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\/ e ABSTRACT

We consider the economic behavior of a queueing system,
operating under a specified linear cost structure,

in which the server may be turned on and off. Optimal
policies for turning the server on and off are derived
for differing assumptions about discounting of future
costs, length of the planning horizon, the form of

the arrival stream, and the number of servers.

The costs imposed are: a server start-up cost, a
server shut-down cost, a cost per unit time when the
server is turned off, a cost per unit time when the
server is turned on, and a holding cost per unit time
spent in the system for each customer. We prove that
for the single server queue there is a stationary
optimal policy of the form: Turn the server on when
n customers are present, and turn it off when the
system is empty.

For the undiscounted., infinite horizon problem with
Poisson arrivals, an exact expression for the cost

rate as a function of n and & closed form expression
for the optimal value of n s derived; bounds are
obtained for the cost rate and optimal policy when

the inter-arrival time distribution is allowed to be
any member of the class of |IFR distributions. When
future costs are discounted, we obtain an equation for
the expected discounted cost as a function of n and
the interest rate, and prove that for small interest
rates the optimal discounted policy is approximately
the optimal undiscounted policy. The recursion relat.onship
to find the optimal (nonstationary) policy for finite
horizons is developed, concluding our results for single
server systems, each channel is restricted to have an
exponential service time distribution (possibly with
different rate), and the arrivals form a Poisson
process. One server is always turned on and the other,
the spare machine, can be turned on and off at arbitrary

times; we show that the stationary optimal policy for
undiscounted costs has the form: Turn the spare
machine on when n customers are present, and turn it
off when m customers are in the system, with

m <1 . We then derive equations for finding the
optimal vailues of m and n ; queue disciplines where
customers may be switched from one server to the other
are also considered.
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Chapter |

INTRODUCTION AND PREL IMINARY RESULTS

The similarity between queueing and inventory models has long been
recognized; inventory analysis generally includes an explicit cost struc-
ture and a solution for optimal policies, but researchers in queueing theory
have been more interested in the underlying probabilistic structure. Our
research is directed towards finding optimal operating policies for a queue-
ing system with a linear cost structure, with emphasis on models with

Poisson arrivals,

1,1 Definitions

Two generic terms Will be used throughout, server and customer, A
server is a mechanism that performs an operation on units fed into it;
these unjts are referred to as c.ustomers. Thus, a server can represent a
production line and the customers can represent orders for the product,
or the customer could be people arriving at" a ticket window, and the server
the ticket vendor. When the customer is being processed by the server,
he is said to be in service, and the time he spends in service is called

his service time. While one customer is in service, other waiting cus- -

tomers are in queve, that is, they are present but have not yet been served;
the length of time a customer waits in queue is called his queueing or

waiting time, and the queueing time plus the service time of a customer

is called his life time, The system is the queue and the server, so the

number of customers in the system is the number of customers in queue plus

the number of customers in service,.

The server may not be allowed to serve arriving customers, i.e,, it




may be turned off. Time intervals when the server is turned off will be

called dormant periods and during these periods the servers is said to be

dormant. When the server is turned on it is running, and time intervals

when the server is running are called running periods. Intervals when

customers are not being served are idle periods, they occur when no customers

are present and/or when the server is dormant; busy periods are time inter-

vals when customers are being served. This definition of busy period cor-
responds to the usual queueing terminology, but our definition of idle period
includes the additional time when customers are present, and the server is

dormant. A busy cycle is a consecutive busy and idle period,

Number of
customers in
the system

> time

—
(ad
N
[ db
w
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&

Figure 1. A Typical Time Interval

These definitions are easily understood by referring to Figure 1. The
interval [tZ’tB] is a dormant period, (t3’th) is a running period, (tl,t31
is an idle period, (t3’th] is a busy period, and during (t‘,tz) the server
may be running or dormant.

The economics of system operation is influenced by the various costs
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involved. When the server is dormant, costs for power, heat, maintenance,

etc. mdy still be incurred on @ per unit time basis; these are called

dormant costs. Activating and deactivating the server may involve power

surges, equipment, or manpower charges; the associated costs are called

start-up @nd shut-down costs respectively, and fixed costs collectively.

When the server is running, attendant, fuel, and other costs may be charged

in addition to the dormant cost; the sum of these costs is the runn ing

cost. These four costs are the operating costs of the server, but they

mady not represent the entire cost picture of an operation; for example in a

service such as aircraft repzir, the airplanes are not productive during

their stay in the repair depot, and this lost time represents @ cost to

the owner. Thus, we must consider a penalty for delaying the cus tomer in

the system, this penalty is called a holding cost,

1,2 Assumptions and Notation

a)

b)

Assumptions for a single server model are:

The arrival stream - customers arrive singly in a renewal process; the

times between successive arrivals [a‘, i=l, 2, ...} have distribution

function (d.f.) A(t), t > 0. For most of our results we will require

A(t) = l-e.)‘t.

The service mechanism - customers are processed individually in their

order of arrival; the service times [o', i=1, 2, ...} are independent,
identically distributed, non-negative random variables with d.f.
B(t)A, t > 0.

The cost structure -

i) The dormant cost rate is " [$/hr.0;

ii) the running cost rate is ry [$/br.1, Fp 2745

-7



\ ' , b,
iil) the s;art-ué cost is R|[$];
iv) the shﬁt-dOWn cost is Rz[s]; |
v) the holding cost is h[$/customer-hr,].
All cost coefficients are assumed non-negative and finite, and to
avoid trioiality h is positive. Future costs may, or may not be,
d}scounted. |

d) The decision process - The server may be turned on (or left on) at any

point during an idle period, and it may be turned off at service com-
pletion epochs during a busy period, (note that this precludes deacti-

vating the server during the service time of a customer).

Every possible policy of turning the server on off during the operating
horizon for the the queueing system leads to a different operating cost.

The central problem of this work is to find the optimal policy - i.e., the

policy which will ininimize the total cost of the operating horizon,
Throughout the paper Laplace-Stieltjes transforms (LST'S) of distri-

o0
bution functions will be denoted by a tilde, e.g., A(s) = I e-StdA(t);
0

moments of d.f.'s will be denoted by @ v with ; first subscript indicating
the moment and a second subscript indicating the d.f., e.g., the first
moment of A(t) is Vi @nd the second moment of B(t) is Vog* The quantity
p = Xv'b is the system utilization factor, always assumed to be less than

unity.

1.3 Previous Results Used

When the arrivals are @ Poisson process and the server is always run-
ning, the system forms an M/G/! queue, a stochastic process that has been
studied extensively (see, for example, reference L), We will often refer

to the following results:
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At equilibrium, the expected number of customers in the system is

given by the Pollaczek-Khinchine equation

o (ch + 1)

m L=p+ 505

where C: is the coefficient of variation of B(t).

The length of a brsy period, y, has d.f. G(t), and

(2) TG:) =Bls + A - 2AG(s)1.
The number of customers served uring @ busy period, M, and
~ il
F(Z) = T Z'P(N=k) satisfies
k=0

(3) F@z) = B[\ - \F(2)].

The probability that the server is busy at an arbitrary point in time

(#) Pg = P

1.b_The M /6/1 Queue

In the next clapter it wili be shown that with Poisson arrivals and
the assumptions of Section 1.2 th2re is an optimal operating policy of the
forms
(0) Turn the server on when n customers are present,

and then turn it off when the system is empty.




The queueing process formed by this arrival and service pattern will be
called an Mn/G/I queue (when the subscript n is set equal to one, we have
the ordinary M/G/1 queue). The basic properties of this type of queueing

system are given by the following theorems:

Theorem 1: The idle period ¢, in a M /G/1 queue has d.f. A (t) and

K (s) = [sﬂ

Proof: An idle period will be formed by n > 1 independent, identically

A

S » 0.

distributed inter-arrival times so K;(s) [(R(s)1"

Theorem 2: The busy period Y, in an Mn/G/l queue has d.f, Gn(t) and
T () = [B)1", n 21, Tls) = Bis).

Proof: Let Tn be the time to serve the n customer present when the busy
. period begins, and k be the number of customers that arrive during
L P('Tn <t) = [B(t)']*n = Bn(t) because the service times are

independent and identically distributed random variables, and

£ = [ 0Dt (1) = Boan)".
0

6 (t|k,T ) =T #{6(t)T"

-ST

T slkT) =e (B

T |7 ) = exp {-T [s + AT (s)]]

0B (s) = (BLs + AAT()TY" = [G(s)17, e

- m—
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An immediate corollary is the v = 18 Since

IGn o

dE!s! | - nle
ds $=0 16 1-p °

1

Vg = %;En(s)ls:') = o))"
n

Theorem 3: The number of customers served in a busy period of an M_/G/]
queue has probability generating function ?;(z) = [F(2)]",

and v = nv

> .
IF 0,2
n

IF

Proo?: This theorem can be proved in a manner analagous to Theorem 2; we
present a more intuitive proof to help in understanding our latter
results.

Instead of serving the original n customers first, serve any
one of them and then all the customers that arrive during his
service, then those that arrive during these services, etc, until
only the n-1 original customers remain in the queue. The number
served up until this point is the number that would be served during
the busy period of an M/G/l queue, which has p.g.f. ;(z). Pro-
ceeding in the same manner With the-remaining n-1 customers, they
each generate an M/G/] busy period, and each busy period is inde-
pendent and identically distributed. Thus, En(z) = [E(z)j" and

Vi = "V ipe QED.

Theorem 4: The asymptotic probability that the server in an Mn/G/I queue

is idle is P| = l-p.

Proof: Since the arrivals are Poisson, the sequence of idle and busy periods

forms an alternating renewal process, and the asymptotic probability

i , o E(C)
of being in an idle period is P| =0 + EG) Therefore, for

n>1



1
n({) 1
fi e L Vg, 1+ -l
"Rt T

1-p

and the cases n=0 and n=1 are the same, QED.

The importance of this theorem is that for all policies of the form
(0), the fraction of time the server is busy is the same,

The next tour chapters are devoted to finding optimal operating policies
for an Mn/G/l queueing system with different assumptions about discounting
of total costs and the length of the planning horizon. In Chapter 111,
some bounds for a Gn/G/I queue will be obtained. The last chapter contains

8 two-channe!l model in which the service time distributions are restricted

to be exponential,

3



Chapter ||
THE EXISTENCE OF STATIONARY OPTIMAL POLICIES

FOR INFINITE HORIZON PROBLEMS

In Chapters 1ll and IV we will find stationary policies that minimize
certain long-term objective functions; the purpose of this chapter is to
show that there are no non-stationary policies that give a lower value of
the objective function. The method of proof will be by formulating the
decision process as a dynamic programming problem, and proving that this

problem has a stationary optimal solution.

2,] Dynamic Frogqramming Formulation

Let' S be the set of states of a process and A be the set of acts
available; when the process is in state s ¢ S and the act e¢¢ A is chosen,
the‘process moves to a new state s' € S, where s' is chosen according to
some probability distribution depending on s and A , and gives a transition
reward r(s,a, s'). A policy nm specifies which act to choose, at all
decision points, as a function of the history of the process. A stationary
policy can be represented as a function, f, fromS into A such that whenever
the process is in state s, the acta = f(s) is chosen. Thus, a stationary
policy is independent of the history of the process, except as summarized in
its current state.

The total income from a policy is the sum of the transition rewards

when that policy is used; when the transition rewards are random variables,

the expected income is the sum of the expected transition rewards., |If

l This description of dynamic programming is due to Blackwell, reference 2.
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cQ(n,t) denotes the expected income earned by policy w at time t, and con-

tinuous discounting with Interest rate B is employed, then

(.-}
1(n,8) = I e-Btdzﬁ(n,t) is the expected discounted income over an infinite
0

horizon under policy m. The gain rate of policy m is C(m) 4 im %-ITdaQ(n,t).
T 0

When all the rewards represent costs, the terms total cost and asymptotic

cost rate my be substituted for income and gain rate respectively,

This formulation can be epplied to the problems considered in this
thesis in the following manner.

Let A=(1,2) where action 1 is "turn the server off' and action 2 is
Y'turn the server on''; the state of the system is the pair (n,k) where n is
the number of customers in the system and k indicates if the server is run-
ning or dormant and can be.written as the denumerable set
s =f{0,0',1,11,2,2¢, . .} where the prfme indicates the server is running.
The.probability law that seleéts the next state and transition time is:

s' =s + 1 if action'1 is used, the transition time is o with d.f. l-e-Xt;
if action 2 is used, s' will equal s-1 + 8(s) +Y, where ¥ is the number
of customers. that arrive in @ service interval, §(.) is the unit pulse at
the origin, the transition time is 5, which has d.f. B(t). The cost of
each transition is the sum of the operating costs for the server ard the
holding costs of the customers present during the transition,

Notice that if we allowed the instants when customers arrive during a
busy period to be decision points, a probability distribution for s’
depending only on s and would not be obtained unless B(t) = 1-e ¥, and
the decision points during an idle period must be restricted to arrival

epochs when the arrival stream is not a Poisson process,



2,2 Problems with Discounted Rewards

When an interest rate B > 0 is used to discount future rewards, we have

Theorem | (Blackwell)[zjz If the state space S is a Borel subset of some
complete separable metric space, the action space A is finite,
and the reward function r(*) is a Baire function on SxAxS, then
there is a stationary optimal policy. That is, if I(m,s,B)
is the expected discounted income using policy m and starting
in state s, there is a stationary policy ﬁ* such that I(n*,S,B)

> I(m,s,B8) for all policies mw and all initial states s ¢ S,

Blackwell proved this theorem when transitions from s to s' occured
at times t=l, 2, ... and r(s,a,s') is deterministic, If the inter-
transition times are random variables and the reward from a transition
depends on this time, the theorem and proof are valid when r(s,a ,s') is
reélaced-by its expected value F(S,Q,S') given that the transition time
distributions are such that the length of the experiment t, and the number

of transitions n, have the property
t o= o a,s,

If the transition times are not degenerate at zero or defective, a
sufficient condition for this property to hold is that there is a finite
number, k, of transition time distribution functions, since:

a) |If Tj denotes j-th transition time, the elapsed time after n transi-
n

tions ist= T T,,and n <=® implies t <o a,s,, sot—~+® =>n—-wa.s,
j=1

by forming the contra-positive statement.

b) after n transitions at least one of the distributions, Fl(t) say,
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must have been the probability law for a minimum of % = n'! transitions.

. : n
The elapsed time for these transitions is t'! = 2 i, where

'l'i~F|(t),andn-°c=>n'-°oo=>t'—ocoa.s, =t = o a,s,

Since our problem has only two transition time distributions, A(t) and

B(t), we conclude there is an optimal stationary policy when future costs

are continuously discounted,

2,3 Problems Without Discounting

For the single channel stochastic server system with B=0, we estab-

lish

Theorem 2: There exists a stationary policy f that raximizes the reward

rate, and f is independent of the initial state,

Proof: First we show that there is a stationary optimal policyl. From the

preceding theorem, if a positive interest rate were used, for each
initial state there would be a stationary policy fs(B) that would
earn the maximum expected discounted reward I[fs(B)] = l(ﬁ*,S,B).
In Section 11l it's shown that the holding costs are propor-
tional to 8-2 and the operating costs are proportional to B-I.
This implies that for small interest reates the server must be
turned on eventually, i.e,, there is a finite bound on n*. Thus,
there is an interest rate BO’ a sequence @ = {ei}?=0 - ot with

B‘WS_BO, and a finite set, é;i = {fs:fs = fs(ei)], of stationary

This part of the proof is based on the work of Fox, reference 8,
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optimal policies. Since for every Bie @there's a corresponding
fs, at least one member of é’i must appear infinitely often in the

sequence {fs(Bi)}?=l. This implies that there is a subsequence of

-(B,Qv' = {Bj};=l - 0% and a stationary policy fs that is optimal for
all interest rates BJ.eQ'.
Using standard Abelian and Tauberian theorems (reference

Van der Pol and Bremmer [15] pg. 122),

Clr) = lim BJ e-Btdt.Q(ﬂ ,t,0)
B~0* >
= lim BI1(1? )
B~c* s

< lim 8j1(F,) = C(F,).

' . The result that the optimal stationary policy is independent
of the starting state follows from the fact that introducing any
finite cost on each of the first finite number of transitions won't
alter the asymptotic cost rate. If the service system starts in
some state i > 0, itwill incur only a finite expected cost before
there are zero customers in the queue and the server is idle, so

C(fi) = C(fo). QED.

The above theorem was proved for the particular case of interest rather
than as a general dynamic programming result because it is not true in
general, Suppose the state space is S = (0, 1, 2, ...), and in each state
s the alternatives are: 1) go to s+l in one time unit and receive no pay-
ment, and 2) go to state s=0 in s time units and receive s - -} Any

stationary policy of going to state zero when the process reached state
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n would have a rate of %(I - l;), and a greater reward rate can be achieved.
n

Furthermore, when the rewards are discounted there will be a stationary
+~+imal policy from theorem 1.
Now that the existence of'stationary optimal policies for both models

has been established, it is possitle to specify the form of such policies..

Theorem 3: Under a stationary optimal policy either: (1) the server will
always be dormant, (2) it will always be running, or (3) it will
be turned on when there are n* customers waiting before a dor-

mant server and turned off when the system enters an idle period.

Proof: The first cas;.arises only when aiscounting is used and the holding
cost is smll compared to the operating costs, and corresponds to
using action | in the unprimed states so that the primed states are
never reached.

if this_is not the form of the policy, there must be a state
s “there action 2 is optimal (this state need not be unique as
illustrated in example 3 of Section 3.4), so s=n*. It remins to
be shown that there is no state s' in which action 1 is optimal
when process is in state k'. Since this state will be reached with
probability one, the process will alternate between k and s cus-
tomers in the system, once the server is turned on, which is equiv~
alent to incurring the cost of reaching state s and then holding k
customers on the side and turning the system on when s-k are present
and off when zero are present, a strategy that is dominated by
serving the k customers (possiSly after a certain finite time 7) and
then turning the system on at s-k and off at zero. |If k > s and

action 1 is used in state k', the equivalent cost is achieved by
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reaching state s and then holding s customers while turning the
server on at k-s and off at zero, which is dominated by serving the
s customers after holding them no more than a finite time, and then

turning the server on at k-s and off at zero. QED.

This theorem applies only to the allowable decision points, specifically,
only to those points when the server is busy and a service has just been

completed, otherwise it may not be valid. For example, consider a service

time distribution with P(c) = 'gg? 22:006}. Suppose we observe the system

2 time units after a service has begun. We know that this customer will not
complete service for another 998 time units; if the interest rate is high
enough it will be better to turn the system off and incur only the idle
cost for S while, and have the running costs charged when their present value
is lower,

When B=0, the server will never be turned off when customers are present

because this will only introduce additional on-off costs.
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Chapter |11
THE UND ISCOUNTED INF INITE HORIZON MODEL

In this chaptgr we Will present two ways to calculate the asymptotic
cost rate (see Section 2.1) when @ stationary policy of actiQatlng the
server when n customers ére present is employed; we then derive the station-
ary optimal policy. In Section 3.5 we discuss the effects of a proportional
increase in the service and running cost rates; in Section 3.6 bounds on
the cost rate and optimal policy are obtained when the inter-arrival times

are drawn from an IFR distribution,

3,1 Derivation of the Asymptotic Cost Rate, Method |

Since the server must be turned on eventually, we only need to con-
sider policies where the server is always running, or is turned on when
n 2 | customers are present and off when zero customers are in the system,
We will derive the cost rate for the latter form first,

fhe seduence of busy cycles forms a renewél process, and a basic result
of renewal theory is that the asymptotic cost rate is the expected cost per
cycle divided by the expected cycle time. The following results are

immediate:
] vB
(1) The expected length of a busy cycle is n(i'+ T:;)’

(2) The expected dormant time cost in @ busy cycle is i%-,
!

nyv

——r
-0

(3) The expected running time cost in a busy cycle is 2

(4) The total set-up cost in a busy cycle is Ry +R,.

To calculate the expected holding costs we need to know the expected
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value of the sum of the life-times of the customers served in a busy period;
call this number V.lgn). Consider an M/G/1 queueing system in which the
server is always running, and number the busy periods by i and let TlI be the

number of customers served in busy period i. The average life time of a

customer served in the i-th busy period is wi = %— (wf') + wz(i) + ... +
i

(

m_ni)), where w} represents the life time of the j-th customer served during
i

=3

i
No= T wj' and multiplying and dividing the right-

J=1
n

hand side by & “i' dividing both sides by n, rearranging terms and taking
i=1

busy period i. Thus, V‘

limits
n nl i
n r T OJJ o
(1) liml X ":“i = Iim'—d—l:l—lim-l- P T]l.
n— i=] n o " =)
bX 'ﬂl

" Since busy periods are independent and identically distributed, the
left-hand side of (1) is wT(') a.s. and the second limit on the right is
E(T]‘) a.s, by the strong law of large numbers. John D. C. Little [11]
showed the remaining limit is the expected life time of a customer W, so
VT = WE(N).

This result refers to a busy'period started by one customer,. If n
customers start the busy period, the total wait is the same if we serve the
first customer in the queue first, then those customers who arrive during
this service, then the customers who arrive during these services, and so
forth untii the busy time generated by this customer is completed, at which
time the second of the original customers starts his service, and the pro-

cess is repeated until the queue is empty.
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Since the arrivals are Poisson, the total waiting time generated by each

progenitor are independent and have @ mean value of W While the first

T
progenitor and his descendents are being served n-1 progenitors are wajting,

n-2 progenitors wait during the busy time generated by the second progenitor,

and so forth, This contributed nig:ll V,. to the expected total waiting

1G
time, During the idle period the queue is building up to n customers, so

ﬂjgfll is added to the expected total waiting time. Adding the parts we

have

Wy
1G -1 1
""gn) = [T"B' + 5L g + 0] .

Assembling all the parts, the cost rate C(n) is given by

nr

ry M, ool 4]
Ry FRy v Fnrpvye? h[l-p Yo gt
C(n) = ]
(X * Vi)
which simplifies to
)\(l-p)(RI + R2) el
C(n) = ryt (rz-rl)o + hW + ~ +h ==

Using the relationship L = AW, we have finally,

)\(l-cj)(Rl + R

n

2).

(2)  C(n) =1 + (r,r))p + h(L+ 25 +
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3.2 Derivation of the Asymptotic Cost Rate, Method ||

A second method of deriving equation (2) is to observe:

(1) the running cost of the server can be considered as an increment
of r,-r, over a constant cost of o and that this increment is
incurred a fraction p of the time, independent of n, since p is
the probability that the server is operating at an arbitrary point
in time (Theorem 1-4)

(2) R, + R, is incurred during each busy cycle and from the elementary

<%
renewal theorem the number of busy cycles per unit time is

nl (-l— + le)-I = AM1-p). and

A n '
(3) the holding costs per unit time are proportional to average number

of customers in the system.,

(n)

The average number of customers in the system is LY/, which can be

4

expresses as
L(n) = [L(n)|Server BusylP(Server Busy) + [L(n)|Server Idle]P (Server Idle).

The average number of customers in the system when the server is idle

is Eél, and from the arguments used to derive w%n) it's easy to see that

the average number of customers in the system when the server is busy is

L), ozt

7 Therefore,

* See Barlow and Proschan [ 17, Theorem 2.5, for a precise statement and

proof .
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) R RN (B R )

and thus we obtain

R, +RIA(1-p)

' n-1
cn) = rt (rz-r])p + h(L + _E_) + = ,

which is equation (2).
It's important to note that equation (2) only holds when n > 1; if
the server is always running, there is no idle time, start-up, or shut-

down costs, so the cost rate is
(L) c(o) = r, + hL.

3.3 Determining the Optimal Policy

Setting g%-éﬂl: 0 we obtain

- . AR, +RY (1)
n = ’

n

6 (") = ry+ (rporde +h(L - 2) + (2R, + Rz)h(l-p)]%..

2

*
Since Q—Eéﬂl-> 0, n gives the unique minimum value of C(n) for | < n < w,
dn

The reason that n" doesn't depend on r, and r, is because for all values
of n > |, the fraction of time the server is busy is p (Theorem [-lt); the
optimal value w}ll only balance the increase in holding costs with the
decrease in set-up costs as is increased., However, the optimal policy
depends on " and ry because equation (k) may show a cost rate lower than

the one given by equation (6).
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The optimal policy must be given by an integral value of n, call it

*
n°pt. If n is bigger than one but is not an integer, the best integer

*
value of n is one of the integers surrounding n ; therefore, noPt is either
one of these integers or zero. The decision is made by evaluating the cost

rate gi.ven by each of the three candidates.

t opt

If 0<n <1, either n°% = 0 or n® = 1; since €(0) < C(1) when

(rz-rl)(l-p) - (Rl + Rz))\(l-p) <0, or
(7) Fo=ry < AR, +R,)

so the choice is easily made,. S

When n*=0, either A=0 or 'RI + R2 =0 so nopt = 0. Summarizing, nOpt

is either O, [n*], or [;i* + 1].

3.4 Numerical Exanmples

L]

TR S s " .
Example 1: p=3, A=l, h=1, R, +R, =4, =t r2=li

Thenn* = 1xkhx4=2,and

C2) =1+3x4+(L+1)+4x3i2=42+1L, and

c(0) =4 + 1L,

n

Therefore, the optimal policy is to leave the serve: on all the

time,

Example 2: p=%, =1, h=l, Rl + R2 =5, rl=l, r2=6

Thenn® = /43X 2X 5= 5x2.2, and



W — .

22,

c() =6 +1L,
C(2) =1+3+ (L+3) +5X352=5¢+1L,
cC(3) =1+3+(L+1)+5x1:3= S%j+ L.

The}efore, the optimal policy is to turn the server on when 2

customers are present,

Example 3: p=3, A=1, h=2, R, +R, = b, ry=l, ry=5

Then n =f2 X 2 X4 =2, and
€(0) =5 + 2L,
C(l) =1+2+2L+3x b =5+2,
C2) =1+2+2(L+3) +3xbs:2=54+2,

Therefore, there are 3 optimal policies,

3.5 A Control Model

We have been considering the service time as a random variable g with
d.f. Bo(t)’ The randon varialbe o' = 80, which is o mapped onto a different

time scale, has the properties:
(1) 8, (t) =B_(),
(2) E(o') = 6E(o)
(3) «c

When 8 < 1, o' is stochastically smaller than o so this can be inter-

preted as an improvement in the service facility; similarly 8 > | represents
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a decrease in the capability of the server,

Suppose we can change o to o' with a corresponding change in running
rs ~
cost from r, to ri =5 Wwith all other costs remaining the same. In the

undiscounted case, the optimal policy with respect to opening the server

becomes

0 2(R| + Ry (1-6p)
®) (o) - Z .

since p' = AE(60) = 8p. Since the optimal policy for sarving customers is

uniquely determined by equation (1), the cost rate can be expressed as a
function of 8 only, VIZ, - )

*
(9) c(6) = r,(1-80) + rpp + hL(8) + BNy 4 ), 4 ,) LB

n (8)

92p2(c§ + 1)
where L(8) = 6 + AED] from the Pollaczek-Khinchin equation,

One can find the optimal value of @ by investigating the roots of

2,2

ep (fs + 1) (2-6p)

10) Ly« = 231 p)> ~] - st20-8017Han@, + R4 r) 0.
=9p

A solution to equation (10) can't be given in closed form; however,
one can obtain the conditions for wihich it's desirable to slow the server

down. The initial control setting is 69=1; C(8) decreases as @ increases

when

dc (6) pz(Z-p)(Cg + 1) Q[ -3
de |9=‘ = h[p + Z(I-p) ] = P(X(Rl + Rz)h) 2("‘9)] = I’IO < 0.
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Simplifying, we have the local condition for slowing the server down,

AR, +R)E T b (2-p) (C2 + 1)
(1) i e Bt T =

if the reverse inequality holds, the server should be speeded up.

The qualitative reasoning that explains the form of this result is that
increasing the service time will lengthen the busy periods and reduce the
fraction of time the server is idle, which is desirable if Rl + R2 or r,

is large. It also has the effect of increasing the mean number of customers

in the system, which is undesirable if h is the dominant cost,

3.6 General Arrival Distributions

£ nv

hovever,

Equation (2) is not valid for G/G/! queues because v 16}

IGn
we expect that equation (5) will be approximately correct when p is close to
unity, giving a policy that iﬁ a highly utilized system the server should
always be available, unless the holding costs are negligible, For arbitrary
values of p we can obtain bounds on the cost rate and optimal policy if

the arrival distribution is suitably restricted. Generalizing the arrival
distribution requires that the decision points during an idle period be
restricted to arrival epochs, as pointed out in Section 2.1,

A class of distributions that has been given much attention in reli-
ability models is the class of |FR distributions, where IFR stands for
increasing failure rate. The IFR assumption for A(t) corresponds to arrival
patterns where the probability that a customer arrives in the next time
increment increases as the interval since the last arr:val epoch increases;
imposing the IFR assumption on the arrival stream is natural for models

where the customers represent failed pieces of equipment and the service
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mechanism is the repair facility. Since te Erlang dictributions and
many other common distributions are IFR, assuming A(t) is IFR is a non-
parametric way of analyzing a large family of common queueing models,

A distribution A(t) is IFR if

Alt + x) - A(t)
AS (t)

is increasing in t for all t > 0; the properties of these distributions are
discussed in Barlow and Proschan [1].

Marshall [12] found bounds for the expected number of customers in the
system and the expected length of the busy cycle.for.the Gn/G/l queue we

shall consider. When A(t) is IFR and p < 1, he obtained:

2 2. .2
. ; P[CA‘l] +p [CB + 1] n=-1

where C: and C2 are the coefficients of variation of A(t) and B(t) respec-

B
tively, and
(13) Lpdlnp) o gx) < 22l

where E(X) is the expected length of a busy cycle,

Since the cost rate is highest when L . "sumes its largest value and
E(X) Its smllest, and the minimum cost rate is achieved when these con-

ditions are reversed, the cost rate is bounded for all n by
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Ry + RN

rl(l-p) +r,p + hAA + _n(_itré c(0) < TI(I'D)

(14) .
R, + Rz))\

2p+h()\A+%)+n—1mn—_-‘;T, n> |

+r

pLCa-11 + p°lCy + 1]
r2 + [p +

]5(.1(0)<r2
2(1-p)

2 2.2
p[CA-I] +p [Cg + 1]
* h[p + 2(1-p) ? * %]

The width of the bounding interval is easily calculated to be

(R' + Rz))\p .
n(-p) (-0} t3, N2 1, which decreases as n increases and p decreases,

Let Cu(n) and C, (n) be the upper and lower bounds; simple differentiation
reveals that both are convex, so C(n) is bounded by an interval as shown

in Figure 1.

C(n)

-1
*.n.—
»

=]

Figure 1. Bounds for the Cost Rate of the IFRn/G/I Quevues.
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Setting the derivative of Cu (n) with respect to n equal to zero yieids

2 (R, + R,) .
(15) nt=\/ hr}—ﬂz +p>n,

%
where n' is the optimal policy when the arrivals are Poisson (equation 5),

and

2 2.2
% plCy-1] + p“[Cy + 1]
(1€) () =ry+ (rpmrde + h[%" + =2 2(T-p) . ]

1
2)\(Rl + RZ) 5

+ [T

%
Since n obtains the minimum value of the maximum cost rate, it is the
%
minimax « trategy and Cu(nu) is the :pper bound for the optimal cost rate,

In a similar manner, one finds that C, (n) is minimized by’

2R, +R, )\
(17) ny =‘/.h(}_p7 2.

and

2 2.2
p[Ca-17 + p"[Cy + 1]
(18) ct(“f) = v+ rgryde + "‘[" + == 2(1-p) - ) ]

2 (R, + R, )h-%
+[ :-p 2]'

Since Ct (n’:) is the lowest possible cost rate and

(19) C () - ¢, (ny) = Dltel oy,
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the optimal cost rate is bounded within % of its value if A(t) was com-

pletely specified.

From the diagram it is easy to see that the values n, and n, that

1 2
*
satisfy Cl(nl) = Cl(nz) = Cu(nu) are the bounds on the optimal policy.

Using equations (14) and (16) one obtains

% 2 (R, +R,)(1-p) 32
(200) n,=n_+ 1-2p - [(|-p)2 4 h[ l - 2 ]2]2
(20b) .nz = n'; + 1-2p + [(]_p)z + lq.[ | - 2 ]Z:l.?
(ZOC) Ny - n, =~ 2 n?‘;,

where n* is given by equation (5). Since small values of h cause large
values of n*, equations (19) and (20c) imply that as the bounds on the
optimal cost rate get better, the bounds on the optimal policy will get
worse, This means that large variations in the policy will have small

effects on the expected cost rate.

3.7 Conclusions

From equations (6), (16), and (18) we see that the expected cost rate
can be reduced by decreasing the variability of the service and inter-arrival

time; thus, ceterus paribus, the queue with constant inter-arrival and

service times will have the smallest cost rate,
If we assume a Poisson arrival stream but A(t) is actually |FR, sub-

stituting equation (5) into the equation for cu(n), we find



29.

AR, +R,)
' l *2 - (‘ +zplh (ﬂ*'l).
(1-p) (" -p)

(200 - € (n) - C () =

Since smll operating costs and large holding costs tend to give the
policieS n°pt equal zero or one for both Poisson and IFR arrivals, the
error given by equation (2) will be large only when n* is large, .Thus, when
the utilization and holding costs are large and the operating costs are

small, the loss in generality in assuming Poisson arrivals is not very

critical,
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Chapter |V

THE D;>COUNTED INFINITE HORIZON MODEL

In this chapter we will find the expected present value (discounted
total retufn) of a stationary policy that turns the server on when n cus-
tomers are present, and turns it off when the system is empty. The analysis
in this chapter is more complicated than that of Chapter |1l because explicit

account must be taken of the epochs when costs are incurred,

b,1 Some Properties of Laplace-Stieltjes Transforms

We will use the following properties of Laplace-Stieltjes transforms

extensively in this section:

Property 1: !f a cost R is incurred T time units from now, and T is a
random variable with d,f, F(t), then the expected present value

of this cost is RF(8).

Bt

Proof: Assume that T=t, then the discounted cost is Re ", unconditioning

on T=t we have the expected cost is Im Re-etdF(t) = RF'(8), QED.
0

Property 2: If a cost rate of r dollars per unit time is incurred until 1
units from now, and T is a random variable with d.f. F(t), then

the expected present value of the cost is % [1-F(8)].

Proof: Assume v > t, the present value of the cost at time t is re-Bt. The

probability that T > t is 1-F(t) so the expected present value of the

cost at time t is I re PY1-F ()]0t = L. rI e Bl (t)dt = H1F ),
0 0

QED.
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Property 3: If F(t) is a distribution function of a non-negative random

variable that is not degenecrate at the origin, then if F(B) =

Je-stdF(t) exists, 0 < F(B) <1 for B > 0.
0 ™

Proof: F(B) > 0 since e Bt s 0 and dF (t) > 0 but not identically zero,

F(B) < 1 since |re-etdF(t)|5_|e-:‘ti|‘[ dF ()| < 1.
0 0

4,2 Calculation of the Expected Total Cost

Using these results, we first find the expected cost, & (n;B), for

n> 1, starting with zero customers in the queue, The first two properties

show that in the first busy cycle:
(1) the expected start-up cost is Rl[x(B)'Jn = RI(E%:)“ 4 <,

(2) the expected shut-down cost is RZ[W(B)E’(B)]" = RZ(E%)n[E(B)]n 4 <

r . r
(3) the expected idle time cost is E-‘-[I-(K(B))"] = él[]-(s_-);-f)n] A c3

r n or
(4) the expected running cost is Fg- [l-[?z'(f»)]n:[x(ﬁ)_-} = E-z- (E%\)n

[I'G‘(B) )n'] 4 <y

The LST of a busy cycle is 'H'n(B) = [K(B)E(B)I", so he expected dis-

counted operating costs for the entire planning prriod is

() 8) =c +cH (8) + cln B + ... = Ty
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where ¢ = c, + ¢ "y +¢,, and 0< Hn(B) < 1 from property 3.

The holding costs will be calculated in two parts. When the queue size

is increasing from zero to n during an idle period, one customer waits for
. . h I n-1 _. ‘s
n-1 arrivals which cost E-KKB) 11 - [R(B)] since he starts waiting one

inter-arrival time from the beginning of the busy cycle. The second cus-

tomer arrives after two inter-arrival intervals and waits for n-2 more
. .. h 2r n-2 ~
arrivals, so the holding cost is 5'[KXB)] 11 - [A(e)] : the costs of the

remining customers is computed in the same way, and the total discounted

cost is
1 (:8) = B {RE1-®E)"'T + (K(e) RGN + ..
+ ®(©)""'11K())
= -g-{_’“B} :;SD" - (n-1) (K(8))"]
(2) 1 (n:8) = _3 A(8:+)" - A" (A\+n8)

B (8+1)"

The expected discounted total cost over an infinite horizon is

t_(n;B) N\ (an
(3) 1q(n;8) L R Ei‘ MB+Lr)‘ x~1x+ %1
1F (8) 8 (50)" - [AE(8)]

The remaining costs are due to customers who are waiting while the
server is busy. If ts(n;T) is the expected number of customers in the

system at time T, and T is a point in the first busy period, the expected
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discounted cost of holding these customers until T + dt is he-BTts(n,T)dT
.-}
and the cost for the busy period is ls(n;B) = hJ e-BTts(n;T)dn,where T is
0

a random variable with d.f, Gn(t).
Let 8 equal the service time of the first customer served in a busy

period and k be the number of arrivals during 6, then

(&) t, (1:8]8,k) hjoe'BTts(l;Tle,k)dT 5 e'aets(k;e)

n

e
hj e'Bt(l + kt)dt + e PO, (;B).
0 . g

Changing the order of service as in Section 3, and using properties

one and two, we find that
t (n:8) = 1 (5B +TB) + @EN? + ... + @EN"N

(5) +h 2L 01g(e)) + -'-';—z[l-%'(e)'_l'é'(s) + o+ h 2 [1E(8))

1-[E()1" ALY 16(8)1"
tel

~ n-2
(6(8)] =1 (1;6)
. 1-5(8)

Substituting'equation (5) into equation (4) and unconditioning on k,

{ (1:8) 1-exp[ -28(1-6(8))1

e
ls(l;8|9) = hjoe.et(l+kt)dt + e \20)

+ b e . Jeexp[ 20 (1-B(8))
8 - '_E'(R)

integrating the first term by parts and simplifying the second term gives
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(6) ts(];gle) 8+x (e -88 S1)h + ] - exp[-ké#l -G(8)) [1 (1:8) - -1e -pe_
-6(8)

Unconditioning on @ and recalling G(B) = B[B+A-\G(8)1,

1 (58) = Bhh 4 11 (158) - By BRIEG)
p

15 (%)

from which one obtains

(7) 15(1;8) = ﬂi% [1-8(8)h + E]B{iﬁ‘sz h.
B B[ 1-B(8)1

Substituting equation (7) into equation (5), the expected cost of a

busy cycle is seen to be

8) t (n:8) = ["(”(Bllflik (+8)E(8)Th b,
8[1-8(8)]

when h=l,ts(n;8) is the Laplace transform of the mean number of customers in
. .
the system during a busy period . The expected costs for the entire horizon

is

s (n:8) |l-§c(a)) A= (+2)8(8) Th nh
(9) L (n;B) = :
s ) 6215 100 RS, B[', 2Bl

A8 N+B

Thus, the total expected discounted cost function is, finally:

*
This transform can be computed from the results of Gaver [97 but this

derivation is more direct.
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(1) € (nig) = 0(niB) + L (n:8) + L (n:8)

-
-

BR, + BLG(B) TR, + (r,-r )[1-(E(8))"
= +
(]

“l

o h_ 2 048) A" 4n8)
8 (8\)"- [XE(R)T"

L L=(6(8)" A - (+8)B(B) Th
82015 (e) [ 1- L")

In principle, one can find the minimizing value of r, n*(B) by classical
calculus methods; hovever, a closed form solution for the usual first order
conditions doesn't exist. Equation (10) contains te-ms that are linear in n
and terms in which n is an exponent, hence, the derivative of {£,(n;B) with

respect to n will also contain terms of these forms. This implies that

ggfb(n;e) =0 is an implicit equation in n, so there is no closed form

expression for its roots, !

*
Thus, an indirect method for calculating n (B) is required. For example,
a computer solution using successive approximations could be used; for small

values of B, one could approximate ':;'C(n;ﬁ) by a Maclauren's series'expanslon.

In the discounted case both endpoints must also be considered as pos-
sible minimizing values of n., When n=0, Ry is charged when the first cus-
tomer arrives, the running cost is always charged, and there are no customers

who wait for the server to be turned on, so
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R.A 1 ~ -
(1) @(0B) = gy + g2+ h {5 + —2BEILISEN ]

B B[s+\-AG(R)1[1-B(8)

The interpretation of n = o is that the server is never turned on. |In

this case, th2s only costs incurred are holding costs in the queue, and

. h\
(12) C(0;8) = lim Lq(n;B) = =

o B

We note that the undiscounted cost rate [Equation (2), Chapter 111]
depended only on the first and second moments of the service distribution,
while (n;8) in (10) depends on the knowledge of the entire distribution,

through B(8) and G(8).

4.3 Limiting Results When the Interest Rate Vanishes

As 8 vanishes, the expected cost given byc (n;B) approaches infinity;
an important result is that as B approaches zero, the discounted model gives
the same cost rate as the undiscounted model.

Theorem 1: Lim BE(n;8) = C(n), where C(n) is given by equation (I111-2).
g—o*

Proof: Recall that ((n;8) and C(n) were defined in Chapter 11 as:

T
C(n;B) = I:e-etde(n,t), c(n) = ;B%IOdE(n,t), where C(n,t) is

o :
the cumulative costs incurred at time t using a policy that turns
the server on when n.customers are present, Since £ (n,t) is @ mono-
tone function because all the costs are non-negative, We can apply

a standard Tauberian th_orem for LST's and
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le BL(n;B) = Lim BI Btd(,(n :t) = Lim —J dé(n,t)
9-’0 g 0 T
= C(n), QED.

% %
Theorem | doesn't necessarily imply that n (B) - n as B = 0 because

examples have bee. constructed for other models (see for example [2]) where

the discounted cost function satisfies Theorem | but the policy for small

interest rates is not ''close' to the undiscounted policy. However, for our

problem, it is possible to show that:

i

Theorem 2: n*'(B) ~n as B = 0,

Proof:

(13)

(14)

Since n is treated as a continuous variable over the range [1,=)

the derivatives :—n-e(n;e) and -:-;-; C(n) exist over (1,»), and

1im B&(n;B) = €(n),
8-0

lim B —e( :8) "—' 1im 8€(n; B) """C(")
g—0 " g0

The neaning of equation (13) is that there exists a small

positive number which may depend on B and n, €(8,n) say, such that

- c(n) + e(B.n)

(e o]
(=9
)

m

o~

3

)

~

Li}

and ¢(B,n) -~ 0as B~ 0. Pick a smll value of B greater than zero,

Bo, then equation (14) implies
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and when n = n*(Bo),

e

(15) GO0 _xgoy = 5[5 e _# g0y + 6] = 0.

Since l;-# 0, the term in square brackets must equal zero, which

B

from equation (I11-2) means

Ry *+ RN O0) 4 e 69 )

x = 0,
[n*(8%)72 2
This implies
AR, +R,)(1-p)
(16) n (8°) =j ' 20 5 n g g0 sup,
- h + 2(87,n)

% *
It remins to be shown that n (B) is close ton for small

values of B. We have

w2 RARHR)(-p) o 0y

o ™ = h h+ 2¢(8,n) aivd
% .2 AR +R)(1p)
(@Y =% &
from which
(17) (@) =n" /' “h iez(STg)n)

The square root term can be made arbitrarily close to -unity by

picking B close enough to zero, QED.
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Equation (17) shows that convergence is faster as h is larger. This is
because for small values of h, n* is very large, but if the interest rate is
large enough n*(B) is infinite (i.e., never turn the server on), and as the
interest rate is decreased, n*(B) decreases and the approximation of n*(B)
by n* becomes useful,

The operational implication of Theorem 2 is that for small values of
B, one can use n*, which is easy to compute, to estimate the integer value of

n(8) that minimizes &(n;B). As before, this integer value is one of the

% %
integers surrounding n (B), if n (B) is not an integer, because of
Theorem 3: For B sufficiently small, e (n;B) is convex in B.

Proof: Differentiating both sides of equation (5),

2 ) d2
lime—z-(,(n;e) =z C(n)
B~0 dn n

which means there exists a function 8(B,n), such that for small

values of B

2 2
(18) 8 95Cmie) = L5c(n) +6(8,n) = 2E2L 4 58,0),
dn dn n

and §(B,n) can be made as small as desired by picking B sufficiently
close to zero. |In particular, since we don't know the sign of

8(8,n), pick B smll |5(8,n)| <Q-(-%:£)-; this insures that the right
n

hand side of equation (18) is positive, and since B > 0,
2

!—2-6(";8) > 0, QED.
dn
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L .4 Arbitrary Initial Conditions

The above development has assumed that the system is initially empty,
and the discussion in Section 1l indicated that the stationary optimal
policy may be dependent on the initial state. |If there are m customers
present initially, the total cost function, call it Cim(n;B), can be con-
structed from our present results,

Since the policy is assumed stationary when we reach‘a regular busy
cycle, the server will not be turned on until n customers are present; if
m < n, the server will be turned on after n-m arrivals; if m> n, the
server will be turned on immediately. Thus, if k = Max [0,m-n] is the first
time, and n is the number present when the server is turned on thereafter,
we can express the expected discounted cost function in terms of k and n,
and then look for the minimizing values.

Since there will be zero customers in the system at the end of the
first busy period, (iﬁ(k,n;e) equals the cost of the first busy period plus
the present value of eo(n;B) started after k customers have arrived and

the first busy period is completed, thus

(19) em(k,n;B) Rl(i_}s_)k + Rz(x%g)ktc(e)]m+k

+

r r
7 -6+ 5 G D EEn™)

Ls(n;B)
T-H_(8)

+

+ (53)'16(8)1 e _(n:8).

Minimizing values must be found numerically or by some approximation tech-

nique,

Equation (19) indicates that the optimal policy will, in general, depend
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on on, However, as g - 01 8 m(k,n;B) - C(n), and the optimal policy

becomes independent of m.

4,5 An Alternate Formulation

In many applications the value of h is not known, e.g., te holding
cost of military equipment in a repair depot, and one might formulate the
problem as minimizing operating costs subject to some operating constraints
such as the expected life time of a customer, The next theorem shows that

this minimization will be trivial.

Theorem 4: The operating cost (Q(n;B8) is a strictly convex, monotone

decreasing function of n.

Proof: When B=0 this theorem refers to the operating cost rate, which is

k(bp)@l +R2)

r (rz-rl)p + - which is obviously strictly convex

and monotone decreasing in n (we ignore the completely trivial case
where R, =R, = 0, in which case the function is constant). The
case where B > 0 is more complicated. For notational simplicity,

let x =B(8), vy = €(8), and z = xy, so

n n

r R.x <+ R.z r.=r n._n

| ) 2 2 1 x -2z

(20) Q(“;B) = =+ + ’
B 1-2" 6 1-2"

and 0< x<1,0<y<l, 0<z2<x,0<2z<y, withx", y",andz"
strictly convex monotone decreasing functions of n.
The first term of equation (20) is constant; the second term

is obviously decreasing and convexity is shown by writing it as two

2n 2n

terms Rlxn(l +2" + 2 L+ eee) +R zn(l + 2" + 2 + ...) which is

2
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a non-negative sum of convex terms, The third term is a constant,

Fy-r xN-z"
—5— ruitiplied by the function ~—=— = f(n).
1-2

The proof of the theorem is completed by proving f(n) is mono-
tone decreasing and strictly convex, which we do by induction. Let

n=1; the first difference is

xX-2 x2-22 _ (l-zz)(x-z)-(l-z)(éz-zz) - 15:2)(]-2)(l-x),> 0

t-z - 1-22 (l-z)(l-zz) (l-z)(l-zz)

since 0 <z<xoryc<1Il,

Assume t(n)! for n=N, then the first difference must be necative,

0 < xN-zN ) xNH-zN+I _ xN[I-yN-zN+I-x + xyN+]+ szT
1-2" 1=zt (I-zN)(I-zN+')
N
Ax
= = A > 0.
(l-zN)(l-zN+l)
For n=N + 1, the first difference is
] .e ‘)
xN+._2M ] ) xN+2-zN+2 i xN+![l-yN+'-zN+2-x 3 xyN+ 0 sz+21
I-zN+| l-zN+2 (l-zN+])(l-zN+2)
BxN+l

a-2" oM

We have
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B-A = YN (1-y) + 27 (1-2) + xy" (1) + x2M 2o
N+l N
= (1-y)y(1-2) + (1-2)(z" "-xz2")
N N+1
= (1-2)y (1-y) (1-x""") > 0,
xN+l-zN+' xN+2_zn+2
SOA>0=>8>0=> N > Wz and by induction f(n)

is strictly decreasing.

-&" -
Writing f(n) = fn = 1-Y_n and exponentiating, we see f(n) is
1-2 I-z

convex if exp (1-y ") exp (z"-1) =exp (2 "-y™") = g(n) is convex.

Considering n as a continuous variable, n > |, we can calculate

f;um=[0zfu“+z4%+(tn%f“w”ru(wunwkmu“wm)

>0

since each term is positive. Thus, g(n) is convex if n can assume
all values, equal to or greater than.l, which implies g(n) is convex

for n a positive integer by using embedding arguments, QED.

As a result of this theorem, the optimal value of n is the largest
feasible value, subject to the operating constraint. |f one takes the atti-
tude that operating constraints are imposed because of a subjective value of
the holding cost h, one can compute an operationally valid value for h by
calculating what value it must assume so that minimizing G (n;8) satisfies

the operating constraints.
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L.6 Conclusions

In most applications, inter-arrival and service times will not be so
long that it is necessary to discount costs incurred at the end of the
interval, and the undiscounted policy presented in Chapter Ill is the one
that should be used. The discounted model can be used in investment problems
where one is interested in the expected present worth of the future costs
of a proposed system; given the parameters of a proposed system
(\, p, Vog? RI’ etc.), the policy for using the system will be noPt from

Section 3.3, and equation (10) is used to calculate the expected present

cost of operation.
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Chapter V

THE FINITE HOR IZON MODEL

Where there is a finite horizon, T, several new difficulties arise.
First, the optimal policy is generally non-stationary, so finding the best
stationary policy is not sufficient; secondly, the random variables o and
B are unbounded so a transition may not be completed; lastly, it may be
optimal to turn the server off while there are customers in the system, so
the optimal policy for the imbedded problem may not be optimal for the full
problem. The last assertion is illustrated by an example: Suppose o is
constant at thirty minutes; twenty minutes remain until the end of the horizon;
and there is a service completion with k > 0 customers are in queue, Since
no more services can be completed, the best thing to do is turn the server
off and save ro=ry per minute for the remaining ten minutes. These con-
siderations make it very difficult to calculate optimal policies, but for

large values of T good policies can be found by using asymptotic results,

5.1 The Recursion Formula for Optimal Policies

The boundary conditions that will be imposed at the end of the horizon
are:
(1) A charge of Q[$/customer] for all customers left in the system
[service uncompleted or not started].
(2) If the server is running, it must be turned off.
Define the state of the system as (i,j), where j is the number of
customers present and i=1 indicates the server is dormant and i=2 means [t's

running. In each state, the possible actions are Q =1, turn (or leave) the
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server off, and (L =2, turn (or leave) the server on. Let yij(a ,t) be
the expected cost of a transition (which my not be completed) leaving state
(i,j), using act &, , and with t(0 <t < T) time units remining; vij(t) is

the expected to:al cost starting with state (i,j) with a remaining horizon, t,

and following an optimal policy.
Letting Y be the number of customers that arrive during a service
interval, and £ be the number of customers in the system after a service

completion, for 0 < t < T we have the recursion relationships:
t -\
(12) Ny (et = [ TG+ v e vy (e De
. :a1a Mt
+IGh +r)t+ jQJe ™7,
(1b) Yzj(]ot) '=R2 +Y|j(]ot)o
¥

ot
(ic) ylj(Z,t) =R, + _[0[ (jh+5h+r, +r))o+ vz’j_'_g(t—c)]dB(o)

. A
i [(Jh + '2-+ rl + rz)t + Rz]Bc(t),

(ld) ij(Z’t) =Y|j(2’t) 'RI:

t k
and P(Y=k) = I e-lo _()‘\(_c'x)_ dB(o), € = j-1 +6() +VY.
0 J

From the principle of optimality, the optimal policy must satisfy the

usual recursion relationship of dynamic programming [107:

(2) v,.(t) = Min Cy..(1,t), v..(2,t)], i=1, 2; 0<t <T.
i 1,2 ]
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Which, in principle, can be built up for successive values of t, since the

Yij only depend on prior values of vij(t).

5.2 Conclusions

There is no general way to obtain solutions to equation (2); discrete
approximtions of the continuous variable t can be made, and digital com-
puting methods will obtain sufficiently accurate approximations of the
integrals so the resulting policy will be optimal.

In example 3, Section 3.4, we showed that the infinite horizon problem
may not have @ unique optimal policy. This means that as T = «», the optimal
finite horizon policy may not approach the optimal infinite horizon policy
as a limit, That is, for some large values of T one of the infinite horizon
policies my be best, while for ¢ me other values of T another policy may
be best,

Since the transitions from state to state are governed by an ergodic

(ir-educible and positive recurrent) Markov chain, for large values of t
(3) vi;(8) M)t + kg

where C(n) is the cost rate for an infinite horizon (Chapter I11) and k is
a bias term that's independent of t but dependent on the policy and state
(reference 10). This implies that an optimal policy for the infinite horizon
problem will be nearly optimal for large finite horizons.

This conjecture may be tested by seeing r equation (3) and the optimal

policy from Chapter Ii| satisfy equation (2).
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Chapter VI

A TWO-CHANNEL MODEL

Many production facilities have spare machines that are activatéd when
the workload reaches @ critical level; these machines are run in a parallel
With normally used machines until the workload level is sufficiently reduced.
The problem of specifying the workload levels that trigger activation and

deactivation of the spare machines will be called the spare machine problem.

Because simple probabilistic results can only be obtained when the service
times in each channel have an exponential distribution, this particular

service time distritution will be assumed.

6.1 Assumptions

The assumptions of the two-channel spare machine problem are:

(2) The arrival stream - Customers arrive in @ Poisson process at rate

A, and form a single queue.

(b) The service mechanism - There are two servers, machine one and

machine two. The service times in each machine are independent,
exponential random variables at rates By and o respectively, with
0< Wi By <@ and A < Wyt oy Machine one is always running and
machine two may be turned on and off arbitrarily. |f machine two

is turned off while processing a customer, that customer rejoins the
queue , or possibly, directly into machine one; otherwise, customers
are served in their order of arrival by any available running
machine,

(c) The cost structure - The running cost rates are r2‘[$/time1 and

r22[$/time] for machines one and two, respectively. A fixed cost
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of Rl[$] is charged when machine two is turned on, and the fixed
cost of shut-down is R2[$]. A holding cost of h[$/customer-hr.]
is charged during the lifetime of each customer., The costs are
non-negative and h > 6 avoids triviality; future costs are not
discounted.

(d) The decision problem - When should the spare machine be turned on

and off to minimize the cost rate over an infinite horizon?

6.2 Stationary Optimal Policies

We will analyze this problem by imbedding it in a dynamic.programming
problem at arrival and departure epochs., This causes no loss of generality
with respect to making decisions at arbitrary time instants because the
assumptions on the arrival and service distributions imply that the time to
the next event (arrival epoch or service completion) has an exponential
distribution., Since the cost rate a1 isialways charged, it will not effect
the desirability of various policies, it is, however, part of the cost
rate.

Define the state space to be S = {0, 0O', 1, 1', ..., k, k', ...},
where k represents the number of customers in the system; an unprimed k means
the spare machine is dormant, and a primed k indicates the spare machine
is running. The action space is A=(1,2), where action o.e is "turn (or
keep) the spare machine off' and action two is '"turn (or keep) the spare
machine on'',

Using the methods of Chapter Il one can prove there is a stationary
optimal policy that is independent of the initial state of the system. To

derive the form of this policy we first prove two lemmas,
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Lenma 1: When a stationary optimal policy is used, if the spare machine is
turned (or left on) when n or more customers are present, it will
not be turned off when there are more than n customers in the

system, n > 2.

Proof: Assume a stationary policy that turns the spare machine on in state
n and turns it off when n+k (k > 0) customers are present, and
assume this policy gives a cest rate g = C(m) which is minimal,
Obviously, this cannot be true when k=0, so we only have to consider
k > 1. First we observe that as the horizon approaches infinity
the number of transitions out of states n and (n+k)' abproach
infinity with probability one, so that if an improvement can be
made on the expected cost of a transition leaving state (n+k)', the

cost rate can be improved. Using act 2 in state n implies

r.,+tnh r,ntnh

22 nh 22 nh
] r—— < + o < g
(1) M, g = g= M, =

and using act 1 in state (ntk)' implies

+nh n
(n+k)h (n+k)h nh 22 2
+ < + g = + kh
(2) RZ )\+u| tgs )\-‘p,‘-i-p,z 9 )du.] = )\+u|+p,2 ()H-p,l'l'p.z) ()\*‘u]s

which contradicts equation (1) for any k > 1.
Therefore, using act 2 in state (n+k)' will lower the cost

rate, and the lemma is proved. QED.

Lenma 2. When a stationary optimal policy is used, if the spare machine is
turned (or left) on when n customers (n > 2) are present, it will

not be turned on when two or more customers are in the system,
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Proof: As a consequence of lemma 1, we only need to consider turning the

spare machine off when there are m, 2 < m < n, customers in the

system, Assume it's optimal to use act | in state (n-k)',

1 <k <n-2, then

3) (n-k)h _ (n-k)h _ 22

lml >‘+\J'|+u'2 = )‘mlmz.

Combining equations (1) and (3) we obtain

sl kh [(w,mz) e ,T] <0

wich can't be satisfied for k > 1, so act one cannot be optimal in

state m' = (n-k)', QED,.

Theorem 1: A stationary optimal policy either (a) keeps the spare machine

on at all times, (b) never turns the spare machine on, or (c)

has the form: Turn the spare machine on when n customers are

in the system, and off when m < 1 customers are in the system.

Proof: Lemmas | and 2 imply that m < | when & > 2,

When service interruptions

are prohibited, turning the spare machine on when n=1 cannot be

optimal because the running cost rate Fa9 is incurred without re-

ducing the expected holding costs; the only remdining policies are

those where n=0, Since turning the spare mchine on when n=0, off

when m'=1, and on when n=2 is clearly not optimal, all possible

stationary policies have the required fcrm, QED,

As a consequence of this theorem, when service interruptions are pro-

hibited there are only four forms the optimal stationary policy can take,

viz:
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™o Never turn the spare machine on.
Ty © Leave the spare machine on all the time.

m - Turn the spare machine on whern n > 2 customers are present, and

turn it off when the system becomes empty.

/N Turn the spare machine on when n > 2 customers are present, and
turn it off when one customer is left in the system and he's

being served by machine one.

When interrupting service and switching the customer to the other

server is permitted, three more policies, call switching policies, may be

optimal. They are:

W Turn the spare machine on when n > 2 customers are present, and
turn it off when it is serving the only customer in the system,

[i.e., restart him in machine onel.

mg = Turn the spare machine on when n > 2; if machine one is serv..
the only customer in the system and machine two is runninn. switch
this customer to michine two. Turn the spare machine off when

the system is empty.

My = Turn the spare machine on when r=1 and switch the customer in
machine one to machine two. Turn the spare machine off when the
system is empty.

Policy m, is a switching policy because we assume that a customer who

7

arrives when machine one is idle and machine two is dormant, will enter

machine one,
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6.3 Calculation of the Cost-Rates when Switching is Prohibited

When policy m, is used, the system behaves like an M/M/1 queue with

™ service rate i), and the cost rate, obtained from equation (i), is

Ah
(5) Clm)) =ry) # ;T:x, by > A

Since this policy yields an infinite cost rate when My <N\, ™, cannot
be optimal unless by < A.

When poliry m, is used, the system performs like an M/M/2 queue wi th
service rate By when one customer is in the system. Using well knqwn

formulae (see reference 4, Section 2.4), the expected number of customers

present in this type of queue is given by

Py A
L ~ (1) (140 -0 )" “ =u|+u2’ °y = by’

the cost rate is

pyh
Clr) = ra) * 0 * Y (p 9

(6)

The remaining two cost rates will be calculated using the policy
evaluation routine of Markov-rcnewal programming [reference 10]. When
either of the policies 3 or m, are followed, a Markov-renewal process With
additive costs during each transition epoches of the aueueing process so
that the cost rates of both processes are equal. Furthermore, theorem 1
implies this can be done in a manner such that the underlying Markov chain
is ergodic (irrducible and positive recurrent) and the expected time for

each transition is finite. For an infinite-Lime process operating under a
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stationary policy, the system of equations

N
- _ =
(7) vty =y, d ;E; PijVis i=1, ..., N
v0 g 0,
where v is the relative value of state i, is the cost rate [previously

called C(ni)], v is the expected length of a transition leaving state i,
Y is the expected one-step cost of a transition from state i, and pij are
the conditional transition probabilities of the underlvi-.: Markov chain, can
be solved for g and Vi uniquely.,
Policy )

When policy M3 is used, the imbedding points are arrival and service
epochs when only machine one is running, and turning machine two on is
represented as a transition from state n to state 0. The corresponding

Markov chain and conditional probabilities are
W j=iel
={=-
_ M
no™s Py =1
== =il ]

oy

(8) P =1, P } i=2; cee, D=1,

and one easily finds that

21

1 2
) o TR Yo T X

r.,tih

1 21
i T Vi T M,

v =1 sk 5 el
A transition from state n to state zero can be thought of as a transi-
tion from n to one followed by @ transition from one to zero. The first

part, (n - 1), behaves like a busy period of an M__,/G/1 queue with service
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rate ul+u2; from the results of Chapter Ill we have that the expected

length of this interval E(n = 1), and the expected number of customers

present during this time L(n = 1), are given by

By
! ey el Ly o M2 e
(10) En =+ 1) = = L ) = e g

The second part of the transition, (1 — 0), behaves like the busy

period of an M/M/2 queue where the service rate when one customer Is in the

] B
system is W With prebability “I+J2, and is pzlwith probability ;F;i;. 'Let

E] and E2 be the e>pacted lengths of bu.y periods when. ther service rates
are By and oy during the first time thzre is only one customer in service.
Conditioning on the first trarsitior leaving state 1', we find that EI and

E, satisfy

2

_ 2 L H2
(n £y = Ty +\+,T|[E(2 ”+ﬂ|*“zez+u|+“zs']'

o S o B2 ,
(12) €, = gy + O Rl A e, );

substituting equation (12) into equation (11) we obtain

(13) E) = (u'+u2)2[(k+”2) * ol (M t,) ]
1 ()x*u])()\mlmz)[u](ﬂl*uz)()\mz) = )\(uz)zj N

)‘(u]mz)t ()‘mz) (U'l"'p'z) + Ho (u'l"'ld'z'*')\)1

+ 0 E(2-1).
()‘+r"|"u2)[u| (u|+u2) (7\'*1&2) - )‘(Uvz) ]

E2 is given by a similar equation with the sut ~ripts interchanged. Thus;:

the expected time to go from state one to state zero is
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Ko #9
14 E(l - 0) = ~~——FE.  + E_.

Letting Lj equal the time-average of the number of customers in the
system when pj is the service rate the first time only one customer is in

service, we find that L] and L2 can be calculated by solving

1+x[ Mt o, _Hl E,L, + "2 EL]
(5) L (2" gty 272 7 g,

= ’ j=lo 2
J (M )E,

simultaneously, and the average number of customers in the system during a

transition from state one to state zero is

2 "
u|+u2 LlE] ¥ L] LZEZ

From equations (10), (14), and (16) we obtain

i - —n=l -

= ! ._ 5
y, =R +R, + (rZI o)V 4 h[ e + =+ L(I 0)]

The special form of the Pij given in equations (8) allows us to write
the first n-1 equations of the system {6) as the linear second order
difference equation

(18) v, -V, YV = 150, ..., -2,

with boundary conditions
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(19) Vo = 0, v = k‘

The solution to equation (18) is

f179 h(3)\-p,])]

(20) Vi = d +d ()\ ) u‘_)\

2
hi ‘

where the coefficients dI and d2 are obtained from the boundary conditions

(19).

Since we can find v_ in terms of g from equation (20), and VYt Vo
from equation (7), the value of g = C(m) can be obtained as a function of n

and the parameters of the model. One can then find the optimal n for this

policy.
Policy m,

The values of v, represent the relative value of being in state i when
machine two is dormant; for policies ™, and Mg we are interested in the
relative value of being in state i when machine two is running, denoted

w'i, and particulary in LIT Observe that "i- = R2 tv,.

Let wi be the relative value of state 1 when machine two is running and

busy, and w']' be the relative value when machine two is running but idle,

Under policy Ty » the v satisfy equation (18) and the w, are given by

(21a) W = R,
+r. . +h n
g 'ty 2 \
2 ! + = + W, + =~——w
(218) W ETI €T Mg 0 * N,

(21c) w'l' =R, + v,
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(21d) W + 9 £ r22+r21+2h + Al ( bl w' ——2——-w|)
Mgty Mgt Muphg uptug 1wty

.._l___.w
+l*u,+u2 "3

% -

g _Tatrath w0 a
T T AL T

(21d) L
i=3, 4, .., n-1,

Equation (21d) is a linear second order difference equation whose

solution is

Bty b P tram 9 Bhmyy)bg hil
(22) w; = qq, (——) '+ i i+
2 % TR 2(u|+u2->\)u Tl g0

iJ}' 5, ceesy N,

and the constants 9, and q, are obtained by solving for Wo and w3 in terms
of Wi using equations (2la-d), and then using the relationship Wo=v ot Rz
to calculate W{.

Under policy e transitions leaving state n' enter state 1' in the

imbedded Markov-renewal process; using equation (8) we obtain

)
ll +
“l"“z “1*“2

(n-1) n-1 r
(23) ¥, + B,k AL 2]

+r +(

22 ]+u2 N

Using the values of w obtained from equations (22) and (23), a
equation for the cost rate g can be obtained.

In summary, the cost rate and optimal policy of the form ™, is found by:

(1) Solving for the vi(i=0, ..., n) from equations (19) and (20),

(2) Solving for the wi(i=0, ..., n) from equations (21) and (22),
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(3) Equating the values of w_obtained from equations (22) and (23),
* solve for the cost rate in terms of the decision variable n,

(4) Find the value of n (n > 2) than minimizes the cost rate.

6.4 Calculsiion of the Cost-Rates for the Switching Policies

Policy g it evaluated with the same equations as policy M, and the
additional relationship Wi = R o Vi which implies wi = w? =W This

simplifies equation (21) to

(2ka) | Wo =R,
(Zlib) _ N' =R2 + Vl
r,,tr, . +ih TR )
(2bc) Wi + g _ 22 21 = 1 2 = A

TR U T Tl ELIMS U 13
i=2, ..., n=1,

The solution to equation (2L4c) is given by equation (22), and the
constants q, and q, are evaluated from the boundary conditions (24a) and
(2Lb) .

Equations (23) simplifies to

4= __ _n-l n;
(25) w, :mz-x p]:‘uz-)\[ 22*%2 ( 1*“ S )h]+"l’

and an expression for g can be obtained using the values ofvvn gliven by
equations (2hc) and (25).

Policy e is solved in an analagous manner; the boundary condition
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(2kb) is replaced by

h+r, .+r, .- g
o oM TT2m %

where v, is given by equation (20).

When policy ™ is used, the system behaves like an M/M/2 queue where
the service rate is Bo when one customer is in the system, For this type
of queue, the probability that the system is empty Py and the expected

number of customers present L, are given by [reference 4, Section 2.47.

P
1-p _ 2
(26) Fo o, 4p U T (1-p) (1+p,-p)

]

]

where Py = L—-and p Using the relationship

Wy Bty

o

E( 1 |
Po = E‘(% “YEX) C TRER)

where E(X) and E(y) are the expected lengths of a busy cycle and a busy

period respectively, one obtains

2 E (X i E( !
e ) =iy B0 = sy
From equations (26) and (27), we obtain the cost rate of policy Ty
(28) c(ﬂ ) . N hpz N rzzpz + (R]"‘RZ))\(]-D).
7 21 (1-p) (1-p,*p) T+p,-p
e e e et _—
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6.5 Numerical Examples

Example 1: MA=1, p =u,=1, ryp=5, ry =2, h=10, RI=R'2=0

When switching is prohibited, a policy of the form "L which turns the
space machine on when two customers are present is optimal, and the cost
rate is 14 %% [$/hr.]. If switching were allowed, switching to the only
customer from machine two to machine one, policy Wy would lower the cost
rate to 13 % [$/hr.].

Example 2: A=l, u]=l, u2=2, r22=5, r2]=2, h=10, R]=0, R2=5

When switching is prohibited, a policy of the form T3 is optimal;
turning the spare machine on when two customers are present and turning it
of f when the system becomes empty gives a cost rate of 19 [$/hr,]. When
switching is allowed, a policy of the form Te ic optimal, and the cost rate

is reduced to 12,6 [$/hr.].

6.6 Conclusions

Although closed form expressions are not obtained for the cost rates
of the seven policies considered in this chapter, we are able to give
qualitative relationships among the cost parameters that will indicate the
optimal policy,

Policy m, Will be used when h is small, A < s and the operating costs

i
of the spare machine are large; while m, will be more advantageous when the
fixed costs of the spare machine and the holding costs are large, and the
running cost is small, Policy M3 will be used to hedge against high waiting

lines when all the costs are of the same relative importance. Policies m,

and m,. protect against high holding costs but incur the fixed costs

5
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frequently; g will preferred to T, When the running cost of the spare
machine high,

Policies ur and m tend to lower the cost rate when the spare machine
is faster than the regular machine and its running cost rate is small,
Policy n7 will be preferred to policy g when the fixed costs of the spare
machine are large,

One should not be m’slead about the difficulty of finding the cost
rates for policies T3 My T, and urs numerical solutions will be easy to
obtain since all the equations are linear in the cost rate., The major
difficulty will be to calculate the optimal value of n since calculus

methods lead to implicit equations for n. .



SUMMARYY

The aim of this thesis is to describe the economic Ltehavior of a
controllables system with a linear cost structure, and to find cost-minimiz-
ing policies for turning the server on and off. The costs considered are:

a server start-up cost, a server shut-down cost, a cost per unit time when

the server is turned off, @ cost per unit time when the server is turned on,
and a holding cost of waiting customers, Single-channel queues with Poisson
arrivals and arbitrary service time distributions are emphasized; Chapter

Six is devoted to a two-channel system with Poisson arrivals and exponentially-
distributed service times.

In Chapter Two the decision process for a single-channel queue operating
for an infinite horizon is formulated as a dynamic program. We show that
when future ccsts are discounted, there exists a stationary optimal policy
to minimize the expected total cost; we use this result to prove that when
discounting is not used, there is a stationary optimal policy that minimizes
the cost rate, We then prove that for both models, the stationary optimal
policy has the form: Turn the server on when n customers are p;esent, and
turn it off when the system is empty.

Chapter Three deals with infinite-horizon, undiscounted models. For
mode s where the arrival stream is a Poisson process, two methods for
deriving the cost rate as a function of the decision variable n are pre-
sented, and the optimal value of n and the minimum cost rate are obtained,
We consider decreasing the )ected service time With an increase in the
runrning cost of the server; an expression showing when the server should bz
speeded up, or slowed down, is given. When the inter-arrival time distri-

bution is generalized to the class of IFR distributions, we obtain narrow
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bounds for the optimal expected cost rate,

An equation fér the expected discounted cost over an infinite horizon
is derived in Chapter Four; we prove that for small interest rates, the
undiscounted policy will be a good approximation to the optimal policy.

When the horizon is finite, the optimal policy is generally non-
stationary. A recursion relationship to find the optimal policy when the
horizon is small is presented, and the optimal undiscounted policy for the
infinite horizon is shown to be a good approximation to the optimal policy
for large horizons,

The last chapter is devoted to a two-channel service system, where
each channel is restricted to have an exponentially distributed service

time (possibly with different rates), and the arrivals form a Poisson

‘process, One server is always turned on; the other, the spare machine,

can be turned on and off at artitrary times. Using a dynamic programming
formulation of :he decision process, we show that the stationary optimal
policy for undiscounted costs has the form: Turn the spare machine c¢n when
n customers are present, and turn it off when m customers are in the system,
with m< 1. We derive equations for finding the optimal value of m and n
when service interruptions are prohibited; then we consider queue disciplines
where customers rmay be switched, without delay or cost, from one server to
the other.

In addition to being applicable to policy problems for existing systems,
these models should be useful when comparing proposed investments in service
system because they relate the parameters of the server to the cost of the
facility., The most promising areas for future research appear to be:
systems where arriving customers may not enter the queue if the waiting
line is too large, systems where customers ieave the waiting line if they

have not been served after a given wait in queus, and processes with

different types of customers.
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