
^

AN ALGORITHM FOR SOLVING THE LINEAR

INTEGER PROGRAMMING PROBLEM OVER

A FINITE ADDITIVE GROUP, WITH

EXTENSIONS TO SOLVING GENERAL LINEAR

AND CERTAIN NONLINEAR

INTEGER PROBLEMS

by

Fred Glover

C lEMlHSHOU S E
FOB FEDERAL SCIENTIFIC AND

TECHNICAL INFORMATION
Berdcoftr Miorofiobt

, MS- n
» ^^

/ mmm mm

OPERATIONS RESEARCH CENTER

COLLEGE OF ENGINEERING

CRC 66-29
September 1966

t

O 0 C

UNIVERSITY OF C A L I F 0 R N IA - B E R K E L E Y

AN ALGORITHM FOR SOLVING THE LINEAR INTEGER PROGRAMMING PROBLEM

OVER A FINITE ADDITIVE GROUP, WITH EXTENSIONS TO SOLVING GENERAL

LINEAR AND CERTAIN NONLINEAR INTEGER PROGRAMS

by

Fred Glover
Operations Research Center

University of California, Berkeley

September 1966 ORC 66-29

This research was partially supported by the Office of Naval Research under Contract
Nonr-222(83), The National Science Foundation under Grant GP-4593, The Army Research
Office under Contract DA-31-124-ARO-D-331 and the University of California. Repro-
duction in whole or in part is permitted for any purpose of the United States
Government.

ABSTRACT

Ralph Gomory has recently aroused interest in a special type of

knapsack problem in which the constraint coefficients and constant term

are elements of a finite additive group. The significance of this prob-

lem lies in the fact that it is closely related to the general integer

linear programming problem, resulting by removing the nonnegativity re-

strictions on those variables in the general problem that lie in an

optimal basis for the associated linear program.

Gomory has shown how to solve the special knapsack problem by

adapting a dynamic programming recursion originally designed for the

ordinary knapsack problem, and has identified sufficient conditions

under which the solution of the special knapsack problem will satisfy

the nonnegativity requirements in the general integer program, thereby

yielding an optimal solution to that problem as well.

In this paper 4te present an algorithm for solving the special knap-

sack problem that is capable of accommodating a variety of constraints

J
in addition to the special knapsack constraint. Our purpose in doing

this is to expand the range of problems for which the optimal solution

for the special problem will also provide an optimal solution to the

general integer program from which it was derived.

We develop the algorithm in a general framework that also permits a

direct application to solving the general integer programming problem

and certain nonlinear integer problems without attempting to solve the

special knapsack problem. Some of the results developed can also be

exploited by integer programming algorithms other than the one of this

paper.

4

1. Introduction

We represent the ordinary linear programming problem as that of

finding an n x 1 vector x and an m x 1 vector z to

(1) Minimize ex

subject to Ax + z = b, x fe 0, z ^ 0,

where A, b, and c are matrices of constants with dimensions m x n, m x 1,

and n x 1, respectively. We assume for convenience that the canonical

form (l) has been obtained by the simplex method applied to a linear pro-

gram that was initially in a corresponding form, but which in (l) also

satisfies the primal and dual feasibility criteria, b 2 0 and c fe 0. As

is well known, an optimal solution to (l) is then given by x = 0 and

z = b.

Hereafter, we specify the components of z and x to be integers,

whereupon (l) represents a pure integer programming problem. Following

Gomory [5], if we relax the requirement z i 0, the constraint set of the

problem becomes Ax = b (mod l), x ^0 and integer. We may replace b

with any vector A such that A = b (mod l), and similarly replace the

jth column of A with any vector A. which is its equivalent modulo 1,

without altering the set of feasible solutions x. In particular, we

may drop the integer parts of the cooponents of A and b, so that the

entries of the A. are nonnegative and less than 1, Let us then write

the relaxed integer problem as

(2) Minimize) c.,x.

subject to ^ A.x. ~ A (mod l), x i 0 and integer,

and where, by assumption, c. fe 0 for all J. Given that the components
j

The original problem is assumed to have a finite optimal solution.

of A and b axe integers, where A and b denote the original A matrix

and b vector that were transformed to obtain the primal and dual feasible

form of (1), Gomory [k] has shewn that the vectors u satisfying

n

u = y A.y. for integer y.
 r J d J

are elements of a finite additive group of order D, where D is the abso-

lute value of the determinant of the matrix that was inverted by the

simplex method to yield (l) in its primal and dual feasible canonical

form.

2. Integer Solutions to (l) and (2)

It is clear that an optimal solution x* to (2) will not necessarily

provide an optimal solution (x*, z*) to (l), where z* = b - Ax*, since

the components of z* may not all be nonnegative. However, it might be

hoped that the solution to (2) will extend optimally to (l) in this fash-

ion, and Gomory [5I has indicated some of the conditions under which this

will occur.

In order to solve (2), Gomory proposed a variant of a dynamic pro-

gramming recursion for the knapsack problem developed jointly with Paul

Gilmore [2]. Some refinements and improvements in this dynamic program-

ming recursion applied to problem (2) have been suggested by W. W. White

[6], and undoubtedly this approach merits further consideration and elab-

oration.

In this paper, however, we propose a different method for solving (2)

that is expressly designed to accommodate a number of additional restric-

tions on those x. which are admitted as feasible. The ability to handle

such restrictions may be desirable either because they apply directly to

the x. which are feasible for (l), or because they apply implicitly to

the x. in order to assure that z ^ 0. This ability may also be desirable

if one elects to solve (l) by partitioning the less constrained solution

space of (2) in a manner to yield a series of problems, the solution to

one of which will give an optimal solution to (l). We develop the method

of this paper in a general form that may also be directly applied to

solve problem (l), and problems more general than (l). However, because

the method seems particularly suited to exploiting certain structures

that arise in connection with problem (2), a procedure that takes advantage

of this characteristic of the method may in some instances prove more

effective for solving (l) than a completely direct application of the

method.

In our approach we generate a sequence S of solutions x(i) ■

(x., x^, ..., x)f. The cost associated with x(i) is denoted by c(i) «

y c.x.. Likewise, we associate with x(i) the group element A(i) ==

} A.x2:. We construct S so that it satisfies the following conditions:

1. If P ^ <1, then x(p) / x(q).

2. If p < q, then c(p) S c(q).

3. x(i) is an optimal solution to (2) when A is replaced by A(i).

h. S is finite, and A(i) = A for some x(i) in S if and only if

problem (2) has a feasible solution.

If we alternately interpret the A. as ordinary column vectors, and

interpret equivalence modulo 1 as ordinary equality, our strategy in

generating S may be seen to correspond quite closely to the strategy of

the dual simplex method in solving the ordinary linear progreuoning prob-

lem, since the successive basic solutions determined by the pivot rules

of the dual simplex method satisfy exactly the same four conditions.

Rather than employ pivot transformations to carry us from one term of

the sequence to the next, however, we resort to a procedure of truncated

enumeration. Truncated enumeration methods are in general characterized

by an abbreviated search over a tree of all possible solutions, and de-

rive their efficiency from the ability to exclude certain branches of

the tree from consideration, so that, when the criteria for exclusion

axe sufficiently effective,, only a small fraction of the potentially

vast number of alternatives need ever be generated or examined.

The choice rule that leads to a sequence of solutions satisfying

the four conditions listed above is called the least cost rule (see [3l)»

and is closely related to a shortest path algorithm due to G. B. Dantzig

[ll. However, while the least cost rule is customarily given as finding

a minimum over a generally enlarging set of nodes of a solution tree,

our approach prescribes this determination over a constant or decreasing

set of arc classes, the arc class j consisting of those arcs of the tree

along which x. is assigned a value. The strategy underlying our algorithm

is to imbed this variant of the least cost rule in a framework that

permits its properties to be exploited in a computationally efficient

manner.

See [3] for a discussion of the least cost and other rules in terms
of tree representation.

3. The Algorithm

T
JG deaiipiate problem (3) to be the problem having the same objective

function as (2), but with an unspecified constraint set, possibly non-

linear. Our general approach will then apply directly to solving problem

(3) in nonnegative integer variables. After developing the suitable propo-

sitions underlying the method in the general case, we will subsequently

introduce the specializations appropriate to solving those particular

problems around which our concern centers.

We introduce the following definitions and notation. A vector x will

be called a continuation of a vector y if x = y + z for some integer vector

z ^ 0. We cell x a simple continuation of y if x = y + e. for some J,

where e, is the vector having its jth component equal to 1 and all re-

maining components 0.

In generating the sequence of solutions x(0), x(l), ... to obtain

an optimal solution to problem (3), we specify that x(0) = 0, and that

each x(i) is a simple continuation of some x(k), k < i. (Note that

x(k+l) may not be a simple continuation, or a;iy continuation, of x(k).)

To assure that the sequence of solutions generated will satisfy this con-

dition, and other conditions that we will subsequently impose, we asso-

ciate with every nonnegative integer vector x a set of vectors R(x), and

say that the vector y is a permissible continuation of x if y = x + z

for z e R(x). The set R(x) will be defined to consist of all nonnegative

z / 0 such that r S s, where z is the last nonzero component of z and

x is the first nonzero component cfx (s = n if x = 0). Ue also define

R. (x) to be the set of all z € R(x) such that j z. = k. Thus, the simple

continuations generated from x in S are those vectors of the form x + z,

Z € K- (x).

In what follows we will want to refer to two sequences of vectors,

S and S. The parent sequence S consists of every nonnegative integer

vector that yields an objective function value ex less than or equal to

the optimal value for problem (3). We will specify a procedure for

generating the components of S in a certain order which satisfies (with

ßHght modification) the conditions 1 - 4 of the preceding section. In

addition, this order will exhibit other properties that carry over to

the contracted sequence S, which is actually the sequence we will be

interested in generating. The procedure for generating S differs from

that used to generate S in that rules are employed that permit certain

subsequences of solutions in S to be bypassed without receiving consid-

eration.

To specify the nature of these rules, we introduce the sequences

S and S which denote the portions of the completed sequences S and S

that are generated as of some particular stage. Thus, at the point at

which the kth solution in S has just been generated, S consists of the

x(i) for i = 0, 1, ...,k.

Just as the permissible continuations of those x in S are restricted

by requiring that they assume the form x + z, z e R(x), we shall require

(define) that the permissible continuations of the x in S" assume the

form x + z for z € R(x), where R(x) is some subset of R(x) to be speci-

fied subsequently.

Let S* denote the set of all optimal solutions in S, and S* corre-

spondingly denote the set of all optimal solutions in S. Then it is evi-

dent frcm our discussion of S that S* must be nonempty whenever an optimal

solution to problem (3) exists. We will of course want the rules for dis-

carding continuations in S to assure that S* £ fi implies S* ^ $. As a

basis for accomplishing this we introduce two types of dominance rela-

tions .

Ordinary dominance; We will say that a vector x dominates a vector

y, or xDy, if for every z ^ 0 such that y + z is optimal for problem (3),

x + z is also optimal.

Local dominance: We will say that x locally dominates y with respect

to the sequence S , or xDy, if x + z is optimal for every z € R(y) such

that y + z is optimal.

It is to be noted that local dominance depends on the particular

stage in generating S to which one has reference. Generally, if at some

point a vector y has no (permissible) continuations that are optimal,

then y is (locally) dominated by every vector x.

We may also observe in passing that the relations D and D are both

reflexive, and that they are neither symmetric nor antisymmetric. On

the other hand, D is associative, but D is not. Specifically, ulJv, vDw

implies uDw if and only if R*(w) c ft*(v), where, for any x, R*(x) is the

(possibly empty) subset of R(x) such that z € R*(x) implies x + z is

optimal.

There are two principal rules based on the foregoing remarks that

will enable the procedure for generating S to be transformeci into the

procedure for generating S. They are:

Rule 1. Ifx€S,yys, and xDy, then all v such that v i y may

be eliminated from G.

Rule 2. If x e S , y / S , and aDy, then y and all v such that

v = y + z, z e R(x), may be eliiiinated from S.

By reference to Rules 1 and 2, we now define R(x) (or, conveniently,

R(u)). Specifically, for u e S, define R(u) relative to S to be that
c

8

subset of R(u) such that, w € (R(U) - H(u)) if and only if there exist

xelj,y^u, whore y is an earlier component of G than u, such that,

for v = u + w,

(i) xDy and v > y, or

(ii) xDy and either v = yorv = y + z, z« R(y).

It may be noted that the requirement that y is an earlier cootponent of

II than u avoids certain problems of circularity, and, as we will see,

also brings the definition of «(u) into correspondence with the informa-

tion available from the algorithm at the point at which a -lecision is

made to include or exclude u from S. That is, R(u) limits the permissible

continuations of u, at the time u is under consideration as a potential

element of C, to those permissible continuations of u in S that do not

qualify to be dropped by Rule 1 or Rule 2.

The procedure for generating S and S is then as follows. Associated
• • •

with the vector x(i) = (x,, x^, ..., x) € S, we define d. = Min(j:

x* £ 1) if i £ 1, and d = n. Thus, z e R (x(i)) if and only if z = e.

for some j 5 d. .

Wo also wish to identify the vector x(t.) such that the next vector
J

x(k) of the form x(i) + e . to bo added to S will be given by x(k) =
J o

x(t.) + c. for come j. The identification is accomplished (as vi\l be
J J

proved) if we initially define t.. = 0 for all J, and then define the "next
J

value" t. of t. so that t. = Min(i: i > t. and J S d.), where t. is

assigned its next value t. iiranediately after the solution x(t,) + e. is
J j J

added to S . It is possible that some of the t. may not be well-defined

at a particular stage of generatinc C, and consequently we muct aliso

identify the set T relative to a given S which consists of those J such

that t. is currently well-defined.
J

Finally, to determine the j which is to contribute the next vector

in S . we define the "next cost" associated with each j to be N. =
c* 0

c(t.) + c The foregoing definitions of d., t., T and N. are under-

stood to apply to S as well as to S by replacing each occurrence of S

ani ü respectively with S and S .

The Algorithm

Beginning with x(0) = 0, assume that x(i) has been generated for

i = 0, 1, ..., k-1. The procedure to follow is designed to generate S

with instruction 2 removed, and to generate S with instruction 2 present.

1. If T is empty, (3) has no feasible solution and there is no kth

term to be generated. Otherwise, let J be determined by N =

Min(N.: j t T). If there is more than one candidate for J,
d

select the one for which J is the smallest.

2. If the solution x(t) + e satisfies the criteria to be
r J

eliminated by Rule 1 or Rule 2, assign tT its next value tT
v d

and return to 1. Otherwise,

3. Let x(k) = x(t) + e . If x(k) is feasible for (3) (hence the
j J

first feasible solution found), then x(k) is optimal and the

problem is solved. Otherwise,

k. Assign t its next value t , increment k by 1, and return to 1.
d d

There are several things to be observed about the general framework

of the method as described above. First, the process specified in instruc-

tion 2, whereby x(t) + e is bypassed, corresponds precisely to setting

RWO + eT) = 0» since failing to include a solution in S iiranediately d d

eliminates all permissible continuations (though not all continuations) of

It is not necessary to compute a minimum over all elements of T each
time Nj is determined, since only one of the N. is changed at each step.

10

that solution. When Kule 1 applies to Justify the elimination of all con-

tinuations of a solution, the method thus accomplishes this by successively

eliminating certain sets of permissible continuations.

Second, the description of the method does not specify either the

record keeping or the tests underlying Rules 1 and 2 that enable the

elimination of solutions. Vte reserve this specification to later sections,

where we introduce several important modifications and refinements of the'

general framework outlined above.

It may also be observed that, while we have earlier defined d, =

Min(j: x. ^ l), each d. may be determined more simply by assigning d, the
J 1 ' K.

value J at instruction k. This is clearly true for d.., and in fact for

any d. = J such that tT = 0. Assuming that it is true for all d., i ^ k-1,

it must also be true for i = k since, if tT^ 0, then t = p for some p < k

such that d = J. But then J = Min(j: x. ^ l) and x(k) = x(p) + eT, from p j j

which d. = J follows.

k. Justification of the Algorithm; Propositions and Proofs

Me have informally made a number of claims about the sequences S and

S, and have attempted to introduce considerations to make some of these

claims intuitively plausible. We will now present our claims more formally,

explicitly defining S and S to be those respective sequences generated by

the above method with instruction 2 removed and with instruction 2 present.

We will require in what follows tnat problem (3) is bounded and that

c > 0. Given rational c. > 0, this latter can be assured, for example,
J

by replacing c by a sufficient positive multiple of itself to assure all

components are integer, and then replacing those c = 0 by l/P, where P

is a number such that \ Thus, when solving problem (2)
/ x. S P - 1.

T0 0

11

it suffices to multiply c by D, and also to let P = D, where D is the

value of the determinant referred to in Section 1.

Our first two propositions are essentially the same as the state-

ments of conditions 1 and 2 in Section 2.

Proposition 1. If x(p), x(q) € S, or if x(p), x(q) € S, p ^ q,

then x(p) f x(q).

Proof. The same proof applies both to S and S. Suppose that the

proposition is false, and let q assume the least value such that

x(q) = x(p) for some p < q. Since q > 0, x(q) = x(h) + e for

some h < q and r = d . Likewise, since x(p) = x(q) / 0, we have

p > 0 and x(p) = x(i) + e for some i < p and s = d . But by the
s P

definition of d and d it follows that r = s and hence x(i) =
P q

x(h). We must have i = h, for otherwise a duplication occurred

before x(q) was generated, contrary to assumption. But i = h is

also jinpossible, for, given that t = i when x(p) was generated,

t was then strictly increased when assigned its next value t , and

never subsequently decreased, so that the value h of t (also t)

when x(q) was generated could only have been larger than i.

Proposition 2. In either S or S, if p < q then c(p) S c(q).

Proof. Again, the same proof applies both to S and S. Note to begin

with that c(0) S c(l) and that the minimum value of the N. after

generating x(l) is at least as large as before. We assume that these

Wo conditions hold for all x(i), i 5 k - 1, and prove that they must

also hold when generating x(k). For some h, we have c(k-l) = N. =

c(th) + c,. If t. S k - 1, we have the next value of N. given by

c(t,) + c, ^ N, since t. < t. ^ k - 1. Thus the values for the N. x h' n h h h j

are the same or, in the case of N. , possibly increased at the step

12

which generates x(k), hence the minimum value of the N. is also

nondecreasing and c(k) S c(k-l). To complete the proof we must con-

sider the case in which t. > k-1. In this instance t, is not de-
li n

fined upon generating x(k-l) and hence the set T is decreased by

one element when generating x(k). The minimum available N. is con-

sequently nondecreasing and again (if any N. remain) c(k) ^ c(k-l).
J

In this fashion the c(i) continue to be nondecreasing until the un-

defined t, (or some other undefined t,) becomes defined upon gener-

ating, say, x(q). But then N, = c(q) + c,, which is at least as

large as the value of H. that produced c(q) (actually exceeding this

value for c, > 0), so that the minimum available N. remains nondecreas-

ing at all steps.

While the proofs of the two preceding propositions did not depend

upon c > 0 or the precise tiebreaking rule specified by the method for the

of J, the proof of the next proposition requires both of these.

Proposition 3« In S and S, c(p) = c(q) and p < q implies x(p) is

lexicographically larger than x(q).

Proof. By x(p) lexicographical 1 y larger than x(q), for x(p) ^ x(q),

we mean that the first nonzero component of x(p) - x(q) is positive.

Assume the proposition false, and denote d by r and d by s. We

may assume s < r, for if s = r the same assumptions concerning the

relation between x(q) and x(p) must also apply to x(q) and x(p) (and

conversely), where x(q) = x(q) - e and x(p) = x(p) - e . Hence,
s r

replacing q and p by q and p a finite number of times permits the

assumption s < r. But then, N was not defined when x(p) was created,
s

or else, by the tiebreaking rule for the choice of J, x(q) would have

13

been generated before x(p). Consequently, when N becomes defined,

c(ts) ^ c(p), and hence c(q) ^ c(p) + cs > c(p), contrary to assump-

tion.

The next proposition is the first that does not apply to both S and S.

Proposition k. If x(i) € S, then x € S far every nonnegative integer

x such that ex < c(i).

Proof. Assume on the contrary that zhere exists a nonnegative

integer x such that ex < c(i) and x 7* x(p) for all p < i. We shall

restrict attention to those x(p) such that, for some r ^ n, x^ = x.

for all j > r, xp < x , and x? = 0 for J < r. From among the solu-

tions x(p) so restricted, we identify the solution x(q) which is

"closest" to x as follows. We stipulate that x(q) is that solution

for which r is the smallest and such that, from among those x(p) with

the same value of r, x^ = maxCx^). Now d £ r, and hence when x(q)

is generated t S q, for either t < q or t was undefined at the

point at which x(q) was generated, in which case t = q. Moreover,

t ^ q implies N ^ c(q) + c S ex. Thus, since d ^ r, and since

instruction 2 of the algorithm is removed, before generating any x(i)

such that c(i) > ex, the method must first generate from t and x(q)

the solution x(h) = x(q) + e . But then x(h) qualifies as one of the

restricted solutions x(p), and is "closer" to x than x(q), contrary

to the choice of x(q).

Remark 1. If problem (3) has a finite optimal solution, then S*- / 0.

Proof. When generating S, it follows from Propositions 3 and k that

T can be empty only if problem (3) has no feasible solution. (In fact,

with instruction 2 removed t, must always be well defined and T cannot

Ik

be empty in any event.) Suppose that the optimal objective function

value is c*, but that no optimal solution is obtained when generating

S. Then since c > 0, Propositions 1 and 2 imply that c(i) > c* for

some x(i) € S. But then, by Proposition 3> each x such that ex = c*,

x S 0 and integer, will have been generated as x(p) for some p < i,

contrary to assumption.

Having derived the foregoing properties of the sequences S and S, and

having verified that S* ^ fi when problem (3) has an optimal solution, we

now wish to establish that S* ^ 0 as well. To this end we state

Proposition $. Assume that an external cutoff rule is applied to

the generation of S, so that, if the method does not stop sooner it

will stop after generating M terns for M arbitrarily large but finite.

Also assume that the generation of S is allowed to continue until a

solution is generated with an objective function value larger than

that associated with every solution in S. Then for S and S so deter-

mined, S is a subsequence of S.

Proof. It is evident from Propositions 1 and 2 that S and S are well-

defined by the assumptions of the proposition. Denote those x(i) in

1 — 2 ^
S by x (i) and those x(i) in S by x (i). Let S be the subsequence

1 12
of S obtained by deleting from S each x (i) such that x (i) / x (k)

2 for all x (k) e S. We note by Propositions 2 and k that the components
/>>

of S must correspond to those of S, though perhaps in a different order,

1 ^ ~
Thus, designate the smallest i such that x (i) e S by 0, the next

— 1—2
smallest i by 1, and so on. Then we wish to prove that x (i) = x (i)

2 ~ 1 —
for all x (i) e S. Suppose otherwise, and let p = Min(i: x (i) /

o 1—2
x (i)). Also identify the indices q and r such that x (p) = x (q)

2 1 — and x (p) = x (r). It is assured by Proposition 1 that q, r > p.

/

15

Since i = s if and only if i = s, for all i and s, we have x (pr) =

1 — 2 2
x (h) + e for some u and some h < p," and x (p) = x (k) + e for

some v and some k < p. Now, x (p) was generated before x (r), but

1 — 2 1 — 1 —
x (r) = x (p) implies x (r) = x (k) + e . Since k < p, this means

that when x (p) was generated, t (= k) was well-defined. Thus

there was a choice to make between generating x (p) and x (r).

2 2 2 2
Similarly, x (p) was generated before x (q), but x (q) = x (h) + e ,

so that, by analogous reasoning, there was a choice to make between

2 2 2 _ —. —
generating x (p) and x (q) when x (p) was generated in S. But p < r

thus implies q < p, providing a contradiction.

To demonstrate that S* ^0 implies S* ^ ^5 , we prove the somewhat

stronger result to follow.

Proposition 6. If z ^ 0 and y + z is optimal for some y ^ 0, then

there exists a solution u in S such that u + z is optimal.

To prove Proposition 6 we must for the first time take into account

the properties of the relations D and D, and hence of the sets R(x) and

R(x).

We begin by observing three things, the proofs of which are immediate

from our earlier definitions.

Remark 2. If y € R. (x), z e Rk(x), then y + z e R. , (x).

Remark 3. If y e RjCx), z c Rk(y), then y + z e ^^(xJ«

Remark k. R(y + z) c R(y), R(Z).

It may be noted that noted that Remarks 2 and 3 are also true with the

subscripts h and k removed. We then have

Remark 5. If, relative to some S , Rule 2 prescribes the elimination

of all solutions of the form u + w, w € R(u), then the elimination of

16

all solutions of the form u + w, v R(u) is prescribed by Rule 1

or 2.

The validity of this remark follows directly f-->m the definition of R(u).

We may. observe also that when a solution u is dropped at instruction 2

of the algorithm, it follows from Propositions 2 and 5 that no solutions

of the form u +w, w T R(U), will be generated in S. Our next two remarks,

while less inmediate than those preceding, are fundamental to the proof of

Proposition 6.

Remark 6. Relative to a given S , let V be the set of all v c S

such that there exist x -; S , y ^ S , for which v, x, and y satisfy

condition (i) or (ii) in the definition of R(u). Then, if u = v + w

for some v € V and some v G R(V), it follows that u € V. (Here u

and w do not necessarily correspond to the u and w in the definition

of R(u).)

Proof. If v satisfies condition (i), then it is inmediate that u

does also and hence u - V. If v satisfies condition (ii) for v = y,

then u = y + w, w e R(y), and it follows from Remark 5 that u e V.

Thus, we examine the case where v satisfies condition (ii) for v = y + z,

z e R(y). Then from the definition of u ve have u = y + z + w,

w e R(v). Making use of the properties of R(u), by Remark k we

have R(v) = R(y + z) c R(y), hence w e R(y). But also z e R(y),

and by Remark 2, w + z e R(y). Finally, by Remark 5, u e V.

Remark ?♦ For V defined as in Remark 6, S - S = V.

Proof: It is obvious that V c s - S. To prove the converse, suppose

a -: S - S but u / V. Moreover, let u = x(h) be the first solution

in S satisfying these two conditions. Identify the solution x(i) s S,

4

17

i < h, such that x(i) + e = x(h) and r = d.. We observe by

Remark 6 (for x(i) = v and e = w) that x(i) / V. However, since

x(h) is the first solution in S that is not in V and also not in

S, it follows that x(i) e S. (For convenience we assume that the

indices of the solutions in S are changed, if necessary so that

x(i) e S denotes the same solution as x(i) € S. Proposition 5 per-

mits this assumption to be made without danger.) Since r S d., at

some point in generating S we have t = i and N = c(h) = c(t)

+ e . Also, since x(h) ^ V, x(h) does not satisfy the criteria to

be dropped at instruction 2. On the other hand, if the algorithm

generating S halts before x(h) is added to S, then it cannot be due

to T = 0, since t must remain well-defined from the point at which

x(i) is generated until after x(h) is produced. But the method also

cannot halt in consequence of finding an optimal solution before

generating x(h) since, otherwise, by Proposition 5, such an optimal

solution would have preceded x(h) in S, and thus S would also have

ended before generating x(h). There are no other ways that x(h)

could be prevented from belonging to S, and the proof is completed

by contradiction.

With the foregoing remarks we have established all but one portion

of the proof of Proposition 6, which we now complete as follows.

Proof of Proposition 6. We claim that for any z i 0, the lexico-

graphically largest u such that u + z is optimal is always retained

in S, For, suppose it is not. We may first observe that u € S. This

is clearly true for z / 0 by Propositions 2 and U, and is also true

for z = 0 since by Proposition 3, the first optimal solution in S

18

(hence the only optimal solution in S by the rule for termination in

instruction 3) is that which is lexicographically largest. Given

that u 6 S, if u / S then u € V by Remark 7. Thus there exist x

and y as in Remark 6 such that: (i) xDy and u = y + w, w i 0; or

(ii) xDy and u = y + w for w € R(y) or w = 0. In both cases, y + w + z

is optimal, and so is x + w + z. Thus cy = ex, and by Proposition

3 x is lexicographically larger than y. But then x + w is legico-

graphically larger than y + w = u, contrary to the definition of u.

It is clear that Proposition 6 iaiplies S* / ^ when problem (3) has

a finite optimal solution. In order to gain a clearer understanding of

our foregoing results it is perhaps worth pausing to consider not only

what has been proved but what has not been proved. For example, if c ^ 0

but c ^ 0, it is clear that S might not be finite, although a slight modi-

fication in generating S that allowed upper bounds to be taken into con-

sideration would assure finiteness for an explicitly bounded problem. On

the other hand, unless c > 0 it is easy to construct examples for which

Propositions 3 and 6 are false. This does not inmediately imply that S* =

0, but it may actually make the generation of S less efficient by allowing

a solution x that is lexicographically smaller than a solution y to be

retained in S while causing y to be dropped; whereas, had y been generated

first (and yDx), it would have caused x to drop. But the fact that x is

lexicographically smaller than y means that it will in general have a

larger number of permissible continuations, forcing the method tc examine

more solutions than might otherwise be the case.

A more subtle point concerns the rule in instruction 1 for breaking

ties in the determination of J, i.e., by taking J at its smallest possible

19

value. It is tempting to believe that any rule for breaking ties might

do as well, but this is false. (There is, of course, the class of permis-

sible tiebreaking rules that may be made the same as the one specified

by a suitable reindexing of the variables.) The choice of J not only

affects the efficiency in the generation of S (in the manner Just indi-

cated for x > 0). but is crucial in determining whether an optimal--or

even a feasible--solution vd.ll be found. It is in fact possible to spec-

ify choice rules for certain problems that will cause S* to be empty even

though an optimal solution exists.

Having established the validity of the general framework of the

algorithm given above, we will subsequently present a principal variation

of this method in which it is possible to obtain an optimal solution by

generating only a subset of S. However, before introducing this varia-

tion, and the additional propositions upon which it is based, we vail

now examine how the foregoing method may be applied in certain specific

situations.

5. Applying the Method to Problem (2) V?ith and Without Additional Constraints

We first consider solving problem (2) in the absence of additional

constraints. Denoting the solution x(t.) + e. of instruction 2 by x, it
J 3

is clear that x(i)Dx for x(i) e S (i.e., for i § k - l) if

) A.x. -) A.x2] (or A(t) + AT= A(i)), since it is assured by

The consequence of this choice may be interpreted as a secondary cost
perturbation that increments each c. by c./P - * ■* where, given-that all feasible

x satisfy y x. < D, P is selected so that P k D(kc.) for all j, where k is a

multiple such that kc. is an integer for all J, and each €. satisfies 0 < e.
J J J

< c. -i- c./P and e ^ e./D. In conjunction with the other rules of the

method, this assures that c(p) < c(q) for p < q.

20

Propositions 2 and k that c(i) S ex. Moreover, x then qualifies to be

dropped by Rule 1, sinee Propositions 1 and h imply x ^ S . Thus, to de-

termine whether x may be dropped at instruction (2) it suffices in this

case to check only whether A(t) + A = A(i).
J J

However, droxjping x in this fashion eliminates only its permis-

sible continuations, whereas, according to Rule 1 (and Proposition 6)

it is legitimate to drop all the continuations of x. We will now con-

sider a way that will permit this to be accomplished conveniently when

x has the form ke .
s

Denote the value d. associated with a solution x(i) by r, so that

x denotes the first nonzero component of x(i). Note first of all that

it is unnecessary to record any solution vector x(i) since x(i) may al-

ways be reconstructed by knowing the group element A(i) and the value

of r (= d.) for each i. Thus to determine x = x(i), we begin with x = 0,

and define the next value of x to be 5? = x -f- e . Thereupon, one

finds p, p < i, such that A(p) == A(i) - A , and repeats the process,

treating S? as x and A(p) as A(i). As soon as A(0) is reached, x(i) is

completely determined.

This process may be slightly speeded if x is known for each i.

Keeping track of this value, which we denote by U., is particularly

easy, since, in generating X(:L) = x(p) + e we have U. = U + 1 if d =
X ■** XT lr

r and U. = 1 otherwise. However, we will also wish to know the value

U. of x in order to exploit Rule 1 more fully, in accordance with our

previous dis cus s ion.

Tnus, given that x is a solution that qualifies to be dropped from

S by Rule 1, where exactly one component of x, say x , is positive, then
*- s

x £ x - 1 nay be required of all solutions generated. This restriction,
5 s

21

which has the form x. SB., can be accomaodated in a straightforward v;a,y

by modifying the definition of the next value t. of t ,. Specifically, let
JO

t. = min(l: i > t. and d. Si), where d. = r (r = d.) if U. = B - I, and

d. = r - 1 if U. ~ B,. (One rno.y record d. at the same time an recording

d., or simply flag d. to indicate whether d. = d. or d. = d. - 1.) This

modified definition of t. assares that one will not generate any solution
J

x(p), x(r)) - x(i) + e., such that :c^ > B.. For the value of j ^ d. S d,

implies cither x. = 0 or j = d. = r and x. S B. - 1. In either case,

x. = x.. -i- 1 SB.. (Variables with 0 upper bounds are assumed dropped
J J J

from the problem.) Also, the method will not fail to generate any solu-

tion in which x. S B., provided this solution would have been generated

under the original definition of t., since the now and old definitions
J

correspond for all j S r whenever x.SB. -l(x.=x. -1).

In direct extension of our foregoing remarks, we next consider problem

(2) augmented by constraints of the form x. ^B -J where the B. do not all
J «3 D

arise naturally--i.e., as a consequence of Rule l--but rather occur as

exogenous restrictions which may apply, for example, to the x. that solve
J

problem (l). In this event, it may no longer be true that A(i) = A(t.) + A.
J J

implies x(i)Dx (x = x(t) + e). However, suppose that, if instruction 2
J J

were temporarily bypassed, x would be generated as x(q), and that there

exists some x(p) e S , p < q, such that A(p) g A(q). Then if either

d < d , or if d = d and U > U , it follows that x(p)Dx(q), and thus

x can be dropped at instruction 2 as a consequence of Role 2. Also, it

is evident that x(p)Dx, and x can be eliminated by Rule 1, if for any

optimal solution of the form x = x 4- z S B (ü S 0 and B the vector of

upper bounds), it follows that x(p) -l- z Ü B, since then x(p) can legit-

imately replace x in such a solution. We mention three things that will

22

assure this, in order of increasing restrictiveness, but also of increas-

ing difficulty of application; (i) x^ = 0 for those j such that B. is
J u

exogenous, (ii) x? ^ x. for such variables, (iii) ex + min(c.(B. - x^ + l))
j J J J J

exceeds an upper bound on ex, where the minimum is computed over those J

such that B. is exogenous and x? > x.. This latter criterion may also be

applied replacing c by e (the vector of ones) if an upper bound on y x,

is known.

If none of the foregoing criteria apply (other than A(p) = A(q)), it

is possible that x should not be dropped,, but retained as x(q) in S. In

this event one may, if desired, cut dam the number of solutions examined

by not allowring the consideration of any solution x(q) + e. such that
J

j < d . An additional index, ra , assigned to x(q) (generally, m.

assigned to x(i)) will accomplish this if one defines t. so that
J

t. = min(i: i > t., m. ä j ^ d.), where, in this case, m = d - 1. The

introduction of m. and d, in the revised definition of t, has precisely
ii 0 -^ ^

the effect of restricting the set R(x(i)) from which the permissible con-

tinuations of x(i) with respect to S are determined.

The foregoing remarks, however, do not take advantage of the fact

that the A(i) are elements of a finite group. This is an important con-

sideration, and we will show how to exploit its implications later. For

the moment, however, we continue to evolve the structure of the algorithm

To prove this suppose u = x -;- z is optimal for some z h 0. Then

cu S ex + c.z. for all j. How, x(p) + z will be optimal unless, for
J u

some j such that B, is exogenous, z. + x, ^ B. +1. But then x*? > x.,
pJ JJJp JJ

z. SB. - x. +1, and hence cu h cS + min(c,(B. - x, + l)). When this

cannot be satisfied, as stipulated in (iii), then x(p)Dx is assured.

2
Gome or all of those solutions for j = d may also be eliminated, the

details of which depend on the value of U , and may be readily developed
from the considerations discussed here.

^

23

to accoaumodatc other kindc of restrictions.

It irj rcther transparent that a restriction of the form) x. ^ M

r i
may be handled simply by recording M. =) x. -- i.e., U. = M +1 where

i Z^ 0 i P

x(i) = x(p) + c.. for some j. Then vhen M. = M, it is desired that R(x(i))

0j which may readily be assured by setting d. =0.

One criterion for dropping solutions at instruction 2 is immediate.

If x(p)Dx or x(p)Dx in the absence of the constraint) x_. S LI, then M i

Zx. (= 11, -i- i) assures that the same relation will hold in the present
J CJ V- -

instance. On the other hand, if II >) x., then x may have to be retained

as x(ci). An exception occurs when ex + (M + 1 - M)(lan(c.)) exceeds an
Jr J

upper bound on ex, by reasonlnc similar to that of footnote 1 on the pre-

cedlnc page. It may be noted that this criterion may be checked quite

easily. The criterion may also bo sharpened, though at some computational

expense, by indexing the c. in ascending order of magnitude and defining
J iatI k to be the least index such that > B.>M + 1-M. One then tests

/ , J P
ja:

whether M, given by M = ex +) B .c . + (M+l - M -) B.)c , exceeds

j<k j<k

the bound on ex. Moreover, if criterion (iii) on page 22 holds, then

z. ^ B. - x? (see the associated footnote), and one may replace B. in M
.1 0 J J

by B. = B. - x^, redefining k in terras of the B. instead of the B.. We
J J J J J

give attention to such criteria because, in the form of the algorithm

introduced in the next section, upper bounds on ex are likely to be

obtained before determining an optimal solution.

Now consider a restriction of a somewhat different sort. Suppose that

the problem variables are divided into a number of different sets Q., such

that at most one variable in any particular set may assume a positive value.

2h

A familiar example of such a restriction is given by a set of constraints

y *,s-1- of the form
J

J ^

One method of accommodating such a restriction is as follows. Assign

a different prime number to each set Q. , and assign to the variable x. the

set of prime numbers corresponding to those Q, to which J belongs. If the

Q, are disjoint, x, will thus be assigned at most one prime number. Then,
41 J

to each A(i) generated by the method we attach a number P. . We let P = 1,

and determine P , where x(q) = x(p) + e., so that P = P G., where G, is
q j q p j' J

the product of those primes associated with x.. We do not allow x(q) to
u

be created, however, if any prime associated with x. divides P . It is
J P

easy to see that this approach will cause the method to generate only

those solutions satisfying the indicated restrictions. Also, the largest

P. will not exceed the product of the primes attached to the Q^, and may

be substantially less than this product.

Another (perhaps better) way of handling such restrictions is to

assign the numbers 1, 2, h, 10, 20, kO, 100, 200, 400, etc., one-to-one

to the sets Q. , and to assign each x., as before the numbers attached to

those Q. for which J * Q-- In this case we let P = 0, and let P = P + G.,

where x(q) = x(p) + e. and G. is the sum of the numbers associated with
J J

x.. It is not hard to see how to determine whether it is permissible to
J

generate the solution x(p) + e. when using this scheme. Also, a quite
J

The manner of assigning primes to the Q. will significantly influence

the size of the largest P, . A step in the right direction would be, for

example, to assign the smallest primes to those Q» with the largest number

of elements. It would also be possible to use -1 for the "first prime,"
followed by 2, 3, etc.

4

25

large number of ccts Q may be accommodated by rcprcGenting a large P.

by more than a single number, e.g., by P., P., P. where P. ic the

'augmented number" (p.. P., P.).
l' i' i

The ability to drop solutions at instruction 2 is rather limited

when accommodating restrictions such as the one above unless one is will-

ing to apply more involved tests for determining x(p)Dx and x(p)Dx. How-

ever, if the x. are not subject to other types of restrictions, then one

criterion that assures x(p)Dx(q) (representing x as x(q)) is A(p) a A(q)

whenever P divides P and the P. are determined by the prime number
p q i

assignment.

6. A Variation of the Algorithm

We now indicate a refinement of the method that in some cases will

make it possible to substantiaJ ^y reduce the number of solutions generated.

First, suppose that we wish to solve problem (2) in the absence of addi-

tional restrictions, and assume that a list g , g0, ..., g^ is associated

with the D elements (including 0) of the additive group, where g, = i

if A(i) is the kth group element and g, = 0 if the kth group element has

not yet been generated. Such a list would evidently be useful in the

ordinary procedure of determining when a solution is to be dropped at

instruction 2. However, note that if A(p) and A(q) are generated such

that A(p) + A(q) = A , then x(p) + x(q) is a feasible solution to problem

(2). Moreover, if x* is an optimal solution to (2) such that either x* -

x(p) ^: 0 or x* - x(q) £ 0, then it can readily be shown that x(p) + x(q)

is an optimal solution to (2). Consequently, A(p) + A(q) = A allows us to

limit the A(i) generated in two ways. First, we need not generate any con-

tinuations of A(p) or A(q) (which pocentially eliminates 2n sequence terms,

26

although usually many of these will already be removed from consideration),

and, second, the solution sequence may be termin-'ted as soon as c(i) ^

c(p) + c(q)« This knowledge can be exploited with the use of the g. list

as follows. When any A(q) is generated, check the value g. , where A -

A(q) is the kth element of the additive group. If g, = 0, then nothing

is to be done, but if gv. = P > 0, then A(p) + A(q) s A . Thus set d =
A Op

d =0, so that no permissible continuation of x(p) or x(q) will be gen-

erated. In addition, if any continuation x(i) of x(p) (permissible or

otherwise) has already been generated, we may set d, = 0. The fact that

x(p) + x(q) is a solution to (2) is recorded, unless some better feasible

solution has already been found. Note that, although no continuation of

certain of the sequence terms need be generated, these terms may still be

used to drop other sequence terms in the usual fashion at instruction 2.

The best feasible solution found supplies the value ex* such that the

sequence generation stops when c(i) k ex*. (The process may also stop

simply because T becomes empty.)

But we can generally do still better than this, extending the fore-

going remarks to problem (3) in the process.

For each x(k) g S , let F, be the set of those x(i) e S , i £ k,
C K. C

such that x(i) + x(k) is feasible for problem (3), and if F, / 0, let

x(v) be the particular element of F. such that v = min(i: x(i) e F,).

If one is solving problem (2) subject to additional constraints, a
modification of the g, list can be conveniently used to identify F, and

x(v). For this purpose, instead of assigning a single component g, to

the kth group element, one may define gj, to be the index of the first

A(i) equivalent to the kth group element, gj^ to be the index of the

second, and so on.

2'(

Then, betvecn instructions 3 and k of the method we my insert the

instruction:

3A. If F, = 0, go to instruction h. Other.dsc, set d. = 0 for

all x(i) G F, , for i = h, and for each x(i) e S that is a con-
K y C

tinuation of some solution in F,. If c(k) + c(v) < ex*, vrhere x*

denotes the best feasible solution previously found, designate x(k)

+ x(v) to be x*.

When the method is augmented by instruction 3^> the condition T = 0

of course may not indicate the absence of a feasible solution, but only

that no solution exists that improves upon x*-, provided x* is well-

defined .

Proposition 6 assures that for each x(k) e S there is an x(i) e S

such that x(k) + x(i) is optimal if an optimal continuation of x(k)

exists. But then, because the c(i) are monotonically nondecreasing,

the first x(i) such that x(i) + x(k) is feasible must be optimal. The

justification of 3A follows immediately, and the algorithm may clearly

be halted at instruction 2 as soon as IL ^ ex*. Vie now state an im-

portant condition that allows the algorithm to be halted still earlier.

Proposition 7« When the method of Section 3 is augmented by

instruction 3^, then the algorithm may be halted at instruction 2,

and the best feasible solution x* found taken as optimal, whenever

K - c(h) > c , where a. = Max(c.) and c(h) = max(c(i): c(i) < exx- -N).

(until a feasible solution is found, let c(h) = oo.)

Note; Proposition 7 niay be interpreted as follows. Suppose a

feasible solution x* has been found by the method with instruction

3A included. Until such a solution is found, the method is the

sar.ie as before. However, the next solution x(r) to be generated.

28

and all remaining ones, must satisfy c(r) > N- for the successive

current values of NT. NOT/, if x* is not optimal, and if there is

any solution x(h) such that x(h) + x(r) is optimal, then c(h)

cannot exceed the value assigned to it by Proposition 7- Also,

by thus assigning c(h) its maximum possible value and c(r) its

minimum possible value N , one minimizes c(r) - c(h) for all r

and h such that c(r) + c(h) < cx-x-, c(r) ^ c(h). The proposition

then asserts (through the relation NT - c(h) > c) that once this

minimum difference exceeds c. , an optimal solution has already

been found.

We break the proof of Proposition 7 into several parts, as follows.

Remark 8. Let x and x be chosen so that they minimize c,-,. - cS

subject to ex - c£ £ 0, x, £ £ 0, and x + x is an optimal solution to

problem (3). Then ex - cSi S c,,.

Proof. Suppose the conclusion is false. Select any j such that

x. > 0 and let x.' = x. - 1, x." = &. -i- 1, with the remaining com-

ponents of x' and x" equal respectively to the corresponding

components of x and St. We must have ex' - ex" < 0 since ex1 - ex" =

ex - cS£ - 2c., and x and x are assumed to minimize ex - ex £ 0. But

then, from ex - cSc > c., ve obtain ex" - ex' < 2c. - c,, ^ c.,, where

x" and x' satisfy the requirements for x and x, contrary to assumption.

Remark 9. Let q be the least index such that x(q) e S and for some

P - <lj x(q) + x(p) is optima: (x(p) e S). Then c(q) - c(p) =

ex - c^ for x and x chosen as in Remark 8 and for all p, p ^ q,

such that x(p) + x(q) is optimal.

Proor. Suppose that for q and for some p as given, we have ex - ex

29

< c(q) - c(p). Then from ex + cÄ = c(q) + c(p) we obtain ex < c(q).

By Proposition 6 there is a solution x(s) e S such that x(s) + S is

optimal, and also, therefore, a solution x(r) € S sueh that x(r) +

x(s) is optimal. It is immediate that e(s) = ex and c(r) = cfc.

But then e(r) ^ c(s) < c(q), implying r, s < q, whieh is impossible.

Proof of Proposition 7« Let S' denote the sequenee generated when

the method is augmented by instruetion 3A. It may readily be veri-

fied that the proofs of Propositions 1, 2, 3 and 5 apply to S'

as well as to S, since these proofs do not depend upon the legiti-

maey of eliminating continuations of solutions in S from S.

(Only Proposition 6 depends upon such legitimacy.) Likewise, one

may conclude from the reasoning of Proposition 5 that S' is a

subsequence of S. Consequently, we may assume that the indices

of solutions in S' are assigned so that x(i) 6 S'and x(i) e S

denote the same solution. Then let q be selected as in Remark 9»

and given this value of q, let p assume the smallest value (p * q)

such that x(q) + x(p) is optimal. We now wish to establish that

x(p) and x(q) belong to S*. If not, one or the other of them must

be excluded from S' as a consequence of instruetion 3A*and thus

may be expressed in the form x(i) + z or x(k) + z, where x(i) + x(k)

was discovered to be feasible, x(i) e F., and z ^ 0. Since k S q is

required if x(p) or x(q) is to be eliminated as a consequence of

finding the feasible solution x(i) + x(k), we have c(k) S c(q).

Then from e(k) + c(i) S c(q) + c(p) we also have c(p) 2 c(i), and

hence e(k) - c(i) s c(q) - c(p). If this last holds as an equality,

then c(k) = c(q) and c(p) = c(i), from which it follows by the defini-

tion of q that k = q, and x(q) e S'. (x(k) and x(i) are not dropped

from S', but only their continuations not in S'. Of course, one may

alternately, if desired, think of x(k) and x(i) as being dropped

also.) But then, also p S i, hence x(p) cannot have been elininated

from S'. In particular, p = v for v as defined for instruction 3A.,

and hence the solution x(p) + x(q) would have been chosen as x*- by

the method. Thus, we examine the case for c(k) - c(i) < c(q) - c(p).

By Remark 9 it follows that c(k) + c(i) > c(q) + c(p). Therefore

c(p) < c(i), p < i, and x(p) cannot have been eliminated from o'.

Thus, if x(q) /^ S1, or if x(q) + x(p) v;as not selected as x*, we

must have q > k and either x(q) = x(k) + z or x(q) = x(i) + z.

Suppose x(q) = x(k) + z. Then from c(q) + c(p) < c(i) + c(k) we

obtain cz + c(p) < c(i). Since x(k) + z + x(p) is optimal, by

Proposition 6 there is a solution x(r) e S" such that x(k) + x(r)

is optimal, c(r) < c(i). But this is incompatible with q > k. One

similarly obtains a contradiction from the assumption x(q) = x(i)

+ z, which completes the proof, for we have shovm both that x(p),

x(q) e S' and that x(q) + x(p) vras at some point selected as x^.

To cet an idea of the restrictiveness of the terminating condition

of Proposition 7» we note that it allocs the algorithm to stop whenever

11 & cx-':-/2 + CL (where ex* is the optimal objective function value), and

generally sooner. This is likely to result in considerable computational

savings in the event that it is not difficult to check for feasibility

and Cj is somewhat smaller than cx*/2. (Savings would likely result in

any case due to the continuations that are dropped.) The reason for this

lies in the fact that there arc generally many more distinct solutions

x that yield the same value of ex for ex large than for ex small. For

example, if the objective is to minimize) x. and if ex- = 20, it is

31

evident that the number of solutions z that satisfy OS) z. S n is

considerably smaller than those that satisfy 12 ^) x, S 20. Of

course, the method would ordinarily generate only a small fraction of

the latter range of solutions in any event. But the existence of a cut-

off point at y x. < 12 would likely allow a further elimination of

possibilities.

The question arises as to whether it is possible to shortcut the

generation of solutions if it is known beforehand, or explicitly required,

that an optimal solution must satisfy a constraint of the form) x, 2 L.

We s^^bhat this question may be answered affirmatively in the next

section.

7« Accommodating) x, = L» / x. 2 L, and related constraints«

We have already seen how to handle constraints of the form) x. S M.

The method for handling constraints of the form) x, = L and

) x. i L is quite similar. Suppose that ... = Min (c.). To accommo-

date y x. = L, x.. is eliminated from the objective function by pivot

reduction (i.e., by replacing x by L -) x.), so that the new objective

J22

function coefficient for each j is c .* = c. - c. £ 0. (if c* = 0 for

some j / 1, then the problem is of course perturbed so that c.' > 0.)
J

With X- thus "eliminated," only the variables x. for j ^ 2 enter

c,

Xj SL-
J22

explicitly into consideration, and ^ x. = L with x^. ^ 0 is accomodated

by requiring / x. S L. i-
The constraint) x. ^ L is handled in a like fashion, introducing

the nonnegative integer slack s^. and \rriting ^ x. - s, = L. After

remc/ing x, from the objective function as above, and treating it as

32

dependent variable (s.. now has the objective function coefficient c1),

we are left with the inequality ^ x. - s £ L. To assure that the method

will actually generate only those solutions satisfying) x. i L, it is

important that s be indexed as the last x variable; i.e., s, = x ,.
n

As a consequence, whenever) x-j " xn+i
=: L> no permissible continuation

J=2

of x(i) may be allowed, since every permissible continuation of this solu-

tion would necessarily violate) x. - x ,. ^ L. Note that this would
/, J n+1
J=2

not be the case if s were not the last x variable.

Variations immediately suggest themselves. Whenever the problem has

a subset of constraints of the form) a. .x. S a. , where, say, a. . i 0

for j = 1, ..., r. and a.. ^ 0 for j = r. + 1, ..., n, then it can readily

be seen how to apply the algorithm so that every x(i) generated satisfies

all such constraints for which a. g 0. In accordance with these remarks,
10 '

it would be reasonable to attempt to impose an indexing of variables that

would create this structure, or nearly this structure, for several of the

problem constraints. For constraints that could not be put in this form

(given that other constraints do have the desired form), it would be use-

ful to index as many positive a.. as possible ahead of the first negative

a. ..

Similarly, for constraints of the form y a.x = a (mod l), where the

a. may represent either scalars or column vectors, if the a. for j = 1, ..., r,
J J

are contained in a subgroup of the group _generated by the a. (mod l) for all
\ i J

j (e.g., a. = 0 for j ^ r), then if a -) a.x. is not a member of the sub -
J ^ L-—' O J

group, the continuations x(i} + e. for j ^ r need not be generated. To
J

exploit this and similar relations more thoroughly, it is of course pos-
sible to reindex the x. for the permissible continuations of x(i). However,

such local reindexing requires more memory, and does not permit a solution
x(i) to be_ dropped unless R*(x(i)) = pi or unless I?*(x(i)) / p can be shown
to imply K*(XCP)) ^ fb for some solution x(p) not dropped.

33

8. Passive Variables and Additional Ways of Handling Upper Bounds for

Problem 2.

We will be concerned in this section with two additional ways of

handling certain types of problem constraints that arise chiefly in

the context of problem (2). The first way involves the creation of

"passive" variables to restrict the number of solutions generated. The

second involves a means for determining when some subset of exogenous

bounds is actually nonbinding, thus allowing the bounds to be treated

as natural. To accomplish the second goal we will subsequently derive

some needed results about finite additive groups.

Suppose first that x. ^ B. is required for all x., and that there
J J J

exist nonnegative integers h, k (h > 0) such that kc S he-, kA1 * hA«.

Ordinarily, if ke.. is generated as x(p) and he» is generated as x(q), q

> p, it would not be permissible to drop x(q) due to the existence of

the exogenous B, . However, note that we may require of any optimal

solution that x- ^ h only it x > B.. - k (equivalently, x. 5 B - k

only if Xp ^ h - l). For if Xp ^ h and x, ^ B. - k, one may obtain a

solution with no greater value of ex by decrementing Xp by h and

incrementing x by k. To take advantage of this fact we create the

"passive" variable x p = hXp + (B, - k + l)x1. We call x^ p passive

because when x, _ is generated as a solution x(i), we remove x 9

from the list of variables, and assign a large enough value to d, so

that all original variables may combine with x(i) to form other solu-

tions. In doing this, we restrict Xp so that Xp * h - 1, except for

By the obvious convention, we mean by this that x.= B. - K + 1,

x = h, and x. = 0 for J ^ 3.

3^

the continuations of x(i).

There are other, more general, instances in which the creation of

passive variables may be useful. We will not attempt to give a formal

description of these, but instead provide some examples from which the

general procedures may be inferred. Suppose, for example, that by a

relationship such as outlined above, or by some other means, it is known

that x2 ^ 5 implies x1 ^ 3 and that x^ ^ 7 implies x Z 6. To handle

this we may create the passive variables x.. p = 3x, + 5Xp and x.. _ ._ «

3x + 6xp + 7x . Then we impose the restrictions Xp S U, x ^ 6, except

^2 = JL mien Ä2 wMiWJ.t^0 ^ith x1 2, and x2 S Bg - 6, x» S B- - 7 that x„ ^ 1 when x„ combines with

when variables combine with x _ Q. If, in addition to the foregoing,

Xr ^ 5 implies x_ ^ 2, we create the fa/o additional passive variables

x„ ^ = 2x„ + 5x. and ^ p ^ k = xi p ^ + ^\' The vay in which such

passive variables may be created to accommodate other similar situa-

2
tions should by now be clear.

Note that we could alternately let x p = (B - k + l)x1 (hence
i '

x-^B, -k + 1, x. =0 for J ^ 2) and then require x. § B, - k and Xp

^ h - 1 except for continuations of x(i).

2
Passive variables provide a base upon which the rules of the algo-

rithm generate a partitioning of the x(i). The justification for the
partitioning may be expressed in terms of logical equivalences; e.g., in
a simple case: (? ->Q) < > (P A Q) v (~ P). An interesting special
use of the passive variables occurs when the logical alternatives provide
lower bounds on ex, which may then be evaluated in place of N. for such

variables. Passive variables may also, of course, be created at later
stages of the solution process. Thus, if it is determined that the per-
missible continuations of x(i) must satisfy x. g L., where L. > x3: for

0 0 u u

some subset R of the j ^ d., then one may take advantage of this by

creating x , say, where generating x as a solution x(p) gives x^ = L.
n -n i u 0 0

for j e Pv and x^ = x. otherwise. In this case, d Is set equal to d.,
0 0 ' p "• i'

and x(i) may be disregarded as a source of continuations.

35

We now turn to the second means of handling upper bound restric-

tions . It may well happen that certain exogenous B. do not in reality
J

exert any influence upon the set of optimal solutions to (2). We derive

some results concerning additive groups that will help to determine when

this is the case.

Imagine, in particular, that one has found k, h such that he, S kc«

and hA, = kA2. Under some circumstances, it is possible to impose the

restriction x« S k - 1, using k - 1 as a natural bound for Xp, in spite

of the fact that x1 ^ B. for B. exogenous. We develop one such circum-

stance as follows.

Proposition 8. Assume z e G if and only if z =) A.x., B. S x, i 0,

and x. integer. Let h A = ^n^-o anci ^VS - ^pA?» where hx - ^o and

B, + 1 ^ hp, Bp + 1 S k. (h^h jk^kp nonnegative integer). Then

(i) k-hp > kph, implies

(ii) z e G if and only if z =) A.x., x. integer, B. ^ x. i 0 for
Z i J «J J J J

j ^ 3 and hp - 1 £ x £ 0, ^ - 1 £ x2 £ 0.

Proof. Assume z =) A.x., x. integer, B. fc x. ^0 but x0 ^ k. or

x. ^ hp. If Xp ^ k , let x.1 = x-, + ^n» ^ = x2 ~ ^1» and xi, =

x. fbr j S 3 • Then we have z = y A .x.'. Consider the linear

function L(x) = k x + hpXp. By (i) it follows that LCx») < L(x).

\le replaoe xf by x and repeat the process with L(x) strictly decreas-

ing at each step, until Xp ^ k. - 1. Now possibly x g hp (or pos-

sibly Xp < k. and x 5 hp to begin with). Define x' = x.. - h-,

Xp' = Xp + kp, x ' = x. for J S 3, so that, again z =) A■^x■i,•

In this case LCX1) S L(X). Denoting x' by x and repeating, eventually

x ^ hp - 1. If now Xp ^ k^, the original replacement process is

initiated. Continuing this cycle of replacing x by x1 we see that

36

L(X) is always nonincreasing and is periodically strictly decreasing.

From (i) it follows that h_ > 0 and thus (ii) is true or else even-

tually Xp < 0. But the latter is impossible by the way in which x'

is defined in terms of x.

To see specifically how Proposition 8 relates to the problem of de-

termining natural bounds, suppose that no exogenous bounds B. existed
J

and that he was generated as a solution x(p). Then, if subsequently

the solution k e was considered for inclusion among the x(i), where

klA2 - ^l^l ^as in ^oposi^i-011 8)» the fact that h c1 ^ k-C- would permit

the solution k^- to be dropped and the restriction x0 ^ k - 1 to be

imposed. Likewise, the method would similarly permit x.. ^ h» -1 to be

imposed if k^e- were generated as x(p) and kJU = h A , k0cp ^ he..

Observe now that h ^ ^ k c2 and k c ^ h2c1 imply k-h ^ ^^p*

This follcniTS by multiplying the first inequality by hp, the second by h ,

combining, and then dividing through by cp > 0. But by Proposition 8, if

in fact kph < kJi , then imposing x1 ^ h^ - 1 and x^ S k. - 1 will be

permissible even if x. ^ B. for exogenous B. (provided the new bounds
Jo J

for x1 and Xp do not exceed B, or Bp).

Suppose now that the relation between x.. and Xp stated in Proposi-

tion 8 also holds between other (not necessarily disjoint) pairs of vari-

ables. Creating the appropriate linear function L(x) for each such pair

affords the conclusion that x. m^r be bounded from above by the smallest
J

of the upper bounds that apply by Proposition 8, provided this smallest

upper bound is ^ B.. We now seek an expedient way to determine the
J

smallest of these bounds for each j ,

Proposition 9» I^t K ^e the least positive integer such that, for

some integer h s o, k,Ap = hA, and k, Cp 5 he, . Moreover, let h.

37

be the smallest integer h satisfying these relations. Similarly,

let hp be the least positive integer such that, for some integer

k ^ 0, hJV - kA2 and he > kc?, and let kp be the smallest k

satisfying these relations. (Alternately, we may require k c- >

he and h^c ^ k c .) Then h kp < hpk and, moreover, h1 < hp,

k2<k1.

Proof. First, observe that h1 > hp and K, ^ kp is impossible.

For otherwise we have kpCp < h c1 ^ h c 5 ^Cp - *2co> or kpc2 <'

kpCp. Thus, either h < hp or kp < k. . Suppose h1 < hp but kp

^ 1^. Then (kg - \)c2 < (h2 - h1)c1 and (kg - Jc^Ag = (h2 - ^)A1,

where k > k^ - k ^0, h ^ hp - h > 0. But then by the defini-

tion of hp we have hp - h = hp and thus kp - k- = kp, the latter

^eing impossible. Consequently, h < h implies kp < k.. On the

other hand, if k« < k and h ^ hp, then (k, - kp)^:^ > (N ' h2^cl

and (k^ - kp)Ap = (h - h^A^. In this case we obtain a contradic-

tion by observing that h > h. - hp = h. follows from the definition

of k. and h . Thus we conclude h < hp, kp < k-, and, of course,

h^ < hg^.

One immediate consequence of Proposition 9 is that for h., hp, k.,

kp as indicated, it is impossible to find h, k not both zero such that

hp > h > 0, ^ > k g 0 and hA1 = kA2. Moreover, h., hp, k., kp may

always be determined to satisfy the conditions of Proposition 9 as long

as c., Cp > 0. This means that we are provided with natural bounds B, =

hp - 1 and Bp = k- - 1 such that B, + Bp < D, where D is the order of the

additive group generated by the A.. (We assume that if exogenous bounds
J

B, and Bp exist, then B, ^ B,, ÜL ^ Bp.) This result extends to any

number of variables, since if hA = kA for nonnegative h and k not both 0, r s '

38

it is immediate by Propositions 8 and 9 that either x Sh-lorx ik-1

can be enforced. By a process of scanning, then, one selects bounds B.

such that x. S B. and) B. < D, provided B. SB.. Gonory has pointed out

that y x. S D - 1 may be enforced for an optimal solution to (2). We

have here indicated a way to determine bounds on the x. that satisfy this

inequality (provided exogenous bounds are nonbinding). One of the chief

values of this result, however, lies in the fact that it provides a con-

venient way to check whether some of the exogenous B. may actually be re-
J

placed by natural (and possibly smaller) upper bounds.

Another use for Propositions 8 and 9 occurs when y x. is bounded

above. In this event, the upper bounds x 5 h - 1, x« S k. - 1 still

apply provided h 5 k, and kp S lu. It is to be noted that these latter

inequalities may occur for h-, h-, k , k satisfying Proposition 8 but not
J. c J. c

Proposition 9.

In the scanning of the A., and their multiples to determine bounds on

the x., there is another result that may be useful. If h is the least

positive (integer) multiple of A such that h A1 = kA2 for some k, then

the only positive multiples h of A., that satisfy hA. EH k/U, for some k,

are h = h., 2h , 3h,, etc. To see this, suppose hA EH kA« for h = rh + q,

where r is any positive multiple and 0 S q < h . Then q/L EE (k - rk-)Ap,

where k-Ap = h A . By the definition of h. it follows that q = 0.

9. Concluding Remarks

The chief focus of this paper has been on developing an algorithm

for solving problem (2) when certain additional constraints apply.

Gomory's approach [5] to solving this problem in the absence of such

constraints is to use the dynamic programming recursion

</>.{z) = Min(0j._1(z), 0J(z - k.) + c.), j = 1,

4

39

where 0.(0) = 0, 0 (z) = <», and z ranges over the elementc of the addi-

tive group generated by the A. nod 1. If 0.(z - A.) is unknown, then
J J J

one may provisionally replaced it by 0. ..(z - A.) and be assured that

Computing 0.(z + kA.) based upon this replacement for k = 0, 1, ...,
J J

will yield the correct value of 0,(z - A.) for the value of k such that
J J

z + kA . = z - A ..
J J

As W. W. V/hite points out [6], it is possible to determine 0 (z +

kA .) correctly for all k without tiie need for revision. To do this one

identifies h such that 0. (z + hA.) = Min(0._,(r, + kA.)), and defines 0.

(z+hA.)=0(z+hA.). 0(A) then gives the optimal objective func-

tion value for (2). Backtracking over the 0 (z) to find an optimal x

occurs in a manner related to that outlined in Section 5 by recording

for each 0.(z) the largest k such that x. = 1.

Our motivation in developing the algorithm of this paper has not

been to devise a method that is competitive in efficiency with Gomory's

when applied to (2) in the absence of additional constraints. Neverthe-

less, our method may be competitive in this limited context due to the

fact that it may generate A somewhat in advance of generating all the

other elements of the finite additive group, particularly if the varia-

tion of Section 6 is used. The Gomory approach, on the other hand, must

generate 0.(z) for each z in the group and for each j except possibly for
J

j = n. It may be noted that the values 0 (z) constitute a superset of

the c(i) generated by the algorithm of this paper.

Once problem (2) becomes complicated with restrictions of the form

x ^ B., however, the dynamic programming recursion just outlined no
J J

longer suffices, and it appears necessary to resort to the more familiar

Bellman knapsack recursion

1+0

J

In addition to being rather demanding on memory capacity, it is evident

that this approach can require considerably more computation than the

earlier recursion unless the average of the B. is not too far from 1.

The treatment of exogenous upper bounds in our approach requires,

by comparison, very moderate storage capacity. In addition, although

these bounds may sometimes entail more computation than would be re-

quired in their absence, they may also sometimes entail less. This is

due to the fact that their existence may rule out the generation of cer-

tain x(i) that would otherwise occur in the solution sequence.

There appears to be little promise in the customary dynamic program-

ming approach to handling other kinds of restrictions, since the amount

of computation and memory requirements in such applications are typically

quite large.

We might note, in passing, that our method can be employed in the

framework of a cutting approach. The optimal solution to (2) -- or to

(2) augmented by some of th? restrictions of (l) -- provides a lower

bound L such that ex ä L in the optimal solution to (l). One may find

successively larger integer values for L by solving (l) as a linear pro-

gram with the constraint ex g L adjoined, and then reapplying the method

of this paper. The method may clearly be adapted to solve for all optimal

solutions to (2) or (3), thereby assuring that L may always be incremented

by at least 1 (assuming that c initially consists of' integers).

More generally, any linear form in the nonbasic variables with posi-

tive coefficients (and possibly some zero coefficients temporarily per-

turbed), can replace the objective function of (3). The optimal value

for this modified objective function -- or a lower bound on this optimal

hl

value obtained by the method at some convenient cutoff point -- can be

used to transfouathe linear form directly into a cut. If the problem

has a aixict of constraints of the form) a .x. ^ a , where a. H; O for j

^ r, then a cut can also be obtained by minimizing a linear form over

the x. for j > r. provided all constraints) a.x. = a with a. ^ 0 for

j S r arc disregarded. It may be noted that the variation of Section 6

may provide a particularly effective way to determine a cut. If an opti-

mal solution hasn't been found upon reaching a specified cutoff, it fol-

lows from Proposition 7 that one may impose the cut) c .x. ^ Max(c(i),

2c(i) - a), where x(i) is the last solution generated. Vlhen the linear

form minimized is) x.. this of course becomes)x. ^2>x.-l.
L 3 L> 3 L> 3

It is assumed that the coefficients of the linear form are selected
so that the slack variable of the cut will be integer valued.

2
One can take advantage of these latter constraints, however, by

following the approach of the footnote on page 32.

References

1. Dantzig1 G. B., "On the Shortest Route Through A Ik twork,"
~anagement Science, Vol. 6, No. 2, 1960.

2. Gilmore, P. c., and R. E. Gomory, "Multi-Stage Cutting Stock
Problems of 1\ro and More Dimensions," ~ations Research,
Vol. 13, 1965.

3· Glover, Fred, "Truncated Enumeration Methods for Solving Pure

42

and Mixed Integer Linear Programs," Working Paper, Operations
Research Center, University of California, Berkeley, May 1966.

4. Gomory, R. E., "An Algorithm for Integer Solutions to Linear
Programs," in R. L. Graves and P. \-7olfe, eds., Recent Advances
in Mathematical Programming, HcGra,of-Hill Book Company 1 Inc. 1

1963.

5. Gomory, R. E., "On the Relation Be~·leen Integer and Noninteger
Solutions to Linear Programs," Proceedines of the National
Academy _of_§~~~·' Vol. 53, 1965.

6. White, vlilliam W., 11 Integer Linear Program:ning: Relations Be~reen
Discrete and Continuous Solutions," ORC 66-27, 1966.

----~U~n~?s sifi cd
Sccurit)i Class ifi cet ti on

~----.., ~ ' DOCUME NT CONTROL DATA · R&D
(Secu rit y c l tts s ili ca t ion of t i tl e, b<'ldy o f u b :J trnc t tmd indc xin ~ on no tlflicm mu st be entc rt> d when tl 1 ~ ovorol l repo rt is cln s sif icd)

I . ORI GIN .4.TIN G ACTIVITY (C orpo ra te oulloor) Z a . R EP ORT SE CURI T Y CLAS SI FICATION

University of Californi a , Berke ley Unclassifi ed
Zb GROU P

3 . RE ? O R T TITL E

AN ALGORITHM FOR SOLVING THE t. I NEAR INTEGER PROGRAMMING PROBLEM OVER A FINITE
ADDITIVE GROUP, WITH EXTENSIONS TO SOLVING GENERAL LINEAR AND CERTAIN NONLINEAR
INTEGER PROGRAHS ·-4 . OESC R IP1"1VE NO T ES fT ••oo of repo rt an d Inclusive do te s)

Research Report
S. AUTHOR(S) (L a s t n ome, firs t nome , In it i al)

Glover, Fred

6 - rt E PORT DATE 7a . T-OTAL N O. OF PAG E S 17b. NO . OF R6FS

September 1966 46
6a. CON T R A C T OR GRAN T NO . 9a. ..:ORIGINATOR ' S R EPORT NUMB E R(S)

Nonr-222(83)
b. PROJ E CT NO . ORC 66-29
NR 047 033

c . 9b. OTHER RF-PORT NO(S) (An)' o tll er n um bera Ill a t moy be a ulll71ed
1111• report)

l esearch Project No. RR (03-07 -01
I O. AVAIL ABILITY / LIMITATION NOTICES

..
Available without limitation on dissemination

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

See bottom of title page Mathematical Science Division

13. A BSTRACT

See Abstract Page

; ·

-· .. .

DD FORM
1 JAN 64 1473 Unclassified

Security Classification

Unclassified
Security Classification

14 .
KEY WORDS

f--·

Integer Programming

Truncated Enumeration

Gomory Additive Group
11Least Cost'' Algorithm

LINK A LIN K B -~~-3 LINK C

ROLE WT_ · ROLE WT ROLE WT

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
o£ the contractor, subcontractor, grante e, Department of De­
fense activity or other organization (corporate author) issuing
the report.

2n. REPORT SECURITY CLASSIFICATION: Enter the over­
till security classification of the report. Indicate wHether
"Restricted Data" is included. Markin:; is to be in accord­
ance with appropriate security regulations.

:lb. GROUP: Automatic downgrading is specified in DoD Di·
rective 5200.10 and Armed Forces Industrial Ma nual. Enter
the group number. Also, when applicable, show tha t optiona l
markings h ave been used for Group 3 and Group 4 ·as author­
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letter s. Titles in all cases should be l.UlclassHied.
1£ a ~oteaning£ul title cannot be selected without classi fica­
tiun, sliow title cla ssification in all capitols in p :uenthcsis
imnac d1atcly following the title.

4. Ll~CRIPTIVE NOTES: 1C appropriate, enter the type of
rcport, c. g., interim, progress , summary, an:~u al, or final.
Give the inclusive dat es when a specific reporting period is
covered.

S. AUTIIOT~(S): E nte r the name(s) of author(s) as shown on
or in the report. Ent e• lns t name, fir s t name, middle initi a l.
If :o: ilitary, show rank a nd branch of service. The name of
the principal a :.•thor i s an abs olute minimum requirement.

6. REPORT DAT:!:.: Enter the date of the report as day,
naonth, year; or month, year. If more than one date appears
on the report, use date of publication.

1o. TOTAL NUMBER OF PAGES: The total p a ge count
,;hould follow normal pagination procedurP.s, i. e., enter the
number or page s containing information.

?b. NUMBER OF REFERENCES: Enter the total number of
re ferences c ite d in the r t.'port.

8 ". CONTRAC T OR GRANT NUMDEI~: If appropriate, cnt~
the applicabl e number of the contract or grant under which
t l c rep;ut was written.

fsb, &.:, & 8d. PROJECT NUMBER: Enter the appropriate
militllty dep ortment identification, such as p roject number,
subproject number, syst<>m numbers, t ask number, etc.

9n. ORIGINATOR'S REP ORT NUMBER(S): Enter the oCCi­
ci al report number by which the document wilt be identifi ed
and controlled by th e originating activity. This number must
b e unique to this report.

9b. OTIIER R EPO RT NUMBEI~(S): If the report h as bee n
assigr.ed any o ther report numb ers (c itl•c t b~ the orlainator
or by th e spon s o r), a l s o enter thi s number(s),

10. AVAILAU!!~ITY/LIMlTATION NOTICC:S: Enter any lim-

imposed by security class ification, us ing standa rd sta tement s
such as:

(1) "Qualified requesters may obtain copi e s of this
report from DDC ''

(2) "Foreign announcement and di ssemination or this
report by DDC is not authorized."

(3) "U. S. Governme nt agencies rnay obtain copies of
this report directly from DDC. Other qualified DDC
users shall requ est throuch

(4) "U. S. mllit a ry agencies may obtain copi es of this
repc rt directly from DDC Oth er qualified users
shall request through

..

..
(5) "All distribution of this report is controlled. Qual­

ified DDC users shnll rcquc:- s t through
,

-- .
If the report hns been furnished to the Offic e of Technic a l

Services, Deportment of Commerce, for sAle to the public, indi­
cate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Usc for additional explann­
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departme ntal project office or laboratory sponsoring (pn)·~
InS lot) the research and development. Include address.

13. ABSTRACT: Enter an abs tract givi11g a brief and Cac tu:t!
summa ry of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re­
port . If additional space is required, a continua tion sheet sha lt'
be attached .

It is highly desirable tha t the abstract or classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in ­
formotion in the parngra1 h, represented as (TS), (S). (C), or (U) .

There is no limitation on the length of the abstract. How ·
ever, U1e suggested length is from 150 t? 225 words .

14. KEY WORDS: Key words are technically meaningful te rms
or short phrases that charactcriT.e a report and may be U!:cd as
inde x entries for cataloging the report. Key words must be
selected so that no security classification ia required. ldenti ·
Cie rs, such as equipment model designation, trade name, milita ry
project code name, geogra phic Jocntion, may be us ed os key
words but will be fc llow e d by an indication o(technical c on­
te xt. Tne cs:; i[:nmcnt of link s , roles , tm d weights is option n!.

itatic.ns on further d isscminn t ion of the report, other tha n those

~--M DD ~~~~~4 1473 <BACK) Unclassified
Security Class ification

l

