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ABSTRACT

This dissertation is a study of the description and effects
of particle interactions in ionized gases. The principal results are:
(i) An expansion theorem for the linearized Fokker-Planck collision
operator for each component of a two-comronent fully ionized gas, and
(ii) A description of photon scattering frem a partially jonized gas.

It is shown that the Fokker-rlanck collision operator generates
a complete, continuous set of velocity-space eigenfunctions, for which
high-speed asymptotic forms are found. Since the set is continuous,
the expansion Yormula has the form of a generalized Fourier integral.

The effect of neutral atoms on the spectrum of photons
scattered by electrons in a partially ionized gas is shown to be
primarily a reduction in height and increase in width of the two
electror-plasma "wings." The scattered photon spectrum is described

for several characteristic cases.
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I. INTRODUCTION

The purpose of this dissertation is to investigate certain
aspects of the kiratic behavior of ionized gases. The enphasis here
is primarily on the description and effects of particle interactions,
Two principal results are obtaired. The first, developed in Chapter
IIT, is an expansion theorem for the linearized Fokkey Planck collision
operator for a two component fully ionized gas. T2 secund, developed
in Chapter IV, is a description of photon scattering trom a partially
ionized gas.

The function of Chapter I is twofcld: it presents a brief
discussion of the present state of the art in the treatment of classi-
cal many-particle systems, thereby setting the stage for the rest of
the work; in addition 1t contains an outline of this work designed to
guide the reader. Chapter II contains a survey o’ some of the more
pertinent results of plasma kinetic theory.

The reader interested primarily in the results of this disser-
tation may choose to skip the first two chapters and proceed directly

to Chapters III and IV, which are essentially self-contained.

1. The lMany-Particle Problem

The theory of c¢lassical many-particle systems may be studied
from three points of view. One may begin with the macroscopic, or
fluid, equations with parameters such as density, mass velocity, and

temperature as independent variables, and involving various transport

- -
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coefficients, e.qg., viscosity, heat conductivity, etc. Examples are

the Euler and Navier-Stokes equations.]

"1 altogether different approach
involves the use of more fundamental and general microscopic formalisms.
On the one hand, one may work with equations describina the evolution
of one particle distribution functions, the well-known Boltzmann equa-

tion2

being a prime example. On the other hand, one may employ equa-
tions relating one-, two-, etc. :rarticle distribution functions such as
the hierarchy of equations derived from the Liouvi.ie equatio*-.3 which
latter treats the evolution of the distribution function for all N
particies in the system.

The fluid equations are generally considered adequate for
treating wide classes of problems in gas dynamics. In this range the
microscopic thecry would not vield significantly different results. In
{fact, subject to certain conditions which define their range of applica-
bility, the fluid equations, together with explicit formulas for the
various transport coefficients entering into them, are derivable from
the microscopic theo*y.z’4

There are, however, many important situations in which the
macroscopic theory does not give a correct description. In gereral,
this occurs when the length or time scales characterizing phenomena of
interest are not long as compared with the scales on which the micro-
scopic quantities fluctuate. Examples are he propagation of high-
frequency or short wavelength waves, and behavior near boundaries. In
these cases one must properly begin with the microscupic equations.

The solution of the Beltzmann equation {or, more generally, any

equation involving only the single particle distribution function) is,

in general, a mattcy of considerable difficulty even in case.

Grenengy  m——
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corresponding to the physically simplest situations. Significant
progress has been confined almost entirely to the study of two limiting
cases in which two different approximation procedures can be applied.
A criterion for the range of validity of the approximate methods is
provided by the comparison of a characteristic time ¢ or length L for
the relevant process with the average time 7, or mean free path [,
between particle encounters.

For high densities (¥>>7%, or L>>(.) the Chapman-Enskog

theory4’5

may be used. The first approximation of the theory ronsists
in assuming collisions to be sufficiently frequent to maintain a local
thermodynamic equilibrium. The next anproximation corrects the distri-
bution function by terms proportional to gradients in temperature T ,
flow velocity % , and density h ; this correspends to the fluid equa-
tions with tra;;port coefficients for heat conduction, viscosity, and
diffusion, This high density region is in fact the range in which the
fluid equations provide an adequate description. Higher approximations
of the Chapman-Enskog theory lead to correction terms proportional to
higher derivatives of T;%) n . The successive approximations of the
Chapman-Enskog theory cor:;espond4 to an expansion of the distribution
function in powers of the mean free path L. . For example if we con-
sider sound waves with wavelength L>>{_, the first and second approxi-
mations are already sufficient to give all significant features of the
process. When L becomes comparable to Le however, it is necessary to
go to the t*ird and even higher approximations to obtain adequate
results; the third approximation already involves formidable labor and

has been used to solve only the simplest problems.3 Consideration of

hiaher approximations is, in any case, of doubtful value since the
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entire procedure breaks down in just the range where the contributions ’
from these higher-order terms becomes important. A different approach,
using expansions in terms of Hermite polynomiais in velocity space, has
been given by Grad.6 He uses some moments of low order in addition to
the usual ones representing n, ¢ and T . The procedure involves a gain
in simplicity over the Chapman:Enskog theory but is still quite compli-
cated. In any event, it is basically a high-density theory.
The opposite limiting case of low densities (<< or L<<[/.)
has been studied using iterative schemes beginning with the solution of

the “collisionless" equation.7’8

In the case of ionized gases immersed
in strong electromagnetic fields, such theories have been used
extensive]y.7 As with the approximation schemes employed in the high-
density case, these iterative procedures become unwieldy if more than
one iteration is necessary.

It would naturally be very desirable to have a method capable
of treating the microscopic equations over the whole range from low to ,
high densities. Unfortunately the describing equations are generally :
non-linear, and even when linearized are extremely intractable, a prime
source of difficulty being the term »epres2nting interparticle colli-
sions. Relatively little work has been done in tnhis intermediate density
region, often referred to as the kinetic regime. Attention has generally -

focused on mathematical properties of the collision operator,]0 on test

»

-

particle treatments,5 or on a numerical solution of the kinetic equa-

tion in a few simplified situations.]]

ck.]2’13

A notable exception is in the
work of Chang and Uhlenbte These authors treated the propagation
of small amplitude sound waves in a monatemic gas composed of ¢ ms

interacting via an inverse-fifth power force law, i.e., Maxwell

GER B0 e
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molecules. They were able to show that the linearized Boltzmann colli-
sion operator for tnis case generated a complete set or velocity-space
eigenfunctions. Upon expanding the perturbed distribution function in
terms of these eigenfunctions, they obtained from the linearized
Boltzmann transport equation an infinite set of coupled algebraic
equations which they solved by successive approximation. Their results
were in quite good agreement with experimental observations on collec-
tions of neutral atoms.

In view of the difficulties involved in solving the microscopic
equations in the kinetic region, considerable interest has recently
been focused on the mathematical properties of the terms representing
collision effects. Motivation in this direction has been based in part
on the feeling that a knowledge ov the spectral properties of the

(1inearized) collision operator would lend insight into the kinetic

10,14 10

behavior of the system. Grad = has considered the linearized

Boltzmann collision operator for particles interacting via the genera,

inverse power force law,

F= K/ps
where K is a constant and ¥ 1is the interparticle separation. Grad
found that in order to obtai.s mathematical results it was necessary to
assume the interparticle force extended over a finite range; i.e.,
angular integrations in the collision integral were truncated at small
deflections. On the basis of this assumption he was able to
show that the spectrum consists of two parts . uiscrete spectrum and
a vontinuous spectrum. The latter is bounded away from zero for "hard"
potentials ( S»5 ), and approaches zero for "soft" pctentials ( $< & ).

For the special case of the Maxwell molecule (% =5 ) there is only a
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discrete spectrum. For 35< 3 Grad was unable to find the spectrum.

15 has used Grad's results for inverse power-law

Recently Ferziger
molecules to show that the linear Boltzmann collision operator generates
a complete set of eigenfunctions. The form of the eigenfunctions was
not, however, cbtaired, In any event, the spectral and completeness
properties were not obtained for the Coulomb potential (S =2),

A major problem in plasma physics is that of determining the
properties of an isolated hot plasma; any material probe introduces
impurities, while for a fully ionized plasma the emitted radiation is
only moderately informative, any line structure arising from undesirable
impurities,

The interaction of an incident beam or radiation with a plasma

has proved to be a useful method for determining the electron density;

since the plasma acts roughly as a dielectric with coefficient

k4
w
€= |- =££ a?: = 4nneﬁﬁw)

o™ )

transmission is cut off below the plasma frequency. Radiation above
the plasma frequency may also be used as a plasma probe, and several
experiments have used the modificiation in phase velocity produced by
the dielectric coefficient € as a measure of electron density.]b

It has beer known for some time that the scattering of photons
or material particles from a system of interacting particles yields
detailed information on the structure of the scatteri.g sys'cem.I'7
With the advent f intense light sources such as pulsed ruby lasers,
considerable attention has been given to the scattering of photons by

free electrons in ionized gases. Several authors have presented

analyses of this phenomenon, usually basing their descriptions on

RS Sme ke  —
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semi-intuitive derivations, and employing collisionless kinetic

18

theories. Notable among these are Salpeter, ~ and Rosenbluth and

19 20

Rostoker. Shortly thereafter considerations of relativistic effects
and nonlinear scatterinQZ] appeared,
The first experimental observation of photon scattering from

22 who observed the scattering

an ionized gas was reported by Bowles,
of a radar beam from the ionosnhere, More recently many workers have
reported the measurement of optical photon snectra produced by scat-
tering from ionized gases in the laboratory. The observations are
generally in remarkable qualitative and quantitative agreement with
theoretical predictions, which is a rarity in plasma physics. An
illustration of this close agreement is given in the recently reported
work of Anderson.23
Provided the photon wavelength A is of the order of the Debye
length Ap or larger, the scattered spectrum is characterized by a
narrow central peak located at the incident frequency, and by two
symmetrically placed satellite peaks separated from the central peak
by Aw:-wpe » the electron plasma frequency. The central peak
reflects the strong coupling of the electrons to the ions character-
istic of long waveleagth plasma phenomena, while the satellites are
attributed to the resonant scattering of photons from longitudinal

18,19

electron plasma osciilations. As the photon wavelength becomes

large in comparison with the Debye length, the satellites become

narrower and rapidiy increase in height. This has been attm‘buted]9

to a decrease in the effect of Landau damping on long wavelength plasma

oscillations.

25

Recently Ron, Dawson, and Oberman24 and Fante™™ have computed
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the scattered photon spectrum for a fully ionized gas including the
effect of collisions. They find the difference between their results
and the collisicnless treatments to be very small, of order 117' , where
_A-n)?ois generally very large; in fact A is generally assumed large
for the various theoretical models to be valid.

In recent years considerable effort has been expended on the
production and diagnosis of gases that are only partially ionized.
Examples range from iow temperature gas discharges to relatively high
temperature ( ~ 30ev) and high density plasmas generated by the laser
bombardment of solids., Since photon scattering has been proven to be a
most useful tool in the diagnostics of fully ionized gases, it is
natural to expect this usefulness may be extended to include systems
containing significant numbers of neutrals. In addition, since the
Thomson scattering cross-section for electrons is several orders of
magnitude larger than the ion cross-section or the Rayleigh scattering

26

cross-section for neutrals,” we would expect that photon scattering

from electrons should be observable even when neutral densities exceed

electron densities. The p  .ry difference between fully- and partially-

jonized gases in this respect would then be in the effects of neutral

atcms on the scattering process, since charge-neutral collision frequen-

cies may often be considerably larger than their Coulomb counterparts.

2, Outline of this Work

The purpose of this dissertation is twofold. In the

first part of this work we obtain the spectrum and prove an expansion

27

theorem for the linearized Fokker-Planck collision operator™’ for

particles interacting via an inverse-square force iaw. In the second

O e s e e —
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part of this work we employ a simple collision model to study the
effects 6f ccilisions on the spectrum nf photons scattcred from a
partially ionized gas, The plar of this paper is as follows,

In Chapter II we present a brief survey of plasma kinetic
theory, with particular emphasis on the description and effecis of
charged particle interactions. Due to the long range nature of the
Coulomb interaction, when an ionized gas is in the kinetic regime, a
great number of particles are "colliding" simultaneously, In this case
the simple binary collision models employed to treat collections of
neutral particles are often deemed to be inadequate, As a consequence
many attempts have been made to develop suitable kinetic descriptions
for plasmas, and a comparison of the various treatments has often led
to confusion., The purpose of this chapter is to compare a few of the
better known kinetic models in an attempt to cast some light on their
similarities and differences.

In Part 1 of Chapter Il we give a very brief phenomenological
derivation of the Boltzmann collision integral, and of the Fokker-Planck
collision operator for inverse-square law forces. Emphasis is on the
difference between short- and long-range interactions.

In Part 2 of Chapter II we briefly discuss the hierarchy of
equations generated by the Liouville equation. The effect of corre-
lations between particles is studied by, on the one hand, neglecting
correlations altogether and, on the other, retaining two particle
correlations. In the first case we obtain the Boltzmann equation for

28

short-range interactions, and the Vlasov™~ equation for long-range

interactions. In the second case we obtain a kinetic equation developed

29 30 3

by Lenard,”” Guernsey,”  and Balescu. With proper assumptions this
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equation reduces to the Fokker-Planck equation,

In vicw of the mathematical difficulties involved ia the
solution of the various kinetic descriptions, it is often advantageous
to replace the more accurate and less manageable collision descriptiors
by a model that simplifies the solution of the kinetic equations. In
Part 3 of Chapter II we conside* such a simplified collision model,
generally referred to as the Krook mode1.32

The ultimate test of any theory lies in a comparison of the
predictions thereof wita experimental observation. Due to the scarcity
of relevant experimental and theoretical information in plasma physics,
t is often instructive to compare the results of the various theories.
One hopes, in so doing, to acquire physical insight into both the
structure of the theories and the as yet unobserved properties of nature.
In the last three parts of Chapter II we make such comparisons for a
few illustrative cases,

In Part 4 we review sume recent numerical treatments of relaxa-
tion to equilibrium in velocity space. In some cases it is possible
to compare the Fokker-Planck, Lenard-Guernsey-Balescu, and Krock descrip-
tions. From the information currently available we observe 2 negligible
differeace between the predictions of the first two treatments. The
limitations of a singie parameter Krook-type model are discussed and
compared with other results.

In Part 5 of Chapter II we discuss the phenomenon of electron
runaway and the contribution of collisions to plasma transport para-
meters. The failure of the Krook model in the description of runaway
is noted, and the results of a computation using the Fokker-Planck

description are discussed. The majority of this cection is devoted to
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a comparison of the different collision descriptions in the computation

of the plasua electrical conductivity. For field frequencies small

compared to the collision frequency, the Krook, Boltzmann, and Fokker-

Planck results are identical. For frequencies above the collision

frequency but below the electron plasma frequency Wee » the Boltzmann |
and Fokker-Planck results differ only slightly. For frequencies above

wpe these collision descriptions breax down; the reasons for this

failure are discussed, For high frequencies conductivity computations

bared on the Vlasov equation and the first two members of the BBGKY

hierarchy give similar results, and match the results of the collision

description just below “’pe'

In the final section of Chapter Il we present a brief review
of some recent work on collisional effects in plasma collective
behavior. Since velatively little work has been done in this area,
only a few comparisions of the different collision dascriptions are
possible. In general it is found that for wavelengths long compared
to the Debye length damping is primarily collisional; for wavelengths
cf the order of the Debye length or less Landau damping33 predominates.
Moreover, if a plasma is inherently stable, collisions increase the
damping of small amplitude oscillations. In contrast if a plasma is
unstable, collisions may increase the growth rate of the instabilit.

In Chapter III we obtair the spectral properties, and deve..p an
expansion theorem for the linear Fokker-Planck collision operator for a
two-component fully i1onized gas. In Part 1 ov this chapter we take
advantage of the small electron-ion mass ratio to decouple the equa-
tions for each species, For convenience we ther concentrate our

attention on the ion collision operator and later discuss the extension

[
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of our results to the electron case.
To develop tie expansion formula we follcu the standard method

of assuming solutions to the kinetic equation of the form

flot) < 92 exp(-A8)

This reduces the equation to the form

L) 9,(8) = = A 9, (&)
where L is a three-dimensional integrodifferential operator. In
Part 1 we show that ReA20 and TmA=0 as we would expect physically.
In Part 2 we introduce a spherical harmonic expansion which replaces

the three dimensional equation by an infinite set c¢f uncoupled equaticns,

Lv‘!n 35\!». ER Au., %“[M
where I_.,‘;“(\r) is a singular integrodifferential operator. These are
then cast into a self-adjoint form in Part 3 by introducing a suitable
algebraic transformation on the functions gy, [ wta) . With
pcundary conditions obtained by combining the original kinetic equation
with the conservation laws, we proceed to find the spectrum
which is continuous and for /=0,1 consists of all A, 4., zo -dzwd,
and Tor 427 consists of all ’\Mm>°, Azwmed,

Although the spectra! resolution theorem34

implies the existence
ef an expansion theorem for self-adjoint operators, there always remains
th2 task of constructing the expansion explicitly. We turn to this task
in Part 4, Since Ld* is singular at vzo and w00, we temporarily

replace the interval o £ v-200 by the interval e<v,g v =v; <% and use -

a result of Tamar‘ln’n35 toshow that L.y.. generates a complete ortno-

S m——

normal set on this intervai. To return to the original interval and

iy D
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thus obtain the desired expansion theorem, we use the above completeness
property together with an extension of the theory of singular differen-

36,37

tial equations. This finally yields a continuous, normalizable

set of functions TM{M (s Awgw) that is complete with respect to
functions square integrable in velocity sprace. Since the set is con-
tinuous, the expansion has the form of a generalized Fourier integral.
For v >> (ZG/MY’"we have found asymptotic forms of the expansion
functions. Finally, in Parts 5 and 6 the extension to the electron
kinetic equation is discussed, as well as certain implications of our
results,

In Chapter IV of this dissertation we develop a theory of
photon scattering from partially ionized gases. Th2 starting point for
the present discussion is the description developed recently by nchnvn,38

VI

which treats photon scattering from a fully ionized gas. The primary

concern in this work38 was with the establ*shment of a relationship

between the observed distributior of scattered photons and the dynamical
and statistical characteristics of the scattering plasma. It was
assumed that (i) the dynamical variables of the plasma obeyed the
classical equations of motion, and that (ii) the plasmas in question
were sufficiently highly ionized that the presence of neutrals could be
neglected.

In Chapter IV we examine the second assumprion described above.
OQur motivation in this direction is twofold. First, it is not clear
a priori when the presence of neutrals will be truly negligible.
Further, when their effect is significant, it must then be incorporated
in a description of the scattering process. Vineyard,39 Sa]peter.18

and Feyer40 have discussed the contribution of neutrals to the plasma
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scattering function, but each based his discussion on semi-intuitive
arguments and in no case was a quantitative description developed.

It was shown in reference 38 that, neglecting relativistic
effects, the cross-section presented by an electron tu a photon having
frequency co and direction Q- for the scattering of that photon into

(w’)w'+da" ) and (.Q—',{}'+c'{}' ) is given by

RN !
Tlw, 0w’ 0 = 2o (8) Sk, ow)
where Ty is the Thcmson cross-section. The so-called scattering

function 3(5'4,,.)) is given by

f 0 rthew

S= {;,:,egu'te Gk, )
- 00

where

Gee =< Fef(&uo)Fe(s't)>r ]

The normalization is such that NV® is the total number of electrons in
the scattering volume, and the function ’Ee is the Fourier-transformed
configuration space electron density operator, with transform variable
K .

in Part 1 of Chapter I/ we briefly review some of the more
pertinent aspects of reference 38. Following Osborn,38 we employ a
classical representation of the density operators and develop and dis-
cuss various aspects of the classical scattering function. Certain
properties of a thermal equilibrium plasma relevant to the computation

of the scatterina function are also discussed.

In general neutrals may influence the scattered photon spectrun

in two ways. The first, and perhaps more cbvious, contribution is

significant when the number of photons scattered by neutrals into the

e N e —



- 15 -

frequency range of interest is not small compared with the number
scattered by electrons. Secondly, neutrals may bias the scattered
spectrum through their influence on the electron density operator. We
investigate this latter effect in Part 2 of Chapter IV. We approach
the problem along two somewhat different paths, The first is a simple
extension of tihe treatment in ref, 38, to include a neutral species in
the description. We show that this approach does not lead to a noticable
contribution from neutrals unless excepiionally high neutral densities
are present, At this point we take a somewhat different tack, employing
the simple Krook medel to represent interactions with neutrals, and
leading eventually to a modified scattering function displaying signifi-
cant contributions from neutrals at neutral densities at least five or
six oruers of magnitude lower than in our earlier treatment.

Part 3 of Chapter IV is devoted to a presentation and discus-
sion of the classical scattering function, with a.d without the effects
of neutrals, for several experimental configurations. Our results are

35,18,40 in that the effect of

in agreement with earlier predictions
neutrals is to heighten and narrow the central spectral peak, while
lowering and broadening the so-called electron plasma w'.gs.

In Part 4 we discuss the implications and limitations of the
approximations and assumptions employed in the development of our
results: a few recent experiments are cited as illustrations. Exten-

sions of the present theory are suggested where such modifications may

lead to significant differences.




II. A BRIEF SURVEY OF PLASMA KINETIC THEORY

1. Phenomenclogical Kinetic Equations

One of the earliest and still most successful descriptions of

a collection of free particles is the famous Boltzmann equation]’2

W4 A L qA A A
SE S w A - 3 6F),

which expresses how FA changes in tiine due to streaming and to

encounters with other particles. Here FAA,c(s\r, is the expected
numbe. of type A particles in Jsﬁds!f, about L,_\[’ at time t, and
’élAis the force on a particle of type A and (SF‘/S'{) s repre-

A
sents the time rate of change of F produced by inter-particle

encounters. For our purposes we assume that only elastic encounters

are important.

In the classical theory of non-u.iform neutral gases]’2

(SFA/Si‘)B is taken to be the net number of particles of type A
entering the phase space volume element Jsﬁ d’tr, per unit time due
tu instantaneous binary encounters. Thus if 3=£-_L{, is the relative

velocity of a colliding pair, then the flux of particles of type 8

having velocity v, incident on any particle of type A havirg velocity
. B
v s ds\r\_ 'F £\ !1,t) I“[, it

v

. .
If Tas (3,6) is the differential scattering cross-section, then the
number of particles of type A scattered out of the phase space volume
element daf, c"\f', intodd during dt by collisions with type B

particles is

- 16 -
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%, FAMr v ) do FO(, 0, 8] q g (3,9)clndt

V) h
The number scattered into this same volume in JdT is
8 ¢ / !/ ]
e ot FAG, o B FYE, 0 8) g 0 (3 0040 dt

As a consequence of mome:ntum and en~rqy conservation in the collision

we have2

d2, 3, |y~ ¢ 10 (4,6) = d3% diy I~/ e (q%0)
and hence
), o ot =
Sd3v'1. gcm-“'as (3\9) 9 [FA !")FB(I") - Fy) Fe{‘\“r‘ﬂd%’”’
the well-knwon Boltzmann collision integral.
A binary encounter is often described in terms of the impact
parameter b , the distance of closest approach if no interaction is
present, This latter quantity is related to the differential scattering

cross-section through the re]ation3

bdbd¢ = ¢ (9,6)da
where dQ = f.6d6d¢.
The derivation of the Boltzmanr collision integral rests on
three basic assumntions, and as yet there is considerable debate as to

their significance:

(i) The collection of particles is sufficiently rarefied so
that only binary collisions need be considered;
(i1) The probability of finding two particles in d 3¢

about ¢ simultaneously is proportional to the prod -t of
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their individual distrihution functions;

oy A, . .
(i11) the force “gh” is distinct from the interparticle

forces, and i* does not affect the collision process.

Assumption (i) implies that the interparticle potential is so localized
that, for a sufficiently dilute gas, the chances of finding more than
two particles within "range" of each other simultaneously is negligible.

While this assumption seems reasonable for dilute gases composed
of neutral atoms or molecules, it causes considerable difficulty in the
treatment of charged particles. The difficulty arises because electro-
static forces, being proportional only to the inverse square of the
distance, permit many particles to be within range of each other at a
given time, To see this, note that the effective interparticle potential
for a fully ionized gas not far from thermal equiiibrium is4

VAS(e) = taty o T/

where the Debye screening length ,XD is given by4

-1 Y 2
St o- 3%"335

where © 1is the temperature in energy units. It follows that the number

of particles interacting simultaneously is roughly

3
V\)\p'i'A

or (for a singly ionized gas)

A = [(9/8ne‘>h"/" it

which is usually quite 1arge.4 In contrast, charged particles will )

suffer large angle deflections only when3 the impact parameter 1s of the

order of e"/e , the distance of closest approach in a head-on collision.

- me —
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-

Since interparticle spacings are ~'n"/% the fraction of narticles

making such encounters at any instant is

: 3
,(e/3 -2
(S5 ) = o
Thus the binary collision assumption seems inadequate since it does
not appear to account for the many overlapping long-range encounters.

This was rccuyginized by Chapmans’6

in the calculation of transport
coefficients for an ionized gas. Chapman fouud that integrals over the
impact parameter diverged for b e due to the long range nature of the
Coulomb force. He overcame this difficulty by cutting off the integra-
tion at b, ~ n=!/3 | and assuming that the resultant force on a
particle due to more distant encounters couid be represented by an

internal electrostatic force in the streaming term of the Boltzmann

equation,

Cohen, Spitzer, and Rout]y7 sought to overcome Chapman's diffi-

culties by adopting a treatment developed by Chandrasekhars’9 in a

study of stellar dynamics. Chandrasekhar's work was based on Jean's,']O
demonstration that when particles interact through inverse-square

forces, the cumulative effect of the weak deflections resulting from

the relatively distant encounters is more important than the effect of
occasional large deflections. Chandrasekhar noted the strong similarity
between the Brownian motion of a colloidal particle and the motions of
particles interacting via inverse-square forces; his treatment is based

on a description of Brownian motion due to A. D. Fokker]] and M, P]anck..]2

While Cohen, 93.117 restricted themselves *to slightly anisotropic velocity

distributions, the general case of arbitrary distribution functions was
12

considered by Rosenbluth, MacDonald, and Judd. We present a brief
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9 13

derivation, following Chandrasekhar” and Rosenbiuth, et al.
Assume that there exist time intervals 4T long enough for a
particle to suffer a jarge number of weak deflections but short enough
for the net mean square change in velocity, <<I8v|*> , to be small
compared with the mean square velocity. Let P” ¥, A¢) denote the
probability that in the time interval At a particle uf type A having

velocity Y undergc~- a displacement Ay . Assuming that pA deas not

depend explicitly on time, the distribution function for the AD species

is then given by9

FA(L o) = (o%00) FAk,v-ag b 08) PAG-0x,ar) | o)

Since At and AV arc .oth assumed small, the integrand is expanded in

a Taylor's series:
FAGt) =

( a2(acy [F"(x,.\.f, £ Pl a2) - 0t TP A ar) -

A
- Av. E)-;_T. Alvs ar) + FA & pA g;ng32+

A
?1FA SEA 3PA A)'LP ? .
+%A!A£=§"—‘ Y3y ar YFTanE st

*(2.2)

equation (2.2) gives for the time rate of change of f ‘resulting

from the cumulative effect of small deflections

04 (%), = 2 [ fodd, - £ 3 Pfaracts T

U tmme  ee— —

—y
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where

EA{ZA = SJVA;{) PALY: ﬁ,\()Ag)

Z{A-r 4.»:{ = SJ’(AE) PA; o) ay dyr (2.4)
A
and so forth,

Since iAﬂArepresents the mean change inAY resulting

from encounters duringy 4T, we write

joct = % SJ%" FO8/) gdn. 713(9:6)9 2¥, 4T

]

<8LD>, ot (2.5)
and

Z““z Z g,;a\, VF 8/ gm ae (9003 A, 8y, ut

= (2.6)
z oL e at,
etc. for higher order terms, where 9 = [V -v’] s the magnitude of

the relative velocity. Rosenbluth, g;_gl}3

evaluated the Fokker-Planck
coefficients (2.5) and (2.6) assuming a two-particle Coulomb cross=-
section. Since the integrals over Ll diverge logarithmically it large
impact parameters, they followed Cohen g;_gl? and cut off the integra-
tion at bM*x ~ .XD , the Debye screerning length. After some alge-

braic manipu]ation Rosenbluth et al obtain

A 8
o ® [1“’ {Fe S"W'r‘ P va
- FMoY W;:e jds\_.qs Fe(!,)ifif’va\] (2.7)

where

N m:e‘e’,(“ J.;,u%j"
AQ —A&

W\A cAes/Ao
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ang A is the reduced mass. Assuming the logarithm to be a suf-
ficiently slowly varying function of the relative velocity, the approxi-

mation is made

" . Hrelel
Tag © oA 4 36

T
‘ot
= "%t 4o, (2.8)
M‘L B »
A
(It can be shom.]4 that this approximation introduces an error of less
than one percent in the determination of {ransport coefficients based

n (2.7).)

In the derivation of (2,7) only those terms porportional to
A AA% have been retained from the expansion (2.3) and in the evalua-
tion of the Fokker-Planck coefficients (2.5) and (2.7). A1l other terms
can be shown'> to be down by a factor (A AAeY ' Thus the Fokker-
Planck equation may be viewed as an expansion in powers of the ratio of
mean kinetic energy to potential energy at a separation of )‘o , and is

sound for »&\ A“sufficienﬂy large, or roughly

BSKN‘)"‘ IO"M n(m“)

Equation (2.7) may be transformed into a more symmetric form.

Since
- Z
&l Pyt < - g (B PR U
SJ FB(.‘[') . Ve
3! VIV D
(2.7) can be rewritten in the form
(3E5)
Tt el
A 8/ o
3 o/ n2E0 _ wt PN, Y
S 4n, Zlerre)ie - PO S 1 55,
8 AL

P‘ —

et OB e e
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This fo.m ot the Fokker-Planck equation was published by Landau]5 in

1936,
While the above analysis treats the effects of a large number

of overlapping small-angle deflections occurring in the time interval

AT, the form of the probability employed in (2.5) and (2.6) still
assumes that these small angle deflections are themselves due to binary
encounters. Moreover, we have retained the assumption (ii) of the
joint probability being proportional to the product of the two singlet
probabilities and have thereby ignored possible correlation effects.
In addition, the present description explicitly ignores the effects of
the relatively infrequent large angle deflections. Both Cohen7 and

Rosenb]uth]3

and their co-workers suggested the inclusion of a Boltzmann
collision operator for impact parameters below an unspecified critical
value, At the same time, they suggested the effect would usually be
negligible, Finally, we note in passing that the Fokker-Planck equation
as displayed above may be obtained4 by Taylor expandina the integrand
of the Boltzmann collision integral with Coulomb cross-section, cutting
off the integrals at b\Mx = )‘D , and rateining only dominant terms.
Several authors have presented descriptions which take into

16,17,18 The method

account the electrostatic properties of the plasma.
is to consider a test particle as being subject to Tocal fluctuating

electric fields, and then calculating the Fokker-rianck coefficients on
this basis. In all cases the results are quite similar, and are tanta-
mount to incl .ding a dielectric constant in the functions r;45 in (2.7).
An advantage of this work is that the Debye length enters the descrip-

tion as a natural cutoff distance, :ithout having to be introduced in

an ad hoc fashion as before, In contrast, the treatment yields a




e ———————— e — e s

- 24 -

divergence at small impact parameters due to an improper handling of
close encounters. To overcome this a cutoff is postulated at an impact
parameter of the order of the distance of closest approach ~ 31)@;
Hubbard]9 surmounted this latter difficulty by retaining the entire

infinite serie, in the expansion (2.2).

2, Kintetic Equations Derived From the Liouville Equation

The constructicn of kinetic theories on the basis of phenomeno-
logical considerations naturally raises questions concerning the
validity and range of applicability of the various descriptions. Per-
haps the most satisfactory scheme for surmounting these difficulties is
to begin with the most complete (and intractable) description available,
the Liouville equation,

For simplicity we consider a collection of /' indistinguishable
particles, occupying a volume V , with no external forces. The
generaiization to a multicomponent system is straightforward but tedious,

and wili be indicated by reference where appropriate.

We define F, f“'!y.',ﬁ, e 1,2, N as the N -particle
distribution function such that
N
FoIT d3d?uy
N i:l t {

is the probability of finding the (™ particle in o3 d3v;  for each
of the N pa-ticles, all at time t . Clearly
N
.
SJI'J frd >y FL = .

According to Liouville's theorem,20 FL is goverred by the agquacion

N
2& f.‘ . )—F(:’i !"- * ):-t_’.v. =0 (2 ]0)
}t L= o .b““"- i=) )"-' '

- -

- Gy e e
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where
L) _ . | 3— .
51, ey ) H-i = I 5££VIL)
{’_
= e, -
Vi) = 2 Vix £y1)
J-')J£‘
and V'V is the two-body potential. Thus we have
N N ‘)
Mo S a5 S aE Lk
ot L3 Tw RAYEEERYY T (2.11)
L= -t (=1 §=1,)#

The information contained in the Liouville equation (2.10) or
(2,11) s all inclusive but in general is inaccessible because of its
complexity. A method for extracting useful information has been devel-
oped indepe.idently by Bogolyubov, Born, Green, Kirkwood, and Yvon, and
is summarized ir Montgomery and T1‘dman4 or in any good text on statis-
tical mechanics such as de Boer and Uhlenbeck.m
To develop the so-called BRGKY hierarchy, we define reduced
probabili:y distributions
§e V(T d20dif, | son
§ AP t tIN - (2.12)
Multiplying (2.31) by \/S and¢ integrating as in (2.12) we obtain an
expression for Fg which involves FSH . In particular, for s =1 and

§=2 we have

- _ ; ) 2
}_5 + . 6_-_!_ = N-! scla\"_clslf-z_ 2V

v
}‘t - & mV
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While the Liou ille equation uniquely determines the evolution of FL
from the initial condition FL (t=0) , the derived relations for F;

do not uniquely determine the evolution of F from ‘% (t=0), Instead,
the interactions of our S particles with the remaining N-S particles
are summarized in terms of a typical S+/ particle and we require a
knowledge of F3+; to solve the problem.

We shall now see how, for a given set of circumstances, the
rciations for Fi and Fi can be simplified. We will make assumptions
consistent with the ohysical conditions which we desire to treat and on
the basis of these assumptions introduce approximations which are
designed to retain the pertinent eiements of iaformation.

OQur first approximation is of quite general validity. We assume
N to be a large numter and expand in terms of N~' . At the same
time, we allow the volume of the system to become arbitrarily large,
but such that N/V=n remains finite. This removes interactions with

the boundary, and reduces (2.13) and (2.14) to

?F QF, _ ngr d3 \/'7.. .B_.fi

P ry 4 %—S] B v -| 3,‘(} 13,
and
YF, 3 R Nl 2, LY
>t (v, 35, r-ie )k - = 3T, ay, T m)F =

JVd \V.‘3
¢ (2R e

\~'1

A. The Absence of Correlations. The Boltzmann anc Vlasov Equations.

> -

writing F, (€,8,¥,Y,t)  in the form

Fl (Sn.":,‘t) E{Sﬂl‘yht_) t g(/fn Y'.)Elly\-)‘t)

g e -
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where 3 is a correlation function, and taking 3 =0 , the s  tem

(2.15), (2.16) reduces to an equation for F} ,

>F " VI AR ()
AR S Ltk o el DAY

It is interesting to consider (2,17) in two contrasting cases, In the
firct, we consider & dilute gas with short-range interparticle porten-
tials V'% | such that the effective range of the potential is much

smaller than the mean interparticle separation. Following Schonberg22

23

and Osborn®>, we rewrite (2.17) in the form

1t | an )
?—EL - B—E B gd}md‘%\ﬁl’ [VL‘ %1 ) ia Fwm _{E_‘L.).-?‘L] F,(')ﬁ{z))(Z,]B)

which is equivalent to (2.17) since the additional terms are zero as may
be verified by partial integration. Following Osborn23 we now introduce
a set of assumptions designed to lend plausibility to the succeeding
argument.

(1) The potential \/'z'is appreciable only over a suf-

ficiently well defined region of radius ~a such that the

f. integration in (2 18) is effectiveiy confined to the

volume |L -¢. | < a.

(ii)  The length, a , is small compared to the mean inter-

particle spacing, i.e., an'P<< . This implies that

o. car be chosen such that the probability of finding more

than two particles within ' distance a of each other at

any time is negligible, i.e., we choose a so that the

binary collision assumption is in some sense justified,

(i11) The above choice of a leads to a sufficiently

restricted region for the spatial integration in (2.18) so




- 28 -

that F‘/x‘)!i)t)F ()I‘l\!’l)t)a Fl(‘[n‘!:,t)Fl{fll!:L)t)
for all £, defined by [£ -f.}<a.
(iv)  The product ﬁm F, {2) does not vary appreciably

over time intervals of order

v =a/lv-

(v) Twe particles within a distance a of each other
will be presumed to be interacting so strongly that they

may be regarded as effectively decoupied from their

environment,

Assumption (v) permits us to interpret

1AVt .
m 3, = % ¥ -2y
1
J—~ .}—V-,— — —-— — o
™Mo, 9;-,_, ¥ -4, (2.19)

where @, and Q, are the accelerations experienced by particles 1 and
2 respectively throughout the duratiun of their close encounter. The
approximation (2.19) plus assumptions (iii) and (iv) then enables us

to approximate che integrand in (2.18) as follows:
L V't .
™ s—ﬁ : S—\;' F‘{S”f”t) (S\).‘Iq t)f
- w | Vn»
P F(N)*’)t)F(I‘\“\-)t)"“

}
= '3}‘ F )E -mt) a.° é\f F/..,\-\'f)F/,_”,”t)

~ -';-’-[E(f,,‘f. 4y )t)F(—'l)v\. -lft) F('L““’" )E/L)yx).t)?'

Evidently we may interpret the velocities (V=& %, v, -a 7) as the
precollision velocities of a pair of particles entering into a strong
binary interaction, whereas ( ‘-fu‘.[») are the vost-collision veiocities

of the same pair. Introducing the notation

(!—,—5,)'/) L[L'Q‘xy) E /g.ll)-l-r\.,)

——

e UHE SW e
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we see that we may now approximate (2.18) as

" j J3r, ja -2l [F,(I.,Lf.if)ﬁ'ﬂf.,r{,t)‘f,:(!.>‘-’w'»*)ﬁ(fni’xﬂ}?(zgzo)
1L, - l<a
Note now that nothing in the intearand of (2.20) depends on [, . Thus

the space integration is readily performed if we introduce the variable

change _@ =L, -, whence

\

3
(4, (e (2.21)
It~ L. l<a |RI<e
If we take 8 to be the distance between the two particles during their
close encounter and introduce a cylindrical coordinate system !see

figure (2.1) ) with 2 -axis parallel to the pre-collision relative

velocity, then (2.21) may be written as

2r ~a/e /2
j S bdbdg 5 dz . (2.22)
¢=o pb=o0 -°~/'L

The quantity bdbd¢ s clearly the center of mass differential scat-
tering cross-section introduced earlier, which we may write as ™ Jv

Thus (2.21) may be written as

fc/?’rt = q jmlﬂ . (2.23)

I£, -Gl <a <t
It is understood that the restriction on the range of impact parameters
as displayed in (2.22) implies a corresponding limitation on the range

of the angular integration in (2.23). In these terms then, equation

(2.18) becomes, for the dilute short-range approximation,
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Figure 2.1

Details of Binary Interaction
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€3] ]:F(....I,,t'\F/,”.v,t) F/-n ut)F/M)—ﬂ;iY(z 24

Equation (2.24) is, apart from normalization differences, the Boltzmann
equation in the absence of external forces.

Finally, let us consider again equation (2.17) when V'* is the
Coulomb potential. In this case, as we have seen earlier, the notion
of a binary interaction length @ is indistinct when the number of
particles in a Debye sphere is large., We could pick a length a say of
order a few times the distance of closesi approach, but the choice is
vague. In this case i:. potential term would be divided into a "binary"
term and a "collective" term, this latter corresponding to the force
term in the Boltzmann equation. For example if we consider only collec-
tive effects, then we may regard +»r nptential term in (2.17) as
producing an internal electric field wiich is a function of r alone

i
lle define this field by

/..,,t) —% SOIF'LJ3L }r F(’l)"'l

and write (2.17) ir the form

vr,;Ty

R eE >F

. —-l ‘—-—- __J- ——
) 1—_;{' °f, WAV o (2.25)
which is known as the Vlasov equation,

B. The Inclusion of Correlations. The Lenard-Guernsey-Balescu Equation.

It is clear from the foregoing discussions that the neqlect of

correlations in the description of an ionized gas is a simplification
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which is difficult to justify, and which leads to probiems such as the
divergence at large impact parameters. Since the BB GKY nhierarchy
(2.15), (2.16)..., includes correlations, we might hope that the
kinetic equations we derive from it will be intrinsically free from
this divergence, In the following we present the salient points of an
important kinetic equation derived from the hierarchy which includes

two-particle correlations, We outline the work of Lenalr‘d‘{4 and

25 26

Guernsey,”~ which is based on earlier results of Bogolyubov,

27

We begin with Mayer cluster expansions™’ of the distribution

functions, similar to that used in the previous section. We have, with
F‘L(')'l)t) = F'/’)t)Fl/z)f) + g{’\llt) (2.26)
and
F3y,38) = RODF ARG +
+R (18)q (23,8) + Fi(2,¢) g (1,3,4) +
4-F,(3,t)3(i,’c,t) + h(12,3t) (2.27)
where h is a three-particle correlation function. We work in “he
so-called plasma limit, n )\03>>1 . and we further assume the three-
particle correlations to be negligible (h*0). We consider only homo-
geneous plasmas, still with no external forces, so that the various

F;(i) are independent of position and the correlation functions

depend on [, and fj only in the combination T = 'I{‘I;l-

Bogo]yubov26

assumed that as a consequence of the assumption
m\} >> | , the correlation functions would vary much more rapidly

in time than any of the distribution functions F,/l',‘t) . He thus

ety SN G Semw
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suggested that

(1) The distribution functions ﬁ(l-')i’) may be considered
time independent in solving for 3/:',J',t)-

(i1)  The asymptotic value of the correlation function,
g(;',\,‘,w) , represented as a functional of the F (l',t‘)) may
be used in solving for these latter quantities.

(ii1) As a consequence of (ii) the information contained

in the initial condition would not appear in the K (l',‘f)
and hence we may take '3{1',3')0) =0.

Employing these assumptions, Bogolyubov26

and (2.16) to

%5 =+ Sg:r 2L (r) S.ﬁr 1—J—w——&”’ %) (2.28)

was able to reduce (2.15)

where G is a time independent function of F(E R), and is the solution

of the integral equation

() %
G(")wl)"\') = K(~)~: [3 ( F(“" 3‘:( )r( ]+

+ SJ"‘f 5437 K(e-§ 5-0,)

oV

i

] [}F(H‘) 6(’5-‘5'1) ?F/!‘) G, v, :(] (2 29)

whose kernel is

™ 3V(r-yt)
K(»)\U: = 7'; SO dt }a )

. q T
The normalization is gJ’U'F= n and we take V't e /‘“,

Lenar*d24 and Guernsey25 reduced the syszem of equations (2.28),

(2.29) to a single equation for F by following Bogolyubov's suggestion26
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of introducing spatial Fourier transforms. Their result was also ob-

tained by Baﬂescu28 using a diagram technique;

9 F(,.

3E 2. Sdav Gl 0

v—

k F(f’) F f._)] (2.30)

-t

where @ is a symmetric second rank tensor whose components are given

by

L (o Sk ) A 85(R)
Sith s S kol )}H FO)Ple kv e

§l0) - % (e V0=

The integrand in (2.31), aside from the & -function, becomes
independent of R for >0 (large impact parameters), so that the
integral converges in th®s limit., Thus the incorporation of correla-
tions in the kinetic description removes, in a natural way, the trouble-
some divergence at large impact parameters. For & large, the integrand
behaves as &> and hence the integral diverges for &0, This is
the same divergence encountered in the electrostatic tr'ea*t:ments”’]8 of
the Fokker-Planck equation discussed above, and is due to the neglect
of the three-particle correlation h when two of the three are of the
order of e1'/9 apart, In this case h is the same order of magnitude
as the binary correlation S’ and cannot properly be ignored. To
achieve convergence in (2.31) it is therefore necessary to make a short

range cutoff, i.e., integrate only within the sphere

& = R, ¥ Bt

Tl bdbee




dl e

- 35 -

Lenard24 simplified (2.31) somewhat by showing that, if one
neglects contributions to (?fj coming from speeds greater than a few

times (29/»«3'/';' @  reduces to

o e X
Q (4,5 = - Z&ha 2A3) 5% - (2.32)

The approximation introduced in going from (2.31) to (2.32) requires
that F[Y) must be small, for velocities greater than a fuw times the
thermal speed, as compared with its values at lower speeds. Equation
(2.30) with (2.32) is, aside from a missing factor of 2, just the
Landau form (2.9) of the Fokker-Planck equation,

We might consider the foregoina as a rather convincing argument
supporting the use of the Fokker-Planck equation for ionized gases with
distribution functions satisfying the above condition, and which satisfy
the Bogolyubov assumptions (i) through (iii). These assumptions are
violated, for example, by systems in which F and 3 vary on the same
time scale, Examples are the interaction of high-frequency waves with a
plasma, or rapidly growing instabilities.,

The generalization of equation (2.30) for a multicompc =nt

system may be found in Montgomery and Tidman,4

The gener:lization to a
constant, unifurm magnetic field was worked out by Rostoker,30 and is
considerably more complex than (2.30), (2.31).

Working with a multiple time scale theory developed by Bogolyubov
for certain problems in nonlinear mechanics, Frieman .nd Book31 have
developed a kinetic equation for homogeneous field-free systems that is
free of divergences for all impact parameters. For small impact para-

meters their result resembles the Boltzmann collision integral; elsewhere
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it is similar to equation (2.30).

The develepment of plasma kinetic equations is an active field,
and it is bevond our purpose here to survey the topic in its entirety.
In concluding tmis seccion we mention only briefly some of the problems
of current “nterest in this area, and related work,

In our derivation of equation (2.30) we assumed a nomogeneouvs
system with no external forces. We noted earlier that the phenomeno-
logical kinetic equations generally assume that inhomogeneities and
local force fields do not significantly interfere with interparticle
encounters, While these may oft~n be valid assumptions, we would expect
them to fail when length and time scales characteristic of inhomogene-
ities or of local forces an small compared with "D or Ao/ﬁq. (the time
required for the establishmen: of a Debye screening cloud about eacn
particle) where Ve is the thermal speed of the particles. At this
Writing a kinetic equation that includas these generally neglected
effects is not aveilable. Many attempts have been made to overcome

these difficulties. Perhans the must noteworthy are in the work of Bchm

32 33 34 35

and Pines,”" Rostoker and Rosenbluth,>” Dupree,”’ and Frieman. While

none of these authors have presented a treatment satisfactory to ail,
their work lends considerable insiaht intn the problem at hand, and
often presents novel and siagnificart mathematical tools. This work is

certainlv a good starting noint for the interested ieader.

3. A Simple Collision Model

we have so far been corcerned with the development of a kinetic
equation for the description of ionized gases. !hile a satisfactory

theory is yet unavailatle, it i5 apparent from our earlier discussion

o—

R am e
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that the more rig.:-ous the treatment, the less tractable it is in terms
of analytic solution. In poini ¢f fact, this problem is not unique to
the study of ionized gases. The Boltzmann transport equation has so
far been solved only for a few special cases, namely the inverse-fifth-
power force law suggested by Maxwell, and for certain scattering ker-

36 In view of these difficul-

nels reievant to neutron transport theory.
ties, it is often advantageous to replace the mcre accurate and less
manageable collision descriptions by a model that simplifies the solu-
tion of the kinetic equations. With the current paucity of experimental
information on fully ionized gases, such-a model may often be a good
starting point for the interpret2tion of the little information that is
available, We thus consider briefly a collision midel designed to
satisfy the conservation laws and an H-theorem, and which considerably
simplifies the mathematical ana’:sis.

One of the earliest of these models, generally referred to as

=l

the Krook model, was developed by Bhatnagar, Gross, and Krook. A

similar but somewhat simpler model was suggested independently by

He]ander.38 The first Krook model, for a singie component system, 1537

(% , = TNEt) [-F(:,r,thN(S,f)é(i,z,t)_] .2

°* Zool|

with
¢ - [&r@( t)T/ e"P[ 20/:.¢>§“ ?(r t)z]
(1,8) = {3 Flot), (@ =1,

4(0t) = —— ¥ Fre,0)
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and

3@lnt) _ ' (s /-_a\*F
T WED 5“”‘ #)

e

where 1_ and © define the flow velocity and kinetic temperature (in
energy‘ﬁnits) at (t,t) , and 0~ is the parameter of the model.

The dimensions of No= are inverse time, and 0 is generally
chosen to yield an appropria*e c2.lision frequency on the basis of
phenomenological considerations.39 For an ionized gas, 0 1is gener-

39

ally chosen™” such that

8rrme q/‘»\ A

o ~
(3W\9)3h'

g
) A =V\)-i) .

While the Krook model is highly nonlinear, it is considerably
simpler than, e.g., the Boltzmanr collision operator, since the

distribution function enters in (2.33) in a simple way: as
F gd’\r F gd3u‘g F SJ3u'\r1F.

For the particular case of small amplitude perturbations near equili-
brium, the linearized form of the Krook model permits solution of the
kinetic equation in closed form for several interesting cases.37’40

To linearize (2.33) we write
Nt t) = N, +en(t,t)
Flret) = R(0) + e 5 8)
@(rt) = B, t+ ee(nt),

—p
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where € is a small parameter, and where
-3/
Rle) = (ra) > exp (-v?/0),
n(et) = (d% fl 01D

U;’L= ZGO/M)

.
& ?%—) = 517 jd%—v‘{-’ (£,4) - n(5t).

We thus obtain, neglccting terms in ez .

(%£t>co" = 0 No E-"(“:lylt‘) + F"{!-)“(S:'*)*’

PR ] B 60 ¢ (5 -ped]]

with

?([,t).—_ SJBV \r{){“l*l )

1
No

The extension of the Krook model to a two-comporent system was

first given by Gross and Krook.40 together with an application of the

linearized version to oscillations in a fuily ionized jas. More
Ly 42 43

recently Sirovich, and Oppenheim ~ have presented similar

Liboff,

collision models for a general multicomponent system. While all of these

models are similar in form, they are not identical.
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The reiationship between the Krook model and the more sophisti-
cated collision models rests primarily on intuitive grounds. In one
special case, however, a more direct relationship has been demonstrated.
For the case of a Maxwell molecule, Grosc and Jackson44 showed that the
linearized Boltzmann collision operator yields the linearized version
of (2.32) if all the non-zero eigenvalues of the collision operator are
approximated by a single constant which appears as o~ in (2.33).

In Figure (2.2) we have indicated for convenience the relations

between the kinetic theories discussed above.

Fig. 2.2 Relations Between Kinetic Theories Discussed in Text

LIGUVILLE
BRGKY

Lenard = Guern seq-
GQ‘CSCM

Boltzmann Fo kker- Planck
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4, Reiaxation in Velocity Space

The ultimate test of a theory lies ir a comparison of the pre-
dictions thereof with experimental observation. At the present writing,
the scarcity of relevant experimental and thecreticai information is a
major source cf difficulty in kinetic physics.2 This s particularly

so in the physics of fully ionized gases4 where on the one hand, the
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maintenance of a plasma and reiiable observation techniques still present
many unsolved problems and on the other hand, tractable theories allow-
ing for inhomogeneities, rapid temporal variation, and boundary effects,
are generally unavailable,

In the presence of these difficulties it may be instructive to
compare the results of the various theories, with the hcpe that this
would lend physical insight into both the structure of the theories and
the as yet unobserved properties of nature., In this and the following
twn sections we intend to make such comparisons for a few illustrative
cases, Our division of these topics into three separate categories is
not intended to imply that they are mutually exclusive; it has been
effected for convenience alone.

The problem of determining how a homogeneous expanse of gas
behaves as it approaches equiliL: "um, i.e. "relaxes," is perhaps the
simplest problem in the kinetic theory of gases. The problem 15 of
interest here because it focuses attention on the collision operator.
Perhaps the simplest descrintion of the relaxation process is that ob-
tained from the homogeneous isotropic Krook model (2.35). Thus if fo

is the value of the distribution function at £= 0 , then

£(¢) = N,F + [€ - NF e e (2.36)

where F, is given in (2.34). The characteristic time {N,5)'appearing in
(2.36) is generally referred tc as a relaxation time. Due to the
complexity of the more sophisticated models, a study of relaxation via
analytic solution has generally not beer :ccrnieved, While the simple

Krook relaxation time may often be a sufficiently accurate estimate of
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relevant time scales, it is easily recognized that the description of
a relaxation process by a single parameter could often be misleading.
For example, the rate at which a given distribution becomes isotropic
in velocity space if initially anisctropic, could be significantly
different than the rate at which it relaxes to a Maxwellian,

One method of estimating such rates without actually solving
the kinetic equation is to single out and consider a single "test"
particle in the gas. This procedure has been employed by Spitzer,39
who analyzed various aspects of the relaxation of the electror and ion
compenents of an ionized gas, such as (i) removal of angular anisotrogy,
(ii) energy exchange, (iii) loss of energy of a particle by "dynamical

friction." Bohm and A]]er45

have similarly presented a detailed
analysis on the relative importance of electron-electron collisioiis in
establishing the velocity distribution of electrons in gaseous nublae
and stellar atmospheres. Montgomery and Tidman4 perform a test particle
analysis by assuming all particles except the test particle have a known
(equilibrium) distribution, The kinetic equation (in this case Fokker-
Planck) is then "linearized" about the test particle "distribution,"

and veiocity moments of the linear equation are obtained. Relaxation
times 9, are then obtained by defining these as the ratio of the
velocity moment M in question to its time derivative, i.e.,

M
om/ot

[t =

The relaxation times obtained from the test particle approach -
generally cepend on the initial speed of the test particle, the relative :

temperatures of the species present, and the relative masses. For a
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two component ionized gas with equal electron and ion temperatures, it
is found that electrons become isotropic primarily through collisicns
with ions; collisions with electrons play a small role in ion relaxa-
tion, and the relaxation to equilibrium of an isotropic electron dis-
tribution is primarily due to encounters with other electrons.

Although the qualitative conclusions reached in a test particle
treatment should generally be corrzct, they do not display all of the
informaticn available in the kinetic equation. Hence, in lieu of an
analytic solution of the kinetic equations, several authors have
presented numerical treatments for various situations. MacDonald,

Rosenblutn, and Chuck*®

have presented a numerical solution of the
Fokker-Planck equation (2,7) for an isotropic electron gas imbedded in

a positive neutralizina background, They assumed ar initial Gaussian-
shaped distributio: peaked in the vicinity of the speed (2o/m¥2 They

found the tire required for the distribution to come within a few per-
cent of the final Maxwellian, throughout the range from zero energy to
several times the average energy, is about ten times the self-collision
time defined by Spitzer39 (the mean time required for a thermal particle
to eventually sutfer a 90° change in direc:ion due to the cumulative
effects of many small angle encounters with like particles). MarDonald,
et al also found, as could be expected, that it takes considerably longer
to fill out the high velocity "tail" of the Maxwell distribution.

Recently Wu, Levans, and Primack47

have studied numerically the
relaxation of a two-component plasma with initially anisotropic electron
and ion temperatures, and with initially isotropic (but unequal) compon-
i ent temperatures, using the Lenard-Guernsey-Balescu equation (2.30),

[ (2.31). They assumed that the distribution functions maintain a
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Maxwellian character throughout the relaxation process, having the

form
Pt = () s exp [ 22 - ma ]
nrss o, e, L Ze,m  ie,ml (237
where
A _ 4 A
Omr (t) = My ng" v F ) Crs = T™ 543\”3 r
and that
,?AL‘_QA_ <<J) le"”-e‘* << |.
B AL

The results are in qualitative agreement with the predictions of the
test particle theory, except when 6%)/695 > /0° . In this case, the
anisotropic electron temperature relaxation is governed by collective
phenomena, Since Hu, g}_glé7 constrained their distribution functions
to the form (2.37), a comparison of their isotropic relaxation results

with those of MacDonald, 23_5146

would not be fruitful. Ue can only
note that the collective effects manifest in (2.30), (2.31) are impor-
tant in the relaxation process, under certain conditions of anisotropy
A direct comparison of the Fokker-Planck and Lenard-Guernsey-
Balescu equations has been achieved in another numerical relaxation

study, performed by Do]insky.48

Dolinsky solved both equations for
severai different initial conditions, for an isotropic electron gas in
a neutralizing background. A comparison of the solutions showed a

difference of less than two percent, for all speeds and for all time.

*uimy Apum— ey
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5. Transport Phenomena; Electrical Conductivity

Many of the interesting phenomena in kinetic theory invoive
systems that are inhomogeneous or are subject to external fields. As
we discussed in Chapter I, the role of particle interactions in such
cases may or may not be important relative to other phencmena, depending
on the nature of the system under consideration. A simple and yet
interesting illustration is the phenomenon of electron runaway, which
occurs when an ionized gas is subject to a sufficiently strong electric
field.

Kruskal ind Bernstein49

have studied electron runaway using a
transport equation with Fokker-Planck collision operator. For simplicity
they neglected electron-electron collisions, and assumed the electron-
jon mass ratio to be zero. Their analysis leads to a decomposition of
velocity space into three regions, for electric fields greater than a
critical value, In the first of these, the low velocity domain, the form
of the electron distribution function is dominated by collisions and
hence almost isotropic, The second regior, one of intermediate velocity,
is characterized by "quasi-steady" flow in velocity space, for which the
Tow velocity region provides the source. Lastly there is a high velocity
region, fed by the intermediate region, in which the electrons acceler-
ate or "run awav" almost freely under the action of the electric field,

\s Ve oee
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usion due to coiiisions.
The phenomenon of runaway, like the relaxation of high speed
electrons discussed earlier, reflects the rapid decrease of the Coulomb

cross~section with increasing relative velocity. It is apparent that

a simplified collision model that does not take into proper account the
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nature of the interacting narticles would here lead to erroneous
results.

As we noted :n Chapter I, there are mary interesting circum-
stances wherein the macroscopic properties of a system exhibit only
small variations in times of the order of the inverse ccllision
frequency ¥, or in space over distances of the order of the mean free
path L, /v, . It is then possible to approximate the kinetic
descript- / a fluid description treating macroscopic quantities such
as density, mean velocity, pressure, etc., where flows are linearly

related to the generalized forces driving 'chem.2’4'50

For example the
eleciric current is given by the product of the electric field and the
conductivity. For an isotropic system the conductivity is a scalar;
more generally it is a tensor.

Since we are concerned in this work with the description and
effects of particle interactions, it is instructive to consider the
calculation of transport parameters briefly. While all transport
coefficients are sensitive to particle interactions, the phenomena of
interest here can be illustrated by a consideration of the electrical
properties of a plasma. In the following discussion we will assume for
simplicity that the system being considered is free from magnetic fields,

temperature gradients, and inhomogeneities. We will further assume that

the applied field is spatially uniform; i.e., that A>>A, where A is

e A ——

a length characterizing the field.

Considerable attention has been turned in recent years to
determining the conductivity of a fully ionized gas. The subject is not
only of interest as a problem in kinetic theory, but is also of practical

impor cance in that from a knowledge of the a.c. conductivity one can

oy PO e eew




———————————————————— e —————_—

- 47 -

compute immediately the absorption coefficient for radiation in a plasma
and hence, by Kirchoff's law, the emission properties.4'50’5]
The earliest calculations of electrical conductivity were based

on phenomenological considerations.z’39

Thus one simply assumes that
the current carrying electrons suffer, on the average, equal accelera-
tions by the electric field and decelerations due to collisions. Using

such considerations, Spitzer39

calculates a conductivity assuming all
current to be carried by the electrons, and neglecting interactions
between electrons. He finds the conductivity o to be

N,e*

T = L
VV\\)C

(2.38)

where N, and = are the electron number density and mass, respectively,
and ¥, is the electron-ion collision fraquency. We can easily obtain
similar results with a simplified Krook model. The d.c. conductivity

of & fully ionized gas has also been computed using a Fokker-Planck

collision operator, Spitzer, g}_a17’52

obtained a numerical result very
close to that given by (2.38) with 3. the "self-collision" frequency
defined earlier.

As we noted above, a significant contribution to the collisional
processes in a p“asma arises from long-range Coulomb encounters, and
the duraticn ov these encounters is quite sensitive to the relative
speed of the pu.ticles. While a Krook-type collision model seems satis-
factory for a fully ionized gas subject to low freqg:ency or d.c. fields,
we would not expect such a simple representation of particle interactions
to suffice for frequencies e« of order 3, or higher.

The earliest treatments of the a.c. response of a plasma

attempted to overcome these difficulties by emploring velocity dependent
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54

collision frequencies™  or collision operators that described a diffusion

in velocity space.2 These approaches were not, however, founded on a
consideration of the nature of the interacting particles.

Several authors have computed the impecdance 2 = ¢-! of a
plasma employing the various kinetic theories considered earlier in this
chapter. Their results provide an effactive means for ccmparing ihe
variots theories. In Fig. 2.3 we have displayed the quantity R,./Roec
where £ s the real part of the plasma impedance Z , as a function of
aa/our . The results are given for a fully ionized hydrogen piasma
with A = 27//%x lo” , where /A is given by W, /\2 , and are based

on a similar display due to DeWolf.>>

For frequencies ¢o well below the collision frequency the

purely resistive impedance is constant and the results of the simple

51 Z

Krook theory™' agree with the Fokker-Planck ca]cu]ations.5

The low

frequency resistivity has been computedS]’52 both including and excluding
(Lorentz gas) encounters between electrons. The effect of including

these is to increase the low frequency resistivity bv a factor ~ 1.7

as is evident in the figure.

56 57 58

Bernstein and Trehan,
59

Robinson and Bernstein,”" Kauffmann,

and Shkarofsky™  have obtained the a.c. plasma impedance using a Fokker-
Planck collision operator. Their results are summarized in Shkarofsky,

Bernstein, and Robinson.60

Mdrshalls] performed a similar analysis
using the linearized Boltzmann collision operator. None of these
authors included the effects of internal "self-consistent" fields; i.e.,
they did not include the Maxwell equations in their analysis. The
results for the Boltzmann and Fokker-Planck collision operators agree

within a few percent, and this difference is likely due to different

L L
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computational procedures. For frequencies below ». these results match
the d.c. results, as is evident in the resistivity diagram, (For
frequencies not small compared to the collision frequency the impedance

has a reactive part2’54’6o'6]

reflecting inertial effects of the con-
ducting charges.) As the frequency increases past ». the resistivity
increases and eventually approaches a constant, independent of « . For
frequencies well above », electron-electron collisions are seen to be
insignificant as compared with electron-ion coliisions,

When the field frequency exceeds the plasma frequency Scheuer62
has argued that the resistivity should decrease, in contrast with the

Fokker-Planck or Boltzmann results.GO’G]

When <> eyp Scheuer suggested
.nat the maximum effective impact parameter should decrease from the
Debye length vy/wp to the length vz/c> . At distances larger than
vy /eo , encounters do not contribute to the resistivity since they
are much longer in duration than the oscillations themselves. Dawson

63,64

and Oberman computed the high frequency impedance of a nlasma using

the simple Vlasov equation including the intemal electrostatic field.

Their results (see Fig. 2.3)) agree with Scheuer's reasoningGZ for

W > wp and join the Fokker-Planck and Boltzmann resultsso’sl for
W< Wy They observed a slight bump in the resistivity near @ =<
which they attribute to the generation of longitudinal plasma oscilla-
tions. For very low frequencies their resistivity does not decrease,
in contrast with the collisional treatment.GO’G]
This latter difference in the predictions of the two treatments
might be interpreted by reasoning as follows. For frequencies below the
plasma frequency the dielectric response of the plasma is fast compared

with the perind of the imposed oscillation. For frequencies in the
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range ¥, << < cp , col.:sions are too slow to affect the pi2sma
response and a description incorporating only dielectric effects, i.e.,
the Vlasov equation, yields results that are insensitive to frequency.
For lower frequencies the collisions become important and the response
is frequency sencitive, Evidently there is a range of frequencies
below cwp wh. 2 the collisional and collective, or dielectric, des-
criptions produce similar results.

Oberman, Ron, and Dawson65 have computed the high frequency
conductivity of a fully ionized plasma by solving the first two members
(2.13), (2.14) of the BBGKY hierarchy using a method due to Guer‘nsey.66
We note that the Bogoliubov hypothesis was not employed; i.e., the two
particle correlation function was allowed to very on the same time
scale as the one-particle distri.utions. The results of Oberman, et

65

al™" are in complete agreement with the predictions of the much simpler

Viasov treatment.63’64

In concluding this section we note some other computations of
plasma transport parameters for the interested reader. In references
57 through 60 the low frequency { w< ey ) thermal diffusion and
conductivity, and the viscosity have been computed as well as the
electrical conductivity, for a plasma having small temperature and
density gradients and immersed in a constant uniform magnetic field.
Kivelson and Dubois67 have found the electrical conductivity for finite
wavelengths using the kinetic equation (2,30) of Lenard, et al. Berk68
nas obtained the conductivity for finite wavelengths. His approach was

63,64 69

similar to that of Dawson and Oberman, used

Oberman and Shure
the first two BBGKY equations as in ref, 65 to compute the high fre-

quency conductivity with a magnetic field. The high frequency
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electrical conductivity has been computed quantum mechanically by DuBois,

70 7 Oberman and Ron72

Gilinsky, and Kivelson’~ and by Ron and Tzoar.
extended this work to include a magnetic field. The results are in
agreement with the classical descriptions,

We summarize briefly the effects of finite wavelengths, and
magnetic fields. For finite wavelengths it is convenient to refer to
the phase speed of th2 wave, Uj =e/R where R =2r/A, For vpx=vy
or less, and w ¥ ¢/p , the principal contribution to the conductivity
is e]ectrostatic.68’70 For greater speeds collisional effects predom-
inate. At high frequencies, w> &) , collisions are unimportant. In

% the conductivity in the direction of

the presence of a magnetic field
the field is unaffected. In contrast the transverse comoonents decrease
with increasing field strength until in the limit of infinite field
strength no current flows across the field.

Finally, Klevens, Primack, and wu73

have computed the a.c,
conductivity for w> <), using the Lenard-Guernsey-Balescu equation
(2.30), Two specific cases are considered in detail: in the first, the
unperturbed plasma has different electron and ion temperatures; in the
second, the unperturbed plasma is characterized by a relative drift
between electrons and ions. For the first case they find that for
8,/6; or 8;/6 % |0¥, the real part of the conductivity becomes
negative. For the second case they find that if the electron drift

speed exceeds 1,37 times the electron thermal speed, and if 3> /.076, ,

the conductivity is again negative,
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6. C("1lisional Effects on Small Amplitude Plasma Oscillations

Until recently, most studies of ;lasma oscillations have been
concerned with relatively high temperatures and low densities, as in
thermonuclear devices, or with very weakly ionized systems such as the
icnosphere, For systems in the first category the collision frequen-
cies are generally very small compared with the oscillatory frequencies
of interest, and this is used as a basis for disregarding collisional
effects. For systems in the second category collisions with neutrals
often predeminate, and a simple Krook-type model is employed to account
for these.

In recent years considerable experimental attention has been
given to fully ionized, relatively low tempevrature plasmas for which
the foregoing collisionless or simple collision model assumptions are
thought to be unsound. 1n addition, in the study of high temperature
unstable plasmas it has been recognized that an inclusion of even very
weak collisions can have a significant effect on the growth rate of the
instability. For these reasons there has appeared an incentive t9
treat collective phenomena including the effects of particle inter-
actions,

In the following discussion we present a brief review of some
recent work on collisional ¢ -ects in plasma collective behavior. Since
relatively few theoretical results are available, the work summarized
here should be considered as a first step in the direction of under-
standing these phenomena., In keeping with the objective of the present
treatise, our emphasis is on the nature and description of collisional

effects. The multitude of possible collective wcdes that a plasma may
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support often mukes a generalization of specific resulis very difficult,
and few attempts to do so are made here. Since a considerable eftfort

has gone into the analysis and classification of collisionless oscilla-

tions, the reader having more than a passing interest in collective
phenomena would probably benefit by consulting the collisionless litera-
ture first,20:74-83

In the analysis of small amplitude plasma coilective phenomena
it is frequently cecnvenient to Fourier-Laplace transform the qoverning
equations, together with the Maxwell! equations for thc electromagnetic
field, and then to solve the transformed equations for the int:rn2i
electric field, from which ail other field quantities may be detii:i 2.°

The result is then displayed in the form83

E(é's).__ E T~ \= (2.39)

where g is the plasma dielectric tensor (or constant for isotropic
systems), the elements of g_“ are the cofactors of their counterparts
in € , and a (®) is a vector incorporating the initial conditions, The
dependence of the electric field is given by the inverse Laplace trans-
form of (2.39), and since g" and & are entire functions of § and #

for many interesting cases.83

one is usually interested in the zeroes

of the determinant Ig (%,8) | . Thus setting this quantity equal

to zero yields a relation between the wave vector g and the Laplace
variable § = fe> +7 , and hence one estimates the growth or decay rates,
etc. of various collective modes (it should be noted, however, that the
dispersion relation | § | =© does not necessarily imply a one-to-one

correspondence between frequency and wave]ength84).

BN g ey
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In the following review the reader will note in some cases a
remarkable similarity between the collisional effects on plasma collec-
tive behavior, and the collisional effects on transport nhenomena
discussed above. This is, of course, mcre than fortuitous, It can be

70,85

shown that the longitudinal and transverse dielectric and conduc-

tivity tensors are related; for S= (> we have70

€, (8 w) = { + "hn'g"_/é)éu)/“a)

£(4e) = T + dnigy(& /()
with Z.: the unit dyadic.

- In an early attempt to treat longitudinal plasma oscillations
including collisions, Bhatnagar, Gross, and Krook37 employed the simple
collisien model discussed earlier, They treated a one component plasma
consisting of electrons with fixed ions with no external fields, and
neglected collisions between electrons. (The assumption of fixed ions
implies the wave frequency is large compared £o the ion plasma fre-uency.
Their results may be summarized as follows: (i) For wavelengths long
compared to the Lebye length or the mean free path a small change in the
oscillation frequency was cbserved as the collision frequency varied
from zero to infinity; the damping was slow (i.e., Y/co<<l) and reached
jts maximum when the collision frequency equalled the plasma frequency.
(ii) For wavelengths shorter than both the Debye length and the mean
free path the damping was heavy and was primarily electrostatic, or
Landau damping.

Lenard and Bernstein36 treated the problem studied by Bhatnagar,
et a]37’38

using a pseudo Fokker-Planck collision operator designed to
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represent a diffusion in velocity space, and which conserved electron
number density and yielded the Maxwell distribution for the equilibrium
state. Their velccity dependent "diffusion coefficients" however,

increased with velocity in contrast with the true Fokker-Planck coef-

ficients., Their results are in general agreement with Bhatnagar, et 1.37

88 89

Comisar,87 Gorman and Montgomery,  Burgers, - and Wu and

K1evans90 have treated collisional damping of longitudinal electron

oscillations in a one component plasma, including both electron-electron

87 used the linearized Fokker-Planck

66

and elactron=-icri collisions. Comisar
collision onerator, Gorman and Montgomery88 used Guernseys reduction

89

of the first BBGKY equations, Burgers -~ soived a Boltzmann-like equation

with the Debye potential replacing the Coulomb potentiai, and Wu and

K‘Ievans90

approximated the first two BBGKY equations and then employed

a suernsey-like reduction. A1l of these authors obtained similar

results, which were restricted to weak collisions and long wavelengths.
The results may be summarized as follows: (i) A wavelength-independent
damping constant was found for electron-ion coilisions, (ii) a damping
constant porportional to kz was found for both electron-electron and
electron-ion collisions, (iii) collision damping dominated Landau damping,
(iv) electron-ion collisions dominate the damping, and (v) a small,
wavelength independenti correction to the osciliation frequency was found.
In each of the first twc cases the damping constant ¥ was found propor-

39

tional to the respective collision frequencies civen by Spitzer, The

work of Comisar87 9

has been extended by Buti and Jain”® to treat high
frequency transverse plasma oscillations. Their results are essentially
the same as Comisar's.

The collisional damping of electron plasma oscillations is
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easily described in terms of momentum transfer out of the coilective
modes, due primarily to electron-ion collisions, and the damping
increases with increasing electron-ion collision frequency. In contrast,
we might eapect the effects of collisions on low frequency ion waves to
be somewhat different, since momentum transfer to electrons is small.

Bhadra and Varma92

have investigated collisional damping of longitudinal
ion waves using a simpie Kro~k model and neglecting ivn-electron colli-
sions. For equal electron and ion temperatures, the damping decreased
moitotonically with increasing collision frequency. Their interpreta-
tion of this result is that since collisions do not transfer momentum
out of the wave, their only affect is to enhance the pronagation.

Kulsrud and Shen93 have investigated the propagation c: ion
waves using a Fokker-Planck collision operator in the limit of weak ion-
ion collisions, They found the spatial damping to decrease with increas-
ing collision frequency ¢S with the time damping treated by Bhadra and

92

Varma,”  and calculated the relation between wave speed and collision

frequency for comparison with experiments on ion waves performed by

Motley end ldong.g4

Their results are in fair quantitative and qualita-
tive agreement with the erperimental results, but they suggest chis may
be only fortuitous since they attempted to extrapolate a time-damping
theory to explain spatial damping lengths,

We have so far been concerned with waves in isotropic plasmas.

95

Liboff42 and Oppenheim®™ have treated longitudinal electron plasma

oscillations in the presence of a constant uniform magnetic field.
Liboff used a Krook model to represent coilisions, while Oppenheim
employed a pseudo Fokker-Planck collision operator similar to that used

86

by Lenard and Bernstein. The two treatments give similar results
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for long wavelengths and low temperatures, and for magnetohydrodynamic
modes, in the ahsence of the magnetic field, The resulis differ, how-
ever, in the case of "mirrcscopic Larmor resonance" modes, in the para-
meter range where wavelen;th is much longer than both the Larmer

resonance and the collision length., Liboff's Krook mode]42

gives an
infin?te number of damped Lar.or modes only at propagation precisely
perpendicular to the 2" plied magnetic field. OCppenheim's model, in
contrast, gives an infinity of Larmor modes at arbitrary directions,
except parallel to the field. Oppenheim suggests this difference
reflects the velocity-space diffusion property of his collisicn operator.
The damping constants found by Oppenheim and Liboff were quite similar,
being proportional to the collision frequency in each case.

It is well known83

that small amplitude disturbances of a
homogeneous plasma near thermal equilibrium are stable; i.e., any such
visturbances tend to decay in time. In addition, this inherent stability
is not affecteu .y the incliusion or exclusion of collisional effects in
the describing equations, or by the imposition of a uniform magnetic
fie1d. In contrast the presence of currents c~ spatial gradient. is

96

knowii”~ to be sufficient to induce unstable plasma behavior.

The study of plasma instabilities is a relatively new field but
nevercheless has received prominant attention in regard to both labuira-
tory and extra-terrestrial phenomena, prime examples being the contain-
ment of hot plasmas96 and the growth mechanism of stellar f1ares.97’98
Due to the considerable complexity of the equations employed, the
analysis of plasma instabilities has generally been restricted to

collis‘onless treatmertt. Only within tk: past two years have attempts

been made to include ctoilisional ef€ect.. Wwiile these efforts have

i

i

-
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been few in number, the results indicate that these effects may have a
profound influence on plasma behavior. Certainly more work is neeced

in this area.

In an early treatment including collision effects, Kuckes99

analyzed the propagation of low frequency ion waves in a current carry-
ing plasma without a magnetic field. Using a simple cne-parameter
collision model, he showed that "collisional effects of the electrons
can lead to growth mechanisms for these oscillations," while "the

thermal motions of the ions leads to a damping." More recently

100 93

Bhadra, and Kulsrud and Shen” have reported studies of ion acoustic

waves, employing Fokker-Planck collision operators in an iterative weak

100

collision analysis. Bhadra treated waves propagating parallel to a

strong magnetic field with a perpendicular density gradient, and Kulsrud

anu Shen93

assumed a homogeneous plasma with a small external electric

7 field. Bhadra found electron-electron collisions to have a destabili-
2ing effect, while electron-ior -o0llisions tended to stabilize. Kulsrud
and Shen, in contrast, observed electron-ion collisions to decrease the
critical current; electron-electron collisions had nealigible effect.

100

Bhadra also used a simple Krook model for purposes of comparison;

he found oniy a slight difference in growth rates under some conditions.




IIT, AN EXPANSION THEOREM FOR THE LINEARIZED FOKKER-PLANCK EQUATION
1. Properties of the Equation

In the first three sactions of this chapter certain spectral
properties of the collision operator are established. While these
properties (apart from the reality of the spectrum) are not necessary
for the later development of the expansion theorem, they are both useful
by themselves, and enable certain conclusions to be drawn regarding the
final form of the expansion,

For our purposes it will prove convenient to write the Fokker-

Planck equation in the Landau form (2.9);

WA 9 3 8/ 2" wmy caF®
i BZ__O)!'SJ"'[F Ya —';a"eF a,\[']',?ne (31)
,l
where

Qo0 (597 Nhe 973(2-99),

’—;B is a positive constant,g:K-g’ , and _1: is the unit dyadic.

1

. AP - A
It is not difficult to show that the Maxwell distributions E“ ) Fe

™M
satisfy (3.1) for IFV/0t=0 ;= A B. In the vicinity of equili-
brium we may write F'l= F,QJ [l+ﬁ'(.'.’,i')] . Neglecting terms quadratic

in ﬁ we then obtain from (3.1) the linear equation
. ‘E‘L s EVEA [ ma Oy (3.2)
Y ‘83_\{ mom Y g O 'Qn.
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We will refer to the quantity E:-Ck as the perturbation from equili-
brium.

Equation (3.2) as it stands is 'n fact a pair of coupled equa-
“ions for f; and €B . Due to the " Jite small value of the electron-
ion mass ratio the equations are however only very weakly coupled,
Thus for example iiie effect of the ion perturbation on the electron
parturbation is small when compared with the effect of the ions and
electrons in the unperturbed equilibrium distributions. 7'n addition,
it can be shown’ that in the approximation m;>> me , “te ions act
1ike a single component gas. In the following we will consider the
equation for "he ions, T7he treatment of the electron equation is quite
similar, and the modifications necessary for this case will be indica-

ted later. We have then,

S

L34 2 Frei e ’ 3.3
g (D g,

We will for convenience drop the subscript "i" from F, and

{')i . If € satisfias the conditions

—b

&‘“ u’F:D’ /‘Ww FM')

=0 3.4
V=0 V= 00 ¢ ( )

)

S

it is possible to show that (3.4) conserves number, momentum, and
kinetic energy densities.

Introducing f’(:{,i’\ = %(j}[)expf"/\t) in (3.3), we find

_AFmﬁA - l jds IE, FS 3% _ 29y (3.5)

vV PYE

fsg

Multiplving (3.5) by af and integrating over v~ we have, after a parts

integration,
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)\fcjsw lefg,\fL = 543\,- %35’. fJ’u-'FMFMI[%%-“‘%gﬂ]Q—

J‘P"Q\r 9 0’ v Fu [ 3;%]0.(3'6)

The second term on the right in (3.6) vanishes provided 9, satisfiec

the second of conditiors (3.4) and

/véi\o V"/‘ ﬂ/\(g) =0. (3-7)

Assuming these conditions hold we exchange v and v/ in (3.6), noting

that @(¥,¢*) = @(} ) . We add the result to (3.6), obtaining

A gcja\f FM Ia,\'l =

(fdv o mn [0 -2 o -]

Since @ is a real positive quadratic form it follows that the right
side of (3.8) is real and positive or zero. Hence dm A=0and A =

Employing standard methods'3 we can find from (3.8) the most
general form of ﬁ/‘ when A =0 ;

1
Qo (4) = avi+a v +o,, (3.9)
with a,, 2, and Q, arbitrary, but necessarily independent, constants

2. Expansion in Spherical Harmonics

From (3.5) we have




e ]

walll U A e

- % [FM chBU',FM '5?;‘7 - Q (3.5)

With B = N, (R Y oxp(-#,V2) o= m: /28 , we have

P M,/a\_‘{-,-"'- —ZK,‘}!"FM’ . Also v’ Q =V g , S0 (3.10) gives
PN ',
Jdg\f’F, Sﬂ\% @ = fdgw’%;,- [F'V‘aa\ g —

The first term on the right in (3.11) vanishes if 9 satisfies (3.4).

Using the relations

and introducing a dimensionless time 2 and dimensionless velocity c in
(3.3),

r(=%) = 4N [ (“c‘/”)mf , £ ° c(,""‘g)
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L=

the kinetic equation takes the form

The time 7T is measured in units of the "Spitzer self-collision time,"4
and ¢ = |g| s in units of the rms thermal speed.
Equation (3.12), in three dimensions, may be replaced by a set

of uncoupled equations in one dimension by introducing the spherical

harmonic expansion

3'\(6 =Z 3m(w\(‘ D\JM)Y( (9 ¢>
==t

L=

(>

We find (see appendix A)

(d%re<"gllect™= 5 FEY"R,  am

m
,uql'_, Y, Sy (3.18)

b

(3.15)

where

ams DR e -y
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c ' 2= _
SP‘I = I JC'CIS(‘?) ' Zzlfg( ) ‘] Sux +
* 1 [24-1 2 9 _.n
oo (8) [ (E) eyt

T=qe s (crif) Geck@),

[
with ecf (c) = 27-"2 f dx exp(-x*) . The expressions for
o

ng and SM were found by Rosenbluth et al, .5

using a different
method, for the axially symmetric case m= 0.

Combining (3.12) through (3.15) we find

~

r_ T
CIZ Yimcin,(m = Z %ﬁ' Le c"'spg_ (Y/lmﬁw(w\)')ig'c _
,?,m v «(’,W\

L ‘tll—l % g€ )c'.)c (\f' ‘S‘:‘] (3.18)

Performing the ind1cated angular differentiations in (3.10) and then
employing the orthogonality property of the spherical harmonics, we

obtain the uncoupled equation

u d% 2 " dkm
'/|,1M‘JMM=T'_.§5J?~+[T”/+(C—‘ZC>T _BCL_

XUH)Tﬂum ?JH[“‘ (——2c>R '-{-%-f,_'-)l?“,]_

(3.17)

- 12_, [ vzl t (2 —2c > Snl L/;ﬁ[,')(c Sn; - vd\)].

ams DER G
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The index wm is clearly superfluous and will be deleted in the following.

Performing the primed differentiations in (3,17) we find

MGy = [%L—l; ecf(c) ——-— 7"_;%% N
i s enet (e B erte] 43t
t —Ze - ——-g—(’“') { 4'_(‘3-61—*' (1- 2%—) .7?_4_".;\--?(:)3_/3"1 ¥

Y (1) U+ 2) j _ett(s) At :
+ de’ (c') -
(2441) (24+3) ] € (C: i

< cU —ettrel\A c’) —
_-Z%{-l | + /‘(’](Clce (c 3u()

4 U-1) { / et ® £ 43 (c’) —
-—:{;—(——-,-— J e ( ) 3'\1

«

_de T crtndeed] (T, (S,
25 | 243 L dete=<" (%) qu ).

(3.18)

For boundary conditions we will use conditions (3.4}, which were
obtained from the conservation laws. Although (3.7) is stronger than
the first of conditions (3.4) we will see below that the solutiors of

(3.18) which satisfy (3.4) also satisfy (3.7).
3. Spectrum of the Radial Equation

If we introduce the transformation

‘/
Ind (¢,Amp) = c” ‘ W, () An) (3.19)
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we obtain from (3.18) the formaily self-adjoint equation

4 [Pi‘z;%l] + [Qz +/\u] Ko+ fd‘ Ki 0000293 0

with
e

Pl) = l’% ecf)- 5’;—,_e‘ ¢

Q@) = - ") ﬂlerf’(f) + (% 2}' "f>¢’ -

“iz” (=) et
- ¢4t (1 ){'(*‘2) -
Ky (o) = _z,—(‘i:l_e B ;,h (C )

’ c/e! £ fC’)
c Al [ << (c/c’) (¢
7" E((_—T )][(c'/c)‘ (e’se) .

Transforming (3,4) via (3.19) we have

i e <7 ‘ij% =o (3.21)
(C{*:o Y, =o. (3.22)

We will later show (Appendix B) that the problem (3.20)-(3.22) is self-
adjoint.

The spectrum of (3.20) is that set of numbers §A,,¢ such thet
(3.20) has non-trivial solutions which satisfy (3.21) and (3.22). We
have already seen that the Anl must be real, and must be positive for

A2 2 and positive or zero for £<2.
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We can find the spectrum of (3,20) by first considering the

related problem

i’ (P 4:?’2“] t [Qx */\u{]:]u =0 (3.23)

with conditions on the functions (ju(c) identical to (3.21) and (3.22).
Clearly P ) dP/c/c, and Q, are bounded and continuous for all finite

¢ except possibly near ¢ =0 ., For ¢<<! we have

GRS A0

G ()= L+ 0@ < fft1) [~ 7 + 06,

In general we can write

6 = (e )

[
and thus [°€)> 0 for all c<oo . It follows that for L# O ,
(3.23) has a regular singular point at ¢ =0 ,
For ¢ small, (3.23) has the asymptotic solutions

Ynt () c A ) P (ce<i)  (3.20)

The first of these satisfies (3.22) for all £ . It also satisfies the
stronger conditio; obtained from (3.7), M(C*O)C"/z'g,\,(c) =0
The second solution satisfies neither condition. This is clear for
A#0 . For =0 , the second solution is a constant which cannot
be zero since the sulutions (3.24) are linearly independent.

For ¢ sufficiently large and for A,, #0 , (3.23) takes the

asymptotic form
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We find ()u » 0 )

“Ynt €)= Ay c3/4caa(vuc5/7'—~(‘j) (3.25)

with M, = YN/ &g,

Given £ and A,y , equation (3.23) has only one zolution which
satisfias the condition at ¢ =0 , This solution thus contains only one
arbitrary constant and it follows that A,, and «,, in (3.25) are not
independent. Whatever the relation between A,y and ,4 is, (3.25)
satisfies (3.21) for all positive A,y . Hence the spectrum of (3.20)
contains all positive A,  , for each £ .

To determine the spectrum of the integrodifferential equation
(3.20) with (3.21) and (3.22) we note that K, (¢,¢’) is a Hilbert-
Schmidt kernel and the symmetric integral operator in (3.20) is conse-
quently completely continuous.6 According to Weyl's perturbation

theorem.6

the addition of a completely continuous symmetric operator
cannot alter the continuous spectrum of any symmetric operator to which
it is added. Since (3.23) is self-adjoint (see Appendix B) it is
symmetric, and it follows that the spectrum of each £ -component of the
linearized Fokker-Planck equation contains all positive real /\,‘1 . For
A=0 andd=| we found A ,=0 belongs to the spectrum; this corres-
ponds to a shift to an equilibrium different from that originally postu-

lated, For 42 the spectrum is (W{+! )-fold degenerate. corresponding

to the (2L+| ) different spherical harmonics of order £ .
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4. Outline of the Expansion Theorem

We now proceed with the development of an expansion theorem
based on (3,20). Our method is essentially an extension of the theory
due to Weyl and Levinscn,7 to include singular integrodifferential
equations with Hilbert-Schmidt kernels. We give a brief outline in
this section. The details are left to thke appendix.

Since the eig:nfunctions of the kinetic equation are bounded
and continuous on every finite interval, it is natural to pursue an

expansion formula for functions «(<) square integrable on the interval

A: 0sc<o0o . As with the earlier theory we first establish an expan-

sion formula on a finite subinterval § of & , §! a =cs= b o<a
b<«29 so that the singularities of the linear operator are external to
§ . The expansion formula we seek is then obtained by taking § » A
in a suitable manner. In the following we will mean by L, the integro-
differential operator in (3.20) and by LS the operator obtained when
the low.r and upper limits of the integral in (3.2C) are replaced by a
and b , respectively. In the followina the index £ will be retained
only where it is necessary to avoid confusion.
We have already seen that P) Pl and & are continuous on §

and that K, (¢,¢’) is bounded and integrable on the square afc=b,

a <c’<bh Tamarking

has shown that subject tc these conditions, the
solutions of L; ',”--,l¢ which satisfy homogeneous bondary conditions
atc=a and c=b form a complete orthcgonal and normalizable set of
eigenfunctions fh;ng on § , with an associated denumerable sequence of
rea: eigenvalues %,\‘ng. Assuming the },S“ to be normalized, the

expansion formula on $ is thus

— G OGEE e
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0 b
wr= 2 by § deaer bl @ (3.26)
n=o (s

where ule) is any fuinction square integrable on § .

We now use the Weyl-Levinson theory to take § = A . Since the
subsequent development of the expansion theorem is in every respect a
duplication of the earlier theory, we will display only the salient
features,

Given A , the most general solution of l; f=-A¢ is a linear
combination of tne two linearly independent solutions, siy ¢, 5 ¢z .

Thus we can write

kg,\ (C)/\{n) = rw é, (‘)"‘Sn) + f"\z ¢'L (‘)Ava\) (3.27)

where f¢ . and fgw, are complex constants. With (3.27;, (3.26)

becomes
00 2 b
ule) = Z z r‘nk f S de M(c)%* . (3.28)
nzo | k=l @

~J

Following Levinson’ we define an Hermitian, positive semidefinite
matrix ,0‘ s called the spectral matrix, with elements sk which con-

sist of step functions with jumps at the eigenvalues A;,\ given by

/.
f&ix (Aen ¥0) ~ P& (Asn-0) = Tens Tk -
Let [:‘(,\ +°)=f8(’\) » and et p; (o) be the zero matrix. We use the
spectral matrix to replace the infinite series in (3.28) by a Lebesgue-

Stieltjes integrai

u(C)= Z ¢(‘»\)qk/A)Jpg ) (3.29)

-ao J,

seressanmt b ye bt 01 o
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where

b
K = [dea@df @),
a
As §~ A (that is, a >0, b>oao), ps approaches a limit matrix p,

To find Py let A= umtiw, w>o, and let o= G +mA)p, bea
solution of [.).¢=-/\P satisfying the homogeneous boundary condition

Guk X{a) + o PB) K/'@B) =0

and similarly let X, = ¢, rw\b(,\)¢l be a solution of the same equation

)

satistyina

Ga X0 + b P() X (D) =0,

Clearly my =t () /G, () and similarly for m_ .
As a>0 and b= 00, m, and W, approach limiting values in the complex
m plane denoted respectively by m,(A) and wg, (A). These limiting
values are clearly determined by the behavior of ¢, and ¢, for small
and large ¢ , for A complex.

For ¢I and ¢.‘_ to be linearly independent it is necessary and

sufficient that their Wronskian equal a nonzero constant, say one:

P [4)! ¢‘L,— ¢1. %_/_7 = . $.80),

This last will be satisfied if ¢, and @, satisfy the conditions

¢ (5)4) = #incr ¢,(3\A) =
POVE (50) = -car PRYGBPY = pinor

where $ is an interior point of § and o =0 <. These conditicns

are also sufficient to ensure that ¢f, , ¢, are entire functions of A

. ]
=

cusw GHD Bae = e—
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for each fived ¢ on § {this follows from Tamarking).

With these properties secured we can find7 the Timit values m,

and m and hence the limit matrix fA , whose elements are given by

A
P~ = £ [ i 0

where

M, (}) = —
M, = W

r Mo
My () = & %

My, (4) =

M!M‘o
MQI(A) - W—M” )

To find the My, we need asymptotic forms of ¢, and ¢, for
large and small ¢ . These are given by (3.24) and (3.25), as may be
verified by direct substitution. Taking ¢, , c}z to be asymptotic

’x’ clf' f

respectively to ¢ or ¢ small, we apply the homogeneous boun-

dary condition to ¥, and then take a®o to find

My =00 (L #0)

M, = - Xt (A=0), (3.32)

Thus for .4;! 0 only M. can have a nonzerc imaginary part and conse-
querntly only ¢,_ will contribute to the expansion formula (3.29). When
A =0 both solutions are regular at ¢ =0 and the limit matrix is not
determined until we specify o . The boundary condition (3,22) dictates
the choice =0,

For ¢ large we tal:
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#, = A,('Cs/" ‘d (W‘-'s/z-.'{)() W T ‘/lu/z//bfﬂl/") Ay >0
and find @ by integrating (3.30):

¢ ~ - 8 pin [y (- 1))
' Sl Anysiy Gt (Dt <5 = 1)

where ¢, 1is a constant of integration. Applying ‘he homogeneous boun-
dary condition to %5 = ¢,+W\.é\)¢'z and then taking b oo with
A >0 we find

8L exp [i (v & - v’u)]

My, =
Sal Ay iy od (At ¢ ~np)

(3.33)

Combining(3.31) through (3.33) we have finally

C’f (’k’) = C//onzz (’xl) = ”r/zpuzz/;/;&,/z )M >0(3.34)

Since the spectrum is empty for /\,\F;_ <o, f(’\"') is constant on this range

The expansion formula (3.29) becomes

U\(C)= g ¢L(‘)Ahl)a’{/\u>df(/\hg) (3.35)
with
@ = a0 dre e,

The expansion converges in the mean for all functicns w) square
integrable on (0 ,00). If the spectral function /o is not continuous
at A,, =o, this point will contribute to the integral in (3.35).

We return to the description of perturbations from equilibrium,

If Pxp(-f‘)(z(é,o) is square integrable in velocity snace, the. ©rom L
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(3.19) and (3.35) we have
a0
G_C’L?(&,?’) = Z Ic’f (/\,()‘:Phlw Elw« e—)\u'r (3.36)
Im g
with
*
L [ 8 6
and

Y (g M) = c-le=<"t %(‘,M)ij(%ﬁ.

The functions 411 correspond to ¢a in (3.35) and are the solutions
of (3.20) satisfying (3.22).

We have definad the density, mean velocity, and kinetic tempera-
ture of the ion gas as being proportional respectively to the first
three moments of theeguilibrium distribution F, . If p is continu-
ous at Ay =0 this point will not contribute to the expansion formul:
(3.36) and the eigenfunctions (3.9) for A,, =0 will not be contained in
the expansion, By virtue of the conservation laws the functions (3.9)
will then be orthogonal to (3.36). Thus (3.36) is complete only if £
has a jump at Anl= o for {=0,1 . It follows that the exclusion of
(3.9) from (3.36) yields an expansion which is complete with respect to

all square integrable perturbations conserving n ,<{my>, and 8 .
5. The Electron Kinetic Equation

We have developed an expansior. theor. wased on the uncoupled
kinetic equation (3.3) for the ions. The extension to the electron

kinetic equation is straightforward and requires oniy a little algebra.
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As we indicated earlier we decouple the electron kinetic
equation from the ion equation by dropping the term (m, /wm;) 7?{/ w’
in (3.2), This amounts to neglecting the effect of the ion perturbation
or. the electron perturbation, but retains the effects of encounters with
ions in the thermal distribution.

The uncoupled equation conserves electron number density provided
(3.4) holds, but does not conserve momentum or kinetic energy in the
electron gas. This is as it should be, since a substantial portion of
the electron momentum, and a small amount of the energy, is lost to the
ions,

Applying the methods of section 1 we find as before pA=0,
A20 , and for A=0 we find 9o = const., corresponding to (3.9).
The remainder of the development proceeds as before. A spherical harmon-
ic expansion yields a set of singular integrodifferential equations, and
the transformatior. (3.19) brings these into self-adjoint form. \s
before, the expansion formula has the form of a generalized Fourier
integral.

If, for example, the ions are protons, then we can take re|¢= lo¢
If we use Xo in place of «; in the definition of ¥ and < , then the

electror equations may be obtained from the ion equations by replacing

Tle) in (3.15) by T(e)+ot¥2T (") where « & &e /= mg/my
6. Discussior

We ha.c used boundary conditions obtained by requiring the solu-
tions of the kinetic equation (3.3) to be consistent with the conserva-
tion laws, The Hilbert space then emerged as a natural function space

for the framework of the mathematical development. The question
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persists (see e,g., the discussion of Uhlenbeck and Fordg) as to whether
square integrability should be a requirement on the distribution
functions from the beginning. In the light of the present work this
condition does not appear to be necessary, and for our purposes it would
not have been sufficient. To see this we note the condition
JJ3V’}ﬁkfI1< 30  leads to
AN vie f = o (3.37)
>0
which is weaker than the corresponding condition (3.4). Since both
solutions of (3.20) satisfy (3.37) for {= O, it would be possible to
have an expansion theorem for solutions of the kinetic equation which

are square integrable but do not satisfy the conservations laws.
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IV, THE SCATTERING OF PHOTONS FROM A PARTIALLY IONIZED GAS
1. Some General Properties of the Scattering Function

In the first part of this chapter we present a brief review
of a classical derivation of the scattering function, and discuss
certain properties of an equilibrium gas relevant to the computation
of the scattering function, The rest of the chapter treats photon
scattering from a partially ionized gas.

The photon scattering can be characterized] by a cross-section
describing the effective area that a particle in the sample presents
to an incident photon, having direction Q- and energy Xw , for the
scattering of that photon into a small solid angle about the direction
<4}fand into a small energy increment about Xew’. It can be shown
that, neglecting relativistic and dispersicn effects, the electron

cross-section is given by]

N o
7 (0, ;@) L) = L (6) Sk, 00) (41)
where o (9) is the Thomson crecss-section and K , & and Aco are

given by

k=8 'é'» ""’9=f'éﬁé'é") dew = w-w!

with w=ck, colck’, and

k) =0, /K0 =20
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The so-called scattering function S 1is given by

a0
S ae) = Loy § it e tEeC 520 (e 4) (4.2)
- 0O

where
Gee(g,{.) = <'o"9*(£s,0) f:" /£,f)>r S (4.3)

The normalization is such that] N€ is the total number of electrons in
the scattering volume, It can be shown] that the scattering cross-
section for ions with mass M; is of order 'me/m:)™ smaller than the
electron cross-section (4,1), where m, is the electron mass. We will
thus neglect the photon scattering from ions, assuming local charge
neutrality in the scattering system. Scattering from neutrals will be
considered later.

The function '5“ in (4.3) is the Fourier-transformed electron
density operator. Since the lerivation of (4.1) was necessarily quantum
mechanical, it follows that the density operators should be described
quantum-mechanically. It was argued in reference 1 that the difference
between the quantum and classical descriptions of the density operators
will often have negligible quantitative significance. On this basis
the somewhat simpler classical description was employed. We will
continue to assume the validity of this approximation here. The reader
interested in a quantum mechanical description of the scattering func-
2,3

tion would do well to consult the work of Rosenbaum, Zweifel, et al.

We are clearly concerned with the electron density operators

/oe(l‘,t) ,where
'ae(z,‘l’) = g d>s ae (2 , {"f)

(4.4)
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and
pe
9¢(x, ¢ t) = Y (k- 24®) Ye-rip) | (4.5)
ol

We seek ultimately the thermal average of the product of the Fourier-
transformed electron density operators as displayed in (4.3); i.e.,

with (4.4) we wish to obtain

G (K t) - jd’lfJ‘V' ‘o 3% 1-5 -(x-% )<3e (&' o)ﬁe("*' »

To compute the thermal average abcve we follow Osborn] and ¢enerate
a set of equations for the phase-space density operators, which we then
solve subject to certain well-defined approximations. Since the
procedure for generating these equations has been delineated e’lsewhere.]
we present only a brief summary here.

Assuming the dynamical variables of the system obey the classi-

cal equations of motion, we have

= Ap‘ {XJ ) )

& H
Py DAxJ N {F“Hz

where
H=T+V

is the plasma Hamiltonian., The symbol i } means Poisson bracket, and

for any function A of the system dynamical variables,

EA’HE - [BXJQPJ_”?:’]
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It thus follows that

)o
il

SN

- LA

"

and hence

Al)=e"trA).

In particular, the phase-space density operator A for particles of
1

kind A is given by

NA'
~tL
qatixyt) = e D - 0) §(r-%e)) (4.6)
A
If the plasma damiltonian is taken to be
NA A
S (pY” AA
H*‘%Z L =+ Z VA% e -x8) +
A specles) « ™ % A “,p
NA N .
Fo) e (ia*—zf‘l)) (4.7)
A;B d,p
A¥D
then it is a straightforward matter to show that ﬂ"(?.‘n‘f;t) satisfies

the equation

_ L 2% 3 Z SJ%(’a'sw’V“(ﬁ.";/S")‘jS/K:—“;f) =o.

Ma 3V OX S (4.8)

. Equation (4.8) is similar to egn. {II.19) in reference 1, but
. is now generalized to include any number of species in the scattering

system. Now as in reference 1 we let tha avurage of ﬁ" be F4 »

[ i.e.,
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FAx v ) = <gA g8 (4.9)

and further define the fluctuation operator S‘a‘ .

gg‘/&,éf,‘t) = 3‘/5,1",%) —~ FMg¢t). (4.10)

Sti11 proceeding as in reference 1 we combine (4.8), (4.9) and (4.10)
to obtain an equation for the fluctuation operators gg* » and then
approximate this equation by neglecting terms quadratic in the fluctua-

tion operators. We obtain

PR s PR . 1,43 AB /. . y
S e W g 7 [ vt

(x) [F‘(z,!.t)gaﬁ(a’,f',*) *ga"é‘f&’,f)l’“(a’,v‘ff*)j =0. ()

Equation (4,11) is now further simpl.. ied by assuming that the target
plasma is in the thermodynamic state, and furth - that the singlet
Jdensities FA 5 FB are independent of space and time, and are

Maxwellian functions of the velocity. Euqation (4,11) now reduces to

98 A 3at RS 3
'S%'”{"SQ_ " '{f'az(")

&) Zé SJ?’,;’C/?V" VAQ/'ZS \.Z-(II) g? B/l({&rf’t) =0, (4.12)

It follows from (4.2) and (4.3) that we must solve the system
of equations (4,12) for the rourier-transformed electron fluctuation

operators as functions of time for al1 T , —e0o < t<22  To this end

we introduce respective lLaplace tr*ansfor*mations4 for t>0 and t<o

-l e
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P = 0 +H(Y
O +iao 0‘>0’+
Sﬂ*A (-'-)th) - JPe P ga (E)y P)
o~ o0 (t>0)
=0 (t<o)
g%f(ﬂ,Y,PX = S Jte"" g%"(l, t) P: (r.H'y
st Ttieo - <o
o (x,04) = -5 | dpe’ SaA (x.bp
Sl (L—<o)
=0 (t>e)
where

S«aA(a.;f,t)= S’gﬁ + &9

and further introduce the Fourier transformation

S? w,..,P) jd '.’.‘.gaf (K»KIP),

We thereby obtain from (4.12)
A

(P"iﬁ'f) 8%£ (x.2p) + i? e b

A T Y

x) D VA8(e) }o/a\r’ Cal(x ¥ p) = ra’ﬁ Ae,v0)
g

(4.13)

(4.14)

(4.15)

(4.16)

*(4.17)

e now divide (4.17) by ( p — vx-v ), integrate over ¥ , and

define
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M (e = 9 Sg? e
and
AS /y , 3 aFMA/Q\I‘
A p-rgy
obtaining

B d3 €97 (% ¥ 0)
(I+Au)k§’f~g;‘1l,e hy = 3 g P—qt‘zs-x . (4.20)

Now let & represent the determinant implicit in the system of equations

(4.20) and let AB be the cofactor of hf . Then solving for ki we
find

Ag (& p) 8 /x
(5,p) = £ -“7"'LA P SJ%— fj_f.'\fo} . (4.21)

8

Finally, we multiply this last expression by gge*(!.'..\.",o) , thermal

average the product, and integrate over J[’ . These operatior- yield

R/
f rd '8k v 0) Gt (k) p ) rg%fd_ 6% (a.22)
where
G () = < §qe™ (ey5/0) §gB (x o) (4.23)

We now perform the inverse Laplace transformations on (4.22),

as per (4.13) and (4.14), and employ the Laplace convolution re]ations,4

obtaining

P pemewey ey
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0o

| g 1y Df k.2) o eV (E72)
(e e § e (20
i ) p-ivd B (2, -
e gd? 08l ) st
= 00 (<0, t<e) (s 20)

where we have defined

T tieo
8 PY Ag (2,0 (J(r>0'
! - L ,_ﬁ.__J—- t +
Di‘ ‘5’2’) - tlm' gdPe b (%, p) -Yor<0 . (4,25)
o -too
Hr.ting
8 8
pt = p’+ D

we can easily show (provided the interparticle potentials depend only
on the magnitude of the separation), since &g and 4 are functions of

the /), only, that D® obeys the symmetry relations
De’(ﬁ,t) = D8 (x-2) = DB(~k7) = D°f-g-T (4.26)
and further
D8 (k) = DE¥(x2) (4.27)
Combining (4.3), (4.4), (4.10), and (4.15) we have, with

§J3WJ3W'J3KJ3X'€ ¥ (2] F. () FE(e) = (m) e VES (X)),
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where N& 3 nex scattering volume,

G (&, £) = (2m)® ne N& (%) +

©
+z des‘,,e»e-x't SJ?C"’&"'{? De{i.“r)é’k/i',y,‘yfo). (4.28)
8 Zeo

Fourier transforming with respect to the time variable as per (4.2) we
find

8(5) b)) = (2n)3r\e S(&)S(Aw) + T\ee %

|

43 301 (k- r-ae)s

V'\

o——

(2~

(x)&ee(f U‘V"o) Sd?e—lf‘l{? De{ﬁ)r). (4.29)

1)
- ad

To complete the description, i.e., to portray a given experiment,
we must specify the interparticle potentials and the quantity Gbe(°>
defined in (4.23). The complete specification of this latter quantity
requires a fairly detailed knowledge of the scattering system, and is
generally a formidable computational *task. Nevertheless certain general
properties of Ge’e@) are readily estatlished and are germane to a
description of the structure of S’/!E, acy.

Consider the thermal average of the product of the time-indepen-
dent density operators for the species ( A, B8 ). With (4.5) or

(4.10) this quantity may be written either as

A N8
g% (@498, - <f Z $@-6)E-97%
Cgh@q8@M = F(O)F* (@) +
v < SgA(a) 558 (@) e

GG $me
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H

A
vhere (= LY. As before we assume the functions F , [ are
space-and-itime independent Maxwellian functions of velocity FMA .

e .
Fw . For later convenience we denote

(@) = 557 (@) 548 (') | (4.32)

Since
Sﬁ@ J3G?'<3A(@>3e(@')>r = NAn8 (4.33)
by definition of the density operators, it follows that

Scl%? 3@’ ¢ *%(0,&) = o. (4.34)

Our interest here is in the functions G'Ae, the Fourier transform
erfﬁ) being needed for (4.29).

We begin our analysis by separating (4.30) into two terms;
A

N
<ot (@)gB (@) = §,, §(@-a")< 2 S(-e*)> ¢

+ < Z Z S(a-c*)§(a’- QP (4.35)
(s,eot .4/& e
We take the system Hamiltonian H = T+V to be as given in (4.7), and

define
Z. = gcﬁv"’e'.r/e , 2y gdax“e‘v/e

where the respective integrations run over the coordinates of all N

particles in the system. We now write the second term in (4.35) as
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< NZ'N‘ S (a-a%) S(@'—@B)} -
B, p# i Anb

A

YA
= SJ"@"ZT"ZV“e‘(”"VQZ' {(a-a4)§(@R-G")

u(\p)(s#o('dkﬁ
vANY
= V)MB/‘MZ d%N 2. le -V/8 { (x-x%) §/5tx®)
Lp, pAu g AR

A/ 8 /v A X’
mmEdnt ),

where
nd M) = RS ()

Ath

and n? is the number density of the species.

To determine the functions n{‘e defined in (4.36) we take the
gradient of (4.36) with respect to X .
A8
AB X x/ w’!—JN -
3__“3_3(::_) > j 93V 2,7 o~ V78 {(x-x)S("2#)
X .
- ds‘ﬁ,(sfo( dA=B

N’ -V/eyyv

Ve
Z ﬁw 27§20 e S e )
\ ;P#o(t/ﬂre

From (4.7) we have
N(NC

o4 3 Svstureie g 5t

c#Dq’

]

—

S e e
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and hence oA NO va( “x*l)
N (X" -
: 2
= Bxﬂ
Z %?L Z zb o -
0 # o ifD:A
A
et O
o 0

In the following we will neglect the second term on the right in (4.38).
This term is proportional to the force exerted on a particle by that
same particle, and we expect that the effects of neglecting this term
will not be manifest in any observable results.

The relation (4.37) now becomes

n NA'NE’ND 3 -Ig( -x)S (x4 £8) ‘V/QQVAD(A‘W)
=.-25:%'ZZ S 43N 27 S (x- € =
A

of

3&:-3=

s Y D=A

N4 N NP
'-—_'_ -l e )(p ngug(xu XV)()
) QZD« jaxzv §(x0¢) § (22P)

PO‘
p A fe=A _v/e yvAo(ix*-x")
o E/D=A QF. T )

We now separate this last into two terms; one for 0'=(6 [ and hence

B=D) and one for o R :
)

3X
VA NE
_V/e AB/ g -xu
"é’; fcp RN T O S DI Y- IV (1 ;\(fx X _
p#x{% A
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NANEND
L ZZJ 5 3 ,,wng-x”} fgwyéw)g/x E)SELE) ) o
D °( 0 \//9
ﬁ#d‘(e A,r;‘a({/o A T#B ) 2;'e .

Recalling tne definition (4.36) of n,_*e (K,ZS') and introducing

Ne’ND e
g0 (x, 66 = Z J’X"S(x-é“)s(z"—.&")S(z"—z')2;' e

(b#x:fB Mo D=A;T#p

J

the relation (4.39) ~-~~omes

on, 8 (x 1) 48 3 VAR -2'))
QL "2 X *

A
e
| AD vy
+5ZSJsllav (1x-x"1) ABD(“ ") = 0 (4.40)

To compute the two-particle correlation functions Y\»fe , We

write r)-:eb as

ABD (5)*1)»”) = n*én® + nh Na D(X)K”) +n Yh.o(x ')+
2%
o “16(&‘- )+ hy (Y ) (4.41)

A0 | . .
where }\3 is a three particle correlation. Inserting (4.41) in

(4,40) and neglecting h then yields the system or equations

AB ! AB %/
on*® (¢ x') N _L B VA x Jsl)
o X

/g et
R %AZ Sc]:" , 'QVA I& ) BD (X ”) =0 (4.42)
D

P —
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Thus given the system potentials, the correlations may in principle be
computed from (4.42).

Two pertinent properties of the n-fe can be demonstrated
without specifying the potentials. To obtain the first of these we

introduce a cl inge of variables in (4.42) according to

!

T 2 X-X
) )

This gives

(4.43)

3Y_\_1_Ae’+ nAB QV”’(HI) SJs ) BV‘lt’w) 80

BS 9 'bx ')-O

Ejuation (4.43) is clearly invariant under the transformation € »=-r .

If we now add 2 constant vector o to € such that

AB
we find that (4.43) is unchanged. It follows that n, is a functicn

of 1L1 alone; i.e.,

A8
M = V\mne('-fl) = n0x-x1). (4.44)

In the sequel it will be necessary to have on hand information

46

regarding the normalization of n,’ Since the normalization is

already specified by {4,33), we merely combine (4.30), (4.31), (4.35),
and (4.36) to find G **(QQ’) as a function of n A8 .

G‘AB(K,&/' g'ir/) = SA% S(K-Z/)J(!'—\T)Y\A MA/“{) t
" B Ml x)—nh Y
M) MPE) | ng (2,8 =n"n® [ (4.45)

| ! Integrating now over ( X, X', ¥ , V') we find, with (4,34),

N
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gdsx 2% n 80 x) = NA(N® = $ae) (4.46)

or

Scl‘r ne(c) = nA (N8 - Sas) .

We return now to our discussion of the scattering function.

Fourier transforming G (25 xu.;,.’) , We have
'Ko Y/
G (¢, ¢ v\o) = SJWQX'e‘“ (2 e (51 v )

where GUC(6) ic given in (4.23), With (4.44) it follows that

il

G % (&, v 0)

~ <

G o€ (&, £ 0), (4.47)

AG

and since n, is real we alsc have

Be ge ¥
G (k¢ 00) = G (K, 420, (4.48)
Combining (4.29 and (4.47) gives
S(k 2)= §(-k, - aw), (4,49)

It follows easily with (4.27), (4.29) and (4.48) that S(x, dw) is real,

as we would expec.t.s W.th (4.28) we also have
G (t) = G (¢-t) = G (e t). (4.50)
Combining (4.2) and (4,50) we find
> 'tboco -ce
S (x,8c0) ’ﬁlﬁe Ra gdte" G5 t). (4.51)
o

e P
Hence when G satisfies (4.50) we can compute the scattering function
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having o 1y S for t>o0,
At this point, instead of inverting the Laplace transform as in
(4.24) and (4,25), an operation straight-forward in principle but

genere iy Herculean in practice, we adopt a procedure due to Rostoker.6

Thus we consider first the identity
00

00 o) T
S(k,9) = = [t {dre s ev)
- 00 - 00
Qo ! o R y’-
0 ( Il [Sdtetfv -»)t Sdiel( V)ﬂs/gv,l\
- 2” )_ - 00
(4.52)
= iv) + § (2w
S, (%,
where
gy ' dy'! ‘
S:t = 8 (-é) ) t _2%”,_ PS yl__v “) ) (4'53)
since4
Sﬁte"f""")f - s L) iP5
o
o é(v’—v)t ) R P ___L_.
S dt e - SO L = g

- 00
with F> indicating principal value.

Now let S+ (K,P), p=0‘+:’v be the Laplace transform of some

function, a~i consider further the following inverse transformation

AM O (o0 00 z-

‘ | (Y

oot 200 )JPE" St (f,P>‘r§J” S (7>
o-io0 -
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or+i 00
&w ;,lr‘: SJpePtS (4p) =

(o0

- L Sc;ﬂe[vt_[_ g NY, S ¢ l(v_»)tS(!E,V')

n

»

- o o

L fl's‘(f,wg gt §(t-)
L

= ;:; deewt‘/tsv‘) t>o0 s = o, t<o. (4.55)

In arriving at (4.55) we have used the definition (4.53) of the function

S+(5,[y) . Substituting {4.2) into (/.55) we have
T +i{oo

%0
' t 4
Lo A dpetTs, o0 = f“’*'("‘e” 6%l

0~ % -0a

« L Flep), t0; =0, t<o. (4.5)

It follows that S,,_ and the Laplace-transformed correlation function

for £> O are related via

b Silroei) = Eoogkie 62 (reis), (6.57)

From (4.53) and the knowledge that tha scattering function is real we

have, with (4.51),

i(n,aw)g_. Ry, Ao GoE (T riaw),

g--vot

We now combine this last with (4.3), (4.4), (4.10), and (4,22). After
Laolace transforming the forward scattering term (2rr)3n"'”e §(¢)

and noting that

| .——-—-«o{'

* —

ar o—




Q fen, (PN g3 e Sl Re [Sow)e f P

TTNE 0ot )
”N e o~ +18C0

- (2°ne §(¥) § (8

we obtain

S(x,a) = () ne §(x)§(a=0)+

Z Ag SJBJJ o' GOk v x0)

- : . (4.58
”Nepe U’-vo* 8 A 0’+1Aw-tﬁ-f ( )

2. The Electron Scattering Function For A Partially Ionized Gas

It this section we derive the electron scattering function for
& system compcied »f electrons and one species, respectively, of posi-
tive ions and neutral atoms, The extension to a more general multicom-
ponent system is straightfcrward but adds considerably to the algebraic
complexity. We will continue to assume that the equilibrium plasma is
characterized by a single temperature ccnmon to each species, and is

free from spatial yradients or external fields. Ue present twc differ-

ent treatments,; with somewhat different results.
A. Reversible Theory

From (4.58) we have, '.2glecting forward scattering,

S(e,00)= L R A, Lo

Tyot

(x)[{uzw(.ulwém a2l
i

- Aet'(,+ An“— AHI. éﬂ‘)&o‘eg;
Ne

- Ay = (Den/Bei)(1+ Au'\)-% ove] (4.59)
| + B =Doi (Den/Det) )
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where

A = I +.Aee ('+Am\"-Amf—Al'v\) +

- A
_A.hf (I +Ahy\ -Av\e Aen jj)& = A-en A = Am -A-l.")
1 i

b3

and

ee(‘g)P3 = gd <g3 '.‘.‘.!'o)s *0*)o)>

p—lKey
In writing (4.59) we have made use of the identities

Nep Ne = Nee Ly
Aop Do Dy = = Dpu Nyp Dy

We have displayed the scattering function in (4.59) in a formn that will
facilitate an estimate of the significance of the terms involving the

neutrals, To this end it will prove useful to write A, in the form

din A \/""(s)nn)',— aa,,—uzjdue’“z] (4.60)

Ko,
where
/
(Ze/MA)/‘L .
and the sumbol "/]" next to the integral means the path of integration 1

is deformed above the singularity.
: \/AB(K) . .
To estimate <) when either or both of the pair ( A, B )

is a neutral atom, we assume the potential may be approximated by a

Yukawa potential, VAB(") ¥ Cag r-! exp (-r/a)
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where a. is the effective range of the potential,

a ~ ,0’85\«/\

and CA& is a constant to be determined., We have easily

1
a
VAB{K) = IINCAB | + K‘LQ.Z'

With k=! 2A>> jo~8cm , K"a®<<| and thus

VAS(k) > 4na*c,, - (4.61)

To estimate the constant CAG we recall that the center-of-mas. differ-
ential elastic scattering cross-section for the pair ( A , 8 ) having

relative momentum X’& is given by7

%
- A0 B) - %Mﬁg vAB(g)/

where M ,g is the relative mass. From (4.61) it Tollows inat, in the

energy range of interest, 0'”6(9) is approximately isotropic. Writing

T4t = Scm_cr“(e) = 107" ¢, (em?)

where® ¢, is of order !-10cm®, we have

L ,o—éz I
CAB (wLa.M\ o 7 X P (‘w\) .
al(c“"\'g/MAe {?’MS

To estimate the various terms in (4.59) we assume wm, *#m. and

take m, to be the mass of the c't atom, wm, ~ 2.5%/0‘25% )
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Assuming for simplicity equal electror and ion densities, we have, for

A= 6943 A

Am , :
Ay he Ny (e*/k*) w¢
I 0% ' 1
“ 72Xl e 0o (&u)ﬁw‘ % )
Dre nt Aen an A
¥y 5 = w 0,9xlo” ) a2 . (4.62)
-A-f,: e Ae;' l e Ve [ \ 2

Here & is the laboratory scattering angle,
= k-8 * A e G
|gl= | % 3

and appears only in the argument of the sine, in contrast with the

kinetic temperature, also denoted by O .
Noting that9 the quantity in square brackets in (4.60) is of
order one or less for all values of Aw/ku; , we find (for A= 6943 £ )

/a:v\ r‘Anv\ /. "
~rot | Dw e 1. 6x10" 2 (o a0 To () o
A

, Aon s e (4,63)
Ao [ e_) ¥ Y6x/0" 2 (e twr) m["‘“],

T>ot

Ave | 6 (wr)
and
5 1 .
i M Lew & H.éxla’zs(émhf) T ) wé Wt \4\6‘««'3.
oot Ao 61(/&!") !

It is clear that the quantities in (4,62) and (4.63) are smaller for

larger m, (or m; ) and are largest (about a factor of tweive iarger [

than the abofe values) for a hydrogeneous scattering system.
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To determine the significance of electron-neutral correlations
in the scattering function, we must estimate tke magnitude of the

quantity (see (4.45) and (4.59) )

G (et [ty - e
te =

Ge Sclaf‘e“" £ [“-fe ) - wy,e:]

) (4.64)

where we have assumed m, = w¢ . To facilitate computation of the
pair correlation functions mse appearing in (4.64) we introduce the
assumption that the average distance between any pair of particles is
large compared with the effective range of the charge-neutral or
neutral-neutral potentials. This range being typically of the order of
|0” eom, the assumption implies particle densities small compared with
16¥ =% ., Under this assumption it follows that the contribution
of neutrals to the correlation between charged particles may be
neglected. !e thereby obtair from (4.43) a pair of equations for
nes(r) m,e{r) . Taking advantage of (4.44) we can write these
as

dns?

—

1 ( [
3t 5 e iy g )i ) -

df IL-£

——Mdr g‘lgl )=

né 3__ ft,:
r SJ T ()=

where € is the ionic charge and né= g;v\e. The equations abnve are

10

similar to a pair of equations treated by Lamb ~ for a singly ionized
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gas; with 7_; = | Lamb's equations coincide with ours. Following La-b,
we first perform the angular integrations and then differentiate with

respect to T . The result is a pair of differential equations

.thee> - @ 49 dnfe Yralet ‘o ee
r r(T -—-‘—:— q_(}. + Tn-e (8‘:”‘-‘-_ V\_L > -0
f JUH ) + efe dnie  truter - gk Ao\ o (4.65
{ ~O )
dr r C J:, e h

The system (4,65) permits a non-trivial constant solution.

Taking

e“A‘ V\LC’AL)

)

we find
?;’AL .

Lamb]0 has shown that for distances T large compared with e"/é .
the first derivatives in (4.65) contribute negligibly to the solutions.

Neglecting these terms, it is then a simple matter to show by direct

substitution that the functions

Qee = %Le—r/’\b) {‘.e = g:fe”r/’\b

satisfy (4.65) provided B =-2:8,, and where

/\0_7. < »fe"/'.tﬁ) .
e
We thus take the solutions of (4.65) to be

ne(c) = - ﬁrﬁze‘r/’\" + g

h{'c (t) = %—l e-f//\o AL

T
r>> §¢
)
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The constants A,, 8, are determined easily with the normalization

conditions (4.46), so that finally we have

1 AT |

nEEE) = neve - & ="0l= 7

r ]

‘ T gi¢” e _ L
ni€ (r) = nint [ 5 — tI- N (4.66)

where N = N & +nN¢
To estimate the significance of electron-neutral correlations

as per (4.64), w2 write n € (") in the form
nrefe) = whnt [¢ ") - "/\7]

¢
where S‘“ is a function that we expect will differ appreciably from
zero only for C %€ G ”IO'OM. .~ 4¢ of the electron-neutral

potential. The normalization condition (4,46) gives

(43470 = 2 = (Genm)

Substituting the abcve form of nhe together with V\Ce from (4.66)
into (4.64) now give:. neqlecting the contribution from terms in /N

(whick corresponds to the neglect of forward scettering)

%Ce =n"(1¢0) (1 %) gdsre""‘"c gl -

With gn—,\"m (7;: (o'scw\)" where A s the photon wavelength, we

appiroximate the integral above;




Thus finally we have, with A = FX 675 twn s

Cgce = (e 32)7 (1 ) (40D

. 1 86v) 18 |
~ ('k%)![l+007x/0 m 1._/

(%=1,

We a~e now in a position to estimate the magnitudes of the
terms involving neutrals in (4.59). First, we note from (4.62) that
Do, /Dy is negligible unless n"/we 10 or larger. In such
cases the total light intensity scattered by the electrons is greatly
exceeded by that scattered by the neutrals. Since our interest here is
in the influence of neutral atcms on the electron scattering functi-:,
and since we do not anticipate an experiment in which scattering from
electrons could be observed at such extreme density ratios, we v'il1l not
consider these extreme cases here.

It follows from (4.63) that (4.59) may be further simplified

provided

T (e n" (o) o' fean) m€ (en3) << (0%’
6l 8 (ss) '

(4.67)

3
Since particle densities do not generally exceed 10t e3(e.g.,

1% _ . -
w2 lo" e for graphite; n"w 108 /ey en=? at atmospheric pressure),
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we would expect (4.66) to hold for almost all plasmas of interest here.
Thus when (4,62) and {4.63) are satisfied (4.59) reduces to

S(k,0) =

L A L NEC A G+ A s.-,“g
TNE QQ -»ot A [(“‘Au)eo A—ezéo zl""]i""/l{i G;"e (4-68)

where now

DA x|+ Dee + Aji(1=DreLen) .

The dependence of the scattering function displayed in (4.68)
upon electron-neutral correlations (the term centaining (ire ) disap-

pears when

I/'L e —3)
0%
(6w W€ (o << jo?Y 0.6

6 (w)
If in addition the condition
T, (en¥) neﬂau’s\w“(am’s)

GBzzﬁur)

<< |0* (4.70)

holds, then IXeh A pe << | and (4.68) reduces to the resu]t1 for

-3

a fully ionized gas. For nx10%3 cmn » (4.70) becomes

To (an) ne (wa’s>
8 *ler)

It is thus apparent that, unless very high neutral and electron densi-

<< 0?7 (4.71)

ties are present, together with relatively low temperatures, the present
theory does not predict an observable effect of neutral atoms on the

electron scattering function,
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Before abandoning our quest for an observable effect of neutrals
in the spectrum of electron-scattered photons, we turn to a somewhat

different and more realistic formulation of the scattering function.
B. Irreversible Theory

It was noted in Chapter Il above that, since there are generally
many charged particles within range of each other simultaneousiy for
most plasmas, the effect of close binary encounters may often be
neglected. In this case one may represent the effects of particle inter-
actions by an appropriate electric field term in the kinetic equation,

In contrast, we would not expect such a “field representation" to be
suitable for the representation of encounters between particles having
rangaes of interaction that are small compared with the mean interparticle
distance. In the following discussion we adopt a scheme outlined in
Chapter Il designed to give a more realistic treatment of the inter-
actions between charges and neutrals than that employed above.

Ne begin with equation (4,11) for the fluctuation operators of

the A th species:

3894 2694 I , VA (1 -x"))
= o S5t ""AZBSJS"W"I YR

;?v—, [F“(z, B Sbrd) v §9 G t)F () = %

4,72)

At this point in ref, 1 and in Part 1 above, the assumption of thermal
equilibrium was introduced for the target plasma, Before doing so here

it is convenient to exploit the difference between the relatively
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long-range Coulomb forces between charged particles and the relatively
short-range chfrged-neutral and neutral-neutral forces, To this end,
and with an eye 01 our ultimate goal, we multiply (4.72) by S’f(}( v" o),

average the result, °nd introduce

Pelx,x v ) _/J{r e lxlylo) gy, (473)
We thus obtain from (4,72)

EAUNSRV Y il

VAB(fx-2,
AR Yﬁx”ds'f"g ( /.
6

OX

S - % WA

e TN
;\r [ e 5:-%)'—\“(’( xept) v P AN "t] 4.74)

We now introduce a change of variables according to

/ '

L= x-x,

o (4.74) takes the form

aphe Y g Z SJs,JQ i YWABAL-1

+ Y
A
B

3t v g Ma

;\r [F ,\* )Pse(rl*)t) fFB/‘")*,'l‘)I"M(W j (4.75)

In writing (4,75) we have suppressed the dependence on the

variable x’ . Our identification of the integrand in
M) = §C/3V‘<§3"/X £,0) §a® (14 oY% (4.76)

as the equilibrium phase-space correlation function for the pair

( A, &) implies that P“/D) is a function of £ and V only. It
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follows from (4.75) that f”"e{t) is a function of { , ¥ , and T alone.

A

The identificaiion of Gt 1),
- , Ae
G = fﬁr P (g, 0t) (4.77)

as a time dependent correlation function, and the relationship betw=2en
the scattering function and the space-time Fourier transform of Ge¢
has been exploited avove, The description of f"e by a linear trans-

port equation, as in (4.75L has been suggested on the basis of a semi-

intuitive argument by Nelkin and Ghatax,]]

them and by Yip and Ne]kin]“ in a study of slow neutron scattering

13

and has been employed by
from liquids and dense gases. Recently Van Leeuwen and Yip ~ have
derived a similar kinetic equaticn for f‘Ae , for short range pote:tials,
from the cluster expansion of a one-particie distribution function,

At this point we introduce an approximation into the treatment
of the charged-ieutral and reutral-neutral interactions. This leads us
M1timately to the tinary collision description attained by Van Leeuwen

and Yip,]3 11,12

anc empioyed by Nelkin, et al. We thus adopt the
treatment outiined in Chanter II in going from equation (2.17) to the
Boltzmann collision integral (2.24). Thus the terms in (4.75) involving
the relatively short-range neutral interaction potentials V""ﬂ&fiq)
are approxinated as in Chapter Il by a linear Boltzmann collision

integrai. and (4.75) beccmes

U D B e
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- SJ%" §<m -y, [F‘(r, v, t) M 0 t) +
p F(s,008) M Eu ) - L) Mot -

- FMe,ot) P"(s,.v:,t)j) (4.78)

and similarly for f“°. At this point we introduce the assumption
that the target plasma is in the thermodynamic state, and hence that
the singlet densities FA . FH are independent of space and time and
are Maxwellian functions or velocity.

We have argued in the p:eceding section that eiectron-neutral
correlations should, under most conditions, contribute regligibly to
the electron scattering function. It is worth noting that Sa]peter‘]4
has argued semi-intuitively th.. pair separations which are small
compared with both the photon wavelength and the Debye ler yth contrib-
ute negligibly to the spectrum of photons scattered by electron
density fluctuations. This is in good agreement with the experimental
observations of Ramsden ani Davies.]5 This suggests that, since the
electron-neutral correlation is significant only for separations of
order‘)o'§z~\ or less, it would be reasonable to ignore electron-neutral
correlations in our computation of the scattering function. A somewhat
different argument in support of this assumption is suggested vy the
observation that fluctuations induced in the neutral distribution by
recoiling electrons should be insignificant Referring to (4.73) we
see th. . neglecting neutral fluctuations implies neglecting electron-

neutral correlations. With these assumptions (4.78) becomes
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—r e o w;": _M’(L).%E JJ%’J%"V/&-:'D N (! vit)=
e -

r.

= SJ’V" SJ-(L |-vlq, [M“(&")P’Q/L.‘-ﬂ,ﬂ- MG e, %) 4.79)

4
3

and similarly for M= 1t s apparent that the neutral species colli-
sion operator in (4.79) conserves both electron and ion number densities,
but does not conserve total momentum and kinetic energy in the system, in
contrast with the collision operator in (4.78) which satisfies all three
conservation laws. This, of course, results from our neglect of
fiuctuations in the neutral distribution,

An important consequence of the collision approximation manifest
in (4.78) or (4.79) is that while (4.75) is invariant under the time
reversal transformation T>-=T , ¥ -, these last two equations are
not invariant. Ye wiil return to consider the consequences of this
irreversibility shortly.

le now introduce a further approximation into the collision
description in order tuv avoid the complexities of the collision opera-
tors in (4.79) in their present form. We thus replace these operators
by the linearized version of the simple single parameter collision model

first proposed by £hatnagar, Gross, and Krook,]6

and discussed in

Chapter II above. The model is constructed to satisfy, in this case,

the requirement of number conservation for each species, preserves the
irreversible nature of the ehove description, and provides a considerable

simplification for the subsequent analysis. Finally then, the kinetic

equations that we Lse are

] [ ] e
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1.7

e '(_
L [ YLD S g,
& Me

fﬁr dir a_—L—-"“ -9 & Mf/»>r“"(f'v"f)=

ol S

= yne [M"/!) d3r F“(L.h,f) -Meht)] (4.80)

’

— t v ?_E— = L Sd3rld3 " V‘(’r (‘_2 3‘" M(;/‘)r'l'e/r V‘"-t) -
m;

Iy

LAN
! ¢ ,IBV‘"[-,II) B/t U i
- fsnie 2D iy e

v

= vh{[M"/I) jchxr (s vt) - F!.e/i»”f'{_)]

(4.81)

Tne parameters "€, V™ are clearly Tlectron-neutral and ion-neutral
Y

collision frequencies. Fourier-Laplace transforming (4.80) and (4.81)

as before, we eventually find, with (4.77)

AN

where

and

dr N (kv o)

P-ixg ryve

i e i)

J3- e (%, ¥ 0)
- A Ael ( P.. Lf',": ryn( (4~82)
A (d m A7)
-7 = ) pTky punA ) (4.83)
A = (HAee—»“f_Q“)(HAa- wﬂa”) - Ne Am‘) (4.84)
v (k) Yy 02
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The functions Pﬂe(ﬁf, \J:,o) are obtained from (4.76) and the Fourier-
transformed equilibrium phase-space correlations. Thus with (4.45) and

(4,66) we have, neglecting forward scattering,

F‘"/&,K,O) = Neme/y‘)p-—{n;;)"fl* (""bﬁ-‘] (4.86)

and
¢ ’ - -'
[""(5'['0) = NeM‘[.Y)(!??»,') ! [’1‘ (K’\’)? (4.87)

where '};e is the avarage ionic charge.

As a result of our having employed an irraversible theory in
the description of the correlation function, it is readily shown that
this quantity is not symmetric under the interchange ¢t —=>-t, in con-
trast with (4.28). In addition Gee(ﬁ, t) diverges exponentially for
£ > - 00 so that the integral in (4.2) does not exist. To overcome

this difficulty we follow Nelkin, g_gﬂ..”’m

and prescriba a behavior
for negative times different from that we would obtain by solving the
system (4.78), (P* F"') for t< 0. The prescription ensures the
convergence of (4.2), yields a real scattering function, as it must,

and the result is symmetric in K and 8w as required for classical

systems,S The prescription is
G (k£ -t) = G5 (& t). (4.88)
Fourier transforming (4,78) for both species we can show
ee - see/
G (xt) = 6*°(x t). (4.89)

With the symmetry property (4.83) we can now compute the
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scattering function as before using only the Fourier-la;lace transformed
electron correlation function for > o . Thus with (4.59) and

(4.82) we eventually obtain

S(g0e) =2~ R Fn A7 0

" E("me['*@?ﬁ?{ = ()i -ria’] ¢

( £l - eﬂ;g (4.90)
F X0 [('*.m‘ s {1- (prv).nl)

where
l . "
[t+ Gty § 1= (prro)sf oo
£ m -
® [’ i ?;S(KAD)LE - (pr o) - i)
) o
~ ¥ gt [ (i i-(pore]
and

!
X : (I+§/)[1+ (on)j

It will prove convenient for computational purposes to write
(4.90) in terms of dimensionless variables. We thus introduce the new

variables

w

))"A/wfe (4.91)

-l
Az (2kdo) ) §= pew/evpe , "IA

vhere
T

2 =
- -t
wpe = M ATe gy,
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We obtain from (4.83)
KRN, . due=*’ x
fo, 0 L [
( )ill/( Z [( )0/1/(/(§+{,(A)]
Ih
;'e > (4.92)

where the compliex function

Z (x+iy)

is the plasma dispersion function tabulated by Fried and Conte

A= (,f?t.)”z/(. (4.,93)

The scattering function now takes the form

S (k,80) = (1) (55) (1) Rei &7 )
(x) [(23{1’ zf-l)z:{l- 12;/?"2: - th(ﬁ@t’(’z‘k}-
- 23c ’/z ! Z] (4.94)

9 and

with
= [1- a2 el B[ 3 B i ()
TR IIV?: ‘.Zz*
and9

Z[t) = - Z[Ht?(f)l MT




] Py —

The scattering function displayed in (4.94) will differ negli-

gibly from the result for a fully ionized gas] when the imaginary parts

of the arguments of the functions Z(It),'Z(f) are small compared to
unity;

(%yh"z"/( << .

(4.92)
To secure an estimate of when this condition holds, we write the
collision frequencies Y as
e\ .
e o‘oM-(aw\z)h" Z‘m—‘) x 10”16 {4.96)

where 0‘0“ )

is of order one to ten cm2 as previously. lith (4.91),
(4.95) becomes

nA

o A" xlo”
K

16
<< |

or

A (e YT A o) 0™ (20D

— << 3.85xlo'” ] (4.97)
O

For photons emitted by a ruby laser ( A= 6943 A ), this can be

written as

o-ovm (""“1') n" (“"“‘S> 21
<< U, bxlc” an-! (4.98)

- 5
M3

Comparing (4.98) with (4.66) and (4.70) we find that the

scattering function (4.94) obtained with the irreversible theory will
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display neutral atom effects at neutral densities at least five or six
orders of magnitude lower than those necessary to see these effects in
the reversible resulit (4.59). In tne following c-=-tion we describe and

discuss the photon scattering function as displayed in (4.94).

3. Photon Scattering From a Partially Ionized Gas

In this section we discuss the results of the previous section
for various plasma configurations. For convenience we take m/ = m,,

To obtain quantitative information regarding the scattering
function, it is necessary to claculate the real part in (4.9%). To this
end we write

2 R-it,, B Rewh e

A

and define w = {M;/m,)'“‘ , and

4 = (1- 8&’(”& - 7"""1/1-&) %= (Rt'ée‘l'zic>

a, 2 (g4 T, - mimd’R;) a, = (RiTe+T; R

b = (1-A""R, - 'T;) by = (?l"(,i?"/“"ki>

b?' = ('g— ?_L,/(lzét.—azz;(i“ I:.) hb' = (éckz‘ie IL>
= L ) o (e )

/ .
with A 5(2/I+?,')'h,( as per (4.93), After some algebraic
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manipulation (4.94) becomes

’ Nrde - Ny 8r

Ty v bl

¢ - e My
S(E,Aw) = (1K) '(;_Ae W (4,101)

where

W

Me
Nz

(234" 1) (Rea, + e az) = Zg;wd'"ay

(Zg.‘/'lﬂ) (Rea, -T,a,) + 27,"%4['"@,
Ag

by by - byby - ?i/’q by

Drz by + bby + ?,«1"( by . (4.102)

Using tabulated values®of K, , éA , Lp and i-A we have com-
puted S as a function of €= Aw/wpe for different values of A and
78,7‘: . Some typical results are plotted in Figures 4.1 through
4.3. To enhance our understanding of these results, we now develop
approximations to (4.103) in various limits. To this end we employ
both the power series and asymptotic expansions of the plasma dispersion

function. These are, raspectively,® with t=X+¢'z7 .

Z (¢) - m-/ne—fz_zt[,- 263 +ut*/i5-] (a0

and
1
r7 -t = -'r-vv'!-,- 'f '-'r= WAV .p'lz—'\';_l_/'l‘i :‘.11'\‘\...\—;1. A
é )= itn "¢ = 15 "_.' +{(1f2tT )4 u/-ﬂ" ""_'/UhIU’&)
where
0 > O
- 9
‘“ g | w=o . (4.105)




Consider first S as a function of 4 . For A<<!| collective
effects play a negligible role in the scattering process. With (4,103),

(4.101) reduces under this condition to

S(kaw) » (me) (%8)"™ R CA

| - t'»zcll ?,:

O [ e\l Ie(l wel'T,) - ‘7"1,_Ln
= (ro) (55) oyt T+ (el R (4.106)

1

This is  &ntical in form with the result of Ghatak and Nelkin, For

«lezo » (4.106) reduces to the well-known ideal gas form

S(e,8e0) = k! (735) exp (A"

- (%)'/zexp —me(Aw/K)Vzej . (4.107)

For 1e>0 , the scattering function given in (4.106) becomes
narrower and increases in height as ,,(e increases in magm‘tude.”

For ,(>> I s VV\€<<, A W"’(""C/We)’/}' and ,191(;7[,”(’,\,, or

less, (4.101) becomes

Eh
/—-L'alt'wl, ’Z:‘L .

This last is similar to (4,106) but now the scattering electrons are

(4.108)

N (51 Aeo ) & 2?‘./(/7- ) (%)ux&‘.

strongly counled to the ions, and the jon mass replaces the electron
mass in the scattering function, resulting in a narrower scattered
photon spectrum.

Next consider S with the condition

/;I§-£75'<<‘, mexmyl (4.109)
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When (4.109) holds we find

Sl aw)x k- (s (5%)" ()

,z gt y'l { ’l)
(x)[(z?/ t)'e ! (1+-£7 + 4g, A e s ] (4.110)

In this case the center of the scattered photon spectrum is dominated

by a relatively narrow "ion peak" provided

fa, L > (27,-1'%; )i

or

[('M},)m 7—’ : (4.111)

Under the appropriate conditions the scattering function will
have a resonance at the electron and/or ion plasma frequencies. Thus

/
for A% 3 ,1Ze<</ and €~ 1 or larger, S takes the approximate

forms*
S 0009 (£ (40
(7,,0) Y~ +
(x) . c/p [_a/éﬁ L (4,112)
[,_(_ﬁ))"] +7T( A“Ve) (2?,,” )GXP[ 2(1 a,;,,e)J
Sk, be0) = f}r-; " [x (wP,)]-oo
(4&9£0)

(x) [g,_(%y?Z.k %>z§'+z(%>z§]_r (.4.113)

* The reader will note that, because of the two +ifferent asymptotic
foenns (4.105), the form (4.112) cannot be obtained from (4.113) with
>0,
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The resonance at Aq):wr.is apparent in (4.112) and (4.113), It is
clear from (4,113) that the effect of collisions s to inhibit the
resonance effect, as we might expect. The height of the resonance is
inversely proportional to 7'3 while the width increases as 4(‘5

increases,

For A>>] , m€+] , and "l"=0 , we find

3 (k,60) = 2 A"k~ (35"

) e"f[ gl >-7 (4.114)
[" Au)] "'77(2?:‘/(/13 eu,; C’KP[ZN’ w,;]

where

2
w‘,’[ = “rne i

M,
and n= n® 1is the electron number density as before, For 7‘?0 we
find a form similar to (4.113),

Finally, consider the scattering function in the limit of very
strong collisions. With /(73 ,/(w\'!,">>/, and m€% |, S takes

the approximate form

Sk, pe) =

_1 s me N 22‘1'11 . ?e* (4.115)
(xx) ( W] Re i ""(ex'zr . .

Hence 1in the strong collision 1limit collective phenomena
are unimportant (except possibly for m$ % | : see (4.119) ), as
we would expect, The effects of electron-reutral collisions dominate,

and the approximate form (4.115) of the scattering function is similar

{ e oo Sumy Gy @ Susy e eesd  EBO

[

—ss OGS DB = —
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to (4.,106),

In Figure 4,1 we have plotted the normalized scattering function,
for a single ionized ( ?-i =| ) gas of carbon atoms, vs. § as a
function of the parameter A for 1"’ 7""=O (zero effective neutral
density). The general qualitative dependence of S on the value of /
is clearly apparent, For /<< / , S has the Gaussian form (4.107).
For L% | the resonance at f'l' | is present, becoming narrower and
higher as £ increases, as per (4.112), “hen £ is small the effect of
ions dominates in S as suggested by (4.110) while an incipient ion-
plasma resonance is evident in the vicinity of m& =L 48ric*Ex
For {>>( , S approaches the "strong coupling" form (4.108).

In Figure 4,2 we display the normalized scattering function, as
in Figure 4.1, for £ =/,18 as a function of the dimensionless collision
parameters »le . 415 . For convenience we have assumed 42e-m.12. 0
from (4,95) this implies equal electron-neutral and ion-neutral colli-
sion cross-sections, i.e, vo"€ = (7‘,“:. As 75 increases relative to A~
collective effects are seen to disappear; the resonaice near S w = djpe
becomes lower and broader as per (4.113)., When /'7f>>l , S approaches
the form (4,115). Figure 4,3 is similar to Figure 4.2, only for

A= 1738,

To understand the behavior of the scattering function when
78# M7z , We have computed S for a few values of § with L=1.18 .
when (1)14,9=o.3./m7c'=a./. and when (ii),(f:o, l, Imwlfeo,i The
results are displayed below in tabular form, It is evident that
changes in the ion collision parameter have only a very small effect on

S in the vicinity of € = | , while changes in the electron parameter

similarly do not significantly disturb S for § small.
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Figure 4.1 Electron scattering functions for a 8lngly ionized carbon
plasma, showing dependence on the parameter [ = (EKXD)'l. The results

have been normalized to the ideal electron gas scattering function at
§=M)_/(Dpe’o.

Broken line represents ideal ion gas scattering func-
tion for 4 = 5,25, Effective neutral density is zeiro for all cases.
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Figure 4,2 Electron scattering functions for a singly icnized carbon
plasma, showing the effect of neutrals for !/ = (2KRD)'1 = 2,35, The
results have been normalized to the ideal electron gas scattering func-
tion at § = Awfwpe = 0. The parameter 1n° is defined by 1¢ = V2¢/

and it is assumed that V¢ = (mi/me)l/avni. The broken line represents
the approximate form (eqn. (4.115)) Ior £9% = 10,
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Figure 4.3 Electron scattering functions for a singly jonized carbon
plasma, showing the effect of neutrals for ! = (2Kk\p) "l 21,18, The
results have been normalized to the ideal electron gas scattering func-
tion at ¢ = Aw/wpe = 0, The parameter ne is defined by n® = v"%/u__.

The broken line represents the approximate form (eqn. (4.115)) for
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1n- = 10,
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Table 4.1

Comparison of Scattering Functions for S
Difverent Collision Parameters

_ .p-3 -2
S‘S(('?e,,(»j!:);/’ “8\§ = 10 5x 10
$¢e.1,0.3) 1.21 1.14 0.986

gfo.1,0.1)

3(0.1,0.3) 0,992 0.85 1.23

3(0.3,0.3)

$(.3,0.1) 0.998 1.09 0.81
S@.),0.1)

3.3, 0.1)

————— 0.83 1.12 0,989

8(0.3,0.2)

This is as we would expect; when

wl'§ = el

®
where V;.;v&é}’m;)mthe function B‘ is well approximated by the leading
terms in its asymptotic form (4.105) and electron dynamics dom*nate ion

dynamics in the scattering function. Similarly when
!
L'§~ Lo/ << |
Vee

ion dynamics play the dor :ant role. These observations are reflected
in the approximate forms (4.110), 4,112), and (4.113) of the scattering
function,

In most experimental situations the scattered spectrum is
observed as a function of the shift AA in wavelength from the wave-

length of the incident photons, Consider for example the differential
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photon scattering cross-section as a fuaction of AA for ruby laser

photons (A= 6943 A ), for a singly ionized carbon plasma with

h&= IO '8&.‘3 and

£+ (7= & (it 48) (sr gV 04 010

From (4.1) we have, converting to wavelengths,

(A0, 0) = e (I+ éf—)'?."' 3 (k800 (@) (4.117)

where AA=A’=) . It is clear from (4.116) and (4.117) that ret -r-
ing the terms in BA/A yiel’~ a cross-seciion ¢k - is asymmetric auua:
AA =0 , for constant K .

Comparing (4.116) with the scattering function as displayed in
Figure 4,1, it is evident that, for constant K , retaining «%/A in
(4,116) has the effect of increasing the height of the peak at &=+
and lowering the peak ct &= —) . In addition, the upper peak is
shifted nearer AA=0Owhile the lower peak is shifted further away.
Since it is not the scattering function but the cross-section that is
measured, however, we must also account for the factor (l+8A/A )"3
in (4,117). Clearly this factor will contribute to a lowering of the
upper peak and an increase in height of the lower peak. The two effects
are thus competitive.

For the example at hand we have found the net effect to be a
5.9 per cent decrease in amplitude of the upper resonance, and an
equa’ increase in amplitude of the lower resonance. In addition, the

location of the upper resonance is shifted about 1.3 percent closer to

DA =0 vhile the Tower resonance is shifted the same amount further

-—

— Sy -y o) O W ¢y

e
-

SEED ey ey -




away. { {
We have so far neglected contributions to the scattered photen

intensity due to elastic (Rayleigh) scattering of photons from the

neutral atoms. For simplicity we characterize the spectrum of neutral-

scattered photons by the ideal gas, or Doppler sca?tering function.

The ratio of 1ight intensity scattered by nautrals to that scattcred by

electrons is then

c ! () exp [- m (e /26 ]
%

o7 nt S (¥ 6ew)
“ma o) A<
~ T A .
= 3%_ e ’1 A~ (4.118)
Vs 1>>'

where S (&,Aw} is the electron scattering function discussed above,

s

and

O 10-8 ot ¢lined !

17

is the Ravleigh cross-section. It is evident that scattering from

neutrals is unimportant when

/ 74N A<< !
n“ (M-\/MC) 2
LASS A~|
heé '/DL g =5 e A=>| (4.119)

Morecver when scattering from neutrals is significant, it is clgar that
the effect will be manifest in the observed spectrum only in the
vicinity of the central ion peak; i.e.,, when A co<< e,

From the foregoing discussion it is evident that the scattered

photon spectrum will contain electron plasma wings whenever
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A= ('ZKADT-: x I)

Ay [T
F~3\€% Blars) :

A =& 3xio

In addition, collisions with neutrals eliminate the wings when
v'\e”
de = L 5= 5 .
It thus follows, with (4.96), that the wings should be observable

whenever

576 (o) " for) W o 2 10" [w )],

4, Discussion

In the preceding analysis we have employed a treatment based
on a temporally irreversible kinetic theory to describe the effect of
neutral atoms on the spectrum of photons scattered from electron
density fluctuations in a partiaily ionized gas. Our analysis was
quite similar to that suggested By Yip 2!.&1-12’13 for a description of
neutral particle (i.e. photons or neutrons) scattering from moderately
dense neutral gases. We remarked in Section 2 that an analysis based
on a reversible kinetic theory predicted neutral atom effects only at
unusually high neutral densities.

A recent experiment reported by Greytak and Benedek1|8 provides
striking quantitative support for the irreversible treatment. These
authors observed the spectrum of 6328 A photons scattered from thermal

fluctuations in neutral gases near standard temperature and pressure.

G B b i
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Their observaticn of a symmetric pair of spectral lines located at

[

DA ce:lo"s/\ is in excellent agreement with the theoretical predic-

tion of Yip and Nelkin'2s1?

for scattering from neutral gases. These
resu’ts clearly contradict the predictions of the reversibie theory,
i.e., a Gaussian-shaped spectrum, at the relatively low densities
(n 2= Zx(o'ch\'s) involved.

We have assumed in cur computation of the classical scattering
function that each of the particle species could be characterized by
a Maxwell velocity distribution with a common temperature for aii. For
many experiments this assumption is invalid, and could lead to errone-
ous conclusions. The extension of the present work to allow for
daifferent component temperatures is straightforward but adds consider-
ably to the algebraic complexity. While such considerations are beyond
~+the sccpe of our purpose here, we note that several authors:4’20’2]
have investigated the effects of unequal temperatures for a fully
ionized two-component plasma, They showed that the scattering function
for such a system can be qualitatively different from that computed
with a single temperature model, In a recent experiment Kronast,

et a1 14

have employed Salpeter's results ~ in a measurement of electron
and ion temperatures in a theta pinch. For their particular experi-
ment they found &, [6;~ay.

Iln our development of the electron correlation function
in Part 2, we tacitly assumed that the inclusion of ¢lose encounters
(collisions) between charged particles could be neglected. To lend
support to this assumption we employ a simple Krook mndel to estimate
the significance of Coulomb collisions., From the analysis of Part 2

it is 2vident that these effects should be negligible provided
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i
Ma A 4,95
where now
<
»l* = M __ (4.120)
c'Urg

with » < the Spitzer collision fr~equency23 for charged particles,

c Bwne%/k\ 4
V€ a 2 . (4.121)
/3/‘49)%

Here m is the reduced mass for the pair in question and we assumed

for simplicity a singly ionized gas. Combining (4.95), (4.120), and
(4,121), the condition for neglecting Coulomb collisions becomes
Lot o (4.122)
where Asr\—\s . Since A is generally a very large number'.23 we
would general.: not expect Coulomb encounters tc be significant here.

24 and Fante25

{Ron, Dawson and Oberman have recently estimated the
eTfects of Cc :1omb encounters on the electron scattering function u-ino
somewhat different analyses than the simple model employed here. 1lrey
found the inclusion of these effects produced a change in 8 of the
order of A~').

The principal resulv of this chapter is the electron scattering
function for a partially ionized gas, as discussed and displayed in
Part 3. It is apparent that fo-~ given vilues of 79 , ,?! . 2 J
¢énd n , the scatterin: function as a furction of A is uniquely

determined. Even sc. we would not -—.czct that a singie experiment
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could serve to measure all of these quantities for a given plasma.

Our results apply for instruments with infinitely sharp
spectral resolving power and uniform average plasma density over the
scattering volume. Average densitv nonunitomities and the finite
resolving power of instruments together with the natural width of the
incident photon beam will add to the width nf the observed spectral
structure and it may be necessary to take these into account in a
given experiment,

In addition to the extension of this work to allow for different
componenent temperatures, it would be most interesting to consider the
effects of magnetic fields and small spatial gradients, for fully or

partially ionized gases.




APPENDIX A.  INTEGRALS

Let® be the angle between ¢ and ¢’. From the generatinn

function relation for Legendre polynomials we have

Ig-—g'i"' - ['c"'+c'1— 'ch'a,,a@]-m'

> (2 Blwd) ey W

=0

and similarly for ¢ s ¢’ . Writing 3,\(.‘.) = Zg,,,,‘{,” and employing
the addition theorem for Legendre , ‘lynomials, we obtain (3.13).

To find (3.14) we use the relation

[l + x* - zxﬂh = gc’x X [H-x ny] "

(i froe-zg] ™

Combining (A1) and (A2) we have

le-<'| = [c‘«rc’l-— 2cc’! @4@]//1
(c’sc)
-3 142
- (/) ¢/, A+
- ,Z [ xiz ) (,(/:l) ""9]6 («8) (M)

=0
and similarly for ¢ < ¢’. From the pure recurrence relation for

Legendre poiynomials we have

Cﬂ@&(&”@) = 21” P‘(-'(‘V‘@>+zj | Fﬂ(M@) (A4)
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Combining (A3) and (A4) and then using the addition theorem as before
we find (3.14),

Finally (3.15) is obtained fror (3.14) with 9,4 = 31, &uo
with SJh the Kronecker delta.
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APPENDIX B.  THE SELF-ADJOINT PROPERTY

Let Lg be either (i) the differential operator in (3.20) or
(11) the integrodifferential operator in (3,20) defined as in

Chapter III, Part 4 on the closed interval d:a=c s b o< a

] » s

b<eo , Let L, be similarly defined on ( 8,90), Then in either case
(1) or (i1) there exists a complete orthonormal set of functions ik;.,\}

on § , generated by Lg$=~A4 with homogeneous boundary conditions at

a. and b 112

Let € and 9 be any nonzero functions square integrable on

( o,oo), and consider the inhomogeneous probiems

lSM+Au.f’) L;\r+/\*\r-3, (B1)

with the same homogeneous boundary conditions at & and b as in the
above homogeneous problem. Let Ww\ A #0 so that A will not belong to

the spectrum of the set {k&} . Then the problems (B1) have nontrivial

solutions
o 7 ~
nle) = Z 4 ) i ) P (V )
—~00 J',k=l /\"A
© S A M) @ .
vl) = Lo - s )
L oo J!k:l =
with

i

b b
Ay = S FE)bfqa)de, ¥ = La ) 4 (0A) de. (82)

Now let

- 132 -

G e e—




- 133 -

M

_ j ZQ % % g

Uu
7~ -+ j;k=' ‘A-/\ ‘
3
*_
e J, AT-A

with &, and & as in (B2). Multiplying .. by 3*‘ and ¥ by € and

then integrating over § we have

b a, (A)dpgy. (M)
S@‘G*(‘)“f(‘)"" = § Z kA[‘iL 5 §7€) §i(e ) de

- J,k ] o,
_ A i Kl T () dpey O (83)
ks A=A

and similarly

b M L ® Iy
5 L) de = S Z VA () &y /'\)-D’ZM). (84)
a /o d k= A=A

Since (3.24) and (3,25) are asymptotic solutions for both the differential
and integrodifferential equations, the Timit matrix ,OA is the same in
either case. Taking § A in (B3) and (B4) we have Peis™ forr and
thus

6o M -y 00
S %*(C)M/‘ (‘)JC = g &Ai '/OATL = gf(‘)%*(‘>clﬁ. (85)
0 -

After taking//\-yoo and employing (B1), (B5) becomes

S?LA Vude = ga‘}m)u«ac

which is the dasired result,
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APPENDIX C.  PROOF OF THE EXPANSION THEOREM -

This proof is based largely on the so-called Weyl-Stone-
Titchmarsh-Kodaira-Levinson theorem, as outlined by Yosida,] and by
Coddington and Lev1'nson.2 Our goal is an expansion theorem for real
valued continuous functions w¢c) in (0,00 ) with S:‘:le [u(e)| *< 00
The expansion functions are to be the solutions nf the linear integro-

differential equation

Lp) ) (Qr )b+ f:zc'x(e,c')gs(a) =0, )

Here P= P(C), P,, and K= K, are real and continuous and P>o | (0,00),
00 100

and Sa §°de de’[K(qc') %00 . The function @ =@ is real and con-

tinuous, is regular at ¢=0 for {=0 , and has a regular singularity

at ¢=0 for A #0 .

An expansion theorem based on the solutions of

‘3’ i )+(6?+/\3¢+ {dc Kle') $e') = (C1)

which satisfy homogeneous boundary conditions at o<a , b<co has been
established by J. D. Tamar‘kin.3 Dur task here iz to extend the interval

(a,b) to the interval (0,00 ).

Preliminaries, Tamarkin's Results

Let L‘ represent the linear integrodiff.rential operator in .
(C1). The following properties have been demonstrated by Tamarkin.3 -
(1) For a fixed complex A et ¢ » ¢, represent a pair of I

- 134 -
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linearly independert solutions of l.$¢.-.-'/\45 , real for ~zal A , satis-

iying the conditions ( )

¢, 6N =1 ¢, (5A) =0
Pls) &' (50) =0 PEYB/(5,N) = | .
(c2)

Then &, , ¢.‘_ , ¢,/ , &’ are entire in A for every fixed ¢ on §

(ii) For the self-adjoint boundary value problem

lg ¢ = - A9
d A Pl) + bina Pa)B'(A) =0

o ppls) + o PLYG(E) =0

(C3)

there exists a sequence of real eigenvalues ;Ainz and a complete ortho-

normal set of eigenfunctions fk;ng, In terms of these functions the

1
expansion formula for any « £ L (*f) is

b
nl) = Z k‘“(c) Sdc’u(c') )w;:\ (¢') . (c4)

To extend the interval S:(A, b) to Atfo,00) we proceed as

follows. Since ¢. , ¢-,_ form a basis for the solutions of LS¢=-A¢

we can write

kfn ) = r‘nl ¢l (C) ’\Jn) t % ¢7_ (‘)’\&‘h) (CS)

where ¢ , T5,, are complex constants. With (C5), (C4) becomes

) 2 b
U\(c) = g Zk r‘n,' r‘:k (;" jd‘ “k)¢k*(‘) c (CG)
J, =1

a
Now define an Hermitian, positive semidefinite matrix Ps » called the
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spectral matrix, with elements f"a'x consisting of step functions with

jumps at the eigenvalues A, given by

P (’\[n ro) - Pén (Ae.-0) = Teny Tonk
We let o, {e) be the zero matrix and define Pe away from the eigen-
values by f:(AM) -f;/t\). We employ the spectral matrix to replace
the infinite series in (C6) by a Lebesgue-Stieltjes integral;

% ¢

wle = 5 Z $; () )) @,/A)Jfgd.k (A) (C7)

Loo k=1

where

"

b
17 S duuk) g, (‘;") .

U (c8)

As § ® A (that is, a.Y0 , b »oo), fs approaches a limit
matrix @, . Our task to to find the matrix p, and to prove the con-

vergence of the expansion (C7), (C8) in the limit,

Weyl's Limit Point and Limit Circle Theory

For any number m, ., the expression ’)lb=¢;+mb¢zsat1'sfies
equation (C1). We now choose m, so that 754, satisfies the boundary

condition
/
it p Wy + B p P Y, =0 (¢9)
at the point b ., Then W, must satisfy

AP G (N + P(e)g’ (b1
@B g (o0 + P(e)g/ (s, n)

m, (A) =

yo-s

GED b
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Note that the one-point boundary condition (C9) has not restvicted A

to real values, Since @, , ¢, , &

/ R N
, » and ¢, are all entire functions

of A ,m, (A) is a meromorphic function of A . It is readily shown
that every zero of the entire function %5 is real, and hence all the
poles of m, /A) 1ie on the real axis of the A -plane. Consider M, as a
function of A , b , and ‘6 . If we let 2= e&‘p and maintain A and b

at fixed values, we can write ™, as

Az + 8B

s (C10)
2

Mb=-

Since

[AD=Bcl = | &(5,0) &/(b,7) - ¢, (b,A)4,/(b M) P(b)
= Wb {¢I)¢‘L> 7‘ o

where Wy (4 @,) is the Wronskian? of ¢, . ¢, evaluated at b , the
transformation (C10) is a one-to-one conformal mappirg which transforms
the real axis of the 2 -plane into a circle €p in the compl:x w [/A)
plane. Therefore if hu A ®wew # O | thenw,/A2) varies on the circle
Co(A) with a finitc radius, as 2 varies over the real axis of the 2
plane.

The equation of the image of the real axis, tmz =0 , 1S

fourd from (C10);

(A +c*mi) (B + DM\.)'(A*(NJ(3*+ D'm) =0,

or (C11)

Wb (xb, Xb*) =O)
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which is the equation for & (A) . It follows easily that the center
of C5 is ﬁb s

“\M : - W Mu 6"
Wb (¢t,¢1*)

and the radius is

C12)

Wy (ﬁ;‘&)
rb /A\ = / Wb (&’H :)/ ]

For the moment let @, , 6, satisfy L;(f, .- /\,di, L ¢7_= -Af
with A, # Aq ., Then the symmetry of Ly permits demonstration of the

Greens formula,

b
(h-n)| 8 dae = We(9,8) - Wi (4,6).
S

Now with A, = Ay = A and by virtue of (C2),

We (¢,4.) = W, (4,¢,) = |. (c13)

Further, with @, (e, A+ = WG ¢, (,N)= @] A) , and making use

of Greens formula, we have

b b .
2eo g [ 6, (CIA),.LJc = 2w gs ¢, (6N) &, (¢ X) de
S —
= ( WS LP?.(‘)/\>) ¢1 ((/R‘)j -
- Wb [¢1(‘) /\)) é—l (‘/’\*ﬂ

- = l' Wb [¢L[(/A)) ¢‘L(() A*)j ((4)’9\.4 /\)fc'“;)

Combining (C12), (C13), and (C14) we obtain

Ry Sean Sum B O seed e
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+ -1
Ty, (A) = [2 [e] S:M(ﬁ/ﬂ' de | , WA= e Foy (015)

Lemma 1. If co=Yam A#C , then the interior of the circle & (A) is
mapped onto the lswer half plane of the 2 -plane by the transformation
(c10).

Proof. Since the real axis of the 2 -plane is the image of the
circle €, (A) by the transformation (C10), the interio. of &, /A) is
mapped onto either the upper half plane or the lower half plane of the
2 -plane and further, the point at infin.ty of the mi -plane is mapped
onto the point-f’(")%'/b,/\)/ﬂ(b,/\} of the ® -plane.

On the other hand, we can write

o [- P4/ (6,0) /9, (5, 03] = & [P0 SRR - 3;2'33?]

C Wy (6, 60)

= - L
YOI
b
. o [ lealgn)de (C16)
B > 0.

[ &, (b,M)]*

This means that - F(Q%’/‘MVW@A) belongs to the upper half plane of
the 2 -plane. Hence the point at infinity, which is not contained in
the interior of €, (A), is mapped into the upper half plane. This
proves the lemma,

Since Wg (4’”@:[, the transformation (C10) has an unique

inverse which is given by

"fo,AYmy (A + &/ (s,A)
= __P b\ ¢L / b 1 (%)
2 {I ¢, (o, my (N + B (0,N) T

In view of Lemma 1, if Ya A= co >0, m belongs to the interior of

(C17)
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the circle €, (A) if and only if b 2<0 , namely, /' (2 ~2*)>o0.

From (C17) it follows that

. . (,MNwm + ¢'( 1)

(z-2%) = i [ plo) 84D + 4'(b,
: [ ¢-L($//\)”‘. + ¢' (5//‘)

+ Pe) BT (M) m* 470 0)

AF(o, AmF + @ (b 1)
W, ("I*“"?é‘l) ¢:*"’ “"*‘ﬁm*)
I ¢, t m é—,_/z g

Therefore, k 2 <0 if and only if

CWy (B4m b, d% s me) > 0 (C18)
By Graen's formula we have

26 gbl $ +wby|tde =

=i [ws (4 + o, % emr6f)- V-’s(fi,mﬂ,é*mﬁ*ﬂ (€19)
and from (r2),

Ws (11 @a, $XTmb) = W (3,6%) + We (6, 0% w +
+ W (/‘b.,ﬁ*)w\* + W (6,8%)ml*

(]
)
o~

3

(C20)

* —

Cembining (C18, (C19), and (C20) we have

Lemma 2. If o= $w A>0, then w is interior to the circle Co(A)if

and only if

Sl b ey
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m

b 1
[18060) rmdilemitde < 2
8

and wm lies on G, (A)if and only if
b
1
g ’¢'(c,/\)+—w\¢z(c//\)l de = (}""——'-"-w .
)

(Note: it is easily shown that Lemma 2 also holds when co = $m A <O )

It follows that, if w is inside £, , and b’<b | then

b’ b
S "P,*M%PC{C < S'@rmﬂlwc < l‘-ﬁ-"z‘-‘sa S
S

$
Hence m is also in C,, , even though the centers of Cy and Cy.

may not coincide. We thus have

Lenma 3. The circle €, contains €, for b'<b and fwm 2 #0,

It foliows that, as b¥oo , the circles €, converge either to
a limit-circle or %0 a limit-pcint. In the limit circle case we have
from {C15) that ¢7. is Ll(si 20) ; the same property is readily demonstra-
ted for 45, 5

Next consider the boundary point a , o<a<o . For an

arbitrary real number o , the boundary condition

Gdd Yo + s P(a) )4(/=0

at the point @ with %, = @ +w, §, , determines

XA (a,0) + Pla)d'(a 1)
e e ¢ (o, + PR)B, (a,A)

and also the circle Co (A) , described by the equation

Mo (ny=-

We (%, X)) =o. (c21)
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Similaily as in Lemma 2 we can prove

Lemma 4. Ifco=%m A #0, then wr lies on the circle Ca /A) or in its

inteior depending on whether

ﬁw.(«,m mb ()] de = - E.%

or

Sj' 9, (¢,4) twmh (o) de < - %—aﬁ ’

Simileirlv as in Lemma 3 we can prove

Lemma 5. The circle Cyv contains ¢ for a<a’ and Y A¥0 .
As tetore, as a >0 the circles C, converge either to a limit-

circle or to a limit-point.

The Limit Metrix Qs
!

Recall that

b () vt o (rkersin

Let ¢' R 4’1 be solutions of Lg¢=-/\¢ satisfying the conditions

@ (s,n) =) &, (s,A) =0
PR) d/(s,A) =0 PEY ./ (<) = |.

For the self-adjoint boundary value problem ( 6<a , b<os)
Le® = -no
oo ¢la) + tina PL)@'(a) =0
o pP(b) + R PL) §'() =0 (3)

iy OGmp S —
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there exists a sequence of real eigenvalues {J‘hz and a complete ortho-
normal set of eigenfunctions 5k5“§ . The expansion formula for any

function p € ﬁl('é) is

b
"= 2 b [ deul) K ), 2
Multiplying (C4) by w*{¢) and integrating over § gives the Parseval
relation
b 1 (b » } ¢
S{u(c)[ de = Z / )(A(C') l‘Sn (c')dc’/ . (€22)
a 14} LN

Similarly if up(e) ugp()e £*(5) then

b b .
S“Jc Us ﬁ)u;(c) = Z S:’C ug (c) k;(g) [ S‘;cux k;:] . (€23)

h

Employing the representation (C5) and the spectral matrix /0; , (C22)

may be rewritten as

° 1 s g ~
S [ue'de = g Z ags (A) K /’\)Jf«rjk ) (C24)
" =% [ k=
where
b
(ka > g de u(le) ¢k /()A) .

Applying the Parseval relation (C22) to any continuous function
W on (o)oo ) which vanishes outside some interval S, » contained in

{ , onc -btains
00 o 1
1 » »
- 0O ) =!

where
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Kep) = ( deul)d, ).
o
Let ¥oa®§ rwmady be a solution of Lo =-A¢, bn #o
satisfying the boundary condition
Gk §(a) + tna PR G'R) =0

and similarly let %5 '-‘-¢,"\Mb¢-,, be a solution of the same equation

satisfying

cefp $ 1) + 2 p PS) ) =0

Then M, and m, lie on circles ¢, and <, in the complex m -plane

whose equations are, respectively,

WK (Xq,%f) '-'-"0) Wb (xbl ’p:) =0 . (CZG)

It is easily shown]

problem (C3) is (§mA# O)

that Green's function for the boundary value

'A (‘,’\) %5 (‘,1/\3 <./
6. (et M) - wanfny 7
e, ¢\ n) =
o Yl NUED

Ma (A) =w, /1)
where wi, (A)—w, (A)= W (%, ¥,,. The Parseval relation in the form

(C23) is now applied to the functions

WG W6
Mr{c) = )—kf-); ) Mn(c)- 3@,)‘,: J',k= o |

yielding

i

HHRH

p—— _—

ooy W DB SR aw e e
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, b . N —
b i ke WG G,
V' Gy G _ ; i [I( s k Jﬁ;/ (€c27)
(S ke = 2 ) snhinde |, Sor ]
From the definition o7 Gg it follows that

G (s, 0) = Kalon) -
£207 maln)mo(n S

(c28)
) ¢b ((’ A) c>S
MQ/A) -wW, /A)
and
9 Gy (16:/\3/ _ me (A) Kefeh) re s
e’ P(s) [ma /Ry = my (AY]
c'es (C29)
MK/A) %b (‘) A) c>9
L2 [ ()= m, /)]

Using ((28) and (C29) and Green's formula, the integrals in (C27) can be

evaluated, For example
b
o Yoo _Ue
2o Lt e = 2o o
Bl e
S

,M‘(A)—wb//\\)'-szs (xa, x«*) -
= WS (15,/‘»’3;

!

JES Iy
I ma /A) = m, (M)]F

"

(where we have made use of (C26) to arrive at the second step). There-

fore
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SB,G"{(’»S A)I 'Lc’c < sw\ [M\/A)"‘ My /A)J—' (C30) -
) } v ) .
Similarly

- b
[Mo‘ (A) T /A)] ("—’\f\\) SAGJ'({) §; A)‘\;; (e)de =

= W, (%, h},) - W (%, hen ) & W (%o ) -
- W.\ (xk, L&'t)
= W [‘(')‘..‘ 7%), k;«] = |y Ny -way (A) W‘(‘bl) b

e [Mb (A)= wm, /A)] G

and hence

b

*
S G‘; (‘C'S) M) k‘t (c)Jc = _&L . (C31)
A ASV\—A

In arriving at (C31) we have used the fact that Wa (7«, l;:) =0which
follows since both 7CA_and k:; satisfy the same boundary condition at
a ; similarly W, (%, ; i) =0 .

Recalling the definition of the spectral functionlaa, we combine
(C27), (C30), and (C31);

T () L h Mg )
SM oA T et

where

! .
Mo (A= My A (c32) .

M€u Y =

We can similarly show that

Ol S
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'A—)\\l (%)

~0

where M;,, is given by (C32) and

M = A= L ma (A) + wy /A
52 (A) = Mgy (A) /)~ N

M, (A)w, (A

"K/A) -wm, A

M:n -

From Lemma 2 and Lemna 4 we have

2V {i ,%q(‘;/\ﬂldﬁ = "'g'\M MA/A)}
“ gki’lb(ﬁ/\)l‘«lc - b
S

Thus for a fixed Al , Y. A #0; Mo /A) and w, (A) are in oppostie half
pianes. Suppuse A=i in (C33). Then points m, (¥') Tie on a circle {a
which is in Cs/z for A‘% whereas points M;(t') lie on €, which is in
Cas/ for b>3s/2, Thus there is a constant k> 0 such that
Imal2)-w, (O]> k, for «<F ,b>3 . Since wma [¢) and w, &) are
uniformly bounded for & < %_ , b> "'SL , it follows from (C33), and the
definition of the Mgy, that

Sm 'JfSJ'E/A)’ - ‘(1.
ST
Thus for ¥ >© |

( 1dpg (] < k(1702

This last together with /—"J'k{o) =0 gives
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]ka(,\)j < K(H,\") ~0<Aca,
We are now able to prove the existence of the limit matrix /OA . For
this we need the

Helly Selection Theorem.2

Let f;\h(jg, h=1,2,..., be a sequence of
real nondecreasing functions - se< A < o0 , and iet H(A) be a continu-

ous nonnegative function on the same interval. I

“\n {’\), € H/") nel, 2,.00 - e0<l<coo

then there exists a subsequence fk,,kqg and a non-decreasing function h

such that

'}\{'\)' gH/A) -00< A <00

and

el NOREYY

It follows from (C34) and the Helly Selection Theorem that there exists
a sequence of iitervals 3, (a.b,), §,» [0,%0) and corresponding
boundary conditions prescribed by o, , Bw , such that ps, 1, (A) tends
to a limit loAJ'k {A), N0 . It is easily seen that the limit matrix
!OA » Tike p5, is Hermitian, is positive semi-definite, and is of
bounded total variation on every finite \ interval.

It remains to establish an explicit formulation for f'A . From

(C33) we have, with A= m+ieo and §» 4,

o0

9’“ MAJ'k {A) Jﬁo";{—\?
- )73 = f (/4—;\) +‘601 )
- g

(C34)

i

i

et weny ok DU
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WP DN e e Seed e
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Let /\, , Ao be points of continuity of Po . Then integrating the

above with ‘0# 0 held fixed and finally taking cu®o , we have

! ’\Z ’ Al % ' {e.
Z‘lﬁ;o g) 9\\“ wad'k (" J/M = A 5 j : )
l

&) o | ‘“{/u—,\ it
- s, | Too () -7 (2,

= [(%Jk(r\a) ~Pajx /’\I)j

where MA“ is given by

[
Moo /N) — m, (A)

MMI -

- = L Mw/")f’mo/ﬂ
Maz = My, 3 e ) — e (0

‘Moo//\)Mo[’\)
MA'“‘ = M, (A) - V“o{'\)

If both points aa »a , k00 are in the limit point case, M,
and M, are unique and it follows easily that [ is unique, If either
point is on a limit circle, the spectral matrix is not unique without
the specification cf a boundary condition at the point in question.
Whether a particular case is limit point or limit circle is readily
determined from the asymptotic solution and the expression (C15) for the

radius of €, or its analog for C, .

The Parseval Relation in the Limit § *» A

Consider a function wn(<) having a continuous second derivative
on 0< C<00 | and which vanishes outside some interval 4, , contained

in § . Then applying (C25) to L¢A4 we have
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5:oIL:um,._ = foozz K?Lgawk de B}L‘“MJJJZMA. (c35)

- 00 J, =l ‘%

Applying Green's formula,

SM(L‘M)%'O/C‘ f‘;[ﬂﬁ')uc/c
= -~ ) g ¢ u de

= —r\ M“"/’\))

and hence (C35) becomes

% ‘e z N
S ngu ,2JC = g A 2 % a;k M‘; J/O‘J'k (r\) . (C36)
- 00 J, =

Now for A large,
- %0 3 -A 00
( S A ' S )z U R ey, ‘-‘A‘a(f ' L) Z“fk'xt ey,

J,k=|
(C37)

this last following from (C36).
It is conveniei.t to rewrite (C25) in the form

= ( S;t SM SA) z Ug M” ,J/o&“

57(;((4)!1 de
- 2 J k=i

(C25)

[

Combining (C25) and (C37)

I g:ola(n(‘clc - S %“:ﬂt B dpgi | <

L)
+
-L"- g“'f“, clc. (C38)

|

T W e ey
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To take the Timit §> A (that is, a=»p , b>00) in (C38) we need

the follo.ing

Integration Theorem.2 Suppose ;l\,\/,\)gis a real, uniformly bounded,
sequence of nondecreasing functions on a finite interval J<A<e , and

assume

Aon b, (A¥= W) d <) e .

h=>00

1f ¥ is any continuous function on (d €A=e ), then

A geg(A)JLh(A)v- ;iemum.
d d

n > 00

We established earlier the properties of Ibﬂ!'k required by the
integration theorem, Thus letting §9A through the sequence of inter-
vals &4 found above, it fnllows, using (C38) and the integration

theorem, that

A

l S:ru(c)l"clc - g

k

2, e
Z A A dpay ' * %‘* g |Laul"de.
A J' =} o

Now allowing A-»eo0 , there results the Parseval equality

0 I S ~
(“fuerde = {2 G G dpag (c39)
] _“J,“=|

for any m(e) restricted as above. We ncw show that the Parsevi
equality holds for any w(e) in KL(O,N). First suppose u(é)ff%,@)
and vanishes for ¢ sufficiently large and sufficiently small. Then
there exists a sequence of functions u, ¢ }flﬁ’,‘b) possessing continuous
second derivatives and vanishing near ¢=0 and for all large ¢ such

that
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G

Ao glu.\—ulmd’c =0

[ 4

n>20

Applying (C39) to up~ 4m ,

00 @ 9
S | An- Mm'."‘;‘ = S Z (“kn—“kw)(aq': "&’f:)dfau'k . (C40)

— 00 .);k=l
Since the left side of (C40) tends to zero as n,m >0, it follows that

4 o~ ~
the sequence of vectors § &8 , = iy, 43, where

i, = g de u, () §(,A) (ca1)

converges in the mean in f"(/%) , and since the latter space is

2 there exists a vector A which is the 1imit in the mean of

complete
this sequence. It is clear from ‘C41) that the components of it are the
continuous functions

or)

(XJ' = S de u) C#J'(‘,A) .

Returning to (C39)

0 , 00 , o 2 Py ,
I [u@|de = v S [Aa )| de = Ao g AT

00 W00 .
" o0 ) k=1

(4 -
W 1 .
~ N
= S Z Uy Mj Jf‘ik )

which proves the Parseval relation for any v« )& f"/o)m) vanicshing
for all ¢ sufficiently large and sufficiently small. Suppose now

that n(e) is any function of class I%,co) and define

ule) xzcty

CICES S 7,

a‘.‘_’-——w———w
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and

oQ
Hxg 0) = S ey @ $; (44) de

1l

)
S ule) df)' /4,/\) e
X

and similarly for Uy (<)
00

_gw %:,,( x4i (’xxzk Ml‘sk)Jﬁ (Sx +j3 )Iu(c)]"c[‘)

it follows that the set of vectors &,

Since (x<r, 0()43)

converges (as X »o ,‘&*w )

1 o~ *
in the mean & féA) to a vector function wn cd éu)‘ By letting
x> o , 16900 in

9
SZ Aage 0y w SPoi () = leu(cwc

-ooJk!

there now follows the Parseval equality

a0

j > h G dpy ) = | Ve,

Zoo k=i
for any wu (<) & f‘(o,oo) :

(ca42)

The Expansion Theorem f.r the Singula: Interval

With the Parseval relation established, the proof of the expan-
sion theorem may now be given. Let D= (-7'7) and define

ay () = f D Gi6) K ) dpag, (1.

(Ca3)
Jyke=1

If ujﬁ) and ygfe) are in f /°/°°) , then the relation (C42) implies
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> 0 E * (a4
SMI(C>0!;(C>CIC = > Z S Uz ¢: de jv&? q:j de, :
B Zoo J,k:l o 0

which follows since we can write

1 0 ¢ L '
fug = |ustup] = |u-ugl vilvgtiml ™0 Jog-rag ™,
Now consider some function T 7:%,‘0) which vanishes for <<,

AL
¢, <€ , and represent the transfom of T by the vector T . Multi-

plying (C43) by T* and integrating we have

Cw@riscs ( ("> wc,»wum () T de

‘1 >
A~ T, : (C45)
= g Z_ MkTJ J{p"\lt.
From (C44) for up =« and uy =T ,

C'L GO *-

Cutrie = (T Ry

C| - 00 J)k"
Subtracting (C45) from (C46), and using the Schwarz inequality,

“:(u'up)]'*clc,zé (f g)Z“karqu (S” S )ZT‘* T/ eleyy

——

alll tume Ses  emmm g
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Applying this irzquality to the function [(¢) given by

u)-up(c) o< fcq 0

o §

(7} c<<l)cz¢'¢

we obtain

C‘L o 7 C A A

5 Iu\(C)—-!«p(ﬁllclc = (éw— )Z R”J'RJ{’A]k

< —7 J)k='
or finally

€q

S I‘“‘)‘S f ¢(fA)uk(A)JpA,,,(»\>I de €

c; z J k=|

o 2
( f ) A K] dpai
J k=l
Since the right side does not depend on ¢ , €, , the above holds

with €, o , €1 % Lettingal-v"o yields the expansion

co

a@ = (3 G Dopai 4)
J, =1

-—

which clearly converges in the mean in fmfo,oa)c
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