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ei Generalized Multistep Methods and Applications to
Satellite Orbit Trajectory Computation

by
James Dyer

ABSTRACT

Recent ideas in the theory of multistep methods of solving a differential
equation of the first order are extended to methods of solving the special
“i second order equation y" = f(x,v). A slight modification of the usual multi-
| step method permits & significantly higher order approximation of the difference
equation to the differential equation without loss of stability.
The method of constructing the generalized difiference equations is based
on a quasi-Hermite polynomial approximation. An outline of this theory is
given along with some related unsolved problems. This method permits the con-
struction of new classes of stable difference equations with high order of
# accuracy for solving both a first order differential equation and the above

special second order equation.

L
f Scme of the new methods have been tested in experiments including the
i computation of an unperturbed satellite orbit trajectory. Machine time used
and accuracy cobtained are compared with a standard multistep method.
. é Although further theoretical and experimental work remains to be done to-

wards the analysis of accumulated round-off error and truncation error in the
new methods, it is expected that they can eventually be incorporated into
eificient algorithms for solving the general equations of motion of an earth

satellite.
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1. Introduction

The research reported in this paper was motivated by a desire to construct
new predictor-corrector methods for numerically solving the equations of motion
of an earth satellite.

Among many others the Gauss—Jackson method of solving these equations has
been in use for many years with comparatively good results. This method is
based in part on a difference equation corresponding to a special differential
equation of the second order (with first derivative absent). It appears to
owe to this characteristic some of its advantages over other more general
rical integration schemes. It is, moreover, in part a result of applying
a particular process of summation to the above-mentioned difference equation.

A clear advantage can be shown (5] in certain cases for the summed form in
the control of the propagation of round-off error. If arithmetic is carried
out with "sufficient" precision, the advantage is not clear. Neither is the
advantage of the summed form clear if the so-called process of double precision
accumulation is used with the orthodox form. This problem has been very
briefly considered here. The results of an experiment are given where the
summed and unsummed forms of a simple difference equation are used with and
without the relatively inexpensive process of double precision accumulation,
With this important exception, difference equations used in the present are
unsummed. We are primarily concerned with reducing local truncation (discretiza-
tion) error.

The order of accuracy (Definitions 3.6 and 3.10) of the correcting difference

equations of the Gauss-Jackson method (summed or unsummed), if kth differences
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are considered, is k+l. In the last decade much work has been accomplished

in the analysis of linear multistep methods for solving differential equations.
In 1956, G. Dahlquist showed that the order of a stable k-step method could

not exceed k+Z and tha: the order could be k+2 only in a highly restricted
number of cases. Henrici proved [5] this result for a stable second order
difference equation, i.e., for a difference equation corresponding to the
special equation, y"=f(x,y).

If stability is ignored, a k-step linear difference equation correspording
to a first order differential equation can always be constructed, based on
the Hermite interpolating polynomial, with an order of accuracy of 2k+l.

(This is, of course, as much as one can normally hope for in an operator derived
from an osculatory interpolating polynomial, because we impose conditions on

the polynomial and its derivative at k+l points.) Thus it is seen that a
considerable gap exists between the maximum possible nrder of accuracy of a
k-step difference equation and the maximum possible order of accuracy of a
stable k-step difference equation. Stability is 2 necessary condition for
convergence [5, p. 217] of a linear multistep method. To close the gap it is
necessary to abandon the traditional equally-spaced multistep methods.

In 1964, Gragg and Stetter introduced {4] a class of difference operators
for a first order equation which they called generalized multistep predictor-
corrector methods. The derivative value is used at exactly one "non-step"
point, These methods represent a compromise between Runga-Kutta methods and
conventional multistep methods. They use information previous to the last

point computed, as do tne latter; and derivative evaluations are made part
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way through a step, as in the former. The authors prove that convergent
generalized methods (of solving a first order equation) with an order of
accuracy of 2k+l exist for k < 4. Actually they are able to choose the non-step
point so that an order of 2k+2 is obtainable. Moreover they show that the
methods converge like h2k+2 uniforuly in a given interval of integration. They
provide s:ant computational evidence of the value of their schemes.

Butcher [1], still considering first order differential equations only,
developed an elegant method of constructling stable methods with order of
accuracy 2k+l for k < 8., His method of construction employed the familiar
Hermite interpolating polynomial.

In view of the foregoing remarks, it was felt wise to studv multistep
operators, generalized in the direcrtion noted above, with respect to a second
order equation y"=f(x,y). This problem is interesting in itself; and it was
felt that if satisfactory results were achieved, a method of this sort could
be incorporated, in analogy with the structure of the Gauss-Jackson algorithm,
into one which applied to perturbed satellite motion and could retain its
effectiveness for certain types of, if not most, trajectories.

Our difference equations are based on an interpolating polynomial P(x)

of degree m such that

P(x) = g(x) Xe0

P"(x) = g"(x) XET

where o and 1 are subsets of SR’ a set of k+l equally spaced points. The set

oUt contains mt+l points, and g is a twice differentiable function.
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The uniqueneaa of such a polynomial is in question. It does not depend on the
values of g and its second derivative. This problem of the uniqueness cf the
generalized Hermite inierpolating polynomial, even in its simplest form where
G'T-Sk, does not appear to be considered in the literature. Although we are
practically concerned only with fitting a function and its second derivative at
equally spaced points, there are many associated problems of theoretical interest.
One may replace tihe second derivative in the above problem by the nth derivative,
impoae conditions on derivatives of mixed orders, or remove the requirement

of the equal spacing of the points.

A theory of generalized Hermitian interpolation was needed. Some results
pertaining to this study are given in Section 2, Professor T. S. Motzkin of
the University of California, Lns Angeles, was cinsulted during the preparation
of this section. A subsequent paper by Professor Motzkin and the author will
treat this subject more Eully.

The study of conditions for the uniqueness of the generalized Hermitian
interpolational polynomial leads to the consideration of the question of
independence of certain sets of polynomials, to the definition of generalized
Vandermonde determinants and to the study of Hankel determinants assoclated
with the sequence of coefficients in the Maclaurin series for logn(1+x).

In Section 3 some of the above theory is used to construct stable high-
order k-step methods of numerical integration generalized as above. We are
concerned with relatively small k, k < 8. The difference operators constructed
depend on a parameter 8. Graphs are included indicating the ranges of 6 where

stability occurs, in some successful cases. The constructive process was used
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also to precduce stable generalized explicit methods of order of accuracy 2k,
not known to exist, for a first order differential equation.

A final section reports the results of simple computational experiments
comparing machine time required for the new operators with that required for
a standard operator to compute a solution with comparable accuracy. The
Appendix contains the coefficients in constructed equations.

Theorem 2.17 is due to T. S. Motzkin, The truth of Lemma 2.3 was de-

monstrated by R. B. Barrar.
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2. Generalized Hermite Interpolation.

Qur method of constructing a high-order generalized k-step difference

equation to solve numerically the equation

y' = £{x,y)

requires a generalization o/ the notion of Hermitian interpolation. The usual
k + 1 point second-order Hermite intorpolational polynomial P{x) is of degree

3k + 2 and for a twice differentiable function g(x) satisfies

P(u)(xi) = g(u)(xi) p=0,1,2 i=0,1,...,k

(I -

In general, if higher derivatives appear, all derivatives of iower order are
considered. See [11). Here we wish to fit the function and second derivative
end net to impose conditions on the first derivative. We consider here only
the case of equally spaced points X, The symbol X will always denote the
aet{xo,xl,...,jk}.

The generalization of the usual osculatory interpolation consists in
defining a polynomial P of degree m, if possible, by imposing m + 1 conditions

of the type

p(W) (x,) = g(u) (x,)
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with 0 < y <nand 0 < i <k, For any such set of conditions, a unique poly-

nomial is or is not defined. Conditions for the uniqueness are of interest.

One may begin with the following determinantal form [9),

p(x) 1 X x2 P. xj xj+1 ..... X
2 j j+1 m
g(xo) 1 X, X X Xy e X,
2 j j+1 m
g(xl) 1 Xy Xy X X] e X
2 i j+l m
g(xk) 1 Xy X, o X3
. j=1 j m-1
g (xo) 0 1 2x0 ixg (J+1)x0 ..... mx,
(AfH{" " T T T T T TETRT T T T T T T TS TR R R T T T T TR
g'(x,) 0 1 2 ]xj-l (j+1)x] m-1
K X . K Xp  eeee me,
(n) . . m! m-n
0 Y +D iz, ..., X
24 (x,‘) 0 0 ) 3 (_] } 0 (m-n) ! AO
g(n)(x Yy 0 0 0 je G+D %, ... o m=n
k k {m-n)!

defining the usual Hermite interpolating polynomial P(x). Here m=(n+1) (k+l)-1.
For m < (n+l1)(k+1)-1, the more general determinantal form is obtained from the
above form by eliminating rows corresponding to conditions not imposed and
eliminating an equal number of columns on the right., The coefficients of the

interpolating polynomial P are uniquely determined if and only if the fundamental
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determinant which results from deleting the first row and first column from
the general form (2.1) is different from zero. We call this determinant a genera-
lized Vandermonde determinant. Some special cases (Hermite interpolation) have
been carefully considered. They satisfy the feollowing condition:

If a derivative condition is given at a point, then conditions

cn all lower defivatives are given at that point.
It is well known that uniqueness occurs in these cases.

In this paper we are interested primarily in another special case, that

resulting from the imposition of a condition on the polynomial and its nth

derivative at all k + 1 points (n < k + 1). The resulting generalized

Vandermonde determinant is

1 2 2k+1
XO 0 ...... 0
1 2 2k+1
xl xl ...... 1
1 2 2k+1
xk Xk ...... k
n l-n 2-n 2k+1-n
(2.2) D{k,n,X) = |M(k,n,X)| = IeX, ax T oxT 2ka1¥0
o o 1-n o 2-n 2k+1-n
0*1 1%1 9¥1 e 2k+171
g n . l-n . l-n 02k+1-n
0™ 1% v "SR “ok+1%k
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where o, = i(i - D@ - 2)...(1 =n+1). If M(&,n,X) is non-singular, a
uniquely defined interpolating polynomial may be associated with it. Denote
this polynomial by P(k,n,x). The following lemma is true more generally. For

this report only the case n = 2 is of interest.

Lemma 2. 3. Let m = 2k + 1. M(k,2,X) is non-singular if and only if the poly-

2

™2, mm - x +x)"

nomials (x +—x0)m, (x + xl)m,...,(x + X )m, mim - 1)({x + x

k
coo,mim - D (x + xk)m'2 are linearly independent.

0

Proof. Denote the polynomials as ordered by Pl(x),Pz(x),P3(x),...,Pm+1(xj.

Expand Pi(x) in powers of x:

j =n+1 il
Pi(x) = jzl aijxm J i=1,2,...,m+1

and consider the matrix (aij)' For 3 > 1 entries al=l+1’ 82,A+1"" in the

(A+1)th column are:

om - 1 {™2) <32 - 1)(::2) 2

) gives thne (A + 1)th column of M(k,2,X). For the first

Division mnow by

two columns the result is obvious.
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Define the translation operator Ta on the vector space Vn of nth degree

polynomials

(2.4) TaP(x) = P(x+a) PEVn

Obviously this linear translation is non-singular. (Apply it to the naturzl

basis.} Define for real a:

+a}

X+a = {x0+a, X K

l+a, erey X
Corollary. |[M(k, 2, X)| # 0 <= |M(k, 2, X+a)| # 0.
Proof. Because Ta is non-singular, the set Pl’ PZ’ tese Pm+1 of the lemma

TP TP is

is linearly independent if and only if the set TaP afas v TP

l’

linearly independent.

The non-singularity (singularity) of M(k, 2, X) is invariant under transla-

tion by a real number. Because of this property, we may sometimes write M(k, n)

instead of M(k, n, X). It is understood that there are kt+l egually spaced
points and that the rows of M(k,n) are ordered to correspond to conditions on
the interpolating polynomial and its nth derivative as in (2.2). The following

fact is obvious:

Lemma 2.5. M(k, k+l) is non-singular. M(k, n) is singular if n > k+l.
Corollary. There exists a unique polynomial of degree Zk+l which vanishes

along with its (k+1)th derivative at k+l equally spaced points for all k > O.
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It is clear that a matrix A = (aij) of the form

(- R
a 0 a 0 a ) - -
11 13 15
0 8y 0 3, 0 8y " )
(2.6) aq; 0 a33 0 a35 0 - -
0 3, O Wy 0 %0 3

oo T
- 2

b, O b, O b O - -
L By 0 by O re -
(2.7) 0 0 L 0 b, 0 - z
0 0 0 by, O by - -

- i i i i i i -

Theorem 2.8. M(k, a) is singular if both the following conditions are satisfied:

1) n even, n > 0

2} k even, k >0

Proof: Consider first the case k = n = 2. We have equally spaced points

By the corollary to Lemma 2.3 we may take x.=0. We use the

00 *10 *2¢ 1

notation M ~ N to state the fact that matrices M and N are row-equivalent.
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Now it is c¢clear that
() A

M(2,2,X) ~

and that rf -

(2.9) M(2,2,X) ~ .

L J

Triangularizing the matrix found by deleting the last row and last column from

the matrix on the right as in the statement preceding the theorem, we have

f 3
bll 0 b13 0 b15 0
0 b22 0 b24 0 b26
0 0 b33 0 b35 0

M(2,2,X) ~

0 0 0 b44 0 b46
0 0 0 0 b55 0
0 0 2 0 o 0

.
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Now it is apparent that M 1s row-equivalent to a triangular matrix with a zero on
the diagonal, i.e., the last row can be annihilated by row operations, using
interchanges if necessary. Clearly,for even k,we may take the interpolating

set X to include the origin and the remaining members of X to be symmetrically
distributed about the origin. If in addition n is even, a form analogous to

(2.6)can be achieved, i.e., for elements a not in the last row, i+j odd implies

ij

aij=0' The entries in the final row can then be systematically reduced to zero.
The above theorem shows that a polynomial of degree Zk+l is not uniquely
determined by its values and the values of its nth derivative at k+l equally
spaced points if k is even and n is even.
M(1,2) is non~singular by Lemma 2.5. It can be verified by hand computa-
tion that M(3,2) is also non-singular. Machine computations of |M(k,2)| for

k=5,7,9 indicate that the matrices are non-singular in support of the following

conjecture:

Conjecture 2.10. There exists a unique polynomial of degree 2k+l which vanishes

along with its second derivative at k+l equally spaced points if k is odd.

A further condition for the unjqueness.

It has been noted that a generalized Hermitian interpolating polynomial
is unique if and only the associated generalized Vandermonde determinant
is different from zero. We have also given a condition for the non-singularity

i 2kl i k-1,

of M(k,2) involving the polynomials {T x T ; i=0,1,2,...,k}. We now

derive a third necessary and sufficient condition for the uniqueness of P(k,2,x).
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The linear transformaticn T==Ta on the space Vp of polynomials of degree
p has been previously defined (2.4). Another linear transformation D=Dp: the
differentiation operator, can also be defined on this space. See [10]. Let T=T,.

D is uniquely given as a polynomial in T-I.

p-1
D(T-I) = (T-I) - 1/2(T-I)% + 1/3(T-I)° = ... + iil%——— (T-1)P

Lemma 2.11. If g(x) EVP and if g(T)xp=0,then g(x) is the zero polynomial.
Proof. The independence of the polynomials xp, Txp, szp, ., TPxP is a
consequence of the fact that the usual Vandermonde determinant is different

from zero. The lemma follows.

Corollary. Let gi(x)EVp i=0,1,2,...,p. Denote by S this set of polynomials.
Denote by Sx the set gi(T)xp i=0,2,...,p. Then S is independent if and only

if Sx is independent.

n I

It is clear that the nth order differentiation operator D: =D =D (T-1I)

is given by poiynomial multiplication,

i=p
oM1-1) = J ¢ (r-nt
1=0 1

For future reference we note that the sequence {diz):

1 5 137 7
» 12 T 6 * 180°  10°

i=0,1,2,...} begins

0, 0, 1, -1

We let m=2k+1 and consider the gquestion of the independence of the

polynomials
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X D2 (T-1) K™
T X" T D2 (T-1)x"
72" 1202 (T-1)x™
TR¢™ %% (1-1)x™ .

One may write the 1) as polynomials in T-I and equivalently consider the

independence of the set

X" D2 (T-1)x"
(P-1)x" (T-1)D2 (T-1)x™
(T—I)zxm (T-I)ZDZ(T-I)xm
(1-1) Kx™ r-1) %02 (1-1) x®

Finally using the fact that (T-1)3=0 for j > m,and using the corollary to

Lemma 2.11 we consider the independence of the polynomials in the operator

T-I in the latter set above. Writing A=T-I we write the matrix of coefficients
. , 2 2k+1

of these polynomials relative to the basis 1, A, A", ..., A . Because the

above discussion is not restricted to the second derivative, let 1 < k+l

and write

o n (n) n (n) n+l .(n) . 2k+1
21 -1) =4 -1} a T-1) Foae C L= .
{2.12) D (T-1) L (T-1}  + n+1(* K + + d2k+l(1 1)
The folicwine matrix 1s then written for such n, (here n < k) and 4. is written

\
for djn' for convenience. The composition of the matrix is clear. The
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k+l X k+l matrix in the lower left corner is always the identity. That in

the lower right is zero. The first non-zero element in the first row appears

under An+k, in the second row under An+k-1, and in the (k+l)th row under At
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Denote this array by E(k,n). From the form of the matrix of dimension
2k+1 x 2k+l in the lower left hand quarter of ﬁ(k,n), it is evident that the
latter matrix is non-singular i{f and only if the matrix E(k,n),given by the

array below, {5 non-singular.

Gkl (k2 ntk-2 k-l ntk Jotkdl 2K Xiae
D™ (A 0 0 0 0 d d d d
n n+l k k+1
¥y 0 0 .0 d_ d 4., dy A,
k-ZDn,A) 0 d_ d d 1 d 4o dn+3 vo s A3
fHQDn(A) 0 d eee 4y dis1 dys2 det3 o Y2kon dk-n+1
A-an(A) d ol 7 Ykl Gk Cr3 dets 7 Dkendl Y2k-nt2
ADTN iy e dios Yo Ynnez dnn Y1 Yok
U0 4y g ot G Yol Yo Yl Y2k Y2k

Theorem 2.1>5. M(k,n) is non-singular if and only if ﬁkk,n) is non-singular.

Some special cases are given below concerning the case of current interest,

i.e., n=2, We take all entries to be positive and call the resulting matrix

l)}ec+1

N(k,n). Clearly |N(k,2)| = (- IN(k,2) | .
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|N(1,2) |

IN(2,2) |

19(3,2) |

The matrix ﬁfk,n)

Define the sets

) ooy,

o]
I

and let S and S(n)

n\
o and 0( /

V2k+l’

{1, &, A

respectively.

For the set oo

21 SP-2631

0 1
] 1
0 1 1
1 1 /120 = @
1 11/12 -/6

0 1 1 11/12

1 1 11/12 5/6 - (1/240)2

1 11/12 5/6 137/180
11/12 5/6 137/180 7/10

can be determined in a slightly different manner.

2 k
L L

M), A2, ..., AP0}

be the vector spaces generated over the real numbers by

(n)

The sets o and o are both independent sets in

(n)

to be independent, the formula

dim(s) + dim(s‘™) = dim(s+s™y + dim(sns ™y |

relating the dimensions cf two subspaces to the dimensions of their join and

(u}

intersection, shows that it is necessary and sufficient that SNS = ¢.
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A necessary and sufficient conditfon for this is that

2 k,.n
(agta dta i +...+a, 1 7)D () be a kth degree polynomial for no kth degiee polynomial

2 . P
a.+a_ ita, i +...4a Ak . Conditions on the coefficients a

071" "2 k i give the necessary and

sufficient condition thet ﬁkk,n) be non-singular.

Associated with any sequence {ai} are the so-called Hankel determinants

il
i
% 141 di+5-1
2541 Bi42 0t P4y
H =
P
ll-“ o
17 i+ 4i42§-2

If we write logn(l+x) =
i
following is evidently true.

i t~18

aixl to define the sequence {ag then the
0

Theorem. 2.16. M(k,n) is non-singular and P(k,n,x) is uniquely determine

if and cnly if Hi+l is non-zero.

One can prove a general theorem about Hankel determinants which has an

application in the theory of generalized Hermictian interpolation.

Theorem. 2.17. Let H; be the Hankel determinants associated with 2 sequence
. 0
ays Ay, 8o, Let k be an integer greater than 2 and assume Hk-l =0
1

and Hk_z#O. Then

0

H
0 _ k-2 1 .2
He = @l 2 ()
k-2
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Procf. Denote by A; the array associated with thz Hankel determinant H%.

Let Rc; be the gth column of A; and let A’ be the matrix formed by replacing

L]
the £th column of AL y C%"l . Let H? be used to denote | A%l
— J 173 ] 2]
Tr.= columns ?Cﬁ-l of Ag-l are linearly dependent by hypothesis. Thus the
equation
L=k-1 0
(2.18) Rzl o Crog = 9

may be solved non-trivially. Because Hi_2¢0 a solution to (2.18) is clearly

(2.19) a, = -H o, = H 2=2,3,...,k-1 .

Replacing the first column of AS by this combination of its first k-1 columns

. 0, . . .
and computing Hk in terms of the entries of the last row of the resulting matrix

and their cofacters, we have

o 1 .1
S SR W
i=k-1 i=k-1 .
where H = 'X @8 o4y = .Zl a 941 in-Z . Consider the kt+l x k+l matrix
1= =
8 R
0 4 -3 -1
4 42 k-2 %
\
A=lay 338 A
k-2 k-1 fk-s P2k
- »
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It is clear that

H= (-1)

Let the columns of A be called

vo1 0
A A A

el

Columns of A: lC,
1

Columns of Ak_lz 2C,
0

Columns of Ak-l: lC,

It follows from these

expressing the linear

24 SP-2631

k+llkl

C i=1,2,...,k-1 and list the columns of

i

for convenience.

C

s -
r S MR LI UL

0

* k=2%" k=1%-17 %1€

3C, 4C,

0
Co 3Cy vuve y o€ C C

2 k=37 k=27 k-1"k-1

sequences of columns and from the equations (2.18), (2.19)

dependence of the columns of Ag_l, that

N k k-1 1
|A| = -1)" a Hk-l
1 .
ot
0
H
v k-1 k-2 1
Al = -1 1 M
Hk-?.
and hence that
0
H
0 k-2 1 2
e - Wt ) e
k-2

The proof is complete.
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It is clear, of course, that under the obvious hypotheses we have proved

Hn
5 no_ k-2 nt+l, 2?2
(2.20) Hk (Hn+l)2 (Hk-l) i
k-2

which is really no more general.

Let the sequence ags 375 8y, --- be defined by

log (i+x) =
L

a_X

Ho~18
=~
~

From the uniqueness of the usual Hermite interpolating polynomial one knows

that M(k, 1, X) is non-singular for all k. If the H; are associated with the
1

above sequence, it follows from Theorem 2.16 that H;#O for 3=1,2,3,...

If the sequence ag, a;, a . is defined by

2’

£
o X

log2(1+x) = ¢
0

£

N8

and the Hi are associated with this sequence, then we know from Theorem 2.8

A
and Theorem 2.15 that H;=0 for j=3,5,7, ... . We wish knowledge of H} for even j.
H}#G for j=2,4. These determinants appear as |N(1,2)| and |N(3,2)| on page 21.

As a corollary to the last theorem we have:

Corollary. With the last definition of the H;, if Hi#o for k > 4 then Hi#O

for k=2,4,6,... and for such k,M(k-1,2) is non-singular and P(k-1,2,x) is

uniquely defined.
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3. Existence and Construction of Operators

Consider a differentiable function y(x) and the differential equation

(3.1) y' = g(x,y).
Most k-step methods of solving (3.1) are specializations of the formula
(3.2) %Y -k et alyu-l * “oyv B h(Bkgv-k o d Blgv—l + Bogv)

where yj=y(xj) and gj=g(xj,yj). One may associate with (3.2) the difference

operator

{3.3) Lh[y(x)] = aky(x-kh) + ak_ly(x—(k—l)h) + ... + aly(X*h) + aoy(x)
- h{Bky'(x—kh) + Bk_ly(x-(k-l)h) + .00+ Bly'(x-h) + Boy'(x)}. )

Lh operates on any differentiable function. Assume that y(x) possessas an

indefinite number of derivatives. Each term in the right member of (3.3) can

then be expanded by Taylcr's formula to give:

(3.4) L [y(0)] = Coy(x) + Clhyl(x) o thqy(q)(x) + ...

The coefficients are given by

lg]
n

+ + ... + 0
0 %% "% %%

Cl=-[(11+f.!0.2+ .-.+kak—(80+81+ ..o+8k)]

(3.5)

= (=1 Qry/qifa +2q~ + L P 1 .. q-—l q._l
C ( --) [uq.wl R (.‘l.k) (_—_q-l): Ujl + 2 82 +...+ k Bk)]

for gq=2,3,...
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Definition 3.6. The difference operator (3.3) is of order of accuracy p if

C0=Cl=...=Cp=0 and Cp+l # 0,

The order of a difference operator is the first crude measure of its
accuracy. Amang methods of the same accuracy p, the coefficient Cp+l’ which of
coursc is independent of the choice of functicvn y(x), may be consiu:red as a
finer measure of the accuracy. The coefficient must be suitably normalized
because it can be made as small as one wishes by multiplying (3.2) by a
suitably small constant.

It is clear from the defirition of Cy that the order of an operator is p
if and only if Lh[y(x)] = 0 whenever y is a polynomial of degree not exceeding
p, but is non-zero for some polynomial of degree p+l.

There is a theory [5] similar to the above if one begins with a special

second order differential equation of the form

(3.7) y' = glx,y).
We give here only the difference equation

(3.8)

2
+ alyv-l + h (Bkgv-k + ... + Blgv-l + SOgv)’

Yy ¥ oo 0¥y

the difference operator

(3.9) Lhz[y(x)] = uky(x-kh) + uk_ly(x-(k-l)h) + ...+ uly(x-h) + aoy(x)

- hz{Bky"(x-kh) + Bk_ly"(x-(k-l)h) + ... + Bly"(x-h) + Boy"(x)} .

and the corresponding definition of the order of accuracy, after expanding, as above.
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Definition 3.10. The difference operator L 5 1is said to be of order of accuracy

h

pif C,=C, = ... =C_,. =0 and C

0 1 p+l p+2 $0.

It is again true that the order can determined from a knowledge of polynomials

anunihilated by L 2 and also that C +

p+2 suitably normalized here can be used as a

finer gauge of accuracy among operators of order p.

Method of Construction,

Associate with the left side of equation (3.2) the polynomial

k+l

2
(3.11) p{€) = ak+1 + akg + ak-lg 4+ ...+ aOE

Definition 3.12. A multistep method defined by (3.2) is said to be stable if

and only if all roots of p(£)=0 iie within or on the unit circle and a root of
modulus 1 has multiplicity at most 1.
This definition applies to (3.8) also. Here the multiplicity of a root

of modulus 1 must not exceed 2. A definition of stability in general is clear.

Definition 3.13. A multistep method is said to be consistent if it has order

at least 1.

Stability and consistency together are necessary and sufficient conditions
for methods defined by (3.2) and (3.8) to converge. Tne concepts of stability
and consistency extend themselves (o the slightly modified multistep methods
considered here. We are concerned now with the construction of methods with

order of accuracy approaching 2k and stable in the above sense.




als
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In 1956 G. Dahlquist proved (see [1], [4], [5] for appropriate reference)
that the order of a stable k-step method as defined by (3.12) cannot exceed
k+2 and can be equal to k+2 in only fairly unusual circumstances. Henrici
extended this result [5]) to apply to methods for second order equations. Thus
a method of order greater than k+2 is divergent. Gragg and Stetter [4] and
Butcher [l] apparently independently showed that by including a term Bgv_

8

where xv_e=xu—9h in equation (3.2) it is possible, for an appropriate value
of 6 in the interval 0 < 8 < 1 and for small k, to determine the coefficients
so that the resulting method is stable and has order of accuracy 2k+l (sometimes
2k+2). This theory was applied only to a method for first order equations.
Gragg and Stetter proved the assertion for k < 4, and exhibited some implicit
and explicit methods for such k. They also proved that under reasonable
hypotheses on the accuracy of the starting values and the differentiability of
the solution function, the pth order methods produced true pth order
convergence uniformly on a fixed interval of integration. Butcher used the
usual Hermite interpolation theory to construct high-ordér generalize& implicit
methods for first order equations and for k < §.

The present author has used as a point of departure the work described
above. To extend the theory to apply to muitistep methods of =zolving a special
second order equation y'=g(x,y) in a constructive way, the Hermite interpolational
theory needed to be generalized in a direction apparently not before considered.
Thus was partially accomplished in Section 1. This extended theory enables us
to define for k < 8 high-order implicit and explicit stable generalized k-step

methods of solving the second order equation mentioned above as well as explicit

methods for 3 < k < 8 for first order equationms.
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k Kk Fu-k+1? o %y

on the line and a sufficiently often differentiable funcrionm f(x). Under

Consider again a set S, of k+l equally spaced points X,

certain conditions we have already shown the existence of a unique generalized

Hermitian interpolating polynomial P(x) = P(k,n,x) such that

(3.13) P(x) = £{x)

p® _ )

It is possible to generalize still further. Let m be an integer such
that 0 <m < 2k+1. Let g, and 7 be subsets of Sk with the set oUt containing
m+l points. A unique polynomial P(x) = P(s, 1, k, n, x) of degree m again
exists such that

P(x) = f(x) X E QO
(3.14)

P(n)(x) = f(n)(x) X ET

if and only if the furdamental determinant is different from zero. Although
we have not extended theoretical results to this more general setting, computa-

tion of the determinant by machine shows that this uniqueness "often'" occurs.

Recall the general determinantal form derived from (2.l) by eliminating
rows corresponding to conditions not imposed and by eliminating a corresponding
number of columns on the right, reducing the degree of the polynomial. The
determinant is an mth degree polynomial, Q(x). If the fundamental determinant,
A, 1s not zerc, Q(x)=0, and we can compute it in terms of the entries in :the

i{1rst column and thelr cofactors. Dividing by 4, we have
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Z T (n)
(3.15) P(x) = ] hOf(x)+ ] hGOf T (x) .

X,£0 X, ET
i i

The functions hi"Ei are polynomials of degree m and depend on o, 17, k, and n.
They generalize the usual Hermitian interpolational functions of the first

and second kind respectively. For n=1 and 0=T=Sk it is well known that they

have a simple analytical form. (This is true,of course 6 also when all derivatives
less than or equal to the nth appear in a form analogous to {3.15)). In gemeral,
however, no simple form was found for the functions hi(c, 1, k, n, x) and

ﬁi(c, 1, k, n, x). For this study they were computed from the determinantal form.

Most familiar methods of numerical integration are obtained as a result of

polynomial approximation. We note without proof that by pruper choice of

n, 0, 1, ¥ one may obtain from (3.15) all Adams type difference equations among

a variety of other methods. For example,by specializing

X =% .
v
n=1
g = {xv—l}
T = {x 17 *u-2? » Xk}

we have the first order explicit Adams formula--the k-step Adams-Bashforth
equation which is usually derived by integrating both sides of (3.1) between

proper limits.

Definition: The method defined by (3.2) or (3.8) is called explicit if Bo=0

and is called implicit if BO¥0.
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This notation will also be applied to methods involving a "non-step"
point about to be described.

The formulas

4o,y = hT(8

O oot 1Y o1t oY 8ot Bim18ukt 1t HBe8 g Bp8)
(3.16)
.= g(x,,y.) b = x -6h 0<8 <1
gJ g 3 yJ - y
(n)

for numerically solving the equation y' “=g(x,y) are similar to the usual

formulas with the exception of the term hnBegv_8 on the right. We wish to
determine the coefficients a,, B,, B, so that (3.16) is stable and has order
of accuracy approaching 2k for k < 8. 1If (3.16) is rewritten

n _ _ w0 )
(3.17)  heg o= Jay  -h [ Be

one sees that if ay= 1, the remaining coefiicients can be determined from the

nth derivatives of the Hermitian interpolational functions
h(o, v, k, n, x), h{o, 1, k, n, x;. Before considering the question of
stability, note that by setting T=Sk-xv one eliminates the condition

{n)

P(xv) =y (xv)

The term involving the derivative at xv is absent from (3.16). Thus we may
choose BO=0 and an explicit method is constructed. The order of accuracy of

the method is reduced by 1.
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It remains to examine the question of stability of the method. Writing

6 as independent variable instead of x, consider the equation

i=k {
(3.18) I o8 =0 0<p <l

i=0
Let Ei(B), €2(9), ceey gk(e) be the roots of (3.18) and let n=2 in (3.16).
Consistency of the method implies that (3.18) always has a double root
gl=52=1. Define the function

N(8) = max |gi(6)! .
2<1i

Of interest are the 6 such that N(8) < 1. Motivated by the concept of
strong stability [5] only such 8 are admitted. The process as descyibed
above will fail 1if the generalized Hermite interpolating polynomial

P resulting from a definition of subsets o and 1 is not unique. As seen,

this always happens if k is even and o=1=S If a vaique polynomial is not

K’
defined, we may redefine o and 1 and try again, although we wish to maximize
the number of conditions in order to maximize the order of the resulting

operator.

The process also fails if

N(B) = N_ (&) 21 0<6<1.,

In this case we may again redefine t and try again.




“
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Figures 1 through 5 show the function N(8) in some successful cases
where stable high-order operators were found. For n=1,2 (applying to a first
or special second order equation respectively) the curves are labelled by the
step number k and the set ;;Sk"T which is the set of interpolation points at
which the derivative condition is omitted. For example k=4, ;;{xv} labels
the function N(8) associated with the highest order explicit g-family of
operators of the type considersd. Labels omitting T are meant to imply ;;9
Again it is remarked that in most cases considered we have relied on an approximate
machine computation as a criterion for the uniqueness of P. 1In all cases c=Sk.
Although usually of a lower order of accuracy, we have included explicit
methods in the investigation because they require only one prediction, Y,—g*

whereas implicit methods require two, , and y It was felt that they could

<
(4]

be of some practical valune. We are ceoncerned primarily with solving a special
second order differential equation; however, we have given some explicit metnhods
for solving a first order equation because they have not been included in the
literature.

The error constant C(6) associated with the O-family of integration methods is

a smooth function of 8. If N(8) < 1 in some interval 80 <0 <89 it is

1’
reasonable to attempt to find a value of 8 in the above interval which minimizes
}C!. That problem has not been considered here because the resulting reduction
in error would usually be of a lower order than the one we are principally investi-

gating. Results of computation, however, show that the error constants C(a)

associated with the maximal order 4-step explicit §-family of cperators for
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a special second order differential equation (curve k=4; Fig. 4) can be made
to vanish in the range of stability by an anpropriate choice of 8. Thus
another complete order of accuracy can be attained in this case {see Table 1

below). We have not determined that particular value of 6.

A tabulation of the maximal order of accuracy observed for stable k-step
operators constructed in the investigation is given below for k < 8. Although

column two is well known [1], it is included here for completeness.

TABLE 1
Orders of Accuracy "éfiff ‘

for y'=f(x,y) for y"=g(x,y)
k explicit implicit explicit implicit
1 2k 2k+1 2k-1 2k
2 2k 2k+1 2k-1 Zk-1
3 2k 2k+1 2k-1 2k
4 2k 2k+1 2k-1% 2k-1
5 2k 2k+1 2k-2 2k
6 Zk-1 2k+1 2k-3
7 2k+1 2k-2

* 2k can probably be attained here.
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k= 41' FF:{XV}
,ﬁ_ - k=“3J -1-'={xi“}

L
1
L]

]
1
+

g

FIGURE 1. N{©) FOR n=1 AND INDICATED k, 7.
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k=6, -7-'=‘{XU-2}

-+
E S
"

.

-
e

FIGURE 2. N(8) FOR n=1 AND INDICATED k, 7.
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FIGURE 3. N{©) FOR n=2 AND INDICATED k.
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k=5, 7={Xp, Xp-3}

k=5, #={Xy.p)

FIGURE 4. N(8) FOR n=2 AND INDICATED k, T.
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k=6f :r_ ={xV, XV-Z, xv-a}

2+
k=77 ={xp, xv-3}

.—I-L
-
=

~
AL 2
T g
w
o
~l
T

FIGURE 5. N(8) FOR n=2 AND INDICATED k, 7.
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~This method of comstructing stable operators was suggested by the work of
Butcher [1l] relative to the case described earlier)which we can obtain by

specializing n=1, o=1=§ Although the coefficients in this case are calculated

K
directly (without determinants) from well known formulas, it is not clear how
the roots of (3.18) are determined. In any event, in our work they are
calculated (approximately) on computing machinery; and although great care

has been taken to insure that adequate significance has been retained, without
the inclusion of an error analysis of our results,we have not given a formal
proof of stability.

The theory of multistep methods for a special equation of the second order
parallels that for a first order equation. It is certain that in the former
case, also, a theorem can be proved giving the uniform pth order convergence
in a fixed interval cf integration for our generalized methods and can be
patterned after the analogous theorem for the traditional method (cf. con-
vergence theorem in [ 4]). The order of accuracy of a method is meaningful
only asymptotically as step size, h, approacheg zero. Because of this, and
because we have already on two occasions of necessity replaced formal proof
by a comnutational argument,we eleci to test on available compdating machinery

in a fairly realistic context some of the methods constructed and to demonstrate

convergence and order of convergence in this way.
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4. Computational Experiments.

Some of the methods given in the appendix for step number k=4 were coded
in FORTRAN, and computations were performed on the IBEM 7094 in order to give a
feeling fof their behavior. As a standard of comparison,the computations
were also done using what Henrici [ 2 ] calls the "Cowell" method of numerical
integration. (This is still another use of the term.) A single standard
trajectory was selected for computation.

The ovbit used is characterized by the initisl elements a=1.3, e=.2Z,

1=45°

, =M=u=0, and initial values as given in [2, p.42]. No perturbations
have as yet been considered. The period of the orbit is between 155 and 156
minutes.

The well-known Cowell method was selected as a standard of comparison
because it is a near-maximal order mwultistep method and because it is the wunsummed
form of the Gauss-Jackson method. If no round-off errcr is present, the summed
and unsummed difference equations will yield identical results. The truncation
errors are the same.

As noted earlier of our generalized methods, "prediction” and "correction”
normally occur at different time points. In the context of the generalization
it seems more apt to speak of the process as consisting of one or two "initial"
methods and a "terminal" method. Our terminal method may be explicit (open).
Such combinations have been selected from methods appearing in the appendix and
will be described. The order of the combination we have called the minimum of
the orders of the components. The step number of the combination we have

called the maximum of the step numbers of the members. Although the advantage
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of the generalized methods over the usual multistep methods increases with
the step number, we have chosen for the experiments a relatively small step
number k=4 for simplicity. The orders of the methods tested vary from 4 to 6.

An error term cc'ild be derived analytically for the new methods; however,
this would be cumtersome anu perhaps practically meaningless. Round-off error
effects would not be included. Accumulated error is analytically complex
as are instebilities induced by a bad fitting of initial and terminal equations.
For these reascns the resulls of experiments are presented to suggest the
efficiency of the new methc us.

In addition to the orbit described above, we have tested two methcds by
numerically solving the equation y"= -y, with y(0) = 0,y'(0)=1.

The methods used will be described. 1Initial or predicting methods based
on the theory of generalized Hermitian interpolations of Section 2 are here
and in the Appendix called quasi-Hermitian methods. They are not necessarily
stable, The following five combinations are identified as Programs A, B, C, D
and E.

Program A: The maximal order Stormer methcd (order 4) as predictor; the
Cowell method (order 5) as corrector.

Program B: The quasi-Hermitian method I (order 6) as the predicting method;
the Cowell method (order 5) as corrector.
Progrom C: The quasi-Hermitian method II (order 6) as the initial method; the
zed multistep expIicit method I (k=3, order 5) as terminal.

Program D: Two initial methods requireds The quasi-Hermitian methods I and III
(both of order 6) as initial methods; the generalized multistep
implicit method T (k=3, order 6) as terminal.

Program E. The quasi-Hermitian method III (order 6) as the initial method; the
generalized multistep explicit method II (order 7) as terminal.
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Table 2 gives the error in the solution to y'"=-y with above initial
conditions for indicated Integration interval h at three different values of Xx.

Error is experimental value less true value.

TABLE 2

Comparisons of Error in Sin x

11
Error X 10 at x=3 radlans

Program A Program E
h
.01 b -1
.05 -46 0
.10 -1971 1
.20 -88389 90
Error X lO8 at x=100 radians
Program A Program E
h
10 142 0
.20 5374 -8
Error X 107 at x=200 radians
Program 4 Program E
h
.10 40 0]

.20 1351 -2
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Figures 6 through ¢ compare errors in one coordinate of the described orlit
trajectory as computed by the indicated programs at the stated times for three
given values of h. Instead of the error, we plot —loglo |error| so that the
ordinate shows the number of decimal digits of accuracy in the soluticn.

The truncation error in any of the methods is strongly oscillatory with
the period of the orbit and grows with time. In Figure 10 we attempt to
eliminate the periodicity and to get a notion of the asymptotic behavior of
the propagated truncation error in programs E and A. We have integrated to
a point P on the trajectory (represented by the zero abscissa on the graph).

As the integration proceeded, the error at P was plotted after every
revolution up to nine revolutions.

Figure 11 compares the error in cos X in an experiment using the summed
and unsumrmed form of the difference equation. Stormer's method (k=2) [5]
was used. The solution was coded in single~precision FORTRAN and was run on
the IBM 7094. The two methods have identical truncation errors. The diffgéence
is due to differences in round-off error and error propagation. Henrici
outlines [6] a statistical theory of round-off error which shows the summed
form to be clearly superior. The theory is verified by computation. Figure 12
shows the results of the same experiment as illustrated by Figure 1l except
that the procezs of "2auble precicien zecumulation™ [2, p. 21] is used. Tiis
process is very inexpensive because the evaluation of the derivativas, rormally
by far the greater part of the work, is accomplished in single precision.

Figure 12 shows that the orthodox form of the difference equation combined with

double precision accrinulation is superior to the summed form in a simple experiment.
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FIGURE 12. ERROR IN SUMMED AND UNSUMMED FORM OF DIFFERENCE EQUATION.
DOUBLE PRECISION ACCUMULATION USED.
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5. Conclusions.

The purpose of the research, of which this paper reports one phase, is
to construct new algorithms for numerically solving the equations of motion
of an earth satellite. These algorithms are close to Gauss-Jackson algorithms
in structure., Recent developments in the theory of multistep methods have
been applied to increase the accuracy of component methods. It is hoped that
the final algorithms will increase the ratio of the order of accuracy to the
step number (the number of differences used). In this way the starting time
for the muitistep process may remain unchanged while the interval of integra-
tion is increased. If stability characteristics and round-off growth are
satisfactory in the new algorithms, the total time consumed in numerical
integration may be reduced.

The increase in accura:y of the applied generalized multistep methods for
small step number seems sufficiently great to justify the effort of testing
higher-order methods that have alread; been constructed, of fitting these
component methods into a final algorithm, and of testing the result in a
completely realistic context.

The generalized theory had not before been applied to the equation

y'"'=f(x,y). The pertinent global convergence theorem {(cf. [4] Theorem 3.1)

is undoubtedly true but is vet to he nroved, along with some stability theoromn.
No work as yet has been done towards deriving a summed form for the iuew difference
equations. This form could be unwieldy. The question, in general, of the need
for and effectiveness of a summed torm in this work is being seriously ceon-

sidered in various installations. Figures 1l and 12 report a rudimentary

experiment relating to this question.
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Uniqueness theorems (of which Conjecture ?.10 is an example) are of
continuing interest in the theory of quasi-Hermite osculatory polynomial
interpolation; also of importance is the question of dafining the resulting
weighting functions hi(x), E;(x), etc. by means of simple formulas. For
trajectories with significant perturbations, it may be well to base methcds on

a polynomial of the form

1=k 1=k _ i=k _
P(x) = 1-2-0 h )y (x _,) + 120 hy ()y'(x ) + 120 hy (0)y"(x )

( cf. the Obrechkoff method) with perhaps nongrid points also appearing. A
maximum possible order of accuracy is more than 3k. One can also investigate
the feasibility of using least squares polynomials or functions other than
polynomials for approximation in orbit trajectory computation.

The author plans also to explore the possible definitions of a reasonable
asymptotic average rate (t+~) of accumulations of truncation error associated

with a multistep method.
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Appendix. Coeificients f.r Generalized Methods

In this Appendix are listed some of the constructed stable generalized
methode and some Hermitian predicting equations. A few combinations of these
have been tested on computing machinery and the results reported in Section 4.

All methods can bte characterized by specifying o, 7, k, n, 6. And by
labelling as Hermitian predicting equation or generalized multistep method, @
and T have been defined in Secticn 2. Figures 1 and 2 concern first order equa-
tions (n = 1) and show approximate ranges of 6 for which stable explicit methods
exist., The coefficients of the corresponding difference equations are fairly
easily computed and are not included here. 1In all remaining computational work
we have taken n = 2. In the Appendix o = 8 if unspecified. Concerning the

generalized multistep methods, for each k, T pair usually only ore stable method

is listed (or tested) corresponding to a convenient value of 6. A o6-family of
methods always exists.

All predicting (initial) methods are baced on the generalized Hermitian
{called here "quasi-Hermitian'") interpolating polynomial whose unique existence
for given k, n, ¢, 7 was discussed in Section 2.

The form of the quasi-Hermitian predicting equation is

_ 2 -
Yy-g = Ay % 1Yy et 1Y, B E LB 1 f et BEL D)

The form of the generalized multistep method is

2
Yo = O, a0 1Yyt ™ Yy B B et P BB BE 4B

A




-
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The coefficients are given with fifteen digits. The error in the co-
efficients has not yet been completely determined. For k = 3, 4 probably
all digits are accurate. For k = 7 probably no more than eight digits should
be relied upon. For intermediate k an intermediate number of digits are wvalid.
For convenience, we specify 0 and 7 in complementary form T = Bk - o and
T=1g8 =T,

k

Coefficients for generalized multistep (implicit) methods.

I. k=3 =4 8=.3
@, = . 164864864864865+ 10 By = -825825825825825 10"
@, = -.297297297297297 B = .140196218627591
o, = -.351351351351351 B, = .766087516187516
B, = .415871754107048
B, = - 209376042709376 10"
II. k=t t=lx _,) 6=.2
o = . 1564622416043223 -10 By = - 3027438680537280+10"
0, = - 9464169569758374+10"" B = .16881447358464922
Cty = - 5045838567345016 B, = . 7851898795361902
&, = . 3460313538886233-10"" B, = .4800924707582710
!33'-‘0
B, = . 4235373677581134
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III. k=5 T=¢ 6=.15
a, = .167638725140126 -10 By = -+ 670912228649990 -10”"
a, = . 278400595805990 B = .201329045334982
@, = -.150337671295784 10 B, = . 784007930456861
a, = . 466002632892664 B, = - 324155404103746
ag = .825862328579257 107" B, = —+494775767295745
B, = --134034339375600
B, = -.373963322694766 107

Cvefficients for generalized multistep (explicit) methods.

I. k=3 ?;{xv} B=,2
a, = .2-10 By = ©
a, = -.1°10 8 = .124007936507937
= 0 B, = . 770833333333333
B, = . 1111111111111
By = -.595238095233095¢ 102
1I k=4 ?;{xv} 8=.3
BO-‘-'O
ay = . 205804969722280-10 B =.161595975532325
@, = =, 963457924410107 B, = . 704431783153855
a, = -, 207233242848194 B, = .872587915934802¢+ 10 *
Q, = . 152641470035498 B, = -. 154458906599228
-.951881093873159 +10" %

w
&
0
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III.

Iv.

k=5

Q
[

Q
n

Q
n

Q
!

Q
n

k=7

Q
n

Q
!

Q
i

Q
"

Q
]

Q
1

Q
n

T={X ,X .}
v?Tye2

.307716392780799 *10
-.334316264723224+10

. 130022320315476 <10

= .120385824155265

-. 154510307885770

}

T={xu’xv~2

.300166612993176+10
-.313714901027128-10
.683807311516383

. 134723867946272°10
-.116171903379676°10
. 222241054902451

. 439148682531614-10"

1

59

8=.36

L}

]

Iy

0

. 199342712868876
. 542723814092476
0
-.656160625268288
. 171421112289051

. 894415771194486 +10 2

0
. 205438536632750

. 539144517864215

0

-. 592537575632003

. 484847995513130

-. 200181366173655%

-. 711155078646860+19"

-.193932029482787-10

1

2

SP-2631
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Coefficients for quasi-Hermitian predicting equations .

I. k=4 G;?¥{xv} 9=0
a, = -. 160000000000000° 10° B, = - 266666666666667- 10
at, = . 340000000000000¢ 10° B, = . 146666666666667+ 10°
oy = -. 160090000000000+ 10° By = - 266666666666667 10
o, = . 100000000000000+ 10° B, = 0
1. k=4 EQ?Q{va f=,2
oy = -. 500286720000000° 1) B, = - 129576960000000+ 10
a, = . 124635136000000° 10° B, = -560138240000000+ 10
0 = -.611842560000000- 10 B, = - 969881600C.5000
@, = - 342220800000000 B, = . 194560000000000+ 10" 2
I1f. k=4 E¥?={xv} 6=,3
&, = -.193209930000000* 10 B, = -862500525000000
&, = . 647195490000000 10 B, = .30303804750000010
0, = -.344761190060000° 10 B, = - 433679775000000
o, = -.922437000000000 1 -1 B, = -. 721777500000000 10~ 2
Iv. k=5 o={x } T={x ,x P 8=0
vV v V=
oy = -. 168023255813954 *10° B, = .275581395348837 *10
a, = . 425581395348837 *102 B, = . 146666666666667 *10°
o, = -. 315116279069767 *10° By = -.286046511627907 10
@, = = 200996777408638 +10 B, = 0
Q. = -.802325581395349 Be = -.662494520579550 10
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VI.

VII.

VIII.

k=

[}

n

;;{XU} ;Q{xv,xv_al

-. 210714719098474+ 10
.826695465383721-10
-.668751562570494-10
-.729126387971761-10

~. 175047890984738

}

0={xv} T={xv,xv_4

. 106292724609375-10
. 102539062500000-10
-. 180944824218750-10

-.7820230055606312°10

- 698552539062500 10" *

}

0={xv} T={xv’xv—l

. 157175067554755 +10°

.818655257876087 »102

-. 189533965786168 + 10°

. 753013271876087 + 10°

. 176496060554755 »102

o=t={x } f=.15
Vv

-. 267354410875809 +102

-. 542303743902377 + 102

e==l

]

[}

]

"

1]

. 881649550039971
.303759825000000-10
-.713862014978198

0

-.483931917058517°10

»341125488281250
. 386718750000000
-. 504272414937500

0

-.385435703822545+10

0

-.233352230729348°10

~.911021071886413°10

2

2

-.263728213229348 -102

-.862500525000000

. 258741730223803 +10

.+ 353107545202970 *10

2

SP-2631
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a, = . 163415437280526 +10°
a, = -. 529860381340549 +102
o = -. 278255325746131 -10°2
o = -.638051094039407

IX. k=6 ";TE{xv} o=.3
o = -.100919643422326 +10°
o, = -. 227114950680780 +102
a, - . 665492820631938 +10°
o, = -. 202747607559376 *10°
% = -. 120925226942311 -102
Q= -.378529202714476

X. k=6 E;?¥{xv} 8=.35
G = -.€77953505973247 +10
o, = -. 168428545345370 +10°
oy = . 486321543101358 102
o, = . 140846861658563 -10°
0 = -.900799716188439 +10
0 = - 317081388125608

XI. k=7 o={xv} r={xv,xv_l}
o = . 426248672016901 +102
o, = . 106521856117869 +10%
a. = .131573055131036+10%

it

. 93552369 7444449 +10°
. 356880342431044 ~102
. 251550985402339 +10

. 854784560392494 .10

. 128647106629316 *1C
.146235774698821‘102

. 386584562983006 *10°

. 154121622333216 *10°
.122101145605511 +10

. 884987329763802 *10

. 100266487549777 +10
. 105330757175910 +10°
. 280367261702224 +10°
. 114420776177617 +10°
. 954041971289129

. 836463763365225 +10

-.120432808402138-10

-. 131699354325931-10

2

2
[ 4

2

3

4
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XII.

XIII.

n

"

R
"

1]

Q2
]

63
(Last page)
-. 473523475391012 -10% B,
. 112448958145522 +10% By
. 111881088447489 +10% Be
. 693603082392709 +10° B,
o={x ) T={x ,x ,}
-. 631355595928052 +10 8,
-. 133597097252952 +102 B,
.532090581314935 +10° By
. 344398239116463 *10° 8,
-, 197321764953814 Pe
.219776712103132 +10 B
-.964138913490856 10" .
E;;Q{xv} f=,15
- 561616705786098+10° By
-. 486198844276056 *10° B,
-. 246075559120176 *10° B,
. 158204669038749 - 10° B,
-. 251506615194785 10° By
-. 48455115139627110° Be
-. 560120578494670 102 B,
. 540791966999407

-.308091180980903 .10%

-. 140803040314973 -10%

-. 155735015276831 +10°

-, 258741730223803 -10

g=.36

1]

.959663291682580

. 980492460305444+10

. 229394560344614 +10°

0
=.239793128470220 10

-.258511564830275+10"

. 711986507800205 + 102

.372288312743760-10

. 987049040638957 +16°

+637864549912463

. 123026245967712+10%

. 635237310870639 +10°

.975616454903224 102
. 345201215578264-10

. 46768697485055410 2

1
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