
>- a,
8
-]

i,

ESD-TR-66-306

ESO RECORD COPY
RETURN TO

SCIENTIFIC & TECHNICAL INFORMATION DIVISION
(ESTI). BUILDING 1211 MTP-11

ESD ACCESSION LIST
ESTI Call No. I AL 534 3 3

Cow No. / of 41 cys.

RECENT DEVELOPMENTS IN THE MITRE

SYNTACTIC ANALYSIS PROCEDURE

SEPTEMBER 1966

D. E. Walker et al.

Prepared for

DEPUTY FOR ENGINEERING AND TECHNOLOGY
DIRECTORATE OF COMPUTERS

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Distribution of this document is unlimited.

Project 7020
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628)-5165

This document may be reproduced to satisfy official
needs of U.S. Government agencies. No other repro-
duction authorized except with permission of Hq.
Electronic Systems Division, ATTN: ESTI.

When US Government drawings, specifications, or
other data are used for any purpose other than a
definitely related government procurement operation,
the government thereby incurs no responsibility
nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in
any way supplied the said drawings, specifications,
or other data is not to be regarded by implication
or otherwise, as in any manner licensing the holder
or any other person or corporation, or conveying
any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.

ESD-TR-66-306 MTP-11

RECENT DEVELOPMENTS IN THE MITRE

SYNTACTIC ANALYSIS PROCEDURE

SEPTEMBER 1966

D. E. Walker et al.

Prepared for

DEPUTY FOR ENGINEERING AND TECHNOLOGY
DIRECTORATE OF COMPUTERS

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Distribution of this document is unlimited.

Project 7020
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628)-5165

ABSTRACT

The MITRE syntactic analysis procedure for transformational gram-
mars has been used to process sentences on-line in a display-oriented mode
as well as off-line. This report describes additions to the program struc-
ture and the grammar made since the last report and presents the results of
experiments with the procedure.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

Lt. J. B. FRASER
Directorate of Computers

111

TABLE OF CONTENTS

Page

Introduction 1

Overview of the Grammar and the Analysis Procedure 2

Surface Grammar Parsing 5

Transformation Reversal 24

Rejection rules 24

Supertrees 27

Changes in The MITRE Grammar 31

Coordinate conjunction 31

Lexical analysis 36

Syntactic features 38

References 40

Introduction

The MITRE Syntactic Analysis Procedure was developed in the con-

text of work on computer-based information systems. Descriptions of

the MITRE transformational grammar, of the steps in the analysis pro-

cedure and of the initial computer programs for implementing the pro-

cedure were presented at the 1965 Fall Joint Computer Conference (Zwicky,

Friedman, Hall, and Walker, 1965). The present paper describes further

developments in the work program: additions to the grammar, changes in

the procedure, and new computer programs that now provide a completely

mechanical analysis of sentences -- on-line as well as off-line.

-1-

Overview of the Grammar and the Analysis Procedure

The model of language underlying the analysis procedure is that

of transformational grammar as developed in particular by Chomsky. A

transformational grammar distinguishes the surface structure from the

base (deep or underlying) structure for a sentence. The surface struc-

ture represents the sentence in the form to be phonologically inter-

preted. The base structure for a sentence represents the categorial and

relational information required for semantic interpretation.

The MITRE grammar contains two components: an ordered set of con-

text-sensitive phrase structure rules and an ordered set of transform-

ational rules. Lexical items occur as terminal symbols in certain of

the phrase structure rules. The phrase structure rules generate a set

of base trees. The transformational rules convert these base trees in-

to surface trees. The procedures developed for analysis reverse this

procedure in five processing steps: lexical lookup, surface grammar

parsing, transformation reversal, context-sensitive phrase structure

check, and synthesis. These steps, summarized below, were described in

detail in the Fall Joint Computer Conference paper.

In lexical lookup the input sentence is mapped into a set of pre-

trees, which are strings of trees containing both lexical and grammatical

items. The pre-trees are obtained by the substitution of lexical entries

for each word. A word may have several lexical entries; the number of

pre-trees associated with a sentence is the product of the numbers of

lexical entries for the words in the sentence.

-2-

The surface grammar is a context-free phrase structure grammar

containing every expansion which can occur in a surface tree. Unavoid-

ably, the surface grammar generates some trees which are not correct

surface trees, i.e., not generable by the MITRE grammar, even though

the corresponding terminal string may be a generable sentence with

some other structure. In the second step of the analysis procedure,

the surface grammar is used in a context-free parsing algorithm to

construct from each pre-tree a set of presumable surface trees associ-

ated with the input sentence.

The next step reverses the effect of all transformational rules

that might have applied to yield a given presumable surface tree. The

"undoing" of the forward rules is achieved by rules that are very much

like the forward rules in their form and interpretation. The reversal

rules are applied in an order which is essentially the opposite of the

order in which the corresponding forward rules are applied. The effect

of transformation reversal is to map each presumable surface tree into

a presumable base tree.

In the next step each presumable base tree is checked against the

phrase structure component of the (forward) grammar. As a result of the

check, presumable base trees that are not, in fact, base trees are dis-

carded.

It is possible in the transformation reversal step to map a presum-

able surface tree into a base tree of the grammar which is not the base

tree underlying that surface tree. In the synthesis step, the full set

of (forward) transformations is applied to each base tree that survives

the checking step. If the resulting surface tree is identical to the

-3-

presumable surface tree being analyzed, then its base tree is a base

tree of the input sentence.

The initial computer programs, written in FORTRAN (Friedman, 1965)

and in TREET, a LISP-like list-processing language (Haines, 1965), were

concerned exclusively with the last three steps in the analysis procedure,

A simple form of lexical look-up has since been programmed; more sophis-

ticated techniques are under study. An efficient algorithm has been pro-

grammed for step 2, the context-free parsing. Modifications in step 3,

transformation reversal, have resulted in a more effective elimination

of spurious surface trees and seem to make the synthesis step unneces-

sary. These changes, the additions to the grammar, and other current

activities will be described in the following sections.

-4-

Surface Grammar Parsing

The surface grammar allows for the assignment to a given sentence

of a number of surface trees. Since these surface trees share many common

subtrees, the parsing algorithm must be efficient in discovering and re-

presenting their common parts. These requirements are met by the

algorithm used in the analysis procedure, which is a modification of

one originally proposed by Martin Kay (1964) ; the Kay algorithm is des-

cribed in the English Preprocessor Manual (1964, 1965).

The procedure is a bottom-to-top algorithm (cf. Griffiths and

Petrick, 1965) ; it finds all the trees which dominate any substring

of the terminal string of a pre-tree. Any tree immediately dominated

by more than one node will be found only once, and each of the nodes

which dominate it will point to it. The algorithm operates simultaneously

on all the pre-trees provided by the lexical lookup step. However, by

way of illustration a parsing based on only the correct pre-tree will be

considered first. The correct pre-tree for the sentence 'Can the air-

plane fly?' is

M NCT VINT

I I I
(1) # PRES SG CAN THE AIRPLANE SG FLY #

This pre-tree string is broken up into segments, and each segment is put

into a separate bin:

(2) PRES SG

M

CAN THE

NCT

1
AIRPLANE SG

3 4

VINT

I
FLY

8

An item in a bin is either a terminal node (e.g., SG in bin 3) or a non-

terminal node with pointers (e.g., M in bin 4). If the node is non-terminal

its left-most daughter (also an item) is in the same bin. Thus the leftmost

terminal symbol of the tree dominated by a non-terminal node is in the same

bin with that node. The pointers (illustrated in (2) as lines) from a node

point to its daughters. The bin coming immediately after the bin containing

the rightmost terminal symbol of a tree is the next bin for that tree. If a

node has more than one daughter, then the (i + l)st daughter must be in the

next bin for the tree dominated by the ith daughter.

The notion of next bin is illustrated in the following segment from a

parsing for the example sentence:

S.

(3) AUXA

NP

DET

ART

THE

2 3 4 5

The first daughter of S is AUXA. The rightmost terminal symbol of the tree

dominated by AUXA is CAN in bin 4. Therefore the next bin for that tree is

bin 5, and the second daughter of S, NP, must be in bin 5.

A complete path exists between two nodes A and B if either B is in A's

next bin or if there exists a node C such that a complete path exists between

A and C and B is in C's next bin. Each node on a complete path is called a

path node. There may be several complete paths between two nodes, and these

paths may share path nodes.

The parsing algorithm is as follows:

1. Set the bin index i to the number of the last bin.

-6-

2. Call the first node in bin. "A-,".

3. For each rule in the grammar of the form

A ~* Ai "O • • • Ai

find all complete paths between Ai and A^ which have A,, A2, ...

A^, as path nodes. (In the case where k = 1 there is only one

such path.) For each such path add to bin. the symbol A with a

pointer to each path node in that path.

4. If there still remains in bin. a symbol which has not been processed

by Step 3, then call this symbol "A," and go to Step 3.

5. If i • 1, the algorithm is terminated. Otherwise, decrease i by 1

and go to Step 2.

The algorithm will find all the trees that terminate in substrings of the

terminal string. Therefore, if the sentence has a parsing, there should appear

in column 1 the sentence node symbol (SS in the MITRE grammar) corresponding to

the top node of a tree whose rightmost terminal symbol is the last terminal

symbol of the string.

An excerpt from the JUNIOR surface grammar* sufficient for parsing (2) is

presented in Table 1. For more efficient use in the algorithm the grammar is

arranged so that rules with the same first symbol after the arrow are grouped

together. Some rules have been omitted to make the diagrams clearer, but the

parsing will produce as many trees as with the complete JUNIOR grammar.

Figure 1 shows the results of applying the parsing algorithm to (2).

Notice the two S nodes in bin 2; they dominate different trees because

the rule S -> AUXA NP VP allows for two different complete

paths since there are two NP's in bin 5. The tree dominated by the

See the English Preprocessor Manual (1964, 1965), S010.

-7-

ss # s # Nil PL

DET ART VP PRED

s —¥ AUXA NP AUX VP

s —• AUXA NP VP

AUX - AUXA

NP - DET N NU

NP —» DET

TNS

TNS

NU

ART

PRES

PST

SG

THE

AUX

NP

N

NCM

ING

N NU

NCM

NCT

AUXA —* TNS NU BE

AUXA - TNS NU M

AUXA —• TNS NU

VP - V NP

VP _, V

s —* NP NP AUX VP

s —t NP NP AUX

s - NP AUX VP

PRED _ NP

VTR

VINT

Table 1. Surface grammar rules

0) -
X, <>•
u *

i-i

o IN
•u

a) fc= c £ a
4-1 i—i
•H a
l-i M
0 •H
bl) cd

i-H

Cfl a)
4=

00 4-1
c

•H a
t/i a
M u
crt
a

<D
a) O

JS c
4-1 CD

4J
14-1 c
0 a

w
C
o CJ
•H ,c
4-1 4-1
crt
0 h
•H o
r-4 14-1
a
a t)
a) Q)

M
(i) 4-1

* 1
4J ai

u
14-1 ex
O

4J
4-1 0
t-l at
3 M
en 1-4
(1) 0
Pi o

QJ

CO
•H
fa

-9-

lower S node (Figure 2) has bin 8 as its next bin; it is not dominated

by the initial symbol SS and hence is not a surface tree.

TNS NU M DET

PRES SG CAN ART

PRED

THE N

NCM

NCT

AIRPLANE

Figure 2. Tree dominated by the lower S node in Figure 1, bin 2

The tree with the higher S node is dominated by SS in bin 1 and has bin

9 as its next bin. Since the SS dominates the entire string, Figure 3 is

the correct surface tree.

•10-

TNS NU

PRES SG CAN ART NCM SG

THE NCT

VINT

PLY

AIRPLANE

Figure 3. Correct surface tree

Notice that the tree in Figure 1 whose top node is AUXA in bin 2 is

part of the two trees whose top nodes in bin 2 are S and that it is

also part of a tree in bin 2 whose top node is AUX. This capability

for compact representation of shared structure is an important aspect

of the efficiency of the parsing procedure.

Having described the general form of the parsing algorithm for a

simple case, it is now possible to consider the algorithm as programmed,

using a more complex example. The same sentence 'Can the airplane fly?'

will be parsed, but all the pre-trees derived from the lexical lookup

will be included. Two changes in the algorithm were made in the course

of programming. The changes relate to the way of handling "pointers"

and "next bins" and to ways of coalescing items within a bin. These

two changes will be described in sequence.

•11-

The fifteen pre-trees of the example sentence can be expressed compactly

as in Figure 4; symbols within a pair of braces are alternatives.

»lS)

NCT

CAN SG

M

I
CAN

NCT

THE AIRPLANE SG

f VINT \
V. UTR J

*\
VTR

I
PRES PL FLY

/ i VTR "V
N V VINT ' VINT

I
FLY

NCT
i
i

FLY SG

Figure 4. Pre-trees for the
sentence 'Can the
airplane fly?1

These fifteen pre-trees also may be represented by putting segments into

thirteen different bins with a pointer from each terminal item indicat-

ing which bin is the next bin. In general, terminal nodes in the first

column after a left brace will appear as items in the same bin, but each

item will point to a different bin as the next bin for that item. Where

there is a choice of non-terminal nodes which can dominate the same

terminal node, each of the non-terminals points to the same terminal as

its daughter. These characteristics are illustrated in Figure 5 which

shows the set of bins corresponding to Figure 4. Note that there are

six different paths through the set of bins and that no tree which has

•12-

* *—1

V
IN

T

 V

T
R

FL
Y

,-J
to
en

1

•7*—'
> S -n

0
to

N
C

T

A
IR

P
LA

N
E

J

UJ
X-—1

" " 1

z
S g._J

_J
a.

N
C

T

C
A

N

P

R
E

S

*

W
O
c u u
I

0)
u a.

M-l
O

ai

a
B
c
0
CL)

•u
4-1
o
c
o

•H

c
(1)
E
bO
<U

CO

10

CJ
u
60

•H

-13-

a terminal in bin 3 may have a terminal in bins 4 or 5. The items that

appear in a bin, then, are as in the earlier example except that the bin

which is pointed to by the rightmost terminal symbol of a tree dominated by

the node of an item is the "next bin" for that item. To make the program

operate faster, each item has a pointer to its next bin even though for

nonterminal nodes these pointers are redundant. To simplify the representa-

tion the redundant pointers are not included in Figure 5.

The second change in the algorithm as programmed requires that in a

given bin, if two or more trees have the same top nodes and the same next

bin, they must be expressed as a single item with a different set of

daughter pointers for each tree. For example, in bin 12 of Figure 5 the

items VINT and VTR have the same next bin and are both parsed as V in

accordance with the surface grammar. Since V is parsed as VT, the unmod-

ified parsing algorithm would result in the following representation of

the items in bin 12:

VP VT

VINT VTR

FLY

By combining the two trees whose top nodes are V, a more compact represent-

ation is obtained:

•14-

VINT VTR

FLY

Nodes, like V, that have more than one set of daughters are circled; the

pointers to each set of daughters originate in a single place on the

circle. This representation is equivalent to the two trees:

VP VP

V V

VINT VTR

FLY FLY

The more compact version reduces by two the number of items in the bin and,

consequently, reduces the number of complete paths to be considered in

further parsing. The savings on space afforded by allowing an item to have

more than one set of daughters can become very large if this coalescing is

possible in a number of bins. This change made a significant difference in

the complexity of sentences that the program could handle with the core

space available.

Figure 6 shows the complete set of bins which results from application

of the modified algorithm to Figure 5. Each bin in Figure 6 contains a specifi-

cation of all trees generated by the grammar which terminate in a substring

-15-

to
0)
o
*J

i

2 a

O

U
0)
c/)

a)
4J

I
O
a
CD

O

u
y

SO

g
=>

•16-

of any one of the pre-trees which has its leftmost symbol in that bin.

The item SS in column 1 is the top node of twelve different surface

trees with the terminal string of each tree being the terminal string

of one of the pre-trees. Not every pre-tree need result in a surface

tree, and several surface trees may result from the same pre-tree.

Eliminating all items not dominated by that SS gives a structure of the

form shown in Figure 7. The structure of Figure 7 unravelled into the

set of 12 trees is shown in Figure 8.

The algorithm described above has been programmed for the IBM

7030 computer in the TREET list processing language (Haines, 1965).

The program operates very rapidly, but uses a large amount of space.

Both effects are due to the fact that it must remember all possible

trees covering any string of terminal items belonging to any of the

pre-trees. Since they are remembered they don't have to be recomputed,

but remembering them is expensive. The sentence 'The general that

Johnson met in Washington had traveled eight-thousand miles' has 144

presumable surface trees. The program found them all in about 10

seconds. The sentence 'The airplane that was seen by the general that

met Joyce landed at MITRE for three hours' has 572 presumable surface

trees, which were found by the program in about 38 seconds. Each of

the 572 trees in this last sentence has about 100 nodes, which means

that the total number of nodes in all the trees is about 57,200. To

fit these trees into core, they must be stored in a fashion which

allows maximum overlap. The algorithm used only about 3,150 nodes to

represent all 572 trees.

-17-

o
to

25
s K

a;
u
to

M-l
M

en

rO

T3
<D
u

o
u a. n
CO

u
P
U
CO

u

ca

CO
u

•18-

Tree 1

NCM SG ART NCM SG TNS NU VINT

NCT THE NCT PRES PL FLY

CAN AIRPLANE

Tree 2.

VP

(same as 1) (same as 1) (same as 1) V

VTR

FLY

Figure 8. Presumable surface trees
from surface grammar parsing

•19-

Tree 3

TNS NU M DET N NU (same as 1) (same as 1)

PRES PL CAN ART NCM SG

Tree 4,

THE NCT

AIRPLANE

^VP

TNS NU M (same as 3) (same as 1) (same as 1)

PRES SG CAN

Tree 5.

AUXA VP

(same as 3) (same as 3) (same as 2) (same as 2)

Figure 8. (continued)

-20-

Tree 6

AUXA

(same as 4) (same as 3) (same as 1) (same as 2)

Tree 7

AUXA

TNS NU M DET N NU (same as 1)

PRES PL CAN ART NCM SG

THE NCT

AIRPLANE

Tree 8. SS

AUXA NP VP

(same as 4) (same as 3) (same as 1)

Figure 8. (continued)

-21-

Tree 9.

AUXA

(same as 7) (same as 7) (same as 2)

Tree 10,

AUXA

(same as 4) (same as 3) (same as 2)

Tree 11.

AUXA

(same as 4) (same as 3) PRED

NP

N NU

NCM SG

NCT

FLY

Figure 8. (continued)

-22-

Tree 12.

AUXA

(same as 7) (same as 7) (same as 11)

Figure 8. (concluded)

•23-

Transformation Reversal

The programming of the surface grammar parsing algorithm made it

possible to experiment with the total analysis procedure. Since the last

three phases of the analysis procedure -- transformation reversal, context-

sensitive phrase structure checking, and synthesis -- involve processing

all of the surface trees produced by the surface parsing, the number of

those trees becomes a critical factor in the overall time for analysis.

The figures cited at the end of the previous section indicate the magnitude

of the problem. Two strategies are being developed to reduce the time

required: (1) The use of special rules in transformation reversal that

reject incorrect surface trees and (2) the application of reversal rules

to structures like Figure 7 (to be called supertrees) that represent

compactly a number of trees.

Rejection rules. Most of the presumable surface trees resulting

from surface parsing are not actual surface trees for any sentence gener-

ated by the MITRE grammar. In fact, none of the spurious surface trees

can be an actual surface tree for any sentence generated by the grammar.

A context-sensitive surface grammar parsing would reduce the number of

spurious surface trees produced. Preliminary experiments with a context-

sensitive surface grammar used as a check immediately after the context-

free parsing resulted in the elimination of most of the spurious surface

trees. Further explorations with techniques involving context-sensitive

rules will be carried out in the future. It is possible, however, to

accomplish a similar effect during the reversal phase by adding rules

that reject trees with incorrect structures. These rejection rules

terminate the processing of a presumable surface tree when it meets a

-24-

specified structural description. In the interest of efficiency it would

be desirable to place these rules as early as possible in the reversal

phase, and many can be applied at the beginning.

The operation of rejection rules can be illustrated by considering

three of them in relation to the twelve trees of Figure 8. Trees satis-

fying the following structural descriptions or conditions are rejected:

1. # HP HP I

2. AUXA X AUXA Y

The sequence NP NP X is consistent with the surface grammar , since it

is correct for certain embedded relative clauses, but it cannot occur

immediately following a sentence boundary. AUXA X AUXA Y arises in

questions (including the example sentence). It is not itself a valid

sequence, but is always parsed as AUXA X AUX Y which can be valid.

Rules 1 and 2 can both be applied at the beginning of the reversal phase.

3. NU(for subject NP) ^ NU(for AUXA)

For questions, this condition can be assessed only after the reversal rule

has moved the AUXA after the subject NP. Accordingly, this rejection rule

can not be introduced until that point.

With respect to the twelve trees in Figure 8, trees 1 and 2 will be

rejected by the first rule, 3 through 6 by the second rule, and 7, 9, and

12 by the third rule. Tree 8 will be transformed into the presumable

base tree shown in Figure 9, which is the correct base tree for the

sentence (the synthesis step will transform it back into tree 8).

*
AUXA X AUX Y is the structure of questions like 'Is John running?',

where the AUX dominates the ING of running.

-25-

PRE

THE PSAR NCT PRES

ADM AIRPLANE

Figure 9. Base tree for the sentence.

FLY

Tree 10 will be transformed into a base tree differing from Figure 9 only

in parsing FLY as VTR instead of VINT. This base tree will fail the

context-sensitive phrase structure check because there is no object NP as

context for the expansion of V into VTR. Tree 11 will be transformed

into a base tree differing from Figure 9 only in the subtree dominated

by VP. Since the VP in tree 11 expands into PRED rather than BE PRED, the

tree will fail the phrase-structure check. Rules to reject trees 10 and 11

could be written, but both would have to follow the passive reversal rule,

which is the last to apply. The relative economy of rejection rules in

cases like these will have to be determined empirically.

The use of rejection rules has an additional consequence beyond

expediting the reversal step. It now seems possible to eliminate the

synthesis step entirely. Synthesis was required because in some cases

a surface tree that is not correct for any sentence generable by the

-26-

grammar can be mapped by reversal rules into a base tree which is correct

for some sentence generable by the grammar. In every instance of this kind

discovered so far, rejection rules have eliminated the incorrect surface

tree. Further research will be required to determine whether rejection

is possible in every such case. If it is possible, then the synthesis

step is unnecessary.

The effect of rejection rules on the efficiency of the analysis

procedure can be indicated by some comparisons. For the sentence 'The

general that Johnson met in Washington had travelled eight-thousand miles,'

144 presumable surface trees were found. 108 were rejected by the initial

rejection rules before any regular reversal rules were applied; 24 more

were rejected after about half the reversal rules were applied; 8 more

were rejected just prior to the context-sensitive phrase structure check;

3 were rejected during that check; 1 tree (corresponding to the correct

base tree) passed that check and the synthesis check. The time required

for the total processing was about 6 1/2 minutes in contrast to a time

of about 36 minutes without the use of rejection rules.

Supertrees. It is obvious, even with the reduction in time afforded

by rejection rules, that some additional ways to improve speed and ef-

ficiency are necessary. One technique under investigation involves the

application of the reversal and rejection rules to supertrees. Figure 7,

the supertree for the example sentence, is derived directly from Figure 6

by deleting all the structures that are not parts of presumable surface

trees for the sentence. Applying the first rejection rule to the super-

tree would remove the first set of daughters attached to the S node -- all

the trees with the analysis # NP NP X. The second rejection rule would

-27-

remove the second set of daughters attached to the S node -- all the trees

with the analysis AUXA X AUXA Y. Thus, the application of two rejection

rules to the supertree would eliminate six presumable surface trees and

result in the supertree shown in Figure 10. During the application of the

reversal rules, the rejection rule involving number agreement would elimi-

nate half the remaining trees. The supertree of Figure 11 represents the

three remaining trees, to be checked against the context-sensitive phrase

structure rules.

An even more compact form of supertree is possible. Those illustrated

branch only to alternate sets of daughters; it is also possible to group

together alternate sets of sisters. The procedures for constructing and

operating on supertrees are still being developed.

•28-

a tu/
/

(tf S< E \ V V S H ><
SB — — u — — o — — iJ

Z 2 fe

en
01

o

y
OJ

01

u
<D
•U
4-1
n

01
u
U

0) a
CO

01
u
3
60

•29-

u
-c
o
u
l-l

•u
o
3
u

•u
en

V
0)
re
I-I

a

>
•H
4J
•H
01
a
<D
03

I
•U

0)
•u
a
o
o
0)
M
0
0)

•u
(0
3

0)
QJ
l-l
4-1
u
<u
tx
3

OJ
u
3
Ml

•30-

Changes in The MITRE Grammar

The core of the MITRE syntactic analysis procedure is the MITRE

grammar, a transformational generative grammar of a reasonably large sub-

set of English. Improvements to the grammar continue to be made: extend-

ing the number of sentences it generates, reducing the number of non-

sentences it generates, improving its internal consistency, and keeping

it in conformity with substantial developments in linguistic theory.

Several versions of the MITRE grammar have been issued. The most important

change which has been made since the most recent of these versions appeared

(Chapin and Geis, 1966) is a new treatment of coordinate conjunction. Other

work in progress deals with lexical analysis and the incorporation into the

grammar of syntactic fectures.

Coordinate conjunction. The earliest versions of the MITRE grammar

contained a set of transformations which attempted to describe coordinate

conjunction. The attempt was unsuccessful for a variety of reasons, chief

among which was a self-imposed constraint on the form of grammars pro-

hibiting the expression of a condition on a rule that two segments of its

structural description be constituents of like type although not dominating

identical subtrees. This constraint seems appropriate elsewhere in the

grammar, but in coordination it led to the necessity of stating a separate

transformation for every possibility of conjunction: a rule for subject

NP's, another for object NP's, still another for verbs, and so on. The

unwieldy set of transformations which resulted was reminiscent of efforts

to generate transformationally derived phrase-makers using only context-

sensitive rules: even if an adequate description of the facts could have

been achieved, which in fact seemed not to be the case, generalizations

-31-

were clearly being missed. Therefore, in the summer of 1965, Sanford

Schane*undertook an exploration of the possibilities and implications

of permitting the expression of such a condition.

The work on coordination is described in detail elsewhere

(Schane, 1966); the following remarks summarize the results and describe

some of the consequences. The proposed procedure generates conjoint sent-

ences in the phrase structure grammar by a rule schema, as has generally

been done in generative accounts, and then after certain transformations

have applied (in particular, the passive transformation, in order to generate

sentences like 'The Dodgers beat the Giants and were beaten by the Cardinals')

searches the trees dominated by the conjoint S's. Schane's principle for

conjunction is that any two (or more) trees may be compounded if they are

identical except in the subtrees dominated by one grammatical node which

dominates some lexical category (noun, verb, or adjective). The resulting

compound is identical to the compounded elements down to and including

the node dominating the subtree in which they differed. This node

dominates the two (or more) differing subtrees, each dominated by the

node which originally dominated it, separated by the conjunction(s) which

originally separated the conjoint S's. For example, the (simplified)

base tree of Figure 12, if left uncompounded, would produce the sentence

'John ran and Mary ran.' Suppose, however, it is decided to compound the

tree (compounding is always optional). The two conjoint S's are identical

except that one has John where the other has Mary. Dominating both John

and Mary is N. N is a lexical category, but does not dominate any lexical

category and is thus excluded from conjunction by the principle for

Schane is now Assistant Professor of Linguistics at the University of
California at San Diego.

-32-

conjunction. Dominating each of these N's is an NP, which satisfies the

principle for conjunction. The two sentences may be compounded, with the

subject NP as the compound constituent. The resulting compound will be

'John and Mary ran1, with the structure shown in Figure 13.

John PST run Mary PST run

Figure 12. Base tree with conjoint S's

John Mary

Figure 13. Structure of compound sentence

-33-

Perhaps Schane's most original and significant contribution was the

hypothesis that only categories above the level of lexical category may

be conjoined. This implies that apparent cases of conjunction of lexical

items, as in 'The man and woman left1, are actually derived by identity

deletion of some element or elements of a fuller form, such as 'The man

and the woman left.' Certainly these two sentences have the same meaning,

but they could of course be derived by two separate compoundings, one of

N, the other of NP. However, if compounding is only of the fuller form,

certain otherwise strange facts can be readily accounted for. A prime

case in point is the conjunction of complicated auxiliaries in English.

Observe that the following sentences are all paraphrases:

The plane could have been landing at eight o'clock and could have
been leaving at nine o'clock.

The plane could have been landing at eight o'clock and have been
leaving at nine o'clock.

The plane could have been landing at eight o'clock and been leaving
at nine o'clock.

The plane could have been landing at eight o'clock and leaving at
nine o'clock.

One might say that these four sentences are derived from the same base

by four different conjunction rules. In this case all generality is lost

from the description of conjunction, since what are being conjoined are

not unitary constituents, as in the case of "the man and woman", but

rather sequences of constituents of the auxiliary, a different sequence

for each of the four paraphrases. But if one says that in fact only

one operation of conjunction has taken place, i.e., predicate phrase

-34-

conjunction, and the shorter sentences are all merely stylistic variants,

formed by optional deletion of repeated elements, exactly the right gener-

alization is retained.

This principle for conjunction would also help toward a universal

explanation of the conjunction process. In English 'The men and the

women' and 'The men and women' are both legitimate compound phrases, but

in French the analogous phrase 'Les hommes et les femmes' is possible,

while *'Les hommes et femmes' is not. Could there be a special restriction

on French, not applicable to English, that common nouns may not be

conjoined (observe that proper nouns may be: "Jean et Paul sont ici")?

Or is it not more likely that the conjunction process is the same in both

languages, French simply lacking a low-level rule permitting deletion of

repeated articles in conjoined noun phrases?

The overall MITRE syntactic analysis procedure requires a reversal

rule corresponding to each transformation. Reversal of the identity

deletion rules to restore the fullest compound form is straightforward.

But, just as the rule for conjunction is not an ordinary transformation,

differing both in the condition on its applicability and in its creation

of an extra node, the reversal of conjunction is a special process which

must be applied when the proper analysis for conjunction reversal is

met. This process pulls out the compound constituent from the sentence,

replacing it with a special marker. It then replicates the sentence

with the special marker, so that there are as many instances of the

sentence as conjuncts in the compound constituent, and transfers the

conjunctions (and or or) from the compound constituent to the positions

dividing the S's. The conjuncts are then substituted one by one for the

-35-

special markers, and the process is complete.

Incorporation of the general treatment of conjunction into the

MITRE grammar has motivated some fundamental changes in other parts of

the grammar, which are of some linguistic interest. The most important

of these has been the expansion of the initial symbol S. Previous versions

of the grammar gave a tripartite division of S into noun phrase (NP),

auxiliary (AUX) and verb phrase (VP), with an optional initial pre-

sentence component (PRE). This division accorded with most extant analyses

of English. In the conjunction scheme outlined above, however, it turned

out that this analysis was untenable. In verb phrase conjunction in

declarative sentences, part or all of the auxiliary is attached to each

conjunct verb. Thus we have 'John sang and danced', rather than *'John

sang and dance', 'John is singing and dancing' rather than *'John is

singing and dance', and so on. This could be accounted for in two ways:

by distributing the AUX among the verbs after VP conjunction, or by sub-

suming the AUX as a constituent of the VP. If the former course is

chosen, the generality that only single nodes are conjoined is lost,

since one must account for sentences like 'John can sing and will dance'

by conjoining the constituent sequence AUX VP. Therefore, the latter

decision is motivated, and some evidence provided for the decision of a

vexing question of English syntax.

Lexical analysis. The theoretical framework of a more sophisticated

lexical analysis procedure is under development. The MITRE lexicon so

far has listed every variant form -- plurals, past tenses, etc.--of every

word, the lexical lookup procedure being simply a scan of this list. A

morphological decomposition procedure is being considered in which certain

-36-

characteristic affixes and grammatical markers are removed from stems,

which are then respelled according to some general rules of English

orthography. The respelled stem is looked up in the lexicon. If a

match is found, the syntactic characteristics of the stem are checked

for appropriateness to the particular affix or marker removed. If this

check passes, a lexical reading is attached to the original word which

is determined by a combination of the properties of the stem and the

affix or marker. If either check fails, the putative affix or marker is

reattached to the stem and another pass is made through the lexicon.

Some concrete examples may make this procedure clearer. Consider

the words sincerity, charity, whiteness, and witness. In sincerity

and charity, the suffix -ity is discerned and "peeled off". A respelling

rule turns the remaining stems into sincere and chare. Then a search of

the lexicon finds sincere and attaches to it the notation ADJ (among

others). Chare, however, is not found. Therefore the respelling rule

is undone and - ity reattached, giving the original charity. This is

sent through the lexicon again, where it is found and noted as N. Sincere

+ -ity is sent through a set of morpheme-combinatorial rules, one of

which is of the form ADJ + -ity - N. The appropriate notation is made

and sincerity is sent to the parser.

In whiteness and witness the suffix -ness is peeled off. No

respelling is necessary. White and wit both match lexical entries;

white is noted as ADJ and wit as N. One of the morpheme-combinatorial

rules is ADJ + -ness -» N. This rule applies to white; it does not apply,

however, to wit. Whiteness is therefore noted as N, but -ness is reattached

to wit and another pass made through the lexicon to find witness.

-37-

The decomposition rules are ordered in such a way as to permit the

removal of several nested affixes and/or markers from a stem. This

ordering also serves to prevent a certain number of spurious analyses.

For example, the rule removing -ness is ordered before the rule removing

-less; thus witlessness and witnessless are both correctly analyzed.

No machine implementation has yet been made of these lexical analysis

procedures.

Syntactic features. In the MITRE grammar lexical items are treated

as unanalyzable grammatical symbols. Grammatical distinctions like those

between transitive and intransitive verbs, common and proper nouns, and

count and mass nouns are treated as though they were lexical category dif-

ferences. Thus, send is identified as a member of the lexical category

VTR, arrive as a member of the category VINT, and fly as a member of both

VTR and VINT.

Recent developments in syntactic theory (Chomsky, 1965) indicate that

a more effective way to deal with such distinctions is to treat lexical items

as complex symbols composed of syntactic features. For example, verbs like

send that are necessarily transitive have the feature (+ NP), indicating

that they can occur in a base tree only if they are followed by an (object)

NP. Verbs that are optionally transitive (fly) have the feature (+ (NP))

where the parentheses around the NP indicate that the verb may be inserted

into base trees with or without object NP's. Intransitive verbs (arrive)

have the feature (+), indicating that an NP may not follow the verb.

Besides features indicating the different structures into which a given

lexical item may fit (called strict subcategorization features), the lexical

item may be characterized by a set of inherent features. For example, common

and proper nouns are differentiated by the features (+ common) and (- common).

-38-

Similarly, count nouns and mass nouns would have the features (+ count)

and (- count).

There are important linguistic motivations for the use of features.

There are also implications for syntactic analysis procedures. As a

consequence of adopting this approach to the classification of verbs,

for example, the number of surface parsings of a sentence containing

a verb like fly can be reduced by as much as one-half, since differences

between transitive and intransitive verbs are not represented by differ-

ent surface trees. Moreover, all rejection rules dealing with the tran-

sitive-intransitive distinction can be eliminated.

In a similar manner, if differences in grammatical number were treated

as a feature difference--say between +SG (= singular) and -SG (= plural)--

the number of parsings of a sentence containing a verb whose morphological

shape does not indicate number could be reduced by as much as one-half.

In the current grammar number is treated as a grammatical category, and,

thus, verb forms such as can in 'the general can1 and 'the generals can'

are structurally ambiguous. Differences in tense can contribute to

structural ambiguity in a similar manner and also could be handled with

a feature representation.

Features have not yet been incorporated into the analysis procedure.

It is clear that their use will reduce the number of surface trees pro-

duced by the parsing procedure for many input sentences. It is likely

that the reduction in structure should make the application of reversal

rules to supertrees somewhat easier. However, there also may prove to be

complications in programming the algorithms.

-39-

References

Chapin, P.G., and Geis, M. L. The MITRE Grammar (January 1966). MTR-121,
MITRE Corporation, 1966.

Chomsky, N. Aspects of the Theory of Syntax. Cambridge, Massachusetts:
M.I.T. Press, 1965.

English Preprocessor Manual. SR-132, MITRE Corporation, 1964, revised 1965.

Friedman, J. SYNN, An Experimental Analysis Program for Transformational
Grammars. WP-229, MITRE Corporation, 1965.

Griffiths, T.V., and Petrick, S. R. On the Relative Efficiencies of
Context-Free Grammar Recognizers. Comm. ACM, 1965, 8,289-300.

Haines, E. C. The TREET List Processing Language. SR-133, MITRE Corporation,
1965

Kay, M. A General Procedure for Rewriting Strings. Paper presented at
the Annual Meeting of The Association for Machine Translation and
Computational Linguistics, Bloomington, Indiana, 1964.

Schane, S. A. A Schema for Sentence Coordination. MTP-10, MITRE
Corporation, 1966

Zwicky, A. M., Friedman, J., Hall, B. C, and Walker, D. E. The MITRE
Syntactic Analysis Procedure for Transformational Grammars. AFIPS
Conference Proceedings: Fall Joint Computer Conference, 1965,
27, 317-326.

-40-

Unclassified
Security Classification

14
KEY WORDS

LINK A LINK B LINK C

LANGUAGE, LINGUISTICS
Transformational Grammar

COMPUTERS
Programming
Sentence Analysis Procedures
Time-Sharing
On-line Processing
Displays

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee. Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECUMTY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
"Restricted Data" is included. Marking is to be in accord-
ance with appropriate security regulations.

26. GROUP: Automatic downgrading is specified in DoD Di-
rective S200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Entei last name, first name, middle initial.
If x.ilitary, show rank end branch of service. The name of
the principal «;.Uhor is an absolute minimum requirement

6. REPORT DATE: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

la. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.
86, 8c, & id. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.
96. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) "Qualified requesters may obtain copies of this
report from DDC"

(2) "Foreign announcement and dissemination of this
report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) "U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

(5) "All distribution of this report is controlled. Qual-
ified DDC users shall request through

If the report has been furnished tc the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

It SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS). (S), (C). or (V).

There is no limitation en the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional

GPO 8B6-551 Unclassified
Security Classification

Unclassified
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security ciaeai/ieafion of (iff*, body of abstract and indexing annotation mill be entered when the overall report i« c laealtled)

I. ORIGIN A TIN G ACTIVITY (Corporate author)

The MITRE Corporation
Bedford, Mass.

la REPORT IECURI TV C U AMI FIC A TION

Unclassified
Zft CROUP

3. REPORT TITLE

RECENT DEVELOPMENTS IN THE MITRE SYNTACTIC ANALYSIS PROCEDURE

4 DESCRIPTIVE NOTES (Type o/ report and inclusive dataa)

N/A
5 AUTHORfS; (Laet name, tirat name, initial)

Walker, Donald E. et al.

6 REPORT DATE

 September 1966
7f TOTAL NO. OF PACES

43
7b. NO OF REF1

9
8a. CONTRACT OR CRANT NO.

AF19(628)-5135
6. PROJECT NO.

7020

9a. ORIGINATOR'S REPORT NUMBERfSJ

ESD-TR-66-306

It. OTHER REPORT NOflJ (Any other numbera that may be ammlaned
this reporfi

MTP-11
10. AVAILABILITY/LIMITATION NOTICES

Distribution of this report is unlimited

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Deputy for
Engineering & Technology, Directorate of Com-
puters; Electronic Systems Division, L. G.
Hans""• T^PIH RprifnvH Mass

13 ABSTRACT

The MITRE syntactic analysis procedure for transforma-
tional grammars has been used to process sentences on-line in
a display-oriented mode as well as off-line. This report describes
additions to the program structure and the grammar made since
the last report and presents the results of experiments with the
procedure.

DD .ML 1473 Unclassified
Security Classification

