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ABSTRACT 

Ralph Gomory has recently aroused interest in a special type of 

knapsack problem in which the constraint coefficients and constant term 

are elements of a finite additive group. The significance of this prob- 

lem lies in the fact that it is closely related to the general integer 

linear programming problem, resulting by removing the nonnegativity re- 

strictions on those variables in the general problem that lie in an 

optimal basis for the associated linear program. 

Gomory has shown how to solve the special knapsack problem by 

adapting a dynamic programming recursion originally designed for the 

ordinary knapsack problem, and has identified sufficient conditions 

under which the solution of the special knapsack problem will satisfy 

the nonnegativity requirements in the general integer program, thereby 

yielding an optimal solution to that problem as well. 

In this paper 4te present an algorithm for solving the special knap- 

sack problem that is capable of accommodating a variety of constraints 

J 
in addition to the special knapsack constraint. Our purpose in doing 

this is to expand the range of problems for which the optimal solution 

for the special problem will also provide an optimal solution to the 

general integer program from which it was derived. 

We develop the algorithm in a general framework that also permits a 

direct application to solving the general integer programming problem 

and certain nonlinear integer problems without attempting to solve the 

special knapsack problem. Some of the results developed can also be 

exploited by integer programming algorithms other than the one of this 

paper. 

4 



1. Introduction 

We represent the ordinary linear programming problem as that of 

finding an n x 1 vector x and an m x 1 vector z to 

(1) Minimize ex 

subject to Ax + z = b,   x fe 0,  z ^ 0, 

where A, b, and c are matrices of constants with dimensions m x n, m x 1, 

and n x 1, respectively. We assume for convenience that the canonical 

form (l) has been obtained by the simplex method applied to a linear pro- 

gram that was initially in a corresponding form, but which in (l) also 

satisfies the primal and dual feasibility criteria, b 2 0 and c fe 0.  As 

is well known, an optimal solution to (l) is then given by x = 0 and 

z = b. 

Hereafter, we specify the components of z and x to be integers, 

whereupon (l) represents a pure integer programming problem. Following 

Gomory [5], if we relax the requirement z i 0, the constraint set of the 

problem becomes  Ax = b (mod l), x ^0 and integer. We may replace b 

with any vector A such that A = b (mod l), and similarly replace the 

jth column of A with any vector A. which is its equivalent modulo 1, 

without altering the set of feasible solutions x. In particular, we 

may drop the integer parts of the cooponents of A and b, so that the 

entries of the A. are nonnegative and less than 1, Let us then write 

the relaxed integer problem as 

(2) Minimize     ) c.,x. 

subject to ^ A.x.    ~   A     (mod l),      x i 0 and integer, 

and where, by assumption,  c. fe 0 for all J.   Given that the components 
j 

The original problem is assumed to have a finite optimal solution. 



of A and b axe integers, where A and b denote the original A matrix 

and b vector that were transformed to obtain the primal and dual feasible 

form of (1), Gomory [k]  has shewn that the vectors u satisfying 

n 

u  =  y   A.y.  for integer y. 
 r       J d J 

are elements of a finite additive group of order D, where D is the abso- 

lute value of the determinant of the matrix that was inverted by the 

simplex method to yield (l) in its primal and dual feasible canonical 

form. 

2. Integer Solutions to (l) and (2) 

It is clear that an optimal solution x* to (2) will not necessarily 

provide an optimal solution (x*, z*) to (l), where z* = b - Ax*, since 

the components of z* may not all be nonnegative. However, it might be 

hoped that the solution to (2) will extend optimally to (l) in this fash- 

ion, and Gomory [5I has indicated some of the conditions under which this 

will occur. 

In order to solve (2), Gomory proposed a variant of a dynamic pro- 

gramming recursion for the knapsack problem developed jointly with Paul 

Gilmore [ 2]. Some refinements and improvements in this dynamic program- 

ming recursion applied to problem (2) have been suggested by W. W. White 

[6], and undoubtedly this approach merits further consideration and elab- 

oration. 

In this paper, however, we propose a different method for solving (2) 

that is expressly designed to accommodate a number of additional restric- 

tions on those x. which are admitted as feasible. The ability to handle 

such restrictions may be desirable either because they apply directly to 



the x. which are feasible for (l), or because they apply implicitly to 

the x. in order to assure that z ^ 0.    This ability may also be desirable 

if one elects to solve  (l) by partitioning the less constrained solution 

space of (2) in a manner to yield a series of problems, the solution to 

one of which will give an optimal solution to (l).   We develop the method 

of this paper in a general form that may also be directly applied to 

solve problem (l), and problems more general than (l).    However, because 

the method seems particularly suited to exploiting certain structures 

that arise in connection with problem (2), a procedure that takes advantage 

of this characteristic of the method may in some instances prove more 

effective   for solving (l) than a completely direct application of the 

method. 

In our approach we generate a sequence S of solutions x(i) ■ 

(x., x^,  ..., x )f.    The cost associated with x(i) is denoted by   c(i) « 

y c.x..   Likewise, we associate with x(i) the group element A(i)   == 

} A.x2:.   We construct S so that it satisfies the following conditions: 

1. If P ^ <1, then x(p) / x(q). 

2. If p < q, then c(p) S c(q). 

3. x(i) is an optimal solution to (2) when A is replaced by A(i). 

h. S is finite, and A(i) = A for some x(i) in S if and only if 

problem (2) has a feasible solution. 

If we alternately interpret the A. as ordinary column vectors, and 

interpret equivalence modulo 1 as ordinary equality, our strategy in 



generating S may be seen to correspond quite closely to the strategy of 

the dual simplex method in solving the ordinary linear progreuoning prob- 

lem, since the successive basic solutions determined by the pivot rules 

of the dual simplex method satisfy exactly the same four conditions. 

Rather than employ pivot transformations to carry us from one term of 

the sequence to the next, however, we resort to a procedure of truncated 

enumeration. Truncated enumeration methods are in general characterized 

by an abbreviated search over a tree of all possible solutions, and de- 

rive their efficiency from the ability to exclude certain branches of 

the tree from consideration, so that, when the criteria for exclusion 

axe  sufficiently effective,, only a small fraction of the potentially 

vast number of alternatives need ever be generated or examined. 

The choice rule that leads to a sequence of solutions satisfying 

the four conditions listed above is called the least cost rule (see [3l)» 

and is closely related to a shortest path algorithm due to G. B. Dantzig 

[ll. However, while the least cost rule is customarily given as finding 

a minimum over a generally enlarging set of nodes of a solution tree, 

our approach prescribes this determination over a constant or decreasing 

set of arc classes, the arc class j consisting of those arcs of the tree 

along which x. is assigned a value.  The strategy underlying our algorithm 

is to imbed this variant of the least cost rule in a framework that 

permits its properties to be exploited in a computationally efficient 

manner. 

See [3] for a discussion of the least cost and other rules in terms 
of tree representation. 



3. The Algorithm 

T
JG deaiipiate problem (3) to be the problem having the same objective 

function as (2), but with an unspecified constraint set, possibly non- 

linear. Our general approach will then apply directly to solving problem 

(3) in nonnegative integer variables. After developing the suitable propo- 

sitions underlying the method in the general case, we will subsequently 

introduce the specializations appropriate to solving those particular 

problems around which our concern centers. 

We introduce the following definitions and notation. A vector x will 

be called a continuation of a vector y if x = y + z for some integer vector 

z ^ 0. We cell x a simple continuation of y if x = y + e. for some J, 

where e, is the vector having its jth component equal to 1 and all re- 

maining components 0. 

In generating the sequence of solutions x(0), x(l), ... to obtain 

an optimal solution to problem (3), we specify that x(0) = 0, and that 

each x(i) is a simple continuation of some x(k), k < i. (Note that 

x(k+l) may not be a simple continuation, or a;iy continuation, of x(k).) 

To assure that the sequence of solutions generated will satisfy this con- 

dition, and other conditions that we will subsequently impose, we asso- 

ciate with every nonnegative integer vector x a set of vectors R(x), and 

say that the vector y is a permissible continuation of x if y = x + z 

for z e R(x). The set R(x) will be defined to consist of all nonnegative 

z / 0 such that r S s, where z is the last nonzero component of z and 

x is the first nonzero component cfx (s = n if x = 0). Ue also define 

R. (x) to be the set of all z  € R(x) such that j  z. = k. Thus, the simple 

continuations generated from x in S are those vectors of the form x + z, 

Z € K- (x). 



In what follows we will want to refer to two sequences of vectors, 

S and S. The parent sequence S consists of every nonnegative integer 

vector that yields an objective function value ex less than or equal to 

the optimal value for problem (3). We will specify a procedure for 

generating the components of S in a certain order which satisfies (with 

ßHght modification) the conditions 1 - 4 of the preceding section. In 

addition, this order will exhibit other properties that carry over to 

the contracted sequence S, which is actually the sequence we will be 

interested in generating. The procedure for generating S differs from 

that used to generate S in that rules are employed that permit certain 

subsequences of solutions in S to be bypassed without receiving consid- 

eration. 

To specify the nature of these rules, we introduce the sequences 

S and S which denote the portions of the completed sequences S and S 

that are generated as of some particular stage. Thus, at the point at 

which the kth solution in S has just been generated, S consists of the 

x(i) for i = 0, 1, ...,k. 

Just as the permissible continuations of those x in S are restricted 

by requiring that they assume the form x + z, z e R(x), we shall require 

(define) that the permissible continuations of the x in S" assume the 

form x + z for z € R(x), where R(x) is some subset of R(x) to be speci- 

fied subsequently. 

Let S* denote the set of all optimal solutions in S, and S* corre- 

spondingly denote the set of all optimal solutions in S. Then it is evi- 

dent frcm our discussion of S that S* must be nonempty whenever an optimal 

solution to problem (3) exists. We will of course want the rules for dis- 

carding continuations in S to assure that S* £ fi   implies S* ^ $.   As a 



basis for accomplishing this we introduce two types of dominance rela- 

tions . 

Ordinary dominance; We will say that a vector x dominates a vector 

y, or xDy, if for every z ^ 0 such that y + z is optimal for problem (3), 

x + z is also optimal. 

Local dominance: We will say that x locally dominates y with respect 

to the sequence S , or xDy, if x + z is optimal for every z € R(y) such 

that y + z is optimal. 

It is to be noted that local dominance depends on the particular 

stage in generating S to which one has reference. Generally, if at some 

point a vector y has no (permissible) continuations that are optimal, 

then y is (locally) dominated by every vector x. 

We may also observe in passing that the relations D and D are both 

reflexive, and that they are neither symmetric nor antisymmetric. On 

the other hand, D is associative, but D is not. Specifically, ulJv, vDw 

implies uDw if and only if R*(w) c ft*(v), where, for any x, R*(x) is the 

(possibly empty) subset of R(x) such that z € R*(x) implies x + z is 

optimal. 

There are two principal rules based on the foregoing remarks that 

will enable the procedure for generating S to be transformeci into the 

procedure for generating S. They are: 

Rule 1. Ifx€S,yys, and xDy, then all v such that v i y may 

be eliminated from G. 

Rule 2. If x e S , y / S , and aDy, then y and all v such that 

v = y + z, z e R(x), may be eliiiinated from S. 

By reference to Rules 1 and 2, we now define R(x) (or, conveniently, 

R(u)). Specifically, for u e S, define R(u) relative to S to be that 
c 
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subset of R(u) such that, w € (R(U) - H(u)) if and only if there exist 

xelj,y^u, whore y is an earlier component of G than u, such that, 

for v = u + w, 

(i) xDy and v > y, or 

(ii) xDy and either v = yorv = y + z, z« R(y). 

It may be noted that the requirement that y is an earlier cootponent of 

II  than u avoids certain problems of circularity, and, as we will see, 

also brings the definition of «(u) into correspondence with the informa- 

tion available from the algorithm at the point at which a -lecision is 

made to include or exclude u from S. That is, R(u) limits the permissible 

continuations of u, at the time u is under consideration as a potential 

element of C, to those permissible continuations of u in S that do not 

qualify to be dropped by Rule 1 or Rule 2. 

The procedure for generating S and S is then as  follows. Associated 
•     • • 

with the vector x(i) = (x,, x^, ..., x ) € S, we define d. = Min(j: 

x* £ 1) if i £ 1, and d = n. Thus, z e R (x(i)) if and only if z = e. 

for some j 5 d. . 

Wo also wish to identify the vector x(t.) such that the next vector 
J 

x(k) of the form x(i) + e . to bo added to S will be given by x(k) = 
J o 

x(t.) + c. for come  j. The identification is accomplished (as vi\l be 
J    J 

proved) if we initially define t.. = 0 for all J, and then define the "next 
J 

value" t. of t. so that t. = Min(i:    i > t. and J S d.), where t. is 

assigned its next value t. iiranediately after the solution x(t,) + e. is 
J j J 

added to S  .    It is possible that some of the t. may not be well-defined 

at a particular stage of generatinc C, and consequently we muct aliso 

identify the set T relative to a given S   which consists of those  J such 

that t. is currently well-defined. 
J 



Finally, to determine the j which is to contribute the next vector 

in S . we define the "next cost" associated with each j to be N. = 
c* 0 

c(t.) + c The foregoing definitions of d., t., T and N. are under- 

stood to apply to S as well as to S by replacing each occurrence of S 

ani ü   respectively with S and S . 

The Algorithm 

Beginning with x(0) = 0, assume that x(i) has been generated for 

i = 0, 1, ..., k-1. The procedure to follow is designed to generate S 

with instruction 2 removed, and to generate S with instruction 2 present. 

1. If T is empty, (3) has no feasible solution and there is no kth 

term to be generated. Otherwise, let J be determined by N = 

Min(N.: j t T).  If there is more than one candidate for J, 
d 

select the one for which J is the smallest. 

2. If the solution x(t ) + e   satisfies the criteria to be 
r      J 

eliminated by Rule 1 or Rule 2, assign tT its next value tT 
v d 

and return to 1. Otherwise, 

3. Let x(k) = x(t ) + e . If x(k) is feasible for (3) (hence the 
j   J 

first feasible solution found), then x(k) is optimal and the 

problem is solved. Otherwise, 

k.   Assign t its next value t , increment k by 1, and return to 1. 
d d 

There are several things to be observed about the general framework 

of the method as described above. First, the process specified in instruc- 

tion 2, whereby x(t ) + e is bypassed, corresponds precisely to setting 

RWO + eT) = 0» since failing to include a solution in S iiranediately d     d 

eliminates all permissible continuations (though not all continuations) of 

It is not necessary to compute a minimum over all elements of T each 
time Nj is determined, since only one of the N. is changed at each step. 
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that solution. When Kule 1 applies to Justify the elimination of all con- 

tinuations of a solution, the method thus accomplishes this by successively 

eliminating certain sets of permissible continuations. 

Second, the description of the method does not specify either the 

record keeping or the tests underlying Rules 1 and 2 that enable the 

elimination of solutions. Vte reserve this specification to later sections, 

where we introduce several important modifications and refinements of the' 

general framework outlined above. 

It may also be observed that, while we have earlier defined d, = 

Min(j: x. ^ l), each d. may be determined more simply by assigning d, the 
J 1 ' K. 

value J at instruction k.    This is clearly true for d.., and in fact for 

any d. = J such that tT = 0. Assuming that it is true for all d., i ^ k-1, 

it must also be true for i = k since, if tT^ 0, then t = p for some p < k 

such that d = J. But then J = Min(j: x. ^ l) and x(k) = x(p) + eT, from p j j 

which d. = J follows. 

k.    Justification of the Algorithm; Propositions and Proofs 

Me  have informally made a number of claims about the sequences S and 

S, and have attempted to introduce considerations to make some of these 

claims intuitively plausible. We will now present our claims more formally, 

explicitly defining S and S to be those respective sequences generated by 

the above method with instruction 2 removed and with instruction 2 present. 

We will require in what follows tnat problem (3) is bounded and that 

c > 0. Given rational c. > 0, this latter can be assured, for example, 
J 

by replacing c by a sufficient positive multiple of itself to assure all 

components are integer, and then replacing those c = 0 by l/P, where P 

is a number such that \ Thus, when solving problem (2) 
/  x. S P - 1. 

T0 0 



11 

it suffices to multiply c by D, and also to let P = D, where D is the 

value of the determinant referred to in Section 1. 

Our first two propositions are essentially the same as the state- 

ments of conditions 1 and 2 in Section 2. 

Proposition 1. If x(p), x(q) € S, or if x(p), x(q) € S, p ^ q, 

then x(p) f x(q). 

Proof. The same proof applies both to S and S. Suppose that the 

proposition is false, and let q assume the least value such that 

x(q) = x(p) for some p < q. Since q > 0, x(q) = x(h) + e for 

some h < q and r = d . Likewise, since x(p) = x(q) / 0, we have 

p > 0 and x(p) = x(i) + e for some i < p and s = d . But by the 
s P 

definition of d and d it follows that r = s and hence x(i) = 
P   q 

x(h). We must have i = h, for otherwise a duplication occurred 

before x(q) was generated, contrary to assumption. But i = h is 

also jinpossible, for, given that t = i when x(p) was generated, 

t was then strictly increased when assigned its next value t , and 

never subsequently decreased, so that the value h of t (also t ) 

when x(q) was generated could only have been larger than i. 

Proposition 2.    In either S or S, if p < q then c(p) S c(q). 

Proof. Again, the same proof applies both to S and S. Note to begin 

with that c(0) S c(l) and that the minimum value of the N. after 

generating x(l) is at least as large as before. We assume that these 

Wo conditions hold for all x(i), i 5 k - 1, and prove that they must 

also hold when generating x(k). For some h, we have c(k-l) = N. = 

c(th) + c,. If t. S k - 1, we have the next value of N. given by 

c(t, ) + c, ^ N, since t. < t.  ^ k - 1. Thus the values for the N. x h'   n   h      h   h j 

are the same or, in the case of N. , possibly increased at the step 
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which generates x(k), hence the minimum value of the N. is also 

nondecreasing and c(k) S c(k-l). To complete the proof we must con- 

sider the case in which t. > k-1. In this instance t, is not de- 
li n 

fined upon generating x(k-l) and hence the set T is decreased by 

one element when generating x(k). The minimum available N. is con- 

sequently nondecreasing and again (if any N. remain) c(k) ^ c(k-l). 
J 

In this fashion the c(i) continue to be nondecreasing until the un- 

defined t, (or some other undefined t,) becomes defined upon gener- 

ating, say, x(q). But then N, = c(q) + c,, which is at least as 

large as the value of H. that produced c(q) (actually exceeding this 

value for c, > 0), so that the minimum available N. remains nondecreas- 

ing at all steps. 

While the proofs of the two preceding propositions did not depend 

upon c > 0 or the precise tiebreaking rule specified by the method for the 

of J, the proof of the next proposition requires both of these. 

Proposition 3« In S and S, c(p) = c(q) and p < q implies x(p) is 

lexicographically larger than x(q). 

Proof. By x(p) lexicographical 1 y larger than x(q), for x(p) ^ x(q), 

we mean that the first nonzero component of x(p) - x(q) is positive. 

Assume the proposition false, and denote d by r and d by s. We 

may assume s < r, for if s = r the same assumptions concerning the 

relation between x(q) and x(p) must also apply to x(q) and x(p) (and 

conversely), where x(q) = x(q) - e and x(p) = x(p) - e . Hence, 
s r 

replacing q and p by q and p a finite number of times permits the 

assumption s < r. But then, N was not defined when x(p) was created, 
s 

or else, by the tiebreaking rule for the choice of J, x(q) would have 
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been generated before x(p).    Consequently, when N   becomes defined, 

c(ts) ^ c(p), and hence c(q) ^ c(p) + cs > c(p), contrary to assump- 

tion. 

The next proposition is the first that does not apply to both S and S. 

Proposition k.    If x(i) € S, then x € S far every nonnegative integer 

x such that ex < c(i). 

Proof.    Assume on the contrary that zhere exists a nonnegative 

integer x such that ex < c(i) and x 7* x(p) for all p < i.   We shall 

restrict attention to those x(p) such that, for some r ^ n, x^ = x. 

for all j > r, xp < x , and x? = 0 for J < r.    From among the solu- 

tions x(p) so restricted, we identify the solution x(q) which is 

"closest" to x as follows.   We stipulate that x(q) is that solution 

for which r is the smallest and such that, from among those x(p) with 

the same value of r, x^ = maxCx^).    Now d   £ r, and hence when x(q) 

is generated t    S q, for either t   < q or t   was undefined at the 

point at which x(q) was generated, in which case t    = q.   Moreover, 

t    ^ q implies N   ^ c(q) + c    S ex.    Thus, since d    ^ r, and since 

instruction 2 of the algorithm is removed, before generating any x(i) 

such that c(i) > ex, the method must first generate from t   and x(q) 

the solution x(h) = x(q) + e  .    But then x(h) qualifies as one of the 

restricted solutions x(p), and is "closer" to x than x(q), contrary 

to the choice of x(q). 

Remark 1.    If problem (3) has a finite optimal solution, then S*- / 0. 

Proof.    When generating S, it follows from Propositions 3 and k that 

T can be empty only if problem (3) has no feasible solution.    (In fact, 

with instruction 2 removed t,  must always be well defined and T cannot 
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be empty in any event.) Suppose that the optimal objective function 

value is c*, but that no optimal solution is obtained when generating 

S. Then since c > 0, Propositions 1 and 2 imply that c(i) > c* for 

some x(i) € S. But then, by Proposition 3> each x such that ex = c*, 

x S 0 and integer, will have been generated as x(p) for some p < i, 

contrary to assumption. 

Having derived the foregoing properties of the sequences S and S, and 

having verified that S* ^ fi   when problem (3) has an optimal solution, we 

now wish to establish that S* ^ 0 as well. To this end we state 

Proposition $. Assume that an external cutoff rule is applied to 

the generation of S, so that, if the method does not stop sooner it 

will stop after generating M terns for M arbitrarily large but finite. 

Also assume that the generation of S is allowed to continue until a 

solution is generated with an objective function value larger than 

that associated with every solution in S. Then for S and S so deter- 

mined, S is a subsequence of S. 

Proof. It is evident from Propositions 1 and 2 that S and S are well- 

defined by the assumptions of the proposition. Denote those x(i) in 

1 —   2       ^ 
S by x (i) and those x(i) in S by x (i). Let S be the subsequence 

1 12 
of S obtained by deleting from S each x (i) such that x (i) / x (k) 

2 for all x (k) e S.   We note by Propositions 2 and k that the components 
/>> 

of S must correspond to those of S, though perhaps in a different order, 

1    ^   ~ 
Thus, designate the smallest i such that x (i) e S by 0, the next 

— 1—2 
smallest i by 1, and so on. Then we wish to prove that x (i) = x (i) 

2    ~ 1 — 
for all x (i) e S. Suppose otherwise, and let p = Min(i: x (i) / 

o 1—2 
x (i)). Also identify the indices q and r such that x (p) = x (q) 

2     1 — and x (p) = x (r). It is assured by Proposition 1 that q, r > p. 

/ 
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Since i = s if and only if i = s, for all i and s, we have x (pr) = 

1 — 2     2 
x (h) + e for some u and some h < p," and x (p) = x (k) + e for 

some v and some k < p. Now, x (p) was generated before x (r), but 

1 —    2 1 —    1 — 
x (r) = x (p) implies x (r) = x (k) + e . Since k < p, this means 

that when x (p) was generated, t ( = k) was well-defined. Thus 

there was a choice to make between generating x (p) and x (r). 

2 2        2     2 
Similarly, x (p) was generated before x (q), but x (q) = x (h) + e , 

so that, by analogous reasoning, there was a choice to make between 

2       2       2 _     —.  — 
generating x (p) and x (q) when x (p) was generated in S. But p < r 

thus implies q < p,    providing a contradiction. 

To demonstrate that S* ^0 implies S* ^ ^5 , we prove the somewhat 

stronger result to follow. 

Proposition 6. If z ^ 0 and y + z is optimal for some y ^ 0, then 

there exists a solution u in S such that u + z is optimal. 

To prove Proposition 6 we must for the first time take into account 

the properties of the relations D and D, and hence of the sets R(x) and 

R(x). 

We begin by observing three things, the proofs of which are immediate 

from our earlier definitions. 

Remark 2. If y € R. (x), z e Rk(x), then y + z e R. , (x). 

Remark 3. If y e RjCx), z c Rk(y), then y + z e ^^(xJ« 

Remark k.    R(y + z) c R(y), R(Z). 

It may be noted that noted that Remarks 2 and 3 are also true with the 

subscripts h and k removed. We then have 

Remark 5. If, relative to some S , Rule 2 prescribes the elimination 

of all solutions of the form u + w, w € R(u), then the elimination of 
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all solutions of the form u + w, v  R(u) is prescribed by Rule 1 

or 2. 

The validity of this remark follows directly f-->m the definition of R(u). 

We may. observe also that when a solution u is dropped at instruction 2 

of the algorithm, it follows from Propositions 2 and 5 that no solutions 

of the form u +w, w T R(U), will be generated in S. Our next two remarks, 

while less inmediate than those preceding, are fundamental to the proof of 

Proposition 6. 

Remark 6. Relative to a given S , let V be the set of all v c S 

such that there exist x -; S , y ^ S , for which v, x, and y satisfy 

condition (i) or (ii) in the definition of R(u). Then, if u = v + w 

for some v € V and some v G R(V), it follows that u € V. (Here u 

and w do not necessarily correspond to the u and w in the definition 

of R(u).) 

Proof. If v satisfies condition (i), then it is inmediate that u 

does also and hence u - V. If v satisfies condition (ii) for v = y, 

then u = y + w, w e R(y), and it follows from Remark 5 that u e V. 

Thus, we examine the case where v satisfies condition (ii) for v = y + z, 

z e R(y). Then from the definition of u ve have u = y + z + w, 

w e R(v). Making use of the properties of R(u), by Remark k we 

have R(v) = R(y + z) c R(y), hence w e R(y). But also z e R(y), 

and by Remark 2, w + z e R(y). Finally, by Remark 5, u e V. 

Remark ?♦ For V defined as in Remark 6, S - S = V. 

Proof: It is obvious that V c s - S. To prove the converse, suppose 

a -: S - S but u / V. Moreover, let u = x(h) be the first solution 

in S satisfying these two conditions. Identify the solution x(i) s S, 

4 
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i < h, such that x(i) + e = x(h) and r = d.. We observe by 

Remark 6 (for x(i) = v and e = w) that x(i) / V. However, since 

x(h) is the first solution in S that is not in V and also not in 

S, it follows that x(i) e S. (For convenience we assume that the 

indices of the solutions in S are changed, if necessary so that 

x(i) e S denotes the same solution as x(i) € S. Proposition 5 per- 

mits this assumption to be made without danger.) Since r S d., at 

some point in generating S we have t = i and N = c(h) = c(t ) 

+ e . Also, since x(h) ^ V, x(h) does not satisfy the criteria to 

be dropped at instruction 2.   On the other hand, if the algorithm 

generating S halts before x(h) is added to S, then it cannot be due 

to T = 0, since t must remain well-defined from the point at which 

x(i) is generated until after x(h) is produced. But the method also 

cannot halt in consequence of finding an optimal solution before 

generating x(h) since, otherwise, by Proposition 5, such an optimal 

solution would have preceded x(h) in S, and thus S would also have 

ended before generating x(h). There are no other ways that x(h) 

could be prevented from belonging to S, and the proof is completed 

by contradiction. 

With the foregoing remarks we have established all but one portion 

of the proof of Proposition 6, which we now complete as follows. 

Proof of Proposition 6. We claim that for any z i 0, the lexico- 

graphically largest u such that u + z is optimal is always retained 

in S, For, suppose it is not. We may first observe that u € S. This 

is clearly true for z / 0 by Propositions 2 and U, and is also true 

for z = 0 since by Proposition 3, the first optimal solution in S 
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(hence the only optimal solution in S by the rule for termination in 

instruction 3) is that which is lexicographically largest. Given 

that u 6 S, if u / S then u € V by Remark 7. Thus there exist x 

and y as in Remark 6 such that: (i) xDy and u = y + w, w i 0; or 

(ii) xDy and u = y + w for w € R(y) or w = 0. In both cases, y + w + z 

is optimal, and so is x + w + z. Thus cy = ex, and by Proposition 

3 x is lexicographically larger than y. But then x + w is legico- 

graphically larger than y + w = u, contrary to the definition of u. 

It is clear that Proposition 6 iaiplies S* / ^ when problem (3) has 

a finite optimal solution. In order to gain a clearer understanding of 

our foregoing results it is perhaps worth pausing to consider not only 

what has been proved but what has not been proved. For example, if c ^ 0 

but c ^ 0, it is clear that S might not be finite, although a slight modi- 

fication in generating S that allowed upper bounds to be taken into con- 

sideration would assure finiteness for an explicitly bounded problem. On 

the other hand, unless c > 0 it is easy to construct examples for which 

Propositions 3 and 6 are false. This does not inmediately imply that S* = 

0, but it may actually make the generation of S less efficient by allowing 

a solution x that is lexicographically smaller than a solution y to be 

retained in S while causing y to be dropped; whereas, had y been generated 

first (and yDx), it would have caused x to drop. But the fact that x is 

lexicographically smaller than y means that it will in general have a 

larger number of permissible continuations, forcing the method tc examine 

more solutions than might otherwise be the case. 

A more subtle point concerns the rule in instruction 1 for breaking 

ties in the determination of J, i.e., by taking J at its smallest possible 
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value.  It is tempting to believe that any rule for breaking ties might 

do as well, but this is false. (There is, of course, the class of permis- 

sible tiebreaking rules that may be made the same as the one specified 

by a suitable reindexing of the variables.) The choice of J not only 

affects the efficiency in the generation of S (in the manner Just indi- 

cated for x > 0). but is crucial in determining whether an optimal--or 

even a feasible--solution vd.ll be found. It is in fact possible to spec- 

ify choice rules for certain problems that will cause S* to be empty even 

though an optimal solution exists. 

Having established the validity of the general framework of the 

algorithm given above, we will subsequently present a principal variation 

of this method in which it is possible to obtain an optimal solution by 

generating only a subset of S. However, before introducing this varia- 

tion, and the additional propositions upon which it is based, we vail 

now examine how the foregoing method may be applied in certain specific 

situations. 

5. Applying the Method to Problem (2) V?ith and Without Additional Constraints 

We first consider solving problem (2) in the absence of additional 

constraints. Denoting the solution x(t.) + e. of instruction 2 by x, it 
J    3 

is clear that x(i)Dx for x(i) e S (i.e., for i § k - l) if 

) A.x. - ) A.x2]    (or A(t ) + AT= A(i)), since it is assured by     

The consequence of this choice may be interpreted as a secondary cost 
perturbation that increments each c. by c./P - * ■* where, given-that all feasible 

x satisfy y x. < D, P is selected so that P k D(kc.) for all j, where k is a 

multiple such that kc. is an integer for all J, and each €. satisfies 0 < e. 
J J J 

< c. -i- c./P and e   ^ e./D. In conjunction with the other rules of the 

method, this assures that c(p) < c(q) for p < q. 
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Propositions 2 and k that c(i) S ex.    Moreover, x then qualifies to be 

dropped by Rule 1,  sinee Propositions 1 and h imply x ^ S   .    Thus, to de- 

termine whether x may be dropped at instruction (2) it suffices in this 

case to check only whether A(t ) + A   = A(i). 
J J 

However, droxjping x in this fashion eliminates only its permis- 

sible continuations, whereas, according to Rule 1 (and Proposition 6) 

it is legitimate to drop all the continuations of x.   We will now con- 

sider a way that will permit this to be accomplished conveniently when 

x has the form ke   . 
s 

Denote the value d.   associated with a solution x(i) by r,  so that 

x    denotes the first nonzero component of x(i).    Note first of all that 

it is unnecessary to record any solution vector x(i) since x(i) may al- 

ways be reconstructed by knowing the group element A(i) and the value 

of r ( = d.) for each i.    Thus to determine x = x(i), we begin with x = 0, 

and define the next value of x to be 5? =    x -f- e  .      Thereupon,  one 

finds p, p < i,  such that A(p) == A(i) - A , and repeats the process, 

treating S? as x and A(p) as A(i).    As soon as A(0) is reached, x(i) is 

completely determined. 

This process may be slightly speeded if x    is known for each i. 

Keeping track of this value, which we denote by U., is particularly 

easy, since, in generating X(:L) = x(p) + e   we have U.  = U   + 1 if d    = 
X ■** XT lr 

r and U.  = 1 otherwise.    However, we will also wish to know the value 

U.   of x   in order to exploit Rule 1 more fully, in accordance with our 

previous dis cus s ion. 

Tnus, given that x is a solution that qualifies to be dropped from 

S    by Rule 1, where exactly one component of x,  say x , is positive,  then 
*- s 

x    £ x    - 1 nay be required of all solutions generated.    This restriction, 
5 s 
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which has the form x. SB., can be accomaodated in a straightforward v;a,y 

by modifying the definition of the next value t. of t ,. Specifically, let 
JO 

t. = min(l:  i > t. and d.   Si), where d.   = r (r = d. ) if U.  = B    - I, and 

d.  = r - 1 if U.   ~ B,.    (One rno.y record d.  at the same time an recording 

d., or simply flag d.  to indicate whether d.  = d.  or d.   = d.   - 1.)   This 

modified definition of t. assares that one will not generate any solution 
J 

x(p), x(r)) - x(i) + e.,    such that :c^ > B..    For the value of j  ^ d.   S d, 

implies cither x. = 0 or j = d.  = r and x. S B.  - 1.    In either case, 

x. = x.. -i- 1 SB..     (Variables with 0 upper bounds are assumed dropped 
J        J J 

from the problem.)   Also, the method will not fail to generate any solu- 

tion in which x. S B., provided this solution would have been generated 

under the original definition of t.,  since the now and old definitions 
J 

correspond for all j S r whenever x.SB. -l(x.=x. -1). 

In direct extension of our foregoing remarks, we next consider problem 

(2) augmented by constraints of the form x. ^B -J where the B. do not all 
J   «3 D 

arise naturally--i.e., as a consequence of Rule l--but rather occur as 

exogenous restrictions which may apply, for example, to the x. that solve 
J 

problem (l). In this event, it may no longer be true that A(i) = A(t.) + A. 
J J 

implies x(i)Dx (x = x(t ) + e  ).    However, suppose that,  if instruction 2 
J J 

were temporarily bypassed, x would be generated as x(q),  and that there 

exists some x(p) e S , p < q, such that A(p) g A(q).    Then if either 

d   < d ,  or if d    = d   and U    > U ,  it follows that x(p)Dx(q), and thus 

x can be dropped at instruction 2 as a consequence of Role 2.    Also, it 

is evident that x(p)Dx, and x can be eliminated by Rule 1, if for any 

optimal solution of the form x = x 4- z S B (ü S 0 and B the vector of 

upper bounds), it follows that x(p) -l- z Ü B, since then x(p) can legit- 

imately replace x in such a solution.    We mention three things that will 
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assure this, in order of increasing restrictiveness, but also of increas- 

ing difficulty of application; (i) x^ = 0 for those j such that B. is 
J u 

exogenous,  (ii) x? ^ x. for such variables,  (iii) ex + min(c.(B. - x^ + l)) 
j   J J J   J 

exceeds an upper bound on ex, where the minimum is computed over those J 

such that B. is exogenous and x? > x..  This latter criterion may also be 

applied replacing c by e (the vector of ones) if an upper bound on y x, 

is known. 

If none of the foregoing criteria apply (other than A(p) = A(q)), it 

is possible that x should not be dropped,, but retained as x(q) in S. In 

this event one may, if desired, cut dam the number of solutions examined 

by not allowring the consideration of any solution x(q) + e. such that 
J 

j < d .      An additional index, ra , assigned to x(q) (generally, m. 

assigned   to x(i)) will accomplish this if one defines t.  so that 
J 

t. = min(i: i > t., m. ä j ^ d.), where, in this case, m = d - 1. The 

introduction of m. and d, in the revised definition of t, has precisely 
ii 0    -^    ^ 

the effect of restricting the set R(x(i)) from which the permissible con- 

tinuations of x(i) with respect to S are determined. 

The foregoing remarks, however, do not take advantage of the fact 

that the A(i) are elements of a finite group. This is an important con- 

sideration, and we will show how to exploit its implications later. For 

the moment, however, we continue to evolve the structure of the algorithm 

To prove this suppose u = x -;- z is optimal for some z  h 0.    Then 

cu S ex + c.z. for all j. How, x(p) + z will be optimal unless, for 
J u 

some j  such that B, is exogenous,  z.  + x,  ^ B. +1.    But then x*? > x., 
pJ JJJp JJ 

z.  SB. - x. +1, and hence cu h   cS + min(c,(B. - x, + l)).    When this 

cannot be satisfied,  as stipulated in (iii), then x(p)Dx is assured. 

2 
Gome or all of those solutions for j  = d   may also be eliminated, the 

details of which depend on the value of U ,        and may be readily developed 
from the considerations discussed here. 

^ 



23 

to accoaumodatc other kindc of restrictions. 

It irj rcther transparent that a restriction of the form ) x. ^ M 

r i 
may be handled simply by recording M. = ) x. -- i.e., U.  = M +1 where 

i  Z^ 0        i   P 

x(i) = x(p) + c.. for some j. Then vhen M. = M, it is desired that R(x(i)) 

0j which may readily be assured by setting d. =0. 

One criterion for dropping solutions at instruction 2 is immediate. 

If x(p)Dx or x(p)Dx in the absence of the constraint )  x_. S LI, then M i 

Zx. ( = 11,  -i- i) assures that the same relation will hold in the present 
J    CJ V-     - 

instance. On the other hand, if II > ) x., then x may have to be retained 

as x(ci). An exception occurs when ex + (M + 1 - M )(lan(c.)) exceeds an 
Jr        J 

upper bound on ex, by reasonlnc similar to that of footnote 1 on the pre- 

cedlnc page. It may be noted that this criterion may be checked quite 

easily. The criterion may also bo sharpened, though at some computational 

expense, by indexing the c. in ascending order of magnitude and defining 
J iatI k to be the least index such that  >      B.>M + 1-M.    One then tests 

/ ,  J P 
ja: 

whether M, given by M = ex + ) B .c . + (M+l - M - ) B. )c , exceeds 

j<k j<k 

the bound on ex.    Moreover, if criterion (iii) on page 22 holds, then 

z. ^ B.  - x?    (see the associated footnote), and one may replace B. in M 
.1        0        J J 

by B.  = B.  - x^, redefining k in terras of the B.    instead of the B..    We 
J        J J J J 

give attention to such criteria because, in the form of the algorithm 

introduced in the next section,  upper bounds on ex are likely to be 

obtained before determining an optimal solution. 

Now consider a restriction of a somewhat different sort.    Suppose that 

the problem variables are divided into a number of different sets Q., such 

that at most one variable in any particular set may assume a positive value. 
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A familiar example of such a restriction is given by a set of constraints 

y *,s-1- of the form 
J 

J ^ 

One method of accommodating such a restriction is as follows. Assign 

a different prime number to each set Q. , and assign to the variable x. the 

set of prime numbers corresponding to those Q, to which J belongs. If the 

Q, are disjoint, x, will thus be assigned at most one prime number. Then, 
41 J 

to each A(i) generated by the method we attach a number P. . We let P = 1, 

and determine P , where x(q) = x(p) + e., so that P = P G., where G, is 
q j      q  p j'    J 

the product of those primes associated with x.. We do not allow x(q) to 
u 

be created, however, if any prime associated with x. divides P . It is 
J P 

easy to see that this approach will cause the method to generate only 

those solutions satisfying the  indicated restrictions.    Also, the largest 

P. will not exceed the product of the primes attached to the Q^, and may 

be substantially less than this product. 

Another (perhaps better) way of handling such restrictions is to 

assign the numbers 1, 2, h, 10, 20,  kO, 100, 200, 400, etc., one-to-one 

to the sets Q. , and to assign each x., as before the numbers attached to 

those Q.   for which J  * Q--    In this case we let P    = 0,  and let P    = P    + G., 

where x(q) = x(p) + e. and G. is the sum of the numbers associated with 
J    J 

x.. It is not hard to see how to determine whether it is permissible to 
J 

generate the solution x(p) + e. when using this scheme. Also, a quite 
J 

The manner of assigning primes to the Q. will significantly influence 

the size of the largest P, . A step in the right direction would be, for 

example, to assign the smallest primes to those Q» with the largest number 

of elements. It would also be possible to use -1 for the "first prime," 
followed by 2, 3, etc. 

4 
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large number of ccts Q    may be accommodated by rcprcGenting a large P. 

by more than a single number,  e.g., by P.,  P.,  P.    where P.   ic the 

'augmented number"  (p..  P.,  P.). 
l'  i'  i 

The ability to drop solutions at instruction 2 is rather limited 

when accommodating restrictions such as the one above unless one is will- 

ing to apply more involved tests for determining x(p)Dx and x(p)Dx. How- 

ever, if the x. are not subject to other types of restrictions, then one 

criterion that assures x(p)Dx(q) (representing x as x(q)) is A(p) a A(q) 

whenever P divides P and the P. are determined by the prime number 
p        q        i 

assignment. 

6. A Variation of the Algorithm 

We now indicate a refinement of the method that in some cases will 

make it possible to substantiaJ ^y reduce the number of solutions generated. 

First, suppose that we wish to solve problem (2) in the absence of addi- 

tional restrictions, and assume that a list g , g0, ..., g^ is associated 

with the D elements (including 0) of the additive group, where g, = i 

if A(i) is the kth group element and g, = 0 if the kth group element has 

not yet been generated. Such a list would evidently be useful in the 

ordinary procedure of determining when a solution is to be dropped at 

instruction 2. However, note that if A(p) and A(q) are generated such 

that A(p) + A(q) = A , then x(p) + x(q) is a feasible solution to problem 

(2). Moreover, if x* is an optimal solution to (2) such that either x* - 

x(p) ^: 0 or x* - x(q) £ 0, then it can readily be shown that x(p) + x(q) 

is an optimal solution to (2). Consequently, A(p) + A(q) = A allows us to 

limit the A(i) generated in two ways. First, we need not generate any con- 

tinuations of A(p) or A(q)  (which pocentially eliminates 2n sequence terms, 
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although usually many of these will already be removed from consideration), 

and,  second, the solution sequence may be termin-'ted as soon as c(i) ^ 

c(p) + c(q)«    This knowledge can be exploited with the use of the g.   list 

as follows.    When any A(q) is generated, check the value g. , where A    - 

A(q) is the kth element of the additive group.    If g,   = 0, then nothing 

is to be done, but if gv. = P > 0, then A(p) + A(q) s A  .    Thus set d    = 
A Op 

d    =0, so that no permissible continuation of x(p) or x(q) will be gen- 

erated.    In addition, if any continuation x(i) of x(p)    (permissible or 

otherwise) has already been generated, we may set d,   = 0.    The fact that 

x(p) + x(q) is a solution to (2) is recorded, unless some better feasible 

solution has already been found.    Note that, although no continuation of 

certain of the sequence terms need be generated, these terms may still be 

used to drop other sequence terms in the usual fashion at instruction 2. 

The best feasible solution found supplies the value ex* such that the 

sequence generation stops when c(i) k ex*.    (The process may also stop 

simply because T becomes empty.) 

But we can generally do still better than this,  extending the fore- 

going remarks to problem (3) in the process. 

For each x(k) g S  , let F,   be the set of those x(i) e S , i £ k, 
C K. C 

such that x(i) + x(k) is feasible for problem (3), and if F, / 0, let 

x(v) be the particular element of F. such that v = min(i: x(i) e F,). 

If one is solving problem (2) subject to additional constraints, a 
modification of the g, list can be conveniently used to identify F, and 

x(v). For this purpose, instead of assigning a single component g, to 

the kth group element, one may define gj, to be the index of the first 

A(i) equivalent to the kth group element, gj^ to be the index of the 

second, and so on. 
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Then, betvecn instructions 3 and k of the method we my insert the 

instruction: 

3A.    If F,   = 0,  go to instruction h.    Other.dsc, set d.   = 0 for 

all x(i) G F, ,  for i = h, and for each x(i) e S    that is a con- 
K y C 

tinuation of some solution in F,.    If c(k) + c(v) < ex*, vrhere x* 

denotes the best feasible solution previously found,  designate x(k) 

+ x(v) to be x*. 

When the method is augmented by instruction 3^>  the condition T = 0 

of course may not indicate the absence of a feasible solution, but only 

that no solution exists that improves upon x*-, provided x* is well- 

defined . 

Proposition 6 assures that for each x(k) e S there is an x(i) e S 

such that x(k) + x(i) is optimal if an optimal continuation of x(k) 

exists.    But then, because the c(i) are monotonically nondecreasing, 

the first x(i) such that x(i) + x(k) is feasible must be optimal.    The 

justification of 3A follows immediately, and the algorithm may clearly 

be halted at instruction 2 as soon as IL   ^ ex*.   Vie now state an im- 

portant condition that allows the algorithm to be halted still earlier. 

Proposition 7«    When the method of Section 3 is augmented by 

instruction 3^, then the algorithm may be halted at instruction 2, 

and the best feasible solution x* found taken as optimal, whenever 

K    - c(h) > c , where a. = Max(c.) and c(h) = max(c(i):  c(i) < exx- -N ). 

(until a feasible solution is found,  let c(h) = oo.) 

Note;    Proposition 7 niay be interpreted as follows.    Suppose a 

feasible solution x* has been found by the method with instruction 

3A included.    Until such a solution is  found, the method is the 

sar.ie as before.    However, the next solution x(r) to be generated. 
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and all remaining ones, must satisfy c(r) > N- for the successive 

current values of NT. NOT/, if x* is not optimal, and if there is 

any solution x(h) such that x(h) + x(r) is optimal, then c(h) 

cannot exceed the value assigned to it by Proposition 7- Also, 

by thus assigning c(h) its maximum possible value and c(r) its 

minimum possible value N , one minimizes c(r) - c(h) for all r 

and h such that c(r) + c(h) < cx-x-, c(r) ^ c(h). The proposition 

then asserts (through the relation NT - c(h) > c ) that once this 

minimum difference exceeds c. , an optimal solution has already 

been found. 

We break the proof of Proposition 7 into several parts, as follows. 

Remark 8. Let x and x be chosen so that they minimize c,-,. - cS 

subject to ex - c£ £ 0, x, £ £ 0, and x + x is an optimal solution to 

problem (3). Then ex - cSi S c,,. 

Proof. Suppose the conclusion is false. Select any j such that 

x. > 0 and let x.' = x. - 1, x." = &. -i- 1, with the remaining com- 

ponents of x' and x" equal respectively to the corresponding 

components of x and St.   We must have ex' - ex" < 0 since ex1 - ex" = 

ex - cS£ - 2c., and x and x are assumed to minimize ex - ex £ 0. But 

then, from ex - cSc > c., ve obtain ex" - ex' < 2c. - c,, ^ c.,, where 

x" and x' satisfy the requirements for x and x, contrary to assumption. 

Remark 9.    Let q be the least index such that x(q) e S and for some 

P - <lj x(q) + x(p) is optima: (x(p) e S). Then c(q) - c(p) = 

ex - c^ for x and x chosen as in Remark 8 and for all p, p ^ q, 

such that x(p) + x(q) is optimal. 

Proor. Suppose that for q and for some p as given, we have ex - ex 
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< c(q) - c(p). Then from ex + cÄ = c(q) + c(p) we obtain ex < c(q). 

By Proposition 6 there is a solution x(s) e S such that x(s) + S is 

optimal, and also, therefore, a solution x(r) € S sueh that x(r) + 

x(s) is optimal. It is immediate that e(s) = ex and c(r) = cfc. 

But then e(r) ^ c(s) < c(q), implying r, s < q, whieh is impossible. 

Proof of Proposition 7« Let S' denote the sequenee generated when 

the method is augmented by instruetion 3A. It may readily be veri- 

fied that the proofs of Propositions 1, 2, 3 and 5 apply to S' 

as well as to S, since these proofs do not depend upon the legiti- 

maey of eliminating continuations of solutions in S from S. 

(Only Proposition 6 depends upon such legitimacy.) Likewise, one 

may conclude from the reasoning of Proposition 5 that S' is a 

subsequence of S. Consequently, we may assume that the indices 

of solutions in S' are assigned so that x(i) 6 S'and x(i) e S 

denote the same solution. Then let q be selected as in Remark 9» 

and given this value of q, let p assume the smallest value (p * q) 

such that x(q) + x(p) is optimal. We now wish to establish that 

x(p) and x(q) belong to S*. If not, one or the other of them must 

be excluded from S' as a consequence of instruetion 3A*and thus 

may be expressed in the form x(i) + z or x(k) + z, where x(i) + x(k) 

was discovered to be feasible, x(i) e F., and z ^ 0. Since k S q is 

required if x(p) or x(q) is to be eliminated as a consequence of 

finding the feasible solution x(i) + x(k), we have c(k) S c(q). 

Then from e(k) + c(i) S c(q) + c(p) we also have c(p) 2 c(i), and 

hence e(k) - c(i) s c(q) - c(p). If this last holds as an equality, 

then c(k) = c(q) and c(p) = c(i), from which it follows by the defini- 

tion of q that k = q, and x(q) e S'. (x(k) and x(i) are not dropped 



from S', but only their continuations not in S'.    Of course,  one may 

alternately, if desired, think of x(k) and x(i) as being dropped 

also.)    But then, also p S i, hence x(p) cannot have been elininated 

from S'.    In particular, p = v for v as defined for instruction 3A., 

and hence the solution x(p) + x(q) would have been chosen as x*- by 

the method.    Thus, we examine the case for c(k) - c(i) < c(q) - c(p). 

By Remark 9 it follows that c(k) + c(i) > c(q) + c(p).    Therefore 

c(p) < c(i), p < i, and x(p) cannot have been eliminated from o'. 

Thus, if x(q) /^ S1, or if x(q) + x(p) v;as not selected as x*, we 

must have q > k and either x(q) = x(k) + z    or x(q) = x(i) + z. 

Suppose x(q) = x(k) + z.    Then from c(q) + c(p) < c(i) + c(k) we 

obtain cz + c(p) < c(i).    Since x(k) + z + x(p) is optimal, by 

Proposition 6 there is a solution x(r) e S" such that x(k) + x(r) 

is optimal,  c(r) < c(i).    But this is incompatible with q > k.    One 

similarly obtains a contradiction from the assumption x(q) = x(i) 

+ z, which completes the proof,  for we have shovm both that x(p), 

x(q) e S'  and that x(q) + x(p) vras at some point selected as x^. 

To cet an idea of the restrictiveness of the terminating condition 

of Proposition 7» we note that it allocs the algorithm to stop whenever 

11    & cx-':-/2 + CL   (where ex* is the optimal objective function value), and 

generally sooner.    This is likely to result in considerable computational 

savings in the event that it is not difficult to check for feasibility 

and Cj is somewhat smaller than cx*/2.    (Savings would likely result in 

any case due to the continuations that are dropped.)    The reason for this 

lies in the fact that there arc generally many more distinct solutions 

x that yield the same value of ex for ex large than for ex small.    For 

example, if the objective is to minimize )    x.    and if ex-  = 20, it is 
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evident that the number of solutions z that satisfy    OS   ) z. S n is 

considerably smaller than those that satisfy 12 ^   )    x, S 20.    Of 

course, the method would ordinarily generate only a small fraction of 

the latter range of solutions in any event.   But the existence of a cut- 

off point at y x. < 12 would likely allow a further elimination of 

possibilities. 

The question arises as to whether it is possible to shortcut the 

generation of solutions if it is known beforehand,  or explicitly required, 

that an optimal solution must satisfy a constraint of the form) x, 2 L. 

We s^^bhat this question may be answered affirmatively in the next 

section. 

7«    Accommodating ) x, = L» / x. 2 L, and related constraints« 

We have already seen how to handle constraints of the form   ) x.    S M. 

The method for handling constraints of the form   ) x, = L and 

) x. i L is quite similar.    Suppose that   ... = Min (c.).    To accommo- 

date   y x.  = L, x.. is eliminated from the objective function by pivot 

reduction (i.e., by replacing x   by L - )    x.), so that the new objective 

J22 

function coefficient for each j is c .* = c. - c.  £ 0.    (if c* = 0 for 

some j / 1, then the problem is of course perturbed so that c.' > 0.) 
J 

With X- thus "eliminated," only the variables x. for j ^ 2 enter 

c, 

Xj SL- 
J22 

explicitly into consideration, and ^ x. = L with x^. ^ 0 is accomodated 

by requiring / x. S L. i- 
The constraint ) x.  ^ L is handled in a like fashion, introducing 

the nonnegative integer slack s^.  and \rriting ^ x. - s,  = L.    After 

remc/ing x,   from the objective function as above, and treating it as 
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dependent variable  (s..   now has the objective function coefficient c1 ), 

we are left with the inequality ^ x.  - s    £ L.    To assure that the method 

will actually generate only those solutions satisfying ) x. i L,  it is 

important that s    be indexed as the last x variable; i.e.,  s,   = x    ,. 
n 

As a consequence, whenever ) x-j " xn+i 
=: L> no permissible continuation 

J=2 

of x(i) may be allowed, since every permissible continuation of this solu- 

tion would necessarily violate ) x. - x ,. ^ L. Note that this would 
/, J   n+1 
J=2 

not be the case if s were not the last x variable. 

Variations immediately suggest themselves. Whenever the problem has 

a subset of constraints of the form ) a. .x. S a. , where, say, a. . i 0 

for j = 1, ..., r. and a.. ^ 0 for j = r. + 1, ..., n, then it can readily 

be seen how to apply the algorithm so that every x(i) generated satisfies 

all such constraints for which a.  g 0.  In accordance with these remarks, 
10 ' 

it would be reasonable to attempt to impose an indexing of variables that 

would create this structure, or nearly this structure, for several of the 

problem constraints. For constraints that could not be put in this form 

(given that other constraints do have the desired form), it would be use- 

ful to index as many positive a.. as possible ahead of the first negative 

a. .. 

Similarly, for constraints of the form y a.x = a (mod l), where the 

a. may represent either scalars or column vectors, if the a. for j = 1, ..., r, 
J J 

are contained in a subgroup of the group _generated by the a. (mod l) for all 
\   i J 

j (e.g., a. = 0 for j ^ r), then if a - ) a.x. is not a member of the sub - 
J ^     L-—'        O       J 

group, the continuations x(i} + e. for j ^ r need not be generated. To 
J 

exploit this and similar relations more thoroughly, it is of course pos- 
sible to reindex the x. for the permissible continuations of x(i). However, 

such local reindexing requires more memory, and does not permit a solution 
x(i) to be_ dropped unless R*(x(i)) = pi  or unless I?*(x(i)) / p can be shown 
to imply K*(XCP)) ^ fb  for some solution x(p) not dropped. 
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8. Passive Variables and Additional Ways of Handling Upper Bounds for 

Problem 2. 

We will be concerned in this section with two additional ways of 

handling certain types of problem constraints that arise chiefly in 

the context of problem (2). The first way involves the creation of 

"passive" variables to restrict the number of solutions generated. The 

second involves a means for determining when some subset of exogenous 

bounds is actually nonbinding, thus allowing the bounds to be treated 

as natural. To accomplish the second goal we will subsequently derive 

some needed results about finite additive groups. 

Suppose first that x. ^ B. is required for all x., and that there 
J      J J 

exist nonnegative integers h, k (h > 0) such that kc S he-, kA1 * hA«. 

Ordinarily, if ke.. is generated as x(p) and he» is generated as x(q), q 

> p, it would not be permissible to drop x(q) due to the existence of 

the exogenous B, . However, note that we may require of any optimal 

solution that x- ^ h only it  x > B.. - k (equivalently, x. 5 B - k 

only if Xp ^ h - l). For if Xp ^ h and x, ^ B. - k, one may obtain a 

solution with no greater value of ex by decrementing Xp by h and 

incrementing x by k. To take advantage of this fact we create the 

"passive" variable x p = hXp + (B, - k + l)x1. We call x^ p passive 

because when x, _ is generated as a solution x(i), we remove x 9 

from the list of variables, and assign a large enough value to d, so 

that all original variables may combine with x(i) to form other solu- 

tions. In doing this, we restrict Xp so that Xp * h - 1, except for 

By the obvious convention, we mean by this that x.= B. - K + 1, 

x = h, and x. = 0 for J ^ 3. 



3^ 

the continuations of x(i). 

There are other, more general, instances in which the creation of 

passive variables may be useful. We will not attempt to give a formal 

description of these, but instead provide some examples from which the 

general procedures may be inferred. Suppose, for example, that by a 

relationship such as outlined above, or by some other means, it is known 

that x2 ^ 5 implies x1 ^ 3 and that x^ ^ 7 implies x    Z 6.    To handle 

this we may create the passive variables x.. p = 3x, + 5Xp and x.. _ ._ « 

3x + 6xp + 7x  .    Then we impose the restrictions Xp S U, x ^ 6, except 

^2 = JL  mien Ä2 wMiWJ.t^0 ^ith x1  2, and x2 S Bg - 6, x» S B- - 7 that x„ ^ 1 when x„ combines with 

when variables combine with x _ Q. If, in addition to the foregoing, 

Xr ^ 5 implies x_ ^ 2, we create the fa/o additional passive variables 

x„ ^ = 2x„ + 5x. and ^ p ^ k = xi p ^ + ^\'    The vay in which such 

passive variables may be created to accommodate other similar situa- 

2 
tions should by now be clear. 

Note that we could alternately let x p = (B - k + l)x1 (hence 
i ' 

x-^B, -k + 1, x. =0 for J ^ 2) and then require x. § B, - k and Xp 

^ h - 1 except for continuations of x(i). 

2 
Passive variables provide a base upon which the rules of the algo- 

rithm generate a partitioning of the x(i). The justification for the 
partitioning may be expressed in terms of logical equivalences; e.g., in 
a simple case:  (? ->Q) <  > (P A Q) v (~ P). An interesting special 
use of the passive variables occurs when the logical alternatives provide 
lower bounds on ex, which may then be evaluated in place of N. for such 

variables. Passive variables may also, of course, be created at later 
stages of the solution process. Thus, if it is determined that the per- 
missible continuations of x(i) must satisfy x. g L., where L. > x3: for 

0 0 u     u 

some subset R of the j ^ d., then one may take advantage of this by 

creating x , say, where generating x as a solution x(p) gives x^ = L. 
n       -n        i u 0        0 

for j e Pv and x^ = x. otherwise.    In this case, d    Is set equal to d., 
0   0 ' p       "•      i' 

and x(i) may be disregarded as a source of continuations. 
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We now turn to the second means of handling upper bound restric- 

tions . It may well happen that certain exogenous B. do not in reality 
J 

exert any influence upon the set of optimal solutions to (2). We derive 

some results concerning additive groups that will help to determine when 

this is the case. 

Imagine, in particular, that one has found k, h such that he, S kc« 

and hA, = kA2. Under some circumstances, it is possible to impose the 

restriction x« S k - 1, using k - 1 as a natural bound for Xp, in spite 

of the fact that x1 ^ B. for B. exogenous. We develop one such circum- 

stance as follows. 

Proposition 8. Assume z e G if and only if z = ) A.x., B. S x, i 0, 

and x. integer. Let h A = ^n^-o anci ^VS - ^pA?» where hx - ^o and 

B, + 1 ^ hp, Bp + 1 S k. (h^h jk^kp nonnegative integer). Then 

(i) k-hp > kph, implies 

(ii) z e G if and only if z = ) A.x., x. integer, B. ^ x. i 0 for 
Z i   J  «J      J J        J 

j  ^ 3 and hp - 1 £ x    £ 0, ^ - 1 £ x2 £ 0. 

Proof.    Assume z = ) A.x., x. integer, B. fc x.  ^0 but x0 ^ k.  or 

x.   ^ hp.    If Xp ^ k , let x.1  = x-, + ^n» ^ = x2 ~ ^1» and xi, = 

x. fbr j S 3 • Then we have z = y A .x.'. Consider the linear 

function L(x) = k x + hpXp. By (i) it follows that LCx») < L(x). 

\le  replaoe xf by x and repeat the process with L(x) strictly decreas- 

ing at each step, until Xp ^ k. - 1. Now possibly x g hp (or pos- 

sibly Xp < k. and x 5 hp to begin with). Define x' = x.. - h-, 

Xp' = Xp + kp, x ' = x. for J S 3, so that, again z = ) A■^x■i,• 

In this case LCX1) S L(X). Denoting x' by x and repeating, eventually 

x ^ hp - 1. If now Xp ^ k^, the original replacement process is 

initiated. Continuing this cycle of replacing x by x1 we see that 
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L(X) is always nonincreasing and is periodically strictly decreasing. 

From (i) it follows that h_ > 0 and thus (ii) is true or else even- 

tually Xp < 0. But the latter is impossible by the way in which x' 

is defined in terms of x. 

To see specifically how Proposition 8 relates to the problem of de- 

termining natural bounds, suppose that no exogenous bounds B. existed 
J 

and that he was generated as a solution x(p). Then, if subsequently 

the solution k e was considered for inclusion among the x(i), where 

klA2 - ^l^l ^as in ^oposi^i-011 8)» the  fact that h c1 ^ k-C- would permit 

the solution k^- to be dropped and the restriction x0 ^ k - 1 to be 

imposed. Likewise, the method would similarly permit x.. ^ h» -1 to be 

imposed if k^e- were generated as x(p) and kJU = h A , k0cp ^ he.. 

Observe now that h ^ ^ k c2 and k c ^ h2c1 imply k-h ^ ^^p* 

This follcniTS by multiplying the first inequality by hp, the second by h , 

combining, and then dividing through by cp > 0. But by Proposition 8, if 

in fact kph < kJi , then imposing x1 ^ h^ - 1 and x^ S k. - 1 will be 

permissible even if x. ^ B. for exogenous B. (provided the new bounds 
Jo J 

for x1 and Xp do not exceed B, or Bp). 

Suppose now that the relation between x.. and Xp stated in Proposi- 

tion 8 also holds between other (not necessarily disjoint) pairs of vari- 

ables. Creating the appropriate linear function L(x) for each such pair 

affords the conclusion that x. m^r be bounded from above by the smallest 
J 

of the upper bounds that apply by Proposition 8, provided this smallest 

upper bound is ^ B.. We now seek an expedient way to determine the 
J 

smallest of these bounds for each j , 

Proposition 9» I^t K  ^e  the least positive integer such that, for 

some integer h s o, k,Ap = hA, and k, Cp 5 he, . Moreover, let h. 
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be the smallest integer h satisfying these relations. Similarly, 

let hp be the least positive integer such that, for some integer 

k ^ 0, hJV - kA2 and he > kc?, and let kp be the smallest k 

satisfying these relations. (Alternately, we may require k c- > 

he and h^c ^ k c .) Then h kp < hpk and, moreover, h1 < hp, 

k2<k1. 

Proof. First, observe that h1 > hp and K, ^ kp is impossible. 

For otherwise we have kpCp < h c1 ^ h c 5 ^Cp - *2co>  or kpc2 <' 

kpCp. Thus, either h < hp or kp < k. . Suppose h1 < hp but kp 

^ 1^. Then (kg - \)c2 <  (h2 - h1)c1 and (kg - Jc^Ag = (h2 - ^ )A1, 

where k > k^ - k ^0, h ^ hp - h > 0. But then by the defini- 

tion of hp we have hp - h = hp and thus kp - k- = kp, the latter 

^eing impossible. Consequently, h < h implies kp < k.. On the 

other hand, if k« < k and h ^ hp, then (k, - kp)^:^ > (N ' h2^cl 

and (k^ - kp)Ap = (h - h^A^. In this case we obtain a contradic- 

tion by observing that h > h. - hp = h. follows from the definition 

of k. and h . Thus we conclude h < hp, kp < k-, and, of course, 

h^ < hg^. 

One immediate consequence of Proposition 9 is that for h., hp, k., 

kp as indicated, it is impossible to find h, k not both zero such that 

hp > h > 0, ^ > k g 0 and hA1 = kA2. Moreover, h., hp, k., kp may 

always be determined to satisfy the conditions of Proposition 9 as long 

as c., Cp > 0. This means that we are provided with natural bounds B, = 

hp - 1 and Bp = k- - 1 such that B, + Bp < D, where D is the order of the 

additive group generated by the A.. (We assume that if exogenous bounds 
J 

B,  and Bp exist,  then B,   ^ B,,    ÜL ^ Bp.)      This result extends to any 

number of variables,  since if hA   = kA    for nonnegative h and k not both 0, r s ' 
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it is immediate by Propositions 8 and 9 that either x Sh-lorx ik-1 

can be enforced. By a process of scanning, then, one selects bounds B. 

such that x. S B. and ) B. < D, provided B. SB.. Gonory has pointed out 

that y x. S D - 1 may be enforced for an optimal solution to (2). We 

have here indicated a way to determine bounds on the x. that satisfy this 

inequality (provided exogenous bounds are nonbinding). One of the chief 

values of this result, however, lies in the fact that it provides a con- 

venient way to check whether some of the exogenous B. may actually be re- 
J 

placed by natural (and possibly smaller) upper bounds. 

Another use for Propositions 8 and 9 occurs when y x. is bounded 

above. In this event, the upper bounds x 5 h - 1, x« S k. - 1 still 

apply provided h 5 k, and kp S lu. It is to be noted that these latter 

inequalities may occur for h-, h-, k , k satisfying Proposition 8 but not 
J.   c   J.   c 

Proposition 9. 

In the scanning of the A., and their multiples to determine bounds on 

the x., there is another result that may be useful. If h is the least 

positive (integer) multiple of A such that h A1 = kA2 for some k, then 

the only positive multiples h of A., that satisfy hA. EH k/U, for some k, 

are h = h., 2h , 3h,, etc. To see this, suppose hA EH kA« for h = rh + q, 

where r is any positive multiple and 0 S q < h . Then q/L EE (k - rk-)Ap, 

where k-Ap = h A . By the definition of h. it follows that q = 0. 

9. Concluding Remarks 

The chief focus of this paper has been on developing an algorithm 

for solving problem (2) when certain additional constraints apply. 

Gomory's approach [5] to solving this problem in the absence of such 

constraints is to use the dynamic programming recursion 

</>.{z)  = Min(0j._1(z), 0J(z - k.)  + c.),        j = 1, 

4 
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where 0.(0) = 0, 0 (z) = <», and z ranges over the elementc of the addi- 

tive group generated by the A. nod 1. If 0.(z - A.) is unknown, then 
J J J 

one may provisionally replaced it by 0. ..(z - A.) and be assured that 

Computing 0.(z + kA.) based upon this replacement for k = 0, 1, ..., 
J J 

will yield the correct value of 0,(z - A.) for the value of k such that 
J     J 

z + kA . = z - A .. 
J      J 

As W. W. V/hite points out [6], it is possible to determine 0 (z + 

kA .) correctly for all k without tiie need for revision. To do this one 

identifies h such that 0. (z + hA.) = Min(0._,(r, + kA.)), and defines 0. 

(z+hA.)=0(z+hA.). 0(A) then gives the optimal objective func- 

tion value for (2). Backtracking over the 0 (z) to find an optimal x 

occurs in a manner related to that outlined in Section 5 by recording 

for each 0.(z) the largest k such that x. = 1. 

Our motivation in developing the algorithm of this paper has not 

been to devise a method that is competitive in efficiency with Gomory's 

when applied to (2) in the absence of additional constraints. Neverthe- 

less, our method may be competitive in this limited context due to the 

fact that it may generate A somewhat in advance of generating all the 

other elements of the finite additive group, particularly if the varia- 

tion of Section 6 is used. The Gomory approach, on the other hand, must 

generate 0.(z) for each z in the group and for each j except possibly for 
J 

j = n. It may be noted that the values 0 (z) constitute a superset of 

the c(i) generated by the algorithm of this paper. 

Once problem (2) becomes complicated with restrictions of the form 

x ^ B., however, the dynamic programming recursion just outlined no 
J   J 

longer suffices, and it appears necessary to resort to the more familiar 

Bellman knapsack recursion 
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J 

In addition to being rather demanding on memory capacity, it is evident 

that this approach can require considerably more computation than the 

earlier recursion unless the average of the B. is not too far from 1. 

The treatment of exogenous upper bounds in our approach requires, 

by comparison, very moderate storage capacity.    In addition, although 

these bounds may sometimes entail more computation than would be re- 

quired in their absence,    they may also sometimes entail less.    This is 

due to the fact that their existence may rule out the generation of cer- 

tain x(i) that would otherwise occur in the solution sequence. 

There appears to be little promise in the customary dynamic program- 

ming approach to handling other kinds of restrictions, since the amount 

of computation and memory requirements in such applications are typically 

quite large. 

We might note,  in passing, that our method can be employed in the 

framework of a cutting approach.    The optimal solution to (2)  -- or to 

(2) augmented by some of th? restrictions of (l) -- provides a lower 

bound L such that ex ä L in the optimal solution to (l).    One may find 

successively larger integer values for L by solving (l) as a linear pro- 

gram with the constraint ex g L adjoined,  and then reapplying the method 

of this paper.    The method may clearly be adapted to solve for all optimal 

solutions to (2) or (3),  thereby assuring that L may always be incremented 

by at least 1 (assuming that c initially consists of' integers). 

More generally, any linear form in the nonbasic variables with posi- 

tive coefficients  (and possibly some zero coefficients temporarily per- 

turbed),  can replace the objective function of (3).    The optimal value 

for this modified objective function -- or a lower bound on this optimal 
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value obtained by the method at some convenient cutoff point -- can be 

used to transfouathe linear form directly into a cut.  If the problem 

has a aixict of constraints of the form ) a .x. ^ a , where a. H; O for j 

^ r, then a cut can also be obtained by minimizing a linear form over 

the x. for j > r. provided all constraints ) a.x. = a with a. ^ 0 for 

j S r arc disregarded.  It may be noted that the variation of Section 6 

may provide a particularly effective way to determine a cut. If an opti- 

mal solution hasn't been found upon reaching a specified cutoff, it fol- 

lows from Proposition 7 that one may impose the cut )  c .x. ^ Max(c(i), 

2c(i) - a ), where x(i) is the last solution generated. Vlhen the linear 

form minimized is ) x.. this of course becomes )x. ^2>x.-l. 
L   3 L>   3 L>   3 

It is assumed that the coefficients of the linear form are selected 
so that the slack variable of the cut will be integer valued. 

2 
One can take advantage of these latter constraints, however, by 

following the approach of the footnote on page 32. 
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