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Generalized Multistep Methods and Applications to 

Satellite Orbit Trajectory Computation 

by- 

James Dyer 

ABSTRACT 

Recent ideas in the theory of multistep methods of solving a differential 

equation of the first order are extended to methods of solving the special 

second order equation y" = f(x,y). A slight modification of the usual multi- 

step method permits £ significantly higher order approximation of the difference 

equation to the differential equation without loss of stability. 

The method of constructing the generalized difference equations is based 

on a quasi-Hermite polynomial approximation.  An outline of this theory is 

given along with some related unsolved problems.  This method permits the con- 

struction of new classes of stable difference equations with high order of 

accuracy for solving both a first order differential equation and the above 

special second order equation. 

Some of the new methods have been tested in experiments including the 

computation of an unperturbed satellite orbit trajectory. Machine time used 

and accuracy obtained are compared with a standard multistep method. 

Although further theoretical and experimental work remains to be done to- 

wards the analysis of accumulated round-off error and truncation error in the 

new methods» it is expected that they can eventually be incorporated into 

efficient algorithms for solving the general equations of motion of an earth 

satellite. 
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1.  Introduction 

The research reported in this paper was motivated by a desire to construct 

new predictor-corrector methods for numerically solving the equations of motion 

of an earth satellite. 

Among many others, the Gauss-Jackson method of solving these equations has 

been in use for many years with comparatively good results. This method is 

based in part on a difference equation corresponding co a special differential 

equation of the second order (with first derivative absent). It appears to 

owe to this characteristic some of its advantages over other more general 

numerical integration schemes. It is, moreover, in part a result of applying 

a particular process of summation to the above-mentioned difference equation. 

A clear advantage can be shown [5 ] in certain cases for the summed form in 

the control of the propagation of round-off error. If arithmetic is carried 

out with "sufficient" precision, the advantage is not clear. Neither is the 

advantage of the summed form clear if the so-called process of double precision 

accumulation is used with the orthodox form.  This problem has been very 

briefly considered here. The results of an experiment are given where the 

summed and unsummed forms of a simple difference equation are used with and 

without the relatively inexpensive process of double precision accumulation. 

With this important exception, difference equations used in the present are 

unsummed. We are primarily concerned with reducing local truncation (discretiza- 

tion) error. 

The order of accuracy (Definitions 3.6 and 3.10) of the correcting difference 

equations of the Gauss-Jackson method (summed or unsummed), if kth differences 
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are considered, is k+1.  In the last decade much work has been accomplished 

in the analysis of linear multistep methods for solving differential equations. 

In 1956, G. Dahlquist showed that the order of a stable k-step method could 

not exceed k+2 and that the order could be k+2 only in a highly restricted 

number of cases. Henrici proved [5] this result for a stable second order 

difference equation, i.e., for a difference equation corresponding to the 

special equation, y,,asf(x,y). 

If stability is ignored, a k-step linear difference equation corresponding 

to a first order differential equation can always be constructed, based on 

the Hermite interpolating polynomial, with an order of accuracy of 2k+l. 

(This is, of course, as much as one can normally hope for in an operator derived 

from an osculatory interpolating polynomial, because we impose conditions on 

the polynomial and its derivative at k+1 points.) Thus it is seen that a 

considerable gap exists between the maximum possible order of accuracy of a 

k-step difference equation and the maximum possible order of accuracy of a 

stable k-step difference equation. Stability is a  necessary condition for 

convergence [5, p. 217] of a linear multistep method.  To close the gap it is 

necessary to abandon the traditional equally-spaced multistep methods. 

In 1964, Gragg and Stetter introduced [4] a class of difference operators 

for a first order equation which they called generalized multistep predictor- 

corrector methods.  The derivative value is used at exactly one "non-step" 

point.  These methods represent a compromise between Runga-Kutta methods and 

conventional multistep methods.  They use information previous to the last 

point computed, as do the latter; and derivative evaluations are made part 
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way through a step, as in the former. The authors prove that convergent 

generalized methods (of solving a first order equation) with an order of 

accuracy of 2k+l exist for k <_  4. Actually they are able to choose the non-step 

point so that an order of 2k+2 is obtainable. Moreover they show that the 

2k+2 
methods converge like h  J uniformly in a given interval of integration. They 

provide s :ant computational evidence of the value of their schemes. 

Butcher [1], still considering first order differential equations only, 

developed an elegant method of construeLing stable methods with order of 

accuracy 2k+l for k < 8. His method of construction employed the familiar 

Hermite interpolating polynomial. 

In view of the foregoing remarks, it was felt wise to study multistep 

operators, generalized in the direction noted above, with respect to a second 

order equation y"=f(x,y). This problem is interesting in itself; and it was 

felt that if satisfactory results were achieved, a method of this sort could 

be incorporated, in analogy with the structure of the Gauss-Jackson algorithm, 

into one which applied to perturbed satellite motion and could retain its 

effectiveness for certain types of, if not most, trajectories. 

Our difference equations are based on an interpolating polynomial P(x) 

of degree m such that 

P(x) = g(x)      xeo 

P"(x) - g"(x>    XET 

where a and T are subsets of S~., a set of k+1 equally spaced points. The set 

OUT contains m+1 points, and g is a twice differentiable function. 
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The uniqueness of such a polynomial is in question. It does not depend on the 

values of g and its second derivative. This problem of the uniqueness of the 

generalized Hennite interpolating polynomial, even in its simplest form where 

o«T"S. , does not appear to be considered in the literature. Although we are 

practically concerned only with fitting a function and its second derivative at 

equally spaced points, there are many associated problems of theoretical interest 

One may replace the second derivative in the above problem by the njjj derivative, 

impose conditions on derivatives of mixed orders, or remove the requirement 

of the equal spacing of the points. 

A theory of generalized Hermitian interpolation was needed. Some results 

pertaining to this study are given in Section 2. Professor T. S. Motzkin of 

the University of Californiat Los Angeles, was consulted during the preparation 

of this section. A subsequent paper by Professor Motzkin and the author will 

treat this subject more fully. 

The study of conditions for the uniqueness of the generalized Hermitian 

interpolational polynomial leads to the consideration of the question of 

independence of certain sets of polynomials, to the definition of generalized 

Vandennonde determinants and to the study of Hankel determinants associated 

with the sequence of coefficients in the Maclaurin series for log (1+x). 

In Section 3 some of the above theory is used to construct stable high- 

order k-step methods of numerical integration generalized as above. We are 

concerned with relatively small k, k < 8. The difference operators constructed 

depend on a parameter 0. Graph» are included indicating the ranges of 6 where 

stability occurs, in some successful cases.  The constructive process was used 
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also to produce stable generalized explicit methods of order of accuracy 2k, 

not known to exist, for a first order differential equation. 

A final section reports the results of simple computational experiments 

comparing machine time required for the new operators with that required for 

a standard operator to compute a solution with comparable accuracy. The 

Appendix contains the coefficients in constructed equations. 

Theorem 2.17 is due to T. S. Motzkin. The truth of Lemma 2.3 was de- 

monstrated bv R. B. Barrar. 
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2.  Generalized Hermite Interpolation.. 

Our method of constructing a high-order generalized k-step difference 

equation to solve numerically the equation 

y" - f(x,y) 

requires a generalization of   the notion of Hermitian interpolation.  The usual 

k + 1 point second-order Hermite intorpolational polynomial P(x) is of degree 

3k + 2 and for a twice differentiable function g(x) satisfies 

P00^) = g<M)(xt)    y. - 0,1,2    i = 0,1,...,k 

g(0) - g     P(°> - ? . 

In general, if higher derivatives appear, all derivatives of lower order are 

considered.  See [ll].  Here we wish to fit the function and second derivative 

and not to impose conditions on the first derivative.  We consider here only 

the case of equally spaced points x..  The symbol X will always denote the 

set{xQ,x1,. ,.,xk) . 

The generalization of the usual osculatory interpolation consists in 

defining a polynomial P of degree m, if possible,by imposing m + 1 conditions 

of the type 
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with 0 <  \i < n and 0 < i < k.     For any such  set of  conditions,   a unique poly- 

nomial  is or  is not defined.     Conditions for  the uniqueness are of  interest. 

One may begin with the following determinantal form  f9], 

(2.1) 

/ \ i 2 j j+1 m p(x) 1        x x ... xJ xJ         x 

/    v i 2 j j+1 m 
*<V l      xo       xo •••        xo xo       xo 

/    x i 2 j j+1 m 
g(x1) 1        *x xL ... x^ xJ         xL 

/    \ i 2 j j+1 m 

g(xQ) 0        1 2x0 ... jxJ"1 (j+l)xjj         mx•"1 

g'(xk) 0        1 2xk ... jXJ"X (j+l)xjj         mx^"1 

^(n)<V "00 ... j-. (j+i>:Xo       J^T- 

*(n)<V ooo ...        j: (j+i);Xk      öS)T^n 

defining the usual Hermite interpolating polynomial P(x).  Here m=(n+l)(k+l)-l. 

For m < (n+1)(k+l)-l, the more general determinantal form is obtained from the 

above form by eliminating rows corresponding to conditions not imposed and 

eliminating an equal number of columns on the right.  The coefficients of the 

interpolating polynomial P are uniquely determined if and only if the fundamental 
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4 

determinant which results from deleting the first row and first column from 

the general form (2.1) is different from zero. We call this determinant a genera- 

lized Vandermonde determinant.  Some special cases (Hermite interpolation) have 

been carefully considered.  They satisfy the following condition: 

If a derivative condition is given at a point, then conditions 

en all lower derivatives are given at that point. 

It is well known that uniqueness occurs in these cases. 

In this paper we are interested primarily in another special case, that 

resulting from the imposition of a condition on the polynomial and its nth 

derivative at all k + 1 points (n £ k + 1).  The resulting generalized 

Vandermonde determinant is 

(2.2) D(k,n,X) = |M(k,n,X)| = 

2 2k+l 
1    xo   xo    xo 

2 2k+l 
1       X.     X.     x. 

. 2 2k+l 
1      \ \     Xk 

n       1-n „ 2-n m 2k+l-n 
Vo       Vo      Vo       a2k+ixo 

n 1-n 2-n 2k+l-n 
Vl Vl Vl         ff2k+lXl 

n 1-n 1-n 2k+l-n 
"o^k       Vk     Vk       ^k+A 
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where <J   * i(i - 1) (i - 2)... (i - n + 1).     If M(k,n,X)   is non-singular,   a 

uniquely defined interpolating polynomial may be associated with it.     Denote 

this polynomial by P(k,n,x).     The following lemma is true more generally.     For 

this report only the case n = 2  is of interest. 

Lemma 2. 3.       Let m * 2k + 1.     M(k,2,X)   is non-singular if and only if the poly- 

nomials  (x 4 x0)m,   (x + xpV'-jCx + \)m, rc(m -  l)(x + x
0)m"2> m(m "  I)(x + ^•l)m'2y 

...,m(m -  1) (x + x,)        are linearly independent. 

Proof.       Denote the polynomials as ordered by P-(x),?  (x),P~(x),... ,P      (x). 
•t I. JJ m+i- 

Expand P.(x)   in powers of x: 

P (x)  -    I     a..xm"J+i i = 1,2,...,m + 1 

and consider the matrix (a. .).  For \ >  1 entries a,   . a in the 
ij 1,X+1      2,A+1 

(A+l)_th column are: 

U vU xi- \) **>»<*- «(wK , 

m(m  "    } \-2' Xl     ' ,m(m -   1) I       J x£       . 

Division HOW by (~J gives the (A + i)th column of M(k,2,X).  For the first 
A —•" 

two columns the result is obvious. 
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Define the translation operator T on the vector space V of nth degree 

1 

polynomials 

(2.4)    T P(x) « P(x+a)    PeV 
a n 

Obviously this linear translation is non-singular.  (Apply it to the natural 

basis.) Define for real a: 

X+a = {x_+a, x.+a, ..., xi+a} 

Corollary.  |M(k, 2, X)| + 0  <==> | M(kt 2, X+a)| +  0. 

Proof.  Because T is non-singular, the set P., Pa, ..., P ., of the lemma ——"= a 1  I nH-1 

is linearly independent if and only if the set T P., T P0, ..., T P .. is 
3.  i  a z       a m+l 

linearly independent. 

The non-singularity (singularity) of M(k, 2, X) is invariant under transla- 

tion by a real number. Because of this property, we may sometimes write M(k, n) 

instead of M(k, n, X).  It is understood that there are k+1 equally spaced 

points and that the rows of M(k,n) are ordered to correspond to conditions on 

the interpolating polynomial and its nth derivative as in (2.2).  The following 

fact is obvious: 

Lemma 2.5.  M(k, k+1) is non-singular. M(k, n) is singular if n > k+1. 

Corollary. There exists a unique polynomial öf degree 2k+l which vanishes 

along with its (k+l)t_h derivative at k+1 equally spaced points for all k j^ 0. 
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It is clear that a matrix A * (a ) of the form 

(2.6) 

11 

31 

22 

'42 

'13 

33 

'24 

l44 

'15 

'35 

'26 

'40 

can, by elementary row operations, be triangularized in the usual manner giving 

(2.7) 

bll 
0 b13 

0 b15 
0 

0 b22 
0 b24 

0 b 

0 0 b33 
0 b35 

0 

0 0 0 b/; 0 b 

26 

46 

Theorem 2.8. M(k, i) is singular if both the following conditions are satisfied 

1) n even, n > 0 

2) k even,  k _> 0 

Proof: Consider first the case k = n = 2. We have equally spaced points 

xn, x , x_.  By the corollary to Lemma 2.3 we may take x^O. We use the 

notation M ^ N to state the fact that matrices M and N are row-equivalent. 
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Now it is clear that 

M(2,2,X) % 

and that 

(2.9) M(2,2,X) * 

r 

r 

i     o 

0   0 

0   0 

0   0   0   0 

1 -1 1 

0 0 2 

0 0 2 

0 0 2 

0   0 

0 

1 

1 

0 

12 

12 

-1 

0 

20 

-20 

J 

0 

0   6   0  20 

2   0  12   0 

0   0   2   0   0   0 

Trianguiarizing the matrix found by deleting the last row and last column from 

the matrix on the right as in the statement preceding the theorem, we have 

r 

M(2,2,X) * 

11 13 

22 

33 

15 

24 

44 

35 

55 

•\ 

0 

26 

0 

\e 
0 

0 j 
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Now it is apparent that M is row-equivalent to a triangular matrix with a zero on 

the diagonal, i.e., the last row can be annihilated by row operations, using 

interchanges if necessary.  Clearly, for even k,we may take the interpolating 

set X to include the origin and the remaining members of X to be symmetrically 

distributed about the origin.  If in addition n is even, a form analogous to 

(2.6)can be achieved, i.e., for elements a  not in the last row, i+j odd implies 

a..=0.  The entries in the final row can then be systematically reduced to zero. 

The above theorem shows that a polynomial of degree 2k+l is not uniquely 

determined by its values and the values of its nth derivative at k+1 equally 

spaced points if k is even and n is even. 

M(l,2) is non-singular by Lemma 2.5.  It can be verified by hand computa- 

tion that M(3>2) is also non-singular. Machine computations of JM(k,2)| for 

k=5,7,9 indicate that the matrices are non-singular in support of the following 

conjecture: 

Conjecture 2.10.  There exists a unique polynomial of degree 2k+l which vanishes 

along with its second derivative at k+1 equally spaced points if k is odd. 

A further condition for the uniqueness. 

It has been noted that a generalized Hermitian interpolating polynomial 

is unique if and only   the associated generalized Vandermonde determinant 

is different from zero.  We have also given a condition for the non-singularity 

of M(k,2) involving the polynomials {TSC +1, T1»   ; i=0,l,2,...,k}.  We now 

derive a third necessary and sufficient condition for the uniqueness of P(k,2,x). 
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The linear transformation T«T on the space V of polynomials of degree 

p has been previously defined (2.4). Another linear transformation D"D • the 

differentiation operator, can also be defined on this space. See [10]. Let T*T. 

D is uniquely given as a polynomial in T-I. 

D(T-I) « (T-I) - 1/2(T-I)2 + 1/3CT-I)3 - ... + -^  (T-I)P  . 
P 

Lemma 2.11.  If g(x) eV and if g(T)xp*0, then g(x) is the zero polynomial. 

Proof. The independence of the polynomials xp, TxP, T*"xp, ..., TPxP is a 

consequence of the fact that the usual Vandermonde determinant is different 

from zero. The lemma follows. 

Corollary.  Let g,(x)eV  1-0,1,2 p. Denote by S this set of polynomials. 

Denote by S the set g (T)xp 1-0,2,...,p.  Then S Js independent if and only 

if S is independent. 

It is clear that the nth order differentiation operator D s  D - D (T-I) 

is given by polynomial multiplication. 

Dn(T-I) = Y d^d-I)1  . 
i=0 i 

(2) 
For future reference we note that the sequence {d   :  1*0,1,2,...} begins 

0 0 ! ^ I! .I  137 __7_ u, u, i,  i, 12,  6 , lg0,  10, ... . 

We let m*2k+l and consider the questiun of the independence or the 

polynomials 
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xm        D2(T-I)xm 

T xm       T D2(T-I)xm 

T2xm       T2D2(T-I)xm 

Tkxm       TkD2(T-I)xm 

One may write the TJ as polynomials in T-I and equivaiently consider the 

independence of the set 

m 
X D2(T-I)xm 

(T-I)xm (T-I)D  (T-I)xm 

(T-I)2xm (T-I)2D2(T-I)xm 

(T-I)kxm       (T-I)kD2(T-I)xm 

Finally using the fact that (T-I)J=0 for j > m,and using the corollary to 

Lemma 2.11 we consider the independence of the polynomials in the operator 

T-I in the latter set above.  Writing A«T-I we write the matrix of coefficients 

of these polynomials relative to the basis 1, Af \  f   ..., A    .  Because the 

above discussion is not restricted to the second derivative, let n ^_ k+1 

and write 

(2.12)    Dn(T-I) = d(n)(T-I)n + d(^(T-I)n+1 + ... + d<?> <T-l)2k+1 . 
n n+lv 2k+l 

The following matrix is then written for such n, (here n <  k) and d is written 

(n^ 
for d.  for convenience.  The composition of the matrix is clear.  The 
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k+1 x k+1 matrix in the lower left corner is always the identity. That in 

the lower right is zero. The first non-zero element in the first row appears 

under A  , in the second row under A    , and in the (k+l)^h row under A 
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Denote this array by M(k,n).  From the form of the matrix of dimension 

2k+l x 2k+l in the lower left hand quarter of M(k,n), it is evident that the 

latter matrix is non-singular if and only if the matrix N(k,n), given by the 

array below, is non-singular. 

Ak+i 
.k+2 
A 

.n+k-2 
• « . A 

n+k-1 
A 

n+k 
A 

n+k+i 
A ...x2k 2k+l 

A 

AW) 0 0 ... 0 0 d 
n dn+l 

... dk dk+i 

Ak-V(A) 0 0 ... 0 d 
n 

d„+i dn+2 •" dk+l dk+2 
,k-2^n.,^ 
A  D (A) Ö d 

n 
... d 

n dn+l 
dn+2 

d«+3 ••• dk+2 
dk+3 

An+V(A) 
(2.14) 

An"V(X) 

0 

d 
n 

d 
n 

dn+l 

... dk 

••• d
k+i 

dk+l 

dk+2 

dk+2 

A 

"k+3 

dk+3 

dk+4 

•'• d2k-n 

"• d2k-n+l 

d2k-n+l 

d2k-n+2 

ADn(A; S dk+l ••• dn+k-3 dn+k-l dn+k-2 
d . 
n+K ••• d2k-l d2k 

Dn(A) Vi dk+2 ••• dn+k-2 dn+k-l Vk dn+k-l •••d2k d2k+l 

Theorem 2 1J. M(k,n) is non-singular if and only if N(k,n) is non-singular. 

Some special cases are given below concerning the case of current interest, 

i.e., n=2. We take all entries to be positive and call the resulting matrix 

i      i       k+1 i—     i 
N(k,n).  Clearly |N(k,2)  = (-1)   N(k,2)| . 
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|N(1,2) = 

NC2.2)! « 

0 1 1 

1 1 11/12 

1 11/12 -76 

= n 

|W(3,2)| - 

0 1 1 

1 1 11/12 

1 11/12 5/6 

11/12 5/6 137/180 

11/12 

5/6 

137/180 

7/10 

- (1/240) 

The matrix N(k,n) can be determined in a slightly different manner 

Define the sets 

O - {1, A, A , ..., A } 

o(n) = (D'(A), ADn(A), AV(A), ..., A'V(A)} 

and let S and S be the vector spaces generated over the real numbers by 

o and o '' respectively. The sets a and o are both independent sets in 

V   ,  For the set ajjo   to be independent, the formula 

dim(S) + dim(S(n)) = dim(S+S(n)) + dim(STlS(n)) , 

relating the dimensions cf two subspaces to the dimensions of their join and 

(ii 
intersection, shows that it is necessary and sufficient that SflS   • <J>. 
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A necessary and sufficient condition for this is that 

2       k n 
^a0+alA+a2A +",+aic* )D (*) be a ktI? degree polynomial for no kth degiee polynomial 

2       k 
an+a,A+a0A +...+a, A  . Conditions on the coefficients a. give the necessary and 
0 12k i ° 

sufficient condition thut N(k,n) be non-singular. 

kssociated with any sequence {a } are the so-called Hankel determinants 

H;  : 
J 

n. = 
J 

a. 
l 

ai-fi 

ai+i  ••• ai+j-i 

ai+2 ai+j 

a..  , 
i+j-1  a...  ...  a.,«. n I+J       i+2j-2 

If we write log (1+x) = £ a.x  to define the sequence {a.} then the 

following is evidently true. 

Theorem. 2.16.  M(k,n) is non-singular and P(k,n,x) is uniquely determined 

if and only if H^+1 is non-zero. 

One can prove a general theorem about Hankel determinants which has an 

application in the theory of generalized Hermitian interpolation. 

Theorem. 2.17.  Let H. be the Hankel determinants associated with a sequence 

a , a , a„, ... .  Let k be an integer greater than 2 and assume H   • 0 

and H,1 _^0.  Then 
k-2 

H° 
H0 _  k-2    1  2 
Hk    1  2 (Hk-l}   • 

(Hk_2) 
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Proof.  Denote by A. the array associated with the Hankel determinant H.. 
  j j 

Let C. be the £_c_h column of A. and let A. be the matrix formed by replacing 
* J J        **  J 

the £th column of A. by .C.   .  Let „H, be used to denote LA.  . 

Th^ columns C, .. of A, . are linearly dependent by hypothesis.  Thus the 

equation 

*=k-l 

(2.18)     I      a,,Ck-l=4 
X- J- 

ma y be solved non-trivially.  Because H,  7*0 a solution to (2.18) is clearly 

(2.19)   . = -Hk_2 \ *  £>lHk-2 £=x2,3,...,k-l 

Replacing the first column of A^ by this combination of its first k-1 columns 

and computing H in terms of the entries of the last row of the resulting matrix 

and their cofactors, we have 
N 

< - - ~ H »t , k    a]    k-1 

where 
i=k-l 

H=  I 
i=l 

a.a, 0, . 
l k-2+i 

i=k-l 

I 
i=l 

a, - . .H, „ . Consider the k+1 x k+1 matrix 
k-2+i l k-2 

ao al   • •   ak-3 Vl 
al a2   . •   ak-2 ak 

% 
A = a2 a„   . ••   Vl Vl 

ak-2  Vl" a2k-5 a2k-3 

V_ 
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It is clear that 

k+1 i^ 
H = (-1)K+1 A 

Let the columns of A be called X    1*1,2,...,k-l and list the columns of 
i 

'"b  1    0 
A, A, ., A. , ror convenience. 

Columns of A:    iC» 2C' 3C'   k-3C' k-2C» k-lC 

Columns of A^: ^  f,. f,   .... k_2C, ^cj ,   C 

Columns of A^:  ^ 2C 3C, ....   C, k_2C k_.C lk-1 

It follows from these sequences of columns and from the equations (2.18), (2.19) 

expressing the linear dependence of the columns of A, _., that 

% ,_ a 
AI = (-i)k JS=AHJ  , 

a,  k-1 

H° %      k-1 V-?     1 
1   k-1 

Hk-2 

and hence that 

.0 
0    k-2    1  2 

Hk *  1  2 (Hk-l} 
(Hk-2} 

The proof is complete. 
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It is clear, of course, that under the obvious hypotheses we have proved 

(Hk-2} 

which is really no more general. 

Let the sequence a~, a.. , a„, ... be defined by 

log(l+x) = I    a 
£=0 

x 

From the uniqueness of the usual Hermite interpolating polynomial one knows 

that M(k, 1, X) is non-singular for all k.  If the H are associated with th< 

above sequence, it follows from Theorem 2.16 that H 1*0 for j-1,2,3,... . 

If the sequence an, a., a„, ... IF  defined by 

log (1+x) = I     ax' 
£=0  * 

and the H, are associated with this sequence, then we know from Theorem 2.8 

and Theorem 2.15 that Hf=0 for j =3,5,7, ....  We wish knowledge of H. for even j 
J j 

H.^0 for j=2,4.  These determinants appear as }N(1,2) | and |N(3,2)| on page 21. 

As a corollary to the last theorem we have: 

i     2 1 
Corollary. With the last definition of the H., if H, ?*0 for k > A then H,>0 
                                j     k       —       k 

for k=2,A,6,... and for such k,M(k-l,2) is non-singular and P(k-l,2,x) is 

uniquely defined. 
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3.  Existence and Construction of Operators 

Consider a differentiable function y(x) and the differential equation 

(3.1)        y' « g(x,y). 

Most k-step methods of solving (3.1) are specializations of the formula 

(3-2>    Vv-k + ••• + a,y  + Vv " h(Bkgv-k + •" + 6lgv-l + W 1 v-1 

where y.sy(x.) and g.=g(x.,y.) .  One may associate with (3.2) the difference 

operator 

(3.3) Lh(y(x)] = aky(x-kh) + ctk-1y(x-(k-l)h) + ... + c^ytx-h) + ct0y(x) 

- h{ßky'(x-kh) + ßk_iy(x-(k-l)h) + ... + ß^'x-h) + ß0y'(x)}.   j 

L operates on any differentiable function. Assume that y(x) possesses an 

indefinite number of derivatives.  Each term in the right member of (3.3) can 

then be expanded by Taylor's formula to give: 

(3.4) Lh[y(x)] = C0y(x) + C^y^x) + ... + C hqy(q)(x) + ... 

The coefficients are given by 

C  = an + a + ... + a, 
0    0    1 i,c 

C = -[a + aa2 * . .. -f kaR - (ß + ß + ... + ß )] 
(3.5) 

Cq   =   (-««[l/qjfc^  + l\  *   ...   4- k\)   -   (-^yr  (ßx  + 2^XB2 + . ..+  kq~\)] 

for  q=2,3,...   . 
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Definition 3.6.  The difference operator (3.3) is of order of accuracy p if 

C =C =...=C -0 and C +1 ^ 0. 
0 1     p      p 

The order of a difference operator is the first crude measure of its 

accuracy. Among methods of the same accuracy p, the coefficient C ., which of 

course is independent of the choice of function y(x), may be consiu-.red as a 

finer measure of the accuracy. The coefficient must be suitably normalized 

because it can be made as small as one wishes by multiplying (3.2) by a 

suitably small constant. 

It is clear from the definition of C. that the order of an operator is p 

if and only if L [y(x)] = 0 whenever y is a polynomial of degree not exceeding 

p, but is non-zero for some polynomial of degree p+1. 

There is a theory [5] similar to the above if one begins with a special 

second order differential equation of the form 

(3.7)    y" = g(x,y). 

We give here only the difference equation 

(3.8)       Vv_k + ... + «lVl + Vv - i.2(ekgv_k + ... + $1gv_1 4 ß0gv), 

the difference operator 

(3.9)    L 2(y(x)] = aRy(x-kh) + ak-1y(x-(k-l)h) + ... + a y(x-h) + aQy(x) 
h 

- h2{ßky"(x-kh) + Bk-1y
n(x-(k-l)h) + ... + ßiy

M(x-h) + ß0y"(x)} 

and the corresponding definition of the order of accuracy, after expanding, as above. 
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Definition 3.1Ö.  The difference operator L y  is said to be of order of accuracy 
h 

p if C0=Cl= ... =Cp+1 = 0 and Cp+2 / 0 . 

It is again true that the order can determined from a knowledge of polynomials 

annihilated by L „ and also that C ,_ suitably normalized here can be used as a 
h2 p+2      > 

finer gauge of accuracy among operators of order p. 

Method of Construction . 

Associate with the left side of equation (3.2) the polynomial 

2 k+1 
(3,11)       p(° " ak+l +0tkC +ak-lC +-.-+V    • 

Definition 3.12. A multistep method defined by (3.2) is said to be stable if 

and only if all roots of p (O=0 lie within or on the unit circle and a root of 

modulus 1 has multiplicity at most 1, 

This definition applies to (3.8) also. Here the multiplicity of a root 

of modulus 1 must not exceed 2. A definition of stability in general is clear. 

Definition 3.13. A multistep method is said to be consistent if it has order 

at least 1. 

Stability and consistency together are necessary and sufficient conditions 

for methods defined by (3.2) and (3.8) to converge.  The concepts of stability 

and consistency extend themselves to the slightly modified multistep methods 

considered here. We are concerned now with the construction of methods with 

order of accuracy approaching 2k and stabLe in the above sense. 
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In 1956 G. Dahlquist proved (see [1], [41, [5] for appropriate reference) 

that the order of a stable k-step method as defined by (3.12) cannot exceed 

k+2 and can be equal to k+2 in only fairly unusual circumstances.  Henrici 

extended this result [5] to apply to methods for second order equations. Thus 

a method of order greater than k+2 is divergent.  Gragg and Stetter [4] and 

Butcher [1] apparently independently showed that by including a term (3g 
v—8 

where x  =x -8h in equation (3.2) it is possible, for an appropriate value 

of 0 in the interval 0 < 6 < 1 and for small k, to determine the coefficients 

so that the resulting method is stable and has order of accuracy 2k+l (sometimes 

2k+2).  This theory was applied only to a method for first order equations. 

Gragg and Stetter proved the assertion for k _< 4, and exhibited some implicit 

and explicit methods for such k. They also proved that.under reasonable 

hypotheses on the accuracy of the starting values and the differentiability of 

the solution function^ the pth order methods produced true pth order 

convergence uniformly on a fixed interval of integration.  Butcher used the 

usual Hermite interpolation theory to construct high-order generalized implicit 

methods for first order equations and for k < 8. 

The present author has used as a point of departure the work described 

above. To extend the theory to apply to muitistep methods of solving a special 

second order equation yn*g(x,y) in a constructive way, the Hermite interpolational 

theory needed to be generalized in a direction apparently not before considered. 

Thus was partially accomplished in Section 1.  This extended theory enables us 

to define for k < 8 high-order implicit and explicit stable generalized k-step 

methods of solving the second order equation mentioned above as well as explicit 

methods for 3 < k < 8 for first order equations. 
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Consider again a set S, of k+1 equally spaced points x  , x . ., ..., x 

on the line and a sufficiently often differentiable function f(x). Under 

certain conditions we have already shown ehe existence of a unique generalized 

Hermitian interpolating polynomial P(x) = P(k,n,x) such that 

(3.13)   P(x) = f(x)    i 

( X £ Sk 
p(n) . f(n)(x) 

It is possible to generalize still further.  Let m be an integer such 

that 0 <, m < 2kfl.  Let a, and i be subsets of 5, with the set OUT containing 

m+1 points. A unique polynomial P(x) = P(o, T, k, n, x) of degree m again 

exists such that 

P(x) = f(x) x e o 
(3.14) 

p(n)(x) = f(n)(x)        x t  T 

if and only if the fundamental determinant is different from zero. Although 

we have not extended theoretical results to this more general setting, computa- 

tion of the determinant by machine shows that this uniqueness "often" occurs. 

Recall the general determinantal form derived from (2.1) by eliminating 

rows corresponding to conditions not imposed and by eliminating a corresponding 

number of columns on the right, reducing the degree of the polynomial.  The 

determinant is an mth degree polynomial, Q(x).  If the fundamental determinant, 

A, is not zero, Q(x)=0, and we can compute it in terms of the entries in the 

lirst column and their cofactors.  Dividing by A, we have 
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(n) (3.15;       P(x) = I      h (x)f(x.) + I      h.(x)fw(x.) 
^   i    l^I       i 

X.EO X ET 

The functions h , h are polynomials of degree m and depend on o, T, k, and n. 

They generalize the usual Hermitian interpolational functions of the first 

and second kind respectively.  For n=l and OSTSS, it is well known that they 

have a simple analytical form.  (This is true,of course,also when all derivatives 

less than or equal to the nth appear in a form analogous to (3.15)).  In general, 

however, no simple form was found for the functions h.(o, T. k. n, x) and 

h.(a, T, k, n, x). For this study they were computed from the determinantal form. 

Most familiar methods of numerical integration are obtained as a result of 

polynomial approximation. We note without proof that by prjper choice of 

n, o, T, x one may obtain from (3.15) all Adams type difference equations among 

a variety of other methods.  For example,by specializing 

x Ä x  .. 
v -* 

n = 1 

o - {x  .} 
v-1 

v-1  v-2      v-kl 

we have the first order explicit Adams formula«-the k-step Adams-Bashforth 

equation which is usually derived by integrating both sides of (3.1) between 

proper limits. 

Definition: The method defined by (3.2) or (3.8) is called explicit if 3=0 

and is called implicit if 6Q^0« 
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This notation will also be applied to methods involving a "non-step" 

point about to be described. 

The formulas 

Vv-k+ViVk+i+- • •+Vv = hn(ßk8v-k+ßk-igv-k+i+- • ••'Vv-e+'W 

(3.16) 

gj'gC^.y.)       xv_e = xv-9h        0<8<1 

for numerically solving the equation y  ~g(x,y) are similar to the usual 

formulas with the exception of the term h ßQg   on the right. We wish to 

determine the coefficients a., ß., ßa so that (3.16) is stable and has order 

of accuracy approaching 2k for k < 8.  If (3.16) is rewritten 

(3.17)   hnßgv_9 = I  a.yy_. - hn l  ß.gu_1 , 

one sees that if an= 1, the remaining coefficients can be determined from the 

nth derivatives of the Hermitian interpolational functions 

h(o, T, k, n, x), h(o, T, k, n, x).  Before considering the question of 

stability, note that by setting T=S -X  one eliminates the condition 

P(x ) - y^n;(x ) . 

The term involving the derivative at x is absent from (3.16).  Thus we may 

choose ßn=0 and an explicit method is constructed. The order of accuracy of 

<     > 

(      i 

the method is reduced by 1. 
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It remains to examine the question of stability of the method.  Writing 

8 as independent variable instead of x, consider the equation 

i=k 
y 
L 

i=0 
(3.18)        I    a.(0K =0        0 < 6 < 1 . 

,u n    l 

Let q(e), C2(9)* •••» ^k(
9) be the roots of (3-18) and let n«2 in (3.16). 

Consistency of the method implies that (3.18) always has a double root 

£ =£ *1.  Define the function 

N(6) = max |c (6)| . 
2<i 

Of interest are the 9 such that N(9) < 1. Motivated by the concept of 

strong stability [5] only such 9 are admitted.  The process as described 

above will fail if the generalized Hennite interpolating polynomial 

P resulting from a definition of subsets a and T is not unique. As seen, 

this always happens if k is even and O=T*S,.  If a unique polynomial is not 

defined, we may redefine a and T and try again, although we wish to maximize 

the number of conditions in order to maximize the order of the result-ng 

operator. 

The process also fails if 

N(6) = N   (0) • 1        0 <  8 < 1 . 
0,T      — —   — 

In this case we may again redefine T and try again 
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Figures 1 through 5 show the function N(9) in some successful cases 

where stable high-order operators were found.  For n*lt2 (applying to a first 

or special second order equation respectively) the curves are labelled by the 

step number k and the set T=S, -T which is the set of interpolation points at 
tv. 

which the derivative condition is omitted.  For example k«4, T
=
{X } labels 

*   "    v 

the function N(8) associated with the highest order explicit 6-family of 

operators of the type considered. Labels omitting T are meant to imply T=0 . 

Again it is  remarked that in most cases considered we have relied on an approximate 

machine computation as a criterion for the uniqueness of P.  In all cases o-S, . 

Although usually of a lower order of accuracy, we have included explicit 

methods in the investigation because they require only one prediction, y  , 
v— 6 

whereas implicit methods require two, y and y     It was felt that they could 

be of some practical value«  We are concerned primarily with solving a special 

second order differential equation; howevert  we have given some explicit methods 

for solving a first order equation because they have not been included in the 

literature. 

The error constant C(9) associated with the 9-family of integration methods is 

a smooth function of 0.  If N(8) < 1 in some interval Bn_<_e_<_9,, it is 

reasonable to attempt to find a value of 8 in the above interval which minimizes 

|c|. That problem has not been considered here because the resulting reduction 

in error would usually be of a lower order than the one we are principally investi- 

gating.  Results of computation, however, show that the error constants C(e) 

associated with the maximal order 4-step explicit 6-family of operators for 
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a special second order differential equation (curve k»4; Fig. 4) can be made 

to vanish in the range of stability by an appropriate choice of 6.  Thus 

another complete order of accuracy can be attained in this case (see Table 1 

below). We have not determined that particular value of 6. 

A tabulation of the maximal order of accuracy observed for stable k-step 

operators constructed in the investigation is given below for k < 8. Although 

column two is well known [1], it is included here for completeness. 

TABLE 1 

Orders o f Accuracy 

for yf -f(xfy) for y" Äg(x,y) 
k explicit implicit explicit implicit 

1 2k 2k+l 2k-l 2k 

2 2k 2k+l 2k-l 2k-l 

3 2k 2k+l 2k-l 2k 

4 2k 2k+l 2k-l* 2k-l 

5 2k 2k+l 2k~2 2k 

6 2k-1 2k+l 2k-3 

7 2k+l 2k-2 

* 2k can probably be attained here. 
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N     5 

• 

e 

FIGURE 1.   N(e) FOR n=l AND INDICATED k, f 
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N 

9 «• 

8 

7 | k=6,T={Xv,Xv-3} 

6 

5 •• 

4 " 

k=5,T={xJ- 

k=6/T={Xi;-2} 

H 1 1 
.1 .2        .3 

A k H -+ 
.5 .6 

e 
.7 .8 .9 1 

FIGURE 2.   N(e) FOR n=l AND INDICATED k, f. 
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N 

e 

FiG'URE 3.   N(u) hUR n-2 AND INDICATED k. 
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FIGURE 4.  N(0) FOR n=2 AND INDICATED k, f. 
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N 

8«- 

7- 

6-- 

l'k=7,T =VLvXv-2i 

4.. 

3-- 

2" 
k=7lT={X^Xt;.3} 

k=6, T = {xy, Xy-2, Xt;-3} 

.0 .3 .4 .5 .6 
e 

.7 .8 .9 

FIGURE 5.   N(e) FOR n=2 AND INDICATED k, r 
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this method of constructing stable operators was suggested by the work of 

Butcher [1] relative to the case described earlier., which we can obtain by 

specializing n=l, Q=T=S, . Although the coefficients in this case are calculated 

directly (without determinants) from well known formulas, it is not clear how 

the roots of (3.18) are determined.  In any event in our work they are 

calculated (approximately) on computing machinery; and although great care 

has been taken to insure that adequate significance has been retained, without 

the inclusion of an error analysis of our results,we have not given a formal 

proof of stability. 

The theory of multistep methods for a special equation of the second order 

parallels that for a first order equation.  It is certain that in the former 

case, also, a theorem can be proved giving the uniform pth order convergence 

in a fixed interval cf integration for our generalized methods and can be 

patterned after the analogous theorem for the traditional method (cf, con- 

vergence theorem in [4]).  The order of accuracy of a method is meaningful 

only asymptotically as step size, h, approaches zero.  Because of this, and 

because we have already on two occasions of necessity replaced formal proof 

by a computational argument, we elect to test on available compjting machinery 

in a fairly realistic context some of the methods constructed and to demonstrate 

convergence and order of convergence in this way. 
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4.  Computational Experiments- 

Some of the methods given in the appendix for step number k*4 were coded 

in FORTRAN, and computations were performed on the IBM 7094 in order to give a 

feeling for their behavior. As a standard of comparison^the computations 

were also done using what Henrici [ 5 ] calls the "Cowell" method of numerical 

integration.  (This is still another use of the term.) A single standard 

trajectory was selected for computation. 

The OLblt used is characterized by the initial elements a»1.5, e=.2, 

is45 , G=M*UFO, and initial values as given in [2, p.42]. No perturbations 

have as yet been considered.  The period of the orbit is between 155 and 156 

minutes. 

The well-known Howell method was selected as a standard of comparison 

because it is a near=maxirnal order multistep method and because it is the unsummed 

form of the Gauss-Jackson method.  If no round-off error is present, the summed 

and un8uramed difference equations will yield identical results.  The truncation 

errors are the same. 

As noted earlier of our generalized methods, "prediction" and "correction" 

normally occur at different time points.  In the context of the generalization 

it seems more apt to speak of the process as consisting of one or two "initial" 

methods and a "terminal" method. Our terminal method may be explicit (open). 

Such combinations have been selected from methods appearing in the appendix and 

will be described.  The order of the combination we have called the minimum of 

the orders of the components. The step number of the combination we have 

called the maximum of the step numbers of the members. Although the advantage 
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of the generalized methods over the usual multistep methods increases with 

the step number, we have chosen for the experiments a relatively small step 

number k=4 for simplicity.  The orders of the methods tested vary from 4 to 6. 

An error term could be derived analytically for the new methods; however, 

this would be cumbersome ana perhaps practically meaningless.  Round-off error 

effects would not be included. Accumulated error is analytically complex 

as are instabilities induced by a bad fitting of initial and terminal equations. 

For these reasons the results of experiments are presented to suggest the 

efficiency of the new methc is. 

In addition to the orbit described above, we have tested two methods by 

numerically solving the equation y"= -y, with y(0) • 0,y'(0)=l. 

The methods used will be described.  Initial or predicting methods based 

on the theory of generalized Hermitian interpolations of Section 2 are here 

and in the Appendix called quasi-Hermitian methods.  They are not necessarily 

stable. The following five combinations are identified, as Programs A, B, C, D 

and E. 

Program A: The maximal order Stormer method (order 4) as predictor; the 
Cowell method (order 5) as corrector. 

Program B: The quasi-Hermitian method I forder 6) as the predicting method; 
the Cowell method (order 5) as corrector. 

Program C: The quasi-Hermitian method II (order 6) as the initial method; the 
generalized multistep explicit method I (k=*3, order 5) as terminal. 

Program D:  Two initial methods required:  The quasi-Hermitian methods I and III 
(both of order 6) as initial methods; the generalized multistep 
implicit method I (k=3, order 6) as terminal. 

Program E.  The quasi-Hermitian method III (order 6) as the initial method; the 
generalized multistep explicit method II (order 7) as terminal. 
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Table 2 gives the error in the solution to y"=-y with above initial 

conditions for indicated integration interval h at three different values of x. 

Error is experimental value less true value. 

TABLE 2 

Comparisons of Error in Sin x 

11 
Error X 10  at x-3 radians 

Program E 

-1 

0 

1 

90 

o 
Error X 10  at x=100 radians 

Program A Program E 

Program A 

h 

01 0 

05 -46 

10 -1971 

20 -88389 

h 

10 142 

20        5374 

Error X 10  at x=200 radians 

Prnoran-. A 

h 

10 40 

20 1351 

0 

-2 

) 

# 
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Figures 6 through 9 compare errors in one coordinate of the described or'jit 

trajectory as computed by the indicated programs at the stated times for three 

given values of h.  Instead of the error, we plot -log_n |error| so that the 

ordinate shows the number of decimal digits of accuracy in the solution. 

The truncation error in any of the methods is strongly oscillatory with 

the period of the orbit and grows with time.  In Figure 10 we attempt to 

eliminate the periodicity and to get a notion of the asymptotic behavior of 

the propagated truncation error in programs E and A. We have integrated to 

a point P on the trajectory (represented by the zero abscissa on the graph). 

As the integration proceeded,,   the error at P was plotted after every 

revolution up to nine revolutions. 

Figure 11 compares the error in cos x in an experiment using the summed 

and unsummed form of the difference equation.  Stormer's method (k=2) [5] 

was used. The solution was coded in single-precision FORTRAN and was run on 

the IBM 7094.  The two methods have identical truncation errors.  The difference 

is due to differences in round-off error and error propagation. Henrici 

outlines [6] a statistical theory of round-off error which shows the summed 

form to be clearly superior. The theory is verified by computation.  Figure 12 

shows the results of the same experiment as illustrated by Figure 11 except 

th.it the  prr.rpcQ r.f    double precision accumulation [Z, p. 21 j i» used.  This 

process is very inexpensive because the evaluation of the derivatives, normally 

by far the greater part of the work, is accomplished in single precision. 

Figure 12 shows that the orthodox form of the difference equation combined with 

double precision accumulation is superior to the summed form in a simple experiment 
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FIGURE 6.   PRECISION IN COMPARED METHODS, t = 3min 
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FIGURE 7.   PRECISION IN COMPARED METHODS, t=9min 
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FIGURE 8.   PRECISION IN COMPARED METHODS, f =30min, 
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FIGURE 9.   PRECISION IN COMPARED METHODS, f =498min 
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5.  Conclusions. 

The purpose of the research, of which this paper reports one phase, is 

to construct new algorithms for numerically solving the equations of motion 

of an earth satellite.  These algorithms are close to Gauss-Jackson algorithms 

in structure.  Recent developments in the theory of multistep methods have 

been applied to increase the accuracy of component methods.  It is hoped that 

the final algorithms will increase the ratio of the order of accuracy to the 

step number (the number of differences used).  In this way the starting time 

for the multistep process may remain unchanged while the interval of integra- 

tion is increased.  If stability characteristics and round-off growth are 

satisfactory in the new algorithms, the total time consumed in numerical 

integration may be reduced. 

The increase in accuracy of the applied generalized multistep methods for 

small step number seems sufficiently great to justify the effort of testing 

higher-order methods that have already been constructed, of fitting these 

component methods into a final algorithm, and of testing the result in a 

completely realistic context. 

The generalized theory had not before been applied to the equation 

y"=f(x,y).  The pertinent global convergence theorem (cf. [4] Theorem 3.1) 

is undoubtedly true but Is yet to hp nrn\rt>A^   along with some stability theorem". 

No work as yet has been done towards deriving a summed form for the new difference 

equations.  This form could be unwieldy.  The question, in general, of the need 

for and effectiveness of a summed form in this work is being seriously con- 

sidered in various installations.  Figures 11 and 12 report a rudimentary 

experiment relating to this question. 
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Uniqueness theorems (of which Conjecture 2.10 is an example) are of 

continuing interest in the theory of quasi-Hermite osculatory polynomial 

interpolation; also of importance is the question of defining the resulting 

weighting functions h.(x), h.(x), etc. by means of simple formulas. For 

trajectories with significant perturbations, it may be well to base methods on 

a polynomial o.*- the form 

i=k i=k _ i-k 
P(x) - I    h (x)y(x  ) + I      h (x)y'(x  ) + £  h (x)y"(x  ) 

i-0 X i-0 i-0 

( cf. the Obrechkoff method) with perhaps nongrid points also appearing. A 

maximum possible order of accuracy is more than 3k.  One can also investigate 

the feasibility of using least squares polynomials or functions other than 

polynomials for approximation in orbit trajectory computation. 

The author plans also to explore the possible definitions of a reasonable 

asymptotic average rate (t-*») of accumulations of truncation error associated 

with a multistep method. 
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Appendix. Coefficients f >r Generalized Methods 

In this Appendix are listed some of the constructed stable generalized 

methods and some Hermitian predicting equations.  A few combinations of these 

have been tested on computing machinery and the results reported in Section 4. 

All methods can be characterized by specifying c, T, k, n, 6.  And by 

labelling as Hermitian predicting equation or generalized multistep method, a 

and T have been defined in Section 2.  Figures 1 and 2 concern first order equa- 

tions (n • 1) and show approximate ranges of 0 for which stable explicit methods 

exist.  The coefficients of the corresponding difference equations are fairly 

easily computed and are not included here.  In all remaining computational work 

we have taken n - 2.  In the Appendix a = s, if unspecified.  Concerning the 

generalized multistep methods, for each k, T pair usually only one stable method 

is listed (or tested) corresponding to a convenient value of 9.  A 9-family of 

methods always exists. 

All predicting (initial) methods are based on the generalized Hermitian 

(called here "quasi-Hermitian") interpolating polynomial whose unique existence 

for given k, n, o,   T was discussed in Section 2. 

The form of the quasi-Hermitian predicting equation is 

v9 = Vv-kn-i>'v-k+i+-^iyv-irt2(pkfv.k^k-ifv-k+i+---+ei,:'v-i>- 

The form of the generalized multistep method is 
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The coefficients are given with fifteen digits.  The error in the co- 

efficients has not yet been completely determined.  For k = 3,   4 probably 

all digits are accurate.  For k = 7 probably no more than eight digits should 

be relied upon.  For intermediate k an intermediate number of digits are valid. 

For convenience, we specify a  and T in complementary form ~d • s, - a and 

T = S.  - T. 
k 

Coefficients for generalized multistep (implicit) methods. 

I. k=3 T-<|> 0*.3 

ax =  .164864864864865«10 

a2  = -.297297297297297 

a3 = -.351351351351351 

ß    = 

ßi  " 

ß3 = 

.825825825825825«10 

.140196218627591 

.766087516187516 

.415871754107048 

.209376042709376-10 
-1 

II. k=4 

a. 

T={X ,} 
v-3 J*.A 

. 1564622416043223 -10 

a2 = -.9464169669758374-10 
-1 

a3 = -.5045838547345016 

a,  » .3460313538886233-10 
4 

-1 

ßQ = -.3027438680537280-10 

ß = .1688144735844922 

ß. - .7851898795361902 

ß2 = .4800924707582710 

ßo - o 

-1 

.)• ß,  = .4235373677581134 
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III. k*5 T-<f> 6-.15 

a, - .167638725140126»10 
^0 = 

GL = .278400595805990 ß = 

a.  » -.150337671295784-10 h' 
a, = .466002632892664 
4 P2 = 

a5 = .825862328579257-lO*
1 

P3 = 

ß4 = 

ß5 = 

-.670912228649990-10 

.201329045334982 

.784007930456861 

.324155404103746 

-.494775767295745 

-.134034339375600 

-.373963322694766-10 

-1 

-2 

Coefficients for generalized multistep (explicit) methods. 

I.  k*3 T = {X } 
V 

CLX  = .2-10 

a2 = -. l -io 

a3 « o 

e=.2 

ß0 = o 

ß 

Pi 

h 

.124007936507937 

.770833333333333 

.111111111111111 

ß0 = -.595238095238095- 10 
-2 

II.       k«4 T-{X    } 
V 

)=.3 

a,   =  .205804969722280*10 

a   = -.963457924410107 

a    =  -.2^:7233242848194 

a,  - . 152641470035498 
a 

ß0 = o 

ß    -.161595975532325 

ß,  = .704431783153855 

ß0 -  .872587915934802-10 

-.154458906599228 

-1 
2 

ß,  = -.951881093873159-10 -2 
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III k=5 T=ix   ,x       ; 
v    v-2 N.35 

ax = .307716392780799-10 

a2 = -,334316264723224-10 

a3 = .130022320315476-10 

a4 = .120385824155265 

a5 = -.154610307885770 

ß0«o 

ß    - 

ßo   - 

^4 

.199342712868876 

.542723814092476 

0 

-.656160625268288 

.171431112289051 

ß. = .894415771194486«10 -2 

IV.        k=7 T-AX  ,x    _} 6=.36 
v'   v-2 

ax = .300166612993176-10 

a2 = -.313714901027128-10 

a3 = .683807311516383 

a.  = .134723867946272*10 4 

a5 = -.116171903379676-10 

ß. = o 

a6 = .222241054902451 

a? = .439148682531614-10 
-1 

.205438536632750 

.539144517864215 

0 

-.592537575632003 

.484847995513130 

-.200181366173655 

ß    = 

^4 = 

ß5 = 

ß6 = -.711155078646860-10 

h « -.193932029482787*10 

-1 

-2 
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Coefficients for quasi»Herrnitian predicting equations . 

I. 

II, 

k»4 a«T=»{x }           e«o 
V 

al = -.160000000000000«102 

h = .266666666666667«10 

a2 = . 340000000000000«102 
P2 

= .146666666666667*10 

a3 = -.160000000000000«102 

h = .266666666666667-10 

a4 = -.100000000000000«102 

\ 
• 0 

k=4 cj=7={x  }             8«.2 
V 

ai = -.500286720000000«10 h ES .129576960000000*10 

a2 = 
.124635136000000«102 

h S .560138240000000*10 

a3 = -.611842560000000*10 h S .969881600C.:000 

a4 = -. 342220800000000 p4 
ts -. 194560000000000*11 r-Z 

III. k*=4 O=T={X }        e=.3 

QL   = 
1 

a2 = 

a3 = 

a4 = 

-.193209930000000« 10 

.647195490000000« 10 

-.344761190000000«10 

-.922437000000000«10"1 

Pi" 

ß4 = 

.862500525000000 

.303038047500000-10 

.433679775000000 

-.721777500000000-10 -2 

IV. k=5 o={x   } 
V 

T = {x    ,X .} 
v     v-4 

ax = -. 168023255813954«10' 

a2 = . 425581395348837-102 

a   = -.315116279069767 «10' 

a,   = -.200996777408638-10 
4 

0=0 

,  = .275581395348837 -10 

ß2 =  .146666666666667«10* 

ß3 = -.286046511627907*10 

V° 
a5 = -.802325581395349 ß5 = -.662494520579550-10 
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k=5 a={x   } T={X  ,x     .} 6=.3 
v v    v-4 

ax = -.210714719098474-10 

a2  = .826695465383721-10 

OL = -.668751562570494-10 

OL.  = -.729126387971761-10 4 

a5 = -.175047890984738 

ßo - 

^4 

.881649550039971 

.303759825000000-10 

-.713862014978198 

0 

ßc = -.483931917058517-10 

VI k=5 o-{xv> T={x ,X   .} 
v v-4 )*.5 

ai = 

a2 = 

a4 = 

a5 = 

.106292724609375-10 

.102539062500000-10 

-.180944824218750«10 

-.782023005606312-10 

-.698852539062500-10 
-1 

ßx = .341125488281250 

ß2 = .386718750000000 

ß3 = -.504272460937500 

ß4 = 0 

ß5 = -.385435703822545*10 

VII. k=5 a={x   } T={X   ,x    n} 0=.3 V v     v-1 

al = 

a2 = 

a3 = 

a4 = 

. 157175067554755-HT 

.818655257876087-102 

-.189533965786168-10' 

. 753013271876087-102 

.176496060554755-102 

ß, = o 

h = -.233352230729348-10' 
ß3 = -.911021071886413-10 

ß4 = -.263728213229348-10 

ßc = -.862500525000000 

> 

VIII k-6 Ö=T={X    } 
V 

aL = -.267354410875809-10 

a9 = -.542303743902377-10 

e=.i5 

2 

2 

ßx = .258741730223803- 10 

ß2 = .353107545202970-10' 
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a. 

a4 = 

a6 = 

. 163415437280526 -lCT 

-. 529860381340549«10' 

-.278255325746131.10*' 

-.638051094039407 

ß3Ä .935523697444449.10' 

.356880342431044«10: 

.251550985402339-10 

.854784560392494«10 
-2 

IX. k=6 O=T={X } 
v 

a,  = -.100919643422326.10 

a2 = -.227114950680780.10 

«3 = .665492820631938«10 

a,  = -. 202747607559376*10 4 

Ct5 = -.120925226942311.10 

a6 = -.378539202714476 

6-.3 

2 

2 

2 

2 

2 

ßL = .128647106629316<1C 

ß2 = .146235774698821-10
2 

ß3 = .386584562983006«10
2 

ß4 = .154121622333216'10
2 

ß5 = .122101145605511«10 

ß6 = . 884987329763802 -lO"2 

X. k=6 a=T={x } 
v )-.35 

XI. 

a.  - -•f 77953505973247 «10 
Pi = .100266487549777 

•10 

a2 = -. 168428545345370 *102 h * .105330757175910 •10 
a3 = .480321543101358 -102 ß3 * .280367261702224 •10 

a4 = 
«.140846861658563 «102 ß4 = .114420776177617 •10 

a5 = -.900799716188439 .10 ß5 - .954041971289129 

Vs -.317081388125608 
^6 • .836463763365225 •io' 

k=7 0-{X  }       T={x ,X 
V          v  v- -1} 0-.15 

ai " 
.426248672016901 -102 h = 0 

-2 

a. .106521856117869 «10 ß2 • -.120432808602138-IO
- 

a3 = .131573055131036-10 ß3 = -.131699354325931-10 
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a4 = -. 473523475391012-104                  ß 

a5 = . 112448958145522-104                    ß 

a6 = .111881088447489-104                    ß, 
0 

a7s .693603082392709 -102                    ß, 

k*7 a={x  }            T={X  ,x    ,} 

SP-2631 

a, = -.631355595928052-10 

a2 = -.133597097252952-10
: 

OL = .532090581314935-102 

a, = -.344398239116463-10' 

as = -.197321764953814 

a,  = .219776712103132'10 
o 

a? = -.964138913490856-10 
-1 

« -.308091180980903-10 

= -.140803040314973-lo' 

* -. 155735015276831 *10' 

= -.258741730223803-10 

e=.36 

ft,  « ,959963291682580 

.980492460305444-10 

ß3 * .229394560344614-10' 

ß,  = 0 

ßc = -.239793128470220-10 
j 

ß6 = -.258511564830275-10 
-1 

ß? = .711986507800205-10 
-2 

XIII k=8 0=T={X }         e=.i5 
V 

Bj- -. 561616705786098-102 

Pi" 
a2 = -. 486198844276056-103 

ß2 = 

a3 = -.246075559120176-103 
P3 = 

a4* 
.158204669038749-104 

\' 

a5- -. 25150661519478:>-103 

h* 
a6" -.484551151396271-103 

h = 

a7 = -.560120578494670-102 

*!' 

0Le -.540791966999407 

372288312743760-10 

987049040638957-10' 

637864549912463 

123026245967712-10' 

635237310870639-10' 

975616454903224-10 

345201215578264-10 

467686974850554-10 

2 

-2 
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