flow have been 

compared with predicted pressure recovery values. The agree¬ 

ment has been satisfactory as long as < 0.05 . The 

quality of the agreement is shown in the verification plot 

of Figure 12. The root mean square percentage difference 

between measured and predicted pressure recovery values is 

3.2$. Also, the effect of compressibility can be determined 

for subsonic flows up to choking for < 0.05 . 

For several of the diffusers considered, the parameter, 

ß* , has indicated the probable inception of stall (l.e., the 

value of ß* has decreased to a value less than 0.48). Yet 

the pressure recovery has been predicted within 4.0$ in all 

cases. This result does not mean that this theory can pre¬ 

dict the pressure recovery of stalled diffusers, nor does it 

imply that the parameter, ß* , is inadequate for predicting 

the inception of stall. 

This apparent paradox can be resolved by considering the 

meaning of "inception of stall" and its relation to fully- 

developed stall. The inception of stall has been defined to 

describe the state of a boundary layer when a fixed fraction 

of the layer has separated. Fully-developed stall does not 

immediately follow the inception of stall; in a mild adverse 

pressure gradient, which is the case for most of the above 

diffusers, the initial rate of growth of the stall is small. 

Hence, the initial effect of the stall on the pressure recov¬ 

ery is small. 
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E. ß* Data Comparison 

To conclude the chapter on data comparison, the parameter, 

ß* , will be compared wich line a-a data and lines of maximum 

pressure recovery. In 'figure 13j contours of ß* = 0.48 for 

0.0075 < < 0.05 are compared with the line a-a of Fox and 

Kline [1962] . The deviation between line a-a and the ß* 

contours is less than the reported uncertainty of line a-a 

(+ 1.0°). The line of maximum pressure recovery at constant 

N/W^ is included on Figure 14 to indicate its relative posi¬ 

tion with respect to line a-a. 

Since stall data equivalent to line a-a are not available 

for the remaining class A diffusers, the value of the corre¬ 

lation parameter ß* = 0.48 was assumed to indicate the 

probable inception of stall for the remaining class A diffu¬ 

sers with the appropriate changes in the non-dimensional 

length term, $ , indicated in Chapter 2. This assumption 

has been compared with available data. For conical and 

annular geometries, contours of ß* = 0.48 are compared to 

lines of maximum pressure recovery determined by several 

researchers1’; Figure 14 is a comparison for conical diffusers; 

Figure 15 is for annular diffusers. The contours of 

ß* = 0.48 lie below lines of maximum pressure recovery. 

This result agrees with the expected behavior in that appre¬ 

ciable stall must occur before the pressure recovery decreases. 

The relation is similar to that found for two-dimensional 

diffusers as would be expected if the criterion is valid, 

(see Figure 13). The stalled conical diffuser geometries 

studied by Robertson and Fraser [I960] are plotted on Figure 

15; they lie above the contours for ß = 0.48 providing a 

further check on the criterion. 

The effect of the tailpipe on Gibson's data was compensated 
by lowering the line 2° in total divergence angle as suggested 
by Reneau [1964], 
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The available data are consistent with the parameter, 

ß* . In addition, a comparison among ß* and several other 

stall criteria such as maximum shape factor, maximum momentum 

thickness gradient, and minimum wall shear by Carlson [1965] 

indicates that ß* correlates stall more consistently than 

the others. These results will be reported in detail by 

Carlson. However, more stall data are required before the 

correlation parameter, ß* , can be considered as a well- 

established criterion for indicating the probable inception 

of stall for all class A diffusers. 

The last item to be considered is the effect of the 

initial value of the shape factor1, on the parameter, ß* . 

The initial value of the shape factor has a very small effect 

on the location of the ß = 0.48 contours as indicated in 

Figure 16. 

correlation was developed with ^ = 1.4 . 



CHAPTER 4 

PREDICTED RESULTS 

A flow model for class A diffusers has been developed 
(Chapter 2); predicted pressure recovery values have been 

compared with measured pressure recovery values (Chapter 3). 

The resulting diffuser flow model of an effective core plus 

turbulent boundary layers satisfactorily predicts pressure 
recovery values for class A diffusers. Having defined the 

region of validity for the diffuser flow model, performance 
charts (maps with contours of constant pressure recovery) 

have been prepared by crossplotting the predicted pressure 
recovery values for these regions. These charts plus a few 

other calculated results will be presented in this chapter. 

A. Performance Charts 

Performance charts were prepared for all the class A 
diffusers. For the performance charts, each of the class A 
diffusers can be adequately described with the area ratio, 

AR, and the non-dimensional length, fî For straight wall 
two-dimensional and conical diffusers, the geometry is 

uniquely determined when the area ratio and non-dimensional 

length are specified. However, for three-dimensional and 
annular diffusers, the geometry is not uniquely determined 
from these data alone. Two more constraints are needed in 

both cases; for three-dimensional diffusers, they are aspect 

ratio, AS , and one of the two divergence angles; for annular 

TRecall~that: 

N = N/V^ for two- and three-dimensional diffusers 
= N/R1 for conical diffusers 
= N/AR1 for annular diffusers 
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diffusers, they are inlet radius ratio, r , and one of the 

two divergence angles. Nevertheless, the calculated results 

in the following table Indicate that area ratio and 

also are sufficient to determine pressure recovery values to 

a good first approximation for unstalled three-dimensional or 

annular diffusers: 

Aspect ratio effect on three-dimensional diffusers 

diffuser type AS N/l/^ AR Cpt 

3.0j3.0;i;0;3Ü 1 3:95 2.00 0.015 0.668 

3.0,-3.0,-10.0;3D 10 8.05 2.00 0.015 0.666 

Divergence angle effect on three-dimensional diffusers 

diffuser type AS N/V^ AR B-^ Cpt 

3.0;0.0;1.0;3D 1 9.50 2.00 0.015 0.64? 

3.0,-3.0;1.0;3D 1 3.95 2.00 0.015 0.668 

Radius ratio effect on annular diffusers 

diffuser type N/AR^ AR B^ Cpt 

15.0;15.0;0.3 2.5 1.72 0.015 O.606 

15.0;15.0;0.8 12.25 1.73 0.015 0.589 

Divergence angle effect on annular diffusers 

diffuser type N/AR1 

10.0,-10.0;0.7 8.50 

10.0;0.0;0.7 2.4 

10.0,--10.0;0.7 1.5 

AR B-^ Cpj. 

1.53 0.015 0.516 

1.53 0.015 O.530 

1.53 0.015 0.519 

The above discussion justifies plotting pressure recovery 

contours on AR , Í) planes for all the class A diffusers 

without concern for the unique specification of a particular 



geometry in the three-dimensional or annular diffuser geometries. 

In Chapter 3j the effect of the inlet boundary layer 

thickness on pressure recovery has been indicated. In all 

cases the boundary layer thickness has been represented by 

B-j^ . However, a given value of does not uniquely represent 

one boundary layer displacement thickness. The effect of the 

component values of displacement thickness in B^ on the 

pressure recovery is indicated in the following table; the 

effect is very small in selected extreme cases which have been 

calculated which include two-dimensional, three-dimensional, 

and annular cases. Consider: 

Three-dimensional case 

diffuser type 

3.0;3.0;1.0;3D 

3.0;3.0;1.0;3D 

6dY6d*2 N/Wl 

2.0 3.95 

1.0 3.95 

AR B1 

2.0 0.015 

2.0 0.015 

Cpt 

0.664 

0.668 

Annular case 

diffuser type 

15.0;15.0;0.5 

15.0;15.0;0.5 

15.0;15.0;0.5 

5*/5* N/AR1 

1.3 5-5 

1.0 5.5 

0.7 5.5 

AR B1 Cpt 

1.982 0.015 0.675 

1.982 0.015 0.677 

1.982 0.015 0.678 

The comparison of Norbury»s data in Chapter 3 shows similar 

results for the two-dimensional case; indeed the predicted 

pressure recovery value did not change when the measured 

inlet boundary layer displacement thicknesses were replaced 

by an average value of the displacement thicknesses. 

The above discussion indicates that for "normal" condi¬ 

tions the relevant parameter with respect to pressure recov¬ 

ery is the total value of B1 ; the individual values of 

&*'s from which B1 is composed are essentially irrelevant. 

Hence, on the performance charts only B1 is specified. 
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The pressure recovery contours for each diffuser geom¬ 

etry have been plotted on four charts corresponding to 

= 0.0075# _ 0.015i 0.03# and 0.05. These values cover the 

range from the thinnest boundary layer that can usually be 

achieved in practice to the thickest boundary layer for which 

the theory satisfactorily predicts pressure recovery values. 

In addition, the initial value of the shape parameter was 

chosen to be 1.4 for all calculations. The effect of differ¬ 

ent values of H-^ on pressure recovery will be considered 

below. 

To indicate the probable inception of stall in the 

diffuser, contours of ß* = 0.48 have been included on 

every performance chart. Extrapolation of pressure recovery 

contours to higher values of AH at constant N is not 

recommended even though the pressure recovery has been pre¬ 

dicted for some geometries with ß* < 0.48 . 

The contours of pressure recovery normalized on mass 

averaged, inlet dynamic head have been plotted on the per¬ 

formance charts since this is the most useful form for design. 

The other performance parameters described in Chapter 2 have 

not been plotted. However, they can be obtained from the 

given pressure recovery values and the relations between the 

parameters given by equations (28), (31)# (32), and (33). 

The performance charts for two-dimensional diffusers 

(Figures l?a, b, c, and d) have been reproduced from Reneau 

[1964] for completeness.'1 The performance charts for the 

remainder of the class A diffusers, three-dimensional, conical, 

and annular, are presented in Figures 18a, b, c, d, 19a, b, 

c, d, and 20a, b, c, d, respectively. 

B. Additional Calculated Effects 

In addition to preparing the performance charts, several 

other effects were investigated with the diffuser flow model. 

These results will be considered in the following paragraphs. 
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1. The effect of the initial value of the shape parameter 

on pressure recovery was determined by Reneau [1964] for 

straight wall, two-dimensional diffusers; the effect is 

indicated in Figures 21a and b. Numerical calculations 

indicate that the effect is similar for the remaining 

class A diffusers. 

2. The effect of Reynolds number on pressure recovery 

is small as indicated in the following table for conical 

diffusers with N/R1 = 8.0, AR = 2.01, B1 = 0.015, 

CPl = 0.752 : 

Re Cpt 

2.5 X 104 0.680 

5 X 104 0.682 

5 X 105 0.673 

' Similar results apply for the remaining class A diffusers. 

These results indicate the effect of Reynolds number at 

constant B1 . In an experiment, B^j^ may change as 

Reynolds number changes. In this case, pressure recovery 

will be altered; the effect can be determined from the 

changes in B^ . 

3. The effect inlet of Mach number is small as Indicated 

in the following table for a conical diffuser with 

N/R-l = 5-5, AR = 1.92, B1 = 0.015, Re = 1.33 x 106, 

Cp1 = 0.729 : 

M Cpt 

0.2 0.649 

0.5 0.656 

0.8 0.666 

4? 

• Jb 
■I 



4. The effect of wall contouring on pressure recovery 

for a two-dimensional diffuser was calculated to be 

small by Reneau [1964] and measured to be small by 

Carlson [1965] (see Chapter 3, page 31). The theory 

indicates that contouring has little effect in conical 

diffusers with area programs given by 

AR(x) = 1 + (AR - 1) + a(l - *) 

For example. 
(37 )t 

with B1 = 0.015, N/R = 10.0, AR = 1.82, Cp, 

contour parameter Cp 

0.698: 

a = 0.5 0.645 

= 0.0 0.633 

= - 0.5 0.620 

Similar results are to be expected for other class A 

diffusers but have not been calculated. 

5. The theory assumes that the boundary layers do not 

interact in the corners of two- and three-dimensional 

diffusers. A correction to account for the corner bound¬ 

ary layer interaction has been developed based on the 

study of corner boundary layers by Gersten [1959]. The 

development is presented in Appendix B. The calculations 

indicate that the effect of the corner boundary layer 

interaction is small. For a two-dimensional diffuser 

with N/W1 = 24.5, AR = 2.5, Bx = 0.016, CPl = 0.840, 

the change in pressure recovery is indicated in the 

following table : 

Equation (37) is functionally the same as the wall contour 

exoeSti2nUthat £ thn t«°-dlmel}slor‘al diffusers with the 

waîrconîcaî dif?user. 00rrespond to a 3tralSht 
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corner boundary layer correction 

no corner boundary layer correction 

Cp 

0.711 
0.728 

6. The next calculated effect to be considered is the 

effect of geometry on pressure recovery at fixed AR 

and . In the following table, pressure recovery Is 

tabulated as a function of geometry: 

geometry N AR B1 Cpt Cpi 

two-dimensional 7.2 2.0 0.QI5 O.667 0.750 

three-dimensional 3.95 2.0 O.OI5 0.668 O.750 

conical 

annular 

5.93 2.0 O.OI5 0.669 O.75O 

16.75 2.0 O.OI5 O.66I O.75O 

7. The last calculated effect to be considered is the 

effect of B^ on pressure recovery for class A diffusers 
at constant area ratio. The effect is indicated in 

Figure 22. 

Combining the results indicated in Figure 22 with the 

following relationships between the B1's for the 

different diffuser inlet geometries (assuming equal 

displacement thicknesses on all walls) provides a basis 

for evaluating the design problem where the flow area 

and the boundary layer displacement thickness are 

specified : 

(38) 

and 

(39) 
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The subscripts rect, cir, and ann refer to rectangular, 

circular, and annular inlet geometries respectively. 

The general conclusion, as expected, is that a conical 

diffuser has the highest pressure recovery for all 

class A diffusers with fixed inlet area and displacement 

thickness. 

C. General Conclusions 

For class A diffusers, pressure recovery depends 

essentially only on AR and . The dependence on Mach 

number, Reynolds number, wall contouring,corners, and a 

particular diffuser geometry, in general, appears negligible. 

Although this conclusion is inductive, sufficient cross¬ 

checks have been performed so that it appears extremely likely, 

■‘■his conclusion should lead to considerable simplification 

and increased understanding in modeling and in design pro¬ 

cedures for class A diffusers. 
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CHAPTER 5 

CONCLUSIONS 

1. A successful diffuser flow model and prediction method 

have been developed for class A^ diffusers. 

2. Using this model and comparisons with data, the following 

more specific conclusions have been reached for class A 

diffusers : 

a. Pressure recovery can be predicted to 5# or better. 

b. Pressure recovery depends only on AR and B1 ; 

that is, the effects of Reynolds number, Mach number, 

aspect ratio, wall-contouring, corners, and a par¬ 

ticular geometry are negligible (for fixed AR and 

B-l ). 

c. The line of first appreciable stall, line a-a, can 

be correlated with ß* decreasing through the value 

0.48; this provides a means to terminate calculations 

before class A restrictions are violated. It also 

provides the best indicator of appreciable stall so 

far available. 

d. The assumption that the criterion, ß* = 0.48 , can be 

applied to all class A diffusers appears consistent, 

but needs to be verified with additional three- 

dimensional, conical, and annular data. 

Because conclusion 2b is particularly important to under¬ 

standing, to simplifying design, and to modeling, a few 

experiments specifically designed as a critical test should 

probably be performed (see Appendix D). 

The restrictions on flow conditions and geometries for 
class A diffusers are listed on pages xii and xiii. 
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"Line of Appreciable Stall" is called "line a-a" for 

high inlet turbulence in Moore and Kline [1958], 

Fig. 1 

N, 

Diffuser flow regimes as established by 

Fox and Kline [1962] for two-dimensional 

diffusers. 
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Fig. 2 Diffuser geometries with nomenclature. 
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2 

c. Conical Diffuser 

Fig. 2 Concluded. 
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Pig. 3 

Fig. 4 

Fig. 5 

y,v 

Coordinate system used in developing the two-dimensional 
boundary layer equations. 
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Fig. 10 Comparison between theory and Johnston’s [1959] 
data for compressible flow In an annular 
diffuser. 
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„ ^0.045,100^- 

_(0.000965 ft,BT=0.040 
,1"C0. AR=4.0 6* ,=5* 

o,l I _00108 ft,¿,¿0.045 

•*/ARl-l8.5 Ho,l=HI,l= S 
Re=l-4xlo5 

Rq=0.1667 ft. 

Rj=0.1183 ft. 

■■I 
0.2 0.6 ~oJ 

60 



Inlet Mach Number 

b. 0.0; -5.25; 0.054 

Fig. 11 Comparison between theory and Nelson and Popp»s 
[1949] data for compressible flow in an 
annular diffuser. 
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Symbol ^ AR 

O 18.0 2.4 

CT 18.0 2.4 

^ 18.0 2.4 

V 8.0 2.0 

^ 6.9 2.98 

g 14.3 4.0 

û 14.3 4.0 

O 2.8 1.44 

0 2.8 1.44 

A 2.8 1.44 

¿ 4.72 2.0 

û 4.72 2.0 

A 4.72 2.0 

€> 4.72 2.0 

û 28.6 4.0 

O 22.8 4.0 

V I8.9 4.0 

□ 14.3 4.0 

^ 11.4 4.0 

® 19.25 3.19 

♦ 14.75 3.19 

O 10.0 1.75 

> 20.4 1.75 

^ 12.4 2.20 

P 3.43 1.68 

P 3.43 2.05 

Ci 8.5 3.26 

Geometry 

0.043 2D 

0.043 2D 

0.043 2D 

0.043 2D 

0.03 Square 

0.047 Conical 

0.012 " 

0.010 " 

O.O35 " 

O.O92 " 

0.012 " 

0.012 " 

O.C56 » 

O.O56 " 

0.0075 " 

0.0075 " 

0.0075 " 

0.0075 " 

O.OO75 " 

O.OI9 Annular 

O.OI9 " 

O.OI5 " 

O.OI5 " 

0.03 " 

0.03 " 

0.03 " 

Source 

Carlson[l965] a * 1.0 

" " a = 0.0 

a ■1.0 

Norbury [1951] 

Hudimoto [I952] 

Sprenger [1959 ] 
II 

II 

II 

II 

Copp [ I95I ] 

Squire [1953] 
• I 

II 

II 

II 

Ainley [1952 ] 
Il II 

Nelson & Popp [1949 ] 
il h H 

Sovran & Klomp [1964 ] 

O.OI5 " h h h 
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FIGURE 12 Comparison of measured and theoretical 

pressure recovery. The root mean square 

percentage difference is 3.2$. 
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Fig. 1? Performance charts for two-dimensional diffusers. 

Up) ß* = 0.48 ; indicates probable inception of 
appreciable stall. 
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Fig. 17 Concluded. 
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Fig. 18 Performance charts for three-dimensional diffusers. 

ß1 = 0.48 ; indicates probable inception 
of appreciable stall. 
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Fig. 18 Concluded. 
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b. Bl = 0.015 

Fig. 19 Performance charts for conical diffusers. 

0.48; indicates probable inception 

of appreciable stall. 
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Fig. 19 Concluded. 
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Fig. 20 Performance charts for annular diffusers. 

Qr) ß* = 0.48 ; indicates probable inception 
of appreciable stall. 
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Fig. 20 Concluded. 
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Fig. 22 The predicted effect of on pressure 

recovery at constant area ratios for 
class A diffusers. 
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APPENDIX A 

DETAILED FLOW EQUATIONS 

In Chapter 1, the generalized equations that model the 

flow in class A diffusers were developed. The detailed 

equations that must be solved for each of the cases in the 

following outline will be presented in this appendix. 

A. INCOMPRESSIBLE 

1. Two-dimensional 

a. straight walls, Reneau [1964] 

b. contoured walls, Reneau [1964] 

c. correction for corner boundary layer 

d. inlet boundary layer of unequal thickness on 
opposite walls (asymmetric inlet velocity 
distribution) 

2. Three-dimensional, straight walls 

3. Conical 

a. straight walls 

b. contoured walls 

4. Annular, straight walls 

B. COMPRESSIBLE FLOW 

1. Two-dimensional, straight walls 

2. Conical, straight walls 

3. Annular, straight walls 

For rotational convenience, the following additional 

nomenclature will be defined: 

a = 0.123 e"1,56H u ® 
V 

Ç = _2e4.68(H-2.975) 

-.268 

2.558 inÍ4.075 — 
2 

(Al) 

Y = -e4*68(H-2*975)(H . 1.286) 
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A. INCOMPRESSIBLE FLOW 

1. a. Two-dimensional, straight walls 

d0 
^ = ã dx 

de 

= a - e Ik r + (h + 2)-^- 
p p [e d x vnp T u dx 

dx "-•a-», N ra * (Ha * 2) f I 
d H , ,TT 
_£ = r I ËH + Y 
dx ^p U dx Tp 

dH 
‘d = r ¿ + 

^d U dx + ^d dx 

dH 

3?= % 
dH_ d5* dS 

£ + 6* ^ p dx 

5 
dx 

dö* de, 
d dx 6d dx 

I dU = - £ r + 2 r 
U 3x € Q ' K ^ p 

u 
€K (A2) 

where 

e = W1 + 2(x tan0 - 5^) 

K = b - 26' 

A = vwi - 26d\i>(b - 26;,i> 
F, = tan0 - 

d6» 

dx 

d6 
; r = p dx (A3) 

b. Two-dimensional, contoured walls 

For contoured walls, equations (A2) and (A3) apply 
with the change 
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e = W(x) - 26* 

.,, d6 * 
r dW 0_d 
d dx dx 

For the case where 

then 

AR(x) = 1 + (AR - 1) + a(l - |) 

e = W1 AR(x) 

rd = (AR - i) 1 - a(l - ^)j 

(A4) 

(A5) 

(A6) 

c. Two-dimensional, correction for corner boundary 
layer 

For the corner boundary layer correction, equations 

(A2) and (A3) apply with the change 

U 
€K 

X 

- (26*)2 
(A7) 

where 6* is an additional displacement thickness 

resulting from the corner boundary layer 

interference; the relation between the flow 

variables and 6* will be developed in 

Appendix B. 

d. Two-dimensional, inlet boundary layers of unequal 
thickness on opposite walls 

9n [r + (H + 2)tT Pa Ie d Pa U dx 

en fr + (H + 2)tT 
pb L€ d pb U . 
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deò 

-d3T = “d - 9d a a 
- ¿ P + (h + 2)1 dul 

K P + ¿>v d7j 

de 
b - 

dx ad " 9 
D db H rp+ (\ + 2)è ü] 

dH 

dx 
a = r 1 dU , 

CPa U dx + V 

dH 
_1b = r 1 dU 

d* " CPb U dx + ^pb 

dHd 
_a _ r i dU 

dx S3 U dx + 
d a 

dHd 
b = r 1 dU 

dx çd, U dx + ^d. 

dH 

dx 

dH 

= 9 
db de 

pa c * Pa 
+ 5 * a 

V dx 
D 

pa dx ' 'Pa dx 

d6n. d9 
Pb * P 

+ 5 
Pb dx 

dH. 

dx 

dH„ 
dt 

dx 

= e d6da , ded 

da^+6da^ 

= 9 
d6d d9a 
—_ÎL4.a* b 

db dx db dx 

i ÍU = . i r + i p 
U dx - ? rd + K rp 

U £K (A8) 
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where 
* 

d6 d5 

r = 
p dx 

+ - 
dx 

dö 

rd = 2 tan0 - 

25 

dx dx 

e - W1 + 2x tan0 - 5* “ 

k = b - 5. - 6 

A = U, W, - 5* - 5 
a,l b,l 

b - 5* - 6 
Pa,l Pb,l 

(A9) 

2. Three-dimensional, straight walls 

For three-dimensional diffusers, equations (A2) apply 

with equations (A3) replaced by 

d&* 

rd = tan0l - d3T 

r = d& 
- tan 0p + p 

dx 

e = W-j^ + 2(x tan01 - 5*) 

K = = b1 + 2(x tan02 - 6 ) 

A = = Ui(Wi - 26,^)^ - 26 ) (A10) 

3. a. Conical, straight walls 

Ü = ^ - 9(1+ (2 + H)¿ 

dH _ - 1 dU 

1 dU 
U Hx 

dH d6 , d0 
îx 0 3x“ + 6 

87 



1 dU 
U cTx —(r KV 

d5*v 

U = 
■T (Ail) 

where 

F = tan0 

€ = R, + X tan0 

4 = l/cos0 (This term represents a 
length correction since 
the boundary layer grows 
on a diverging wall 
while the coordinate, x , 
is measured on the center- 
line . ) 

K = e - 6* 

* = U1(R1 - 6*)2 (A!2) 

b. Conical, contoured walls 

For contoured walls where the change in area ratio 
is given by 

AR(x) = 1 + (AR - 1) + a(l + ==)1 
equations (All) apply with 

^ R1(AR - 1) 1 + a(l - 2x/N) 

2N VAR(x) ^ 

€ = R1 VAR(x) ^ 

4 = Vr¿ - 1’ 

K = 6 - 6*74 A = U1(R1 - 6*)2 (A13) 
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4. Annular, straight walls 

dö ci 
_o = o _ 0 
dx COS0 o 

tan0 
+(2+ H)¿ 

1 dU 
U cTx 

d0. 

d3T 

dH 

aI 
COS0T ” 

tan0 
^+ (2 + H)ig 

_o_ - 1_ dU ro 
dx - U dx " cos0 

dH. 

dx" 
r I dU _ ri 

U dx ~ cos0, 

dHo 
33T 

dõ dö 
^ + 5 ^- 

o dx o dx 

dHj. 

d3T 

1 dU 
Ü dx 

d6I # d0T 
9I 33T + 5I 31T 

= -2 

r dô*, 

Ko [tan0o ' HITJ " K! [tan0] 

KC - 
0 I 

.. uiKi -6o#.i>2- (ri.i + 6i.i)2] 
"5-? k - k!: 
o I 

(A14) 

where 

€ = R , + X tan0 
o o,l o 

ej = 1 + X tan0I 

k = 
eo - 6o 

K_ = 
£I+ 6I (A15) 
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B. COMPRESSIBLE FLOW 

1. Two-dimensional, straight walls 

For the compressible case, equations (A2) and (A3) apply 

with the change 

1 dU 
U dx 

U 

-(f + k rArr^‘ 
ík [—°-2 M lx)l ; >C = L 1 + 0.2 M^ J = 1.4 (A16) 

2. Conical, straight walls 

For the compressible case, equations (All) and (A12) 

apply with the change 

1 dU _ 2 f r, d6#^ 1 
U 3x ~ k '1 ïïx“^ 

U A ri + 0.2 M2(x)‘ 

? L 1 + 0.2 . 
k = 1.4 (A17) 

3. Annular, straight walls 

For the compressible case, equations (Al4) and (A15) 

apply with the change 
r dö*, _ dñ#. 

1 dU 
U dx _ 

-2 
k tan0 - - 
o L o c dirJ 

- K. [tan0 + 

K 
“7«T 

- K. 

dll i 1 
T~^\ 

U 
ull Ki-60,i>2-<Ri.i + 6t‘.:>21 1 + 0.2 M2(x)] 

2 2 
k - KÍ: 
o I _1 + 0.2 M2 J 

k = 1.4 (A18) 
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APPENDIX B 

CORNER BOUNDARY LAYER CORRECTION 

The effect of boundary layer Interference in a corner 

can be described by an additional displacement thickness, 

as indicated in the following sketch: 

Flow into paper; and 

are the displacement thick¬ 
nesses far from the corner; 

is the corner interference 

* displacement thickness. 

Gersten [1959a] experimentally determined a correlation for 

to be 

[Eu] (Bl) 

where Í is an entry length and 

fotEu] was given graphically by Gersten and 
has been approximated by a polynomial 
to be(fitted by a least squares 
technique ) 

1'3[Eu] = 1.0 - 3.083 Eu - 57.83 Eu2 - 526.7 Eu3 - 866.7 Eu4 

(B2) 

and 

Eu A 
U dx 

The initial entry length, ¿ , can be determined from 
O 

5s = 0.052 

(Re^)175 
(B3) 

as given by Gersten for a fully turbulent entry in a zero 
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pressure gradient. The equation (B3) can be solved for 

giving. 

l 
s 

».• r 
V 

the values of 5 , , and v are known for the inlet of 
O ù 

the diffuser. 

The length changes as the flow proceeds down the diffuser 

and equals 

£ = üs + X (B5) 

where x is the centerline length measured from 
the diffuser inlet. 
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APPENDIX C 

LETTER OF PERMISSION FROM INGERSOLL-RAND COMPANY 

The following letter from the Ingerso11-Rand Company grants 

permission to use the diffuser performance data reported in their 

internal report TN-71: 

HPE:24:012565 □ 
Ingersoll-Rand Company 

Ft tut:. ■vS ¡871 
RLSLARCH AND DIVCI.OPMCNT 

BEDMINSTER. N. J. 07921 

25 January 1965 

Dr. James P. Tohnuton 
Associate Professor, Thermosciences Div. 
Mechanical Engineerinn Department 
Stanford University 
Stanford, California 

Dear Jim: 

In your letter of January 4, you are asking me for the release 
of information contained in TN-71, "Summary of Results of Tests in 
Short Conical Diffusers with Flow Control Inserts as of June 1, 1959". 

I wish herewith to give permission to use this data in your 
student's Ph. D. thesis and in a subsequent publication. Of course, 
it is expected that the source will be at knowledged. 

Sincerely yours, 

INGERSOLL-RAND COMPANY 

/if*« 1 A.** 

Hans P. Eichenberger 
Director of Research 

HPE:gr 
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APPENDIX D 

SUGGESTED CRITICAL EXPERIMENTS 

In this appendix, a few additional experiments are 

suggested to check the present theory in extreme cases for 

which data do not presently exist. These suggested experi¬ 

ments and their purpose are: 

1. Measure the effect of the following on the pressure 

recovery of class A diffusers: 

a. Geometry for fixed area ratio and inlet blockage, 

b. Geometry for fixed area ratio and inlet boundary 
layer displacement thickness, 

c. Inlet shape parameter for fixed area ratio and 
inlet blockage; 

2. Measure the effect of aspect ratio on the pressure 

recovery of two-dimensional diffusers; particularly 

for aspect ratio less than one; 

3. Measure the pressure recovery in detail for two or 

three three-dimensional diffusers which satisfy 

class A restrictions. 

In addition to the diffuser performance experiments, the 

assumption that the parameter, ß* , is a reliable predictor 

of first appreciable stall in three-dimensional, conical, and 

annular diffusers needs to be checked experimentally. 

Associated with this check is the necessity of defining first 

appreciable stall for these geometries which is consistent 

with the two-dimensional definition. 

Besides considering the basic objectives of the experi¬ 

ments, the experimenter must design his apparatus so that 

the inlet boundary layer parameters can be measured. 
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