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ABSTRACT 

This dissertation is a study of the description and effects 

of particle interactions in ionized gases.    The principal results are: 

(i)   An expansion theorem for the lihedrized Fokker-Plan^ collision 

operator for each component of a two-component fully ionized gas, and 

(ii)   A description of photon scattering from a partially ionized gas. 

It is shown that the Fokker-Hlanck collision operator generates 

a complete, continuous set of velocity-space eigenfunctions, for which 

high-speed asymptotic forms are found.    Since the set is continuous, 

the expansion formula has the form of a generalized Fourier integral. 

The effect of neutral atoms on the spectrum of photons 

scattered by electrons in a partially ionized gas is shown to be 

primarily a reduction in height and increase in width of the two 

electron-plasma "wings."    The scattered photon spectrum is described 

for several characteristic cases. 

IX 
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I.    INTRODUCTION 

The purpose of this dissertation is to investigate certain 

aspects of the kir=>tic behavior of ionized gases.    The emphasis here 

is primarily on the description and effects of particle interactions. 

Two principal results are obtained.    The first, developed in Chapter 

III, is an expansion theorem for the linearized Fokket  Planck collision 

operator for a two component fully ionized gas.    Tl •» second, developed 

in Chapter IV, is a description of photon scattering from a partially 

ionized gas. 

The function of Chapter I is twofold:    it presents a brief 

discussion of the present state of the art in the treatment of classi- 

cal many-particle systems, thereby setting the stage for the rest of 

the work; in addition it contains an outline of this work designed to 

guide the reader.    Chapter II contains a survey or some of the more 

pertinent results of plasma kinetic theory. 

The reader interested primarily in the results of this disser- 

tation may choose to skip the first two chapters and proceed directly 

to Chapters III and IV, which are essentially self-contained. 

1,    The llany-Particle Problem 

The theory of classical many-particle systems may be studied 

from three points of view.    One may begin with the macroscopic, or 

fluid, equations with parameters such as density, mass velocity, and 

temperature as independent variables, and involving various transport 

- 1 - 



coefficients, e.g., viscosity, heat conductivity, etc.    Examples are 

the Euler and Navier-Stokes equations,    'i altogether different approach 

involves the use of more fundamental and general microscopic formalisms. 

On the one hand, one may work with equations describinq the evolution 

of one particle distribution functions, the well-known Boltzmann equa- 
2 

tion   being ö prime example.    On the other hand, one may employ equa- 

tions relating one-, two-, etc. ."article distribution functions such as 
3 

the hierarchy of equations derived from the LiouvMe equatio",   which 

latter treats the evolution of the distribution function for all N 

parti dec in the system. 

The fluid equations are generally considered adequate for 

treating wide classes of problems in gas dynamics.    In this range the 

microscopic theory would not yield significantly different results.    In 

fact, subject to certain conditions which define their range of applica- 

bility, the fluid equations, together with exolicit formulas for the 

various transport coefficients entering into them, are derivable from 

2 4 i the microscopic theory.   ' | 
i 

There are, however, many important situations in which the 

macroscopic theory does not give a correct description. In general, | 

this occurs when the length or time scales characterizing phenomena of 

interest are not long as compared with the scales on which the micro- 

scopic quantities fluctuate. Examples are he propagation of high- 

frequency or short wavelength waves, and behavior near boundaries. In 

these cases one must properly begin with the microscopic equations. i 

The solution of the Bcltzmann equation (or, more generally, any 

equation involving only the single particle distribution function) is, 

in general, a matter of considerable difficulty even in casej 

i 
I 

I 
I 
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corresponding to the physically simplest situations.    Significant 

progress has been confined almost entirely to the study of two limiting 

cases in which two different approximation procedures can be applied. 

A criterion for the range of validity of the approximate methods is 

provided by the comparison of a characteristic time f  or length L   for 

the relevant process with the average time   f   or mean free path Lc 

between particle encounters. 

For high densities {T»^    or  L» Lc) the Chapman-Enskog 

4 5 theory •   may be used.   The first approximation of the theory consists 

in assuming collisions to be sufficiently frequent to maintain a local 

thermodynamic equilibrium.    The next approximation corrects the distri- 

bution function by terms proportional to gradients in temperature T * 

flow velocity 0 , and density n ; this corresponds to the fluid equa- 

tions with transport coefficients for heat conduction, viscosity, and 

diffusion.    This high density region is in fact the range in which the 

fluid equations provide an adequate description.    Higher approximations 

of the Chapman-Enskog theory  lead to correction terms proportional to 

higher derivatives 0f   "T 2»n    •    The successive approximations of the 
4 Chapman-Enskog theory correspond    to an expansion of the distribution 

function in powers of the mean free path   L^ .    For example if we con- 

sider sound waves with wavelength   l»Z.c, the first and second approxi 

mations are already sufficient to give all significant features of the 

process.    When L becomes comparable to  Lc however, it is necessary to 

go to the tMrd and even higher approximations to obtain adequate 

results; the third approximation already involves formidable labor and 
3 

has been used to solve only the simplest problems.      Consideration of 

higher approximations is, in any case, of doubtful value since the 
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entire procedure breaks down in just the range wnere the contributions 

from these higher-order terms becomes Important,    A different approach, 

using expansions in terms of Hermite polynomials in velocity space, has 

been given by Grad.     He uses some moments of low order in addition to 

the usual ones representing n, 4   and T.    The procedure involves a gain 

in simplicity over the Chapman-Enskog theory but is still quite compli- 

cated.    In any event, it is basically a high-density theory. 

The opposite limiting case of low densities {t:«tc   or L« 1^,) 

has been studied using iterative schemes beginning with the solution of 

7 8 the "collisionless" equation-   *      In the case of ionized gases immersed 

in strong electromagnetic fields, such theories have been used 

extensively.     As with the approximation schemes employed in the high- 

density case, these iterative procedures become unwieldy if more than 

one iteration is necessary. 

It would naturally be very desirable to have a method capable 

of treating the microscopic equations over the whole range from low to 

high densities.    Unfortunately the describing equations are generally 

non-linear, and even when linearized are extremely intractable, a prime 

source of difficulty being the term represonting interparticle colli- 

sions.    Relatively little work has been done in this intermediate density 

region, often referred to as the kinetic regime     Attention has generally 

focused on mathematical properties of the collision operator,      on test 
5 

particle treatments,    or on a numerical solution of the kinetic equa- 

tion in a few simplified situations.       A notable exception is in the j 

12 13 work of Chang and Uhlenbeck.    •       These authors treated the propagation 

of small amplitude sound waves in a monatomic gas composed of c,   ms 

interacting via an inverse-fifth power force law, i\e,. Maxwell 

1 

I 
i 
I 
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molecules. They were able to show that the linearized Boltzmann colli- 

sion operator for this case generated a complete set of velocity-space 

eigenfunctions. Upon expanding the perturbed distribution function in 

terms of these eigenfunctions, they obtained from the linearized 

Boltzmann transport equation an infinite set of coupled algebraic 

equations which they solved by successive approximation. Their results 

were in quite good agreement with experimental observations on collec- 

tions of neutral atoms. 

In view of the difficulties involved in solving the microscopic 

equations in the kinetic region, considerable interest has recently 

been focused on the mathematical properties of the terms representing 

collision effects. Motivation in this direction has been based in part 

on the feeling that a knowledge or the spectral properties of the 

(linearized) collision operator v/ould lend insight into the kinetic 

behavior of the system. •  Grad  has considered the linearized 

Boltzmann collision operator for particles interacting via the genera, 

inverse power force law, 

F=- */(•» 
where K is a constant and f is the interparticle separation. Grad 

found that in order to obtain mathematical results it was necessary to 

assume the interparticle force extended over a finite range; i.e., 

angular integrations in the collision integral were truncated at small 

deflections. On the basis of this assumption h* was able to 

show that the spectrum consists of two parts  - discrete spectrum and 

a continuous spectrum. The latter is bounded away from zero for "hard" 

potentials { S>S ), and approaches zero for "soft" potentials ( 5 < 5" ) 

For the special case of the flaxwell molecule (S-5") there is only a 
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discrete spectrum.    For 5< 3   Grad was unable to find the spectrum. 

Recently Ferziger     has used Grad's results for inverse power-law 

molecules to show that the linear Boltzmann collision operator generates 

a complete set of eigenfunctions.    The form of the eigenfunctions was 

not, however, cbtained.    In any event, the spectral and completeness 

properties were not obtained for the Coulomb potential (s =2). 

A major problem in plasma physics is that of determining the 

properties of an isolated hot plasma; any material probe introduces 

impurities, while for a fully ionized plasma the emitted radiation is 

only moderately informative, any line structure arising from undesirable 

impurities. 

The interaction of an incident beam of radiation with a plasma 

has proved to be a useful method for determining the electron density; 

since the plasma acts roughly as a dielectric with coefficient 

6-   I-   ^££       ) co^    -- ^v>£VA) 

transmission is cut off below the plasma frequency. Radiation above 

the plasma frequency may also be used as a plasma probe, and several 

experiments have used the modificiation in phase velocity produced by 

the dielectric coefficient ^ as a measure of electron density. 

It has been known for some time that the scattering of photons 

or material particles from a system of interacting particles yields 
i 7 

detailed information on the structure of the scattering system. 

With the adveni f intense light sources such as pulsed ruby lasers, 

considerable attention has been given to the scattering of photons by 

free electrons in ionized gases. Several authors have presented 

analyses of this phenomenon, usually basing their descriptions on 

1 
I 
I 
I 
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semi-intuitive derivations, and employing collisionless kinetic 

18 
theories. Notable among these are Salpeter,  and Rosenbluth and 

19 20 
Rostoker.   Shortly thereafter considerations of relativistic effects 

21 
and nonlinear scattering  appeared. 

The first experimental observation of photon scattering from 

22 
an ionized gas was reported by Bowles,  who observed the scattering 

of a radar beam from the ionosnhere. More recently many workers have 

reported the measurement of optical photon soectra produced by scat- 

tering from ionized gases in the laboratory. The observations are 

generally in remarkable qualitative and quantitative agreement with 

theoretical predictions, which is a rarity in plasma physics. An 

illustration of this close agreement is given in the recently reported 

23 work of Anderson. 

Provided the photon wavelength A is of the order of the Debye 

length Ap or larger, the scattered spectrum is characterized by a 

narrow central peak located at the incident frequency, and by two 

symmetrically placed satellite peaks separated from the central peak 

by Aeontcope.  . the electron plasma frequency. The central peak 

reflects the strong coupling of the electrons to the ions character- 

istic of long wavele.igth plasma phenomena, while the satellites are 

attributed to the resonant scattering of photons from longitudinal 

electron plasma oscillations. *  As the photon wavelength becomes 

large in comparison with the Debye length, the satellites become 

19 
narrower and rapidly increase in height. This has been attributed 

to a decrease in the effect of Landau damping on long wavelength plasma 

oscillations. 

24       25 
Recently Ron, Dawson, and Oberman  and Fante  have computed 
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the scattered photon spectrum for a fully ionized gas Including the 

effect of collisions. They find the difference between their results 

and the colllsionless treatments to be very small, of order A , where 
3 

JS,*r\^9is generally very large; In fact A is generally assumed large 

for the various theoretical models to be valid. 

In recent years considerable effort has been expended on the 

production and diagnosis of gases that are only pörtially ionized. 

Examples range from low temperature gas discharges to relatively high 

temperature ( ^30ev) and high density plasmas generated by the laser 

bombardment of solids.    Since photon scattering has been proven to be a 

most useful tool in the diagnostics of fully ionized gases, it is 

natural to expect this usefulness may be extended to include systems 

containing significant numbers of neutrals.    In addition, since the 

Thomson scattering cross-section for electrons is several orders of 

magnitude larger than the ion cross-section or the Rayleigh scattering 

26 cross-section for neutrals,     we would expect that photon scattering 

from electrons should be observable even when neutral densities exceed 

electron densities.    The p      .ry difference between fully- and partially- 

ionized gases in this respect would then be in the effects of neutral 

atoms on the scattering process, since charge-neutral collision frequen- 

cies may often be considerably larger than their Coulomb counterparts- 

2. Outline of this Work 

f 
T 

1 
I 

I The purpose of this dissertation is twofold.    In the 

first part of this work we obtain the spectrum and prove an expansion 

theorem for the linearized ^okker-Planck collision operator     for i 

particles interacting via an inverse-square force law.    In the second 

I 
I 
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part of this work we employ a simple collision model to study the 

effects of collisions on the spectrum of photons scattered from a 

partially ionized gas.   The plan of this paper is as follows. 

In Chapter II we present a brief survey of plasma kinetic 

theory, with particular emphasis on the description and effects of 

charged particle interactions.    Due to the long range nature of the 

Coulomb interaction, when an ionized gas is in the kinetic regime, a 

great number of particles are "colliding" simultaneously.    In this case 

the simple binary collision models employed to treat collections of 

neutral particles are often deemed to be inadequate,    As a consequence 

many attempts have been made to develop suitable kinetic descriptions 

for plasmas, and a comparison of the various treatments has often led 

to confusion.    The purpose of this chapter is to compare a few of the 

better known kinetic models in an attempt to cast some light on their 

similarities and differences. 

In Part 1 of Chapter II we give a very brief phenomenological 

derivation of the Boltzmann collision integral, and of the Fokker-Planck 

collision operator for inverse-square law forces.    Emphasis is on the 

difference between short- and long-range interactions. 

In Part 2 of Chapter II we briefly discuss the hierarchy of 

equations generated by the Liouville equation.    The effect of corre- 

lations between particles is studied by, on the one hand, neglecting 

correlations altogether and, on the other, retaining two particle 

correlations.    In the first case we obtain the Boltzmann equation for 
28 

short-range interactions, and the Vlasov     equation for long-range 

interactions.    In the second case we obtain a kinetic equation developed 

29 30 31 by Lenard,     Guernsey,     and Balescu.       With proper assumptions this 
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equation reduces to the Fokker-Planck equation. 

In view of the mathematical difficulties involved i.i the 

solution of the various kinetic descriptions, it is often advantageous 

to replace the more accurate and less mahageable collision descriptions 

by a model that simplifies the solution of the kinetic equations.    In 

Part 3 of Chapter II we consider such a simplified collision model, 

32 
generally referred to as the Krook model. 

The ultimate test, of any theory lies in a comparison of the 

predictions thereof witi experimental observation.    Due to the scarcity 

of relevant experimental and theoretical information in plasma physics, 

.t is often instructive to compare the results of the various theories. 

One hopes, in so doing, to acquire physical insight into both the 

structure of the theories and the as yet unobserved properties of nature. 

In the last three parts of Chapter II we make such comparisons for a 

few illustrative cases. 

In Part 4 we review some recent numerical treatments of relaxa- 

tion to equilibrium in velocity space.    In some cases it is possible 

to compare the Fokker-Planck, Lenard-Guernsey-Balescu, and Krook descrip- 

tions.    From the information currently available we observe a negligible 

difference between the predictions of the first two treatments.    The 

limitations of a single parameter Krook-tyoe model are discussed and 

compared with other results. 

In Part 5 of Chapter II we discuss the phenomenon of electron 

runaway and the contribution of collisions to plasma transport para- j 

meters.    The failure of the Krook model in the description of runaway 

is noted, and the results of a computation using the Fokker-Planck 

description are discussed.    The majority of this cection is devoted to 

i 
I 
I 
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a comparison of the different collision descriptions in the computation 

of the plas-.ia electrical conductivity. For field frequencies small 

compared to the collision frequency, the Krook, Boltzmann, and Fokker- 

Planck results are identical. For frequencies above the collision 

frequency but below the electron plasma frequency cope , the Boltzmann 

and Fokker-Planck results differ only slightly. For frequencies above 

cCpe these collision descriptions breaK. down; the reasons for this 

failure are discussed. For high frequencies conductivity computations 

ba'ed on the Vlasov equation and the first two members of the BBGKY 

hierarchy give similar results, and match the results of the collision 

description just below ^>pe. 

In the final section of Chapter II we present a brief review 

of some recent work on collisional effects in plasma collective 

behavior. Since relatively little work has been done in this area, 

only a few comparisions of the different collision descriptions are 

possible. In general it is found that for wavelengths long compared 

to the Debye length damping is primarily collisional; for wavelengths 

33 
of the order of the Debye length or less Landau damping  predominates. 

Moreover, if a plasma is inherently stable, collisions increase the 

damping of small amplitude oscillations. In contrast if a plasma is 

unstable, collisions may increase the growth rate of the instabilit-. 

In Chapter III we obtain the spectral properties, and deve.^p an 

expansion theorem for the linear Fokker-Planck collision operator for a 

two-component fully ionized gas. In Part 1 of this chapter we take 

advantage of the small electron-ion mass ratio to decouple the equa- 

tions for eoch species. For convenience we then concentrate our 

attention on the ion collision operator and later discuss the extension 
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of our results to the electron case. 

To develop the expansion formula wfe follow the standard method 

of assuming solutions to the kinetic equation of the form 

ffr.t) -  3Afc)e*e(-H). 

This reduces the equation to the form 

where L is a three-dimensional integrodifferential operator.    In 

Part 1 we show that  ReX>o   and X^A-sO as we would expect physically. 

In Part 2 we introduce a spherical harmonic expansion which replaces 

the three dimensional equation by an infinite set of uncoupled equations, 

t-^ 3*/*.   » - "tj** ^j** 

where Ltj^fv)   is a singular integrodifferential operator.    These are 

then cast into a self-adjoint form in Part 3 by introducing a suitable 

algebraic transformation on the functions   V'^ {'^   ^^)    .    With 

boundary conditions obtained by combining the original kinetic equation 

with the conservation laws, we proceed to find the spectrum 

which is continuous and for Z-0,1     consists of all A^^ >o -</£*.</, 

and for /-Z   consists of all   Ah//v^>o   ~Ai**iJ. 

Although the spectral resolution theorem     implies the existence 

of an expansion theorem for self-adjoint operators, there always remains 

tha task of constructing the expansion explicitly.    We turn to this task 

in Part 4.    Since L^^   is singular at vso    and \r-*ac , we temporarily 

replace the interval of ^"aoo  by the interval o^^* ir< v^ «o and use 

a result of TamarMn    to show that i^^   generates a complete ortho- 

normal set on this interval.    To return to the original interval and 
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thus obtain the desired expansion theorem, we use the above completeness 

property together with an extension of the theory of singular differen- 
ce 07 

tial equations. '   This finally yields a continuous, normalizable 

set of functions f i (t  AK-^) that ls co^le*6 w^11 respect to 

functions square integrable in velocity space. Since the set is con- 

tinuous, the expansion has the form of a generalized Fourier integral- 

For \r »(l&/v*)',\e have found asymptotic forms of the expansion 

functions. Finally, in Parts 5 and 6 the extension to the electron 

kinetic equation is discussed, as well as certain implications of our 

results. 

In Chapter IV of this dissertation we develop a theory of 

photon scattering from partially ionized gases. Tho starting point for 

38 
the present discussion is the description developed recently by Osbom, 

which treats photon scattering from a fully ionized gas. The primary 

38 
concern in this work  was with the establishment of a relationship 

between the observed distribution of scattered photons and the dynamical 

and statistical characteristics of the scattering plasma. It was 

assumed that (i) the dynamical variables of the plasma obeyed the 

classical equations of motion, and that (ii) the plasmas in question 

were sufficiently highly io.iized that the presence of neutrals could be 

neglected. 

In Chapter IV we examine the second assumption described above. 

Our motivation in this direction is twofold. First, it is not clear 

a priori when the presence of neutrals will be truly negligible. 

Further, when their effect is significant, it must then be incorporated 

I 39       18 I in a description of the scattering process. Vineyard,  Salpeter, 

40 
and Feyer  have discussed the contribution of neutrals to the plasma 
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scattering function, but each based his discussion on semi-intuitive 

arguments and in no case was a quantitative description developed. 

It was shown in reference 38 that, neglecting relativistic 

effects, the cross-section presented by an electron to a photon having 

frequency^ and direction O- for the scattering of that photon into 

{AJ* co' + dt*.1'  ) and {-Q ') S*-' ■*- <i Q-    ) is given by 

where (7^- is the Thomson cross-section.    The so-called scattering 

function   S/« dJ) is given by 

where 

The normalization is such that  Ne is the total number of electrons in 

the scattering volume, and the function   5e is the Fourier-transformed 

configuration space electron density operator, with transform variable 

& . 

In Part 1 of Chapter 1/ we briefly review some of the more 

38 
pertinent aspects of reference 38. Following Osborn,  we employ a 

classical representation of the density operators and develop and dis- 

cuss various aspects of the classical scattering function- Certain 

properties of a thermal equilibrium plasma relevant to the computation 

of the scattering function are also discussed. 

In general neutrals may influence the scattered photon spectrum        1 

in two ways. The first, and perhaps more obvious, contribution is 

significant when the number of photons scattered by neutrals into the I 
I 
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frequency range of interest is not small compared with the number 

scattered by electrons. Secondly, neutrals may bias the scattered 

spectrum through their influence on the electron density operator. We 

investigate this latter effect in Part 2 of Chapter IV, We approach 

the problem along two somewhat different paths. The first is a simple 

extension of the treatment in ref. 38, to include a neutral species in 

the description. We show that this approach does not lead to a noticable 

contribution from neutrals unless exceptionally high neutral densities 

are present. At this point we take a somewhat different tack, employing 

the simple Krook model to represent interactions with neutrals, and 

leading eventually to a modified scattering function displaying signifi- 

cant contributions from neutrals at neutral densities at least five or 

six oruers of magnitude lower than in our earlier treatment. 

Part 3 of Chapter IV is devoted lo a presentation and discus- 

sion of the classical scattering function, with a;.d without the effects 

of neutrals, for several experimental configurations. Our results are 

in agreement with earlier predictions * *  in that the effect of 

neutrals is to heighten and narrow the central spectral peak, while 

lowering and broadening the so-called electron plasma w'.igs. 

In Part 4 we discuss the implications and limitations of the 

approximations and assumptions employed in the development of our 

results: a few recent experiments are cited as illustrations. Exten- 

sions of the present theory are suggested where such modifications may 

lead to significant differences. 



II.    A BRIEF SURVEY OF PLASMA KINETIC THEORY 

1.    Phenomenological Kinetic Equations 

One of the earliest and still most successful descriptions of 

1 2 a collection of free particles is the famous Boltzmann equation * 

which expresses how   p^  changes in time due to streaming and to 

encounters with other particles.    Here  P   oTjc/tr;  is the expected 

numbe.  of type A particles in «/ ^d ^   about J, if,   at time t, and 

^t   is the force on a particle of type A and ^SF^/f^)*      repre- 

sents the time rate of change of   p    produced by inter-particle 

encounters.    For our purposes we assume that only elastic encounters 

are important. 

1 2 In the classical theory of non-u.iiform neutral gases * 

fSF Aty«   is taken to be the net number of particles of type A 

entering the phase space volume element  </ r, c/i^     per unit time due 

to instantaneous binary encounters.    Thus if g ^y-jfj is the relative 

velocity of a colliding pair, then the flux of particles of type  6 

having velocity J/^ incident on any particle of type A having velocity 

•   is A; f Bfr  *.,*)'^,-^1 
If 0^6^))^   is the differential scattering cross-section, then the 

number of particles of type A scattered out of the phase space volume 

element c/ f, J ^r    intojQ during tit by collisions with type B 

particles is 

- 16 - 
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The number scattered into this same volume in dt  Is 

As a consequence of momentum and enrrgy conservation in the collision 
2 

we have 

and hence 

(JV, <; Ja ^ ^, e) ^ [F VJT,') F6^') - FVr.) FVrOJ^.J^ 

the well-knwon Boltzmann collision integral, 

A binary encounter is often described in terms of the impact 

parameter b  » the distance of closest approach if no interaction is 

present.    This latter quantity is related to the differential scattering 
3 

cross-section tnrough the relation 

where   Jfl- =  fA©ci^J^. 

The derivation of the Boltzmann collision integral rests on 

three basic assumotions, and as yet there is considerable debate as to 

their significance: 

(i)    The collection of particles is sufficiently rarefied so 

that only binary collisions need be considered; 

(ii)    The probability of finding two particles in   jV 

about r   simultaneously is proportional to the prod ^t of 
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their individual distrihution functions; 

(iii) the force  ^    is distinct from the interparticle 

forces, and It does not affect the collision process. 

Assumption (i) implies that the interparticle potential is so localized 

that, for a sufficiently dilute gas, the chances of finding more than 

two particles within "range" of each other simultaneously is negligible. 

While this assumption seems reasonable for dilute gases composed 

of neutral atoms or molecules, it causes considerable difficulty in the 

treatment of charged particles.    The difficulty arises because electro- 

static forces, being proportional only to the inverse square of the 

distance, permit many particles to be within range of each other at a 

given time.    To see this, note that the effective interparticle potential 
4 

for a fully ionized gas not far from thermal equihbnum is 

VAVO  * £*£&. e -
r/^ 

. 4 
where the Debye screening length /A^ is given by 

B 
where 0  is the temperature in energy units.    It follows that the number 

of particles interacting simultaneously is roughly 

r\Al  * A 

or (for a singly ionized gas) 

-3A 
A  -   l(e/8jre*)*'"*J' 

4 
which is usually quite large.      In contrast, charged particles will 

3 
suffer large angle deflections only when   the impact parameter is of the 

order of e%/& , the distance of closest approach in a head-on collisi on, 
1 
I 
I 
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Since -nterparticle spacings are ^ w~ '% the fraction of particles 

making such encounters at any instant is 

Thus the binary collision assumption seems inadequate since it does 

not appear to account for the many overlapping long-range encounters. 

5 6 This was rstuynized by Chapman '    in the calculation of transport 

coefficients for an ionized gas.    Chapman fo'Jiid that integrals over the 

impact parameter diverged for b-*«o  due to the long range nature of the 

Coulomb force.    He overcame this difficulty by cutting off the integra- 

tion at   b       ^ y\"'/3       , and assuming that the »resultant force on a 

particle due to more distant encounters could be represented by an 

internal electrostatic force in the streaming term of the Boltzmann 

equation. 

Cohen, Spitzer, and Routly   sought to overcome Chapman's diffi- 

8 9 culties by adopting a treatment developed by Chandrasekhar '    in a 

study of stellar dynamics.    Chandrasekhar's work was based on Jeans' 

demonstration that when particles interact through inverse-square 

forces, the cumulative effect of the weak deflections resulting from 

the relatively distant encounters is more important than the effect of 

occasional  large deflections.    Chandrasekhar noted the strong similarity 

between the Brownian motion of a colloidal particle and the motions of 

particles interacting via inverse-square forces; his treatment is based 

11 12 on a description of Browman motion due to A. D. Fokker     and M.  Planck, 

While Cohen, et a^   restricted themselves to slightly anisotropic velocity 

distributions, the general case of arbitrary distribution functions was 

considered by Rosenbluth., MacDonald, and Judd.       We present u brief 
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9 13 derivation, following Chandrasekhar   and Rosenbluth, et aj_- 

Assume that there exist time intervals 4t- lonp enough for a 

particle to suffer a large number of weak deflections but short enough 

for the net mean square change in velocity,   </Ajr|i'>   t to be small 

compared with the mean square velocity.    Let  P (£, dif)   denote the 

probability that in the time interval ^t- a particle uf type A   having 

velocity /■   undergo-' a displacement A£ .    Assuming that  P    dc?s not 

depend explicitly on time, the distribution function for the   A^ species 
g 

is then given by 

FYi,!f,f) - j-A-w) r'fx^-isS-M) PV^f-AiVr).   (2.1) 

Since At   and Ajf are -oth assumed small, the integrand is expanded in 

a Taylor's series: 

:fep    ^ ^     ^-^   -V2) 
Using the fact that 

equation (2.2) gives for the time rate of change 0^ F   resuming 

+ -j^^^üy-; 

from the cumulative effect of small deflections I 

1 
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where 

t£]A' JJV^PV/;*^^ 

and so forth. 

Since   ^Vj  represents the mean change in^j/"        resulting 

from encounters durihy /It", we write 

and 

etc,  for higher order terms, where      * = IZ'^'I    is the magnitude of 

13 the relative velocity.    Rosenbluth, et aT    evaluated the Fokker-Planck 

coefficients (2.5) and (2.6) assuming a two-particle Coulomb cross- 

section.    Since the integrals over jfL diverge logarithmically it large 

impact parameters, they followed Cohen et al_   and cut off the integra- 

tion at   b^^x ^ Ap   , the Debye screening length.    After some alge- 

braic manipulation Rosenbluth et al^ obtain 

where 

-F^^jdvr„FV-)^] (2.7) 

l-* rA6- ^x|^a 
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and y^A^g is the reduced mass.    Assuming the logarithm to be a suf- 

ficiently slowly varying function of the relative velocity, the approxi- 

mation is made 

14 
(It can be show?,     that this approximation introduces an error of less 

fhan one percent in the determination of transport coefficients based 

on (2.7).) 

In the derivation of (2,7) only those terms porportional to 

^\ AAA'iave keen retained from the expansion (2.3) and in the evalua- 

tion of the Fokker-Planck coefficients (2.5) and {2.r). All other terms 

can be shown to be down by a factor (M*. -AA^}" . Thus the Fokker- 

Planck equation may be viewed as an expansion in powers of the ratio of 

mean kinetic energy to potential energy at a separation of /\ 0 » and is 

sound for X^ ./Insufficiently large, or roughly 

Equation (2.7) may be transformed into a more symmetric form. 

Since 

x ir   ■> {jiJ^M*^ - A-* rA/T^F&fe'^- Q- (2-5) i 

1 

(2.7) can be rewritten in the form 
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This fo.-m or the Fokker-Planck equation was published by Landau  in 

1936. 

While the above analysis treats the effects of a large number 

of overlapping small-angle deflections occurrinq in the time interval 

tt . '"he form of the probability employed in (2.5) and (2.6) still 

assumes that these small angle deflections are themselves due to binary 

encounters.    Moreover, we have retained the assumption (ii) of the 

joint probability being proportional to the product of the two singlet 

probabilities and have thereby ignored possible correlation effects. 

In addition, the present description explicitly ignores the effects of 

the relatively infrequent large angle deflections.    Both Cohen    and 

13 Rosenbluth     and their co-workers suggested the inclusion of a Boltzmann 

collision operator for impact parameters below an unspecified critical 

value.    At the same time, they suggested the effect would usually be 

negligible.    Finally, we note in passing that the Fokker-Planck equation 
4 

as displayed above may be obtained   by Taylor expandina the integrand 

of the Boltzmann collision integral v.ith Coulomb cross-section, cutting 

off the integrals at    0^     = ^ , and retaining only dominant terms. 

Several authors have presented descriptions which take into 
1 fi   17   1ft 

account the electrostatic properties of the plasma,    *    *       The method 

is to consider a test particle as being subject to local  fluctuating 

electric fields, and then calculating the Fokker-Planck coefficients on 

this basis.    In all cases the results are quite similar, and are tanta- 

mount to incl ,ding a dielectric constant in the functions   f^«  in (2.7) 

An advantage of this work is that the Debye length enters the descrip- 

tion as a natural cutoff distance,   ithout having to be introduced in 

an ad hoc fashion as before.    In contrast, the treatment yields a 
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divergence at small impact parameters due to an improper handling of 

close encounters.    To overcome this a cutoff is postulated at an impact 

parameter of the order of the distance of closest approach^ e /s   . 
19 Hubbard     surrounted this latter difficulty by retaining the entire 

infinite seHeo in the expansion (2.2). 

2.    Kintetic Equations Derived From the Liouville Equation 

The construction of kinetic theories on the basis of phenomeno- 

logical considerations naturally raises questions concerning the 

validity and range of applicability of the various descriptions.    Per- 

haps the most satisfactory scheme for surmounting these difficulties is 

to begin with the most complete (and intractable) description available, 

the Liouville equation. 

For simplicity we consider a collection of /V   indistinguishable 

particles, occupying a volume  V , with no external  forces.    The 

generalization to a multicomponent system is straightforward but tedious, 

and will be indicated by reference where appropriate. 

We define  ^ ^£/,/,• t)     C = ^1)... i N as the /V-particle 

distribution function such tnat 

fN f J W,- 
is the probability of finding the L**  particle in c/V^c/5^.  for each 

of the N   particles, all at time f , Clearly i 

on 
According to Liouville's theorem,       F^ is governed by the equation 

TX ♦• 2_ 1; • — * 2. -    y? = 0 (2.10) 

l 

1 
I 
i 
I 
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where 

f. = r. ir, - 

f/ 

1 2. Y&-) 

7^) - 2     V'Y^-xji) 

and v ^ is the two-body potential. Thus we have 

The information contained in the Liouville equation (2.10) or 

(2.11) is all inclusive but in general is inaccessible because of its 

complexity. A method for extracting useful information has been devel- 

oped independently by Bogolyubov, Born, Green, Kirkwood, and Yvon, and 
A 

is summarized ir Montgomery and Tidman    or in any good text on statis- 

21 tical mechanics such as de Boer and Uhlenbeck. 

To develop the so-called 66(5"KY hierarchy, we define reduced 

probabili;y distributions 

f^ ^ Vs (/   ^r/A-Fw     . s</V.   (2.12) 

Multiplying (2.11) by V    and integrating as in (2.12) we obtain an 

expression for Fg   which involves Fj^,   .    In particular, for s si    and 

S»2   we have 

vt+r,* ^7   "    «v   r '^^ i>r,      sy; (2.13) 

and 

■yf ^(-i H, "^^'^^   '■^ ^^ "^    ^       ^-^    '*SJT- 

= ^ Y^S[n:^f ^ü ^'h ■ (2-14) 
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While the Liou ille equation uniquely determines the evolution of rN 

from the initial condition t\j(t~o)  > the derived relations for  F^ 

do not uniquely determine the evolution of f^   from  ^ fc'0).    Instead, 

the interactions of our S   particles with the remaining ^*s   particles 

are summarized in terms of a typical St-/    particle and we require a 

knowledge of f"^.     to solve the problem. 

We shall now see how, for a given set of circumstances, the 

relations for rj    and ^   can be simplified.    We will make assumptions 

consistent with the ohysical  conditions which we desire to treat and on 

the basis of these assjmptions introduce approximations which are 

designed to retain the pertinent elements of information. 

Our first approximation is of quite general validity.    We assume 

n    to be a large number and expand in terms of  N'   ,    At the same 

time, we allow the volume of the system to become arbitrarily large, 

but such that N/V-n   remains finite.    This removes interactions with 

the boundary, and reduces (2.13) and (2.14) to 

^    . ^F.       _     JL   (nr   J\r.  V/L\   \L All ^. lEl    ^   ^  uvvj \r. v n T^   >ri       ^ j    ^    - Vi:i    ^^ 

and 

(2.15) 

it   * 

I 
r 

t 

A.    The Absence of Correlations.    The Boltzmann and Vlasov Equations. 

Writing    F2 (^1,, C^ if,, ^V)t)     in the form 

T   -    p/V    vr   t) £ A    ^   fW a/f   v    r    vr   -H § 

I 
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where 3 is a correlation function, and taking ^ -o , the s, tem 

(2.15), (2.16) reduces to an equation for r, , 

> 

^ 
t^^-V. - ^S^^^TF'1T7^).(2.17) 

It is interesting to consider (2J7) in two contrasting cases.    In the 

fmt, we consider a dilute gas with short-range interparticle porten- 

tials  V     , such that the effective range of the potential is much 

22 smaller than the mean interparticle separation.    Following Schonberg 

23 and Osborn    , we rewrite (2,17) in the form 

T^ta- ~   ^^  jciVV^^^r/^ f ^  >jr:v   ^^('^,^(2.18) 

which is equivalent to (2.17) since the additional terms are zero as may 

23 be verified by partial  integration.    Following Osborn     we now introduce 

a set of assumptions designed to lend plausibility to the succeeding 

argument. 

(i)       The potential    V     is appreciable only over a suf- 

ficiently well defined region of radius*'«*- such that the 

r^   integration in (2 18) is effectively confined to the 

volume   |x,- Z%1 < ^ • 

(ii)      The length, ^ , is small compared to the mean inter- 
i/3 

particle spacing, i;e,,    ^^     «/  ,    This implies that 

<*.  car. be chosen such that the probability of finding more 

than two particles within   \ distance a.  of each other at 

any time is negligible, i,e., we choose oi so that the 

binary collision assumption is in some sense justified, 

(iii)    The above choice of ct leads to a sufficiently 

restricted region for the spatial integration in (2.16) so 
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that    F/l.iif,,^^ fe.^^)^  F,^,,^^)^^,,^*) 

for all   tt. defined by li:,-^; < c*.. 

(iv)     The product   Fj^OF, Z^)    does not. vary appreciably 

over time intervals of order 

(v)       Two particles within a distance <*. of each other 

will be presumed to be interacting so strongly that they 

may be regarded as effectively decoupled from their 

environment. 

Assumption (v) permits us to interpret 

—   — •^   —    CL ^   —   A. 

i   ^-     :=   - a        V - <5L {■>  yq) 

where ft,   and äV are the accelerations experienced by particles 1 and 

2 respectively throughout the duratiun of their close encounter.    The 

approximation (2.19) plus assumptions (iii) and (iv)  then enables us 

to approximate ehe integrand in (2.18) as follows: 

Evidently we may interpret the velocities {^~<^[t) j^-o. Z ) as the j 

precollision velocities of a pair of particles entering into a strong 

binary interaction, whereas ( ir,;vrv) are the post-collision velocities 

of the same pair.    Introducing the notation 

(V - .* >-  IA  - a   r)   *   /V' if') 
V "l -I      }   "% "^X   L   ' (-11—v/ 

I 
I 
\ 
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we see that we may now approximate (2.18) as 

Note now that nothing in the intearand of (2.20) depends on £v , Thus 

the space integration is readily performed if we introduce the variable 

change £ ^r.'Iv whence 

S' ̂K     .  j ^   . (2.21) 

If we take /?   to be the distance between the two particles during their 

close encounter and introduce a cylindrical coordinate system ^see 

figure (2.1)  ) with z -axis parallel to the pre-collision relative 

velocity, then (2.21) may be written as 

j        (    iJhdf    ]     ^   ' (222) 

The quantity bJW^   is clearly the center of mass differential scat- 

tering cross-section introduced earlier, which we may write as Tjn 

Thus (2.21) may be written as 

Jc/3rr        =   CL   j(rc/n  . (2.23) 

It is understood that the restriction on the range of impact parameters 

as displayed in (2.22) implies a corresponding limitation on the range 

of the angular integration in (2.23).    In these terms then, equation 

(2.18) becomes, for the dilute short-range approximation, 
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Figure 2.1 

Details of Binary Interaction 
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6 

Equation (2.24) is, apart from normalization differences, the Boltzmann 

equation in the absence of external  forces. 

Finally, let us consider again equation (2.17) when   V     is the 

Coulomb potential.    In this case, as we have seen earlier, the notion 

of a binary interaction length 4,  is indistinct when the number of 

particles in a Debye sphere is large.    We could pick a length  «. say of 

order a few timer, the distance of closest approach, but the choice is 

vague.    In this case ii.e potential term would be divided into a "binary" 

term and a "collective" term, this latter corresponding to the force 

term in the Boltzmann equation.    For example if we consider only collec- 

tive effects, then we may regard ♦^ ^ot.pntial term in (2.17) as 

producing an internal electric field which is a function of   r|   alone 

We define this field by 

and write (2J7) in the form 

which is known as the Vlasov equation. 

B.    The Inclusion of Correlations.    The Lenard-Guemsey-Balescu Equation 

It is clear from the foregoing discussions that the neglect of 

correlations in the description of an ionized gas is a simplification 
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which is difficult to justify, and which leads to problems such as the 

divergence at large impact parameters.    Since the 66tf*Y hierarchy 

(2.15), (2.16)..., includes correlations, we might hope that the 

kinetic equations we derive from it will be intrinsically free from 

this divergence.    In the following we present the salient points of an 

important kinetic equation derived from the hierarchy which includes 

24 two-particle correlations.    We outline the work of Lenard     and 
OC Of, 

Guernsey,     which is based on earlier results of Bogolyubov. 

27 We begin with Mayer cluster expansions     of the distribution 

functions, similar to that used in the previous section.    We have, with 

^/V,^)   -   F^I^^M   t   g^t) (2>26) 

and 

F3 O.h^iti = FA*-) P. M FA*) + 

where K   is a three-particle correlation function.    We work in -.he 

so-called plasma limit,   n Ao>>i   . and we further assume the three- 

particle correlations to be negligible (K^o).    We consider only homo- 

geneous plasmas, still with no external forces, so that the various 

F.(C) are independent of position and the correlation functions | 

depend on X;   and   ti  on^y in ^e combination   r = IX^-X,'/. 
26 

Bogolyubov     assumed that as a consequence of the assumption 

3 

I 
y\Ao >'> /   » the correlation functions would vary much more rapidly 1 

in time than any of the distribution functions p(/t'jf)  .    He thus 

I 
1 
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suggested that 

(1)       The distribution functions  Ff(^t)   may be considered 

time independent in solving for ^A')/)^)' 

(ii)     The asymptotic value of the correlation function, 

a^W 00) , represented as a functional of the   ^/Vjt")   may 

be used in solving for these latter quantities. 

(iii)   As a consequence of (ii) the information contained 

in the initial condition would not appear in the   Fj Z''*;^) 

and hence we may take   t\(l'\i) o) s-O , 

Employing these assumptions, Bogolyubov     was able to reduce (2.15) 

and (2.16) to 

H    -iSjV^.jc^l^ ,2.28, 
where (r is a time independent function of P(s R), and is the solution 

of the integral equation 

(2 29) 

whose kernel is 

Kl,*) - ^ ] dt -    vf     - 
»^ >ö **. 

The normalization is  wVF*n   and we take V   » e /r. 

24 25 Lenard     and Guernsey     reduced the system of equations (2,28), 

(2.29) to a single equation for F   by following Bogolyubov's suggestion' 

. - . 
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of introducing spatial Fourier transforms. Their result was also ob- 

28 
tained by Balescu  using a diagram technique; 

--k^j^-^m- ^(4  (2.30) 
where  Q   is a symmetric second rank tensor whose components are given 

by 

Here *S»^/lil. and 

)v  > 

The integrand in (2.31), aside from the d -function, becomes 

independent of ^   for ^^O (large impact parameters), so that the 

integral converges in th's limit.    Thus the incorporation of correla- 

tions in the kinetic description removes, in a natural way, the trouble- 

some divergence at large impact parameters.    For ^   large, the integrand 

behaves as ^~     and hence the integral diverges for k^00 .    This is 

17 18 the same divergence encountered in the electrostatic treatments    '     of 

the Fokker-Planck equation discussed above, and is due to the neglect 

of the three-particle correlation n   when two of the three are of the 

order of e*'/e   apart.    In this case h   is the same order of magnitude 

as the binary correlation c» , and cannot properly be ignored.    To 

achieve convergence in (2.31) it is therefore necessary to make a short [ 

range cutoff, i.e., integrate only within the sphere 

I 
I 
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24 Lenard  simplified (2.31) somewhat by showing that, if one 

neglects contributions to (?,•.' coming from speeds greater than a few 

times (Z6/r*}   ^    Q     reduces to 
>    K 

Q    (S    sj =   -ZtJ^^)   -^   . (2.32) 

The approximation introduced in going from (2,31) to (2.32)  requires 

that fYif)  must be small, for velocities greater than d f^w times the 

thermal speed, as compared with its values at lower speeds.    Equation 

(2,30) with (2.32) is, aside from a missing factor of 2, just the 

Landau form (2 9) of the Fokker-Planck equation. 

We might consider the foregoina as a rather convincing argument 

supporting the use of the Fokker-Planck equation for ionized gases with 

distribution functions satisfying the above condition, and which satisfy 

the Bogolyubov assumptions (i) through (iii).    These assumptions are 

violated, for example, by systems in which F   3nd ^   vary on the same 

time scale.    Examples are the interaction of high-frequency waves with a 

plasma, or rapidly growing instabilities. 

The generalization of equation (2.30) for a multicompc  ant 
4 

system may be found in Montgomery and Tidman,      The generalization to a 

30 constant, uniform magnetic field was worked out by Rostoker,      and is 

considerably more complex than (2.30), (2.31). 

Working with a multiple time scale theory developed by Bogolyubov 

31 
for certain problems in nonlinear mechanics, Frieman and Book     have 

developed a kinetic equation for homogeneous field-free systems that is 

free of divergences for all impact parameters.    For small impact para- 

meters their result resembles the Boltzmann collision integral; elsewhere 
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it is similar to equation (2.30), 

The development of plasma kinetic equations is an active field, 

and it is beyond our purpose here to survoy the topic in its entirety. 

In concluding this seccion we mention only briefly some of the problems 

of current '"nterest in this area, and related work. 

In our derivation of equation (2.30) we assumed a nomogeneous 

s>steni with no external forces. We noted earlier that the phenomeno- 

logical kinetic equations generally assume that inhomogeneities and 

local force fi0lds do not significantly interfere with interparticle 

encounters. While these may oftrjn be valid assumptions, we would expect 

them to fail when length and time scales characteristic of inhomogene- 

ities or of local forces art small compared with zip or^0A^. (the time 

required for the establishmenc of a Debye screening cloud about each 

particle^ where ic. is the thermal speed of the particles. At this 

writing a kinetic equation that includes these generally neglected 

effects is not available. Many attempts have been made to overcome 

these difficulties. Perhans the must noteworthy are in the work of Bchm 

and Pines," Rostoker and Rosenbluth,  Dupree,  and Frieman.   While 

none of these authors have presented a treatment satisfactory to ad, 

their work lends considerable insioht into the problem at hand, and 

often presents novel and significant mathematical tools. Thic; work is 

certainly a good starting noint for the interested leader. 

3. Z4 Simple Collision. Model 

1,'e have so far been concerned with the development of a kinetic 

equation for the description o* ionized gases. While a satisfactory 

theory is yet unavailable, it is apparent from our earlier discussion 

I 
I 
I 
I 

i 
I 
I 
I 
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that the more rig.^ous the treatment, the less tractable it if. in terms 

of analytic solution- In point cf fact, this problem is not unique to 

the study of ionized gases. The Boltzmann transport equation has so 

far been solved only for a few special cases, namely the inverse-fifth- 

power force law suggested by Maxwell, and for certain scattering ker- 

nels relevant to neutron transport theory.   In view of these difficul- 

ties, it is often advantageous to replace the more accurate and less 

manageable collision descriptions by a model that simplifies the solu- 

tion of the kinetic equations. With the current paucity of experimental 

information on fully ionized gases, suclr-a model may often be a good 

starting point for the interpretation of the little information that is 

available. We thus consider briefly a collision model designed to 

satisfy the conservation laws and an H-theorem, and which considerably 

simplifies the mathematical analysis. 

One of the earliest of these models, generally referred to as 

37 the Krook model, was developed by Bhatnagar, Gross, and Krook.   A 

similar but somewhat simpler model was suggested independently by 

38 37 Welander.   The first Krook model, for a single component system, is 

with 
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and 

30ftt)   _   _^   jjV^-j)^ 

where  *  and 0 define the flow velocity and kinetic temperature (in 

energy units) at Ct^t)   , and cr is the parameter of the model. 

The dimensions of Mr are inverse time, and  <r is generally 

chosen to yield an appropriate ccilision frequency on the basis of 

39 phenomenological considerations.       For an ionized gas, 0" is gener- 

39 ally chosen     such that 

^ ^     arrme ^w A u 

While the Krook model is highly nonlinear, it is considerably 

simpler than, e.g., the Boltzmanr collision operator, since the 

distribution function enters in (2.33) in a simple way: as 

F>    ic'VF>   SdVifF)  SJWXF. 
1 
I 

I 

For the particular case of small amplitude perturbations near equili- 

brium, the linearized form of the Krook model permits solution of the 

kinetic equation in closed form for several  interesting cases.     * 

To linearize (2.53) we writ«-1 

&(r,t) = e« + 6 0^lt)i i 

I 
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where €  is a small parameter, and where 

W0   ?M   ,    '       Lv^^^r.t) .  .,£,*).        (2.34) 

2. 
We thus obtain, neglecting terms in   €    , 

+ ^F.^j^lM^fö-^]]12351 

with 

The extension öf the Krook model to a two-component system was 

40 first given by Gross and Krook,  together with an application of the 

linearized version to oscillations in a fully ionized gas. More 

41     42 43 
recently Sirovich,  Liboff,  and Oppenheim  have presented similar 

collision models for a general multicomponent system. While all of these 

models are similar in form, they are not identical. 
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The relationship between the Krook model and the more sophisti- 

cated collision models rests primarily on intuitive grounds. In one 

special case, however, a more direct relationship has been demonstrated. 

44 
For the case of a Maxwell molecule, Grose and Jackson  showed that the 

linearized Boltzmann collision operator yields the linearized version 

of (2.33) if all the non-zero eigenvalues of the collision operator are 

approximated by a single constant which appears as cr in (2.33). 

In Figure (2.2) we have indicated for convenience the relations 

between the kinetic theories discussed above. 

Fig. 2.2 Relations Between Kinetic Theories Discussed in Text 
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4.    Relaxation in Velocity Space 

The ultimate te?t of a theory lies in a comparison of the pre- 

dictions thereof with experimental observation.    At the present writing, 

the scarcity of relevant experimental and theoretical information is a 
2 

major source of difficulty in kinetic physics.      This is particularly 
4 

so in the physics of fully ionized gases   where on the one hand, the 

I 
I 
I 
I 
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maintenance of a plasma and reliable observation techniques still present 

many unsolved problems and on the other hand, tractable theories allow- 

ing for inhomogeneities, rapid temporal variation, and boundary effects, 

are generally unavailable. 

In the presence of these difficulties it may be instructive to 

compare the results of the various theories, with the hope that this 

would lend physical insight into both the structure of the theories and 

the as yet unobserved properties of nature.    In this and the following 

two sections we intend to make such comparisons for a few illustrative 

cases.    Our division of these topics into three separate categories is 

not intended to imply that they are mutually exclusive; it has been 

effected for convenience alone. 

The problem of determining how a homogeneous expanse of gas 

behaves as it approaches equiliu'jm, i.e.  "relaxes," is perhaps the 

simplest problem in the kinetic theory of gases.    The problem is of 

interest here because it focuses attention on the collision operator. 

Perhaps the simplest description of the relaxation process is that ob- 

tained from the homogeneous isotropic Krook model  (2..''S).    Thus if f0 

is the value of the distribution function at t-0   , then 

Ut) -   N0Kt  JV Wo F.>-"'^ (2.36) 

where   F0   is given in  (2.34).    The characteristic time (^y'appearing in 

(2.36) is generally referred tc as a relaxation time.    Due to the 

complexity of the more sophisticated models, a study of relaxation via 

analytic solution has generally not beer; grieved.    While the simple 

Krook relaxation time may often be a sufficiently accurate estimate of 
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relevant time scales, it is easily recognized that the description of 

a relaxation process by a sinqle parameter could often be misleading. 

For example, the rate at which a given distribution becomes isotropic 

in velocity space if initially anisotropic, could be significantly 

different than the rate at which it relaxes to a Maxwellian. 

One method of estimating such rates without actually solving 

the kinetic equation is to single out and consider a single "test" 

39 particle in the gas. This procedure has been employed by Spitzer, ' 

who analyzed various aspects of the relaxation of the electron and ion 

components of an ionized qas, such as (i) removal of angular anisotropy, 

(ii) energy exchange, (iii) loss of energy of a particle by "dynamical 

45 
friction." Böhm and Aller  have similarly presented a detailed 

analysis on the relative importance of electron-electron collisions in 

establishing the velocity distribution of electrons in gaseous nublae 
4 

and stellar atmospheres. Montgomery and Tidman perform a test particle 

analysis by assuming all particles except the test particle have a known 

(equilibrium) distribution. The kinetic equation (in this case Fokker- 

Planck) is then "linearized" about the test particle "distribution," 

and velocity moments of the linear equation are obtained. Relaxation 

times fm   are then obtained by defining these as the ratio of the 

velocity moment M in question to its time derivative, i.e., 

M  

The relaxation times obtained from the test particle approach 

generally depend on the initial speed of the test particle, the relative 

temperatures of the species present, and the relative masses.    For a 
^ 

i 
I 
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two component ionized gas with equal electron and ion temperatures, it 

is found that electrons become isotropic primarily through collisions 

with ions; collisions with electrons play a small role in ion relaxa- 

tion, and the relaxation to equilibrium of an isotropic electron dis- 

trib'ition is primarily due to encounters with other electrons. 

Although tie qualitative conclusions reached in a test particle 

treatment should generally be correct, they do not display all of the 

information available in the kinetic equation.    Hence, in lieu of an 

analytic solution of the kinetic equations, several authors have 

presented numerical treatments for various situations.    MacDonald, 

46 
Rosenblutn, and Chuck     have presented a numerical solution   of the 

Fokker-Planck equation (2,7) for an isotropic electron gas imbedded in 

a positive neutralizino background.    They assumed an initial Gaussian- 

shaped distributeo.i peaked in the vicinity of the speed fz«/^They 

found the tir,«; required for the distribution to come within a few per- 

cent of the final Maxwellian, throughout the range from zero energy to 

several times the average energy, is about ten times the self-collision 

39 time defined by Spitzer     (the mean time required for a therm?! particle 

to eventually suffer a 90° change in direction due to the cumulative 

effects of many small angle encounters with like particles).    MacDonald, 

et a_[ also found, as could be expected, that it takes considerably longer 

to fill out the high velocity "tail" of the Maxwell distribution. 

47 Recently Wu, Levans, and Primack     have studied numerically the 

relaxation of a two-component plasma with initially anisotropic electron 

and ion temperatures, and with initially isotropic (but unequal) compon- 

ent temperatures, using the Lenard-Guernsey-Balescu equation (2.30), 

(2.31).    They assumed that the distribution functions maintain a 
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Maxwellian character throughout the relaxation process, having the 

form 

where 

and that 

% ' eM |   «I \6*'l-e"l*<  I. 
eA„  I 'I      9.x   I 

The results are in qualitative agreement with the predictions of the 

test particle theory, except when   Qe/&{ >• /£>    .    in this jase, the 

anisotropic electron temperature relaxation is governed by collective 

47 phenomena.    Since Wu, et al     constrained their distribution functions 

to the form (2.37), a comparison of their isotropic relaxation results 

46 with those of MacDonald, et jH     would not be fruitful.    We can only 

note that the collective effects manifest in (2.30), (2.31) are impor- 

tant in the relaxation process, under certain conditions of anisotropy I 

A direct comparison of the Fokker-Planck and Lenard-Guernsey- 

Balescu equations has been achieved in another numerical  relaxation 

48 study, performed by Dolinsky,        Dolinsky solved both equations for 

I 
1 

several different initial conditions, for an isotropic electron gas in 

a neutralizing background.    A comparison of the solutions showed a I 

difference of less than two percent, for all speeds and for all time. 

I 
i 
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5. Transport Phenomena; Electrical Conductivity 

Many of the interesting phenomena in kinetic theory involve 

systems that are inhomoqeneous or are subject to external fields. As 

we discussed in Chapter I, the role of particle interactions in such 

cases may or may not be important relative to other phenomena, depending 

on the nature of the system under consideration, A simple and yet 

interesting illustration is the phenomenon of electron runaway, which 

occurs when an ionized gas is subject to a sufficiently strong electric 

field. 

49 Kruskal  md Bernstein     have studied electron runaway using a 

transport equation with Fokker-Planck collision operator.    For simplicity 

they neglected electron-electron collisions, and assumed the electron- 

ion mass ratio to be zero.    Their analysis leads to a decomposition of 

velocity space into three regions, for electric fields greater than a 

critical value.    In the first of these, the low velocity domain, the form 

of the electron distribution function is dominated by collisions  and 

hence almost isotropic.    The second region, one of intermediate velocity, 

is characterized by "quasi-steady" flow in velocity space, for which the 

low velocity region provides the source.    Lastly there is a high velocity 

region, fed by the intermediate region, in which the electrons acceler- 

ate or "run awav" almost freely under the action of the electric field, 

with only a very weak diffusion due to collisions. 

The phenomenon of runaway,  like the relaxation of high speed 

electrons discussed earlier, reflects the rapid decrease of the Coulomb 

cross-section with increasing relative velocity.    It is apparent that 

a simplified collision model that does not take into proper account the 
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nature of the interacting oarticles would here lead to erroneous 

results. 

As we noted in Chapter I, there are many interesting circum- 

stances wherein the macroscopic properties of a system exhibit only 

small variations in times of the order of the inverse collision 

frequency ^e or in space over distances of the order of the mean free 

path Lc      \/vc .    It is then possible to approximate the kinetic 

descript   / a fluid description treating macroscopic quantities such 

as density, mean velocity, pressure, etc, where flows are linearly 

2 4 50 related to the generalized forces driving them. * *  For example the 

electric current is given by the product of the electric field and the 

conductivity. For an isotropic system the conductivity is a scalar; 

more generally it is a tensor. 

Since we are concerned in this work with the description and 

effects of particle interactions, it is instructive to consider the 

calculation of transport parameters briefly. While all transport 

coefficients are sensitive to particle interactions, the phenomena of 

interest here can be illustrated by a consideration of the electrical 

properties of a plasma. In the following discussion we will assume for      I 

simplicity that the system being considered is free from magnetic fields, 

temperature gradients, and inhomogeneities- We will further assume that 

the applied field is spatially uniform; i.e., that (A>>Al) where J\   is 

a length characterizing the field. 

Considerable attention has been turned in recent years to | 

determining the conductivity of a fully ionized gas. The subject is not 

only of interest as a problem in kinetic theory, but is also of practical 

importance in that from a knowledge of the a.c, conductivity one can 

I 
! 

I 
! 

I 
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compute immediately the absorption coefficient for radiation in a plasma 

4 50 51 and hence, by Kirchoff's law, the emission properties.   '    * 

The earliest calculations of electrical conductivity were based 

2 39 on phenomenological considerations,  *       Thus one simply assumes that 

the current carrying electrons suffer, on the average, equal accelera- 

tions by the electric field and decelerations due to collisions.    Using 

39 such considerations, Spitzer     calculates a conductivity assuming all 

current to be carried by the electrons, and neglecting interactions 

between electrons.    He finds the conductivity <r   to be 

<r-   £ll (2.38) 

where A/0   and   v\ are the electron number density and mass, respectively, 

and vc is the electron-ion collision frequency.    We can easily obtain 

similar results with a simplified Krook model.    The d.c.  conductivity 

of a fully ionized gas has also been comnuted using a Fokker-Planck 

7 52 collision operator.    Spitzer, et al^ '     obtained a numerical result very 

close to that given by (2.38) with  vc   the "self-collision" frequency 

defined earlier. 

As we noted above, a significant contribution to the collisional 

processes in a plasma arises from long-range Coulomb encounters, and 

the duration of these encounters is quite sensitive to the relative 

speed of the pü,tides.    While a Krook-type collision model seems satis- 

factory for a fully ionized gas subject to low frequency or d,c.  fields, 

we would not expect such a simple representation of particle interactions 

to suffice for frequencies co  of order v'e   or higher. 

The earliest treatments of the a.c.  response of a plasma 

attempted to overcome these difficulties by employing velocity dependent 
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54 collision frequencies     or collision operators that described a diffusion 
2 

in velocity space.     These approaches were not, however, founded on a 

consideration of the nature of the interacting particles. 

Several authors have computed the impedance 2 - (T"'   of a 

plasma employing the various kinetic theories considered earlier in this 

chapter.    Their results provide an effective means for comparing Ihe 

varies theories.    In Fig. 2.3 we have displayed the quantity RAe/Rt>c 

where r,   is the real part of the plasma impedance 2  , as a function of 

cj/cjf .    The results are given for a fully ionized hydrogen plasma 

with A * 2" t)( lo , where-A  is given by N0 A^      , and are based 

55 on a similar display due to DeWolf. 

For frequencies co well below the collision frequency the 

purely resistive impedance is constant and the results of the simple 

51 52 Krook theory     agree with the Fokker-Planck calculations.       The low 

51 52 frequency resistivity has been computed    *     both including and excluding 

(Lorentz gas) encounters between electrons.    The effect of including 

these is to increase the low frequency resistivity by a factor   ^1,7 

as is evident in the figure. 

56 57 58 
Bernstein and Trehan,     Robinson and Bernstein,      Kauffmann, 

59 
and Shkarofsky     have obtained the a,c. plasma impedance using a Fokker- 

Planck collision operator.    Their results are summarized in Shkarofsky, 

Bernstein, and Robinson.       Marshall      performed a similar analysis 

using the linearized Boltzmann collision operator.    None of these 

authors included the effects of internal "self-consistent" fields; i.e,, 

they did not include the Maxwell equations in their analysis.    The 

results for the Boltzmann and Fokker-Planck collision operators agree I 
within a few percent, and this difference is likely due to different f 

I 
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compiitational procedures.    For frequencies below Vc    these results match 

the d.c.  results, as Is evident in the resistivity diagram,    (For 

frequencies not small compared to the collision frequency the impedance 

has a reactive part »b4»bü»b   reflecting inertial effects of the con- 

ducting charges.)    As the frequency increases past vc   the resistivity 

increases and eventually approaches a constant, independent of «^ ,    For 

frequencies well above vc   electron-electron collisions are seen to be 

insignificant as compared with electron-ion collisions, 

62 When the field frequency exceeds the plasma frequency Scheuer 

has argued that the resistivity should decrease, in contrast with the 

Fokker-Planck or Boltzmann results.    •       When co>co?  Scheuer suggested 

Jiat the maximum effective impact parameter should decrease from the 

Debye length fj/cof    to the length i^-Ao    .    At distances larger than 

vT/co    , encounters do not contribute to the resistivity since they 

are much longer in duration than the oscillations themselves.    Dawson 

and Oberman    *      computed the high frequency impedance of a plasma using 

the simple Vlasov equation including the internal electrostatic field. 

Their results (see Fig. 2.3)) agree with Scheuer's reasoning     for 

co> ojf and join the Fokker-Planck and Boltzmann results    *      for 

co^-^a ' T,1ey observed a slight bump in the resistivity near cü-^ 

which they attribute to the generation of longitudinal plasma oscilla- 

tions.    For very low frequencies their resistivity does not decrease, 

in contrast with the collisional treatment.    ' 

This latter difference in the predictions of the two treatments 

might be interpreted by reasoning as follows.    For frequencies below the 

plasma frequency the dielectric response of the plasma is fast compared 

with the period of the imposed oscillation.    For frequencies in the 
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range Vc<<£o<6c/p , collisions arc too slow to affect the plasma 

response and a description incorporating only dielectric effects, i.e., 

the Vlasov equation, yields results that are insensitive to frequency. 

For lower frequencies the collisions become important and the response 

is frequency sensitive.    Evidently there is a range of frequencies 

below top wh ; ? the collisional and collective, or dielectric, des- 

criptions produce similar results. 

65 Oberman, Ron, and Dawson     have computed the high frequency 

conductivity of a fully ionized plasma by solving the first two members 
fifi 

(2.13), (2.14) of the BBGKY hierarchy using a method due to Guernsey, 

We note that the Bogoliubov hypothesis was not employed; i.e., the two 

particle correlation function was allowed to vrry on the same time 

scale as the one-particle distributions.    The results of Oberman, et 

65 al     are in complete agreement with the predictions of the much simpler 

Vlasov treatment.63»64 

In concluding this section we note some other computations of 

plasma transport parameters for the interested reader.    In references 

57 through 60 the low frequency { uxoJs,) thermal diffusion and 

conductivity, and the viscosity have been computed as well as the 

electrical conductivity, for a plasma having small temperature and 

density gradients and immersed in a constant uniform magnetic field- 

Kivelson and Dubois     have found the electrical conductivity for finite 
CO 

wavelengths using the kinetic equation (2.30) of Lenard, et aK Berk 

nas obtained the conductivity for finite wavelengths. His approach was 

similar to that of Dawson and Oberman, *  Oberman and Shure  used 

the first two BBGKY equations as in ref. 65 to compute the high fre- 

quency conductivity with a magnetic field. The high frequency 
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electrical conductivity has been computed quantum mechanically by DuBois, 

Gilinsky, and Kivelson  and by Ron and Tzoar.   Oberman and Ron 

extended this work to include a magnetic field. The results are in 

agreement with the classical descriptions. 

We summarize briefly the effects of finite wavelengths, and 

magnetic fields. Fo^ finite wavelengths it is convenient to refer to 

the phase speed of th? wave, i^ - oj/'k    where ^5 » lir/X ,    For «/p cr urr 

or less, and co * ^p , the principal contribution to the conductivity 

is electrostatic. *  For greater speeds collisional effects predom- 

inate. At high frequencies, co>^   , collisions are unimportant. In 

69 
the presence of a magnetic field  the conductivity in the direction of 

the field is unaffected. In contrast the transverse comoonents decrease 

with increasing field strength until in the limit of infinite field 

strength no current flows across the field. 

73 
Finally, Klevens, Primack, and Wu  have computed the a.c. 

conductivity for OJ>OJ^ using the Lenard-Guernsey-Balescu equation 

(2.30).    Two specific cases are considered in detail:    in the first, the 

unperturbed plasma has different electron and ion temperatures; in the 

second, the unperturbed plasma is characterizer1 by a relative drift 

between electrons and ions.    For the first case they find that for 

&ef ®C   or  &ir&t* I0* » the real part of the conductivity becomes 

negative.    For the second case they find that if the electron drift 

speed exceeds 1.37 times the electron thermal speed, and if ^•>/'ö7©e , 

the conductivity is again negative. 
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6„ miisional Effects on Small Amplitude Plasma Oscillations 

Until recently, most studies of plasma oscillations have been 

concerned with relatively high temperatures and low densities, as in 

thermonuclear devices, or with very weakly ionized systems such as the 

ionosphere. For systems in the first category the collision frequen- 

cies are generally very small compared with the oscillatory frequencies 

of interest, and this is used as a basis for disregarding collisional 

effects. For systems in the second category collisions with neutrals 

often predominate, and a simple Krook-type model is employed to account 

for these. 

In recent years considerable experimental attention has been 

given to fully ionized, relatively low temperature plasmas for which 

the foregoing collisionless or simple collision model assumptions are 

thought to be unsound. In addition, in the study of high temperature 

unstable plasmas it has been recognized that an inclusion of even very 

weak collisions can have a significant effect on the growth rate of the 

instability. For these reasons there has appeared an incentive to 

treat collective phenomena including the effects of particle inter- 

actions. 

In the following discussion we present a brief review of some 

recent work on collisional e   ects in plasma collective behavior. Since 

relatively few theoretical results are available, the work summarized 

here should be considered as a first step in the direction of under- 

standing these phenomena. In keeping with the objective of the present 

treatise, our emphasis is on the nature and description of collisional 

effects. The multitude of possible collective modes that a plasma may 
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support often makes a generalization of specific results very difficult, 

and fev attempts to do so are made here.    Since a considerable effort 

has gone into the analysis and classification of collisionless oscilla- 

tions, the reader having more than a passing interest in collective 

phenomena would probably benefit by consulting the collisionless litera- 

x- i. 56,74-83 ture first. * 

In the analysis of small amplitude plasma collective phenomena 

it is frequently convenient to Fourier-Laplace transform the governing 

equations, together with the Maxwell equations for tho electromagnetic 

field, and then to solve the transformed equations for the internal 

electric field, from which all other field quantities may be deUr: i    J, 

83 The result is then displayed in the form 

C/^<A =     jj -(i) (2.39) 

where t   is the plasma dielectric tensor (or constant for isotropic 

systems), the elements of ^A are the cofactors of their counterparts 

in 6   , and A/j*) is a vector incorporating the initial conditions. The 
Ar 

dependence of the electric field is given by the inverse Laplace trans- 

form of (2.39), and since tfA and A   are entire functions of S   and i 

83 for many interesting cases,     one is usually interested in the zeroes 

of the determinant  \6 ^i,S^ /       .    Thus setting this quantity equal 

to zero yields a relation between the wave vector k   and the Laplace 

variable $ s ito ff   , and hence one estimates the growth or decay rates, 

etc. of various collective modes (it should be noted, however, that the 

dispersion relation If 1 = ^   does not necessarily imply a one-to-one 

84 correspondence between frequency and wavelength    ). 
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In the following review the reader will note in some cases a 

remarkable similarity between the collisional effects on plasma collec- 

tive behavior, and the collisional effects on transport phenomena 

discussed above. This is, of course, mere than fortuitous. It can be 

shown •  that the longitudinal and transverse dielectric and conduc- 

tivity tensors are related; for S- LM  we have I 

I with J the unit dyadic. 

In an early attempt to treat longitudinal plasma oscillations 

including collisions, Bhatnagar, Gross, and Krook> employed the simple 

I collision model discussed earlier. They treated a one component plasma 

consisting of electrons with fixed ions with no external fields, and 

neglected collisions between electrons. (The assumption of fixed ions 

implies the wave frequency is large compared to the ion plasma frequency.) 

Their results may be summarized as follows: (i) For wavelengths long 

compared to the Cebye length or the meen free path a small change in the 

oscillation frequency was observed as the collision frequency varied 

from zero to infinity; the damping was slow (i.e., //&>«/) and reached 

its maximum when the collision frequency equalled the plasma frequency, 

(ii) For wavelengths shorter than both the Debye length and the mean 

free path the damping was heavy and was primarily electrostatic, or 

Landau damping. 

Lenard and Bernstein  treated the problem studied by Bhatnagar, 

37 38 
et al *  using a pseudo Fokker-Planck collision operator designed to 
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represent a diffusion In velocity space, and which conserved electron 

number density and yielded the Maxwell distribution for the equilibrium 

state.    Their velocity dependent "diffusion coefficients" however, 

increased with velocity in contrast with the true Fokker-Planck coef- 

37 ficients.    Their results are in general agreement with Bhatnagar, et al_. 

87 88 89 Comisar,     Gorman and Montgomery,     Burgers,     and Wu and 

90 Klevans     have treated collisional damping of longitudinal electron 

oscillations in a one component plasma, including both electron-electron 

87 and electron-ion collisions.    Comisar     used the linearized Fokker-Planck 
oo cc 

collision operator, Gorman and Montgomery     used Guernseys reduction 

89 of the first BBGKY equations, Burgers     solved a Boltzmann-like equation 

with the Debye potential replacing the Coulomb potential, and Wu and 

90 Klevans     approximated the first two BBGKY equations and then employed 

a Guernsey-like reduction.    All of these authors obtained similar 

results, which were restricted to weak collisions and long wavelengths. 

The results may be summarized as follows:    (i) A wave length-independent 

damping constant was found for electron-ion collisions, (ii) a damping 

constant porportional to A    was found for both electron-electron and 

electron-ion collisions, (iii) collision damping dominated Landau damping, 

(iv) electron-ion collisions dominate the damping, and (v) a small, 

wavelength independent correction to the oscillation frequency was found. 

In each of the first two cases the damping constant  V   was found propor- 

39 tional to the respective collision frequencies oi'ven by Spitzer.       The 

work of Comisar     has been extended by Buti and Jain     to treat high 

frequency transverse plasma oscillations.    Their results are essentially 

the same as Comisar's. 

The collisional damping of electron plasma oscillations is 
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easily described in terms of momentum transfer out of the collective 

modes, due primarily to electron-ion collisions, and the damping 

increases with increasing electron-ion collision frequency.    In contrast, 

we might expect the effects of collisions on low frequency ion waves to 

be somewhat different, since momentum transfer to electrons is small. 

92 Bhadra and Varma     have investigated col Visional damping of longitudinal 

ion waves using a simple Kro^k model and neglecting ion-electron colli- 

sions.    For equal electron and ion temperatures, the damping decreased 

monotonically with increasing collision frequency.    Their interpreta- 

tion of this result is that since collisions do not transfer momentum 

out of the wave, their only affect i«; to enhanco the propagation. 

93 Kulsrud and Shen     have investigated the propagation o. ion 

waves using a Fokker-Planck collision operator in the limit of weak ion- 

ion collisions.    They found the spatial damping to decrease with increas- 

ing collision frequency cs   with the time damping treated by Bhadra and 

92 Varma,     and calculated the relation between wave speed and collision 

frequency for comparison with experiments on ion waves performed by 

94 Motley end Wong.        Their results are in fair quantitative and qualita- 

tive agreement with the experimental results, but they suggest chis may 

be only fortuitous since they attempted to extrapolate a time-damping 

theory to explain spatial damping lengths. 

We have so far been concerned with waves in isotropic plasmas. 

42 95 Liboff     and Oppenheim     have treated longitudinal electron plasma 

oscillations in the presence of a constant uniform magnetic field. 

Liboff used a Krook model to represent collisions, while Oppenheim 

employed a pseudo Fokker-Planck collision operator similar to that used 
ftfi 

by Lenard and Bernstein.       The two treatments give similar results 
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for long wavelengths and low temperatures, and for magnetohydrodynamlc 

modes, in the absence of the magnetic field.    The results differ, how- 

ever, in the case of "mirrcscopit: Larmor resonance" modes, in the para- 

meter range where wavelength is much longer than both the Lanncr 

42 resonance and the collision length.    Liboff's Krook model     gives an 

infinite number of damped Laf.*ior modes only at propagation precisely 

perpendicular to the e-plied magnetic field.    Cppenheim's model, in 

contrast, gives an infinity of Larmor modes at arbitrary directions, 

except parallel to the field.    Oppenheim suggests this difference 

reflects the velocity-space diffusion property of his collision operator. 

The damping constants found by Oppenheim and Liboff were quite similar, 

being proportional to the collision frequency in each case- 

83 It is wel1 known     that small amplitude disturbances of a 

homogeneous plasma near thermal equilibrium are stable; i.e., any such 

usturbances tend to decay in time.    In addition, this inherent stability 

is not affected l/y the -'nciusion or exclusion of collisional effects in 

the describing equations, or by the imposition of a uniform magnetic 

fiold.    In contrast the presence of currents c," spatial gradient- is 

known     to be sufficient to induce unstable plasma behavior. 

The study of plasma instabilities is a relatively new field but 

nevercheless has received prominant attention in regard to both labora- 

tory and extra-terrestrial phenomena, prime examples being the contain- 
96 97 98 

ment of hot plasmas     and the growth mechanism of stellar flares.    • 

Due to the considerable complexity of the equations employed, the 

analysis of plasma instabilities has generally been restricted to 

colli.vonless treatment:..    Only within th: past two years have attempts 

been made to include collisional el^ect.i.    While these efforts have 

r 

'A 

I 
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been few in number, the results indicate that these effects may have a 

profound influence on plasma behavior. Certainly more work is needed 

in this area. 

99 In an early treatment including collision effects, Kuckes 

analyzed the propagation of low frequency ion waves in a current carry- 

ing plasma without a magnetic field.    Using a simple one-parameter 

collision model, he showed that "collisional effects of the electrons 

can lead to growth mechanisms for these oscillations," while "the 

thermal motions of the ions leads to a damping."   More recently 

100 93 Bhadra,       and Kulsrud and Shen     have reported studies of ion acoustic 

waves, employing Fokker-Planck collision operators in an iterative weak 

collision analysis.    Bhadra       treated waves propagating parallel to a 

strong magnetic field with a perpendicular density gradient, and Kulsrud 

93 and Shen     assumed a homogeneous plasma with a small external electric 

field.    Bhadra found electron-electron collisions to have a destabili- 

zing effect, while electron-ion 'ollisions tended to stabilize.    Kulsrud 

and Shen, in contrast, observed electron-ion collisions to decrease the 

critical current; electron-electron collisions had negligible effect, 

Bhadra       also used a simple Krook model for purposes of comparison; 

he found only a slight difference in growth rates under some conditions. 
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III. AN EXPANSION THEOREM FOR THE LINEARIZED FOKKER-PLANCK EQUATION 

1. Properties of the Equation 

In the first three sactions of this chapter certain spectral 

properties of the collision operator are established. While these 

properties (apart from the reality of the spectrum) are not necessary 

for the later development of the expanjion theorem, they are both useful 

by themselves, and enable certain conclusions to be drawn regarding the 

final form of the expansion. 

For our purposes it will prove convenient to write the Fokker- 

Planck equation in the Landau form (2.9); 

'<e     (3 l) **     f*," >     Lp   or   —/  ar-l 9> 

where 

'^e     1s a positive constant, g svr-vr7  , and X is the unit dyadic. 

It is not difficult to show1 that the Maxwell distributions rM   ^ F^ 

satisfy (3.1) for   3 FV^^O, / = /^ 6 .    In the vicinity of equili- 

brium we may write   F * ^M L' + V'-.^J     •    Neglecting terms quadratic 

in ■£•  we then obtain from (3.1) the linear equation 1 

ß ' * | 

- 60 - J 
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We will refer to the quantity ^ -f'    as the perturbation from equili- 

brium. 

Equation (3.2) as it stands is "n fact a pair of coupled equa- 

tions for fA   and   fg .    Due to the   jite small value of the electron- 

ion mass ratio the equations are however only very weakly coupled. 

Thus for example me effect of the ion perturbation on the electron 

pirturbation is small when compa^d with the effect of the ions and 

electrons in the unperturbed equilibrium distributions.    Tn addition, 
2 

it can be shown    that in the approximation M^» Me t   ue ions act 

like a single component gas.    In the following we will consider the 

equation for   he ions.    The treatment of the electron equation is quite 

similar, and the modifications necessary for this case will be indica- 

ted later.    We have then, 

We will for convenience drop the subscript "i" from F^    and 

T»     .    If-p   satisfies the conditions 

'&^    trf^s yfc^      F^rrl^o, (3.4) 

it is possible to show that (3.4) conserves number, momentum, and 

kinetic energy densities. 

Introducing ffyf) » ^^)e(xp/L^t)       in (3.3), we find 

Multiplying (3.5) by ^  and integrating over ir we have, after a parts 

integration. 
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-pV^-9/pVFMFM'[^-^.o.(3.e, 

The second term on the right 1n (3.6) vanishes provided A    satisfies 

the second of conditions (3.4) and 

ito    ^IA^) =°- (3-7) 

Assuming these conditions hold we exchange^  and y' in (3.6), noting 

that   öftfiTO - Qf<*s\    .    We add the result to (3.6), obtaining 

^^■^■m-'-$■]■ r^-^l. 
(3.8) 

Since  Q   is a real positive quadratic form it follows that the right 

side of (3.8) is real and positive or zero.    Hence >K^=öand  ^ ^ O    , 
3 

Employing standard methods   we can find from (3.8) the most 

general form of fl.  when /\ ■= 0 ; 

^ofe) =   ^^^ 2:v'^ f a3 ; 0.9) 

with  an ^v   and ^3  arbitrary, but necessarily independent, constants 

— • 

2. Expansion in Spherical Harmonics 

From (3.5) we have 1 

I 
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^P     5 J 2_ F. UV'Ff (3.5) 

To perform a parts integration on the second term, consider the quantity 

^•[F^^]=^;^•§^F:^^^.9;^^ta 
10) 

With   FM - M, (V^exK-*.-0;   -(^ "v/ZÖ    . we have 

cT//^- -Z^r F/       '    Also £'- § =?- i      . so (3.10) gives 

>r 

(3.11) 

The first term on the right in (3.11) vanishes if 3,   satisfies (3.4). 

Using the relations 

and introducinp a dimensionless time 7 and dimensionless velocity £   in 

(3.3). 

Vz. r^ ?;.) - ivN0 n-i h^t) c = ^£) 
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the kinetic equation takes the form 

-ih-U^i^i^'e-''^^.     (3.,2) 

The time ^ is measured in units of the "Spitzer self-collision time," 

and c ^/f/    is in units of the rms thermal speed. 

Equation (3.12), in three dimensions, may be replaced by a set 

of uncoupled equations in one dimension by introducing the spherical 

harmonic expansion 

We find (see appendix A) 

(jVe-'V/^r^^r^ 0.13) 

(ci3='e-c'VIs-'/ - I ^r, X,\^     (3-i4) 

Ü^'e-^'U-c'l   =   ^»T (3.15) 

where 

Rhy = j'j.'.^^n-"^ f j^'c'd'/e-'V/ > 

I 
I 
I 
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with ef-fYO « ln-i/x    J*etf>{-yt) .    The expressions for 

R^    and   5^ were found by Rosenbluth ejt al_.,    using a different 

method, for the axially symmetric case  **-*■ 0. 

Combining (3.12) through (3.15) we find 

i,m 

/w 

-z 
Performing the indicated angular differentiations in (3.16) and then 

employing the orthogonality property of the spherical harmonics, we 

obtain the uncoupled equation 

-'U,^ = T" % , fr'" f CI-?C)T'7^^ _ 

C^   ' 1^     2771 KUa-tJC-^Rj- 
(3.17) 

^Z1-! c^3-^)C-^r^.;-ul 



- 66 - 

The index m is clearly superfluous and will be deleted in the following. 

Performing the primed differentiations in (3.17) we find 

^\\'e-^mx-\^ 
HI 

(3.18) 

For boundary conditions we will use conditions (3.4), which were 

obtained from the conservation laws.    Although (3.7) is stronger than 

the first of conditions (3.4) we will see below that the solutions of 

(3.18) which satisfy (3.4) also satisfy (3.7). 

3.    Spectrum of the Radial Equation 

If we introduce the transformation 

g^ <V*') = c'' eeyz % (CM) (3.i9) 



T 

1 
I 
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we obtain from (3.18) the formally self-adjoint equation 

.20) i [p^] +1> ^Sjlit * ft%t.")U<')^3. 
with 

Transforming (3.4) via (3.19) we have 

^*"yzih -o       ^ 

We will later show (Appendix B) that the problem (3.20)-(3.22) is self- 

adjoint. 

The spectrum of (3.20) is that set of numbers \X^ such that 

(3.20) has non-trivial solutions which satisfy (3.21) and (3.22).    We 

have already seen that the X^ must be real, and must be positive for 

X±t   and positive or zero for^<2. 
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We can find the spectrum of (3.20) by ffrst considering the 

related problem 

with conditions on the functions M^^) identical to (3.21) and (3.22). 

Clearly   P    c/P/c/c, and (j^ are bounded and continuous for all finite 

c    except possibly near c-o .    For c« \   we have 

In general we can write 

'o 

and thus ?(<■)> O     for all  c<oo   .    it follows that for J¥ o   , 

(3.23) has a regular singular point at c*0 . 

For c  small, (3.23) has the asymptotic solutions 

J(+\        . ~J 
^^) - c*     )   c'* ^<<0 (3.2A) 

The first of these satisfies (3.22) for all / .    It also satisfies the 

stronger condition obtained from (3.7), M^Cc-^o^) c'  ^u^Cc) - o . 

The second solution satisfies neither condition.    This is clear for 

^/ 0   .    For ,/= Q   , the second solution is a constant which cannot 

be zero since the solutions (3.24) are linearly independent. 

For c  sufficiently large and for ^ ¥o , (3.23) takes the 

asymptotic form 



r 
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We find ( Ä^ > O   ) 

prO^  A^C^Crt^C^-^j) (3.25) 

with   v^   ~   tlAft/fr'/i. 

Given / and Ä^j , equatiün (3,23) has only one rolution which 

satisfies the condition at  c-O ,    This solution thus contains only one 

arbitrary constant and it follows that A^ ;ind Y^   in (3.25) are not 

independent.    Whatever the relation between   A^ and Y^ is, (3.25) 

satisfies (3.21) for all positive /l^ .    Hence the spectrum of (3.20) 

contains all positive  A^ , for each / . 

To determine the spectrum of the integrodifferential equation 

(3.20) with (3.21) and (3.22) we note that  fy C^C)     is a Hilbert- 

Schmidt kernel and the symmetric integral operator in (3.20) is conse- 

quently completely continuous.     According to Weyl's perturbation 

theorem,    the addition of a completely continuous symmetric operator 

cannot alter the continuous spectrum of any symmetric operator to which 

it is added.    Since (3.23) is self-adjoint (see Appendix B) it is 

symmetric, and it follows that the spectrum of each /-component of the 

linearized Fokker-Planck equation contains all positive real  ^^ .    For 

/sQ   and/^»!    we found A^j-o   belongs to the spectrum; this corres- 

ponds to a shift to an equilibrium different from that originally postu- 

lated.    For-te /   the spectrum is CU+/)-fold degenerate, corresponding 

to the {Zj+I   ) different spherical harmonics of order./ . 
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4.   Outline of the Expansion Theorem 

We now proceed with the development of an expansion theorem 

based on (3,20).    Our method is essentially an extension of the theory 

due to Weyl and Levinson,   to include sihgular integrodifferential 

equations with Hilbert-Schmidt kernels.    We give a brief outline in 

this section.    The details are left to the appendix. 

Since the eig^nfunctions of the kinetic equation are bounded 

and continuous on every finite interval, it is natural to pursue an 

expansion formula for functions u{c)   squai^e integrable on the interval 

^: ös c<oo   .   As with the earlier theory we first establish an expan- 

sion formula on a finite subinterval   S  of A   ,   J/ o> * c« ^ o<aj 

lo**} so that the singularities of the linear operator are external to 

i    .    The expansion formula we seek is then obtained by taking /-> ^ 

in a suitable manner.    In the following we will mean by /.A the integro- 

differential operator in (3.20) and by Lj   the operator obtained when 

the lowtr and upper limits of the /ntegral in (3.20) are replaced by m, 

and   t  , respectively.    In the followina the index/   will be retained 

only where it is necessary to avoid confusion. 

We have already seen that P) ?     and Q ai'e continuous on  (T 

and that Kj Cc->c')    is bounded and integrable on the square Oiiczlo, 
q 

okSc^t.    Tamarkin   has shown that subject tc these conditions, the 

solutions of Lfi**-^ which satisfy homogeneous bondary conditions 

ate-=4. and c • k  form a complete orthogonal and normal izable set of | 

eigenf unctions [fi;^ on ^   .with an associated dehumerable sequence of 

reai eigenvalues   5/^^-    Assuming the ^    to be normalized, the 1 

expansion formula on i   is thus 

I 
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*(')*    1   k*    (   <*c*(c^t (^ (3-26) 

where <A(t)   is any function square integrable on   i  , 

We now use the Weyl-Levinson theory to take i-^L .    Since the 

subsequent development of the expansion theorem is in every respect a 

duplication of the earlier theory, we will display only the salient 

features. 

Given X   % the most general solution of /.^ ^ = ->i ^    is a linear 

combination of the two linearly independent solutions, s^y   ^   ,   ^i . 

Thus we can write 

where rjn,    and r^hZ   are complex constants.    With (3.27;, (5.26) 

becomes 

«^ = I I rwr^ t- (^ *(cHt ■      (3-28) 

Following Levinson   we define an Hermitian, positive semi definite 

matrix  fa , called the spectral matrix, with elements /Oj.-.    which con- 

sist of step functions with jumps at the eigenvalues  A^ given by 

/U ('A'"+0) -^ (^ -o) =   r^ r »   . 

Let fifÄ fo)-* fa(X) , and let AYO) be the zero matrix.    We use the 

spectral matrix to replace the infinite series in (3.28) by a Lebesgue- 

Stieltjes integral 

^)»   (     2     ^(^)^M^ß) 0.29) 
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where 

As  ^->A   (that is, a.-*-© , i>-*»oö),   fa  approaches a limit matrix A^   . 

To find P^ let ^-^-N'W ,  6o>.o, and let   Xo.- $,+***$) fa      be a 

solution of  in^~-^P   satisfying the homogeneous boundary condition 

and similarly let   2^ ■= ^ fw^)^ be a solution of the same equation 

satisfying 

Clearly  *V = r.    /<x)/r     ^) and similarly for  ^b , 

As ^-»o and i»-* oo»  ^ and w»t approach limiting values in the complex 

^  plane denoted respectively byv*^)   andw^/^).    These limiting 

values are clearly determined by the behavior of ^,   and ^ for small 

and large   c , for A  complex. 

For §    and  ^ to be linearly independent it is necessary and 

sufficient that their Wronskfan equal a nonzero constant, say one: 

^DH'-^J-f. '3-30) 

This last will be satisfied if ^   and  ^ satisfy the conditions 

I 

where §   is an interior point of £   and   o i(r<7r.    These conditions I 

are also sufficient to ensure tnat    ^   , ^   are entire functions of ^ 

! i 
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for each fixed c on ^ (this follows from Tamarkin ). 
7 

With these properties secured we can find   the limit values M, 

and «^ and hence the limit matrix  fa , whose elements are given by 

t'hM-frJl)   =   ^   ^UM^,^  (3.31) 
7 

where 

MJA) *  1— 

r^, - Moo 

M«^)' irt 
**a M, 

To find the M,^ we need asymptotic forms of ^. and <f.   for 

large and small c   .    These are given by (3.24) and (3.25), as may be 

verified by direct substitution. Taking A , ^ to be asymptotic 

respectively to c ,c t' for c small, we apply the homogeneous boun- 

dary condition to ^ and then take a*>ö to find 

Mo = - c^oc (Ä~o)m (332) 

Thus for // O only Mn. can have a nonzero imaginary part and conse- 

quently only (^ will contribute to the expansion formula (3.29).    When 

X~o   both solutions are regular at c *<?   and the limit matrix is not 

determined until we specify d, .    The boundary condition (3,22) dictates 

the choice (<-O . 

For c   large we tal 3 
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and find ^ by integrating (3.30); 

where  c,   is a constant of integration.    Applying the homogeneous boun- 

dary condition to    ^t s^t^^)^    anc| then taking t ~>oo with 

VvA>0 we find 

ir»     =     y. .- , (3.33) 

Combining(3.31) through (3.33) we have finally 

Since the spectrum is empty for/\t,Jf<o, yo^^i) is constant on this range 

The expansion formula (3.29) becomes 

oc 

*(')= <l>J')^i)#fi>j)Jf>{\t) (3 35) 

with 

( 

i 
oo 

£     -    \   ^^(c^iJc 

The expansion converges in the mean for all functions M£) square 

integrable on (o,oo). If the spectral function P  is not continuous 

at AYi ^o» this point will contribute to the integral in (3.35). 

We return to the description of perturbations from equilibrium. 

If ex^-<'t)f(^,o)  is square integrable in velocity space, the crom 
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(3.19) and (3.35) we have 

e-'^a.r) - 2 UWÜU. ^ e-^1"        0.36) 

with 

i 

L - ^ \^ K t(^ 
and 

The functions   ^    correspond to  6   in (3.35) and are the solutions 

of (3.20) satisfying (3.22). 

We have defined the density, mean velocity, and kinetic tempera- 

ture of the ion gas as being proportional respectively to the first 

three moments of the equilibrium distribution   Fj^   .    J^ P 1S continu- 

ous at /^ «o this point will not contribute to the expansion formul \ 

(3.36) and the eigenfunctions (3.9) for /^ -o   will not be contained in 

the expansion.    By virtue of the conservation laws the functions (3.9) 

will then be orthogonal to (3e36).    Thus (3.36) is complete only if ^o 

has a jump at ^^= 0 for /•* Oj I  .    It follows that the exclusion of 

(3.9) from (3.36) yields an expansion which is complete with respect to 

all square integrable perturbations conserving   y*    t<^if^, and Q . 

5.    The Electron Kinetic Equation 

We have developed an expansion theor    udsed on the uncoupled 

kinetic equation (3.3) for the ions.    The extension to the electron 

kinetic equation is straightforward and requires only a little algebra. 
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As we Indicated earlier we decouple the electron kinetic 

equation from the ion equation by dropping the term (**</M^) 7^/9j/' 

in (3.2), This amounts to neglecting the effect of the ion perturbation 

or the electron perturbation, but retains the effects of encounters with 

ions in the the mal distribution. 

The uncoupled equation conserves electron number density provided 

(3.4) holds, but does not conserve momentum or kinetic energy in the 

electron gai. This is as it should be, since a substantial portion of 

the electron momentum, and a small amount of the energy, is lost to the 

ions. 

Applying the methods of section 1 we find as before P^ ^ « o . 

X^O    • and for X-O   we find J0—  const., corresponding to (3.9). 

The remainder of the development proceeds as before. A spherical harmon- 

ic expansion yields a set of singular integrodifferential equations, and 

the transformation (3.19) brings these into self-adjoint form. As 

before, the expansion formula has the form of a generalized Fourier 

integral. 

If, for example, the ions are protons, then we can take Q«' W , 

If we use <t  in place of o(; in the definition of V and « , then the 

electron equations may be obtained from the ion equations by replacing 

T(c)     in (3.15) by Tfof^Tfa'^c)      where «t • *e/<{•***/ML   . 

6. Discussion 

We ha,«i used boundary conditions obtained by requiring the solu- 

tions of the kinetic equation (3.3) to be consistent with the conserva- 

tion laws.    The Hubert space then emerged as a natural function space 

for the framework of the mathematical development.    The question 
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o 
persists (see e.g., the discussion of Uhlenbeck and Ford ) as to whether 

square integrability should be a requirement on the distribution 

functions from the beginning. In the light of the present work this 

condition does not appear to be necessary, and for our purposes it would 

not have been sufficient. To see this we note the condition 

j^Vl^-PI < oo  leads to 

^  ^3/2 f = 0 (337) 

which is weaker than the corresponding condition (3.4).    Since both 

solutions of (3.20) satisfy (3.37) for/- 0 , it would be possible to 

have an expansion theorem for solutions of the kinetic equation which 

are square integrable but do not satisfy the conservations laws. 



IV,    THE SCATTERING OF PHOTONS FROM A PARTIALLY IONIZED GAS 

1.   Some General Properties of the Scattering Function 

In the first part of this chapter we present a brief review 

of a classical derivation of the scattering function, and discuss 

certain properties of an equilibrium gas relevant to the computation 

of the scattering function.    The rest of the chapter treats photon 

scattering from a partially ionized gas. 

The photon scattering can be characterized   by a cross-section 

describing the effective area that a particle in the sample presents 

to an incident photon, having direction JX and energy to? , for the 

scattering of that photon into a small solid angle about the direction 

-Q- and into a small energy increment about tco'.    It can be shown 

that, neglecting relativistic and dispersion effects, the electron 

cross-section is given by 

where 0^.(9)   is the Thomson cross-section and  £  ,e   and 4^ are 

given by 

with co-sck % o^'^ck't and 

- 78 
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The so-called scattering function S  is given by 

where 

<S**(i,i) " <f (*,<>) f ^»r • (4.3) 

1      /£ 
The nonnalization is such that   N    is the total number of electrons in 

the scattering volume.    It can be shown   that the scattering cross- 

section for ions with mass **£  is of order {^e/^i)'    smaller than the 

electron cross-section (4.1), where mÄ  is the electron mass.    We will 

thus neglect the photon scattering from ions, assuming local charge 

neutrality in the scattering system.    Scattering from neutrals will be 

considered later. 

The function  .öe in (4.3) is the Fourier-transformed electron 

density operator.    Since the  ierivation of (4.1) was necessarily quantum 

mechanical, it follows that the density operators should be described 

quantum-mechanically.    It was argued in reference 1 that the difference 

between the quantum and classical descriptions of the density operators 

will often have negligible quantitative significance.    On this basis 

the somewhat simpler classical description was employed.    We will 

continue to assume the validity of this approximation here.    The reader 

interested in a quantum mechanical description of the scattering func- 

tion would do well to consult the work of Rosenbaum, Zweifel, et al-  '^ 

We are clearly concerned with the electron density operators 

yoe(^,t)       .where 

r'kt)* |JV3<6,^) (4.4) 
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and 

3^,0=   I ^-if^))/^irW). (4.5) 

We seek ultimately the thermal average of the product of the Fourier- 

transformed electron density operators as displayed in (4.3); i.e., 

with (4.4) we wish to obtain 

To compute the thermal average above we follow Osborn   and generate 

a set of equations for the phase-space density operators, which we then 

solve subject to certain well-defined approximations.    Since the 

procedure for generating these equations has been delineated elsewhere, 

we   present only a brief summary here. 

Assuming the dynamical variables of the system obey the classi- 

cal equations of motion, we have 

where 

H - TtV 

is the plasma Hamiltonian. The symbol {  } means Poisson bracket, and 

for any function A  of the system dynamical variables, 
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It thus follows that 

and hence 

Mi)*e-tlh(o) 

In particular, the phase-space density operator ** for particles of 

kind  f\ is given by 

If the plasma Hamiltonian is taken to b? 
w^ N* 

A/",«8 

f Z  T v**(^-**öj (4,7) 

then it is a straightforward matter to show that a^fa^t)   satisfies 

the equation 

Equation (4.8) is similar to eqn.  (11.19) in reference 1, but 

is now generalized to include any number of species In the scattering 

*" system.    Now as in reference 1 we let the average of ^ be   r-4 , 

i.e., 
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and further define the fluctuation operator £<**  , 

Still proceeding as in reference 1 we combine (4.8), (4.9) and (4.10) 

to obtain an equation for the fluctuation operators Tq ^, and then 

approximate this equation by neglecting terms quadratic in the fluctua- 

tion operators. We obtain 

lSl\s. 11$.*. 1.1 ■ i 7 (JWV vA*fi£-*'i) M 

(»[F'd.a^mkW) *S^6i,V)F'i>äW)J =o.    (4.n) 

Equation (4.11) is now further simpl.Tied by assuming that the target 

plasma is in the thermodynamic state, and furth     that the singlet 

densities   i     ,  F   are independent of space and time, and are 

Maxwellian functions of the velocity.    Euqation (4,11) now reduces to 

(x) I Uh'Jlr' V*efa ~*'l) Jj W,*',*) = O.        (4 ,2) 
8   ' 

It follows from (4.2) and (4.3) that we must solve the system 

of equations (4.12) for the rourier-transformed electron fluctuation 

operators as functions of time for all   tT , - «^ < t<aö.    Jo this end 

we introduce respective Laplace transformations   for t*>o and t<o ; 

I 
I 
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hf^f)'   ftie-'U^^t) 
0 p = (T t/'v^ 

V-i*> (t>o) (4.13) 

- 0 (t<o) 

—'^ ^<o) (4.14) 
-O it**) 

where 

$^(^t)- ?g^ + W (4.15) 

and further introduce the Fourier transformation 

We thereby obtain from (4.12) 

w 2 v^) Jc/v mw, p) = tJy/v,^).(417) 

We now divide (4.17) by (   p - tV-y: ), integrate over jtf , and 

define 
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^.p)* Sdw^v*)V) (4.18) 

and 

A,6    -      —^r^-      ;    ; (4.19) 
p-'^ T 

obtaining 

(,wU,)^VZA,eC   '  *   (^y/r-^   •      (4-20) 

Now let ü^   represent the determinant implicit in the system of equations 

(4.20) and let AQ be the cofactor of   ht    ,    Then solving for  ^t   we 

find 

Finally, we multiply this last expression by   S*^   fa,it',p)  , thermal 

average the product, and integrate over jr'   .    These operation- yield 

where 

C? 6Y0) ^ < ff* ^-'/Oig'^if,^. (4.23) 

We now perform the inverse Laplace transformations on (4.22), 

as per (4.13) and (4.14), and employ the Laplace convolution relations, 

obtaining 

[ 

I 
I 
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ff 
±-L( JlZll &M = 

(T-loo 

loo (^><^f)t>Q) 

where we have defined 

Cp-l'eo 

(4.25) 

Wr.ting 

6 6 p0 - D+ +■ a 
6 

we can easily show (provided the interparticle potentials depend only 

on the magnitude of the separation), since ^^ and A  are functions of 

the -A^a only, that V    obeys the symmetry relations 

06/s,J-)= D6^,-?-) = DV-J'.J-)' OV'-V^  (4.26) 

and further 

Combining (4.3), (4.4), (4.10), and (4J5) we have, with 

c/Vc/V'JWe'-' ^^ FMVr) FM7^ - faf^H'Uz), 

(4.27) 

\ 
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where   N   » yv6 * scattering volume, 

+^ (^vJVe^r<r p^e-^'^ £>e^^^^;^ (4.28) 
e / !•• 

Fourier transforming with respect to the time variable as per (4.2) we 

find 

(*)6*y*A*V (^e'ir~r D6^r:)-      (4.29) 

To complete the description, i.e., to portray a given experiment, 

we must specify the interparticle potentials and the quantity 0"     (0) 

defined in (4.23). The complete   specification of this latter quantity 

requires a fairly detailed knowledge of the scattering system, and is 

generally a formidable computational ^ask.    Nevertheless certain general 

properties of O*e{o)  are readily established and are germane to a 

description of the structure of Sf^/ &c$. 

Consider the thermal average of the product of the time-indepen- 

dent density operators for the species (4.8).    With (4.5) or 

(4.10) this quantity may be written either as 

NA   WB 

<:%A(Q)^(Q')>T~<I J £(o-Q*)UQ'~o*))>r   (4. 

or as 

30) 

+ <^Vfi)f3
6^/)>T 

(4-3" [ 

I 
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...._._   «_ - u ^ .    •- --.~.~ ..- —-_...- ,.._   _..,,.„..„ ,  F    are 
c ^ space-and-time independent Maxwellian functions of velocity   r>wi   , 

r- ß r^  . For later convenience we denote 

GAi(Q,Q') ? <;gY«)^^Q'J>r . (4-32) 

Since 

|dsQj3<2'<3Yff)gV^ =/V/v« (4.33) 

by definition of the density operators, it follows that 

^cl*QpQ'CrA*fa,Q') «o. (4.34) 

Our interest here is in the functions   &    , the Fourier transform 

(j^V*)  bei'ng needed for (4.29). 

We begin our analysis by separating (4.30) into two terms; 

<<!*(*)<=!*■ fahr = JA6 ifc-Q'X fl(s-^)\f 

^flUV-^tfr'-Q^r (4.35) 

We take the system Hamiltonian   H * T+V    to be as given in (4,7), and 

define 

where the respective integrations run over the coordinates of all N 

particles in the system.    We now write the second term in (4.35) as 
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where 

and h is the number density of the A      species. 

To determine the functions y^e defined in (4.36) we take the 

gradient of (4.36) with respect to X . 

_ .±T   WV Bv-'i^-i^^^Oe  ^v • (4.37) 

From (4.7) we have 
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1 
I 

and hence * 

Z ^ = I 12     ir 
(r/o( ^D-/l 

^ uA W^.M 

^Z' ^x (4.38) 
^r 

In the following we will neglect the second term on the right in (4.38). 

This term is proportiünal to the force exerted on a particle by that 

same particle, and we expect that the effects of neglecting this term 

will not be manifest in any observable results. 

The relation (4.37) now becomes 

K^Vx.xO 
a* 

r^oc ijO'A (*) 6  ^ '  • 

We now separate this last into two terms; one for or»Ä  ( and hence 

ß - D ) and one for (T^ /S : 
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40) 

MutfB*A>r**jlO=Af<rtß, fr) ^   € 

Recalling tne definition (4.36) of ^   (&)&')   nnd introducing 

the relation (4.39) (
K-v'"onies 

To compute the two-particle correlation functions   v^,     * we 

write r)^       as 

t-r-0^Vi/;   +  ^^Vi.i'.i') (4.41) 

where Kj   is a throe particle correlation. Inserting (4.41) in 

(4.40) and neglecting h^ then yields the system or equations 

—^— ^ i *.   —^r- t 

+ r^ U^y^P ^ (^) -.O . (4.42) 
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1 

i 
i 
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Thus given the system potentials, the correlations may in principle be 

computed from (4.42). 

Two pertinent properties of the n-^  can be demonstrated 

without specifying the potentials. To obtain the first of these we 

introduce a cl inge of variables in (4.42) according to 

r 2 * -*',   r's x"'*' 

This gives 

Equation (4.43) is clearly invariant under the transformation !•*-£ . 

If we now add s constant vector fc. to r such that 

Iltsl   =   |r|) 
Aft 

we find that (4.43) is unchanged.    It follows that )H     is a function 

of l£l   alone; i.e.. 

In the sequel it will be necessary to have on hand information 
»Aß 

regarding the normalization of ^      .    Since the normalization is 

already specified by (4.33), we merely combine (4.30), (4.31), (4.35), 

and (4.36) to find  (j *V^,®') as a function of  io/e : 

4. M^M^'j^feD-^^^. (4.45) 

Integrating now over ( X .*'.£, i^"' ) we find, with (4,34), 
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(4.46) 

or 

We return now to our discussion of the scattering function. 

Fourier transforming  0    (&)%.>)£)£')  $ we have 

where G**(o)   ir given in (4.23). With (4.44) it follows that 

Aß 
and since   **x      is real we also have 

^^.iT^^)»  Cr^?^;^^^). (4.48) 

Combining (4.29 and (4.47) gives 

S(% ^0)=    S^.-ACü) . (4.49) 

It follows easily with (4.27), (4.29) and (4.48) that SCti^a))  is real, 

as we would expect.  W.th (4.28) we also have 

Combining (4.2) and (4.50) we find 

S, oo 

dte-'^ G^YV).     (4.5i) 
o 

Hence when Cr    satisfies (4.50) we can compute the scattering function 
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having Oi ly   ^    for   V> o . 

At this point, instead of inverting the Laplace transform as in 

(4.24) and (4.25), an operation straight-forward in principle but 

genemly Herculean in practice, we adopt a procedure due to Rostoker. 

Thus we consider first the identity 

6 

oo , oo 

S(V)^ jcM \jt 
i(v>-»)t 

S fa *') 
.00 -00 

,00 r- , •© 

_ -L W^ / 
2/r 

'_ C£ 

die {{•»'-»)*    i0,,   i'fv'-»)i 

'Q 

t Ute *]$&) 

= S+(V^ + S. Cv^ 
where 

9 ^ ^) Z     ^ 
00   I  / 

27r   '    I    V-y S^i^O 

(4.52) 

(4.53) 
_ oo 

since 

'O 

_ o© 

(4,54) 

with  I    indicating principal value. 

Now let S+(fc;p), p^iTf/v be the Laplace transform of some 

function, &r i consider further the following inverse transformation 

o-Y-too oo 

>^VA 1        |     ,        ot ^      /        ^   _  jL 
(r-+(>+ ^U^^U^-t; <!»*%{*.'■*) 

ivt 

(r-i»o _ oo 

1 
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>o   ■    =   o, i<o. (4-55> 

_ •<■ J am JQ 

loo '© 

In arriving at (4.55) we have used the definition (4.53) of the function 

S  (* i»)  ' Substituting (4.2) into (/,
155) we have 

(T-j «o -o«    _oO 

- -^ (Ffrfi^x*; =0, t*0. (4.56) 

It follows that  S^. and the Laplace-trans formed correlation function 

for t"> 0 3r8 related via 

^A/VWV)-  ftr^t 6?fart!*). (4.57) 

From (4,53) and the knowledge that the scattering function is real we 

have, with (4.51^ 

We now combine this last with (4.3),  (4.4), (4.10), and (4.22).    After 

Lao'ace transforming the forward scattering term (Zn) n^M   ö(^) 

and noting that 

I 
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^ -      - *.    t-CACO 

we obtain 

T Aß   r^a-'^.^o) 
(4.58) 

2.    The Electron Scattering Function For A Partially Ionized Gas 

I i this section we derive the electron scattering function for 

£ system competed of electrons and one species, respectively, of posi- 

tive ions and neutral atoms.    The extension to a more general multicom- 

ponent system is straightforward but adds considerably to the algebraic 

complexity.    We will continue to assume that the equilibrium plasma is 

characterized by a single temperature crimmop to each species, and is 

free from spatial gradients or external fields.    We present two differ- 

ent treatmentsj with somewhat different results. 

A.    Reversible Theory 

From (4.58) we have, ' aglecting forward scattering, 

^ A^O^^^^^J^li- 
JIL*- (AcA/Aei)fl+ Au)']   0.^7 (4.59) 
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where 

and 

In writing (4.59) we have made use of the identities 

-Aei'Ae = Aee-^CC 

A^ Ap Al* * -Afi* Ai/t AM. 

We have displayed the scattering function in (4.59) in a fonn that will 

facilitate an estimate of the significance of the terms involving the 

neutrals.    To this end it will prove useful to write -A./,.,in the form 

where 

and the sumbol "/)" next to the integral means the path of integration 

is deformed above the singularity. 

To estimate v  i^) when either or both of the pair ( /^ , ß ) 

is a neutral atom, we dssume the potential may be approximated by a I 

Yukawa potential, V^VO v cAb f-
1 e/p^-r/a) 

I 

1 
I 
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where <L  is the effective range of the potential, 

and   £.„  is a constant to be determined.    We have easily 

With K"1 •^■>> ;o_a&^   , »r1-«5«/   and thus 

To estimate the constant ^5 we recall that the center-of-mas^ differ- 

ential elastic scattering cross-section for the pair ( ^ , 6 ) having 

relative momentum  t H   is given by 

^(fe)= j^^df 
where/A^g  is the relative mass.    From (4.61) it  follows that, in the 

energy range of interest,   crA6pO  is approximately isotropic.    Writing 

8 x where     (rp is of order   l-ZOcwv   , we have 

To estimate the various terms in (4.59) we assume wK**Y and 

take «^ to be the mass of the C     atom,  w»^ ^ 2. S'^/c'    «Vwv . 



98 

Assuming for simplicity equal electron and ion densities, we have, for 

*   .     **    A 

^ ^^^'^^V^)^^ ^ 

A 
A, A* ~* b jr.. v o.9>io'a$r:Vc~)^* (4.62) 

Here  9 is the laboratory scattering angle, 

1*1*   l*-i'/  * fnA-'V* f 

and appears only in the argument of the sine, in contrast with the 

kinetic temperature, also denoted by  G . 
q 

Noting that   the quantity in square brackets in (4.60) is of 

order one or less for all values of ACO/*L£ , we find {for A- 6915 A   ) 

-2?- 
V   \. 6* IO~      (e** 

y'Uv^ '"1 ^+ [/^j    *   Y.^/0-"^ 
(4,63) 

and 

It is clear that the quantities in (4.62) and (4.63) are smaller for 

larger  rv\h(or »v ) and are largest (about a factor of twelve "iarger 

than the abofe values) for a hydrogeneous scattering system. 

I 
I 
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To determine the significance of electron-neutral correlations 

in the scattering function, we must estimate the magnitude of the 

quantity (see (^45) and (4.59)  ) 

G? '     ( Z  T* .r r TTT:    TIT   > ("•") {jtre*'1 [**&)-**'] 

where we have assumed  »% = f*{ .    To facilitate computation of the 

pair correlation functions Wi      appearing in (4.64) we introduce the 

assumption that the average distance between any pair of particles is 

large compared with the effective range of the cnarge-neutral or 

neutral-neutral potentials.    This range being typically of the order of 

lo" e**, the assumption implies particle densities small compared with 

/O1*1 ^"^ .    Under this assumption it follows that the contribution 

of neutrals to the correlation between charged particles may be 

neglected.    We thereby obtain from (4.43) a pair of equations for 

hi*(r)   * ^x  (0   .    Taking advantage of (4.44) we can write these 

as 

d 

dr      -^ r^1        0   dr\dr |r-r'|       ' 

where  ^e  is the ionic charge and y\e ~ <?;** .    The equations above are 

similar to a pair of equations treated by Lamb     for a singly ionized 



- 100 - 

gas; with^'»!   Lamb's equations coincide with ours.    Followinci La^b, 

we first perform the angular integrations and then differentiate with 

respect to r   .    The result is a pair of differential equations 

The system (4.65) permits a non-trivial constant solution. 

Taking 

^e - A . *ie * ^ ) 

we find 

A, *   ft Ax . 

Lamb     has shown that for distances  f large compared with   e?'/&    , 

the first derivatives in (4.65) contribute negligibly to the solutions. 

Neglecting these terms, it is then a simple matter to show by direct 

substitution that the functions 

satisfy (4.65) provided  8)   = -fcj&j, and where 

^ Q- 
We thus take the solutions of (4.65) to be 

a A r» 01 
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1 
I 
i 

The constants f\x, 6-^ are determined easily with the normalization 

conditions (4.46), so that finally we have 

<^^H^' + '- if] 

*£(')   '   ^£  [^^ *>-   f] (4.66) 

where H = Ne tN'    . 

To estimate the significance of electron-neutral correlations 

as per (4.64), we write r\Ce fr) in the form 

where   y    is a function that we expect will differ appreciably from 

zero only for   r'< <*.'*'lo     o**., & of the electron-neutral 

potential.    The normalization condition (4.46) gives 

-I pWYO - JJ - ^t^V 

Substituting the abrve form of ^v^' together with *t from (4.66) 

into (4.64) now give:, neglecting the contribution from terms in '/^ 

(which corresponds to the neglect of forward scattering) 

With £ ^■X"*'^ ('?/. {o"5^)     where ^ is the photon wavelength, we 

approximate the integral above; 
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Thus finally we have, with   \~ J-x lo~^ c~*   , 

o^'vfar* A^ 

>\e 

^,--1). 

We a^ now in a position to estimate the magnitudes of the 

terms involving neutrals in (4.59). First, we note from (4.62) that 

A^v» /-Au' 1S negligible unless v^/** A-IO'2"  or larger. In such 

cases the total light intensity scattered by the electrons is greatly 

exceeded by that scattered by the neutrals. Since our interest here is 

in the influence of neutral atoms on the electron scattering function, 

and since we do not anticipate an experiment in which scatterinn from 

electrons could be observed at such extreme density ratios, we vill not 

consider these extreme cases here. 

It follows from (4.63) that (4.59) may be further simplified 

provided 

—   <<:  1°     .    (4.67) 9 far} QfAr) 

13   -»/ Since particle densities do not generally exceed lo   <w (e.g., 

y^Cr lo  ^for graphite; rvn'.v \'j,8ri6far) c*~,~^    at atmospheric pressure), 
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1 
I 

we would expect (4.66) to hold for almost all plasmas of interest here. 

Thus when (4.62) and (4.63) are satisfied (4.59) reduces to 

1 (k ^ 1 
where now 

The dependence of the scattering function displayed in (4.68) 

upon electron-neutral correlations (the term containing    Cx9    ) disap- 

pears when 

     <<    \0       . (4.69) 
QM 

If in addition the condition 

^(^) *e^-äV^'*) .   <fr _^ i      << \o 

holds, then  AgwJAwc«  /        and (4.68)  reduces to the result' for 

a fully ionized gas.    For   Y\* t* [o1-* c^~^   , (4.70) becomes 

 TT^—      «Z^22. (4.71) 9 M 
It is thus apparent that, unless very high neutral and electron densi- 

ties are present, together with relatively low temperatures, the present 

theory does not predict an observable effect of neutral atoms on the 

electron scattering function. 

(4.70) 

.1 
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Before abandoning our quest for an observable effect of neutrals 

in the spectrum of electron-scattered photons, we turn to a somewhat 

different and more realistic formulation of the scattering function. 

B. Irreversible Theory 

It was noted in Chapter II above that, since there are generally 

many charged particles within range of each other simultaneously for 

most plasmas, the effect of close binary encounters may often be 

neglected. In this case one may represent the effects of particle inter- 

actions by an appropriate electric field term in the kinetic equation. 

In contrast, we would not expect such a "field representation" to be 

suitable for the representation of encounters between particles having 

ranges of interaction that are small compared with the mean interparticle 

distance. In the following discussion we adopt a scheme outlined in 

Chapter II designed to give a more realistic treatment of the inter- 

actions between charges and neutrals than that employed above. 

We begin with equation (4.11) for the fluctuation operators of 

the A      species; 

Y^.m3*6';r;-o ^ ^A^)^y;^^o. 
(4.72) 

At this point in ref.  1 and in Part 1 above, the assumption of thermal 

equilibrium was introduced for the target plasma.    Before doing so here 

it is convenient to exploit the difference between the relatively 



I 
I 
I 

-  105 - 

long-range Coulomb forces between charged particles and the relatively 

short-range ch?rged-neutral and neutral-neutral forces.    To this end, 

and with an eye 01 our ultimate goal, we multiply (4.72) by Sf&'^'o) 

average the result,  "»nd introduce 

r'Vv*',-^) zf^tfay^Y^h.  (4-73) 

We thus obtain from (4.72) 

We now introduce a change of variables according to 

V»«. v^ -» ^ v^ «U C».    t 

so (4.74) takes the form 

•tAr'h^KW) t^W&'V)!-*. (4 75) 

In writing (4(,75) we have suppressed the dependence on the 

variable  x'   .    Our identification of the Integrand in 

pl'fo)   -    ^K^Hi^ifW^ (4,76) 

as the equilibrium phase-space correlation function for the pair 

(  ^, e ) implies that  P   (0) is a function of £   and »/ only.    It 
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follows from (4,75) that P    [i)   Is a function of  r  , £   , and t   alone. 

The identificalicn of 6-Mftft) , 

&At~   fdVP^Vl.^tr) (4.77) 

as a time dependent correlation function, and the relatio'iship between 

the scattering function and the space-time Fourier transfonn of   ^ee 

has been exploited aoove.    The description of    P       by a linear trans- 

port equation, as in (4.75^ has been suggested on the basis of a semi- 

intuitive argument by Nelkin and fihata«,     and has been employed by 

them and by Yip and Nelkin ^ in a study of slow neutron scattering 

13 from liquids and dense gases.    Recently Van Leeuwen and Yip     have 

derive^ a similar kinetic equation for  P  0  , for short range pott.itials, 

from the cluster expansion of a one-particle distribution ^unction. 

At this point we introduce an approximation into the treatment 

of the charged-i.eutral and neutral-neutral interactions.    This leads us 

•iltimately to the b'nary collisio.i description attained by Van Leeuwen 
13 1112 and Yip,     and employed by Nelkin, et aK    *       We thus adopt the 

treatment outlined in Chanter II in going from equation (2.17) to the 

Boltzmann collision ihtegral  (2,24).    Thus the terms in (4.75) involving 

the relatively short-range neutral interaction potentials V  "filS'l) 

are approxinated as in Chapter II by a linear Boltzmann collision 

integral, and (4.75) becomes 

^ 18-. !£:' - JL } 6wv" ^pV ■ 

I 
I 
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pi* 
and similarly for   I      .    At this point we introduce the assumption 

that the target plasma is in the thermodynamic state, and hence that 

the singlet densities   F    , F    a^e independent of space and time and 

are Maxwellian functions of velocity. 

We have argued in the preceding section that electron-neutral 

correlations should, under most conditions, contribute negligibly to 

14 the electron scattering function.    It is worth noting that Salpeter 

has argued semi-intuitively the- pair separations which are small 

compared with both the photon wavelength and the Debye lergth contrib- 

ute negligibly to the soectrum of photons scattered by electron 

density fluctuations.    This is in good agreement with the experimental 

15 observations of Ramsden anH Davies.        This suggests that, since the 

electron-neutral correlation is significant only for separations of 

order }0   &**.  or le^s, it would be reasonable to ignore electron-neutral 

correlations in our computation of the scattering function.    A somewhat 

different argument in support of this assumption is suggested by the 

observation that fluctuations induced in the neutral distribution by 

»•ecoiling electrons should be insignificant     Referring to (4.73) we 

see th-. neglecting neutral fluctuations implies neglecting electron- 

neutral  correlations.    With these assumptions (4.78) becomes 
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ifC N n" 

>t       ^      5 r ^e        >iC      *! ^-   . j 

- ^ ^V'Ua/y-rV^lMV^r^^^O-^WP^r,^^ 79) 

and similarly for I       .    It is apparent that the neutral species colli- 

sion operator in (4.79) conserves both electron and ion number densities, 

but does not conserve total momentum and kinetic energy in the system, in 

contrast with the collision operator in (4.78) which satisfies all three 

conservation laws.    This, of course, results from our neglect of 

fluctuations in the neutral distribution. 

An important consequence of the collision approximation manifest 

in (4.78) or (4.79) is that while (4,75) is invariant under the time 

reversal transformation t->~T , £-*"£, these last two equations are 

not invariant     We will return to consider the consequences of this 

irreversibillty shortly. 

Ue now introduce a further approximation into the collision 

description in order to avoid the complexities of the collision opera- 

tors in (4.79) in their present form.    We thus replace these operators 

by the linearized version of the simple single parameter collision model 

first proposed by Chatnagar, Gross, and Krook,     and discussed In 

Chapter II above.    The model is constructed to satisfy, in this case, 

the requirement of number conservation for each species, preserves the 

irreversible nature of the ebove description, and provides a considerable 

simplification for the subsequent analysis.    Finally then, the kinetic 

equations that we use are 

I 

1 
I 
I 
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hPee 

tif 3r 

cc 

c/y 

^r (e 

>i +- w ma 

1  i ^ r djf 

- V M M Vr)jcivrlVr(^-r,7r(^ 
(4.81) 

The parameters   •>|V'C ,    y1*1 are clearly    lectron-neutral and ion-neutral 

collision frequencies.    Fourier-Laplace transforming (4.80) and (4,81) 

as before, we eventually find, with (4.77) 

^(£,P)= A^O^A-r-^Sl^j 

-    A    An]- )     p-^ifif^v ̂ ( (4.8?) 

where 

_0 

A   - 0 + Aec-v*!<l*)(l+A{..^Il*) -ACe^ei, 

(4.83) 

(4.84) 

and 

A Aß -     ^ 
v*V*) 

e 
i- ff>tv**)JlAl 

(4.85) 
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The functions   P     (*, v^o)   are obtained from (4.76) and the Fourier- 

transformed equilibrium phase-space correlations.    Thus with (4.45) and 

(4.66) we have, neglecting forward scattering, 

P'e{*,£,0) = NeMW[l-{nh.)-'ll* (*rf'']     (4.86) 

and 

where  ^6 is the average ionic charge. 

As a result of our having employed an irreversible theory in 

the description of the correlation function, it is readily shown that 

this quantity is not symmetric under the interchange  i-^-tr, in con- 

trast with (4.28).    In addition (?ee(^;t) diverges exponentially for 

^->-4o so that the integral in (4.2) does not exist.    To overcome 

this difficulty we follow Nelkin, et ah,    *     and prescribe a behavior 

for negative times different from that we would obtain by solving the 

system (4.78),  ( Pfe, P'e) for   t< O .    The prescription ensures the 

convergence of (4.2), yields a real scattering function, as it must, 

and the result is symmetric in K   and A ^ as required for classical 
5 

systems/    The prescription is 

O^fz.-t) ~  6-ec(*tt). (4.88) 

Fourier transforming (4.78) for both specie? we can show 

With the symmetry property (4,83) we can now compute the 
i 

1 
I 
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scattering function as before using only the Fourier-Lä; lace transformed 

electron correlation function for  t >  c>     .    Thus with (4.59) and 

(4.82) we eventually obtain 

Sfc,^) -*"'&   ^   A"'« 

(*) [^^['VT^fof1-^^^?^^^ 
>}:)(■ 

*XllL .1"! fci     /-rprv-)^ 
(ity)(xM) 

(4.90) 

where 

^= [(^>T)rU)v I1' (f>^)rf]-^v 
(*) t f- r^fcr4'-^-"H-^- 

and 

^tok^/r^^^ 

i ^ 0^fi)[lrfK^?J 

It will prove convenient for computational purposes to write 

(4.90) in terms of  dimensionless   variables.    We thus introduce the new 

variables 

-I 
yf=   flKXo)' )     f ^  Aco/cope   >   -h*  =  v*y<U)fe. (4.91) 

where 

>   ^ T Off!) . 
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We obtain from (4.83) 

n/. '•'   /'ia.V'"-/'f^-'A (    ——s— 7 

(4.92) 

where the complex function 

q 
is the plasma dispersion function tabulated by Fried and Conte   and 

The scattering function now takes the form 

(4.93) 

60 (2?/iH)?;[/-,?^'^r- ¥^^r]- 

-z?{-^)V^ (4.94) 

with 

and" 

^/O'-z^t^^ ^t. 
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i 
I 
f 

The scattering function displayed in (4.94) will differ negli- 

gibly from the result for a fully ionized gas   when the imaginary parts 

of the arguments of the functions    -B/'O,"Hiw   are small compared to 

unity; 

(%)'%V «   I   - (4,90 

To secure an estimate of when this condition holds, we write the 

collision frequencies   V**   as 

where    (ro      is of order one to ten cm   as previously.    With (4.91), 

(4.95) becomes 

tr0     tr x lo 

< 

or 

« 3.5^ lol? (4.97) 

For photons emitted by a ruby laser ( X- 69lj2A    ), this can be 

written as 

    «  H.67(lol   c^-l (4.98) 

Comparing (4.98) with (4.66) and (4.70) we find that the 

scattering function (4.94) obtained with the irreversible theory will 
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display neutral atom effects at neutral densities at least five or six 

orders of magnitude lower than those necessary to see these effects in 

the reversible result (4.59). In tne following seztion we describe and 

discuss the photon scattering function as displayed in (4.94). 

3. Photon Scattering From a Partially Ionized Gas 

In this section we discuss the results of the previous section 

for various plasma configurations. For convenience we take **V = ^^ 

To obtain quantitative information regarding the scattering 

function, it is necessary to claculate the real part in (4.9+). To this 

end we write 

^;- /?A-aA)   £;- ^-'^      (4-39) 

and define   *» s/^vA^V     . and 

*, = ('- rS'tt - 7'^/Jc)     ^ ßci-i-jt) 

h = ir'% - fJ'Ri) h -* d^ + K ii) 
(4.100) 

v\tM A z(l/\+<j.i)/     as per (4.93).    After some algebraic 
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manipulation (4.94) becomes 

%l*t&co) ~ (**)  Lie)   ^J        -p - JZ {4J01) 

where 

* 
Using tabulated values of KA t KA   » ^ and  X^, we have com- 

puted 0 as a function of ^ A^/^pe for different values of-/   and 

*j£)'
ui*'      .    Some typical results are plotted in Figures 4.1 through 

4.3.    To enhance our understanding of these results, we now develop 

approximations to (4.103) in various limits.    To this end we employ 

both the power series and asymptotic expansions of the plasma dispersion 

9 J. ' function.    These are, respectively,   with   t-X-hi^f f 

%(t)- i:7t,^e'tl-2t[i-2t%/3 i-W/itr-'-J   (4 103) 

and 

where 

(t) -  lrTrlUe~^~ r^l + 0/7i%)ffyM^:j{*.m] 

I 
| r ^     j   I     '   J  = O      . (4-105) 

I 
I 
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Consider first S as a function of J(  .    For J« / collective 

effects play a negligible role in the scattering process. With (4.103), 

(4.101) reduces under this condition to 
* 

I - 'Y*' % 

This is     ii.tical in form with the result of Ghatak and Nelkin.       For 

^^-o , (4,106) reduces to the well-known ideal gas form 

- *-' {^f^P [-«eßvMVze]  _ (4.107) 

For'»jK>0    , the scattering function given in (4.106) becomes 

narrower and increases in height as ^e increases in magnitude. 

For ^» /   , wvf« / , y** fa/"eft and ^^W^/   or 

less, (4.101) becomes 

S^^)^   Zfi/1 (**)-'(QTki-  -     ,  .^L,    ■     (4.108) 

This last is similar to (4.106) but now the scattering electrons are 

strongly coupled to the ions, and the ion mass replaces the electron 

mass in the scattering function, resulting in a narrower scattered 

photon spectrum. 

Next consider 5 with the condition 

X*\i~if\«\) Y -^t - (4J09) 
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When (4.109) holds we find 
ilx 

(*) (4.110) 

In this case the center of the scattered photon spectrum is dominated 

by a relatively narrow "ion peak" provided 

^/'•'*>(2VJnf\) 

or 

^>i(/^)"i-r/-'. (4.111) 

I 
I 
I 

Under the appropriate conditions the scattering function will 

have a resonance at the electron and/or ion plasma frequencies.    Thus 

for/( ^ 3     t'le<<l    and f'W    or larger, $   takes the approximate 
* 

forms 

ft) ejzJzEMll 
[l -C^tfJ * + * {%T (Zf;jf'%f[-Z{r%^] 

(4,112) 

Irf f/Y^)^"'« 

(*) l>-(&}\(^)^2(^fl] - ; (4.113) 

* The reader will note that, because of the two afferent asymptotic 
forms (4.105), the form (4.112) cannot be obtained from (4.113) with 
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I 
The resonance at ^cj-<o^is  apparent in (4.112) and (4.113). It is 

clear from (4.113) that the effect of collisions ^s to inhibit the j 

resonance effect, as we might expect. The height of the resonance is 

Inversely proportional to «»^ while the width Increases as "i6 

increases. 

For /»■ I   , v^f'1'/ , and ^^ = 0  , we find 

M, 

(.) 'Xfl-bV'^fJ (4., 14)       ' 

where 

and A» yv* is the electron number density as before. For 7*/^ we 

find a form similar to (4.113). 

Finally, consider the scattering function in the limit of very 

strong collisions. With ^»^ .-/«vvY»/, and **%* I t S   takes 

the approximate form 

Hence in the strong collision limit collective phenomena i 

are unimportant (except possibly for vw S ^ I ; see (4.110) ), as 

we would expect. The effects of electron-neutral collisions dominate, 

and the approximate form (4.115) of the scattering function is similar 

1 
I 
! 
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to (4.106). 

In Figure 4.1 we have plotted the normalized scattering function, 

for a single ionized ( 4. • = /   ) gas of carbon atoms, vs, f   as a 

function of the parameter X  for *|e* ^ ~0   (zero effective neutral 

density).    The general qualitative dependence of o on the value of -f 

is clearly apparent.    Ford« I    , S  has the Gaussian form (4.107). 

ForJ^s- I   the resonance at f'i* /   is present, becoming narrower and 

higher as J  increases, as per (4.112).   When f is small the effect of 

ions dominates in S as suggested by (4.110) while an incipient ion- 

plasma resonance is evident in the vicinity of   mif »/*fS*fclf */ . 

For ^ »■ (   , S approaches the "strong coupling" form (4.108). 

In Figure 4.2 we display the normalized scattering function, as 

in Figure 4.1, for /-I,l3 as a function of the dimensionless collision 

parameters /17£ » '*|('  •    ^or convenience we have assumed tt6-»**»^   ; 

from (4S96) this implies equal electron-neutral and ion-neutral colli- 

sion cross-sections, i.e. tr,,*6 - (7"</
a.    As j£  increases relative to/"' 

collective effects are seen to disappear; the resonance near ^«o-^^e 

becomes lower and broader as per (4.113).    When ./^es*>/ , £   approaches 

the form (4.115).    Figure 4.3 is similar to Figure 4.2, only for 

To understand the behavior of the scattering function when 

'yS/wy i we have computed o  for a few values of ^  with -/-A/«0   , 

when {i)J^e^o,3tJmy-sO,lt and when (ii) Ae=ö, /, Aiy«^    The 

results are displayed below in tabular form.    It is evident that 

changes in the ion collision parameter have only a very small effect on 

3 in the vicinity of f := /   .while changes in the electron parameter 

similarly do not significantly disturb o for f   small. 
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Figure ^.1 Electron scattering functions for a singly Ionized carbon 
plasma, showing dependence on the parameter / » (2ttAj))~l. The results 
have been normalized to the ideal electron gas scattering function at 
6 = ^u/cupe ■ 0. Broken line represents ideal ion gas scattering func- 
tion for i » 5*25. Effective neutral density is zero for all cases. 

I 
I 
I 
I 
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Figure k.2   Electron scattering functions for a singly ionized carbon 
plasma, showing the effect of neutrals for i = (SK^D)"1 ■ 2.55. The 
results have been normalized to the ideal electron gas scattering func- 
tion at 5 = ^cuA^pe ■ 0. The parameter if  is defined by T)e ■ v^/co-g 
and it is assumed that v116 ■ (mi/me)1/2vnl. The broken line represents 
the approximate form (eqn. (4.115)) -^r irj6 = 10. 
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Figure 4.3 Electron scattering functions for a singly Ionized carbon 

plasma, showing the effect of neutrals for i = (2K^D)  " 1.18» The 
results have been normalized to the Ideal electron gas scattering func- 
tion at I = te>/o>pe  ■ 0. The parameter r\^  is defined by T)e = vne/(ü . 
The broken line represents the approximate form (eqn. (4.115)) for 
n6 » 10. 

T 

I 
I 
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Table 4.1 

Comparison of Scattering Functions for 

Difverent Collision Parameters 

S-SCW-f);^!.^ •   1 -3 -2 
0 J 5 x 10 ^ 

1.21 1.14 0.986 

SfQ.^ o.S) Qt992 0<85      1<23 

^. ^0. /) 
0.998 1.09 0.81 

S(fr.3,0.3) 
0.83 1.12 0.989 

This is as we would expect; when 

where V^^«^^;) \he function 2| is well approximated by the leading 

terms in its asymptotic form (4.105) and electron dynamics dor-'nate ion 

dynamics in the scattering function.    Similarly when 

/f -    £%*  « / 
^9 

ion dynamics play the dor   ant role.    These observations are reflected 

in the approximate forms (4.110), 4.112), and (4.113) of the scattering 

function. 

In most experimental situations the scattered spectrum is 

observed as a function of the shift &X in wavelength from the wave- 

length of the incident photons.    Consider for example the differential 
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I 

photon scattering cross-section as a function of ^ for ruby laser 

photons {A* him A ),, for a singly ionized carbon plasma with 
i 

>i«./o'*«.-'and 

From (4.1) we have, converting to wavelengths, 

r^^Ajrö^ ^«O^^frV'S^AA)^^) (4.ii7) . 

where A^^/A^A .    It is clear from (4.*il6) and (4.117) that ret   r- 

ing the terms in AA/A  yieV' a cross-sec;ion ch     is asymmetric ai^ut 

AA aO i for constant K   . | 

Comparing (4.116) with the scattering function as displayed in 

Figure 4.1, it is evident that, for constant K , retaining ^/ä   in | 

(4.116) has the effect of increasing the height of the peak at f» + / 

and lowering the peak at f« -/ .    In addition, the upper peak is 

shifted nearer AA-owhile the lower peak is shifted further away. f 

Since it is not the scattering function but the cross-section that is 

measured, however, we must also account for the factor ((+-AA//A    )"3 J 

in (4.117).    Clearly this factor will contribute to a lowering of the 

upper peak and an increase in height of the lower peak.    The two effects 

are thus competitive. 

For the example at hand we have found the net effect to be a 

5.9 per cent decrease in amplitude of the upper resonance, and an j 

equal increase in amplitude of the lower resonance.    In addition, the 

location of the upper resonance is shifted about 1.3 percent closer to 

£A »0 while the lower resonance is shifted the same amount further 

I 

I 
f 

I 
1 
I 
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away.     [ { 

We have so far neglected contn'bytions to the scattered photon 

intensity due to elastic (Rayleigh) scattering of photons from the 

neutral atoms. For simplicity we characterize the spectrum of neutral- 

scattered photons by the ideal gas, or Doppler scattering function. 

The ratio of light intensity scattered by neutrals to that scattered by 

electrons is then 

■v 

(rrM
e %UlbcS) 

JK 
(*A/*e*)     >  ^Z^' 

^   5. ^ / ^ (4'118) 

where ^>{\t,hc^) is the electron scattering function discussed above, 

and 

CTfl   ^ /ö'1    fi^ytfaneJi' 

is the Rayleigh cross-section.       It is evident that scattering from 

neutrals is unimportant when 

Moreover when scattering from neutrals is significant, it is cl^ar that 

the effect will be manifest in the observed spectrum only in the 

vicinity of the central ion peak; i.e,, when ^co«<VpÄ. 

From the foregoing discussion it is evident that the scattered 

photon spectrum will contain electron plasma wings whenever 
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A = (l\o.vTl * \) 

In addition, collisions with neutrals eliminate the wings when 

It thus follows, with (4.96), that the wings should be observable 

whenever 

4. Discussion 

In the preceding analysis we have employed a treatment based 

on a temporally irreversible kinetic theory to describe the effect of 

neutral atoms on the spectrum of photons scattered from electron 

density fluctuations in a partially ionized qas. Our analysis was 

12 13 quite similar to that suggested by Yip et al^ *  for a description of 

neutral particle (i.e. photons or neutrons) scattering from moderately 

dense neutral gases. We remarked in Section 2 that an analysis based 

on a reversible kinetic theory predicted neutral atom effects only at 

unusually high neutral densities. ~ 

18 A recent experiment reported by Greytak and Benedek  provides        ^ 
1 

striking quantitative support for the irreversible treatment.    These 

authors observed the spectrum of 6328^   photons scattered from thermal I 

fluctuations in neutral gases near standard temperature and pressure- 

I 
I 
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Their observation of a symmetric pair of spectral lines located at 

kX'xtlo' A   is in excellent agreement with the theoretical predic- 

12 19 tion of Yip and Nelkin    *     for scattering from neutral gases.    These 

resists clearly contradict the predictions of the reversible theory, 

i.e., a Gaussian-shaped spectrum, at the relatively low densities 

{Y\ «• Itio1^'1) involved. 

We have assumed in cur computation of the classical scattering 

function that each of the particle species could be characterized by 

a Maxwell velocity distribution with a common temperature for all.    R)r 

many experiments this assumption is invalid, and could lead to errone- 

ous conclusions.    The extension of the present work to allow for 

different component temperatures is straightforward but adds consider- 

ably to the algebraic complexity.   While such considerations are beyond 

14 20 21 *the scope of our purpose here, we note that several authors    *    * 

have investigated the effects of unequal temperatures for a fully 

ionized two-component plasma.    They showed that the scattering function 

for such a system c*n be qualitatively different from that computed 

with a single temperature model,    In a recent experiment Kronast, 

22 14 et al    have employed Salpeter's results     in a measurement of electron 

and ion temperatures in a theta pinch.    For their particular experi- 

ment they found Be /9i^o,^, 

in our development of the electron correlation function 

in Part 2, we tacitly assumed that the inclusion of close encounters 

(collisions) between charged particles could be neglected.    To lend 

support to this assumption we employ a simple Krook model to estimate 

the significance of Coulomb collisions.    From the analysis of Part 2 

it is evident that these effects should be negligible provided 
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(%T^«^ (4•95, 

where now 

A       Ä       ^C 
*•     «    .:,— (4.120) 

with  v* the Spitzer collision frequency     for charged particles, 

Vc   *      Brme^yLA (4J21) 

Here^ is the reduced mass for the pair in question and we assumed 

for simplicity a singly ionized gas.    Combining (4.95), (4.120), and 

(4.121), the condition for neglecting Coulomb collisions becomes 

(4.122) 

I 

3 oq 
where A» A A©    .    Since-A  is generally a very large number,     we 

would generally not expect Coulomb encounters to be significant here. 

(Ron, Dawson and Oberman     and Fante     have recently estimated the 

effects of Cc jlonb encounters on the electron scattering function u:ino 

somewhat different analyses than the simple model employed here,    li'iey 

found the inclusion of these effects produced a change in S  of the 

order of .A"1 ). 
i 

The principal result of this chapter is the electron scattering 

function for a partially ionized gas, as discussed and displayed in 

Part 3. It is apparent that fo- given values of *il  , "j*  ,   t;  , 4 I 

end A   t  the scattering function as a function of ^A is uniquely 

delemlned. Cven sc. we would not '.c-sct that a single experiment I 
I 
I 
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could serve to measure all of these quantities for a qiven plasma. 

Our results apply for instruments with infinitely sharp 

spectral resolving power and uniform average plasma density over the 

scattering volume. Average density nonunitenuities and the finite 

resolving power of instruments together with the natural width of the 

incident photon beam will add to the width of the observed spectral 

structure and it may be necessary to take these into account in a 

given experiment. 

In addition to the extension of this work to allow for different, 

componenent temperatures, it would be most interesting to consider the 

effects of magnetic fields and small spatial gradients, for fully or 

partially ionized gases. 



APPENDIX A.  INTEGRALS 

Let®   be the angle between s  and  *' .    Fron; tl.e generatinf 

function relation for Legendre polynomials we have 

l£-£'i''  -   (cl + c'*-2cc'c*i@] 

and similarly for c •c'. Writing ^{^ ~1E%KJ„\J'*     and employing 

the addition theorem for Legendre H lynomials, we obtain (3J3). 

To find (3J4) we use the relation 

-/A 
\J 4- X1- - 2tyj       *     Wx x   [/ ^ xl ' 2xy7 

-  ^(^[/^x^-ZxJ' l -l/i (A2) 

Combining (Al) and {A2) we have 

i//l 

and similarly for c* c7. From the pure recurrence relation for 

Legendre polynomials we have 

(A3) 

(A4) 
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I 
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Combining {A3) and (A4) and then using the addition theorem as before 

we find (3.14). 

Finally (3.15) is obtained fror (3.14) with JM^M » hob» 

with it    the Kronecker delta. 



APPENDIX D.      THE SELF-ADJOINT PROPERTY 

Let I;  be either (i) the differential operator in (3.20) or 

(il) the Integrodifferential operator in (3,20) defined as in 

Chapter III, Part 4 on the closed interval  &'. *zc s h    t o< a,   t 

t < oo   .    Let i6  be similarly defined on (o,»©).    Then in either case 

(i) or (il) there exists a complete orthonormal set of functions JV«] 

on  I   , generated by Zj^*-/\^ with homogeneous boundary conditions at 

«.  and  b  J»2 

Let  T and «?  be any nonzero functions square integrable on 

( o)co)t and consider the inhomogeneous problems 

IjHf /u -f,     lj v+/W «  j > (Bl) 

with the same homogeneous boundary conditions at   «L and  fc  as in the 

above homogeneous problem.    Let Kv/l/o so that A will not belong to 

the spectrum of the set ?^] .    Then the problems (Bl) have nontrivial 

solutions 

ioo    Ikr 

with 

f^^V^)^, ^ h^^M^.      (B2) 

Now let 

132 - 

I 
I 
I 
I 
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with Sik  and CJ   as in (B2).    Multiplying t^. by g*  and t^f by f   and 

then integrating over <f  we have 

->    J.k»! A   -  A 

r^ w^^M) (B3) 

and similarly 

Since (3.24) and (3.25) are asymptotic solutions for both the differential 

and integrodifferentlal equations, the limit matrix fi^  Is the same in 

either case. Taking X"*A in (B3) and (84) we have Pr.*.« /^n   ^ 

thus 

(B5) 

After taking ^-^«oand employing (81), (85) becomes 

'ft 'A> 

which is the desired result. 



APPENDIX C.  PROOF OF THE EXPANSION THEOREM 

This proof is based largely on the so-called Weyl-Stone- 

Titchmarsh-Kodalra-Levinson theorem, as outlined by Yosida,    and by 

Coddlngton and Levinson/*   Our goal is an expansion theorem for real 

valued continuous functions K^O   in (0,00) with  ( «te /M^)/ ««^   . 

The expansion functions are to be the solutions of the linear integro- 

differential equation 

Here P« ?&)> P  t and /<« Kj are real and continuous and F>0 t (o^oo), 

and  )    ) dedc'lKfa*')! <<*> .   The function Q^tyfc) is real and con- 

tinuous, is regular at ^=0 for^/aO   , and has a regular singularity 

An expansion theorem based on the solutions of 

which satisfy homogeneous boundary conditions at o<a.   , t<oo  has been 
3 

established by J. D. Tamarkin.     Our task here is to extend the interval 

( ^ b ) to the interval  (*,«? ). 
- ■ 

Preliminaries. Tamarkin's Results 

Let i./   represent the linear integrodiff^rential operator in 

(Cl).    The following properties have been demonstrated by Tamarkin. -*• 

(i)     For a fixed complex A    let   (/•   ,  ^ represent a pair of 1 
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linearly independent solutions of  [.£<£*~A$ » real for "aal /\   , satis- 

fying the conditions ( ) 

(C2) 

Then  4>
l   ,  ^v ,  ^   , ^    are entire in A   for every fixed c  on ^   . 

(ii)   For the self-adjoint boundary value problem 

Lf $ ~ ~ Af 

(C3) 

there exists a sequence of real eigenvalues //^J; and a complete ortho- 

normal set of eigenfunctions f ^X In terms of these functions the 

expansion formula for any CA f ^ («) is 

«^ = Z ^tJ')   { <*''"(''>&(''>. (C4) 

To extend the interval  ^.'(Aj 0  to UfO)0*) we proceed as 

follows.    Since   ^  , fx form a basis for the solutions of i^»-A^ 

we can write 

where  r^ , ^^ are complex constants.    With (C5), (C4) becomes 

Now define an Hermitian, positive semi definite matrix fa   , called the 
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spectral matrix, with elements fa*     consisting of step functions with 

jumps at the eigenvalues A^   given by 

We let Pft0) be the zero matrix and define fa away from the eigen- 

values by fiffMo) *ftfA). We employ the spectral matrix to replace 

the infinite series in (C6) by a Lebesgue-Stieltjes integral; 

where 

^ - (V^)^^). (C8) 

As  $ * A (that is, a.-^o , l-»6d),  fa  approaches a limit 

matrix fa .   Our task to to find the matrix fa  and to prove the con- 

vergence of the expansion (C7), (C8) in the limit. 

Weyl's Limit Point and Limit Circle Theory 

For any number >v)b , the expression ^^-^-t^^satisfies 

equation (Cl).    We now choose r*\h so that ^   satisfies the boundary 

condition 

at the point   b  .    Then »<►  must satisfy 

(C9) 

dßh^A) + P^^'^l) 

1 
I 
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Note that the one-point boundary condition (C9) has not restricted   A 

to real values,    Since   fii  *   fx * 6,    . and   tfx   are all entire functions 

of A »^b ß) is a meromorphic function of  ^ .    It is readily shown 

that every zero of the entire function   %y is real, and hence all the 

poles of w\,,/V0lie on the real axis of the /\-plane.    Consider Mb as a 

function of A  ,  b   , and A .    If we let *» ^6  and maintain A   and *» 

at fixed values, we can write  w^ as 

w   =  -   iLlJL   . (cio) 
b C7f0 

Since 

where ^b^h^) is the Wronskian   of   ^  , ^x evaluated at  b   , the 

transformation (CIO) is a one-to-one conformal mapping which transforms 

the real axis of the ^  -plane into a circle  ^"b in the compl :x v* fA) 

plane.    Therefore if ^A *«o/c>    , thenHb//i,0 varies on the circle 

C^fA) with a finite radius, as ^   varies over the real axis of the ? 

plane. 

The equation of the image of the real axis,  ywv? =©   t is 

found from (CIO); 

(A*tt:**!)(Si-0*,)~'(AtC^)(g*fif*t)~o) 

or (Cll) 
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which Is the equation for ^t /VO .    It follows «asily that the center 

of Ck is Äw , 

and the radius is 
3 

; 

^ ^ M ST^I . (cl2) 

For the moment let   ^   , ^-  satisfy i-x^.•- /l,cj}, ^ ^,s'^x^ 

with A, ^ /lx .    Then the symmetry of /.f   permits demonstration of the 

Greens formula, 

Now with ^j = /\x= /\    and by virtue of (C2), | 

1 

Wsf^O- ^(iA) = '• !cl3) I 
Further, with   (J, ('c)A

,,^= (p^A), <Plfi/H')= rftfa A) , and making use t 

of Greens formula, we have 

's ^^ 

-.•n4 0,AA)A<V,i7 I 

I 
Combining (C12), (C13), and (C14) we obtain 

I 1 
I 
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fJA) ^    Jjl^l \s l^j^^J kA-^^öj   (C15) 

Lemma 1. If co*)**A7*0 , then the interior of the circle £\> {*) is 

mapped onto the lower half plane of the ? -plane by the transformation 

(CIO). 

Proof.   Since the real axis of the  ? -plane is the imagt of the 

circle Ch (A) by the transformation (CIO), the interio.  of C^fA)  Is 

mapped onto either the upper half plane or the lower half plane of the 

?   -plane and further, the point at infin.ty of the YS\ -plane is mapped 

onto the point-IWVA^V^AA)of the   t -plane. 

On the other hand, we can write 

„ <0   \\h(')*)l Jc (016) 

This means that - PAO^j, A/AVW^A) belongs to the upper half plane of 

the ? -plane. Hence the point at infinity, which is not contained in 

the interior of ^v /A), is mapped into the upper half plane. This 

proves the lemma. 

Since ^s^/.^J»/. the transformation (CIO) has an unique 

inverse which is given by 

Bs^fA) y^K^^/y; .        (c17) 

In view of Lemma l,if\v^/l=^o>o, m belongs to the interior of 
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the circle tb M if and only if Vn *<0 » namely,  i(2~2M)>o. 

From (C17) it follows that 

Therefort»,  l^ 2<ö    if and only if 

I'^M^M*^^*) > ö. (C18) 

By Green's formula we have 

*t fvy/s^th.^^/t^/)- VKfa^ktf^tfJj   (ci9) 

and from (r2), 

**  rVA* 

^ (C20) 

Combining (C18, (C19), and (C20) we have 1 

Lemma 2.    If ^o « ^ A> O t then w\ is interior to the circle C*fA) if j 

and only if 

i 
i 



- 141 

^ ** 

CO        5 

3 

and ** lies on Cy» M^lf and only if 

(Note:    it is easily shown that Lemma 2 also holds when com ^ /t<0.) 

It follows that, if YA is inside   £k , and  k^W , then 

Hence ^ is also in ^z , even though the centers of    C±   and C^* 

may not coincide.   We thus have 

Lemma 3.    The circle C^, contains £y for b^l) and ta A ^o. 

It follows that, as  b-^oo , the circles c:b   converge either to 

a limit-circle or ':o a limit-pcint.    In the limit circle case we have 

from (C15) that <fi^ is iY^00) * the säme property is readily demonstra- 

ted for  ^  . 

Next consider the boundary point    OL , o<"«.<<> .    For an 

arbitrary real number o(   , the boundary condition 

at the point <*. with   ^ = TI^^K $\ » determines 

and also the circle ^V/Vj , described by the equation 

V^i%^ K. ) »O . (C21) 
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Similarly as in Lemma 2 we can prove 

Lemma 4. If ^«V^/t^o , then w lies on the circle C^fK)  or in its 

inte- ior depending on whether 

[ \U'A^k('>^c Ä-  - CO 

or 

Similarly as in Lemma 3 we can prove 

Lemma 5.    The circle ^/ contains  Q for «><a/ and VA/I^. 

As before, as«.-*©   the circles C^ converge either to a limit- 

circle or to a limit-point. 

The Limit Matrix   <>* 

Recall that 

Let   d   , $x be solutions of L^-'A^ satisfying the conditions 

* 

For the self-adjoint boundary value problem { o< a. t y<oa) t 

Iff ~ - A<p 

Wß, (f>fy) t faß ?(h) (fi'ß)  ~o (C3) I 

I 
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there exists a sequence of real eigenvalues ?4^? and a complete ortho- 

normal set of eigenfunctions J^? . The expansion formula for any 

function ^ £ f i«0 is 

Vv /ÖL 

(C4) 

Multiplying (C4) by tSfc)   and integrating over i   gives the Parseval 

relation 

{C22) 
ä M    '    *. 

Similarly if MrrO; ^£) f ^V*)    then 

)^<: "J(C)4(^  = Z j^^W ^«[jj.^ ^*J^     {C23) 

Employing the representation {C5) and the spectral matrix yOj , {C22) 

may be rewritten as 

-00 y;^ 
where 

Mfk    '    ( JCHM^^JA) . 

Applying the Parseval relation (C22) to any continuous function 

(A on {o oo)  which vanishes outside some interval Sl   , contained in 

i    , one -. btains 

f,^)l^.   (j  ^(»^)it(x)     (C25) 
0 -w J /Irs:» 

where 
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Let   ^»^.fvM^^j,   be a solution of /.f^ ^-/1^» )vvi/) T'O 

satisfying the boundary condition 

and similarly let ^ -T/^^br1», be a solution of the same equation 

satisfying 

Then M^ and w\b lie on circles c^ and   ch in the complex ^ -plane 

whose equations are, respectively, 

K (**,%?) =0,     K fa, Vt) ~0 . (C26) 

It is easily shown   that Green's function for the boundary value 

problem (C3) is ( )^AJ 0 ) 

where vv^f/i)-Mb//\)= W^X^'y   The Parseval relation in the form 

(C23) is now applied to the functions J 

yielding I 

I 
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From the definition of  G> it follows that 

(C28) 

■ht,*)        c>s 

and 

ICrgJCjclA)] MjA)jC^yA) ^s 

fAjA)^k(€hA\ 
(C29) 

?('*)l**JK)~^fAS] 
c >S 

Using (C?8) and (C29) and Green's formula, the integrals in {C27) can be 

evaluated.   For example 

(where we have made use of (C26) to arrive at the second step).    There- 

fore 
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(C30) 

Similarly 

r b 

and hence 

(W^^^^rOc/^   ^ •        (C31) 

In arriving at (C31) we have used the fact that ^ (&, If^j^^which 

follows since both X^ and ^  satisfy the same boundary condition at 

^ ; similarly %(%h)k^^o  . 

Recalling the definition of the spectral function Aj, we combine 

{C27). (C30), and (C31); 

d* 

J.OO 
where 

M7^       —23— 

Mr,, W = ' 
f"     "   '      W.^- ^V/Ai       ' (C3?) 

We can similarly show that 

I 
f 

I 
I 
I 
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»c 

(C33) 

where ^(, is given by {C32) and 

From Lemma 2 and Lemna 4 we have 

Thus for a fixed A » Vv /I ^d; ^vA) and w^/X) are in oppostie half 

planes.    Suppose/i*i in (C33).    Then points *V/V) lie on a circle ^. 

which is in CT,^ for^*^ whereas points m^/V) lie on ^^  which is in 

C%s/-i,for i>3s/lt    Thus there is a constant )?,> o   such that 

l*v/t')-*\/V)/> t, for  ^< -I    , t> %{   .    Since ^A /«*) and wk /»•)   are 

uniformly bounded for ^ < 4-   ♦ t1* H   » ^ follows from (C33), and the 

definition of the  ?HA that 

Thus for v>o , 

f/J^kA)/< t^^1"). 
-V 

This last together with hfJo) =0   gives 
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I 

We are now able to prove the existence of the limit matrix PA  .    For 

this we need the J 

Helly Selection Theorem.     Let   ?^M.   v\*/,2t..., be a sequence of t 

real nondecreasing functions - *o<X*- *« , and let fift) be a continu- 

ous nonnegative function on the same interval.    I" 

\K(X)\~    Ufa) y»r),l;...;    -txxJit.oc 

then there exists a subsequence ^MjJ   and a non-decreasing function  h 

such that 

and | 

It follows from (C34) and the Helly Selection Theorem that there exists I 

a sequence of intervals   ^    (%0, t*"* foj0*)  and corresponding 

boundary conditions prescribed by d*  , ^   , such that^^ ^) tends 1 

to a limit f>Ajkfi)t w-*00 .    It is easily seen that the limit matrix 

fa   . like ^j, is Hermitian, is positive semi-definite, and is of 

bounded total variation on every finite /\   interval. 

It remains to establish an explicit formulation for /^   .    From 

OO 

I 
I 

(C33) we have, with A^-n'co and  ^-*• A , f 

CO j     (A-A)   ^c<?x   ' I 

1 
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Let  Ai   , Ax be points of continuity of fo   .    Then integrating the 

above with (j^o   held fixed and finally taking co + o , we have 

0[\\kf*)^- ^ r/^k^ 
^I^-1^)-^"^^ 

-.0*9 

where M^ji   is given by 

/ M All 
*>oo/A^ -  rvi^/1) 

If both points A. ♦o   , h-^o0  are in the limit point case, w» 

and **«o are unique and It follows easily that A^    Is unique.    If either 

point is on a limit circle, the spectral matrix Is not unique without 

the specification of a boundary condition at the point in question. 

Whether a particular case is limit point or limit circle is readily 

determined from the asymptotic solution and the expression (C15) for the 

radius of <rk  or its analog for CK . 

The Parseval Relation in the Limit $-*■& 

Consider a function (*/0 having a continuous second derivative 

on oSC<oo t an(i which vanishes outside some Interval   «T,   , contained 

in  <(   .    Then applying (C25) to LfH we have 
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,*? , •<*>/i       z00 r /•« 

^Lt^L ' i^J/^H^t^H^. '"5' 
•I 

Applying Green's formula, 

and hence (C35) becomes 

j  \lsuUc '    ^X Z   %^ ^^^ (C36) 
-0-       J,ir.i 

Now for A  large, 

(C37) 

this last following from (C36). 

It is conveniei.t to rewrite (C25) in the form 

(Wj<  =   (]}  f^QI^^^,     . (C25) 
Combining (C25) and (C37) 

A    Jl 
(C38) 

! 

T 

{ 

I 
I 
I 
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To take the limit J-> A   (that is,  A-*©   » b•*■«») in (C38) we need 

the follouing 

Integration Theorem.     Suppose j\fOjis a real, uniformly bounded, 

sequence of nondecreasing functions on a finite interval J^A-e , and 

assume 

If T is any continuous function on (^*/i-e ), then 

We established earlier the properties of ^»c.»     required by the 

integration theorem.    Thus letting   $•*£ through the sequence of inter- 

vals  1*  found above, it follows, using (C38) and the integration 

theorem, that 

0 LA J,^t ^ 

Now allowing ^-►«ö , there results the Parseval equality 

{   UfAl^dc   *    (     Z    %k%t*Mk (C39) 

for any t\(c)   restricted as above.    We new show that tne Parsevü 

equality holds for any i*(e) in   ^  i0)0*) *    First suppose  n{t)£f(ofa$ 

and vanishes for c sufficiently large and sufficiently small.    Then 

there exists a sequence of functions ^ t' tV0/00) possessing continuous 

second derivatives and vanishing near r*0    and for all  large c  such 

that 
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'A 

Applying (C39) to ^n- M^   , 

,00 z00 z 

{C40) 

Since the left aide of (C40) tends to zero as M^-^Oö, it follows that 

the sequence of vectors \%\^\   . M»» * *\*\'%i*. where 

(C41) 

converges in the mean in / (ft)  . and since the latter space is 

complete   there exists a vector M which is the limit in the mean of 

this sequence.    It is clear from (C41) that the components of M   are the 

continuous functions 

-.00 

Return-:ng to {C39) 

^ =     (    Jcufc) fyfi^)  . 

0 

,00   %. 

Loo   j.k-l 

which proves the Parseval relation ^or any  «A^r)f / ^«o)   vanishing ^ 

1 
1 

I 

for all c   sufficiently large and sufficiently small. Suppose now 

that (^<0 is arv^ function of class tY0/0*) and define 

t^d)  x ± t * q 

t ' ' I   o        c<*i ^c 
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,oC 

^j'^O ^    ( Mx3 COtj^di 

and similarly for Mrs^r)   .    Since   {*<r) ^s) 

it follows that the set of vectors   C(%      converges (as *-»o    ,u ■*t*>   ) 

in the mean  (f /^)to a vector function  tX  £ J (^ ^    By letting 

^ o    , M-^oo in 

loo   J^*| ^ X 

there now follows the Parseval equality 

Z    ^ "N/^/A) -       K^l1-^ , {C42) 

for any   t\{c) z £ %(o)oo^ . 

The Expansion   Theorem  f^r the Singula;   Interval 

With the Parseval relation established, i;he proof of the expan- 

sion theorem may now be given.    Let D" f"?;?' anc' ^e^ne 

"p f')   *   j   1     tjM % M Jf>N'k (A). (C43) 

If tAjfc)   and t<jr^)   are in  #V0/00) , then the relation {C42) implies 

i,oo   j.k 
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•1 -J   * 

I 

f 
U.r«^>^=   Z  Utfc/cU»*.^,       (C44) 

which follows since we can write 

Now consider some function T^^ f0^) which vanishes for ^<c:| , 

<r, <<: , and represent the transform of J* by the vector T . Multi- i 

plying (C43) by T    and integrating we have 
[ 

[ 

I 

From (C44) for M j » M and ^   -T   t f 

Subtracting (C45) from {C46), and using the Schwarz inequality» 

1 "*; WI/C-I        -) y.^/ I 
I 

I 
I 
f 
I 
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Applying this inaquality to the function Tfc)   given by 

we obtain 

or finally 

Since the right side does not depend on c, , ^i. , the above holds 

with c,^© , «V*»0«. Letting-»!-^"ö yields the expansion 

which clearly converges in the mean in / i0)0^). 
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