
EKD-TH.flo.94
MTR-122

CO

^rj

XPSTC, A FORTRAN

DYNAMIC STORAGE ALLOCATOR

OCTOBER 1966

J. E. Sullivan

Prepared for

DEPUTY FOR ENGINEERING AND TECHNOLOGY
COMPUTER PROGRAMMING DIVISION

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

C LEA RINGHOUSE
FOR FEDERAL SCIENTIFIC AND

TECHNICAL INFORMATION
Hardcopy I Microfiche

77, PP M
1 ft**2

D'fttribution of this document is unlimited.

Project 250G

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AFlQ(628)-Sl65

>-
OH

O O

MD OJ
vO •-!

I n
OS UH
H

I I—I
Q f-
CO CO

ESD-TK-66-94 MTR-122

ESD RECORD COPY
RETURN TO

SCIENTIFIC & TECHNICAL INFORMATION DIVISION
(fcSTf), BUILDING 1211

ESTI Call No

XPSTC, A FORTRAN Copy Ha _

DYNAMIC STORAGE ALLOCATOR

ESD ACCESSION UST
* AL 53*2"

L ^L cys.

OCTOBER 1966

J. E. Sullivan

Prepared for

DEPUTY FOR ENGINEERING AND TECHNOLOGY
COMPUTER PROGRAMMING DIVISION

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Distribution of this document is unlimited.

Project 250G

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628)-5165

This document may be reproduced to satisfy official
needs of U.S. Government agencies. No other repro-
duction authorized except with permission of Hq.
Electronic Systems Division, ATTN: ESTI.

When US Government drawings, specifications, or
other data are used for any purpose other than a
definitely related government procurement operation,
the government thereby incurs no responsibility
nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in
any way supplied the said drawings, specifications,
or other data is not to be regarded by implication
or otherwise, as in any manner licensing the holder
or any other person or corporation, or conveying
any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.

I

ESD-TK-66-94 MTR-122

XPSTC, A FORTRAN

DYNAMIC STORAGE ALLOCATOR

OCTOBER 1966

J. E. Sullivan

Prepared for

DEPUTY FOR ENGINEERING AND TECHNOLOGY
COMPUTER PROGRAMMING DIVISION

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Distribution of this document is unlimited.

Project 25OG

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628)-5165

ABSTRACT

The usage and other characteristics of XPSTC, a
FORTRAN - compatability storage allocator for the
IBM 7030, are discussed.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

(jCu^j^sXi' o^~
Russell A. Meier, Major, USAF
Project Officer

111

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

LIST OF TABLES

GLOSSARY

SECTION I INTRODUCTION

PURPOSE AND SCOPE

GENERAL DESCRIPTION

SECTION II USAGE

CALLING SEQUENCES

A. INSTO-Initialize Storage

B. RQSTO-Request Storage

C. RQNSTO-Request Name Storage

D. TRQSTO-Trial Request Storage

E. ALSTO-Request All Available Storage

F. ADJD-Adjust Dimension

G. TADJD-Trial Adjust Dimension

H. IBASE-Request Block Base Index

I. ST-Store

J. FL, IL, LL-Floating, Integer, and
Logical Load

K. SW-Swap

L. RLSTO-Release Storage

M. ALLOC-Allocation Status Test

N. ENTCM-Enter Checking Mode

O. RESCM-Resume Prior Checking Mode

P. ENTSM-Enter Stationary Mode

Q. RESSM-Resume Prior Stationary Mode

Page

vii

viii

ix

1

1

2

5

5

5

9

12

13

14

15

21

22

26

29

30

33

37

39

39

41

43

TABLE OF CONTENTS (Concl'd)

Page

CALLING SEQUENCE (Cont.)

R. RKW-Reassign Key Word 43

S. RQXMP-Request Scratchpad Map 45

T. RQXDP-Request Scratchpad Dump 49

ERROR DIAGNOSTICS 49

OPERATING INSTRUCTIONS 54

SECTION in TECHNICAL INFORMATION 55

METHOD 55

Block Organization 55
Internal Organization 57

STORING, LOADING AND SWAPPING 58

CODING 61

STORAGE 61

AUXILIARY ROUTINE 62

MODIFYING THE PROGRAM 62

Unused Module Elimination 62

FORTRAN COMPILER CHANGES 63

REFERENCES 65

VI

LIST OF ILLUSTRATIONS

Figure Page

1 Functional Flow Chart - DSfSTO 7

2 Functional Flow Chart - RQSTO, RQNSTO, TRQSTO 10

3 Functional Flow Chart - RQSTO, RQNSTO, TRQSTO 11

4 Functional Flow Chart - ALSTO 16

5 Functional Flow Chart - ADJD, TADJD 18

6 Functional Flow Chart - ADJD, TADJD 19

7 Functional Flow Chart - ADJD, TADJD 20

8 Functional Flow Chart - D3ASE 23

9 Functional Flow Chart - ST 27

10 Functional Flow Chart - ST 28

11 Functional Flow Chart - FL, IL, LL 31

12 Functional Flow Chart - FL, IL, LL 32

13 Functional Flow Chart - SW 34

14 Functional Flow Chart - SW 35

15 Functional Flow Chart - RLSTO 36

1(5 Functional Flow Chart - ALLOC 38

17 Functional Flow Chart - ENTCM, RESCM 40

18 Functional Flow Chart - ENTCM, RESSM 42

19 Functional Flow Chart - RKW 44

20 Functional Flow Chart - RQXMP 46

21 Typical RQXMP Output Sample 48

22 Functional Flow Chart - RQXDP 51

23 Functional Flow Chart - ERRMESS 52

24

(Internal Subroutine)

Functional Flow Chart - PACK
(Internal Subroutine)

53

vii

LIST OF TABLES

Table Page

I Call Sequence Summary Alphabetical, 6
by Call Name

II XPSTC Diagnostic List 49

III Subroutine Memory Map 61

IV Unit Module Chart 63

vm

GLOSSARY

The following terms and acronyms are used in a more or less special-

ized sense herein.

Block

Checking mode

CM

Dimension word

DW

Dynamic allocation

EB

Extended block

Floating-boundary block

Free block

FUDGE

Key word

KW

NDIM

NI

NSXPAD

a floating-boundary block

a state wherein all subscripts of stores, loads
and swaps are checked for legality

checking mode

a preface word which defines the upper sub-
scripting limit for a given dimension

dimension word

assignment of memory at execution time as
opposed to load time

extended block

a block together with its preface words

a dynamically allocated unit of storage

a block in Scratchpad which is not reserved

a constant used in subscript calculation
(preface words)

the I subscript in a store, load or swap
request

a word within the user's program which is
associated with a block and is used to
identify it

key word

the number of dimensions proper to a given
block (Storage Control Word)

the highest value that a subscript may
legally assume in the Ith direction

the total number of cells in Scratchpad

IX

GLOSSARY (Concluded)

Name word

NW

Packing

Preface words

PWs

Reserved block

Scratchpad

sew
SM

Stationary mode

Storage control word

XPAD

XPSTC

a word containing the name and data type
of a block (preface words)

name word

collecting of all reserved blocks together
so as to create a single free block of
maximum size

cells just preceding a block intended for
XPSTCs internal use (viz: SCW, NW,
FUDGE (if any), and DW's (if any))

preface words

an allocated block

the section of memory set aside for all
dynamically allocated storage

storage control word

stationary mode

a state wherein packing is illegal

a word defining: (1) the associated KW;
(2) the allocation status; (3) whether or
not another block follows; (4) NDIM;
and (5) the block size for a given block

scratchpad

scratchpad storage controller

x

SECTION I

INTRODUCTION

PURPOSE AND SCOPE

XPSTC, a FORTRAN dynamic storage allocator, was originally de-

signed to keep track of the floating-boundary storage blocks in a MITRE

Project 4164 (SLBM) program. This program required floating-boundary

storage because both input parameters and intermediate results could cause

certain tables to vary in required size. To have fixed all such tables at

their maximum size would have caused available core space to be exceeded.

Furthermore, in order to assure that space was used only for live data

(data with potential future use), it was desirable that programs share work-

ing storage space. XPSTC was written in a generalized fashion so as to be

useful whenever situations of this sort arise. XPSTC performs four basic

functions:

(1) allocation of storage blocks with dimensions as required by
the calling program;

(2) in-flight adjustment of dimensions as may be required;

(3) storing to and loading from such blocks; and

(4) release of any storage which contains information which
is no longer of use.

In addition, the program has six principal auxiliary functions:

(1) Checking Mode: When desired, all subscripts are monitored
to assure that original dimensions are not exceeded during
storing and loading.

(2) Infinite Storage Request: All available memory may be
allocated when necessary.

(3) Direct Access: The calling program may obtain the absolute
location of a given block, and perform its own storing and
loading.

(4) Stationary Mode: As an adjunct to direct access, the status
of Scratchpad may be temporarily frozen so that absolute
addresses do not become obsolete because of block shuffling.

(5) Status Request: The calling program may obtain the status
(reserved or free) of a given block.

(6) Debugging Aids: The calling program may request that a map
or a complete dump of Scratchpad storage area be printed
output. Also, all input (except subscripts when not in the
checking mode) are monitored for validity.

GENERAL DESCRIPTION

XPSTC is a group of subroutines which may be called by the FORTRAN

(or STRAP) user when he wishes one of the above functions carried out. It is

totally dependent upon information given to it via such calls. It must be told,

for example, how much memory is available for allocation and where this

memory is. It will neither allocate, adjust, nor release a storage block without

an explicit call.

In consequence of this, the first call must be to the initialization sub-

routine to inform XPSTC where Scratchpad (see Glossary) is and how much

memory is available there. Storage is allocated from Scratchpad when a call is

made to another subroutine, giving it a key word which will be the block identifier,

and the dimensions of the required block. Any number of dimensions are allow-

able, including 0 which is interpreted as a request for a single cell. Another

subroutine will allocate, as a one-dimensional (vector) block, all of Scratchpad

which is currently free and inform the calling program as to the size of this block.

"Allocation" of a block consists of:

(1) storing a code in the key word supplied by the user, so that the
intended block may be identified on subsequent store, load, or
release requests; and

(2) storing of preface words which precede the reserved block in
Scratchpad, delimit it, and flag it as reserved.

If sometime after a block has been allocated, it becomes necessary to

alter the dimension specifications while preserving some or all of the data already

stored into the block, it is possible to change any of the dimensions (though not

the number of dimensions) by calling a subroutine designed for this purpose. Any

element is preserved whose subscripts are legal under both sets of dimension

specifications.

Storing into the allocated block is also accomplished by a subroutine call,

giving the value to be stored, the key word, and the subscripts of the element.

Any type of data (floating point, fixed point, logical, binary, or alphanumeric)

may be stored. As is explained more fully in Section II, the "calling sequence, "

which is compiled from the FORTRAN user's CALL statement, is often replaced

during execution by an in-line code which eliminates the time-consuming linkage

process.

Loading from the block takes the form of a function-type reference, again

giving the key word of the block and the subscripts of the element to be loaded.

A "swap" subroutine is also available; the parameters are similar to

those for storing except that the value to be stored is itself replaced by the old

value of the element in the storage block. As with the store subroutines, the

calling sequences to load or swap are usually replaced by equivalent in-line

code for the sake of speed.

When through using a block, the user may make the space therein available

for other purposes by "releasing" the block. This is done by calling a subroutine,

giving it the key word of the block to be released. Releasing the block consists of:

(a) disabling the key word so that attempted use (stores, loads, or
swaps) of the block before another allocation request becomes
illegal; and

(b) flagging of the block itself as "free. "

In special circumstances it may be necessary to know the absolute address

of an allocated block; for example, when it is desired to include a vector within

the block among the call parameters to a general subroutine. In this situation it

is possible to call a subroutine which, given the key word of the block, will return

the "base address" of the block with respect to the first address of Scratchpad.

In FORTRAN parlance, the value returned is the index of the cell just preceding

the block, when all of Scratchpad is considered a vector array. The restrictions

applying to this procedure, however, should be noted carefully (see Section n, H,

page 22).

The other auxiliary functions mentioned in Section I are also carried out

upon special subroutine call.

4

SECTION n

USAGE

Program input-output is achieved via calling sequence. In the case of

an error, a diagnostic printout is supplied. A summary of calling sequences

is shown in Table I.

CALLING SEQUENCES

The following is a detailed description of the individual calling

sequences.

A. INSTO - Initialize Storage

CALL INSTO (XPAD, NSXPAD, CM)

(1) Parameter

XPAD

NSXPAD

CM

(2) Type

Variable
Array

Fixed Point
Expression

Logical
Expression

(3) Restrictions

^3

(4) Description

Entire portion of mem-
ory which is to be used
for floating boundary
storage allocation.

Number of memory
cells in Scratchpad.

Logical .TRUE, if
checking of sub-
scripts during storing
and loading is desired;
.FALSE, otherwise.

(5) Operation (see Figure 1)

(A) If INSTO has been called previously in this computer run, all
blocks allocated since the last such call are released.

(B) The address and size of Scratchpad are stored internally for
use by the other XPSTC subroutines.

TABLE I

Call Sequence Summary Alphabetical, by Call Name

Function

Adjust Dimension

Allocation Status Test

Req. All Avail. Storage

Enter Checking Mode

Enter Stationary Mode

Floating Load

Req. Block Base Index

Integer Load

Initialize Storage

Logical Load

Resume Prior CM

Resume Prior SM

Reassign Key Word

Release Storage

Request Named Storage

Request Storage

Request XPAD Dump

Request XPAD Map

Store

Swap

Trial Adjust Dimension

Trial Request Storage

Sequence Paragraph

CALL ADJD (KW, I, NI) II. F

XL =ALLOC (KW) n. M

CALL ALSTO(KW, N) II. E

CALL ENTCM II. N

CALL ENTSM n. P

XX =FL (KW, (11.... , INDIM) U. J

IB =IBASE(KW) II. H

n =IL(KW, 11, ... INDIM) II. J

CALL INSTO(XPAD, NSXPAD,
CM) II. A

XL =LL (KW, 11,. . , INDIM) II. J

CALL RESCM II. O

CALL RESSM II. Q

CALL RKW(OKW, NKW) II. R

CALL RLSTO(KWl, KW2,. ..) ILL

CALL RQNSTO (SYMBOL, KW,
N1,...,NNDIM) II. C

CALL RQSTO(KW, Nl NNDIM) II. B

CALL RQXDP II. T

CALL RQXMP II. S

CALL ST(X, KW, II,. . , INDIM) II. I

CALL SW (X, KW, II,. . , INDIM) II. K

XL =TADJD (KW, I, NI) II. G

XL =TRQSTO (KW, Nl,. . , NNDIM) II. D

SET TO
EXAMINE

1st BLOCK

SET TO
EXAMINE

NEXT BLOCK

NO

YES

FREE THE
BLOCK, ZERO THE

KW

YES

INITIALIZE
XPAD AS A

SINGLE FREE
BLOCK

SET
CM AND

TCM = CM

FALSE.

SM

•• PAREN LEVEL
COUNTERS:

CMPCT
SMPCT

Figure 1. Function Flow Chart - INSTO

7

(C) Checking mode is turned on or off as CM is .TRUE, or . FALSE.,
except that if checking mode has previously been off during the
run, any stores, loads, or swaps executed while CM was off
effectively, remain in the nonchecking mode.

(D) Stationary mode is turned off.

(E) Level counters Lsee Paragraphs N(2) and P(2)] for CM and SM
are set to 6.

(6) Comments and Examples

(A) It is frequently convenient to make XPAD synonymous with blank
common:

COMMON XPAD (26666)

CALL INSTO (XPAD, 26666, .FALSE.)

In this way any subroutine will have access to XPAD itself as
an array variable; this is a prerequisite when using the direct
access feature (see Paragraph H).

(B) Although it is more usual to leave Scratchpad itself fixed dur-
ing a run, calling INSTO after the first time only when neces-
sary to free all active blocks, there is no requirement that
XPAD and NSXPAD do not change from call to call.

(C) The substance of (5) (C) above is that it is unusual, though
not illegal, to change from nonchecking mode to checking mode
via INSTO during the course of a computer run. In the usual
case, CM is an external input parameter which is set to true at
the beginning of runs in early checkout phases of program de-
velopment and then is set to false. Storing, loading, and swapping
are much faster in the nonchecking mode.

8

B. RQSTO - Request Storage

CALL RQSTO (KW, Nl, N2 ,..., Nl ,... , NNDIM)

(1) Parameter (2) Type

KW Variable

(3) Restrictions (4) Description

Nl Fixed Point
Expression

May not be with-
in XPAD

>6

The key word which
will be used to iden-
tify the resulting block.

Upper subscripting
limit for the I^1 dimen-
sion of the requested
block; if dimension is
wholly absent, one cell
is allocated.

(5) Operation (see Figures 2 and 3)

(A) The size of the required extended block is determined by the
following formulae:

NDIM Extended Block Size

6 3
1 Nl + 2
2 (Nl)(N2)+4

^3 (Nl) (N2). . (NNDIM) + NDIM + 3

(B) Scratchpad is searched for a free block large enough to accommo-
date this extended block. If one is found, the sequence con-
tinues with (D) below.

(C) Otherwise, Scratchpad is packed (if in SM, an error stop occurs).
If the free block thus created is still not large enough, an error
stop results.

(D) The address of this extended block is stored into the key word.
The user should not alter the key word, at least until the al-
located storage has been released [1] or the key word has been
reassigned [see Paragraph R].

. FALSE.

TRIND

SET UP BLANK
NAME AND TYPE

WORD

COMPUTE
SIZE OF BLOCK

REQUESTED

STORE n
CHARACTER AS
PART OF NAME.

NO

STORE TYPE
CODE IN NAME

YES

FALSE.

TRIND

COMPUTE NO.
OF PWs, SIZE

OF EB.

SET TO
EXAMINE 1

BLOCK IN
XPAD

st

Figure 2. Functional Flow Chart - RQSTO, RQNSTO, TRQSTO

10

YES

SET TO
EXAMINE

NEXT BLOCK

TRUE
SET ASIDE A
FREE BLOCK
TO TAKE UP

EXCESS

STORE
SCW, NW

STORE
DWs

STORE DWs.
COMPUTE AND
STORE FUDGE

-M RETURNW
. TRUE.
TRQSTO

Figure 3. Functional Flow Chart - RQSTO, RQNSTO, TRQSTO

11

(E) The necessary information is placed in the preface words (the
NW is zeroed), a free block is created to take up any left-over
space, and the subroutine returns.

(6) Comments and Examples

(A) CALL RQSTO (KW), a 6 (dimension storage request) has been
made legal for two reasons: symmetry, and such requests would
be necessary if a data reader were added to XPSTC. With the
present XPSTC, such a request has no rational application. The KW
cell itself might as well be used for the storage, and the result-
ing access code generated by FORTRAN would be a great deal
more efficient.

(B) In general, when the maximum attainable size of a table is known
at compile-time to be quite small, 10 or 20 cells, it is not worth-
while to use floating memory. An ordinary DIMENSION state-
ment requires less programming and less trouble, saves a little
time, and may waste no more storage in the long run.

(C) The sequence:

CALL ROSTO (X, NOOFXS)
CALL RQSTO (Y, 16, NOOFYS+NNS, NGS, NFS)

would cause two blocks to be reserved: one would be a 1-
dimensional array with NOOFXS storage cells and two preface
words; the other would be a 4-dimensional array with (16)
(NOOFYS+NNS) (NGS) (NFS) data cells and seven preface words.

C. RQNSTO - Request Named Storage
CALL RQNSTO (SYMBOL, KW, Nl, N2,. . , Nl,.. . , NNDIM)

(1) Parameter (2) Type (3) Restrictions (4) Description

SYMBOL Variable Contains A8 The name to be assigned
code the block (up to six

characters) plus a type
character (F, floating;
A, alphanumeric; I,
integer; L, logical) for
storage.

12

C. RQNSTQ - Request Named Storage (Cont.)
CALL RQNSTO (SYMBOL, KW, Nl, N2,.., Nl,..., NNDIM),

(1) Parameter (2) Type (3) Restrictions (4) Description

KW

Nl

Variable

Fixed Point
Expression

Not in XPAD

>6

The key word which will
be used to identify the
resulting block.

Upper subscripting limit
for the I"1 dimension of
the requested block; if
dimensioning is wholly
absent, one cell is al-
located.

(5) Operation (see Figures 2 and 3)

Except that the block name and type are extracted from SYMBOL and

stored in the NW, operation is exactly that of RQSTO [see Paragraph B] .

(6) Comments and Examples

(A) In the current XPSTC, RQNSTO adds nothing to RQSTO, except
perhaps readability to the output from RQXMP [see Paragraph S]

(B) The call

CALL RQNSTO (3HXAF,X,NOOFXS) causes a one-dimensionai
vector with NOOFXS storage cells and two preface words to be
reserved. The name of the block is considered to be XA and the
type of data is considered floating. Note, however, that data,
going in and out of a storage block via stores, loads or swaps, is
not monitored for type whether the block is named or not.

D. TRQSTO - Trial Request Storage

Logical Function: TRQSTO(KW,Nl,N2,. . . ,N1,... NNDIM)

(1) Parameter (2) Type (3) Restrictions (4) Description

KW Variable May not be
within XPAD

Key word which will be
used to identify the re-
sulting block, if any.

13

Logical Function: TRQSTO (KW, Nl,N2t.... NI,..., NNDIM),(Cont.)

(1) Parameter (2) Type (3) Restriction (4) Description

NI Fixed Point >6 Upper subscripting limit
Expression for the I^n dimension of the

requested block; if dimen-
sioning is wholly absent,
one cell is implied.

(5) Operation (see Figures 2 and 3)

Operation is exactly that of RQSTO except that if sufficient storage for
the requested block is not available, the job is not aborted but rather
the function value is set to . FALSE, and no allocation is made. When
a normal allocation occurs, the function takes on the value .TRUE.

(6) Example

The IF statement in the sequence (non-SM)

LOGICAL TRQSTO
IF (TRQSTO (SAVE, NRES, 56)) GO TO 366

C NOT ENOUGH ROOM TO SAVE INTERMEDIATE
C RESULTS - MUST USE DISK

266
C SAVE AREA ALLOCATED, SAVE RESULTS

2,66

will cause allocation of SAVE and a branch to statement 366 if
NRES*50+4 locations are free; otherwise the sequence starting
at statement 266 will be executed.

E. ALSTO - Request All Available Storage

CALL ALSTO (KW, NI)

(1) Parameter (2) Type (3) Restriction (4) Description

KW Variable Not in XPAD Key word for the block.

14

CALL ALSTO (KW, Nl), (Cont.)

(1) Parameter (2) Type (3) Restrictions (4) Description

Nl Fixed Point
Variable

Returned as the number
of data cells reserved.
Nl may be returned as 6,
which means that less than
3 cells were found to be
free in Scratchpad and no
block was reserved.

(5) Operation (see Figure 4)

(A) Scratchpad is packed unless in SM. In this case, the largest
free block is found.

(B) If there are less than 3 cells in this block, return Nl=ff.

(C) Set up key word and two preface words. Set Nl=number of
available cells minus two and return. This completes the set
up of one-dimensional vector of Nl data words.

(6) Comments and Examples

The call CALL ALSTO (X, NX) has the same result as if NX could
be determined in advance and (NX>£f) CALL RQSTO (X,NX) were
executed, except for the physical order of the blocks within Scratchpad.

F. ADJD - Adjust Dimension

CALL ADJD (KW, I, Nl)

(1) Parameter (2) Type (3) Restrictions (4) Description

KW Variable See (6)(A) below Key word of the block
whose dimensions are
to be adjusted.

I Fixed l^I^JDIM No. of the dimension
Point whose subscripting limit
Expression is to be adjusted.

15

NO YES
SET POINTER
TO LARGEST
FREE BLOCK

NO

YES

COMPUTE N=
AVAILABLE CELLS

-2.

NO SET
N = $

YES

RESERVE BLOCK:
STORE KW,

SCW, BLANK
NW.

-M RETURN

Figure 4. Functional Flow Chart - ALSTO

16

(1) Parameter

NI

CALL ADJD (KW, I, NI), (Cont.)

(2) Type (3) Restrictions (4) Description

Fixed Point
Expression

>6 New upper subscripting
limit for the I"1 dimen-
sion.

(5) Operation (see Figures 5, 6, and 7)

(A)

(B)

(C)

The block associated with KW is located,
allocated.

It must be currently

(D)

If the new NI is equal to the old NI, an immediate return is made.

If the new NI is less than the old NI, the internal data is re-
arranged to match the new dimensioning, a free block is created
to take up the excess, the preface words are updated, and a
normal return is made.

If the new NI is greater than the old NI, operation depends upon
the arrangement of Scratchpad. If there is sufficient space in
the form of free blocks immediately above this block, the action
taken is similar to (C) above. If, as is usually the case, this
condition is not met, Scratchpad is packed so that all free storage
is located after this block (in stationary mode) and an error stop
results. If this is still not enough, an error stop results; other-
wise, continue as in (C) above.

(6) Comments and Examples

(A) The key word used must be exactly that used when the block was
originally reserved, or a derivative via RKW [see Paragraph R]
The sequence

CALL RQSTO (A,NA1,NA2)

B-A

CALL ADJD (B, 1.NA1+1)

17

YES

NO

NO

NO

NO

NO

NO

DIFF =
(Nl) (N2) ... (NI

nev
-NI) ... (NNDIM)

(TADJD j

. TRUE.

TRIND

<D
Figure 5. Functional Flow Chart - ADJD, TADJD

18

RADJD

OSTEP -»-FRA
NSTEP -»-TOA
NSTEP -».ffflK)

'FORWARD*

DIR

TRUE

WHERE THIS IS
THE itt BLOCK

SET j=+l MOVE ANY
RESERVED BLOCKS

ABOVE THIS
TO UPPER XPAD

-OSTEP -f^-OSTEP
-NSTEP -INSTEP

FRA + NWDS -1
-*-FRA

TOA + NWDS -1
—^-TOA

BACKWARD'

DIR kb
FREEST+

NSBLKj
—*- FREF.S1 NO

*• j + i-^j

Figure 6. Functional Flow Chart - ADJD# TADJD

19

MOVE GROUP OF
NWBS STARTING

AT FRA IN
DIRECTION DIR

TO TOA

FRA + OSTEP
—»• FRA

TOA + NSTEP
—»- TOA

i+1

UPDATE
PREFACE

WORDS

ADJD100

^

NMOVES =
h NWDS =

^i+i'-- ^NDIM'
-1

W
<N,°^ m

NSTEP =

<NINEW>-"
(Nl)

FRA =
(NMOVES) x

(NWDS)

4 OSTEP =
NWDS

•* ^ ^

Figure 7. Functional Flow Chart - ADJD, TADJD

20

would result in an error stop. The sequence would be acceptable
if B=A were replaced by CALL RKW (A,B). One consequence of
this is that key words cannot ordinarily be passed through calling
sequences to FORTRAN subroutines [l] * without resorting to
oblique tricks. When more than one routine must access a block,
the best technique is to place the key word for that block in some
COMMON.

(B) The restriction on (1) Parameter I, implies NDIM^l; an attempt
to adjust the dimensions of a ^-dimension block is always an
error.

(C) When the new NI is less than the old NI, all elements whose I
subscript is greater than the new NI are irrevocably lost. In the
reverse case, any elements whose Ith subscript is greater than
the old NI are in an uninitialized state and may have any value
prior to being stored into.

(D) For all practical purposes, an ADJD with the new NI greater than
the old should be considered illegal in stationary mode.

(1) Parameter

KW

G. TADJD - Trial Adjust Dimension

Logical Function = TADJD (KW,I,NI)

(2) Type (3) Restrictions (4) Description

Variable See F.(6)(A) Key word of the blocv

whose dimensions are
to be adjusted.

I Fixed Point l^I^NDIM No. of the dimension
Expression whose subscripting limit

is to be adjusted.

NI Fixed Point > 6 New upper subscripting
Expression limit for the I"1 dimension.

(5) Operation (see Figures 5, 6, and 7)

Operation is exactly that of ADJD, except that neither of the error

stops mentioned in Paragraph F. (5)(D) can occur. Instead, no adjustment

See Ref. 1; n.D.2 .10.1
21

is made and the function is assigned the value . FALSE.. When adjustment

occurs normally, the function becomes .TRUE..

(6) Comments and Examples

(A) All comments for ADJD [see Paragraph F. (6)] apply except (D).

(B) Assuming sufficient space, the sequence

LOGICAL TADJD

CALLRQSTO (A, 2, 4,6, 8)

IF (.NOT. TADJD (A, 3, 9) GO TO 366

would fall through to statement 266 with block "A" appearing
exactly as though it had been reserved by a

CALLRQSTO (A, 2, 4,9, 8)

H. IBASE - Request Block Base Index

Function: IBASE (KW)

(1) Parameter (2) Type (3) Restrictions (4) Description

KW Variable See F. (6)(A) Key word of the block
whose base index is
requested.

(5) Operation (see Figure 8)

(A) The block associated with KW is located. It must be currently
allocated.

(B) The base index is computed so that if XPAD(l) denotes the first
element in Scratchpad, XPAD (IBASE(KW)+1) denotes the first

22

NO

NO

COMPUTE
IBASE

[RETURN]

Figure 8. Functional Flow Chart - IBASE

23

element of the data storage, as opposed to preface words,
associated with KW.

(6) Comments and Examples

The base index has only temporary validity, and caution should be

exercised in using it. Whenever a storage-using call that is TRQSTO,

RQNSTO.RQSTO, expanding TADJD or ADJD, ALSTO is made, the location

of a particular block already in Scratchpad may be altered, unless stationary

mode is in effect. The key word is updated to reflect the change, but there

is no way for XPSTC to update indexes calculated from IBASE. Consequently

the base index and the results of any concomitant index computations should

not be used without recalculation after any storage-using call except in SM.

The following situation represents a violation of this rule. Program II is a

subroutine which, rather inefficiently, reverses the order of a vector X of
th

NX entries. Program I wishes this operation performed upon the J column

of a 2-dimensional matrix. Note: FORTRAN, XPSTC stores with the first

subscript varying most rapidly, column-wise, in the case of 2 dimensions.

The matrix is in Scratchpad and the programmer of Program I forgets or does

not know that Program II calls for storage before using the vector address:

PROGRAM I
(Assume non-SM)

COMMON XPAD (26666)

CALLINSTO (XPAD, 26666, .FALSE.)

CALL RQSTO (XMATR,N,M)

IXCOLJ = IBASE (XMATR) + N*(J-1) + 1
CALL PROG n (XPAD (IXCOLJ),N)

24

PROGRAM n

SUBROUTINE PROG E(X, NX)
DIMENSION X (NX)
COMMON XPAD (26666)
CALL RQSTO (TEMP,NX)
ITEMP = IBASE (TEMP)
DO ldl=l,NX
INDEX = ITEMP+NX-I+1

\6 XPAD(INDEX) = X(I)
D0 2£fl= 1,NX
INDEX = ITEMP+I

16 X(I) = XPAD (INDEX)
CALL RLSTO (TEMP) [see Paragraph L]
RETURN

The above sequence could very well blow up if the CALL RQSTO (TEMP,

NX) caused a packing of Scratchpad so that XPAD (KCOLJ) no longer was

the first element of column J. As it stands, Program H is a correct program

only, subject to the restriction that either none of the call parameters shall

be Scratchpad addresses or that SM shall be in effect. If Program II were

recoded as shown below, then Program I would be correct as it stands:

SUBROUTINE PROG D. (X, NX)
DIMENSION X (NX)
MX = NX/2
J = NX+1
DO Iff 1 = 1, MX
J = J - 1
TEMP =X(J)
X(J) = X(I)

16 X(l) = TEMP
RETURN

Another way of correcting the situation would be for the PROG n pro-

grammer to bracket the CALL RQSTO with the statements

CALL ENTSM [p]
CALL RESSM [q]

25

or the PROG I programmer could do the same with the CALL PROG II
statement.

I. ST - Store

CALL ST (X,KW,I1,I2,...,II, ...,INDIM)

(1) Parameter (2) Type (3) Restrictions (4) Description

X Expression The value to be stored.

KW Variable See F. (6)(A)

II Fixed Point ff <II^NI
Expression

(5) Operation (see Figures 9 and 10)

(A) The block associated with KW is located,
allocated.

Key word of the block to
be stored into.

I"1 subscript of the element
to receive the value X. The
numbers of subscripts must
match the number of dimen-
sions in the storage request.

It must be currently

(B) The number of subscripts is checked on the first execution only,
within a computer run.

(C) If XPSTC is in the checking mode, a number of validity checks
are made upon the key word and preface words, and all the sub-
scripts are checked for valid range. With these tests passed, the
effective address of the cell is compiled from the subscripts, the
store is made, and the program returns.

(D) On the first execution after nonchecking mode has been established,
all the checks described in (C) are performed; however, before
returning, a block of code is usually generated and stored over the
calling sequence. This code is designed to perform the floating-block
store in much the same way that FORTRAN ordinarily compiles its
stores to static blocks; only one or two extra machine instructions
are required in most cases. The only exception to this rule is the
situation where one of the call parameters is a variable with a
variable subscript. In this case, only the branch within the calling

26

ST

SET FOR 1
CALL PARAMETER.

RESET OVERWRITE
INDICATOR.

IS
THE CALL

PARAMETER BEING
OVERWRITTEN

?
NO

YES SET OVERWRITE
INDICATOR

SET FOR
NEXT CALL

PARAM.

YES

SET CALL
BRANCH SO
SUBSEQUENT
ENTRIES ARE

STORE
REENTRY

1

RESTORE
OVERRIGHT
INDICATOR

NO

>3

NDIM >^GE

HP

Figure 9. Functional Flow Chart - ST

27

COMPUTE
EFFECTIVE INDEX
FROM SUBSCRIPTS

AND STORE

SET CALL BRANCHES
SO SUBSEQUENT

ENTRIES ARE AT
(THE APPROPRIATE)
STORE REENTRY 2

NO

r "l

GENERATE CODE
AND STORE IT

OVER THE
CALL SEQUENCE

L J
Note: dotted lines enclose sections that
are actually repeated four times—once
each for the cases NDIM =0,1, 2 and a 3.

Figure 10. Functional Flow Chart - ST

28

sequence is replaced so that a direct entry to a special fast store
routine is made each call.

(6) Comments and Examples

(A) STRAP users may guess from (5)(D) above that the calling sequence
to ST should not be stored into unless some signal is furnished
XPSTC [see Section in, Storing, Loading and Swapping, page 58].
FORTRAN users especially concerned with efficiency should
consult this section also.

(B) The sequence

CALL RQSTO (SINES, MAXROW, MAXCOL)

CALL ST (SIN (X)-l, SINES, MAX(I,J),K*N+L(I))

will result in the value sin x-1 being stored into the element of
SINES which has the subscripts max (i,j),kn+l..

J. FL,IL,LL - Floating, Integer, and Logical Load

Functions: FL (KW,I1,I2, ,11,. . .INDIM)
IL (KW,I1,I2 ,11,. ..INDIM)
LL (KW,I1,I2, ,H, ...INDIM)

(1) Parameter (2) Type (3) Restrictions (4) Description

KW Variable SeeF.(6)(A) Key word for the block
to be loaded from.

II Fixed Point fb < 11^ INDIM Ith subscript of the
Expression element whose value will

become the value of the
function. The number of
subscripts must match
the number of dimensions
in the storage request
(NDIM).

29

(5) Operation (see Figures 11 and 12)

Operation is the same as that of ST [see Paragraph I] , except that

"store" should be read "load" and "stores to" should read "loads from".

(6) Comments and Examples

(A) All comments for ST [see Paragraph I] apply with obvious mod-
ifications.

(B) FL, IL, and LL are merely different names for exactly the same
program. Since XPSTC neither knows nor cares what type of
data the block is being used for, the effective value of any one of
these functions will always be the sixty-four bit quantity within the
subscripted cell. For STRAP users, this means that the accumu-
lator and all associated indicators have been set by a LWF(U) just
prior to return. The motivation for separate names is to allow
the FORTRAN user, with a LOGICAL LL statement, to avoid mixed
expressions and otherwise control the FORTRAN handling of the
function value.

(C) The following statement will cause the I, J element of a block of
counters to be incremented:

CALL ST (IL(KOUNT,I,J)+l,KOUNT,I,J)

K. SW - Swap

CALL SW (X,KW,I1,I2, . . . ,INDIM)

(1) Parameter (2) Type (3) Restrictions (4) Description

X Variable — The variable whose value
is to be swapped with that
of the subscripted block
cell.

KW Variable SeeF.(6)(A) The key word for the block.

II Fixed Point tf<II£NI Ith subscript for the cell
Expression whose value is to be

swapped with that of X.

30

IL

SET FOR 1
CALL PARAMETER

RESET OVERWRITE
INDICATOR.

SET OVERWRITE
INDICATOR

SET FOR
NEXT CALL

PARAM.

YES

YES

SET CALL
BRANCH SO
SUBSEQUENT
ENTRIES ARE
AT LOAD
REENTRY

1

RESTORE
OVERWRITE

INDICATOR

NO

*0
Figure 11. Functional Flow Chart - FL, IL, LL

31

COMPUTE
EFFECTIVE

INDEX FROM
SUBSCRIPTS

AND LOAD

J

SET CALL BRANCHES
SO SUBSEQUENT
ENTRIES ARE AT

(THE APPROPRIATE)
LOAD REENTRY 2

r "I

GENERATE CODE
AND STORE IT
OVER THE CALL

SEQUENCE

L J
Note: dotted lines enclose sections
that are actually repeated four
times--once each for the cases
NDIM 0. 1.2 and sg.

Figure 12. Functional Flow Chart - FL, IL, LL

32

(5) Operation (see Figures 13 and 14)

Operation is the same as that of ST [see Paragraph I], except that

"store" should be read "swap. " Also, the comparison with FORTRAN,

which has no swap operation, does not apply.

(6) Comments and Examples

(A) All comments for ST [see Paragraph I] apply with obvious mod-
ifications.

(B) It might be noted that, as is required for logical consistency, the
subscripts are used to compute the address of the cell before the
swap is performed; hence the statement:

CALL SW(I,IX,I,J)

causes

I to assume the value of IX . , , ,
old I, J

IX ,, _ _ to assume the value of old I.
old I,J

L. RLSTO - Release Storage

CALL RLSTO (KW1, KW2,...)

(1) Parameter (2) Type (3) Restrictions (4) Description

KW1,... Variable See F. (6)(A) The key words for blocks
to be released. There
must be at least one such
key word.

(5) Operation (see Figure 15)

The following sequence is repeated for each key word in the sequence:

(A) The associated block is located. It must be currently allocated.

(B) The key word is set to 0 and hence becomes invalid for any XPSTC
associated operation except another allocation request.

33

&

SET FOR 1S

CALL PARAMETER
RESET OVERWRITE

INDICATOR.

YES
SET OVERWRITE

INDICATOR

SET FOR
NEXT CALL

PARAM.

NO

YES

SET CALL
BRANCH SO
SUBSEQUENT
ENTRffiS ARE
AT SWAP

REENTRY
1

YES

DOES
THE CALL

HAVE THE RIGHT#
\SUBSCRIPTS

?

RESTORE
OVERWRITE

INDICATOR

«—e
VKS

©
Figure 13. Functional Flow Chart - SW

34

COMPUTE
EFFECTIVE INDEX
FROM SUBSCRIPTS

AND SWAP

SET CALL BRANCHES
SO SUBSEQUENT

ENTRIES ARE AT
(THE APPROXIMATE)

SWAP REENTRY 2

NO

r
GENERATE CODE
AND STORE IT

OVER THE
CALL SEQUENCE

~l

RETURN

_l

"1

L_ J
Note: dotted lines enclose sections that are
actually repeated four times—once each for
the cases NDIM = 0, 1, 2 and a- 3.

Figure 14. Functional Flow Chart - SW

35

SET FOR 1st

CALL
PARAMETER

TURN OFF
"RESERVED"

FLAG

SET FOR
NEXT

PARAMETER

YES
M RETURN

Figure 15. Functional Flow Chart - RLSTO

36

(C) The block is flagged "free" and becomes eligible for re-allocation
in whole or in part or for overwriting during a Scratchpad packing
operation.

(6) Comments and Examples

(A) Once a block has been released, it is generally not certain that
the same area of Scratchpad will be allocated the next time a
storage request is made, even if such a request immediately followed
the release. Hence no attempt should be made to use data from
a block which has been released since the data was stored there.

(B) Example: CALL RLSTO (X(3),V,K)

M. ALLOC - Allocation Status Test

Logical Function: ALLOC(KW)

(1) Parameter (2) Type (3) Restrictions (4) Description

KW Variable KWof the block whose
current status is being
tested.

(5) Operation (see Figure 16)

If the block associated with KW is currently legally allocated, the

function value is . TRUE.. If no allocation has been made, or the block has

been released, or the KW or SCW have been contaminated, the function is

.FALSE..

(6) Comments and Examples

(A) Under just the right circumstances, ALLOC could generate an
invalid address (AD) interrupt on a legal call unless the following
precautions are taken with any key words to be tested by ALLOC:

(1) A DATA KW(fl) should be used to insure the initial state of
the KW at load time.

37

ALLOC
OBTAIN

SCW

i+1

FALSE.

ALLOC

YES

RETURN

YES

.TRUE.

ALLOC

Figure 16. Functional Flow Chart - ALLOC

38

(2) The key word should not be used for other purposes after
releasing the block unless a KW=0 is executed after such use.

(B) In general, this function is useful only in rare circumstances.

(C) Example: IF(.NOT. ALLOC(A))CALL RQSTO(A, ljrf)

N. ENTCM - Enter Checking Mode

CALL ENTCM

(1) Operation (see Figure 17)

(A) Checking mode is established.

(B) The CM level counter, as shown below, is incremented by 1, and a
return is made.

(2) Comments and Examples

ENTCM and the associated RESCM [see Paragraph O] may be thought

of as left and right parentheses, respectively, so that the state of the system

during a series of ENTCM/RESCM calls is CM until the RESCM associated

with the first ENTCM is executed:

 (...(..)..(..(..)))

As initialized checking mode As initialized
by INSTO [a]> >

The level counters indicate the current depth of successive ENTCMs.

O. RESCM - Resume Prior Checking Mode

CALL RESCM

(1) Operation (see Figure 17)

(A) The CM level counter is decremented by 1. If this brings the
level below zero, an error stop results.

(B) If this reduces the level to zero, CM as initially set up by INSTO
is re-established. Otherwise CM is left in the "on" condition
and the subroutine returns.

39

TRUE.

—^CM

CMPCT+1

-^•CMPCT
•* RETURN

CMPCT-1

-^•CMPCT

NO

TCM-*-CM

YES
RETURN

Figure 17. Functional Flow Chart - ENTCM, RESCM

40

(2) Comments and Examples

(A) As is implied by Paragraph (1)(A), it is considered an error
when more RESCMs have been executed than ENTCMs since the
last call to INSTO.

(B) Temporary establishment of checking mode has two principal uses:

(1) debugging only of a portion of a system so that checked-out
segments are not slowed down by validity checking, and

(2) permanent validity checking, in places where timing is not
critical and the program author cannot otherwise guarantee
proper subscripts, such as:

READ1, X, I, J,
CALL ENTCM
CALL ST (X,A,I,J)
CALL RESCM

P. ENTSM - Enter Stationary Mode

CALL ENTSM

(1) Operation (see Figure 18)

(A) Stationary mode is established.

(B) The SM level counter is incremented by 1, and a return is made.

(2) Comments and Examples

The same comments and the example given for ENTCM [see Paragraph

N. (2)] hold, with obvious modifications. Note that in the case of SM, "as

initialized by INSTO" is always nonstationary mode.

41

ENTSM
TRUE.-

SM

SMPCT+1

—"^SMPCT
-W RETURN

SMPCT-1
-•"SMPCT

NO

FALSE.

YES

Figure 18. Functional Flow Chart - ENTCM, RESSM

42

Q. RESSM - Resume Prior Stationary Mode

CALL RESSM

(1) Operation; (see Figure 18)

Operation is similar to that for RESCM [see Paragraph O. (1)] except
that when the level counter is reduced to zero, SM is always turned
"off.»

(2) Comments and Examples:

(A) Comment [see Paragraph O. (2)(A)] applies for ENTSM/RESSM
also.

(B) Stationary mode is generally to be avoided except where neces-
sary in conjunction with IBASE [see Paragraph H.]

(C) For an example of use [see Paragraph H. (6)]

R. RKW - Reassign Key Word

CALL RKW (OKW, NKW)

(1) Parameter

OKW

(2) Ty^e

Variable

(3) Restrictions

see F. (6) (A)

(4)Description

Current key
word of a
block.

NKW Variable Not in XPAD Word that
becomes the
key word
for this
block.

(5) Operation: (see Figure 19)

(A) The block associated with OKW is located. It must be currently
allocated.

(B) OKW is disabled and becomes ineligible for further use as a key
word.

(C) NKW is established as the key word for the block.

43

(RKW y NO

NO

ESTABLISH
NEW KW

I
UPDATE SCW,
DISABLE OLD

KW.

Figure 19. Functional Flow Chart - RKW

44

(6) Comments and Examples:

(A) When key words are arranged in a static array, it is frequently
more efficient [see Paragraph HI, Storing, Loading, and Swapping,
page]to redefine the desired key word, using a single cell at
the beginning of a long loop through the array,

DO 100 1=1, NPLANE
CALL RKW (KW(I), TEMPKW)

CALL ST (X, TEMPKW, J, K)
100 CALL RKW (TEMPKW, KW(I))

(B) Another example is given [see Paragraph F. (6)],

S. RQXMP - Request Scratchpad Map

CALL RQXMP

(1) Operation: (see Figure 20)

(A) A map of Scratchpad, as exemplified below, is prepared and out-
put displayed on $PRINTER via IOCS. Absolutely no checking is
performed on the validity of the preface and key words encoun-
tered. No XPSTC error indication can ensue from a CALL
RQXMP.

(B) All fields, unless otherwise labeled, are octal.

(C) The address before "CALL RQXMP" is the address of the branch
from the user's program (or, from the XPSTC error message
routine) to RQXMP.

(D> The first field is the address of the storage control word for the
block.

(E) The next six columns represent the contents of this word as
follows:

Key word address
Pattern bits (should be 152)
Reserve bit:

fMblock is free
l=block is allocated

45

PRINT
"xxxxx. X

CALL RQXMP"

SET FOR
NEXT BLOCK

NO

YES

PRINT
'XPAD NOT YET

INITIALIZED"

SET FOR 1
BLOCK IN

XPAD

st

1
PRINT LINE

FOR THIS
BLOCK

YES

-M RETURN

Figure 20. Functional Flow Chart - RQXMP

46

Last - block bit
0=all blocks but last
l=last block only

Number of dimensions
Size of block (including control words)

(F) The next two columns represent the contents of the key word:

Storage control word address

Pattern bits (should be 1002032655 if the block is reserved).

(G) The next two columns represent the contents of the name word:

Name of the block, if any, may be "hash" for certain free blocks .

Type of data

0 Floating point or unspecified
1 Alphabetic
2 Integer (Fixed point)
3 Logical

(H) The remaining fields contain the block dimensions.

(2) Comments and Examples:

(A) It is useful to call RQXMP just prior to any snapshot dump during
execution or before an abnormal end-of-job (FORTRAN "STOP").
The user will find it easier to locate his data with a map of
Scratchpad. Typical RQXMP output data sample is shown in
Figure 21.

(B) RQXMP is also called when an error condition is detected by
XPSTC [see Error Diagnostics, page 491 .

47

r,
s
3

a, rH CM CO

cs
0 ><
H <
O X
UJ

> I
in in in in
in in in in
to to SO <o

<
Q.

_0>

Q
E
o

1/1

Q
<

CM CM IN CM

II

r

3
O

o
O
U

U C3 C3 CM (O O
* r-1 ^H CO
M «

^ O O H CM CO rH

a

CN

<

Q <
CM CM CO CO

Q <
is

48

T. RQXDP - Request Scratchpad Dump

CALL RQXDP

(1) Operation: (see Figure 22)

[ll* A zero-locator dump of Scratchpad is output on the System
Printer.

(2) Comments;

The prime application for RQXDP is debugging XPSTC itself. Conse-
quently, it is seldom used.

ERROR DIAGNOSTICS (See Figures 23 and 24)

Because the allocation and use of storage are basic functions, XPSTC con-
siders all errors serious and terminates the job abnormally after printing

••XPSTC DIAGNOSTIC NO. XX. THE CALL TO
XPSTC WAS FROM XXXXXX. X(8). THE JOB

WILL BE TERMINATED

and a Scratchpad map [see Paragraph S, page 45]. The call location is the
address of the branch to the XPSTC subroutine which detected the error. The
diagnostic number may be used in conjunction with Table II to determine the
probable cause of the error. It should be emphasized that just the right kind
of contamination of the key or preface words could cause certain of the diag-
nostics which do not list this as a probable cause.

TABLE II
XPSTC Diagnostic List

No. Subprogram (s) Probable Cause

Contaminated SCW in XPAD
Contaminated KW
NSXPAD less than 3
(T)RQ(N)STO+ called before INSTO
Contaminated SCW in XPAD
Insufficient available free space
ALSTO called before INSTO
Contaminated SCW in XPAD
Referenced KW contaminated
SCW contaminated, freed or does not
match KW

1 INSTO
2 INSTO
3 INSTO
4 (T)RQ(N)STO*
5 (T)RQ(N)STO*
6 RQ(N)STO+
7 ALSTO
8 ALSTO
9 IBASE

10 IBASE

•See Ref. 1; I. C. 6. 1

49

No. Subprogram (s)

11 RLSTO
12 RLSTO

13 ST
14 ST

15 ST
16 ST
17 SW
IS SW
19 SW

20 SW
21 FL, IL, LL
22 FL, IL, LL
23 FL, IL, LL

24 FL, IL, LL
25 RQNSTO
26 RQNSTO
27 RESCM
28 RESSM
29 RQ(N)STO*. ADJD

30 ALLOC
31 RKW
32 RKW

33 (T^ADJD*

34 (T)ADJD*

35 (T)ADJD*
36 (T)ADJD*
37 (T)ADJD*

38 ADJD

39 (T)ADJD*

* (T)RQ(N)STO
RQ(N)STO
(T)ADJD

Probable Cause

Referenced KW contaminated
SCW contaminated, freed or does not
match KW
Referenced KW contaminated
SCW contaminated, freed or does not
match KW
Wrong number of subscripts (^ NDIM)
A subscript is too large or less than 1
Wrong number of subscripts
Referenced KW contaminated
SCW contaminated, freed or does not
match KW
A subscript is too large or less than 1
Wrong number of subscripts
Referenced KW contaminated
SCW contaminated, freed or does not
match KW
A subscript is too large or less than 1
Too many or no name characters
Illegal code for data type (/F, A, I or L)
More "RESCMs" than "ENTCMs"
More "RESSMs" than "ENTSMs"
Storage-using call requires packing but
SM is on
Contaminated SCW in XPAD
OKW is contaminated
SCW contaminated, freed or does not
match OKW
Referenced KW contaminated, or XPAD
uninitialized
SCW contaminated, freed or does not
match KW
NDIM less than 1
I less than 1 or greater than NDIM
Contaminated SCW in XPAD
Insufficient space for expansion
New NI less than 1

denotes TRQSTO, RQNSTO or RQSTO
denotes RQNSTO or RQSTO
denotes TADJD or ADJD

50

SET UP
DUMP LIMITS

I
DUMP

VIA $DUMP

Figure 22. Functional Flow Chart - RQXDP

51

PRINT K,
CALL LOCATION

Figure 23. Functional Flow Chart - ERRMESS (Internal Subroutine)

52

MOVE BLOCK
AT POINTER # 1
TO POINTER # 2

UPDATE KW
TO REFLECT NEW
BLOCK ADDRESS

CREATE FREE
BLOCK CONSIST-

ING OF ALL FREE
SPACE

Figure 24. Functional Flow Chart - PACK (Internal Subroutine)

53

OPERATING INSTRUCTIONS

XPSTC is intended to operate on an IBM 7030 (improved version with

$MR) [2] . The Master Control Program (MCP) [l] * must be in use as the

monitor. XPSTC may be loaded as a binary deck in the standard FORTRAN

environment manner [l]**. The subroutine IOCS*, which is required by

XPSTC, is loaded automatically by MCP.

* See Ref. 1; II and 3, 22 ff

** See Ref. 1; H. B. 1. 2. 4 or 5 and Ref. 3; 27 ff

54

SECTION m

TECHNICAL INFORMATION

METHOD

Block Organization

Organization within Scratchpad

At all times after the INSTO call, Scratchpad may be thought of as seg-

mented into one or more blocks, each of which flagged as "free" or "reserved1

Schematically, Scratchpad looks like this immediately after an INSTO call

(F = free, n • reserved block number):

increasing addresses

(1)

1 F 2 3 F F

and may look like this after a series of storage requests and releases:

(2)

When an ordinary storage request (RQSTO) is received, XPSTC first deter-

mines the requisite extended block size [see Paragraph Internal Organization,

page 57], and then searches Scratchpad for a (single) free block of sufficient

size; (2) might be transformed to:

(3)

by such a call. If no such block is found, and nonstationary mode is in effect,

Scratchpad is packed, (2) would become:

1 4 F 2 3 F F
—. i—1 .

12 3 F

(4)

and, if possible, the block is allocated within the single free block,
55

12 3 4 F
 ;

(5)

Requesting all of storage (ALSTO) will result in packing if in nonstationary

mode, and allocation of the largest segment (perhaps several blocks) of con-

tinuous free memory otherwise. Starting with (2), the result would be:

(6)
1 2 3 4

r mode and:

1 F 2 3 4
(7)

in the stationary mode.

In-flight alteration of block size (ADJD) is handled according to the type of ad-

justment (contract or expand). In the case where a block is made smaller, a

free block is created to take up the excess. Contracting block 1 in (2) would

result in:

1 F F 2 3 F (8)

In the case of block expansion, when free space is present immediately above

the block in the amount necessary, it is used as is. Expanding block 3 in (2)

might result in:

1 F 2 3 F
(9)

On the other hand, when such space is not present, all free space is collected

above the block in question by a special type of packing (nonstationary mode

only). Expanding block 2 of (2) would result in:

56

1 2 F 3 (10)

Internal Organization

An extended block consists of preface words (for XPSTC use), followed by the

main block (available to the user). Not much need be said about the main

block, except that in multidimensional arrays storage is arranged with the

first subscript varying most rapidly column-wise for the two-dimensional case.

FORTRAN also stores this way. The preface words occur in the following

order:

SCW (storage control word)
NW (name and type word)
FUDGE (present only if NDIM > 3)

NDIM DWs (present only if NDIM>2)

The SCW is made up of the following fields:
Bits Field

0-17
18-24

25
26
27
28-45
46-63

Address of the Key Word
Pattern (1101010 . 65 on OHEX dumps)

Reserved (1) or free (0)
Last (1) or not (0)
Unused
NDIM
Size of this extended block (NSBLK)

57

The NW has the following arrangement:

Bits Field

0-47 Name (A8 code)
48-60 Unused
61-63 Type—Floating or unspecified (0),

Alphanumeric (1), Integer (2),
Logical (3)

FUDGE is in FORTRAN integer form and is present only if NDIM>3. It has
the value

<-"«NNDIM-l+1) NNDIM-2+1)-"+1) \ " NDIM

which is useful in subscript calculation.

The DWs, present only when NDIM>2, are also in FORTRAN integer format

and simply comprise a list of the block dimensions.

The key word (KW), which is not a preface word but is associated with a re-

served block, has the following format:

Bits Field

o-: 17
18- -24
25- -31
32- -63

SCW address

Unused
Pattern (080835AD J 20040. 65 AD on OHEX dumps

16

STORING, LOADING, AND SWAPPING

The techniques employed in these functions are best discussed with ref-

erence to the "calling sequence" compiled by FORTRAN upon encountering a

CALL or Function reference with M arguments.

Schematically:

Y LVI, 15, $+1
Y+. 32 B, FUNCTION
Y+l. VF, ARG1
Y+l. 32 VF, SOMETHING 1

58

Y+2. VF, ARG2
Y+2. 32 VF, SOMETHING 2

Y+M VF, ARGM
Y+M. 32 VF, SOMETHING M

In this case "FUNCTION" is ST, FL, IL, LL, or SW. The fact that

"B, FUNCTION" is, in fact, through a transfer vector is of no consequence;

however,any other variation of this form (loading $15 several steps prior to the

branch) is illegal.

The "B, FUNCTION" as originally compiled is executed only once; once

XPSTC has been reached through such a branch,the calling sequence is checked

for correct length (proper number of subscripts) and the "B, FUNCTION" is

replaced by a direct branch,to a point within XPSTC which by-passes this test

on subsequent calls. The validity of all arguments is then checked. If XPSTC

is in checking mode, the indicated function is then carried out and return link-

age is performed in normal subroutine fashion.

In nonchecking mode, one of two procedures is invoked, depending ulti-

mately upon whether or not the call sequence is being stored into. FORTRAN

does not usually compile code which stores within call sequences; the exception

occurs when a dimensioned variable indexed by a variable (or expression con-

taining a variable) occurs singly (not as part of an expression) as an argument.

For example:

CALL ST (SIN(X)-1., SINES, I(J+1), K*NRAIH-L) (1)

falls into this category because of the I(J+1). In such an instance, FORTRAN

presumes that an attempt is being made to transmit a vector beginning at

I(J+1) and consequently the effective address of I(J+1) is computed just prior

to the call and stored within the call sequence. FORTRAN uses the VF,

59

SOMETHING slot immediately following the VF, ARG slot in question to effect

this computation. The SOMETHING thereby becomes nonzero, whereas it is

always zero in any other instance.

In an immediate sense, therefore, the decision as to procedure is based

upon whether or not all the VF, SOMETHINGS are VF, 0s. For the STRAP

user, this means that at least one of the VF, SOMETHINGS must be nonzero if

the calling sequence is to be stored into by the calling program.

The procedure when the calling sequence is being stored into is to re-

place the B, FUNCTION slot once again with a branch to a point where all tests

are by-passed, but the store, load or swap function is carried out and return

linkage effected in normal subroutine fashion.

The procedure otherwise is to overlay the entire calling sequence with a

code which directly performs the requested function; XPSTC then returns to

this code and thereafter passes through the same code effect with no linkage

to XPSTC whatever.

Since this last procedure is by far the more efficient, STRAP users

ought to avoid storing within calls wherever possible and FORTRAN users

should avoid call arguments which will cause this storage in the compiled code;

statement (1) above, for example, would be more efficient as

M = I(J+1)
CALL ST(SIN(X^ - 1. , SINES, M, K*NRAD+L)

or even as

IZERO= 0
CALL ST(SIN(X) - 1. , SINES, I(J+l)+IZERO, K+NRAD+L)

One ramification of either procedure ought to be noted. Changes to the

user's calling sequence, either the branch only or a complete overlay, are

such that once a particular store, load, or swap call has been executed in the

60

nonchecking mode, it becomes impossible to establish checking mode for that

call during the same run.

CODING

XPSTC was written in the STRAP H (IBM 7030 Assembly Program) lan-

guage. The coding is currently on file at The MITRE Corporation, Systems

Design Laboratory, Bedford, Massachusetts.

STORAGE

XPSTC model 3 version 2, takes up 1108 locations of core, which may

be subdivided (see Table ffl).

TABLE m

Subroutine Memory Map

Relative Loc. (8) Size (8) Size (10)

Transfer vector 0 2 2
ALLOC 2 24 20
ADJD 26 222 146
ALSTO 250 31.4 25.5
ENTCM 301.4 2.4 2.5
ENTSM 304 2.4 2.5
ERRMESS 306.4 53.4 43.5
IBASE 362. 21.4 17.5
INSTO 403.4 41.4 33.5
RESCM 445.0 10.0 8.

LOAD (FL, IL, LL) 455. 227 151
RESSM 704. 7 7

RQXDP 713. 10 8
RKW 723. 21.4 17.5

RLSTO 744.4 21 17
RQXMP 765.4 155.4 109.5

RQNSTO 1143. 32.4 26.5

RQSTO 1175.4 115. 77

PACK 1312.4 32.4 26.5

ST 1345 247.4 167.5

SW 1614.4 250. 168.

TADJD 2064.4 1.4 1.5
TRQSTO 2066. 1.4 1.5
Internal Storage 2067.4 34.4 28.5

2124. 1108.

61

AUXILIARY ROUTINE

XPSTC calls the subroutine IOCS*, the FORTRAN I/O subroutine auto-

matically available from the library tape when operating with MCP. [l]*

MODIFYING THE PROGRAM

Unused Module Elimination

Inasmuch as the avowed purpose of XPSTC is to use ration storage effi-

ciently, which is neither necessary nor even particularly desirable except

when available memory is limited in relation to the possible size of the data

base, the rather large size of XPSTC itself (1108 locations) may appear some-

what contradictory. Actually, the trade-off is generally quite favorable in the

most usual case, where a number of tables are being used and where core is

not predominantly occupied by programs. When, say, 10, 000 locations or more

are available for data, XPSTC usurps only 10 percent or less of this space,

less than is usually wasted by worst-case dimensioning within a region of this

size. On the opposite extreme, however, are systems with only a few variable

tables or which have but two or three thousand cells in excess of that taken up

by programs. XPSTC is definitely not applicable to such situations.

A third possibility is the intermediate case, where some of XPSTC

functions may be desirable but it is necessary to free the storage taken up by

unused subroutines. Table IV may be used to determine the legal ways for

doing this. Any module or combination of modules may be removed from the

source deck, along with any associated ENTER cards, and the program reas-

sembled. Refer to Table III to determine the current relative location of the

routines indicated.

* Ref. 1; IV. D.4.12.299. 13.

62

TABLE IV

Unit Module Chart

Module Storage (10)

1. ALLOC 20.
2. ADJD, TADJD 147.5
3. ALSTO 25.5
4. ENTCM 2.5
5. ENTSM 2.5
6. IBASE 17.5
7. RESCM 8.
8. LOAD (FL, IL, LL)

(except card "LOAD 12")
150.5

9. RESSM 7.
10. RQXDP 8.
11. RKW 17.5
12. RLSTO 17.
13. RQNSTO 20.5
14. RQSTO, TRQSTO, RQNSTO 105.0
15. ST 167.5
16. SW 168.0
17. TADJD 1.5
18. TRQSTO 1.5

FORTRAN COMPILER CHANGES

XPSTC leans on a peculiarity of the FORTRAN compiler which could con-

ceivably be changed in future FORTRAN issues. That is, FORTRAN currently

signals its intention to store within a calling sequence (see Storing, Loading, and

Swapping, page 58), but this is an unessential aspect of the compiler. If future

63

FORTRANS fail to provide such a signal, the following changes must be made

to XPSTC:

(1) Card 1210 (2 instructions before "STORE3") should
be changed from CM0000 (BU, 1), STORE 14.19 to
CM1111 (BU, 1), STORE 14. 19.

(2) The next card should be changed from LI(BU, 19),
STORE1A to LI(BU, 19), STORE IB.

(3) Cards 1383 - 1504 (instruction after STORE 15
through NOP after STORE3E4) may be removed.

(4) The corresponding changes to LOAD and SW should
be made.

64

REFERENCES

(1) 7030 Facility Manual, The MITRE Corporation, Bedford, Massachusetts,
August 1965.

(2) Reference Manual, 7030 Data Processing System, IBM Form A22-6530-2
(International Business Machines Corporation), White Plains, New York,
1961.

(3) Reference Manual, 7030 Data Processing System FORTRAN IV, IBM
Form C22-6751, International Business Machines Corporation, White
Plains, New York, 1963.

65

Unclassified
Security Classification

DOCUMENT CONTROL DATA • R&D
(Security classification of tltl: body of abstract and indexing annotation must ba anfaratf tWisn ths orsraif /sport la alaaatflarfj

1 ORIGINATIN G ACTIV/ITY 'Corpora's author)

The MITRE Corporation
Bedford, Massachusetts

(a. BEPOBT ItCUdlTY C U ASSI F I C A T I ON

Unclassified
2 b GROUF'

3 REPORT TITLE

XPSTC, A FORTRAN Dynamic Storage Allocator

4 DESCRIPTIVE NOTES (Typm of nport mnd Inclusive dataa.)
N/A

5. AuTHOR(S) (Lmm-t name, firat nmmm. initial)

Sullivan, Joseph E.

6 REPORT DATE

 October 1966

7a. TOTAL NO. OF PAGES

77
7b. NO. OF REFS

8a CONTRACT OR GRANT NO.

AF19(628)-5165
b. PROJECT NO. 250 G

• a. ORIGINATOR'S REPORT NUMBERfSJ

ESD-TR-66-94

9b. OTHER REPORT NOfS; (Any othar numbars that mmy ba aasJansd
—irfj this rspor

MTR-122

10. A VA IL ABILITY/LIMITATION NOTICES

Distribution of this document is unlimited

11 SUPPLEMENTARY NOTES

N/A

12. SPONSORING MILITARY ACTIVITY

Deputy for Engineering and Technology
Computer Programming Division
Electronic Systems Division

13 ABSTRACT L. G. Hanscom Field, Bedford, Mass.

The usage and other characteristics of XPSTC, a FORTRAN-

compatibility storage allocator for IBM 7030, are discussed.

DD .MR. 1473 Unclassified
Security Classification

Security Classification
14.

KEY WORDS
LINK A

ROLE WT

LINK B LINK C

COMPUTER

Storage
Floating-Boundary
Variable
Shared

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee. Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
"Restricted Data" is included. Marking is to be in accord-
ance with appropriate security regulations.

26. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.
5. AUTHOR(S): Enter the name(s) of authors) as shown on
or in the report. Entei last name, first name, middle initial.
If military, show rank end branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.
7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.
76. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.

86, 8c, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.
96. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).
10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) "Qualified requesters may obtain copies of this
report from DDC"

(2) "Foreign announcement and dissemination of this
report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) "U. S. military agencies may obtain copies of this
report directly from DDC Other qualified users
shall request through

(5) "All distribution of this report is controlled. Qual-
ified DDC users shall request through

If the report has been furnished tc the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

1L SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing (or) the research and development. Include address.
13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS), (S). (C), or (U).

There is no limitation en the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional

GPO 886-551
Unclassified

Security Classification

