
o 

^O SCHEDULING SEVERAL PRODUCTS ON 
ONE MACHINE TO MINIMIZE 

CHANGE-OVERS 

by 

C. R. Giassey 

CLEARING»OUSE 
FOR FEDERAL SCIENTIFIC AND 

TECHNICAL INFORMATION 
Eardoopy 

1 v3oö 
Mlcrofio?'* 

^
D

PPM 

/ MiUi (gl i 
V. 

OPERATIONS RESEARCH CENTER 

COLLEGE   OF   ENGINEERING 

ORC 66-33 
October 1966 

n c ü 
0(7. r-,yvv 

UNIVERSITY   OF   C A L I F 0 R N I A - B E R K E L E Y 

4r 



fc 

SCHEDULING SEVERAL PRODUCTS ON ONE MACHINE TO MINIMIZE CHANGE-OVERS 

by 

C. R. Glassey 
Operations Research Center 

University of California, Berkeley 

October 1966 ORC 66-33 

This research has been partially supported by the Office of Naval Research under 
Contract Nonr-222(83) and the National Science Foundation under Grant GP-A593 
with the University of California.  Reproduction in whole or in part is permit- 
ted for any purpose of the United States Government. 



Abstract 

Given a finite horizon delivery schedule for n products we wish 
to schedule production on a single machine to meet deliveries and 
minimize the number of change-overs of the machine, from one product 
to another. 

A state space is defined and in it a network is constructed such 
that the shortest distance through the network corresponds to the 
minimum number of production change-overs.  Certain properties of 
the optimal path are deduced from the dynamic programming formu- 
lation of the shortest route problem, and these properties are 
utilized in the construction of an algorithm that finds the op- 
timal path.  A numerical example illustrates the method. 
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Definition of the Problom 

Consider, for example, a manufacturer of ice cream who produces 28 flavors 

(in general,  n products), and has received orders for delivery of specified 

quantities of each flavor on certain days of the next month (of length T working 

days).  He has but a single ice cream making machine, and desires a production 

schedule that will minimize the number of change-overs from one flavor to another 

while enabling him to meet his delivery commitments. To simplify the discussion, 

we assume that the unit quantity of an order is one day's output of the machine 

(or, alternatively, that we break our planning period into discrete time units 

corresponding to the time to produce a unit of product). 

With this simplification, we introduce the following notation: 

x(t)  =  is the state of the system at time  t , a lattice point 
in n - space, in which 

x.(t)  =  cumulative production of product  i , 

d(t)  =  cumulative requirement function , 

d.(t) =  cumulative requirement for product i as of time t , 

e,    =  ith unit vector (all elements zero except the ith 
which is one) , 

I     =  the set of integers 1 , 2 , ... , n . 

We will assume that the m-.chine never shuts down (since our objective func- 

tion is not improved by doing so) and we neglect the time required for a product 

change-over.  Thus 

n 
t =  I  x (t) (1) 

i=l 

as a consequence of the assumption of unit production rate, and 
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x(t)  - x(t - 1) = e.    (for some  i) (2) 

meaning that the system state advances one unit parallel to the ith coordinate 

axis during the interval  (t - 1 , t)  in which time one unit of the  ith 

product was made.  Note that a product change-over corresponds to a change in 

direction of a path in state space.  If we define the norm of a vector x 

||x||  =  I   |x | (3) 
1=1 

and the second difference vector 

- 
A2x(t) = [x(t + 1) - x(t)] - [x(t) - x(t - 1)] (4) 

(5) 

we soe that 

!|A x(t)j I = 2 for change-over at time t 

I 
= 0 otherwise . 

Let p denote the time at the end of the planning period and 

n 
T =  Id.(p) (6) 

i=l 1 

be the time at which all required product can be completed under non-stop pro- 

duction.  We will formulate an equivalent problem in which we leave the require- 

ments d(t) unchanged for  t < T but set 

d(T)  = d(p) . (7) 

The precise statdaent of the equivalent problem is 

T-l 
1    i  2 

Minimize    c = 9" z I^^Oli (8) 
t=l 



Subject to    x(t) > d(t)  ,     t  c  1 (9) 

and Ax(t) = e.  for some i and all  t e I      (10) 

This appears to be a rather formidable mathematical programming problem. 

After some discussion of the properties of feasible solutions, we will give an 

equivalent network formulation and develop a computationally feasible solution 

method. 

A Conjecture and a Counter Example 

An obvious conjecture arrived at independently by the author and several 

others is that the optimal policy is characterized by a rule of the type "don't 

change-over until you have to." This is correct for two products but not for 

three, as shown by the example of Table 1. 

Table 1 

Time Product Requirement 

1 1 1 
3 2 1 
4 3 1 
5 2 1 
6 3 1 
7 2 1 
8 3 1 
9 2 1 

10 3 1 
11 1 1 

All feasible schedules begin with product 1 . According to the conjecture, 

we should produce two units of product  1 , but then we switch between 2 and 

3 every day for the next 8 days.  The optimal policy is  1 unit of product 

1 followed by 2 units each of 2 and  3  (repeated once), and finally 1 

unit of product  1 . 
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We shall see after some investigation of the structure of the problem that 

the optimal policy has a property similar to that conjectured, but with the time 

orientation reversed. 

The Feasible Region 

We define a feasible schedule  {x(t)}  as a sequence of points satisfying 

(9) and (10).  The feasible region F is the set of all points belonging to some 

feasible sequence.  This region has certain properties that will be useful in 

what follows, and we list them as a series of lemmas. 

Lemma 1:     The feasible region F is_  non-empty iff 

n 
I  d. (t)  < t  , all  t E Im . 

, , i    = T 
1=1 

Proof;       If the condition is not satisfied, it is clear that cumulative 

demand exceeds productive capacity at some time hence no feasible schedule exists. 

If the condition is satisfied, one can construct the obvious "earliest due date 

first" feasible schedule.  This is done by letting 6 (t)  be the amount of product 
t        '   4 

q required on day t  [thus d (t) = E 6 (T)] . 
q     T = 1 

q 

We first make product  i , the product for which (S,(t.) > 0 for the smallest 

t. , until  6.(t.)  pioduced, then shift to the product j having the next 

earliest non-zero delivery requirement and produce 6.(t.)  of it, etc. 
J  J 

Lemma 2:     If F _is non-empty and x satisfies x > d (T) where T = j | x | j , 

there exists a sequence  {x(t)} which is feasible up to time T  in the sense 

that (9) and (10) are satisfied for t < T . 
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Proof: We formulate a related problem in which the delivery requirements 

are unchanged for t=0,l,...,T-l, but we set d (T) = x . Then the 

condition of Lemma 1 is satisfied for this related problem. 

Lemma 3:     Given the point  x  satisfying the conditions of Lemma _2, _i_f there 

is _a point y in_    F such that  y > x , then x is_ in    F . 

Proof:       From the definition of F , we need to show the existence of a 

feasible path passing through x .  A feasible segment from 0 to x is estab- 

T 
lished by Lemma 2, and a segment from y  to x  exists because y E F .  We will 

show that a feasible segment from x to y exists by constructing an auxilliary 

problem in which x plays the role of the origin.  Let  t, = | |x| | , z = y - x , 

t„ = i|z|| .  Construct the feasible region F' .defined by the requirement functions 

dKt) = Max {0 , d.ft + tj - x.} .  i e I  , t e I 
i i     1    i  »       n       t 

2 

Since  z. = y. - x. > Max {0 , d.Ct.. + t,,) - x,} = dl (t0) , we conclude from Lemma 2 

that there exists a path {z(t) , t c I  } from 0 to z which is in F' ,  Now 
t2 

consider the path {x(t + i^) = z(t) + x , t e I  } which connects x to y . 

Then 

x(t + tj = z(t) + x > d'Ct) + x > d(t + t )    for t e I   , 
~ 2 

hence this segment is feasible, 

. 
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A Network Formulation 

1 
A convenient way to structure this problem is by means of a network.  The 

nodes are the lattice points in F .  From each node x we construct arcs of 

unit length to each point y in F having the property that 

y = x + ke, , k > 0 , for some i e I (11) 

The interpretation is that y is a state reachable from x by producing k 

units of product  i at the cost of a single product change-over.  We note that 

z = x + kne,  is also in F for all 0 < k. < k , since the patli in state space 
1 i 1 =  ' r ' 

consisting of the points x,x+e. ,x+2e. ,...,y is the only possbile path 

from x to y and hence lies in F by Lemma 3, Thus the arc  (x , y)  in the 

network corresponds to a segment of a feasible schedule. 

We define the distance between nodes of the network to be the length of the 

shortest path joining them (which is not the same as the distance between points 
rp 

in state space, which would be  !|x - y||). Let x  denote the terminal node of 

the network, 

xT = d(T) ; (12) 

T 
and the shortest path from 0 to x  is then the optimal production schedule. 

The shortest path may not, of course, be unique; but we will nevertheless speak 

of the optimal solution while realizing that there may be many such solutions. 

In principle, a simple labelling scheme could be used to find the shortest 

path.  Define v(x)  as the distance of node x from the origin.  Each node x 

will be given a label of the form  [v(x) , y]  where, the arc  (y , x)  is the last 

This formulation was suggested by G. Dantzig. 

4 
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arc in the shortest path from 0  to x . Labels can be applied in a systematic 

way by defining S, = {x|x c F , v(x) = j} , and we label all points in S    , 

then S. , etc.  The set Sn = 0 by definition, and the general step is:  for 

each point y in S. , , assign the label  (j , y)  to each point x in F of 

T 
the form x=y+kc, ,k>0.  The procedure terminates when x  is labelled. 

This procedure suffers from two practical limitations. First, it is not 

easy to determine if a point is in the feasible region.  Second, the network may 
n 

contain a very large number of nodes [an upper bound is  n d,(T)]. 
i=]. 1 

These difficulties may be at least partially overcome by using two properties 

of the optimal path to reduce considerably the number of nodes that must be 

T 
labelled, and by starting the labelling procedure from x  rather than 0 .  These 

properties are made explicit in the theorems of the next section. 

Theoretical Foundations of an Improved Algorithm 

One useful result is contained in 

Theorem 1:   The shortest path length function v(x)  is monotone non-decreasing 

in each argument, i.e., y > x implies v(y) > v(x) . 

In terms of production schedules, this expresses the very plausible result 

that, given an optimal schedule that achieves a cumulative production vector y , 

there is a way to produce less of some products at no greater cost in number of 

change-overs. 

A rigorous mathematical proof of this result can be obtained from a dynamic 

programming approach to the problem. To do this, we introduce the notion of the 

set of predecessors of a node y which we define by 

P(y) = {x|x e F ; x = y - ke. , k >. 0 , i e I } . 

» 



-f 

Thus, P(y)  is the set of states from which y can be reached by making any 

one product; in the network language, the set of nodes directly connected to y 

by single arcs.  With this definition, it is clear that the shortest path length 

function satisfies 

v(y) =  Min {1 + v(x)} (13) 
xePCy) 

These sets of predecessors have an interesting property which we state in 

Lemma 4;     If _a point y _in F has two predecessors w and x lying in 

different directions, these have in turn _a common predecessor. 

Proof;      Let w = y - k e  , x = y - k e  , k > 0 , k > 0 , i ^ j . We 

show that z = w - k^e, = x - k-e  is in F . Let t = ||y|j , t, = ||w|| = 

t ~ kl ' t2 = ' iX^ --- t - V.2   , and t3 = \\z\\   = t2 ~ ki = ti ~ k2 '  Now w » 

x c F => w > d(t ) > d(t..)  and x >d(t-) > d(t„) , since the requirement func- 

tions d(t) are non^-decreasing. Hence 

z = w > d (t0)    for q ^ i , and 
q   q - q 3 H 

z = x > d (t„)    for q ^ i . 
q  q = q 3      M r J 

Thus z satisfies the conditions of Lemma 3 and hence belongs to F . We are now 

in a position to complete the 

Proof of Theorem 1 (by induction);    We state an equivalent theorem:  y e S  , 

x e P(y)  implies v(x) < v(y) = k . For k = 1 , P(y)  is the single point 0 

which is also S  .  In general step, we define x* as the optimal predecessor of 

y so v(y) = 1 + v(x*) , and x* e S.- .  We now consider three possible cases. 



Case A;  x differs from y  in the same direction as x* and x < x* . 

Then x e P(x*)  so, by the induction hypothesis, v(x) < v(x*) -  v(y) - 1 . 

Case B;  x differs from y  in the same direction as x* , but x >.:x* . 

Then x*e P(x) , so by equation (13), v(x) < 1 + v(x*) = v(y) . 

Case C;  x differs from y in a different direction than x* . Then by 

Lemma 4,  x and x* have a common predecessor, call it w , and v(w) < v(x*) 

by the induction hypothesis.  Furthermore, by equation (13), 

v(x) < v(w) + 1 5 v(x*) + 1 = v(y) . 

The key idea in the design of an improved algorithm is stated in 

Theorem 2:   For each y jLn F , there exists an optimal predecessor 

x = y - ke  with the property that  z = y - (k + l)e  _i_s not in F . 

Proof:       If x = y - ke  is an optimal predecessor of y and 

z = y - (k + l)e  is in F then v(z) < v(x)  as was shown in Case A of Theorem 1, 

(the equality must hold, otherwise x would not be an optimal predecessor of y) 

hence z is also an optimal predecessori  But, si'nce P(y)  is bounded from below, 

there must be a largest k for which the point y - ke  is in P(y) . 

An Improved Algorithm 

Theorem 2 suggests that we construct and label a subnetwork G* as follows: 

T T 
from the terminal node x , construct the set P*(x )  of points y having the 

property of Theorem 2, thus 

P*(x ) = {y|y e F ; y = x - ke ; and z = x - (k + l)e. i  F} . 

T 
There are at most n points in P*(x ) , and they are easily constructed as 

follows:  for j=l,2,...,n: 
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set y. = x (T)    for  i ^ j , and 

set y. = d (T - k)  where k satisfies the two conditions 

(a) xi(T) - k - 1 < di(T - k - 1)  and 
■ 

(b) x.CT) - k = d.CT - k) . 

T T 
By Theorem 2, P*(x )  contains an optimal predecessor of x  .  Each point in 

T T T 
P*(x )  is assigned the label  (1 , x ) .  We define the set R.. = P"'(x ) . 

T 
In general,  R,  is the set of nodes in G* at distance k from x  .  The 

kth step in the procedure is the construction and labelling of the set R,  by 

constructing the set PÄ(x)  for each x in R 1 .  In general the set P*(x)  is 

T 
constructed in the same way as P*(x )  except we replace the time T in conditions 

n 
(a) and (b) with t = ^ x  , and we exclude from PÄ(x)  any nodes that have been 

i-1 
previously labelled.  The procedure terminates when the origin appears in the set 

R,  for some value of k , which is the length of the shortest path from 0 to 

T 
x 

Reduction of Computational Effort 

It will be seen that the arcs joining pairs  (x , y)  where y  P*(x)  form 

a tree structure, so that the search for the shortest route through the network G* 

can be viewed as a tree searching nroblem.  It may be possible to reduce the num- 

ber of branches to be explored by applying Theoreml.  We define u(x)  as the length 

T 
of the shortest path from x to x  and C(x) = u(x) + v(x) as the length of the 

T 
shortest path from 0 to x  passing through x .  Now suppose y > x but 

T 
u(x) < u(y) .  By Theorem 1,  v(y) > v(x)  so that C(y) > C(x) > v(x ) , and in our 

search for the shortest path we can safely neglect all paths through the point y . 

After constructing the set R^ as described above, we eliminate, from R,  all 

2 
points y such that y > x for some x in the set RAJR ^U . .. UR, . 

2 
It is easy to show that y need only be compared with x  in R, , 
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Example: 

Data for a simple three-product problem are given in Table 2. 

Table 2 

Time Product Quantity 
Required 

2 3 1 
3 1 2 
5 2 1 
8 2 1 
8 3 1 

10 1 1 
11 3 2 
12 2 1 
16 1 3 
17 2 1 
18 3 2 
20 1 _1 

17 

The total required is 17 so we let T = 17 , and let 6 (17) = 1 , 

6„(17) = 3 .  The resulting cumulative requirement functions are shown in Figure 1, 

which also shows the optimal production schedule. The tree generated in obtaining 

this schedule is shown in Figure 2, with the set R.  appearing in the kth row. 

Points deleted from R^ by applying Theorem 2 are underlined. 

From the terminal state  (7,4,6)  at time 17 , we examine each of the 

three possibilities for the last production segment.  Considering product 1 , as 

shown on Figure 1, we arrive at the point  (3,4,6)  at time 13 , the point 

where the 45  line representing cumulative production of product  1  intersects 

the requirement line.  The other two states which are possible optimal predecessors 

T 
of x  are  (7 , 3 , f   at  time 16 and  (7,4,4)  at time 15 and are 

similarly found.  These Lhree points constitute the set R  and are shown on the 

first level of the tree in Figure 2.  The first point generated in R-  is a member. 

....... 
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of P(3 ,4,6)  and is  (3,2,6)  as shown in Figure 1.  This point; is 

determined by extending the 45  production line of product 2 from the point 

x„ = 4 , t = 13 until it intersects the demand line at x„ = 2 , t = 11 .  After 

the remainder of the points in R- are similarly constructed, it is noted that 

(3,4,4)   (3,4,2)  and hence  (3,4,4")  is deleted under the rule of 

the previous section.  The origin  (0,0,0)  is generated by this procedure 

as an element of R, , so the optimal path contains six arcs.  Retracing this path 

shows that the optimal sequence of products is:  3,1,2,3,2,1. 
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Product 1 

s 

/ 

Product 2 

Product 3 

/ 

10 

d 

/ 

/ 
A 

/ 

10 

/ 

/ 

/ 

/ 
/ 

/ 

-> Ti ime 
15 

15 
-> Time 

5 10        15 

Figure 1 

Cumulative requirements (solid lines) and optimal 

production schedule (dashed) for three products. 

-> Time 
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u 

7.4,6 

! 3^,6 

/ N 
3,2,6     3,4,2 

Figure 2 

Tree structure for finding optimal production schedule 

Note that this tree contains 24 nodes.  If we had not used the elimination 

procedure, but generated the two predecessors of each node at each level after the 

first, we would have generated 3x2 =48 nodes in the first 5 levels. 

4 
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Extensions and Generalizations 

We can easily drop the retrictions of discrete time and integer demands 

imposed in the first section, provided demands occur only at a finite number of 

points in the time interval  [0 , p] .  The obvious modifications in the develop- 

ment are to replace sequences of points with vector valued functions of time, 

finite differences become derivatives, sums over time become integrals, etc.  The 

statement of Theorem 2 becomes 

Theorem 2' ;  Each y in    F has an optimal predecessor x* which is a. limit 

point of jt_he set  {x|x = y + Y(Xä - y) , Y > 0} F . 

Of course the network formulation results in an infinite number of nodes, but 

the reduced network G* is still finite.  With certain other minor changes, the 

proofs of the previous sections can be recast in this continuous time language. 

The restriction of demand values to integers was necessary in the discrete 

time model to insure that change-overs occur at integer values of time, but plays 

no other role. 

It would appear that this approach can be used in scheduling of products on 

several  Jentical machines.  Theorem 1 still holds since the structure of the feasi- 

ble region F is not altered in-any radical way. The set of predecessors of point 

y still consists of the intersection of a finite number of rays through y with 

the region F , and the optimal predecessor is a limit point of this set, so a 

version of Theorem 2 can be stated.  However, the details of carrying out the com- 

putations are somewhat more complicated. 

.. 
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