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V ;     :U ABSTRACT 

\44 consider the economic behavior of a  queuelng  system, 
operating urider a  spec ified  linear cost  structure, 
in which the server may  be  turned on and off.     Optimal 
policies  for turning the  server on and off are derived 
for differing assumptions about discounting of  future 
costs,   length of the  planning horizon,  the  form of 
the arrival   stream,  and  the number of servers. 

The costs   imposed are:     a  server start-up cost,  a 
server shut-down cost,  a  cost per unit  time when the 
server   is  turned off,  a  cost per unit  time when the 
server   is  turned on,  and a  holding cost per unit  time 
spent   in the system for each customer.    We prove  that 
for the single  server  queue  there   is a  stationary 
optimal   policy of the   form:     Turn the  server on whon 
n     customers are present,   and  turn   it  off when  the 
system  is empty. 

For  the  undiscounted,    infinite horizon problem with 
Poisson arrivals,  an exact expression for the  cost 
rate as a  function of     n    and    a    closed  form expression 
for the optimal   value of    n     is derived;   bounds are 
obtained  for  the cost   rate and optimal   policy when 
the   inter-arrival  time distribution   is allowed to be 
any member of the class of     IFR distributions.     When 
future costs  are discounted,  we obtain an  equation  for 
the expected discounted  cost as a  function of    n    and 
the   interest  rate,  and  prove  that  for small   interest 
rates  the optimal  discounted policy   is approximately 
the optimal  undiscounted policy.    The   recursion  relationship 
to   find  the optimal   (ncnstationary)   policy  for  finite 
horizons   Is developed,   concluding our  results  for single 
server  systems,   each  channel   is   restricted   to  have an 
exponential   service   time  distribution   (possibly with 
different   rate),  and  the arrivals  form a   Poisson 
process.     One server   Is  always  turned on and  the other, 
the  spare machine,   can  be   turned on and off at  arbitrary 

times;  we show that  the  stationary optimal   policy for 
undiscounted costs  has   the   form:     Turn  the  spare 
machine on when    n     customers  are  present,   and   turn   it 
off when    m    customers  are   In the  system,  with 
m < 1   .     We  then derive  equations  for  finding  the 
optimal   values  of    m    and     n   ;   queue  disciplines where 
customers may be  switched  from one  server  to  the other 
are also considered. 
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Chapter  I 

INTOOOUCTION AND PRELIMINARY RESULTS 

The similarity between queueing and  inventory models has  long been 

recognized;   inventory analysis generally includes an explicit cost struc- 

ture and a  solution for optimal  policies, but researchers   in queueing theory 

have been more  interested  in the underlying probabilistic structure.    Our 

research is directed towards finding optimal operating policies for a queue- 

ing system with a  linear cost structure, with emphasis on models with 

Poisson arrivals. 

1.1    Definitions 

Two generic  terms will be used  throughout, server and customer.    A 

server  Is a mechanism that performs an operation on units fed  into It; 

these units are referred to as customers.    Thus, a server can represent a 

production   line and the customers can represent orders for  the product, 

or the customer could be people arriving at' a ticket window, and the server 

the  ticket vendor.   When the customer  is being processed by the server, 

he is said to be  in service, and the  time he spends  In service  is called 

his service time.    While one customer  is  in service, other waiting cus- 

tomers are  in queue, that  is, they are present but have not yet been served; 

the  length of time a customer waits   in queue  Is called his queueing or 

waiting time, and the queueing time plus the service tine of a customer 

is called his   life time.   The system is  the queue and the server, so the 

number of customers  in the system is  the number of customers   in queue plus 

the number of customers  in service. 

The server may not be allowed  to serve arriving customers,   i.e..   It 



2. 

may be  turned off.    Time   Intervals when the server  is  turned off will  be 

called dormant periods and during these periods   the servers   is said  to be 

dormant.    When the server   Is   turned on  it  is   running, and  time   intervals 

when the server  Is running are called running periods.     Intervals when 

customers are not being served are idle periods .   they occur when no customers 

are present and/or when  the server  is dormant; busy periods are  time  Inter- 

vals when customers are  being served.    This  definition of busy period cor- 

responds  to the usual queueing terminology,  but our definition of  idle  period 

includes  the additional   time when customers are present, and the server   is 

dormant.    A busy cycle   Is a consecutive busy and   Idle period. 

Number of 
customers  In 

the system 
A 

■^-   time 

Figure   1.    A Typical Time   Interval 

These definitions are easily understood by referring  to Figure   1.    The 

interval  [tj.t-l   is a  dormant period,   (t-.t^)   is a   running period,   (t,,t-1 

is an   idle period,   (t-.t.l   is a busy period, and during   (t.^)   the server 

may  be   running or dormant. 

The economics  of  system operation   is   influenced by   the various  costs 

^ 
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involved.    When  the server   Is  dormant, costs for power,   heat, maintenance, 

etc. may still be  Incurred on a per unit time basis;   these are called 

dormant costs.    Activating and deactivating the server may involve power 

surges, equipment,  or manpower  charges;  the associated costs are called 

start-up and shut-down costs  respectively, and fixed costs collectively. 

When the  server   is  running, attendant,  fuel, and other  costs »ay be charged 

In addition  to the dormant cost;   the sum of these costs   is the runnfagj 

cost.    These four costs are the operating costs of the server, but they 

may not represent the entire cost picture of an operation;  for example  In a 

service such as aircraft repair,  the airplanes are not productive during 

their stay  In the repair depot, and this   tost time represents a cost to 

the owner.    Thus, we must consider a penalty for delaying the customer  in 

the system,  this penalty   is called a holding cost. 

1.2_ Assumptions and Notation 

Assumptions  for a single server model are: 

•)    The arrival stream - customers arrive singly In a  renewal process; the 

times between successive arrivals {or ,  1=1, 2,   ...} have distribution 

function  (d.f.) A(t), t > 0.    For most of our results we will require 

A(t) -  l-e"Xt. 

b) The  service mechanism - customers are processed  individually in their 

order of arrival;  the service times {a.,   1=1, 2,  ...3 »re independent, 

identically distributed,  non-negative  random variables with d.f. 

B(t),   t > 0. 

c) The cost structure - 

1)    The  dormant cost rate   is  r. [$/hr.l; 

11)     the  running cost rate   is  r- [$/hr.1, rj > r.; 

' 



Ill)    the start-up cost Is R.[$l; 
■ ■ 

Iv)    the shut-down cost Is R2[$l; 

v)    the holding cost Is h[$/customer-hr,1. 
■ 

All cost coefficients are assumed non-negative and finite, and to 

avoid trlolallty h Is positive.    Future costs may, or may not be, 

discounted, 

d)    The decision process   - The server may be   turned on   (or   left on) at any 

point during an   Idle period, and  It may be turned off at service com- 

pletion epochs during a busy period,   (note that this precludes deacti- 

vating the server during the service  time of a customer). 

Every possible policy of turning the server on off during the operating 

horizon for the  the queueIng system leads  to a different operating cost. 

The central problem of this work Is  to find the optima] policy  -  I.e., the 

policy which will minimize  the total cost of  the operating horizon. 

Throughout the   paper   Laplace-Stieltjes  transforms   (LST'S)  of dlstri- 

butlon functions will be denoted by a tilde, e.g., Ä'(s) = |    e~S dA(t); 
J0 

moments of d.f.'s will be denoted by a v with a first subscript  Indicating 

the moment and a  second subscript  Indicating the d.f., e.g.,   the first 

moment of A(t)   Is v.A and  the second moment of B(t)   Is v2B.    The quantity 

p o Xv..   Is  the system utilization factor, always assumed  to be   less  than 

unity. 

1.3    Previous Results Used 

When the arrivals are a Poisson process and the server   Is always  run- 

ning,   the system forms an M/G/l queue, a  stochastic process   that has been 

studied extensively   (see,  for example,   reference k).    We will  often  refer 

to the following results: 

—   ;     "    ■"■■-        ..— I        ■ — ——fc, __.  ""'        "■••   ',/• 
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At equilibrium,  the expected number of customers   in  the system  is 

given by the Pollaczek-Khinchine equation 

P2(C^ + I) 

<•> L ^+ -w-- 
2 

where Cg  is  the coefficient of variation of B(t). 

The   length of a bcsy period, YI has d.f.  G(t), and 

(2) 3f(0  = Bts   H X  - X^(s)l. 

The number of customers served during a busy period, T, and 

F(Z)  «    S   ZKP(^k) satisfies 
k=0 

(3) r(Z)  =Z?tx -Xr(Z)]. 

The probabi 1 ity that the server  is busy at an arbitrary point In time 

Is 

(M PB = P 

\.k    The M /G/l Queue 
it 

In   the next copter  it wilt be shown that with Poisson arrivals and 

the assumptions of Section   1.2 thsre  is an optimal  operating policy of the 

form; 

(0) Turn the server on when n customers are present, 

and  then  turn   it  off when   the system  is empty. 
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The queueing process formed by this arrival and service pattern will be 

called an M /G/1 queue   (when  the subscript n  is set equal  to one, we have 
n 

the ordinary M/G/l queue).    The basic properties of this  type of queueing 

system are given by the following theorems: 

Theorem 1;    The idle period C.   In a M /G/1 queue has d.f. A (t) and 

v"-[:kr- 
Proof;    An  idle period will be formed by n >  1   Independent,  identically 

distributed Inter-arrival times so^Cs) = [^(s)]" =[—5-]  , CiED. 

Theorem 2;    The busy period y»  in an M /G/1 queue has d.f. G (t) and 

^n(s) -CffCs)!". n> I.fys) .?(s). 

Proof;    Let T    be the time to serve the n customer present when the busy 

period begins, and k be  the  number of customers  that arrive during 

T  .    P(T   < t)  = [B(t)l      = B (t) because the service times are 

Independent and  Identically distributed  random variables, and 

E(2
k) = re-X(1-z)tdB  (t) = [f(X-\2)]

n. 
v Ä n 

6.(t|k,T )  =T*[G(t)y n um 1'" 
n n 

?(s|k.T) =e"SV(5)f n'  '   ' n* 

•ffn(s|Tn)  =exp {.Tn[s +X-X^(s)]} 

.'. ^(s) = {Its + X-X6(s)1}n = [0(01". QED 

S Ji** 



nv 
An   Immediate corollary  Is   the v.-    = •»—~   since 

IG l-o n -p 

V.G --k\v\s--o--^is)r]^\s=0--™ 
nV1B 

IG       1-p   * 

Theorem }:    The number of customers  served   In a  busy period of an M /G/l 

queue has  probability generating function    V (z)  = [^(z)]0, 

and v._    = nv.-,  n >  I. 
n 

Proof;    This  theorem can be  proved   In a manner analagous   to Theorem 2; we 

present a more  Intuitive proof  to help  In understanding our  latter 

results. 

Instead of serving  the original n customers  first,  serve any 

one of them and then all   the customers  that arrive during his 

service,   then those   that arrive during  these  services, etc.  until 

only  the n-1  original  customers   remain   In  the queue.    The  number 

served up until  this  point  Is   the number that would be served during 

the busy period of an M/G/l queue, which has  p.g.f.  F(z).    Pro- 

ceeding   In  the same  manner with  the  remaining n-1  customers, they 

each generate an M/G/l  busy period, and each busy period  is  inde- 
A A 

pendent and identically distributed. Thus, F (z) = [F(z)1 and 
n 

VIF =: ^IF' ClED• 

Theorem k:    The asymptotic probability  that  the server   In an M /G/l queue 

Is   idle  Is p!  =   l-p. 

Proof;    Since  the arrivals are Polsson,   the  sequence of   idle and busy periods 

forms an alternating renewal  process, and  the asymptotic  probability 

of  being   In an   idle  period   is  P     = g/V)  + E/S) '     Therefore'  for 

n >   1 
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and the cases n=0 and n=1 are the same, QED. 

The importance of  this  theorem Is  that for all policies of  the form 

(0),   the fraction of time  the server  Is  busy  Is  the same. 

The next four chapters are devoted to finding optimal  operating policies 

for an M /G/l queuelng system with different assumptions about discounting 

of  total costs and the   length of  the planning horizon.     In Chapter   III, 

some bounds  for a G /G/l queue will  be obtained.    The  last chapter contains 

a two-channel model   In which  the service  time distributions are restricted 

to be exponential. 
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Chapter   II 

THE EXISTENCE  OF STATIONARY OPTIMAL POLICIES 

FOR   INFINITE  HORIZON PROBLEMS 

In Chapters   III  and  IV we will   find stationary policies  that minimize 

certain   long-term objective  functions;   the purpose  of  this  chapter   is   to 

show that   there are no non-stationary policies   that give a   lower value of 

the objective function.    The method of proof will   be by formulating the 

decision process as a  dynamic  programming problem, and proving that   this 

problem has  a  stationary optimal   solution. 

2.1    Dynamic  Froqramminq Formulation 

Let    S  be  the set of states  of a  process and A be  the set of acts 

available; when the process   is   in state s e S and   the act  CL* A  is chosen, 
4 

the process moves to a new state s1 e S, where s' is chosen according to 

some probability distribution depending on s and CL ,  and gives a transition 

reward r (s , d. , s'). A policy nrr specifies which act to choose, at all 

decision points, as a function of the history of the process. A stationary 

policy can be represented as a function, f, from S into A such that whenever 

the process is in state s, the act Ä. = f(s) is chosen. Thus, a stationary 

policy is Independent of the history of the process, except as summarized in 

its current state. 

The total income from a policy is the sum of the transition rewards 

when that policy is used; when the transition rewards are random variables, 

the expected income is the sum of the expected transition rewards.  If 

This description of dynamic programming Is due to Blackwell, reference 2 



^(n.t)  denotes   the expected  income earned by policy rr at time  t, and con- 

tinuous discounting with Interest rate B  Is employed,  then 

i»w    -Bt 
I(TT,B)  =        e      dxil(TT,t)   Is  the expected discounted  income over an  Infinite 

0 T A 1    P 
horizon under policy tr.    The gain rate of policy rr is C(TT)  =  1 Im =•     dJ?(TT,t). 

I-*» T J0 

When all  the  rewards  represent costs,   the  terms  total  cost and asymptotic 

I 
cost rate may be substituted for  income and gain  rate  respectively. 

This  formulation can be applied  to the problems considered  in this 

thesis   In  the following manner. 

Let A=(l,2) where action  1   is "turn the server off" and action 2  is 

"turn  the server on";   the state of the system is  the pair   (n,k) where n   is 

the number of customers   In  the system and k  indicates   if  the server  Is  run- 

ning or dormant and can be written as   the denumerable  set 

S = {(^O1,!, 1' ,2,2',   .,.} where the prime   indicates  the server   is  running. 

The probability  law that selects   the next state and transition   time  is: 

s' = s +  1   If action  1   is used,   the  transition time   Is a with d.f.   1-e"     ; 

if action 2   Is used, s' will equal  s-1 + 6(s) + Y, where Y  is   the  number 

of customers   that arrive  in a service   interval, 6(.)   is   the unit pulse at 

the origin,   the transition time   is a, which has d.f. B(t).    The cost of 

each transition  is   the sum of the operating costs  for  the server and   the 

holding costs  of  the customers present during  the  transition. 

Notice  that   if we allowed  the   instants when customers arrive during a 

busy period  to be decision points, a probability distribution  for s' 

depending only on  s and     would not be obtained unless  B(t)  =   l-e"^*   , and 

the decision points  during an   idle period must be restricted  to arrival 

epochs when   the arrival  stream is  not a Poisson process. 
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2.2    Problems with Discounted Rewards 

When an   interest  rate 0 > 0  is used to discount future rewards, we  have 

r2i 
Theorem  I     (Blackwel 1)L     ;     If  the state space S   is a  Bore!  subset of some 

complete separable metric space,   the action space A   is  finite, 

and the  reward function r(*)   is a  Bai re  function on SxAxS,  then 

there   is a  stationary optimal  policy.     That   is,   if  l(n,s,ß) 

Is  the expected discounted   income using policy TT and starting 

In state s,   there   is a stationary policy rr    such that   I (n   ,5,8) 

> I(TT,S,6)   for all  policies n and all   initial  states  s e S. 

Blackwell  proved  this  theorem when  transitions   from s  to s1  occured 

at  times  t=l,  2,   ... and  rCs.O^s1)   Is  deterministic.     If the   Inter- 

transition  times are random variables and  the  reward from a transition 

depends   on   this  time,   the   theorem and proof are valid when r(s,(L,sl)   Is 

replaced  by   its expected value   r^.O^s')  given  that  the  transition   time 

distributions are such  that   the   length of  the experiment  t, and  the number 

of   transitions  n,  have  the property 

t -• oo <=c> n -• * a ,s. 

If  the   transition  times are not degenerate at  zero or defective, a 

sufficient  condition  for   this   property to hold  is   that  there  Is a  finite 

number,   k,  of  transition  time  distribution  functions,  since: 

a) If T.  denotes  j-th  transition  time,   the elapsed time after n  transi- 
* n 

tions   Is  t =    E    T. , and n<oo  implies  t < • «,$.,  sot-,«=>n-«ooa.s 

j = l    J 

by  forming  the contra-posit Ive  statement. 

b) after   n   transitions  at   least  one  of  the distributions,  F.(t)   say. 
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must have been the probability law for a minimum of -= n'   transitions. 

n' 
The elapsed time for these transitions   Is t' =   E   T., where 

1 = 1     ' 

T. ~ F.(t), and n-»oD =o n« -»«^ t' -* » a.s, =o t =Ocoa.s. 

Since our problem has only two transition time distributions, A(t) and 

B(t), we conclude there  Is an optimal stationary policy when future costs 

are continuously discounted. 

2.3    Problems Without Discounting 

For  the single channel stochastic server system with 0=0, we estab- 

lish 

Theorem 2;    There exists a stationary policy f  that raxlmizes the  reward 

rate, and f   is   independent of the   initial  state. 

Proof;    First we show that  there  is a stationary optimal  policy  .    From the 

preceding theorem,   if a  positive   interest  rate were used,  for each 

initial state  there would be a stationary policy f   (ß)   that would 

earn the maximum expected discounted  reward   l[f   (8)] = I (TT  ,s ,8). 

In Section   III   it's  shown  that  the holding costs are propor- 

-2 -1 tional  to ß   "and the operating costs are proportional  to ß     . 

This   Implies  that for small   Interest  reates  the server must be 

turned on eventually,   I.e.,  there  is a finite  bound on n   .    Thus, 

there  is an  Interest rate ß   , a sequence  (ß = {ß.}._n ■* 0+ with ,0, - _^    ^ - CMJ, j  0 

1^0  ^^Vfs=fs(6i Pi 1 BA. and a f'n'te set, ^P   = ff  :f    = f   (8.)} , of stationary 

This part of the proof   is based on  the work of Fox,   reference 8. 

TT 
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optimal  policies.    Since  for every ß.e (B there's a corresponding 

fs,  at   least  one member of &  must appear   infinitely often   in the 

sequence [f   (ß.)]*?  ..    This   implies   that there   Is a subsequence of 

Q^,° ' «= {ß.}?   1 -• 0+ and a stationary policy f    that   is optimal for j j = i s 

all   Interest  rates ß.eÖ1. 

Using standard Abel Ian and Tauberian  theorems   (reference 

Van der Pol and Bremmer [15] pg.   122), 

C(Tf)   -Um   ßf e'0tdc(!fe,tfO) 
R-n+   J s 

=   I Im   ßl(ff ) 
ß-C+ s 

<  lim   ß,l(f  )  = C(f  ). 
j-w        J b 5 

The  result  that the optimal  stationary policy  is   Independent 

of the starting state follows  from the fact  that  Introducing any 

finite cost on each of the first fi'nlte number of transitions won't 

alter  the asymptotic cost rate.     If  the service system starts   In 

some state   I  > 0,   It will   Incur only a  finite expected cost before 

there are zero customers   In  the queue and the server   is   idle,  so 

CCfj)  = C(fo).    QED. 

The above theorem was proved for   the particular case of   interest rather 

than as a  general  dynamic  programming  result because   It  Is  not true   in 

general.    Suppose  the state space   is S  =  (0,   I,  2,  ...), and  in each state 

s   the alternatives are:     1)  go to s+1   In one  time unit and receive  no pay- 

ment, and 2)  go to state  s=0 in  s   time  units  and  receive s   " 7'    Any 

stationary policy of  going  to state  zero when the process  reached state 
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n would have a  rate of rO   —r), and a greater reward rate can be achieved. 
n 

Furthermore, when the rewards are discounted there wi 11  be a stationary 

'r*-Imal policy from theorem 1. 

Now that the existence of stationary optimal policies for both models 

has been established,  it  Is possible  to specify the form of such policies.. 

Theorem 3:    Under a stationary optimal policy either:    (I)  the server will 

always be dormant,   (2)   it will always be  running, or   (3)   it will 

be  turned on when  there are n    customers waiting before a dor- 

mant server and turned off when  the system enters an   Idle period. 

Proof;    The first case arises only when aiscountlng   is used and the holding 

cost   is small compared to the operating costs, and corresponds  to 

using action   I   in  the unprImed states so that  the primed states are 

never reached. 

If this   is not the form of the policy,   there must be a state 

s   rhere action 2  Is  optimal   (thl?' state need not be unique as 

illustrated in example 3 of Section 3.4),  so s=n   .     It remains   to 

be shown  that  there  is  no state s1   in which action   1   Is optimal 

when process   is  in state k'.    Since  this state will  be reached with 

probability one,  the process will alternate between k and s cus- 

tomers   in the system, once  the server   Is   turned on, which  Is equiv- 

alent to  incurring  the cost of  reaching state  s and  then holding k 

customers on  the side and  turning the system on when s-k are present 

and off when zero are present, a strategy that   is dominated by 

serving  the k customers   (poss ibly after a certain  finite  time T) and 

then   turning the system on at  s-k and off at zero.     If k > s and 

action   I   Is used   in  state  k',   the equivalent cost   Is achieved by 

TT 
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reaching state s and  then holding s customers while   turning the 

server on at k-s and off at zero, which Is dominated by serving  the 

s customers after holding them no more than a  finite  time, and then 

turning  the server on at k-s and off at zero.    QED. 

This   theorem applies only to the allowable decision points,  specifically, 

only to those points when the server   Is  busy and a service  has  just been 

completed,  otherwise   It may not be valid.    For example,  consider a service 

time distribution with P(a)  = VQQJ    CTTIOOOJ '    Suppose we observe  the system 

2  time units after a  service has  begun.    We  know that  this customer will not 

complete service  for another 998 time units;   If the  Interest  rate  Is high 

enough   It will  be better to turn  the system off and  Incur only the   Idle 

cost for a while, and have the  running costs charged when  their present value 

Is   lower. 

When 0=0,   the server will  never be  turned off when customers are present 
l 

because  this will  only  introduce additional  on-off  costs. 
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Chapter III 

THE UNDISCOUNTED   INFINITE HORIZON MODEL 

In this chapter we will present two ways to calculate the asymptotic 

cost  rate (see Section 2.1) when a stationary policy of activating the 

server when n customers are present  Is employed; we then derive  the station- 

ary optimal policy.     In Section 3.5 we discuss the effects of a proportional 

increase in the service and running cost rates;   in Section 3.6 bounds on 

the cost rate and optimal policy are obtained when the inter-arrival  times 

are drawn from an IFR distribution. 

3.1    Derivation of the Asymptotic Cost Rate. Method I 

Since the server must be turned on eventually, we only need to con- 

sider policies where the server  Is always  running, or  Is  turned on when 

n >  1 customers are present and off when zero customers are  In  the system. 

We will derive the cost  rate for the  latter form first. 

The sequence of busy cycles forms a  renewal  process, and a  basic  result 

of renewal  theory is that the asymptotic cost rate  is the expected cost per 

cycle divided by the expected cycle time.    The following results are 

immediate: 

1      VB (1) The expected   lengtn of a  busy cycle   is  n(r-+ T7-), 

(2) The expected dormant time cost   in a  busy c/cle   Is z—, 
^r| 

nVB (3) The expected  running time cost   In a  busy cycle  Is y^— r*, 

(k)    The  total  set-up cost  In a busy cycle   Is R. + R«. 

To calculate the expected holding costs we need to know the expected 
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value of the sum of the  life-times of the customers served in a busy period; 

call   this number W^n'.    Consider an M/G/l queueing system In which the 

server   is always running, and number the busy periods by i and let T).  be  the 

number of customers served  in busy period i.    The average  life time of a 

customer served in the  i-th busy period is   W. = =— (u)J ' + aJ ' + ... + 

aii '), where a),  represents the  life time of the J-th customer served during 

busy period  i.    Thus, W.N.   =    S   ou.  and multiplying and dividing the right- 
1   '       J=l    J 

n 
hand side by   E   TU, dividing both sides by n, rearranging terms and taking 

limits 

(1) 

n     ^i    , 
ESO) n «• fc     «| _ 

lim -   S   w.Tl.  =  lim  '       Jg'  lim - E    1),. 
1=1 n-w       _   «       n-w 1=1 

i=1    ' 

Since busy periods are independent and  identically distributed, the 

left-hand side of  (1)   is wj ' a.s. and the second  limit on the right Is 

E(T|.) a.s. by the strong law of  large numbers.    John D. C.  Little [111 

showed the remaining  limit  is  the expected  life time of a customer W, so 

wT »WE(n). 

This  result refers  to a busy period started by one customer.    If n 

customers start the busy period,  the total wait is  the same If we serve the 

first customer  in the queue first,  then those customers who arrive during 

this service,  then the customers who arrive during these services, and so 

forth untii the busy time generated by this customer   is completed, at which 

time the second of the original customers starts his service, and the pro- 

cess  is   repeated until  the queue   is empty. 
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Since the arrivals are Poisson,  the  total waiting  time generated by each 

progenitor are  independent and have a mean value of W-.    While  the first 

progenitor and his descendents are being served n-1 progenitors are waiting, 

n-2 progenitors wait during the busy time generated by  the second progenitor, 

and so forth.    This contributed      2~       IG to the exPected  t:ota, wa"ting 

time.    During the  idle period  the queue  is  building up  to n customers,  so 

n 2\       's ^ded to the expected total waiting time.    Adding the parts we 

have 

u(n)      rWvlG      n-I   ,        .   K"| 

Assembling all   the parts,  the cost rate C(n)   is  given by 

C^n; = j  

which simplifies  to 

X(l-p)(R1 + R2) n  , 
C(n) = r, + (rj-r^p + hXW +  ~ =- + h —• 

Using the  relationship L = XW, we have finally. 

,        X(l-p)(R    +R ) 
(2)      C(n) = r, + (r^r^p + h(L + ^ +  n     
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3.2    Derivation of the Asymptotic Cost Rate. Method   II 

A second method of deriving equation  (2)   is  to observe: 

(1) the  running cost of the server can  be considered as an   Increment 

of r2-r. over a constant cost of r., and  that  this   increment   Is 

Incurred a fraction o   of  the  time,   independent of n, since p   Is 

the probability that  the server  Is  operating at an arbitrary point 

in  time   (Theorem I-A) 

(2) Rj + Ro   's   'ncurrec' during each busy cycle and from the elementary 

renewal   theorem'   the number of busy cycles  per unit time   Is 

1   /I   , \-l      X(1 -p) . n k+ V   = "V^ and 

(3) the holding costs  per  unit time are proportional   to average number 

of customers   In  the  system. 

The average number of customers   in  the system Is  L       , which can be 
* 

expresses as 

L(n)  = [L^ | Server Bus y]P (Server Busy) + [L^n^| Server   ldlelP(Server  Idle). 

The average number of customers   In the system when the  server  Is   idle 

Is -r-, and from the arguments  used  to derive w|n'   It's easy to see that 

the average number of customers   In the  system when the server  is busy Is 

l/ ' + ^s—.    Therefore, 

See Barlow and  Proschan [11, Theorem 2.5,  for a  precise  statement and 

proof. 
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(3) L(n)  = (L(,) +^i)p+n^(1.p)  .L^. 1 '¥ 2     v  M/  - -  ■     2 

and thus we obtain 

C(n)  = r, +  (r^r^p + h(L *±±) + —^ 2  

which Is equation   (2). 

It's Important to note that equation (2) only holds when n > 1; if 

the server Is always running, there is no Idle time, start-up, or shut- 

down costs, so the cost  rate  is 

(M C(0) = r2 + hL. 

3.3    Determining the Optimal  Policy 

iC(f 
dn 

Setting ~^- = 0 we obtain 

/2X(R    +R  )(l-p) 
(5) n    =   / ' ' n 

(6)      C(n*) = r, +  (rjj-r^p + h(L  - \)  + [2X01, + R2)h(l-p)li. 

AC t   \ "it 
Since  1~> 0.   n    gives   the  unique  minimum value of C(n)   for   I < n < », 

dn 

It 
The  reason that n*  doesn't depend on r.  and  r-   is because  for all  values 

of n >  I,  the fraction of  time  the server   is  busy  is p   (Theorem |-^);   the 

optimal value will  only balance the   increase   in holding costs with  the 

decrease   in set-up costs as is   Increased.    However,  the  optimal  policy 

depends on  r,  and  r7  because equation  (4)  may show a  cost  rate   lower   than 

the  one given by equation   (6). 



21. 

The  optimal  policy must  be given by an   Integral  value of n, call   ft 

n^   ,    If n    is bigger  than one but  is not an  integer,  the best  integer 

value of n Is one of the   integers surrovrndlng n  ;  therefore, n0^    is either 

one of these integers or zero.    The decision Is made by evaluating the cost 

rate given by each of the  three candidates. 

If 0 < n* < 1, either nopt = 0 or nopt =  I; since C(0) < C(l) when 

(r2-r,)(l-p)  - (R, + R2)X(l-p) < 0, or 

(7) ^-r, < XCR, + R2) 

so the choice Is easily made. 

When n =0, either \=0 or R. + R2 = 0 so n0**    « 0.    Summarizing, n0** 

Is either  0, [n ], or [n    +  1], 

3.^    Numerical Examples 
4 

Example  1;    p=J, \=1, h=l, R. + R« = k, r.cl, r,^ 

Then n    =      1 X 4 X J « 2, and 

C(2) = 1 + 3 X J + (L +  1) + ^ X J f 2 = ifj + L,    and 

C(0) » 4 + L. 

Therefore,  the optimal policy Is to leave the server on «11  the 

time. 

Example 2;    p=J> X«l, h«!, R. + R- " 5i r.«l, rj^ 

Then n* = /J X 2 X 5 =     5 « 2.2, and 
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C(0)  = 6 + L, 

C(2) =  l+J+(L + i)+5Xjf2=5i+L, 

C(3) = l+J+(L+l)+5Xjf3 = 5T+L, 

Therefore,  the optimal  policy  is  to turn  the  server on when 2 

customers are present. 

Example 3;    p=J, X=l, h=2, Rj + R2 = k,  r^l, r2=5 

Then n* =^ X J X 4 = 2, and 

C(0)  = 5 + 2L, 

C(I)  =  I + 2 + 2L + J X 4 = 5 + 2L, 

C(2)  =  1 + 2 + 2(L + J)  +JX4T2=5+2L. 

Therefore, there are  3 optimal policies. 

3.5    A Control  Model 

We have been considering  the service  time as a random variable a with 

d.f.  B   (t).    The random varialbe a1  = 9a, which  is a mapped  onto a different 

time scale,  has   the properties: 

(1) BG((t)=Ba(i). 

(2) E(a')  = eE(a) 

t*\      2 2 (3)   V = V 

When  0 <   1, a1   is stochastically smaller  than a so  this  can  be   inter- 

preted as an   improvement   in   the service  facility;  similarly  0>  1  represents 
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a decrease   In  the capability of  the server. 

Suppose we can change a to a' with a  corresponding change   in running 

r2 
cost from r.  to r'  = 7-, with all other costs  remaining the same.     In the 

undiscounted case,   the  optimal  policy with  respect  to opening  the server 

becomes 

* /ZCR, +R2)X(l-ep) 
(8) n*(0) =   /       1 

since p1 = XE (0CT)  = 0p.    Since  the optimal  policy for ssrvlng customers  is 

uniquely determined by equation  (1),  the cost rate can be expressed as a 

function of 8 only,    VIZ. , 

(9) c(e) = r.O-Bp) + r p + h[L(e) + n (?H] + (R, + R2) -^ß- 

e2p2(c2 + i) 
where L(9) = 9p + —2l\-6 ) ^rom the po1 ,ac2ek"Kh'nch'n equation. 

One can find  the optimal value of 0 by investigating  the roots of 

(10) 2£I6i = hTp +  § J  - p[2(l-ep)l%h(RI + R2)]^ + r. = 0. 
d8        L 2(i-ep)z       J 1      z 1 

A solution  to equation  (10) can't be given   In closed form; however, 

one can obtain  the conditions for which  it's desirable to slow the server 

down.   The  initial control setting  is e0=l; C(0) decreases as 0  Increases 

when 

-ir/ß\ r        p2(2-p)(Ca +0-, 1.1 

^ ie=i = i"+ —m^—] - p(x0,'+ www* -r.» <o- 
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Simplifying, we have the local condition for slowing the server down, 

X(R, +R2)-1i-      r, p(2-p)(Cg +   1) 

w [ih|T^r-r + r > i + 
2(l-p) 

If  the   reverse   inequality holds,   the server should  be speeded up. 

The qualitative  reasoning  that explains  the  form of  this  result  is   that 

Increasing  the service  time will   lengthen the busy periods and reduce  the 

fraction of  time the server   is   idle, which  is desirable   if R. + R2 or r. 

Is   large.     It also has  the effect of  increasing  the mean number of customers 

In   the system, which   is  undesirable  If h  is  the dominant  cost. 

3.6    General Arrival Distributions 

Equation   (2)   is  not valid  for  G/G/l queues  because  v..    Vf nv,   •  however, 
IG IG 

n 

we expect   that equation  (5) will  be approximately correct when p   is close   to 

unity,  giving a policy  that   in a  highly utilized system  the server should 

always be available,  unless   the holding costs are negligible.    For arbitrary 

values  of p we can obtain  bounds  on   the cost  rate and optimal  policy  if 

the arrival  distribution  is suitably restricted.    Generalizing the arrival 

distribution  requires  that  the decision points  during an   idle period be 

restricted  to arrival epochs, as  pointed out  in Section  2.1. 

A class  of distributions   that  has been given much attention   in  reli- 

ability models   is the class of   IFR distributions, where   IFR stands for 

Increasing failure rate.    The   IFR assumption for A(t)   corresponds  to arrival 

patterns where   the probability that a  customer arrives   in   the next time 

Increment   increases as   the  interval   since the  last arrival  epoch  increases; 

imposing   the   IFR assumption on   the arrival stream is  natural  for models 

where  the  customers  represent failed pieces  of equipment and the service 
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mechanism  Is   the   repair facility.    Since   t":e Erlang distributions and 

many other common distributions are   IFR, assuming A(t)   Is  IFR   Is a non- 

parametric way of analyzing a  large family of common queuelng models. 

A distribution A(t)   is   IFR   if 

A(t + x)   - A(t) 

Ac(t) 

Is   Increasing   In  t for all  t > 0;   the  properties of these distributions are 

discussed  In Barlow and Proschan [1]. 

Marshall  [12]  found bounds for  the expected number of customers  In the 

system and the expected  length of  the busy cycle for  the G /G/l queue we 

shall consider.    When A(t)   is  IFR and p <  I,  he obtained: 

p[C?-l] + p2[Cg +  1]      n  . 
(12) A < L < + i. A = p + —^ 2(l.p)  

B + V- 

2 2 where C. and C- are  the coefficients of variation of A(t) and B(t)  respec- 

tively, and 

(13) 0-PH"-P) <E(X) <aILal 

where E(X)   Is the expected  length of a busy cycle. 

Since the cost rate Is highest when L sumes Its largest value and 

E(X) Its smallest, and the minimum cost rate Is achieved when these con- 

ditions are reversed,   the cost rate  Is  bounded for all  n by 



m 

(R    +R  )X 
r^I-p) + r2p + hXA +   ^^      g C(0) < r^l-p) 

(R    +R2)X 
+ r2p + h(XA+J) +1—T(—Tt    n> 1 

[ r2 + | p + 
PÜC*-!] + p2[^ + 1] 

2(l-p) J 

■ ,.r . P[CA-1] : p2^cB+1], 0 

< r. 
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The width of the bounding  Interval   Is easily calculated to be 

(fc, + R2)Xp      . 
1 ■■;.     \ i     v + Tf n >  1, which decreases as n   Increases and p decreases. 
n(l-p)(n-p)      2»      -    ' 

Let C  (n) and C.Cn)  be   the upper and   lower  bounds;  simple differentiation 

reveals  that both are convex,  so C(n)   Is  bounded by an   Interval  as  shown 

In Figure  1; 

Figure   1.    Bounds  for   the Cost Rate of  the   IFR  /G/l Queues. 
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Setting the derivative of C (n) with respect to n equal to zero yields 

<15' ".. = / hO-p)—   p>n • 

where n     Is  the optimal  policy when the arrivals are Polsson  (equation 5), 

and 

06)      cX^r^V^p.hßp.      A     2{|    .  
B ] 

^2\iR] +R2)h-.| 

it 
Since n    obtains the minimum value of the maximum cost  rate,   ft   Is the u ' 

mlniinax •♦.rategy and C   (n )   Is   the -rpper bound for   the  optimal cost rate, 

In a similar manner, one finds  that C. (n)   is minimized by 

1,7, *      /2(RI  +R2)X-    * 

and 

*                                          r        P[C?-I] + p2[cj +  I]       n 
(18)      Cl(n*)=r1 + (r2-rI)P + h[P+-A-Tn-rS j] 

r2X(R1 +R2)h-|^ 

L Tf J  * 

1c Since C^n.)   is  the  lowest possible cost rate and 

(19) Cu(n*)  -C.Cn*)  =!lÜ5iji<h> 
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the optimal  cost  rate   is  bounded within r-of  its value   if A(t) was com- 

pletely specified. 

From the diagram It  Is easy to see that the values n, and n? that 

satisfy C.(n.)  = C.(n2)  = C (n ) are  the bounds on  the optimal  policy. 

Using equations   (]k) and  (16)  one  obtains 

(20a)      n, = n* +  1.2p  - [(l-p)2 + l{ ]—^ J] 

* r      2     r2X(Ri + MC-pMii (20b)      n2 = n* +  l-2p + [(l-p)2 + ^ L—^ J] 

(20c) ^2 - n. « 2 ^n", 

where n    Is given  by equation  (5).    Since small values of h cause   large 

ft 
values of n  , equations   (19) and  (20c)   imply that as  the  bounds on  the 

optimal cost rate  get better,  the  bounds on   the optimal  policy will   get 

worse.    This means  that   large variations   in  the policy will  have small 

effects on the expected cost  rate. 

ft.7    Conclusions 

From equations   (6),   (16), and   (18) we  see that the expected cost rate 

can be  reduced by decreasing the variability of the service and   inter-arrival 

time;   thus. .ceterus paribus.  the queue with constant   inter-arrival and 

service times will   have  the smallest cost  rate. 

If we assume  a  Poisson arrival  stream but A(t)   is actually  |FR, sub- 

stituting equation   (5)   Into the equation for  c  (n), we find 
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^ *      XCR. +R2) 
(20) Cu(n*)  -Cu(n*)  = * 

(1-p)(n  -p) 

!h  (n*-l). 

Since small operating costs and  large holding costs  tend to give  the 

policies n01*   equal zero or one for both Poisson and IFR arrivals,  the 

error given by equation  (2) will be  large only when n    is   large.    Thus, when 

the utilization and holding costs are large and the operating costs are 

small, the  loss  in generality in assuming Poisson arrivals  is not very 

critical. 
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Chapter IV 

THE D; COUNTED   INFINITE HORIZON MODEL 

In this chapter we will  find the expected present value   (discounted 

total   return) of a stationary policy that  turns   the server on when n cus- 

tomers are present, and turns   it off when   the system is  empty.    The analysis 

in this chapter  Is more complicated than that of Chapter  III   because explicit 

account must  be  taken of  the epochs when costs are  incurred. 

k,\    Some Properties of  Laplace-Stielt jes Transforms 

We will  use the following properties  of Laplace-Stieltjes  transforms 

extensively  In this section: 

Property  1;     If a cost R   is   incurred T  time units  from now, and T   is a 

random variable with d.f. F(t),   then   the expected present  value 

of this cost  is RF'(e). 

-ßt Proof:    Assume that T=t,   then  the discounted cost   is Re       ,  unconditioning 

on T=t we have  the expected cost   is   I    Re      dF(t) = HT{&) t QED. 
J0 

Property 2;     If a  cost  rate of r dollars  per  unit  time   is   incurred until  T 

units  from now,  and T   is a  random variable with d.f.  F (t),   then 

the expected present value of  the cost   is rLl-T'CB)]. 
p 

-Bt Proof;    Assume T >  t,   the present value  of  the cost at  time  t   is  re      .    The 

probability  that T > t  is   l-F(t)  so the expected present value of  the 

cost at time  t   is   f    re"0t[ 1-F(t)]dt =5--  rf e"ßtF(t)dt  = K '-^(6)1. 
J0 B        J0 ß 

QED. 
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Property 3:     If F(t)   is a  distribution function of a non-negative random 

variable that   Is  not degenerate at  the  origin,  then  If P'(ß)  = 

f e"ßtdF(t) exists, 0 < ^ß) < I for ß > 0. 

Proof; ^(ß) > 0 since e""* > 0 and dF(t) > 0 but not Identically zero. 

r(ß) < 1 since |re"BtdF(t)|<|e"r,i|rdF(t)| < 1. 
J0        '     J0 

4.2    Calculation of  the Expected Total Cost 

Using  these  results, we first find the expected cost, C(n;ß), for 

n >  1, starting with zero customers   In the queue.    The first two properties 

show that   in  the first busy cycle: 

(1)     the expected start-up cost   Is RjC^ß)]" = R|(o"^")n ■ ci 

(2) the expected shut-down cost Is R^CßjGfß)]" = ^B+X^^0^" " c2 

(3) the expected  Idle time cost  is jp [ l'-(^(B))n] = ^['-(^x")"] = ^ 

(k)    the expected  running cost   Is ^ [l-[£(£)fJ^Cß)]    = ~ (—)" 

[i.(8'(ß))n]4cit 

The LST of a busy cycle  Is 'rf (8)  = [Ä'Cß^Cß)]",  so Ihe expected dis- 

counted operating costs for  the entire planning period  is 

(1) n(n;ß)  = c + cHn(ß)  + c[Hn(ß)]2 +   ... =  j-j   ^ 
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where c = c.  •*■ r % + cii» anc' 0 < H   (3)  <  1  from property 3. 

The holding costs will  be calculated   in  two parts.    When the queue size 

Is   increasing from zero to n during an   idle  period, one customer waits  for 

n-l arrivals which cost 5-^(6) | 1   - [^(P)]""      since he starts waiting one 

Inter-arrlval   time from the beginning of  the  busy cycle.    The second cus- 

tomer arrives after  two  inter-arrival   intervals and waits  for n-2 more 

arrivals, so the holding cost is ^[^(ß)]2!"!  - [Ä'Cß)!""2];  the costs of the 

remaining customers   is  computed   In  the same way, and the   total  discounted 

cost  Is 

1  (n;P) ^{Ä'(ß)Cl-(Ä'(ß))n"1] + [^(ß)]2[^(ß))n"2] 

+ (A'CP))""^ 1^(0)1 

Hr^(B)-   ^))n,(n.l)(y(6))n1 
P l        1   - Ä'(ß) J 

n      . n 
(2) ,   (n.B)      hXfc+X)"  -X-MnB) 

"    ,"      P ß(B+X)n 

The expected discounted  total  cost over an   infinite horizon   is 

q   '       i-ffje)    B2 (f>+x)n - [x?(e)]n " 

The remaining costs are due to customers who are waiting while the 

server is busy.  If I (n;T) is the expected number of customers in the 

system at time T, and T is a point in the first busy period, the expected 
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discounted cost of holding these customers until T + dT   is he"°Tl   (n,T)dT 

and the cost for  the busy period   is  ts(n;ß)  = hj  e"0Tt   (n;T)dTf where T  is 
0 S 

a  random variable with d.f.  G  (t). nN  ' 

Let  H equal  the service  time of  the  first customer served   in a busy 

period and k be the number of arrivals during 9,  then 

PO t,(l;ß|e,k) = hf e"ßTl   (l;T|e,k)dT + e"0et   (k;8) 
5 J0 s 

= hf e"0t(l + kt)dt + e"0et   (k;$). 

Changing the order of service as  in Section 3, and using properties 

one and two, we find that 

ts(n;8)  = l   (l:ß)[l  -^(B)  +  (^(8))2 +  ... +  Cg'CB))""1! 

(5) + h ^[1-^(8)1 + h —■[ 1-^(8)16(3)  +   ... + h^O^en 

[G(8)l"-2 = ts(l;8) HK8Ü+ äfn  . hSlUO*]. 

Substituting equation   (5)   into equation   {k) and uncondi tloning on k, 

i (i:8|e) = hjVVxOdt + e-Be (t (i:B) '-"Pr-XQ(i-(r(8))i 
$ J0 L S I^B) 

h fxe .  l-exp[-XQ(l-(r(6))1TI. 
8 l-g'(B) ■»' 

integrating  the  first term by parts and simplifying the second term gives 
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(6)     t   (1;B|9)  = - §4 (e-ee-l)h +   1-exP[-^('-^))1Ct   (,;ß).^e-P0. 
P2 ' 1^(8) S     S   '      B 

Uncondl tionlng on Sand  reca 11 Ing ^(ß)  = Btß+X-XG'(6)] , 

(%/   * . '■'M'   i 

, (1.s).§Äh + [l (1:B) .^siehaM 

from which one  obtains 

(7) ic(l;B) -^[l-'g'CB)^ +£&JMh. 
ß B[l-B(ß)l 

Substituting equation   (7)   into equation  (5),   the expected cost of a 

busy cycle   is  seen  to be 

(8) ,   (n.ß)  _ [l-(g(B))n1[X-(X+B)B(R)1h + nh. 
5 62[1-B(B)] B 

when h=l, I   (n;B)   is  the Laplace  transform of the mean number of customers   in 

it 
the system during a  busy period   .    The expected costs  for   the entire  horizon 

Is 

(9)    L.(n;e)=S=^ßi2l^4i^M2h + _^ 

... A+B J 

Thus,   the  total  expected discounted cost function   is,   finally: 

This   transform can be computed from the  results of Gaver  [91 but this 

derivation  is more direct. 
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(10)      C(n;ß)  =n(n;R) + Lq(n;B) + Ls(n;ß) 

0R, + P[G(e)1nR2 + (r^rpn-^B))"]      r, 
__________ + r 

pf-j^spM] 

n , n 
+ h    X(X-»-B)"-X"(X+n6) 

,2 
r   (ß+X)n- [XG(B)ln 

ri-(G(B))nirX-(X+B)B(B)1h 
■ • 

pW(6n[i-(^)n] 

In principle, one can  find the minimizing value of r, n   (B)  by classical 

calculus methods;  however, a closed form solution for  the usual  first order 

conditions  doesn't exist.    Equation  (10)  contains   terms  that are   linear   in n 

and  terms  in which n  is an exponent,  hence,  the derivative of  |^(n;P) with 

respect  ton will also contain terms of these forms.    This   implies  that 

Tr^(n;B)  = 0 is an   implicit equation  in n,  so there  is no closed form 

expression for  its  roots. * 

Thus, an indirect method for calculating n   (ß)   is required.    For example, 

a computer solution using successive approximations could be used; for small 

values of B, one could approximate :jrMn;B) by a Haclauren's series expansion. 

In the discounted case both endpoints must also be considered as pos- 

sible minimizing values of n.    When n=0, R.   is charged when the first cus- 

tomer arrives, the running cost is always charged, and there are no customers 

who wait for the server to be turned on, so 
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(n)  e(o;ß)^4+h{v^   gmiMii   } 
ß+X  ß     y  p[s+X-XG(R)1[l-B(6)1J 

The Interpretation of n = » Is that the server Is never turned on.  In 

this case, thd only costs incurred are holding costs in the queue, and 

(12) 6(0;B) = lim I  (n,6)  = ^. 
n-*o q       ß 

I 
I 

We  note that   the undiscounted cost  rate [Equation   (2),  Chapter   Ml] 

depended only on  the first and second moments of  the service distribution, 

while    (n;6)   In   (10) depends  on the  knowledge of  the entire distribution, 

through B{B) and G^ß). 

I 

^.3    Limiting Results When  the   Interest Rate Vanishes 

As  8 vanishes,  the expected cost  given by(3'(n;B)  approaches   Infinity; 

an   Important  result  is  that as 6 approaches zero,   the discounted model   gives 

the same cost  rate as  the undiscounted model. 

Theorem  1;     Lim    ß£(n;8)  = C(n), where C(n)   is  given by equation  (111-2). 
ß-0+ 

Proof;    Recall   that £(n;6) and C(n) were defined  in Chapter   II  as: 

^(n;B)  =   re"8tde(n,t),  C(n)   =   Um | f de(n,t), where Cfn.t)   is 
J0 T—1  J0 

the cumulative costs   incurred at  time  t using a  policy  that  turns 

the server  on when n customers are present.    Since d(n,t)   is a mono- 

tone  function because all   the costs are non-negative, we can apply 

a  standard  Tauberian   tK.orem for   LST's and 
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Lim    ßC(n;ß)   = Lim^ ßf e_Btde(n;t)  = Lim| [ de(n,t) 
ß-0+ ß-0      •'o T-«        0 

= C(n), QED. 

Theorem  1  doesn't necessari ly  imply that n   (B) -* n    as 6 -• 0 because 

examples have bee," constructed for other models   (see for example [2"]) where 

the  discounted cost function satisfies Theorem  1   but the policy for small 

Interest rates   is  not "close" to the undlscounted policy.    However,   for our 

problem,   it jj_ possible   to show that: 

Theorem 2;    n   (0) -♦ n    as  ß -• 0. 

Proof; Since n is treated as a continuous variable over the range [I,») 

the derivatives -j-^(n;fi) and -r-C(n) exist over (I,»), and 

lim ßC(n;0) = C(n), 
B-*0 

(13)       lim 0 ^e(n;P) »~. limß€(n;B) =^C(n). 
ß"*0 ß-*0 

The .neaning of equation  (13)   is  that  there exists a small 

positive number which may depend on ß and n, e(B,n) say, such that 

OM B;b^n-.P) =^c(n) + e^'n) 

and c (ß,n) -• 0 as 0 -• 0.    Pick a small  value of ß greater  than zero, 

0°,  then equation   (14)   implies 

i7d(n;B0)^r^C(n)+c(B%)] 
P 
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*    o 
and when n = n   (ß  ) , 

(15)        fA.P0)ln=n*(Bo)  = i^ CCn)]^^  + .{B
0.n]  = 0. 

Since —a^ 0,   the  term  in square  brackets  must equal  zero, which 
3° 

from equation   (111-2) means 

(R, *R2)\(1-p)      H., 2e(ßOtn) 
.«-^o '*' t —   0. 

[n^B0)!2 

This   implies 

*    o          /2X(R1  +R2H,-P)        * o 
(16) n*(ß0)  =    / ! 1~ n* as  6° - 0. o 

h + 2e(9   ,n) 

•k "k 
It  remains   to be shown  that  n   (ß)   Is  close  to n    for  small 

values of ß.    We  have 

[n ]    =  h     h + Mß.n)      and 

2       2X(R1+R2)(l-p)     , 
Ln   (8):1     =      h + 2c(ß,n) h 

from which 

(-7)        -*(«) - -* f^Mv 
The  square  root   term can be made arbitrarily close   to unity by 

picking ß  close  enough to zero, QED. 

TT 
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Equation   (17)   shows  that  convergence   is  faster as  h   is   larger.    This   is 

because for  small  values of h, n     is  very   large,  but   if  the  interest rate   is 

large enough n  (ß)   is   infinite   (i.e.,  never   turn  the server on), and as the 

Interest rate   Is  decreased,  n  (p)  decreases and the approximation of n  (P) 

by n    becomes  useful. 

The operational   implication of Theorem 2 Is  that  for  small  values of 

ß, one can use n   , which  Is easy to compute,  to estimate  the   integer value of 

n(8)  that minimizes (5(n;3).    As  before,   this   Integer value   is  one of the 

integers surrounding n  (ß),   if n  (ß)   is not an integer,  because of 

Theorem 3;    For 6 sufficiently smal 1, fi, (n;B)   is convex in ß. 

Proof;    Differentiating both sides of equation (5), 

2 2 
Hm ß~-e(n;B)  = ^-jCCn) 
ß-»0      dn dn 

which means  there exists a function 6(ß,n), such  that  for small 

values of ß 

2 2 
(18)        ß*4e(n:6)  =*4c(n)  +6(ß.n)  = 5iÜlfii + 6(8fn) , 

dn dn n 

and 6(ß,n) can be made as small as  desired by picking B sufficiently 

close  to zero.     In particular,  since we don't know the  sign of 

ft(3.n),  pick ß small  |6(6,n)|  < RX0"P);  this   insures  that  the right 
n 

hand side of equation  (18)   is  positive, and since ß > 0, 

.2 
S-C^J0) > 0, QED. 
dn' 
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k.k    Arbitrary  Initial  Conditions 

The above development has assumed  that  the system is   initially empty, 

and  the discussion   in Section   II   indicated  that   the stationary optimal 

policy may be dependent  on   the  initial  state.     If there are m customers 

present   initially,  the  total  cost function, call   it ^  (n;ß), can  be con- 

structed from our present  results. 

Since the policy  Is assumed stationary when we  reach a  regular  busy 

cycle,   the server will  not be   turned on until  n customers are present;   if 

m < n,  the server w! 11  be  turned on after n-marrivals;   ifm>n,   the 

server will be  turned on   inmediately.    Thus,   If k = Max [0,m-nl   is   the first 

time, and n is  the number  present when the server   is   turned on  thereafter, 

we can express  the expected discounted cost function   in  terms  of k and n, 

and  then   look for  the minimizing values. 

Since  there will  be ^ero customers   in  the  system at  the end of  the 

first  busy period, ^ (k,n;B)  equals  the cost of  the first busy period plus 

the  present value of C  (n;(3)  started after    k    customers have arrived and 

the  first busy period   is completed,  thus 

(19)      em(MiB) = R1(^)k + R2(i^)k[G(B)rk 

rL'-^^r^'^'-^"^ 
Ls(n;B) .    . . 

+ iV7er+(B^G(pn    eo(n:6) 

Minimizing values  must be  found  numerically or  by some approximation  tech- 

nique . 

Equation   (19)   indicates   that  the  optimal   policy will,   In  general,  depend 

^T 



on on.    However, as ß - 0+    ß       (k,n;ß) -» C(n), and  the optimal  policy 

becomes   independent of m. 

^».5    An Alternate Formulation 

In many applications  the value of h  is not known,  e.g.,  t'^e holding 

cost of military equipment  in a  repair depot, and one  might formulate  the 

problem as minimizing operating costs subject to some  operating constraints 

such as the expected  life time of a customer.    The next  theorem shows  that 

this minimization wi11  be  trivial. 

Theorem k:    The operating cost n(n;6)    Is  a strictly convex, monotone 

decreasing function of n. 

Proof;   When ß=0 this  theorem refers  to the operating cost rate, which  Is 

X(l-p)(R,  + R2) 
r.  +  (r2-r.)p +  which  Is obviously strictly convex 

and monotone decreasing   In n   (we  Ignore the completely trivial case 

where R.  = R- = 0,   In which case the function   Is constant).    The 

case where ß > 0  it more complicated.    For notatlonal simplicity, 

let x = ^(ß),  y » 1Z{&), and z = xy, so 

r.      R.x" + R,zn      r^-r.    n    n 

«20) "<";g)°r+    . n     ^-VTT- I-z l-z 

and 0<x<l,0<y<l,  0<z<x, 0<z<y, with x", y  , and zn 

strictly convex monotone decreasing functions  of n. 

The  first term of equation  (20)   is constant;  the second term 

Is  obviously decreasing and convexity is shown by writing   it as two 

terms R1xn(l + zn + z2n +   ...)  + R7zn(l + z" + z2n +  ...) which  is 
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a  non-negative sum of convex terms.    The   third term is a constant, 

r2"rl xn-zn 

TIU'CIplied  by  the function   = f(n). 
ß l-z" 

The proof of the theorem is completed by proving f(n) is mono- 

tone decreasing and strictly convex, which we do by Induction, Let 

n=l;  the first difference  is 

x.2      x2-z2 _  (l-2
2)(x-zMl-ZHx2-2

2)  _  (x-2)(l-zHl-x) .   0 

,-2 l-2
2 (1-2) (1-22) (1-2) (1-Z2) 

since 0<z<xory<l. 

Assume  t(n)l  for n=N,   then the first difference mu?t be  negative, 

N    N        N+l     N+l Nri    N    N+l N+l        N-, 
0 <• x "z    m x       -z .. x I l-V -2       -x -f xy      + xz 1 

l.Z
N l-zN+l d-AO-z^') 

Ax N 

0-N)(1-zN+l) 
=> A > 0. 

For n=N +  1,  the  first difference  is 

N+l    M x      -* 

1-z N+l 

N+2 ,N+2 N+lri    N+l    N+2 N+',i      N+2T x      -z x      L 1-y      -z       -x + xy      ■>• xz      1 

l-z 
N+2 

(l.zN+1)(l-zN+2) 

Bx N+l 

(I-zN+,)(l-zN+2) 

We hav^ 
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BWV  = yN(l.y)   + 2N+,(l-z)   + XyN+1(y.l)   + X2N(Z-1) 

= (i-y)y(i-2) + (i-z)(z
N+1-xZ

N) 

= (l-2)yN(l-y)(i-xN+1) >o. 

N+l    N+l N+2    N+2 
soA>0=>B>0=> 2 —— > SI5~. and by  induction f (n) 

1-2N   ' l-zN^ 

Is  strictly decreasing. 

'-(|)n      ,-v-n 
Writing f(n)  =   = —'—and exponentiating, we see f(n)   is 

l-2"n '/-2"n 

convex  If exp  (1-y" ) exp   (2""-!)  = exp  (2"n-y"n)  = g(n)   Is convex. 

Considering n as a continuous variable,  n > 1, we can calculate 

■^ g(n) = [(t 2)2(2-n + 2-2n) + (l  y)2(y-2n.y"n).2l   (yz) (yz)nlexp(z"n-y-n) 
dn^ 

> 0 

since each term Is positive.   Thus, g(n)   ?s convex if n can assume 

aH   values, equal  to or  greater  than.l, which  implies  g(n)   is convex 

for n a positive  Integer  by using embedding arguments, QED. 

As a result of this theorem,  the optimal value of n  Is the  largest 

feasible value, subject  to the operating constraint.    If one  takes  the atti- 

tude  that operating constraints are  Imposed because of a  subjective value of 

the holding cost h,  one can compute an operationally valid value for h by 

calculating what value  It must assume  so that min iml2ing 6(n ;8) satisfies 

the operating  constraints. 



^.6    Conclusions 

In most applications,   Inter-arrival and service times will  not be  so 

long  that  It  Is necessary to discount costs   incurred at the end of the 

Interval, and the undlscounted policy presented  in Chapter   III   is  the one 

that should be used.    The discounted model  can  be  used  in  investment problems 

where one  Is   interested  in  the expected present worth of  the future costs 

of a proposed system;  given  the parameters  of a  proposed system 

(X,  p.  ^R» ^r etc•)»   t'ie policy for using  the system will  be n0p    from 

Section 3.3, and equation  (10)   Is used  to calculate the expected present 

cost of operation. 
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Chapter V 

THE FINITE  HORIZON MODEL 

Where  there  is a  finite  horizon, T, several  new difficulties arise. 

First,   the optimal  policy  is  generally non-stationary,   so finding  the best 

stationary policy   Is  not  sufficient;  secondly,   the  random variables a and 

ß are unbounded so a  transition  may not be completed;   lastly.   It may be 

optimal  to turn the server off while  there are Customers   In the system,  so 

the  optimal   policy for   the   imbedded  problem may not  be optimal  for  the  full 

problem.    The   last assertion   is   Illustrated by an example:    Suppose a  Is 

constant at   thirty minutes;   twenty minutes  remain until  the end of  the horizon; 

and there  Is a service completion with k > 0 customers are in queue.    Since 

no more services can be completed,   the best  thing  to do  Is  turn  the server 

off and save  r^-r.  per minute for   the  remaining  ten minutes.    These con- 

siderations  make  it very difficult  to calculate optimal  policies, but for 

large values  of T good policies can be found by using asymptotic results. 

^.1    The Recursion Formula  for Optimal Policies 

The boundary conditions   that will be  imposed at  the end of the horizon 

are: 

(1) A charge of Q,[$/customer]  for all  customers   left  in the system 

[service uncompleted or not started], 

(2) If  the server   Is  running.   It must be turned off. 

Define  the state of  the  system as   (i,j), where j   Is  the number of 

customers  present and  1=1   indicates  the server   Is  dormant and 1=2 means   It's 

running.     In  each state,   the possible actions areO.=l,   turn  (or   leave)   the 



server off, and (X.=2,  turn   (or   leave)   the server on.    Let y. .(a,t) be 

the expected cost of a transition   (which may not be completed)   leaving state 

(I ,j),  using act ct , and with  t(0 < t < T)  time  units  remaining;  v. .(t)   is 

the expected  to :a 1  cost starting with state   (i,j) with a   remaining horizon,   t, 

and following    an  optimal policy. 

Letting Y  be   the number of customers  that arrive during a  service 

Interval, and §  be  the number of customers  in the system after a service 

completion,  for  0 < t < T we have  the  recursion relationships: 

(la) y1J(I,t)  =J   [(jh + r,)* + v]J + ](t^)]Xe-X(*dcy 

+ [(jh + r^t + jQ]e-Xt, 

(lb) y2j(l.t)  =R2 + yjjO^). 

(1c)      ylj(2,t)  =R, + J [(jh +|-h + r1 + r2)a + v2 J+| (t-a)-ldB(a) 

+ [(jh + |-+ r, + r2)t + R2lBC(t), 

(Id) y2j(2,t)  = ylj(2,t)  -R,, 

t k 
andP(f=k)  = Je-Xa^-dB(a). Z = j-1  +6Ü) + Y. -A.a   {Kaj K 

0 

From the principle of optimality,   the optimal  policy must  satisfy the 

usual  recursion  relationship of dynamic  programming [10]: 

(2)        v..(t)   = Min [y    (l.t),  yI.(2,t)].   M,  2; 0 < t <T. 
• J ,2       U U 
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Which,   In principle,  can  be built  up for successive values of  t,  since the 

y. .  only depend on prior va lues of v..(t). 

5.2    Conclusions 

There Is no general way to obtain solutions   to equation  (2);  discrete 

approximations of  the  continuous variable   t can be made, and digital com- 

puting methods will  obtain sufficiently accurate approximations of the 

Integrals so the resulting policy will  be optimal. 

In example  3, Section 3.4, we showed  that the  Infinite horizon problem 

may not have a    unique  optimal policy.    This  means  that as T -• »,   the optimal 

finite horizon policy may not approach  the optima]   Infinite horizon policy 

as a   limit.    That   is,  for some   lerge values  of T one of the  infinite horizon 

policies may be best, while  for f  me other values  of T another policy may 

be best. 

Since  the  transitions   from state  to state are governed by an ergodic 

(irreducible and positive  recurrent) Markov chain, for  large values  of  t 

(3) v.jCt) «C(n)t + k.} 

where C(n)   Is the cost  rate for an  infinite horizon   (Chapter   III) and k  Is 

a bias  term that's   Independent of t but dependent on the policy and state 

(reference  10).    This   Implies  that an optimal  policy for the  infinite horizon 

problem will be nearly optimal for   large finite horizons. 

This conjecture may be  tested by seeing    r equation  (3) and  the optimal 

policy from Chapter   III   satisfy equation   (2). 
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Chapter VI 

A TWO-CHANNEL MODEL 

Many production facilities  have spare machines  that are activated when 

the workload  reaches a critical   level;  these machines are  run  In a parallel 

with normally used machines  until   the workload  level   Is  sufficiently reduced. 

The problem of specifying  the workload  levels   that   trigger activation and 

deactlvation of  the spare machines will  be called  the spare machine problem. 

Because  simple probabilistic  results can only be obtained when  the service 

times   In each channel  have an exponential  distribution,   this particular 

service   time dlsvrI■ utlon will   be assumed. 

6.1    Assumptions 

The assumptions of  the  two-channel spare machine  problem are: 

(a) The arrival stream - Customers arrive   In a Poisson process at  rate 

X, and form a single queue. 

(b) The service mechanism - There are two servers,  machine one and 

machine  two.    The service times   In each machine are  independent, 

exponential  random variables at rates p..  and p.«  respectively, with 

0 < n«, \Lj < • and X < V>i  + Mio-    Machine  one   is  a Iways  running and 

machine  two may be   turned on and off arbitrarily.     If machine  two 

Is   turned off while  processing a customer,   that  customer  rejoins   the 

queue, or possibly,  directly  into machine one;  otherwise,  customers 

are served In their  order of arrival  by any available running 

machine. 

(c) The cost structure  - The   running cost  rates are r2.[$/time1 and 

r-?[$/time1  for machines  one and  two,   respectively.    A fixed  cost 
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of Ri[$]   is   charged when machine   two  is  tuned on, and  the  fixed 

cost of shut-down   is R2[$'l.    A  holding cost of h[$/custon«r-hr.1 

is charged during the  lifetime  of each customer.    The costs are 

non-negative and h > 0 avoids   triviality;  future costs are not 

discounted, 

(d) The dec i s I on  problem - When  should   the spare machine  be   turned on 

and off  to minimize  the cost  rate over an   Infinite  horizon? 

6.2    Stationary Optimal  Policies 

We will analyze   this problem by   Imbedding   it  In a  dynamic  programming 

problem at arrival and departure epochs.     This  causes  no  loss  of  generality 

with respect  to making decisions at arbitrary time   Instants because  the 

assumptions  on  the arrival and service distributions   imply that  the  time  to 

the next event   (arrival  epoch or service  completion)  has an exponential 

distribution.    Since  the cost rate r*.   Is always charged,   ft will  not effect 

the desirability of  various policies,   It   Is,  however,  part of  the cost 
> 

rate. 

Define  the state  space  to be S = {0,   01,   1,   1* k,  k',   ...}, 

where k represents   the  number of customers   In the system; an unprimed k means 

the spare machine   Is   dormant, and a primed  k  Indicates  the spare machine 

is  running.    The action  space   is A=(l,2), where action Oi.e   is "turn   (or 

keep)  the spare  machine off" and action   two  Is  "turn   (or keep)   the spare 

machine on". 

Using the methods  of Chapter   II  one  can  prove  there  is a  stationary 

optimal  policy that   Is   Independent of  the   Initial state of the  system.    To 

derive  the form of  this   policy we  first  prove   two  lemmas. 
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Lemma   ];    When a stationary optimal  policy  is  used,   if  the spare machine   is 

turned  (or   left on) when  n or more customers are present,   it will 

not be turned off when   there are more  than n customers   in  the 

system, n > 2. 

Proof;    Assume a  stationary policy that turns   the  spare machine  on  in state 

n and turns   it off when n+k  (k > 0)   customers are present, and 

assume this policy gives a cost rate g  = C (rr) which   is minimal. 

Obviously,  this cannot  be  true when k=0,  so we  only have  to consider 

k >  1.    First we observe  that as the horizon approaches   Infinity 

the number of  transitions out of states  n and   (n+k)' approach 

Infinity with probability one,  so that   If an   improvement can  be 

made on  the expected  cost of a  transition   leaving state   (n+k)',  the 

cost rate can be  Improved.    Using act  2   in  state n implies 

r00+nh . r(>0+nh . 
(]\ 22 | nh 22 nh 

and using act   1   In state   (n+k)'   implies 

O) R    +  (n+k)h +      <  (n+k)h    +      ^ jTh_ < 
r22+nh    + kh  ^2 

2     x-^y,. — XVI+P-O ^^i ""^■"H1!4^'? vX+iTj+vu)(x+p-i) 

which contradicts equation   (1)  for any k >   1. 

Therefore,  using act  2   in state   (n+k)1  will   lower  the cost 

rate, and  the  lemma   Is  proved.    QED. 

Lermia 2. When a stationary optimal policy is used. If the spare machine Is 

turned (or left) on when n customers (n > 2) are present, it will 

not be turned on when  two or more customers are  in  the system. 
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Proof;    As a consequence of  lemma   1, we  only need to consider  turning the 

spare machine off when there are m,  2 < m < n, customers   in the 

system.    Assume   it's optimal   to use act  1   in state  (n-k)', 

1 < k < n-2,   then 

(3) IndlitL . (n-k)h    <      r22 

Combining equations   (1) and   (3) we obtain 

wich can't be satisfied for k >  1, so act one cannot be optimal  In 

state m'  =  (n-k)', QED. 

Theorem 1;    A stationary optimal policy either  (a) keeps  the spare machine 

on at all   times,   (b) never  turns  the spare machine on, or   (c) 

has  the form:    Turn the spare machine on when n customers are 

In  the system, and off when m < 1 customers are In the system. 

Proof;    Leimas   1 and 2  imply that m < 1 when n > 2.   When service Interruptions 

are prohibited,  turning the spare machine on when n=l cannot be 

optimal because  the running cost  rate r.*  Is  Incurred without re- 

ducing  the expected holding costs;   the only remaining policies are 

those where n=0.    Since turning the spare machine on when n=0, off 

when m'=l, and on when n«2  is clearly not optimal, «II  possible 

stationary policies have  the  required fcrm, QED. 

As a consequence of  this  theorem, when service interruptions are pro- 

hibited there are only four forms   the optimal  stationary policy can  take, 

viz: 
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IT.   - Never   turn  the spare machine on. 

TT-  - Leave  the spare machine on a 11   the  time. 

TT- - Turn the spare machine on when n > 2 customers are present, and 

turn   it off when the system becomes empty. 

TTK   - Turn   the spare machine on when  n > 2 customers are present, and 

turn   it off when one customer   is   left  in the system and he's 

being served by machine one. 

When  interrupting service and switching the customer  to the  other 

server  is permitted,   three more policies, call swi tching policies. may be 

optimal.    They are: 

TV - Turn the spare machine on when n > 2 customers are present, and 

turn it off when it is serving the only customer in the system. 

[i.e.,   restart him  in machine one"!. 

TT^ - Turn  the spare machine  on when n > 2;   if machine  one  is   serv... 

the only customer   in  the system and machine  two  is  runninn    switch 

this customer to machine  two.    Turn the spare machine off when 

the system is empty. 

IT- - Turn  the spare machine on when r,= l and switch  the customer   in 

machine one  to machine   two.    Turn   the spare machine off when  the 

system  is empty. 

Policy TT7   is a switching policy because we assume  that a customer who 

arrives when machine one  is   idle and machine  two  is dormant, will enter 

machine one. 
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6.3    Calculation of  the  Cost-Rates when Switching   is  Prohibited 

When policy n.   is  used,   the system behaves   like an M/M/l queue with 

service rate p.., and the cost rate, obtained  from equation  (II1-4),   Is 

(5) C("|) = r
21
+^x-   ",>*• 

Since  this policy yields an  Infinite cost  rate when p. <\, TT.  cannot 

be optimal  unless p,. < X. 

When policy TT2  is used,   the system performs   like an M/H/2 queue with 

service  rate p. when one customer   Is   in the system.    Using well known 

formulae   (see reference 4, Sectfon 2.4), the expected number of customer« 

present   In  this  type of queue   is given by 

L s (I-PHI+P^P,)' p %iV pi "»v 

the cost rate  Is 

Pjh 

(6) C(TT2)  = r21  + r22 +  (l-pXl+p,^)' 

The remaining two cost rates will be calculated using the policy 

evaluation routine of Markov-renewal programming [reference  10].   When 

either of the policies n, or TTJL are followed, a Markov-renewal process with 

additive costs during each transition epoches of  the aueuelng process so 

that the cost rates of both processes are equal.    Furthermore,  theorem 1 

Implies   this can be done   In a manner such that  the underlying Markov chain 

is ergodic   (irrduclble and positive  recurrent) and the expected  time for 

each  transition  Is finite.    For an  infinite-time  process  operating under a 
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stationary policy,  the system of equations 

N 
(7) v    + v    = y.  +   S    p..v.,      1 = 1,   ..., N 

{asl "' 

"o50- 

where v     Is  the  relative value of state  I,      is   the cost  rate [previously 

called C(TT.)]»  V.   IS   the expected   length of a transition   leaving state   I, 

y.   Is  the expected one-step cost of a  transition from state  I, and p.. are 

the conditional  transition probabilities of  the underlylr.j harkov chain, can 

be solved for g    and v*  uniquely. 

Policy TU  1—3 

When policy TU   IS used,  the  imbedding points are arrival and service 

epochs when only machine one  is   running, and turning machine  two on   Is 

represented as a  transition from state n  to state 0.    The corresponding 

Markov chain and conditional  probabilities are 

5^7 Jssl+1 

and one easily finds  that 

(9) vo = T' ^o = T1 

v
l  ~ X-t^,' yi  "   X-Hij      , = l'  ••" ""'• 

A transition from state n to state zero can be thought of as a transi- 

tion  from n  to one followed  by a   transition from one   to zero.    The  first 

part,   (n -»  1),  behaves   like a  busy period of an M     i/G/I  queue with service 
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rate p,j-ty,2; from the results of Chapter I 11 we have that the expected 

length of this Interval E (n - 1), and the expected number of customers 

present during this time L(n -♦ 1), are given by 

(10)     E(n - 1) = HrV» L(n - 1) = -^V + £. 
^^2+X'      '  Hj+ji^-X  2 

The second part of  the  transition,   (1 -» 0),  behaves   like  the busy 

period of an M/M/2 queue where the service rate when one customer  Is   in  the 

system Is |j,. with probability   • . ■-, and  Is u, with probability      J   ,    Let 

E. and E- be the expected   lengths of bu y periods when ther service rates 

are \i. and ^9 during the f I rst time  thire  Is  only one customer  in service. 

Conditioning on  the  first  transltioi    leaving state   1', we find that E.  and 

E2 satisfy 

substituting equation  (12)   into equation  (II) we obtain 

2 

(13) E,  = '     2 2 2 '     2 
1 2 

(X+p,1)(X+V1
4^2^^1^14v'2^X4^2^   ' ^^2)  3 

,,. X(n1+y,9)[(X+iJ.7)(pi1+n9)  + ^(n.+vij+X)! 
+ —L-i 2—L-i L_L_z__E(2- 1) 

(x+>i1+n2)[p(J(M,1-f^2)(XHv)2) - x(^2) ] 

E-   Is  given by a similar  equation with  the sut  '.rlpts   interchanged.    Thus; 

the expected time  to go from state one to state  zero is 
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CM E(I - o) = -XTE, + ~r-E9. 

Letting L. equal  the time-average of the number of customers   In the 

system when p,.   Is the service rate the first  time only one customer  Is  In 

service, we find that L, and l^ can be calculated by solving 

' + ^ 7—Z rr2 + —T— E0Lo + —T— E iLi LUij^-X)'-      pj^    2 2      ^4^2     '   '•J 

(,5)  LJ B r^Tij ' >''2 

simultaneously, and the average number of customers In the system during a 

transition from state one to state zero Is 

L,E, + —- UE, 

(16)        L(l - 0) =     t^-o)        

From equations   (10),   (l^), and   (16) we obtain 

w ^^T^r^c-0'. 

y    = R.  + R, + (r,.  + r.Jv    + hF    ^    .   + §• + L(l - 0)]v  . 
'n 1        2       x 21 12'  n        ln.-ty-^-X      2 x 'J n 

1^2 

The special form of the p.. given in equations (8) allows us to write 

the first n-1 equations of the system (6) as the linear second order 

difference equation 

X-tv-j n, g -r2)-ih 

(,8)    vi+2 -"T-vi+i +rvi -—x—• i=0 n-2' 

with boundary conditions 
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dg) v0 - o, v, = a-l2i. 

The solution  to equation  (18)   is 

2^i   I      rr?r9        h(3^-M'1)-i L;2 
•=2,   ...» n 

where the coefficients  d. and (L are obtained from the boundary conditions 

(»9). 

Since we can  find v    in terms of q    from equation (20), and v =y -   v n ^ \    '» n    n        n 

from equation  (7),  the value of g = C (n)  can be obtained as a function of n 

and the parameters  of  the model.    One can  then find  the optimal  n  for  this 

policy. 

Pol Icy TTK 

The values of v.   represent  the relative value of being In state  I when 

machine two is dormant; for policies nv and TT,- we are  Interested   In the 

relative value of being  in state  i when machine two Is  running,  denoted 

w., and partlculary In w..    Observe that w.   = Rj + vi • 

Let w' be the relative value of state   1 when machine  two Is  running and 

busy, and wV be the relative value when machine two Is running but  Idle. 

Under policy TTK,  the v.   satisfy equation  (18) and the v*. are given by 

(21a) w0 = R2 

g r22+rn+h        ^2 X 
(2,b) Wl + X^ = -X^— + X^ W0 + X^ W2 

(21c) w',' = R2 
+ v, 
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r22+r21+2h        ^\+[i2 ^1 ^o 
(21d)    w    +;—9 = r^—~ +—!—~(—■—w" + —2—wi) 

2     X-^-n^      X+p.^2 X4V<i"fV'2   Vl+^2     '      ^l"^2     ' 

X        w. + w 
X+Hj+Hj    ^ 

/91..  w   ,_g    r22-H-  -Hh    n -n. .     x 
(2ld)    w    + r-- -   ■■   = -T- ■ + : ■.— ,— w.   .  +r w.   , 

I      A+Hj-ty,2        X+p,.+p,2 X+p(.+iJi2  i-l      X+p,,^    i + l 

i =3, ^,   ... n-1. 

Equation  (2Id)   is a   linear second order difference equation whose 

solution  is 

(22) w   = q.+qov""!;—) +    ;,' 4,, ^— + ö   ' + TTT 
1^2-X 2(|J,]-ni2-.X)2j 2TM.,^2-X) 

,=**»  5 i   . • •» n , 

and the constants q. and q2 are obtained by solving for w« and w.   in  terms 

of W}  using equations   (21a-d) , and then using the  relationship w    = v    + R0 l n        n        Z 

to calculate W. 

Under policy rr^,   transitions   leaving state n' enter state   1'   In  the 

imbedded Markov-renewal process;  using equation   (8) we obtain 

(23) w    + i^-T = -^^r    +r    +(_J_. + a)h] + il_wV + if- w}. 
*    ' 'n      pj+y(2-X      p.j-^-XL  21    22  V]+1J'2 -^      M-i4!^ M-i4^? 

Using  the values  of w    obtained from equations   (22) and  (23), an 

equation for the cost  rate    g can be obtained. 

In  summary,   the cost rate and optimal  policy of the form rr.   is  found by: 

(1) Solving for  the v.(1=0,   .,.,  n)  from equations   (19) and  (20), 

(2) Solving for   the w. (1=0,   ...,  n)  from equations   (21) and   (22). 

T 
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(3)    Equating  the values of w    obtained from equations   (22) and (23), 

solve for  the cost rate   In  terms of the decision variable n. 

(*0    Find the value of n  (n > 2)  than minimizes  the cost rate. 

S.k    CalculoLion of  the Cost-Rates  for  the Switching Policies 

Policy TT,.   li: evaluated with  the same equations as  policy rr^ and the 

additional   relationship wj = R    + v., which   Impl les w[  = w1,' = w,.    This 

simplifies equation   (21)   to 

(2^) W0 = R2 

(24b) w1  =R2 + Vl 

q r22+r21 + lh ^l"1^? X 
(2kc)   w    + = '        +      ! yj        + w 

I       X+p,.+p,2 X-ty,.-^« ^■fV'i4V'2     '"'      ^4V'i+M,2     '+' 

1=2»   • • • * n"' • 

The solution  to equation  (24c)   Is  given  by equation  (22), and the 

constants q. and q2 are evaluated from the boundary conditions   (24a) and 

(24b): 

Equations   (23)  simplifies  to 

<25'     "n + jr^K - I^T [r22+r21+(^§x * >] * * V 

and an expression for    g can be obtained using the values of w    given by 

equations   (24c) and   (25). 

Policy TT/-   Is solved  In an analagous manner;  the boundary condition 
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(24b)   is  replaced  by 

'^   ■ -i =v:= x^ *\^v2- 

where v?   Is given by equation   (20). 

the 

When policy TT7   is used,   the system behaves   like an M/M/2 queue where 

service rate   is n_ when one customer   is   in the system.    For  this   type 

of queue,  the probability that the system is empty p0,  and  the expected 

number of customers  present L, are given by [reference h, Section 2,4]. 

1- p2 
(26) P0 =  l+p2+p '  L =  (l-p)(Kp2-p)' 

where p0 = — and p  = —-—.    Using  the  relationship 

ro ~ E(xT ~ xTIxT ~ 1+XE(Y) 

where E(X)  and E (y)  are the  expected   lengths  of a  busy cycle and a busy 

period respectively,  one obtains 

(^        E(x)=5S-EM%7Tb 

From equations (26) and (27), we obtain the cost rate of policy TT7, 

hp2      r22p2 + ^i^a^^'P^ 
(28)   C(n7) = r21 + (1.p)0_p+p) -  ^—p • 
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6.5 Numerical Examples 

Example   1;    X=l, ^=^=1,  r22=5,   r2p2, h=10, R.=R2=0 

When switching   is  prohibited, a policy of the form TT^ which turns  the 

space machine  on when  two customers are present   is optimal, and the cost 

11 
rate  is   ]k yr [$/hr.].     if switching were allowed,  switching to the only 

customer  from machine  two to machine one,  policy TTJ., would  lower  the cost 

rate  to  13 T [$/hr.]. 

Example  2;    X=ll ^ = 1, p^2»  r22=^'   r2]=2f  h=,0» ^]=0» R2=^ 

When switching   is  prohibited,  a policy of the  form TT,   is optimal; 

turning  the  spare machine on when  two customers are present and turning   it 

off when  the  system becomes empty gives a cost rate of   19 [$/hr,].    When 

switching   is allowed, a  policy of  the form TT/-   is optimal, and the cost  rate 

is   reduced  to  12.6 [$/hr.]. 

6.6 Conclusions 

Although closed form expressions are not obtained for  the cost rates 

of  the seven policies considered   in  this chapter, we are able to give 

qualitative  relationships among  the cost parameters  that will   indicate  the 

optimal  policy. 

Policy rr, will be used when h   is small, X < p.., and  the operating costs 

of  the spare machine are   large; while TT2 will  be more advantageous when the 

fixed costs of  the spare machine and the holding costs are  large, and the 

running cost  is small.    Policy TT^ will be used  to hedge against high waiting 

lines when all   the costs are of  the  same relative   importance.    Policies TT.   • 

and TV  protect against high holding costs  but   incur  the  fixed costs 
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frequently; TT,- will  preferred  torn   when  the running cost of the spare 

machine high. 

Policies nv and TT» tend to  lower  the cost rate when  the spare machine 

Is faster than  the regular machine and  Its  running cost  rate   is small. 

Policy TT, will  he preferred  to policy TT/- when the fixed costs of  the spare 

machine are  large. 

One should not be ivslead about  the difficulty of  finding the cost 

rates for policies ru, rrr, TV, and TT,;  numerical  solutions will  be easy to 

obtain since all  the equations are   linear   In the cost  rate.    The major 

difficulty wl11  be  to calculate the  optimal  value of n since calculus 

methods   lead to  implicit equations   for n   . 
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SUMMARY 

The aim of  this  thesis   is  to describe the  economic behavior of a 

controllable system with a   linear cost structure, and to find cost-minimiz- 

ing policies  for  turning   the server on and off.    The costs considered are: 

a server st.irt-up cost, a  server shut-down cost, a cost per unit time when 

the  server  is turned off, a cost per unit time when   the server   is  turned on, 

and a  holding cost of waiting  customers.    Single-channel queues with Polsson 

arrivals and arbitrary service time distributions are emphasized; Chapter 

Six   is devoted  to a two-channel system with Poisson arrivals and exponentially- 

distributed service times. 

In Chapter Two the decision process for a single-channel queue operating 

for an   infinite horizon   is  formulated as a dynamic program.    We shew  that 

when  future ecus are discounted,  there exists a    stationary optimal  policy 

to minimize the expected  total cost; we use this  result to prove that when 

discounting  is  not used,   there   is a stationary optimal policy that minimizes 

the cost rate.   We then prove  that for both models, the stationary optimal 

policy has  the form:    Turn  the server on when n customers arc present, and 

turn   It off when the system is empty. 

Chapter Three deals with  infinite-horizon,  undiscounted models.    For 

models where the arrival  stream Is a Polsson process,  two methods for 

deriving the cost rate as a function of the decision variable n arc pre- 

sented, and the optimal value of n and the minimum cost rate arc obtained. 

We consider decreasing the      ,>ected service time with an  increase In  the 

running cost of the server; an expression showing when the server should be 

speeded up,  or slowed down,   is  given.   When the   Inter-arrival  time distri- 

bution   is  generalized to the class of IFR distributions, we obtain narrow 
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bounds for the optimal expected cost  rate. 

An equation for the expected discounted cost over an  infinite  horizon 

is  derived  in Chapter Four; we prove  that  for small   interest  rates,   the 

undiscounted policy will  be a good approximation to the optimal  policy. 

When   the horizon   is  finite, the optimal  policy  is  generally non- 

stationary,    A recursion  relationship to find the optimal policy when the 

horizon  is small   is  presented, and  the optimal  undiscounted policy for  the 

Infinite horizon   is  shewn  to be a good approximation to  the optimal  policy 

for   large horizons. 

The   last chapter   is  devoted  to a  two-channel service system, where 

each channel   is  restricted  to have an exponentially distributed service 

tfme   (possibly with different rates), and the arrivals form a  Poisson 

process.    One  server   is always  turned on;   the other,  the spare machine, 

can  be turned on and  off at arbitrary times.    Using a dynamic programming 

formulation of    he decision process, we  show  that  the stationary optimal 

policy for undiscounted costs has   the form:    Turn  the spare machine  on when 

n customers are present, and turn   it off when m customers are  in  the system, 

with m< I.    We derive equations for finding  the optimal value of m and n 

when service   interruptions are prohibited;   then we consider queue disciplines 

where customers nay be switched, without delay or cost, from one server  to 

the other. 

In addition  to being applicable to policy problems for existing systems, 

these models should be useful when comparing proposed  investments   in  service 

system because  they  relate  the parameters  of the server  to the cost  of the 

facility.    The most promising areas for future  research appear  to be: 

systems where arriving customers may not enter   the queue   if  the waiting 

line   is  too  large,  systems where customers   leave the waiting   line   if  they 

have  not been servrd after a given wait   in queu-a, and processes MM th 

different  types of customers. 

- ,•'»      .•m\' 
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