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ABSTRACT
\

lRalph Gomory has recently aroused interest in a special type of
knapsack problem in which the constraint coefficients and constant term
are elements of a finite additive group. The significance of this prob-
lem lies in the fact that it is closely related to the general integer
linear programming problem, resulting by removing the nonnegativitiy re-
strictions on those variables in the general problem that lie in an
optimal basis for the associated linear program.

Gomory has shown how to solve the special knapsack problem by
adapting a dynamic programming recursion originally designed for the
ordinary knapsack problem, and has identified sufficient conditions
under which the solution of the special knapsack problem will satisfy
the nonnegativity requirements in the general integer program, thereby
yielding an optimal solutifqn to that problem as well.

In this paper a:e presént an algorithm for solving the special knap-
sack problem that is capable of accommodating a va.t}'iety of constraints
in addition to the special knapsack constraint. Ot).irb purpose in doing
this is to expand the range of problems for which the optimal solution
for the special problem will also provide an optimal solution to the
general integer program from which it was derived. .

We develop the algorithm in a general framework that also permits a
direct application to solving the general integer programming problem
and certain nonlinear integer problems without attempting to solve the
special knapsack problem. Same of the results leveloped can also be

exploited by integer prograxming algorithms other than the one of this

paper.




l. Introduction

We represent the ordinary linear programming problem as that of
finding ann x 1 vector x and anm x 1 vector z to
(1) Minimize cx

subject to Ax + z = Db, x/&0, 2z &0,
where A, b, and ¢ are matrices of constants with dimensions m x n, m x 1,
and n x 1, respectively. We assume for convenience that the canonical
form (l) has been obtained by the simplex method applied to a linear pro-
gram that was initially in a corresponding form, but which in (1) also
satisfies the primal and dual feasibility criteria, b 2 Oand c 2 0.1 As
is well known, an optimal solution to (1) is then given by x = O and
z =Db.

Hereafter, we specify the components of z and x to be integers,
whereupon (1) represents a pure integer programming problem. Following
Gomory [ 5], if we relax the requirement z & O, the constraint set of the
problem becomes Ax = b (mod 1), x 2 O and integer. We may replace b
with any vector A  such that A = b (mod 1), and similarly replace the
jtb column of A with any vector A, which is its equivalent modulo 1,
without altering the set of feasible solutions x. In particular, we
may drop the integer parts of the components of A and b, so that the

entries of the AJ. are nonnegative and less than 1. Iet us then write

the relaxed integer problem as
(2) Minimize Zo'jx‘j

subject to ZAJXJ = A (mod 1), x 2 O and integer,

and where, by assumption, c:j 2 O for all j. Given that the components

1 The original problem is assumed to have a finite op;timal solution.




of A° and v° are integers, where A° and b° denote the original A matrix
and b vector that were transformed to obtain the primal and dual feasible

form of (1), Gomory [4] has shown that the vectors u satisfying
n

HESQ A
§=0

for integer 8
33 ntegEr ¥y
are elements of a finite additive group of order D, where D is the abso-
lute value of the determinant of the matrix that was inverted by the

simplex method to yield (1) in its primal and dual feasible canonical

form.

2. Integer Solutions to (1) and (2)

It is clear that an optimal solution x* to (2) will not necessarily
provide an optimal solution (x*, z*) to (1), where z* = b - Ax*, since
the components of z¥ may not all be nonnegative. However, it might be
hoped that the solution to (2) will extend optimally to (1) in this fash-
ion, and Gomory (5] has indicated some of the conditions under which this
will occur.

In order to solve (2), Gamory proposed a variant of a dynamic pro-
gramming recursion for the knapsack problem developed jointly with Paul
Gilmore [2]. Some refinements and improvements in this dynamic program-
ming recursion applied to problem (2) have been suggested by W. W. White
[6], and undoubtedly this approach merits further consideration and elab-
oration.

In this paper, however, we propose a different method for solving (2)
that is expressly designed to accommodate a number of additional restric-
tions on those x j which are admitted as feasible. The ability to handle

such restrictions may be desirable either because they apply directly to




(W)

the X, which are feasible for (1), or because they apply implicitly to

the x 3 in order to assure that z 2 0. This ability may also be desirable
if one elects to solve (1) by partitioning the less constrained solution
space of (2) in a manner to yield a series of problems, the solution to
one of which will give an optimal solution to (1). We develop the method
of this paper in a general form that may alsc be directly applied to

solve problem (1), and problems more general than (1). However, because
the method seems particularly suited to exploiting certain structures

that arise in connection with problem (2), a procedure that takes advantage
of this characteristic of the method may in some instances prove more

effective for solving (1) than a completely direct application of the

method.

In our approach we generate a sequence S of solutions x(i) =

(xg'_, x;, Do o xxix)" The cost associated with x(i) is denoted by c(i) =

Likewise, we associate with x(i) the group element A(i) =

We construct S so that it satisfies the following conditions:

1. If p ¢ q, then x(p) # x(q).

2. If p<gq, then c(p) = c(q).

3. x(i) is an optimal solution to (2) when A  is replaced by A(1).

L, S is finite, and A(i) = A, for some x(i) in S if and only if
problem (2) has a feasible solution.

If we alternately interpret the A, as ordinary column vectors, and

J
interpret equivalence modulo 1 as ordinary equality, our strategy in



generating S may be seen to correspond quite closely to the strategy of
the dual simplex method in solving the ordinary linear programming prob-
lenm, since the successive basic solutions determined by the pivot rules
of the dual simplex method satisfy exactly the same four conditions.
Rather than employ pivot transformations to carry us from one term of
the sequence to the next, however, we resort to a procedure of truncated
enumeration. Truncated enumeration methods are in general characterized
by an abbreviated search over a tree of all possible solutions, and de-
rive their efficiency from the ability to exclude certain branches of
the tree from consideration, so that, when the criteria for exclusion
are sufficiently effective, only a small fraction of the potentially
vast number of alternatives need ever be generated or examined.

The ~hoice rule that leads to a sequence of solutions satisfying
the four conditions listed above is called the least cost rule (see [3]),
and is closely related to a shortest path algorithm due to G. B. Dantzig
[1]. However, while the least cost rule is customarily given as finding
a minimum over & generally enlarging set of nodes of a solution tree,
our approach prescribes this determination over a constant or decreasing
set of arc classes, the arc class j consisting of those arcs of the tree

along which x, is assigned a value.l The strategy underlying our algorithm

J
is to imbed this variant of the least cost rule in a framework that
permits its properties to be exploited in a computationally efficient

manner.

1 see [3] for a discussion of the least cost and other rules in terms
of tree representation.
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3. The Algorithm

e designate problem (3) to be the problem having the same objective
function as (2), but with an unspecified constraint set, possibly non-
linear. Our general approach will then apply directly to solving problem
(3) in nonnegative integer variables. After developing the suitable propo-
sitions underlying the method in the general case, we will subsequently
introduce the specializations appropriate to solving those particular
problems around which our concern centers.

Vle introduce the following definitions and notation. A vector x will

be called a continuation of a vector y if x =y + z for some integer vector

z 2 0. Ve cell x a simple continuation of y if x = y + ej for some j,

where eJ. is the vector having its jth component equal to 1 and all re-
maining ccmponents O.

In generating the sequence of solutions x(0), x(1), ... to obtain
an optimal solution to problem (3), we specify that x(0) = O, and that
each x(i) is a simple continuation of some x(k), k < i. (Note that
x(k+l) may not be a simple continuation, or aiy continuation, of x(k).)
To assure that the sequence of solutions generated will satisfy this con-
dition, and other conditions that we will subsequently impose, we asso-
ciate with every nonnegative integer vector x a set of vectors R(x), and

say that the vector y is a permissible continuation of x if y = x + 2

for z € R(x). The set R(x) will be defined to consist of all nonnegative

z # O such that r S s, where Z.. is the last nonzero component of z and

X, is the first nonzero component ofx (s = n if x = 0). Ve alsoc define

Rk(x) to be the set of all z € R(x) such that >—'zj k. Thus, the simple
continuations generated from x in S are those vectors of the form x + z,

z € Rl(x).



In what follows we will want to refer to two sequences of vectors,

S and S, The parent sequence S consists of every nonnegative integer
vector that yields an objective function value cx less than or equal to
the optimal value for problem (3). We will specify a procedure for
genéra.ting the components of S in a certain order which satisfies (with
slight modification) the conditions 1 - L of the preceding section. In
addition, this order will exhibit other properties that carry over to
the contracted sequence §, which is actually the sequence we will be
interested in generating. The procedure for generatirg S differs from
that used to generate S in that rules are employed that permit certain
subsequences of solutions in S to be bypassed without receiving consid-
eration.

To specify the nature of these rules, we introduce the sequences
S, and §c which denote the portions of the completed sequences S and S
that are generated as of some particular stege. Thus, at the point at .
which the kth solution in S has just been generated, Se consists of the
x(i) for i = 0, 1, ...,k.

Just as the permissible continuations of those x in Sc are restricted
by requiring that they assume the form x + z, 2z € R(x), we shall require
(define) that the permissible continuations of the x in §c assume the
form x + z for 2z € R(x), where R(x) is some subset of R(x) to be speci-
fied subsequently.

let S* denote the set of all optimal solutions in S, and §* corre-
spondingly denote the set of all optimal solutions in S. Then it is evi-
dent from our discussion of S that S¥ must be nonempty whenever an optimal
solution to problem (3) exists. We vill of course want the rules for dis-

carding continuations in § to assure that S¥ # § implies 5% # §. As a




basis for accomplishing this we introduce two types of dominance rela-
tions.

Ordinary dominance: We will say that a vector x dominates a vector

¥, or xDy, if for every z 2 O such that y + z is optimal for problem (3),
X + z is also optimal.

Local dominance: We will say that x locally dominates y with respect

to the sequence S, or XDy, if x + z is optimal for every z ¢ R(y) such
that y + z is optimal.

It is to be noted that local dominance depends on the particular
stage in generating S to which one has reference. Generally, if at some
point a vector y has no (permissible) continuations that are optimal,
then y is (locally) dominated by every vector x.

We may also observe in passing that the rels.ions D and D are both
reflexive, and that they are neither symmetric nor antisymmetric. On
the other hand, D is associative, but D is not. Specifically, uDv, vDw
implies uDw if and only if R*(w) < R¥(v), where, for any x, R*(x) is the
(possibly empty) subset of R(x) such that z € R*(x) implies x + z is
optimal.

There are two principal rules based on the foregoing remarks that
will enable the procedure for generating S to be transformed into the
procedure for generating S. They are:

Rule 1. If x €S, ¥ £ 5_, and xDy, then all v such that v 2 y may
be eliminated from §.

Rule 2. If x €S, y ¢5_, and xDy, then y and all v such that
v=y+32, z ¢ R(X), may be elirinated from §.

By reference to Rules 1 and 2, we now define R(x) (or, conveniently,

R(u)). Specifically, for u ¢ S, define R(u) relative to §c to be that



subset of R(u) such that, w € (R(u) - R(u)) if and only if there exist
X € 5;, v Zc, where y is an earlier component of § than u, such that,
for v = u + w,
(i) xDy and v 2 y, or

| (ii) Dy and either v=yorv =y +z, z ¢ R(y).
It may be noted that the requircment that y is an earlier component of
G than u avoids certain problems of circularity, and, as we will see,
also brings the definition of R(u) into correspondence with the informa-
tion available from the algorithm at the point at which a ‘decision is
made to include or exclude u from S. That is, R(u) limits the permissible
continuations of u, at the time u is under consideration as a potential
element of 5, to those permissible continuations of u in S that do not
qualify t« be dropped by Rule 1 or Rule 2.

The procedure for generating 5 and S is then as follows. Associated
with the vector x(i) = (x:il, xzi, - = xi) ¢ S, we define d, = Min(j:
x§ £1)if 121, and d) = n. Thus, z € Ry(x(1)) if and only if z = e,
for some j = di'

We also wish to identify the vector x(tj) such that the next vector
x(k) of the form x(i) + e, to be added to S will be given by x(k) =
x(tj) + e'j for some j. The identification is accomplished {as wjll be
proved) if we initially define tj = O for all j, and then define the "next
value" E'j of tJ. so that %'J. = Min(i: i> tJ. and j S di), where tJ is
assigned its next value 53 immediately after the solution x(tj) & e'j is
added to Sc. It is possible that some of the tJ may not be well-defined
at a particular stage of generating 5, and consequently we must al:io
identify the set T relative to a given Sc which consists of those | such

that tj is currently well-deflined.
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Finally, to determine the j vhich is to contribute the next vector
in 8, we define the "next cost" associated with each j to be Nj =
c(tj) + ;. The foregoing definitions of d,, tj’ T and Nj are under-
stood to apply to S as well as to S by replacing each occurrence of S
ani 8 respectively with S and §;.

The Algorithm

Beginning with x(0) = 0, aésume that x(i) has been generated for
i=0,1, ..., k-1. The procedure to follow is designed to generate S
with instruction 2 removed, and to generate S with instruction 2 present.

1, If T is empty, (3) has no feasible solution and there is no kth
term to be generated. Otherwise, let J be determined by NJ =
Min(Nj: Je T).l If there is more than one candidate for J,
select the one for vhich J is the smallest.

2. If the solution x(tJ) + e satisfies the criteria to be
eliminated by Rule 1 or Rule 2, assign tJ its next value E&
and return to 1. Otherwise,

3. Let x(k) = x(tJ) tel. If x(k) is feasible for (3) (hence the
first feasible solution found), then x(k) is optimal and the
problem is solved. Otherwise,

L, Assign tJ its next value tJ, increment k by 1, ané return to 1.

There are several things to be observed about the general framework
of the method as described above. First, the process specified in instruc-
tion 2, whereby x(tJ) teg is bypassed, corresponds precisely to setting
ﬁ(x(tJ) + eJ) = @, since failing to include a solution in § immediately

eliminates all permissible continuations (though not all continuations) of

1 It is nolt necessary to compute a minimum over all elements of T each

time N5 is determined, since only one of the NJ is changed at each step.
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that solution. When Rule 1 applies to justify the elimination of all con-
tinuations of a solution, the method thus accomplishes this by successively
eliminating certain sets of permissible continuations.

Second, the description of the method does not specify either the
record keeping or the tests underlying Rules 1 and 2 that enable the
elimination of solutions. We reserve this specification to later sections,
where we introduce several important modifications end refinements of the’
general framework outlined above.

It may also be observed that, while we have earlier defined di =
Min(j: xg 2 1), each di may be determined more simply by assigning dk the
value J at instruction 4, This is clearly true for dl, and in fact for
any dk = J such that t_ = 0. Assuming that it is true for all di, i k-1,

J

it must also be true for i = k since, if tJf 0, then tJ = p for some p < k

such that = J. Dut then J = Min(j: xg 2 1) and x(k)

x(p) + e;, from

which dk = J follows.,

L. Justification of the Algorithm: Propositions and Proofs

Ve have informally made a number of claims about the sequences S and
§, end have atteﬁpted to introduce considerations to meke some of these
claims intuitively plausible. Ve will now present our claims more formally,
explicitly defining S and S to be those respective sequences generated by
the above method with instruction 2 removed and with instruction 2 present.

We will require in what follows tnat problem (3) is bounded end that
¢ > 0. Given rational cj 2 0, this latter can be assured, for example,
by replacing c by a sufficient positive multiple of itself {o aséure all

components are integer, and then rcplacing those ¢, = 0 by 1/P, vhere P

J
is a number such that }; Thus, when solving problen (2)
x. éP-lo
0 J
c.=0
J
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it suffices to multiply c by D, and also to let P = D, where D is the
value of the determinant referred to in Section 1.

Our first two propositions are essentially the same as the state-
ments of conditions 1 and 2 in Section 2.

Proposition 1. If x(p), x(q) ¢ S, or if x(p), x(q) €5, p # q,

then x(p) # x(a).

Proof. The same proof applies both to S and S. Suppose that the
proposition is false, and let q assume the least value such that
x(q) = x(p) for some p < q. Since q> 0, x(q) = x(h) + e for
some h<q andr = dq. Likewise, since x(p) = x(q) # 0, we have
p> 0 and x(p) = x(4) + e, for some i <pand s = dp. But by the
definition of dp and dq it follows that r = s and hence x(i) =
x(h). We must have i = h, for otherwise a duplication occurred
before x(q) was generated, contrary to assumption. But i =h is
also impossible, for, given that t_ = i when x(p) was generated,
ts was then strictly increased when assigned its next value E;, and
never subsequently decreased, so that the value h of ts (also tr)

when x(q) was generated could only have been larger than i.

Proposition 2. 1In either S or S, if p < q then ¢(p) = ¢(q).

Proof. Again, the same proof applies both to S and S. Note to begin
with that c(0) s ¢(1) and that the minimum value of the Nj after
generating x(1) is at least as large as before. We assume that these
two conditions hold for all x(i), i S k - 1, and prove that they must
also hold when generating x(k). For some h, we have c(k-1) = N, =
c(th) +e. If Eh £ k - 1, ve have the next value of N, given by
c(Eh) + ¢, 2N since t < %h Sk - 1. Thus the values for the Nj

are the same or, in the case of Nh’ possibly increased at the step



&

which generates x(k), hence the minimum value of the Nj is also
nondecreasing and c(k) = c(k-1). To complete the proof we must con-
sider the case in which €£.> k-1l. In this instance Eh is not de-
fined upon generating x(k-1) and hence the set T is decreased by

one element when generating x(k). The minimum available Nj is con-
sequently nondecreasing and again (if any Nj remain) c(k) = c(k-1).
In this fashion the c¢(i) continue to be nondecreasing until the un-
defined Eh (or some other undefined Eh) becomes defined upon gener-
ating, say, x(q). But then N. = c(q) + ¢,» which is at least as

h

large as the value of N, that produced c(q) (actually exceeding this

J

value for ch2> 0), so that the minimum available Nj remains nondecreas-

ing at all steps.

While the proofs of the two preceding propositions did not depend
upon ¢ > O or the precise tiebreaking rule specified by the method for the
of J, the proof of the next proposition requires both of these.

Proposition 3. In S and S, c(p) = c¢(q) and p < q implies x(p) is

lexicographically larger than x(a).

Proof. By x(p) lexicographically larger than x(q), for x(p) # x(a),
we mean that the first nonzero component of x(p) - x(q) is positive.
Assume the proposition false, and denote d.p by r and dq by s. We

may assume s < r, for if s = r the same assumptions concerning the
relation between x(q) and x(p) must also apply to x(a) and x(p) (and
conversely), where x(q) = x(q) - e, and x(p) = x(p) - e.. Hence,
replacing q and p by a and f a finite number of times permits the
assumption s < r, But then, Ns was not defined when x(p) was created,

or else, by the tiebreaking rule for the choice of J, x(q) would have
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been generated before x(p). Consequently, when Ns becomes defined,
c(ts) 2 c(p), and hence c(q) 2 c(p) + cg > c(p), contrary to assump-

tion.

The next proposition is the first that does not apply to both S and S.

Proposition 4. If x(i) € S, then x € S fur every nonnegative integer

X such that ex < c(i).

Proof. Assume on the contrary that there exists a nonnegative
integer X such that cx < c(i) and x # x(p) for all p < i. We shall
restrict attention to those x(p) such that, for some r = n, x? = iﬁ
for all j> r, XE < E;, and xg =0 for j<r. From among the solu-
tions x(p) so restricted, we identify the solution x(q) which is
"closest" to x as follows. We stipulate that x(q) is that solution
for which r is the smallest and such that, from among those x(p) with
the same value of r, xg = max(xi). Now dq 2 r, aad hence when x(q)

is generated tr £ q, for either tr <gqor tr was undefined at the

point at which x(q) was generated, in which case t. = a. Moreover,

t, £ q implies N_ s c(q) + c, & cx. Thus, since dq 2 r, and since
instruction 2 of the algorithm is removed, before generating any x(i)
such that c(i) > ex, the method must first generate fram t. and x(q)
the solution x(h) = x(q) + e . But then x(h) qualifies as one of the

restricted solutions x(p), and is "closer" to X than x(q), contrary

to the choice of x(q).

Remark 1. If problem (3) has a finite optimal solution, then S¥ # §.
Proof. When generating S, it follows from Propositions 3 and 4 that
T can be empty only if problem (3) has no feasible solution. (In fact,

with instruction 2 removed tl must always be well defined and T cannot
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be empty in any event.) Suppose that the optimal objective function
value is c¥*, but that no optimal solution is obtained when generating
S. Then since ¢ > 0, Propositions 1 and 2 imply that c(i) > c* for
some x(i) € S. But then, by Proposition 3, each % such that cx = c¥*,
X = 0 and integer, will have been generated as x(p) for some p < i,

contrary to assumption.

Having derived the foregoing properties of the sequences S and §, and
having verified that S* # § when problem (3) has an optimal solution, we
now wish to establish that S* # @ as well. To this end we state

Proposition 5. Assume that an external cutoff rule is applied to

the generation of 5, so that, if the method does not stop sooner it
will stop after generating M terms for M arbitrarily large but finite.
Also assume that the generation of S is allowed to continue until a
solution is generated with an objective function value larger than
that associated with every solution in S. Then for S and S so deter-
mined, S is a subsequence of S.

Proof. It is evident from Propositions 1 and 2 that S and S are well-

defined by the assumptions of the proposition. Denote those x(i) in

S by xl(i) and those x(i) in S by x2(i). Let S be the subsequence

of S obtained by deleting from S each xl(i) such that xl(i) # xz(k)
for all x2(k) € S. We note by Propositions 2 and 4 that the components
of g must correspond to those of §, though perhaps in a different order.
Thus, designate the smallest i such that xl(i) € g by 5, the next
smallest i by 1, and so on. Then we wish to prove that xl(f) = x2(i)
Tor all x2(i) € S. Suppose otherwise, and let p = Min(i: xl(z) #
Y(3) = x(a)

and xz(p) = xl(?). It is assured by Proposition 1 that q, r > p.

x2(i)). Also identify the indices q and r such that x
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Since i = s if and only if i = s, for all i and s, we have xl(p) =
xl(ﬁ) + e, for some u and some h < p, and x2(p) = x2(k) +e  for
some v and some k < p. Now, xl(ﬁ) was generated before xl(F), but
xl(F) = x2(p) implies xl(;) = xl(E) +e . Since k <p, this means

" that when xl(B) was generated, t ( = k) was well-defined. Thus
there was a choice to make between generating xl(ﬁ) and xl(;).
Similarly, x2(p) was generated before x2(q), but x2(q) = x2(h) te
so that, by analogous reasoning, there was a choice to make between
generating x2(p) and xg(q) vhen xe(p) was generated in S. But p< T

thus implies q < p, providing a contradiction.,

To demonstrate that §*¥ # ¢ implies S # @ , we prove the somewhat
stronger result to follow.

Proposition 6. If z 20 and y + z is optimal for some y 2 O, then

there exists a solution u in S such that u + z is optimal.

To prove Proposition 6 we must for the first time take into account
the propertics of the relations D and D, and hence of the sets R(x) and
R(x).

We begin by observing three things, the proofs of which are immediate
from our earlier definitions.

Remark 2. If v ¢ Rh(x), z € Rk(x), then y + z ¢ Rh+k(x)'

Remark 3. If y ¢ Rh(x), z € Rk(y), then y + z ¢ Rh+k(x)’

Remark 4. R(y + z) < R(y), R(z).

It may be noted that noted thal Remarks 2 and 3 are also true with the
subscripts h and k removed. We then have

Remark 5. If, relative to some §;, Rule 2 prescribes the elimination

of all solutions of the form u + w, w ¢ ﬁ(u), then the elimination of
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all solutions of the form u +w, w -~ R(u) is prescribed by Rule 1
or 2.
The validity of this remark follows directly f~-m the definition of R(u).
We may observe also that when a solution u is dropped at instruction 2
of the algorithm, it follows from Propositions 2 and 5 that no solutions
of the form u + w, w = R(u), will be generated in S. Our next two remarks,
while less immediate than those preceding, are fundamental to the proof of
Proposition 6.
Remark 6. Relative to a given §c’ let V be the set of all v € S
such that there exist x < §c, v f §c, for which v, x, and y satisfy
condition (i) or (ii) in the definition of R(u). Then, if u = v + w
for some v ¢ V and some w ¢ R(v), it follows that u € V. (Here u
and w do not necessarily correspond to the u and w in the definition
of R(u).)
Proof. If v satisfies condition (i), then it is immediate that u
does also and hence u - V. If v satisfies condition (ii) for v =y,
then u =y +w, w € R(y), and it follows from Remark 5 that u e V.
Thus, we examine the case where v satisfies condition (ii) for v =y + z,
z € R(y). Then from the definition of u we have u =y + z + w,
w € R(v). Making use of the properties of R(u), by Remark 4 we
have R(v) = R(y + z) © R(y), hence w ¢ R(y). But also z € R(y),

and by Remark 2, w + z ¢ R(y). Finally, by Remark 5, u € V.

Remark 7. For V defined as in Remark 6, S - S = V.
Proofs It is obvious that VC S -S. To prove the converse, suppose
@48 =S but u/f V. Moreover, let u = x(h) be the first solution

in S satisfying these two conditions. Identify the solution x(i) = S,
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i < h, such that x(i) + e = x(h) and r = d . We observe by

Remark 6 (for x(i) = v and e, = w) that x(i) ¢ V. However, since
x(h) is the first solution in S that is not in V and also not in

S, it follows that x(i) € S. (For convenience we assume that the
indices of the solutions in S are changed, if necessary so that
x(i) € S denotes the same solution as x(i) ¢ S. Proposition 5 per-
mits this assumption to be made without danger.) Since r & di’ at
some point in generating S we have t.=iandN = c(h) = C(tr)
+e_ . Also, since x(h) £V, x(h) does not satisfy the criteria to
be dropped at instruction 2. On the other hand, if the algorithm
generating S halts before x(h) is added to §, then it cannot be due
to T = @, since 1:r must remain well-defined from the point at which
x(i) is generated until after x(h) is produced. But the method also
cannot halt in consequence of finding an optimal solution before
generating x(h) since, otherwise, by Proposition 5, such an optimal
solution would have preceded x(h) in S, and thus S would also have
ended before generating x(h). There are no other ways that x(h)
could be prevented from belonging to §, and the proof is campleted

by contradiction.

With the foregoing remarks we have established all but one portion
of the proof of Proposition 6, which we now complete as follows.

Proof of Proposition 6. We claim that for any z & O, the lexico-

graphically largest u such that u + z is optimal is always retained
in S, For, suppose it is not. We may first observe that u € S. This
is clearly true for z # O by Propositions 2 and 4, and is also true

for z = 0 since by Proposition 3, the first optimal solution in S
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(hence the only optimal solution in S by the rule for termination in
instruction 3) is that which is lexicographically largest. Given

that u € S, if u £ § then u € V by Remark 7. Thus there exist x
and y as in Remark 6 such that: (i) xDy andu=y +w, w & O; or
(ii)ﬁya.ndd=y+wforw e R(y) or w = 0. In both cases, y +w + z
is optimal, and so is x +w + z. Thus cy = cx, and by Proposition

3 x is lexicographically larger than y. But then x + w is legico-

graphically larger than y + w = u, contrary to the definition of u.

It is clear that Proposition 6 implies S* # @ when problem (3) has
a finite optimal solution. In order to gain a clearer understanding of
our foregoing results it is perhaps worth pausing to consider not only
what has been proved but what has not been proved. For example, if ¢ 2 0
but ¢ ¥ 0, it is clear that S might not be finite, although a slight modi-
fication in generating S that allowed upper bounds to be taken into con-
sideration would assure finiteness for an explicitly bounded problem. On
the other hand, unless ¢ > O it is easy to construct examples for which
Propositions 3 and 6 are false. This does not immediately imply that S* =
¢, but it may actually make the generation of S less efficient by allowing
a solution x that is lexicographically smaller than a solution y to be
retained in S while causing y to be dropped; whereas, had y been generated
first (and yDx), it would have caused x to drop. But the fact that x is
lexicographically smaller than y means that it will in general have a
larger number of permissible continuations, forcing the method tc examine
more solutions than might otherwise be the case,

A more subtle point concerns the rule in instruction 1 for breaking

ties in the determination of J, i.e., by taking J at its smallest possible

o ———— - & s S S -
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value.:L It is tenmpting to believe that any rule for breaking ties might
do as well, but this is false. (There is, of course, the class of permis-
sible tiebreaking rules that may be made the same as the one specified

by a suitable reindexing of the variables.) The choice of J not only
affects the efficiency in the generation of § (in the manner just indi-
cated for x > 0), but is crucial in determining whether an optimal--or
even a feasible--solution will be found. It is in fact possible to spec-
ify choice rules for certain problems that will cause S* to be empty even
though an optimal solution exists.

Having established the validity of the general framework of the
algorithm given above, we will subscquently present a principal variation
of this method in which it is possible to obtain an optimal solution by

" generating only a subset of S. However, before introducing this varia-
tion, and the additional propositions upon which it is based, we will
now examine how the foregoing method may be applied in certain specific

situations.

5. Applying the Method to Problem (2) With and Without Additional Constraints

Vie first consider solving problem (2) in the absence of additional
constraints. Denoting the solution x(tj) + e j of instruction 2 by 53, it

is clear that x(i)bx for x(i) e §c (i.e., for i sk - 1) if

= = i
Ax., = ) AXx, (or A(t ) +A_= A(L since it is assured b e
Z 373 E JJ ( (J) g A, y

= The consequence of this choice may be interpreted as a secondary cost
perturbation that increments each c:J by c'J /P - ¢ 3? vhere, given that 21l feasible

x satisfy xJ < D, P is selected so that P = D(kc ) for all j, where k is a
multiple such that kc.J is an integer for all ,j, a.nd each ea satisfies 0 < eJ
< e, P and
PR / and es )
nethod, thls assures that c(p) < ¢(q) for p < q.

3 ej/D. In conJunctlon with the other rules of the
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Propositions 2 and 4 that c(i) § cx. Moreover, x then qualifics to be
dropped by Rule 1, since Propositions land 4 imply x ¢ 55. Thus, to de-
termine vhether X may be dropped at instruction (2) it suffices in this
case to check only whether A(tJ) + AJ = A(1). |

Hovever, dropping X in this fashion eliminates only its permis-
sible continuations, whercas, according to Rule 1 (and Prcposition 6)
it is legitimate to drop all the continuations of Xx. We will now con-
sider a way that will permit this to be accomplished conveniently when
X has the form kes.

Denotec the value di associated with a solution x(i) by r, so that
xi denotes the first nonzero component of x(i). DNote first of all that
it is unnccessary to record any solution vector x(i) since x(i) may al-
ways be reconstructed by knoving the group element A(i) and the value
of r ( = di) for each i. Thus to determine x = x(i), we begin with x = 0,
and define the next value of x to be ¥ = x + e.. Thereupon, one
finds p, p < i, such that A(p) = A(1) - A, and repeats the process,
treating % as x and A(p) as A(i). As soon as A(0) is reached, x(i) is
completely determined.

This process may be slightly specded if xi is known for cach 1i.
Keeping track of this'value, which we denote by Ui, is particularly
easy, since, in generating x(i) = x(p) + e, ve have U, = Ub + 1 if dp =
r and Ui = 1 otherwise. However, we will «lso wish to know the value
U; or xi in order to exploit Rule 1 more fully, in accordance with our
previous discussion.

Thus, given that x is & solution that qualifies to be dropped from

)

by Rule 1, whcere exactly onc corponent of x, scy X is positive, then

»
A

Xy - )X nay be required of 2ll solutions gencrated. This restriction,
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which hes the form x ; = B,j’ cen be accommnodated in a stireightilorward way
(9

by modifying the definition of the next value Ej of tj' Specifically, let

t, =min(i: i> t, end d, 2 j), vhere d, =r (r =d,)if U, = B_ - 1, and
J J 1 1 1 i i

’di =3 - 1 if Ui = Br' (Oae may recowd Ei at the same time as recording
d,, or sirply fleg d, to indicate whether d, =d, or &, = d, - 1.) This
il i i i i i

modilicd definition of LJ. assurcs thal one will not gencrate any solution

x(p), x(p) = =z(i) + €5 such that fﬁ > By For the value of j & Ei s 4,
inplies cither xg =0or J = di = 1r and xz s Bj - 1. In either casc,

k? = yj + = Bj . (Variebles with O upper bounds arc ussumed dropped

from the problem.) Also, the method will not fail to gencrate any solu-

tion in which x? ES BJ., provided this solution would have been generated

under the original deflinition of SEJ., since the new and old definitions
. . . ! i_.p
correspond for all j S r vhenever xT S B, - 1 (x, =x% - 1).
J J J J
In dircet extension of our foregoing remarks, we next consider problem
(2) augnented by constraints of the form xJ. s Bj’ vhere the Bj do nov all
arisc naturally--i.c., as a consequence of Rule l--but rather occur as
exogenous restrictions which moy apply, for example, to the xj that solve
problem (1). In this event, it may no longer be true that A(i) = A(’cj) + Aj
implice x(i)hx (x = x('bJ) o eJ). However, suppose that, if instruction 2

vere temporarily bypassed, X would be generated as x(q), and that there

exists some x(p) € §c, p < a, such that A(p) = A(q). Then if either

o

<d,orifd =d and U 2 U, it follows that x(p)Dx(q), and thus
X can be dropped at instruction 2 as a consequcence of Rule 2. Also, iv
is evident thet x(p)dx, and % cen be climinated by Rule 1, if for any
optinnl. solution of the formx =X + 2z £ B (2 2 0 and B the vector of

woper bounds), it follows that x(p) + 2z S B, since then x(») can legit-

inately replace x in such a solution. Ve mention threce things that will
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assure this, in order of increasing restrictiveness, but also of increas-
ing difficulty of application: (i) xg = O for those j such that Bj is
exogenous, (ii) x‘? s EJ. for such variables, (iii) cx + min(cj(BJ. - xg + 1))

exceeds an upper bound on c¢x, where the minimum is computed over those j

such that Bj is exogenous and x? > i'j.l This latter criterion may also be

applied replacing c by e (the vector of ones) if an upper bound on ij
is known.

If none of the foregoing criteria apply (other than A(p) = A(q)), it
is possible that X should not be dropped., but retained as x(q) in S. In
this event one may, if desired, cut down the number of solutions examined
by not allowing the consideration of any solution x(q) + ey such that
j < dp.2 An additional index, P assigned to x(q) (generally, m,

assigned to x(i)) will accomplish this if one defines EJ. so that

1A

g - . :-> .
tj min(i: i tJ, m,

introduction of m, and Ei in the revised definition of Ej has precisely

j £4d.), vhere, in this case, m =d =~ 1. The
d l)’ ’ ’ Q D

the effect of restricting the set R(x(i)) from which the permissible con-
tinuations of x(i) with respect to §C are determined.

The foregoing remarks, however, do not take advantage of the fact
that the A(i) are elements of a {inite group. This is an important con-
sideration, and we will show how to exploit its implications later. For

the moment, however, we continue to evolve the structure of the algorithm

: To prove this suppose u = X + z is optimal for some =z =2 O. Then

cu 2 ex + es2 for all j. How, x(p) + z will be optimal unless, for

same j such that B,j is exogenous, zJ. + xg g B, + 1. But then xﬁ > EJ.,
s z Bj - xg + 1, and hence cu 2 cX + min(cJ.(BJ. - x? + 1)). Vhen this

cannot be satisfied, as stipulated in (iii), then x(p)Dx is assured.

2 Some or all of those solutions for j = d_ may also be eliminated, the
details of vhich depend on the value of U_, and may be readily developed
from thc considerations diccussed here.
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to accommocatlc other kinds of restrictions.
It is rether transparcent that a restriction of the formZxJ. =M

miy be handled simply by recording Mi =Zx3 -- i.e., Mi = Mp + 1 where

x(i) = x(p) + C;j for some j. Then vhen Mi M, it is desired that R(x(i)) =

¢, wvhich may readily be asswred by setting Ei = 0.
Onc criterion for dropping scolutions at instruction 2 is immediate.

—

If x(p)bx or x(p)DX in the absence of the constraint Z X s 14, then Mp s

ZTJ ( =1, + 1) assures that the same relation will hold in the present
0
instance. On the other hand, if I-Lp > y;j’ then X may have to be retained

.y

as x(a). An cxception occurc when cx + (M + 1 - I-Ip)(ILin(cJ.)) exceeds an
uppcr bound on cx, by reasoning similar to that of footnote 1 on the pre-
ceding page. It may be noted that this criterion may be checked quite

casily. The criterion may 2lso bce charpened, though at some computational

expense, by indexing the Cj in ascending order of magnitude and defining

k to be the leact index such that y Bj >M+1 - Mp. One then tests

jax

whether M, given by M = ex + y B.c. + (M+1 - M -y B.)c,, exceeds
» 8l1ven by c i 33 ( D ] J) x?

§<k i<k
the bound on cx. Moreover, if criterion (iii) on page 22 holds, then

2 s Bj - Xj (see the associated footnote), and one may replace Bj in M

by 55 =By - x?, redefining k in terms of the Eﬁ instead of the B,. We
give attention to such criteria because, in the form of the algorithm
introduced in the next section, upper bounds on cx are likely to be
obtained before determining an optimal solution.

Now consider a restriction of a somewhat different sort. Suppose that
the problem variables are divided into a number of different sets Q’h’ such

that at most one variable in any particular set may assume a positive value.
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A familiar example of such a restriction is given by a set of constraints
of the form y xJ_.S.l. |
J e Q)

One method of accommodating such a restriction is as follows. Assign
a different prime number to each set Qh’ and assign to the variable xJ the
set of prime numbers corresponding to those Qh to which j belongs. If the
Qh are disjoint, xj will thus be assigned at most one prime number. Then,
to each A(i) generated by the method we attach a number Pi' We let P0 =1,
and determine Pq, where x(q) = x(p) + ey SO that Pq = PpGj’ where Gj is
the product of those primes associated with Xy We do not allow x(q) to
be created, however, if any prime associated with xj divides Pp. It is
easy to see that this approach will cause the method to generate only
those solutions satisfying the indicated restrictions. Also, the largest
Pi will not exceed the product of the primes attached to the Qh, and may
be substantially less than this product.l

Another (perhaps better) way of handling such restrictions is to
assign the numbers 1, 2, 4, 10, 20, 40, 100, 200, 40O, etc., one-to-one
to the sets Qh’ and to assign each xj, as before the numbers attached to
those Qh for which j = Qh. In this case we let PO = 0, and let Pq = Pp + Gj’
where x(q) = x(p) + ¢ and Gj is the sum of the numbers associated with

X,.,. It is not hard to see how to determine whether it is permissible to

generate the solution x(p) + ej vhen using this scheme. Also, a quite

L The manner of assigning primes to the Qh will significantly influence

the size of the largest Pi' 4 step in the right direction would be, for
example, to assign the smallest primes to those Qh with the largest number

of elements. It would also be possible to use -1 for the "first prime,"
followed by 2, 3, etc.
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Jarge number of scts Qh may be accommodaled by representing a large Pi

by morce than a single numbcr, c.g., by Pg, Pi, Pf where Pi is the

"augmented number" (Pi, Pi, Pg).

The abilily to drop solutions at instruction 2 is rather limited
when accomodating restrictionc such as the one above unless one is will-
ing to apply morec involved tcsts for determining x(p)Dx and x(p)Dx. How-
ever, 1if the xj are not subject to other types of restrictions, then one
criterion that assures x(p)Dx(q) (rcpresenting X as x(q)) is A(p) = A(q)

whenever P divides Pq and the Pi arec determined by the prime number

assignment.

6. A Variation of the Algorithm

e now indicate a refincment of the method that in some cases will
make it possible to substantial.y reduce the number of solutions generated.
First, cuppose that we wish to solve problem (2) in the absence of addi-
tional restrictions, and assume that a list 81s 8> ++vs By is associated
with the D clements (including 0O) of the additive group, vhere 8y = b
if A(i) is the kth group element and 8y = O if the kth group clement has
not yct been generated. Such 2 lict would evidently be useful in the
ordinary procedure of determining wnen a solution is to be dropped at
in.truction 2. However, notc that if A(p) and A(q) are gencrated such
that A(p) + A(q) = A, then x(p) + x(q) is a feasible solution to problem
(2). 1MMorcover, if x* is an optimal solution to (2) such that either x* -
x(p) £0 or x* - x(q) = O, then it can readily be shown that x(p) + x(q)
is an optimel solution to (2). Consequently, A(p) + A(q) = A, allows us to
limit the A(i) generated in two ways. First, we need not gencratc any con-

tintations of A(p) or A(q) (which potentially eliminates 2n sequence terms,
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although usually many of these will already be removed from consideration),
and, second, the solution sequence may be termin-ted as soon as c(i) 2
c(p) + c(q). This knowledge can be exploited with the use of the g list
as follows. When any A(q) is generated, check the value 85 where Ao -
A(q) 1is the kth element of the additive group. If g, = 0, then nothing
is to be done, but if & = P> 0, then A(p) + A(q) = A . Thus set Ep =
Eq = 0, so that no permissible continuation of x(p) or x(q) will be gen-
erated. In addition, if any continuation x(i) of x(p) (permissible or
otherwise) has already been generated, we may set Ei = 0. The fact that
x(p) + x(q) is a solution to (2) is recorded, unless some better feasible
solution has already been found. Note that, although no continuation of
certain of the sequence terms need be generated, these terms may still be
used to drop other sequence terms in the usual fashion at instruction 2.
The best feasible solution found supplies the value cx* such that the
sequence generation stops when c(i) 2 cx*. (The process may also stop
simply because T becomes empty.)

But we can generally do still better than this, extending the fore-
going remarks to problem (3) in the process.

For each x(k) € §c, let F, be the set of those x(i) e gc’ i sk,

) 4
such that x(i) + x(k) is feasible for problem (3), and if Fy @, let

x(v) be the particular element of F, such that v = min(i: x(i) e Fk).l

k

1 1 one is solving problem (2) subject to additional constraints, a
modification of the 8y list can be conveniently used to identify F, and

k
x(v). For this purpose, instead of assigning a single component &y to
the kth group element, one may define 8x1 to be the index of the first
A(i) equivalent to the kth group element, gxo to be the index of the

second, and so on.




Then, between instructions 3 and I of the method we may inscrt the
instruction:
3. IfF = $, go to instruction 4. Othervise, sct ak = 0 for

all x(i) € F,, for i =k, and for each %(i) ¢ g; that is a con-

k2
tinwation of some solution in Fy. If c(k) + c(v) < cx¥, where x¥*
denotes the best feasible solution previously found, designate x(k)
+ x(v) to be x*.
When the method is augmented by instruction 3A, the condition T = ¢
of course may not indicate the absence of a feasible solution, bul only
that no solution exists that improves upon x¥, provided x* is well-
defined.
Proposition 6 assures that for each x(k) ¢ S there is an x(i) ¢ 8§
such that x(k) + x(i) is optimal if an optimal continuation of x(k)
exists. But then, becausc the c(i) arc monotonically nondecreasing,
the first x(i) such that x(i) + x(k) is fecasible must be optimal. The
Justification of 3A follows imnediately, and the algorithm may clearly
be halted at instruction 2 as soon as HI g cx¥*, Ve nov state an im-
portant condition that al;ows the élgorithm to be halted still earlier.

Proposition 7. When the method of Section 3 is augmented by

instruction 3A, then the algorithm mey be halted at instruction 2,
and the best feasible solution x¥* found taken as optimal, whenever
3 = > re = M 3 ! = moy 1) 1 % - .
) c(h) c» Where ¢ Lax(ca) and c{h) = max(c(i): c(i) < ex NJ)

(Until a feasible solution is found, let c(h) = .)

Note: Proposition 7 may be interpreted as follows. Suppose a
feasible solution x¥* has been found by the method with instruction
3A included. Until such o solution is found, the method is the

sene as before. However, the next solution x(r) to be gcnerated,
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and all remaining ones, must satisfy c(r) 2 NJ for the successive

current values of NJ. Now, if x¥* is not optimal, and if there is

any solution x(h) such that x(h) + x(r) is optimal, then c(h)
cannot exceed the value assigned to it by Proposition 7. Also,
by thus assigning c(h) its maximum possible value and c(r) its

minimum possible value M., one minimizes c(r) - c(h) for all r

J
and h such that c(r) + c(h) < ex¥, c(r) 2 ¢(h). The proposition
then asserts (through the relation Ny - c(h) > cM) that once this
mininun difference excceds Qp an optimal solution has ealready

been found.

Ve break the proof of Proposition 7 into several uarts, as follows.
Remark 8. ILet X and % be choscn so that they minimize ca - c®
subject to ex - ¢® 20, X, § 20, and x + % is an optimal solution to
problem (3). Then ex - & s Gy

Proof. Suppose the conclusion is false. Select any j such that

Eﬁ >0 qnd let xj' = is -1, x." = ﬁj + 1, with the remaining com-
ponents of x' and x" equal respectively to the corresponding

components of x and ®. Ve must have cx' - cx" < 0 since ex' - ex" =

- - — = A

cx - o - 2cj, and x and % arc assumed to minimize ¢x - ¢x 2= 0. But
i

" . . - .
x" and x' satisfy the requirements for x and £, contrary to assumption.

then, from cx - ¢ > c, we obtain ex" - ex' < 2, - ¢ S ¢, vhere
1. \J \J

Remark 9. Let g be the least index such that x(q) € S and for some
p = q, x(q) + x(p) is optima’ (x(p) € §). Then c(q) - c(p) =

cx - ¢ Tor X and % chosen as in Remork 8 and for 21l P, P 54,
such that x(p) + x(q) is optimol.

n Al ] i A
Prool, Suppose that for q and for some p as given, we have cx - cx
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< c¢(q) - c(p). Then from cx + c® = c(g) + c(p) we obtain cx < ¢(q).
By Proposition 6 there is a solution x(s) € S such that x(s) +% is
optimal, and also, therefore, a solution x(r) € S such that x(r) +
x(s) is optimal. It is immediate that c(s) = cx and c(r) = cR.

But then c¢(r) = c(s) < c(q), implying r, s < q, which is impossible.

Proof of Proposition 7. Let S' denote the sequence generated when

the method is augmented by instruction 3A. It may readily be veri-
fied that the proofs of Propositions 1, 2, 3 and 5 apply to S'

as well as to §, since these proofs do not depend upon the legiti-
macy of eliminating continuations of solutions in §c from S.

(Oonly Proposition 6 depends upon such legitimacy.) Likewise, one
may conclude from the reasoning of Proposition 5 that S! is a
subsequence of S. Consequently, we may assume that the indices

of solutions in S' are assigned so that x(i) e S'and x(i) € S
denote the same solution. Then let q be selected as in Remark 9,
and given this value of q, let p assume the smallest value (p = q)
such that x(q) + x(p) is optimal. We now wish to establish that
x(p) and x(q) belong to S*. If not, one or the other of them must
be excluded from S' as a consequence of instruction 3A,and thus

may be expressed in the form x(i) + z or x(k) + z, where x(i) + x(k)
was discovered to be feasible, x(i) € Fy» and z 2 0. Since k 5 q is
required if x(p) or x(q) is to be eliminated as a consequence of
finding the feasible solution x(i) + x(k), we have c(k) = c(q).
Then fram c(k) + ¢(i) 2 e¢(q) + c(p) we also have c(p) & c(i), and
hence c(k) - c(i) 2 c(q) - c(p). If this last holds as an equality,
then c(k) = c(q) and ¢(p) = ¢(i), from which it follows by the defini-

tion of g that k = q, and x(q) € S'. (x(k) and x(i) are not dropped




from S', but only their continuations not in S'. Of course, onc may

alternately, if desired, think of x(k) and x(i) as being dropped

also.) But then, also p & i, hence x(p) camot have been climinated
from S'. In particular, p = v for v as defined for instruction 3A,
and hence the solution x(p) + x(q) would have been chosen as x* by
the method. Thus, we exemine the case for c(k) - ¢(i) < c(q) - e(p).
By Remark 9 it follows that c(k) + c¢(i) > c(q) + c(p). Therefore
c(p) < c(i), p < i, and x(p) cannot have been eliminated from o',
Thus, if x(q) £ S', or if x(q) + x(p) was not selected as x¥*, we
must have q > k and either x(q) = x(kx) + z or x(q) = x(i) + z.
Suppose x(q) = x(k) + z. Then from c(q) + c(p) < c(i) + c(k) we
obtain cz + ¢c(p) < c(i). Since x(kx) + z + x(p) is optimal, by
Proposition 6 there is a solution x(r) e § such that x(k) + x(r)

is optimal, c(r) < c(i). But this is incompatible with q > k. One
similarly obtains a contradiction from the assumption x(q) = x(i)
+ z, which completes the proof, for we have showvn both that x(v),

x(q) € S* and that x(q) + x(p) wes at some point selected as x*.

To get an idea of the restrictiveness of the terminating condition
of Proposition 7, we note that it allows the algorithnm to stop whenever
Ny 2 ex¥f2 L (vhere cx* is the optimal objective function value), and
generally sooncr. This is likely to resull in considerable computational
savings in the event that it is not difficult to check for feasibility
and 5 is somewhat smaller than cx%/2. (Savings would likely result in
any case duc to the continuations that are dropped.) The reason for this
lies in the fact that there are generally many more distinct solutions
x that yield {the same value of c¢x for cx large than Tor cx snzll. For

L
exexple, if the objective is to miniLﬁszj; %, and if cox = 20, it is

- ¢
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-
evident that the number of solutions z that satisfy O = Zdz j =11 is

considerably smaller than those that satisfy 12 s Z xJ. s 20. Of
course, the method would ordinarily generate only a small fraction of
the latter range of sclutions in any event. But the existence of a cut-
off point at ij < 12 would likely allow a further elimination of
possibilities.

The question arises as to whether it is possible to shortcut the
generation of solutions if it is known beforehand, or explicitly required,
that an optimal solution must satisfy a constraint of the form ) x 3 2 L.

Ve sWha.t this question may be answered affirmatively in the next

section.

W AccommodatingZxJ. = L, ij 2 L, and related constraints.

We have already seen how to handle constraints of the form y\x j = M.

—

The method for handling constraints of the form S-‘xJ. = L and

Sﬂxj 2 L is quite similar. Suppose that :; = Min (cj). To accommo-

—
date S-‘xj =L, Xy is eliminated from the objective function by pivot

)
reduction (i.e., by replacing Xy by L - S-‘ xj), so that the new objective
i2
function coefficient for each j is cj' =cy - z0. (1f cj' = 0 for

some Jj ;4 1, then the problem is of course perturbed so that cJ.' > 0.)
With x, thus "eliminated," only the variables x 3 for j 2 2 enter

explicitly into consideration, and ij = L wvith Xy 2 0 is accomodated

by requiring ij = L.
j=2

The constraint ij 2 L is handled in a like fashion, introducing

the nonnegative integer slack 8¢ and vriting yxj -8y = L. After

removing X, from the objective function as above, and treating it as

1
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dependent variable (sl now has the objective function coefficient cl),
—

we are left with the inequality > xj -8 = L. To assure that the method

iz
will actually generate only those solutions satisfying}ixj e L, it is

important that s, be indexed as the last x variable; i.e., s, =X

n

1 n+l’

i i .. . .
As a consequence, whenever“sﬁxj - xn+l = L, no permissible continuation

J=e

—_

of x(i) may be allowed, since every permissible continuation of this solu-
ham |

tion would necessarily violate > xJ - X4 2 L. Note that this would
2

not be the case if s, were not the last x variable.

Variations immediately suggest themselves. Whenever the problem has
a subset of constraints of the form?aijxj = as where, say, ai,j &0
for j =1, ..., r. and aij s 0for j = r, +1, ..., n, then it can readily
be seen how to apply the algoritnm so that every x(i) generated satisfies
all such constraints for which 2. 2 O.l In accordance with these remarks,
it would be reasonable to attempt to impose an indexing of variables that
would create this structure, or nearly this structure, for several of the
problem constraints. For constraints that could not be put in this form

(given that other constraints do have the desired form), it would be use-

ful to index as many positive aij as possible ahead of the first negative

a, .-
1J
e Similarly, for constraints of the form y'a..].x‘J =a (mod 1), where the
a. may represent either scalars or column vectors, if the aj for J = 15 :5<3 Tp

are contained in a subgroup of the group generated by the a; (mod 1) for all
§fa.x% is not a member of the sub -

j (e.g., ay = O for j = r), then if a, -

group, the continuations x(i) + e for j S r need not be generated. To

exploit this and similar relations more thoroughly, it is of course pos-
sible to reindex the xj for the permissible continuations of x(i). However,

such local reindexing requires more memory, and does not permit a solution
x(1) to be dropped unless R¥(x(i)) = @, or unless ™(x(i)) # p can be shown
to imply R*¥(x(p)) # p for some solution x(p) not dropped.
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8. Passive Variables and Additional Ways of Handling Upper Bounds for

Problem 2.
We will be concerned in this section with two additional ways of
handling certain types of problem constraints that arise chiefly in

the context of problem (2). The first way involves the creation of

"passive" variables to restrict the number of solutions generated. The

second involves a means for determining when some subset of exogenous

bounds is actually nonbinding, thus allowing the bounds to be treated

as natural. To accomplish the second goal we will subsequently derive

some needed results about finite additive groups.

Suppose first that xj s Bj is required for all xj, and that there

exist nonnegative integers h, k (h > 0) such that ke, $ hc,, kA, = hA

1 &l 2

Ordinarily, if ke, is generatsd as x(p) and he_, is generated as x(q),

1 2

> p, it would not be permissible to drop x(q) due to the existence of

the exogenous B However, note that we may require of any optimal

l.
solution that x, % h only ir x, > B, - k (equivalently, x, S Bl -k

only if x, sh - 1l). For if x, 2 h and x, B, - k, one may obtain a

solution with no greater value of cx by decrementing X, by h and

incrementing X by k. To take advantage of this fact we create the

1

"passive" variable x = hx, + (Bl -k + l)xl. We call x, , passive
3

1,2 1

. . .y L
because when x is generated as a solution x(i),” we remove x

1,2 1,2
from the list of variables, and assign a large enough value tn 3; so

that all original variables may combine with x(i) to form other solu-

tions. 1In doing this, we restrict X, SO that X, sh -1, except for

1 By the obvious convention, we mean by this that xi = Bi - K +1,

xé = h, and xg =0 forJ 2 3.

q
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the continuations of x(i).l

There are other, more general, instances in which the creation of
passive variables may be useful. Ve will not attempt to give a formal
description of these, but instead provide some examples from which the
general proccdures may be inferred. Supposc, for example, that by a
relationship such as outlined above, or by some other means, it is known
z 7 implies x, 2 6. To handle

= 3xl + 5x2 and x

that X, 2 5 implies Xy 2 3 and that x3

this we may create the passive variables xl,2 1,2,3 =

3% + 6x2 + 7x3. Then we impose the restrictions x, s L, Xy s 6, except

=

= : X
that X, = 1 when X, combines with xl,2’ and X5 3

vhen variables combine with X),2,3" If, in addition to the foregoing,
b

z 2, we create the two additional passive variables

B, - 6, X3 $ B

X), g 5 implies x3

+ + . : in whi
3 L = 2x 5xu and x xl,2,3 th The way in which such

1,2,3,4

passive variables may be created to accommodate other similar situa-

tions should by now be clear.2

1

Note that we could alternately let X3 0 = (Bl -k + 1)xl (hence

i
= = > 1 < =
X} =B -k +1, xJ O for j 22) and then require x, =By - k and x,
£ h - 1 except for continuations of x(i).

Passive variables provide a base upon which the rules of the algo-
rithm generate a partitioning of the x(i). The justification for the
partitioning may be expressed in terms of logical equivalences; e.g., in
a simple case: (P »Q) &> (P AQ)V (~ P). An interesting special
usc of the passive variables occurs when the logical alternalives provide
lower bounds on cx, which may then be evaluated in place of NJ for such

variables. Passive variables may also, of course, be created at later
stages of the solution process. Thus, if it is determined that the per-
missible continuations of x(i) must satisfy X 2 Lj’ vhere Lj > xg for

some subset R of the j = d , then one may take advantage of this by
creating x , say, where generatlng x, as & solution x(p) gives xp

J
for j € R and xp = xJ otherwise. In this case, dp is set equal to dl

and x(i) may be disregarded as a source of continuations.
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We now turn to the second means of handling upper bound restric-
tions. It may well happen that certain exogenous Bj do not in reality
exert any influence upon the set of optimal solutions to (2). We derive
some results concerning additive groups that will help to determine when
this is the case.

Imagine, in particular, that one has found k, h such that hcl s k02

and hA kA,. Under some circumstances, it is possible to impose the

1= ™2

restriction x, £ k - 1, using k - 1 as a natural bound for X5 in spite

2

of the fact that Xy s Bl for Bl exogenous. We develop one such circum-

stance as follows.

Proposition 8. Assume z € G if and only if z EYAJ.XJ, Bj 2 Xy 20,

k. A, and hEAl = k2A2, vhere hl s h, and

and xJ. integer. Let hlAl = K4, >
By +12h,, B,+1z2k (hl’hz’kl’kz nonnegative integer). Then

&) kb, > k;h, implies
(i1) z € G if and only if =z EZAJ.XJ., X, integer, Bj .Z.x:j 2 0 for

] - = 2 - 2 2
Jz3andh2 l..xl_O,kl l..x2..0.

= X < 3 & - o
Proof. Assume z = A.xj, xJ. integer, BJ. 2 xJ. 2 0 but X, 2 kl or

4509

= = IS 5 e 1 =
xlzha. If x22kl, let Xy xl+hl, X5 X, kl, a.ndxj

Ejfor J 2 3. Then we have 2z EYAJXJ.'. Consider the linear

function L(x) = kx; + hyx,. By (i) it follows that L(x') < L(x).

We repace x' by x and repeat the process with L(x) strictly decreas-

L3 . - S N - 'Y . - -

ing at each step, until X, = }j_ 1. INow possibly Xy 2 h2 (or pos
- T e [ » - [ ' = - -

sibly X2 < kl and Xy 2 h2 to begin with). Define Xy Xy h2,

T -
X, --x2+k2,x:j

In this case L(x')

EJ. for j 2 3, so that, again z EZijJ.'.

A

L(x). Denoting x' by X and repeating, eventually

= _ - .- o .
X, = h2 1. If now 5 2 kl’ the original replacement process is

initiated. Continuing this cycle of replacing X by x' we see that
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L(E) is always nonincreasing and is periodically strictly decreasing.

From (i) it follows that h, > O and thus (ii) is true or else even-

2
tually ié < 0. But the latter is impossible by the way in which x'

is defined in terms of Xx.

To see specifically how Proposition 8 relates to the problem of de-
termining natural bounds, suppose that no exogenous bounds Bj existed

and that hlel was generated as a solution x(p). Then, if subsequently

the solution kle2 was considered for inclusion among the x(i), where

= . ‘s = 2
klA2 = hIAl (as in Proposition 8), the fact that hlcl s k202 would permit

the solution kle2 to be dropped and the restriction x, = kl - 1 to be

imposed. Likewise, the method would similarly permit Xy = h2 -1 to be

imposed if k,e, were generated as x(p) and kA, = hA,, k,c, S hye,.

[

s s i s
Observe now that hlc1 = k102 and k2c2 = h2cl imply k2hl = k1h2'

This follows by muwltiplying the first inequality by h2, the second by hl,

combining, and then dividing through by ¢, > 0. But by Proposition 8, if

: . : = _ = _ ;
in fact k2hl < klh2’ then imposing X, = h2 1 and X, = kl 1 will be
permissible even if xj s Bj for exogenous Bj (provided the new bounds
for x; and x, do not exceed B, or B2).

Suppose now that the relation between xl and X, stated in Proposi-
tion 8 also holds between other (not necessarily disjoint) pairs of vari-
ables. Creating the appropriate linear function L(x) for each such pair
affords the conclusion that xjnmy”be bounded from above by the smallest
of the upper bounds that apply by Proposition 8, provided this smallest
upper bound is = Bj' Ve now seek an expedient way to determine the
smallest of these bounds for each j.

Proposition 9. Let k., be the least positive integer such that, for

1

some integer h 2 0, kA, = hA, and kyc, 2 hey. Moreover, let hy
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be the smallest integer h satisfying these relations. Similarly,

let h2 be the least positive integer such that, for some integer

k 20, thl = kA2 and h2cl > kc2, and let k2 be the smallest k

satisfying these relations. (Alternately, we may require klc2 >

hic. and h_c, 2 k2c2.) Then h k, < h,k, and, moreover, h, < h,,

171 271 12 21
k2 < kl.
Proof. First, observe that hl 2 h2 and Kl s k2 is impossible.

0 ) s s s
For otherwise we have k2c2 < h2cl s hlcl s klc2 k2c2, or k202 <
k202. Thus, either hl < h2 or k2 < kl' Suppose hl < h2 but k2

2 ky. Then (k2 - kl)02 < (h2 - hl)cl and (k2 - kl)Az = (h2 - hl)Al,

where k2 > k2 - kl 20, h h, - h, > 0. But then by the defini-

2 2 1

tion of h2 we have h2 - hl = h2 and thus k2 - kl = k2, the latter

heing impossible. Consequently, hl < h2 implies k2 < kl. On the

|14

other hand, if k, < k) and h,  h,, then (k1 - k2)02 > (hl - h2)cl

and (kl - k2)A2 = (hl - hz)Al' In this case we obtain a contradic-

tion by observing that h1.> hl - h2 = h1 follows from the definition

of k1 and h Thus we conclude h, < h2, k2 < kl’ and, of course,

L 1

th2 < h2kl°

One immediate consequence of Proposition 9 is that for hl’ h2, kl,

k2 as indicated, it is impossible to find h, k not both zero such that

h2 >h 20, k1.> k 2 0 and hA1 = kAe. Moreover, hl’ h2, kl’ k2 may

always be determined to satisfy the conditions of Proposition 9 as long

as ¢y, ¢, > 0. This means that we are provided with natural bounds Ei =

h2 - 1 and Eé = kl - 1 such that §i + Eé < D, where D is the order of the

edditive group generated by the Aj‘ (We assume that if exogenous bounds

) = « S I3
Bl and B2 exist, then Bl = Bl’ B2 = B2.) This result extends to any

number of variables, since if hAr = kAS for nonnegative h and k not both O,
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it is immediate by Propositions 8 and 9 that either xr £h-1o0r xS sk -1
can be enforced. By a process of scanning, then, one selects bounds ﬁﬁ

such that x; 8 Ej and ZEJ < D, provided 'ﬁj 5 B. Gomory has pointed out
fuam!

thatlzlxj S D - 1 may be enforced for an optimal solution to (2). Ve
have here indicated a way to determine bounds on the x'j that satisfy this
inequality (provided exogenous bounds are nonbinding). One of the chief
values of this result, however, lies in the fact that it provides a con-
venient way to check whether some of the exogenous Bj may actually be re-
placed by natural (and possibly smaller) upper bounds.

—
Another use for Propositions 8 and 9 occurs when > xj is bounded
(-

above. 1In this event, the upper bouncs X, = h2 -1, X, z kl - 1 still

apply provided hl s kl end k2 = h2’ v is to be noted that these latter

inequalities may occur for hl, b2, kl, k2 satisfying Proposition 8 but not
Proposition 9.

In the scanning of the Aj and their multiples to determine bounds on

the x,, there is another result that may be useful. If hl is the least

32
positive (integer) multiple of Al such that hlAl = kA2 for some k, then

the only positive multiples h of Al that satisfy hAl = kAz, for some k,

are h = hl, 2hl, 3hl’ etc. To see this, suppose hAl = kA2 for h = rhl + q,
where r is any positive multiple and O S q < h,. Then gi; = (k - rkl)Az,

where k1A2 = hlAl. By the definition of h1 it follows that q = O.

9. Concluding Remarks

The chief focus of this paper has been on developing an algorithm
for solving problem (2) when certain additional constraints apply.
Gomory's approach [ 5] to solving this problem in the absence of such

constraints is to use the dynamic programming recursion

Pi(z) =min(B, ) (2), Bs(z - A5) +c5)y 3 =1, oep 1y
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\O

where ¢J(O) = 0, ¢o(z) = oo, and z ranges over the elements of the addi-
tive group generated by the Aj mod 1. If ¢j(z - Aj) is unknown, then
one may provisionally replaced it by ¢j_l(z - Aj) and be assured that
compuing ¢j(z =+ kAj) based upon this replacement for k= 0, 1, ...,
will yield the correct valuc of ¢j(z - Aj) for the value of k such that
% + kAj =2 - Aj'
As W. V. Vhite points out [6], it is possible to determine @ (z +
kAj) correctly for all k without tihie need for revision. To do this one
identifies h such that ¢j_l(z + hAj) = Min(¢i_l(: +IL'ZJ)), and defines ¢j
(z + hAj) = ¢j_l(z + hAj). ¢n(Ao) then gives the optimal objective func-
tion value for (2). Backtracking over the ¢n(z) to find an optimal x
occurs in a manner related to that outlined in Section 5 by recording

k

Our motivation in developing the algorithm of this paper has not

for each ¢j(z) the largest k such that x, = 1.

been to devise a method that is competitive in efficiency with Gomory's
when applied to (2) in the absence of additional constraints. Neverthe-
less, our method may be competitive in this limited context due to the
fact that it may generate Ao somewhat in advance of generating all the
other elements of the finite additive group, particularly if the varia-
tion of Section 6 is used. The Gomory approach, on the other hand, must
generate ¢j(z) for each z in the group and for each j except possibly for
j =n. It may be noted that the values ¢n(z) constitute a superset of
the c(i) generated by the algorithm of this paper.

Once problem (2) becomes complicated with restrictions of the form

X, = Bj’ however, the dynamic programming recursion just outlined no

J

longer suffices, and it appears necessary to resort to the more familiar

Bellman knapsack recursion
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¢J(z) = Min {?J-l(z - ijj) + ¢ 4% | 0s X < Bi}'

In addition to being rather demanding on memory capacity, it is evident
that this approach can require considerably more computation than the
earlier recursion unless the average of the Bj is not too far from 1.

The treatment of exogenous upper bounds in our approach requires,
by comparison, very moderate storage capacity. In addition, although
these bounds may sometimes entail more computation than would be re-
quired in their absence, they may also sometimes entail less. This is
due to the fact that their existence may rule out the generation of cer-
tain x(i) that would otherwise occur in the solution sequence.

There appears to be little promise in the customary dynamic program-
ming approach to handling other kinds of restrictions, since the amount
of computation and memory requirements in such applications are typically
quite large.

We might note, in passing, that our method can be employed in the
framework of a cutting approach. The optimal solution to (2) -- or to
(2) augmented by some of ihe restrictions of (1) -- provides a lower
bound L such that cx 2 L in the optimal solution to (1). One may find
successively larger integer values for L by solving (1) as a linear pro-
gram with the constraint cx 2 L adjoined, and then reapplying the method
of this paper. The method may clearly be adapted to solve for all optimal
solutions to (2) or (3), thereby assuring that L may always be incremented
by at least 1 (assuming that c initially consists of integers).

More generally, any linear form in the nonbasic variables with posi-
tive coefficients (and possibly some zero coefficients temporarily per-
turbed), can replace the objective function of (3). The optimal value

for this modified objective function -- or a lower bound on this optimal
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value obluined by the method at some convenient cutolf point -- can be
used to tronsfonithe lincar form directly into a cut.l If the problem
has a mbrcet of constraints of the form Xajxj = a0, vhere aj = O for j

£ r, then a cut can also be obtained by minimizing a lincar form over
the x;j for jJ > r, provided 211 constraints }_:aa.xj =8 with a.J. # 0 for
JSrare c’iisregm‘dcd.2 It mny be noted thal the variation of Section 6
mey provide a particulerly effective way to determine a cut. If an opti-
mal solution hasn't been found upon reaching a specified cutoff, it fol-
lows from Proposition 7 that one may impose the cuthjx‘j 2 Max(c(i),
2c(i) - cM), where x(i) is the last solution gencrated. When the linear

form minimized is ij, this of course becomestJ. 2 22):3. - 1.

1 It is assumed that the coefficients of the linear form zre selected

so that the slack variable of the cut will be integer valued.

One can take advantage of these latter constraints, however, by
following the approach of the footnote on page 32.
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