
MEMORANDUM
RM-5085-PR t. AR IN a I o *u's
SEPTEMBER 1966 703t 1RDiTtAL SCIRP MC M• ":," •', 1FOXUAkTION ..

c"I A COMPUTER SYSTEM FOR
--- 4 •INFERENCE EXECUTION AND

wmk DATA RETRIEVAL

RL E. Levien and M. E.)•sxon

-D C
I ~ ~NOY 2 •.

A JW

PREPARED F~OR:

UNITED STATES AIR FORCE PROJECT RAND

SANTA MONICA CALIFORI*A

MEMORANDUM

RM-5085-PR
SEPTEMBER 1966

A COMPUTER SYSTEM FOR

INFERENCE EXECUTION AND
DATA RETRIEVAL

R. E. Levien and M. E. Maron

This research is sponsored by the United States Air Force under Project RAND-Con-
1. tract No. AF 49(638)-1700-monitored by the Directorate of Operational Requirements

and Development Plans, Deputy Chief of Staff, Research and Development, Hq USAF.
Views or conclusions contained in this Memorandum should not be interpreted as
representing the official opinion or policy of the United States Air Foce.

DISTRIBUTION STATEMENT
Distribution of this document is unlimited.

v-74

1700 MAIN $I * SANIA MONICA * CA1I901NA * 9041A

IVAP

-iii-

PREFACE

This Memorandum describes the objectives and approach of a current

RAND project concerned with the use of computers as assistants in the

logical analysis of large collections of factual data. The two princi-

pal tasks are the development of techniques for storage and retrieval

of millions of data sevtences and provision of a programming system

in which the processes of logical analysis may be expressed. Using

those tools the analyst will be able conveniently to gain access to and

draw inferences from data files too large for extensive manual invest:i-

gation. To ensure their practicality, the techniques are being tested

on a large corpus of factual information concerning research ina cyber-

netics.

The Memorandum is intended to provide a brief and informal descrLp-

tion of the research project for those engaged in related research and

for potential users. Its general view of the entire project provides

the background for more detailed technical descriptions of specific

portions of the project that are to appear in forthcoming memoranda.

The research reported here should be of interest to Air Force

organizations concerned with storage, retrieval, and inference-making

from large files of data. Among the potential areas of application

are command and control, research management, technical information

dissemination, and advanced development planning.

A

_-v-

-~~ SUMMOARY

A potentially important computer application area is the logical

analysis of large collections of factual data. Its implementation

requires development of techniques for storage and retrieval of mil-

lions of data sentences and provision of a programming system in

which the processes of logical analysis may be expressed.

Among the specific problems that must be solved are logical and

linguistic problems of representing the basic data, file problems of

organizing the data for rapid and direct access, programming problems

of designing a language for convenient interrogation of such a file,

and hardware problems of providing sufficiently large, rapid access

storage.

In the Relational Data File under development at The RAND Corpora-

tion, data is represented by sentences in an artificial information

language. Each sentence expresses a binary relationship between two

entities. The sentences are directly accessible by content. The file

of these sentences is organized in quadruplicate in a disk memory so

that access time is minimized. A programming language has been

designed that enables a user of the system conveniently to express not

only direct retrieval requests, but also the inferential processes

that are required to derive implied conclusions.

The system has bee,& designed for use on an IBM 7044 with an IBM

1301 disk. The system is partially operational and is expected to be

fully operational late in 1966.

I•~ g • • '"-•,-•.. u n•l-U•,nlnmm,•

-vii-

CONTENTS

PREFACE ... iii

SUMMARY .. v

ACKNOWLEDGMENTS ... Ix

Section
I. INTRODUCTION ...

II. REQUIREMENTS ... 4
Data Base .. 4
Logical Analysis 5

III. STRUCTURE OF THE DATA FILE 7
Logical and Linguistic Problems 7
Internal Representation 10
File Organization 11
Data Entry .. 12

IV. LOGICAL ANALYSIS OF THE DATA 15

V. STATUS AND PROSPECTS 22

REFERENCES .. 25

'I

S-ix-

ACKNOWLEDGMENTS

The early ideas and plans for the research described in this

paper were developed by the two authors, but we have been fortunate to

have gained competent colleagues who are participating in what is now

a joint effort. We are deeply indebted to Don Cohen and Gerald Levitt

for their excellent execution of the enormous programming tasks.

The logical and linguistic problems at the core of the research are

complex, and we have been fortunate to have the constant and competent

collaboration of J. L. Kuhns. Moreover, we are grateful for the

diligence of Wade Holland and his able assistants in handling the

severe input problems.

I

.1 !|q I IR I| !pu• nmu,,wm , . n .. • , m r

N
I

"l-1

I. INTRODUCTION

The computer's potential value as an assistant in the logical

analysis of large collections of factual data was clearly and explicitly

recognized soon after construction of the first automatic sequence-

controlled calculator. Vannevar Bush wrote in his famous Atlantic

Monthly article:(I)

The repetitive proce'-es of thought are not confined
... to matters of arithmetic and statistics. In fact, every
time one combines and records facts in accordance with
establisi.ed logical processes, the creative aspect of think-
ing is cuncerned only with the selection of the data and the
process to be employed and the manipulation thereafter is
repetitive in nature and hence a fit matter to be relegated
to the machines.

The scientist... is not the only person who manipulates
data and examines the world about him by the use of logical
processes... . Whenever logical processes of thought are
employed--that is, whenever thought for a time runs along an
accepted groove--there is an opportunity for the machine.

Such opportunities for the machine are myriad. Two will serve to

illustrate the promise.

A corporate data analysis system would contain a computer store

of factual data about the products, markets, facilities, finance, plans,

and personnel of the firm. Corporate managers would employ it to answer

questions of fact and as an assistant in estimatitg consequences, test-

ing alternatives, and drawing inferences.

A scientific activities data exchanae would comprise a large store

of factual data about the scientists, projects, publications, organiza-

tions, conferences, and contracts associated with research in a par-

ticular field of science. To scientists, administrators, and editors

-2-

2 it would be a source of data and an assistant in drawing conclusions

about relevant publications, interested researchers, competent organi-

zations, and important trends. Unlike literature searching systems,

it would also enable specific information about persons, organizations,

and projects to be retrieved through searches of a wide variety of

factual data about the scientific context.

The promise is there. What of the progress? In the twenty or so

years since Bush wrote his article, computers have frequently been used

to store, select, and manipulate many kinds of data. And in the last

decade efforts have been made to mechanize the execution of logical

analysis as applied to theorem proving and problem solving. Neverthe-

less, the application that Bush envisaged is yet to be realized. The

combination of a large data base and the tools of logical analysis in

a single system has not been provided. In fact, it has been tried only

rarely.

In 1962 Manfred Kochen proposed the A}QNIPS system,(2) which did

combine storage of a large body of factual data with the ability to

perform logical analyses of that data. A project to implement AMNIPS

was under way at IBM until early 1965, (3) but is no longer active.

Related proposals (some supported by experimental programs) have been

made by Black, Cooper, Ellirtt, Kugel, Lindsay, McCarthy, Raphael,

Slagle, Thompson, and Travis.(4" 14) The work on "question-answering"

systems has explored the same area, although usually the emphasis in

such studies has been on translating natural language questions into

a fftrm that can be answered by direct retrieval from a file. Simons'

a&Ticle(15) provides an excellent survey of work in that field..1
I

"-3-

However, none of these research projects has yet culminated in a system

that would be a practical assistant in the logical analysis of large

bodies of data.

In 1963 design and development of the Relational Data File began

at The RAND Corporation. It is a system intended to serve the needs

described above.(1 6) An initial version should be operational by the

end of 1966. This Memorandum describes the problems that arise in the

course of implementing such a logical analysis system and indicates how

they have been resolved in the Relational Data File.

)

-4-

4 II. REQUIREMENTS

A computer system that will assist in the logical analysis of data

must posset;s ewo principal features:

(1) the capacity to store a large body of factual data;

(2) the ability ,o .. ixecute logical analyses of the data.

Let us exax.ne each of these requirements in more detail.

DATA BASE

The primary question is: What characteristics must a data base

have if it is to be part of a computer system that will assist in

logical analysis?

First, if there is to be benefit from using the computer and if

-he analyses are to be nontrivial, the data base must be extremely

5 6large--at least, on the order of 10 or 10 data statements.

Secoad, if logical analysis is to be efficient, the data base

should be organized as a single-level pool of elementary statements.

The conventional organization of data bases into files, which contain

records, which i turn contain fields, is too awkward for efficient

logical analysis, in which the smallest unit of information must be

directly accessible for computer manipulation.

Thirl, since most logical analyses will require many file accesses

and searches for data concerning specific objects, elementary data

should reside on random-access storage media and be accessible on the

basis of content. All data about a particular individual, for example,

j should be retrievable without recourse to a sequential file search.

*1
N

"-5-

5 6Thus, the data base should contain 10 or 10 elementary data

items arranged in a single-level pool for random access cn the basis

of content. In Sec. III we consider the implementation of such a data

base for the Relational Data File.

LOGICAL ANALYSIS

The second major question is: What is required in order to execute

logical analyses of the data base?

We should observe, first, that information about the 105 or 106

factual data explicitly represented in the data base would confer a

degree of plausibility on many other factual data, not themselves

explicitly stored. Those implicit data may be obtained from the

explicit data through the process of inference.

One traditional form of an inference is "If P, then C," where P,

the premise, is some possibly complex logical condition, and C, the

conclusion, is the statement whose truth or plausibility is conferred

by the truth of P. Two types of inference need to be distinguished:

strict (or deductive) and plausible (or inductive). In strict infer-

ence, the truth of the premise implies the truth of the conclusion; in

plausible inference, it ouly confers some degree of plausibility (less

than truth) on the conclusion.

A computer assistant for logical analyses must aid in the process

of inference. That piocess hac two phases: inference specification,

deciding what logical conditirns must be satisfied in order to assert

a desired conclusion; and inference execution, searching the data base

for combinations of elementary data that satisfy the premise and

asserting the appropriate conclusion. These phases are analogous to

-6-

4 algorithm specification and algorithm execution. And inference

specification, like algorithm specification, is best done by man.

But inference execution, like algorithm execution, is an appropriate

job for the computer. Thus, the primary role for a computer assistant

in the logical analysis of large data bases is inference execution.

In order for a computer to execute complex inferences, it must

be able to execute the appropriate set of more elementary logical

operations, and a language must exist in which the user can specify

the inferences he wishes to have executed. These two requirements

may be subsumed under the single problem of designing a programming

language and its translator.

Thus, in order to implement logical analyses of the data base,

it is necessary to provide a programming language for inference speci-

fication and execution. In Sec. IV we consider the design of such a

language for the Relational Data File.

-7-

III. STRUCTURE OF THE DATA FILE

Designing data bases that will be amenable to logical analysis is a

ta3k that must proceed on several levels. At the highest level is the

design of a language in which to express the relevant events, situations,

and qualities. It is a logical and linguistic question, essentially inde-

pendent of the eventual computer implementation. The next level is the

design of the internal representation of each linguistic expression. Here,

the properties of the computer must be tak.n into account. Finally, there

is the organization of the individual linguistic expressions within the

total file. At that point, the probable output demands must be a control-

ling design consideration. In addition, there is the problem of collect-

ing and entering the data. In this section, those problems of data

storage and retrieval will be discussed. The design of a file of data

for a scientific activities data exchange will provide specific examples.

LOGICAL AND LINGUISTIC PROBLEMS

What type of language should be used?

Ordinary language has much richness, flexibility, and versatility;

however, it suffers from its lack of precision. Sentences in ordinary

language can be ambiguous; several different sentences can be synonymous;

meaning depends on context. Computers cannot now be progranmed effec-

tively to resolve the imprecision, synonymy, or ambiguity of ordinary

language for purposes of logical analysis. Hence, ordinary language is

unsuitable for the data base. j
Artificial languages can be designed to be precise, unique, and

unambiguous. Following Uspenskii, (17)we call a declarative artificial

language an information language.

-8-

Since we are concerned with the logical analysis of factual data,

it is natural to look to formal logic for the structure of an informa-

tion language. In the RAND Relational Data File we use that part of

modern logic called the "predicate calculus." It permits description

in terms of properties and relationships among individuals. To illus-

trate that viewpoint, consider the following three sentences in ordinary

language:

1. A. P. Smith is a system engineer.

2. A. P. Smith is affiliated with Acme Electronics Corporation.

3. A. P. Smith received the Ph.D. degree from UCLA.

The first sentence expresses a property--that of being a system

engineer--of an individual, A. P. Smith. In the predicate calculus

we might symbolize that situation by:

A. P. Smith/SYSTEM ENGINEER/

where "SYSTEM ENGINEER" is the name of a carefully defined property.

The second sentence expresses a relationship--that of being affili-

ated with--between two individuals, A. P. Smith and Acme Electronics

Corporation. Notice that we use the term "individual" to mean "entity"

and not simply "person." Sentence 2 might be symbolized by:

A. P. Smith/AFFILIATED WITH/Acme Electronics Corporation

where "AFFILIATED WITH" is the name of a precise binary relation.

The third sentence expresses a relationship--that of receiving

the degree of ... from--among three individuals, A. P. Smith, Ph.D.,

and UCLA. It could be symbolized by:

A. P. Smith/RECEIVED/Ph.D./DEGREE FROM/UCLA

where "RECEIVED ... DEGREE FROM" is the name of a precise ternary rela-

tion.

-9-

Names of properties are also called "one-place predicates;" binary

relations, "two-place predicates;" and ternary relations, "three-place

predicates." There are, of course, increasingly complex relationships

that can be expressed formally in terms of many-place predicates. The

design of a formal information language based on the predicate calculus,

therefore, reduces to the specification of a set of predicates in terms

of which all the relevant states-of-affairs will be expressed.

In addition to the predicates given above, an information language

for the context of computer science resea:ch would include:

"AUTHOR 01V'

"PROGRAIMED COMPUTER"

"LOCATED IN"

"CITED IN"

"STUDENT OF"

and many others.

For simplicity of file structure--and not for logical or linguistic

reasons--we translate all one-place and three- or more-place predicates

into two-place predicates, i.e., names cf binary relations. There are

a number of ways to do so. Sentence 1 above may be expressed in terms

of a binary relation "HAS PROFESSIONAL SPECIALTY":

A. P. Smith/HAS PROFESSIONAL SPECIALTY/system engineer

Many-place predicates art more difficult. We use relational composition,

in which a sentence may be an entry in another sentence. Sentence 3

above would become:

A. P. Smith/RECEIVED DEGREE/(Ph.D. AWARDED BY UCLA)

However, instead of writing out a sentence each time it is composed

4 with another, we assign names to the sentences. The above composition

would be represented by two sentences, Si and S2, as follows:

Si: A. P. Smith/RECEIVED DEGREE/S2

52: Ph.D./AWARDED BY/UCLA

The same technique may be used to describe four-, five-, or more-place

relations in terms of binary relations. Thus, we employ a relational

information language. Kochen employed a similar language and suggested

a technique like relational composition, which he called "nesting of

sentences." Similar languages have also been suggested by Black,

Elliott, Kugel, Lindsay, Raphael, and Travis.

IMTERNAL REPRESENTATION

How should each information language sentence be represented inside

the computer store?

Since we have limited the predicates to binary relations, each

sentence has four constituents: sentence name, name of first individual

(which we call the domain element), relation name, and name of second

individual (which we call the raMe element). But both the constituents

and the sentences as a whole are of highly variable length. Hence, to

standardize and reduce the average length of the sentences, each con-

stituent is encoded by a computer code dictionary at the time it enters

the file. The encoded representation of a constituent is one computer

word--36 bits in our implementation on an IBM 7044. The first six bits

are a syntactic marker that indicates whether the constituent denotes

a sentence (S), relation (R), or individual (1). (Several other pos-

sibilities exist, but are not relevant here.) The remaining 30 bits

-II- II
are the assigned code. Thus, each sentence is represented by four

-f

36-bit computer words. The two sentences, Si and S2, shown above might

become:

Word: 1 2 3 4

S 00001 IIAPSMI RIRECDG S 00002-1

S 000021IIPH.D.IRIAWDBYIIUCLA. I
6 bits

36 bits

144'bits

(In order to improve readability, the 36 bits have been translated into

six alphanumeric characters.)

FILE O Z W.ZATIoN

How should the 105 or 106 sentences be arranged in the file?

Mhe main store of the Relational Data File is an IBM 1301 disk

storage unit. Consequently, the file should be organized so as to

minimize the mechanical movement of the read-write heads in executing

common retrieval requests.

The most common requests will not be for a single sentence, but

for all sentences that have one or more specified constituents. For

example, the user may wish to know all values of x for which sentences

of the form

x/AFFILIATED WITH/&Am Electronics

appear in the file. Or, he may wish all sentences of the form

A. r. •aWth P/R/

where R and y are variables. To minimize access times, such groups of

sentences should be located contiguously ou the disk and read as a unit

into core in a single access.

-12-

The problem is in deciding how to group sentences. If, for example,

sentences were ordered according to relation name in the file, access

t according to dLmain element or sentence name would demand sequential

searches of the entire file. The same problem applies to files ordered

according to any of the other constituents.

Our approach is to construct four files, one ordered by each con-

stituent: sentence name, domain element, relation name, and range

element. Then if all sentences whose domain element is "A. P. Smith"

are sought, the domain-ordered file is used. A table in core points

to that segment of the disk containing any such sentences. A replicated

file obviously consumes a large amount of storage, but it allows quicker

access than other alternatives. Moreover, since by appropriate organi-

zation not every constituent need be present in all four files, an

efficient replicated file can be constructed using just eleven words

per sentence.

Since we want to minimize access time at the expense of storage,

we have chosen the veplicated organization. 4ith it--and allowing

space for code dictionaries and other auxiliary data--the IBM 1301 disk

(one module) will hold 232,000 sentences in the relational Information

language.

MATA ENT a

Thus far we have considered how to structure and arrange sentences

once they have arrived in the file. We can now turn to the question

of getting them there. Since we are contemplating files that contain

millions of sentences, this is a significant practical question.

-13-

Data sources fit no simple categories and take no standard form.

Data on the context of scientific research appear in technical papers,

research reports, proposals, bibliographic citations, survey articles,

questionnaires, reference books, conference programs, and newspaper

reports. In some cases--bibliographic citations, questionnaires--it

is in reasonably fixed format; in others--acknowledgments, survey

articles--it may be embedded in free-flowing English text. The first

problem of data entry, therefore, is fitting the input data into a form

convenient for machine handling. This is a task for people, and if it

is to be practical, the extraction and structuring of the data for

machine entry must be straightforward and precise: that is, it must

be convenient for the person, as well as for the machine.

Data entry directly in the relational information longuage would

eliminate the need for cubsequent translation; however, considerable

effort v,;uld be necessary to identify, record, and check the large

number of sentences needed to record the data; the probability of

mistakes and omissions would be high; and changes in the information

language would necessitate re-extraction of the data from original

sources. Data entry in the English language would be convenient for

the input aides, but inconvenient for the computer.

Consequently, we have chosen to use special input forms. The

input aides extract information from the original sources and enter

it on the forms in a specified format. The forms are keypunched and I
eutered on tape. Programs written in a special programming language,

called FORIMAN, are then applied to the tape to derive information-

language sentences that are entered into the file.

-14-

A form is designed for each class of data encountered at input.

"In the scientific activities data exchange, for example, forms to

collect bitblioaraphic, organizational, biographic, and project data

(among others) are needed. The specific design of such forms must be

done anew for each area of application, although some forms will serve

several areas.

A new translation program is prepared, in the FOREMAN language,

for each class of data fortes. The translaLion program is an implemen-

tation of rules such as the following: For each author, a, whose rGame

appears on a bibliographic form concerning publication, p, compose a

sentence

&/AUiTHR OF/p

and enter it in the file.

The program is executed on each data form, producing a large set

of information-language sentences for insertion in the file. If the

information language changes or the data in a form are analyzed dif-

ferently, a modified translation rotitine is prepared; once that is

done, the computer easily retraeslates old data forms into revised

data sentences.

I

I

7

-15-

IV. LOGICiL ANALYSIS OF THE DATA

Perhaps the best way to describe the use of the Relational. Data

File as an assistant in logical analysis is through a series of examples.

Let us suppose that someone has approached the Relational Data File

with an interest in A. P. Smith. Perhaps he just wishes to verify that

A. P. Smith works at the ftcme Electronics Corporation. Since the answer

may be explicitly in the file, it is not yet a matter for inference.

The user would formulate a request in the programming language as

follows:

1.0. IF "A. SMITH"/"AFFILIATED WITH"/"ACME ELECTRDNICS",

THEN PRINT "YES", ELSE PRINT "NOT KNOWN"

The relational sentence would be encoded by means of the code diction-

ary and a match for it sought in the data file. Although this is the

simplest form of request, it illustrates the difficulties that arise

from synonymy and ambiguity in ordinary usage.

Synonymy occurs when there are multiple names for the same object--

individual or relation. In the example, the Acme Electronics Corporation

has been called "Acme Electronics." The names that occur in the basic

sentences of the file are selected standard names; all other synonyms

should be mapped into the standard before data input or search. That

function is performed by the code dictionary, which assigns the standard

internal code to each synonym. In this instance, "Acm. Electronics"

will be assigned the same internal code as "Acme Electronics Corporation."

Ambiguity arises where one or more different objects have the eame

name. There may be more than one individual with the name "A. Smith."

-16-

4-; To prevent the user from obtaining erroneous data, the code dictionary

will have an ambiguity marker next to "A. Smith" and a reference to an

4 •output message that asks the user whether he is interested in A. P. Smith

or A. B. Smith. In this instance, data about A. P. Smith are desired,

so the user will rephrase his command.

Both the ambiguity and synonymy of words must be detected manually

by input personnel or users. Their information is used to modify the

code dictionary.

Now, suppose the user derided to find out more about Acme Elec-

tronics, that he wished to have a list of all its employees who are

system engineers, He would try first to find those data that ai-e

explicitly in the file. His request might be programmed as follows:

1. 1. LET ALPHA = (X) SUCH THAT (X/"AFFILIATED WITH"/"ACME

ELECTRONICS CORPORATION") AND (X/"HAS PROFESSIONAL

SPECIALTY"/"SYSTEM ENGINEER")

1.2. PRINT ALPHA, "HAS PROFESSIONAL SPECIALTY SYSTEM ENGINEER"

SStatement 1.1 defines a set, which has been given the arbitrary name

Alpha, composed of all individuals x for whom the conjunction of

f sentences

j x/AFFILIATED WITH/Acme Electronics Corporation

and

x/HAS PROFESSIONAL SPECIALTY/system engineer

appears in the file. The sentences shown in Sec. III would result in

the inclusion of the element (A. P. Smith) in set Alpha.

0
4 i I aa mna ' MW n

-17-

Statement 1.2 commands printout of one sentence for each element

in the set Alpha. The sentence corresponding to the element above

would be:

A. P. SMITH HAS PROFESSIONAL SPECIALTY SYSTEM ENGINEER

The command in statement 1.1 specifies a basic logical and set-

theoretic operation, sometimes called set-abstraction. In traditional

notation it would be written as

Alpha - fxl (x AFFILIATED WITH Acme Electronics Corporation)

& (x HAS PROFESSIONAL SPECIALTY system. engineer)}

The programming language also permits definition of a set by

specification of its members. Fr example,

1.3. BETA - SET (("A. P. SMITH"), ("R. E. JONES"), ("A. B. BLACK"))

Returning now to our user, it may be that he would like to find

out how many of Acme Electronics' system engineers have graduated from

UCLA. To begin his search, the command

1.4. LET GAMMA = (Y) SUCH THAT (Y/"GRADUATED FROM"/"UCLA")

would form a set comprising all individuals, y, for whom the explicit

datum

y/GRADUATED F ROM/UCLA

appears in the file. But note that the sentences about A. P. Smith

given in Sec. III do not explicitly include one using the relation

"GRADUATED FROM," while there do appear the pair of sentences "SI" and :, 4

"S2" from which such a sentence follows by a trivial inference. The

user can obtain that implicit data through a pair of additional commands:

1.5. LET DELTA - (Z) SUCH THAT (FOR SOME W)

(Z/"RECEIVED DEGREE"/ (W/"AWARDED BY"/"UCLA"))

1.6. ZETA - JOIN (GAMMA, DELTA) ý4

-18-

Statement 1.5 implements the user's inference that if a person received

some degree "w" from UCLA, then he graduated from UCLA. The "triviality"

of this inference to a human being should not obscure the fact that it

'Ai must be stated explicitly to the machine, and it should illustrate why

inference execution must be an essential part of any flexible data

retrieval system, even one not primarily intended fiJr logizal analysis.

Statement 1.5 also illustrates the use of quantifiers--"for all"

and "for some." In this instance, the statement "FOR SOME W" means

that the user is not interested in whi-h degree the individual, z,

received, as long as there was at least one degree.

Statement 1.6 directs that the set union (or "JOIN") of the two

sets Gamma and Delta be formed to obtain the new set Zeta, which com-

j• prises the names of those individuals who are known to have graduated

from UCLA.

The usual set operations--union, intersection, difference, and

cartesian product--are each implemented in the programming system.

There are also operations that order the sets--alphabetically, numeri-

cally, or chronologically; that count the number of elements in a set;

and that find the first, i-th, last, largest, or smallest element.

The inference underlying statement 1.5 follows strictly f 3m the

definition of the relations "GRADUATED FROM" and the pair "RECEIVED

DEGREE" and "AWARDED BY." It would certainly be desirable to save the

user the trouble of specifying that inference each time he is interested

in the relation "GRADUATED FROM." This can be done by including a

special file about the relations among the relations in the data store.

I

1.

-19-

It would indicate how a given relation could be derived from other

relations. It might contain, for example, the fact that:

x/GRADUATED FROM/Y P (For some w)(x/RECEIVED DEGREE/(w AWARDED BY/y))

Then when the user employed the relation "GRADUATED FROM," the above

fact would automatically be employed--without the user's explicit

command--to expand the search request to include the statement on the

right.

The file of data about the relations is called the intensional

file, as distinguished from the extensional file, which contains the

basic data sentences. The intensional file also permits a saving of

space in the extensional file. The situation is analogous to storing

subroutines to compute the trigonometric functions instead of storing

the corresponding tables, for the intensional file permits many rela-

tional sentences to be derived when needed, instead of having to be

explicitly stored.

The user's interest in the number of UCLA alumni among Acme

Electronics' system engineers may be satisfied by adding the following

commands to his program:

1.7. THETA - MEET (ALPHA, ZETA)

1.8. N - SIZE (THETA)

1.9. PRINT "THERE ARE", N, "UCLA ALUMNI AMONG ACME

ELECTRONICS' SYSTEM ENGINEERS"

Statement 1.7 defines a new set Theta that contains only elements that ¶
are in both Alpha and Zeta. (Theta is the set intersection of Alpha

and Zeta.) Consequently, any individual in Theta must be both an Acme

Electronics system engineer and a UCLA alumnus. Statement 1.8 sets

-20-

the variable N equal to the number of elements in Theta. Statement 1.9

provides the appropriate output.

Plausible inference has not yet appeared in our examples. Suppose,

however, that the user were uncertain about whether all system engineers

at Acme Electronics had been explicitly identified as such in the file.

He might try to infer an individual's professional specialty from other

evidence. There are many ways to do so, of course, but let us assume

that the user uecides to use the subject indexing of an individual's

publications. He might proceed as follows:

2.0. LET IOTA = (U) SUCH THAT (FOR SOME P) (FOR SOME Q)

(U/"AUTHOR OF"/P) AND (P/"SUBJECT INDEXED AS"/Q) AND

(Q/"SUBFIELD OF"/"SYSTEM ENGINEERING")

2.1. PUT IOTA/"HAS PROFESSIONAL SPECIALTY"/"SYSTEM ENGINEER"

IN FILE TEMP

2.2. LET ALPHA - (X) IN FILE MAIN, TEMP

SUCH THAT (X/"AFFILIATED WITH"/"ACME ELECTRONICS CORPORATION")

AND (X/"HAS PROFESSIONAL SPECIALTY"/"SYSTEM ENGINEER")

In statement 2.0 the set Iota has been defined to contain all individuals

who have written papers, p, that were indexed as relevant to a subject,

q, that is a subspecialty within system engineering. Presumably, the

user has subjectively assigned a personally acceptable degree of

plausibility to the assertion that such individuals are system engineers.

The assertion is certainly not strictly true.

Statement 2.1 enters a sentence

u/HAS PROFESSIONAL SPECIALTY/system engineer

in a working file--FILE TEMP--for each element, u, in the set Iota.

Users are prohibited from adding to or altering the data in the main

-21-

file, thus they are provided with a separate workiLag file, which may

be searched as an extension of the main filh, but whose contents are

destroyed after each session. In addition to containing data generated

in the course of a computation, it may coutain hypothetical or auxiliary

data added for particular studies, or the results of previous sessions.

Finally, in statement 2.2 the user haa redone the operation of

statement 1.1, but this time is searching both the main file and the

working file, which contains the inferred sentences concerning system

engineers.

a

"I

-22-

V. STATUS AND PROSPECTS

The Relational Data File is intended to be a computer assistant

in the logical analysis of large collections of data. It consists of

a data file, whose initial capacity is 232,000 sentences in a relational

information language, and a programming language, in which logical

analyses may be specified for computer execution.

Thus far, more than 7000 input data forms have been completed,

a program for translating from them to relational sentences has been

written and checked out, code dictionary and file manipulation routines

are operational, and the first file is about to be filled. The output

programming language is being coded. An initial version of the system

is expected to be operational during the fall of 1966.

A wide variety of problems--logical and linguistic, hardware and

software, practical and theoretical--arise during implementation of

such a system- Among the questions that must be studied carefully if

computer systems for logical 4nalysis of data are to become effective

and practical are the following:

"o The design of relational information languages.
Where are they applicable? What features should they
possess? What rules guiding their design can be
established?

"o The ortanigation of extensional storage.
What structure of multi-level storage devices will pro-
vide the great volume of storage and the high-speed
access that are essential for effective logical analysis?

" The de-sin of lozical analysis Droarammins languages.
What should the basic operations be? What strategy of
file search should be employed to minimize access times?
How can the language be made convenient for the non-
specialist user?

-23-

o The organization of intensional storage.
How can the properties of relations and stored inference
schemes be best employed? What tactics should be used
to expand a user's inference specification?

The initial implementation of the Relational Data File will

operate off-line in a batch processing mode. However, the process of

logical analysis is ideally suited for on-line man-machine execution.

As experience is gained, we shall move toward such a mode of operation.

The promise of computer-assisted logical analyses that Vannevar

Bush recognized 21 years ago may soon be realized. While the practical

problems are considerable, none seems insuperable.

I2

I

I
4a

I"

-25-

REIPEW~CES

1. Bush, V.., "As We May Think," Atlantic Monthly, Vol. 176, pp. 101-
108, July 1945.

2. Kochen, M., "Adaptive Mechanisms in Digital 'Concept' Processing,"
Discrete Adaptive Processes--Symposium and Panel Discussion,

New York: AIEE, 1962, pp. 50-58.

3. Kochen, M., Some Problems in Information Science with Emphasis on
Adaptation to Use Through Man-machine Interaction (2 vols.),
IBM Thomas J. Watson Research Center, Yorktown Heights, N. Y.,
April 2, 1964.

4. Black, F., "A Deductive Question Answering System," Ph.D. thesis,
Division of Engineering and Applied Physics, Harvard University,
June 1964.

5. Cooper, W. 0"., "Fact Retrieval and Deductive Question-answering
Inforwation Retrieval Systems," Journal of the Association for
Comp~uting Machinery, Vol. 11, No. 2, pp. 117-137, April 1964.

6. Llliott, R. W., "A Model for a Fact Retrieval System," Ph.D. thesis,
The University of Texas, Kay 1965.

7. Kugel, P., "A Data Structure for Data Retrieval," paper read at the
ACI National Conference, Syracuse, New York, September 1962.

8. Kugel, P., "Contemplative Computers," paper read at AIE! Winter
General Meeting, 1963.

9. Lindsay, R. K., "Inferential Memory as the Basis of Machines Which
Understand latural Language," Comuters and Thought, E. A.
Feigenbaum and J. Feldman (ads.), New York: McGraw-Hill, 1963,
pp. 217-233.

10. McCarthy, J., "Programs with Common Sense," _t cha'Lttioo
Thought Processes, Vol. 1, London: Her Majesty's Stationery
Office, 1959, pp. 75-91.

11. Raphael, B., "SIR: A Computer Program for Semantic Information
Retrieval," Ph.D. thesis, Massachusetts Institute of Technology, 5
June 1964.

12. Slagle, J. R., '"periments with a Deductive Question-answering
Program," Comunications of the AsociaLtlon . ,gr Como-uti-a
Sc€ r,, Vol. 8, No. 12, pp. 792-798, December 1965.

13. Thompson, F. B., The AnlXcatiou and wwlsmeutStiott of D-acou-type
SysteMs, TEIPO, General Electric 4"auy, Santa Barbara, Calif.,
MI 64•MP-11, October 1964.

-26-

14. Travis, L. E., "Analytic Informatiun Retrieval," Natural Language
and the Computer, P. Garvin (ed.), New York: McGraw-Hill, 1963,
pp. 310-353.

15. Simmons, R. F., "Answering English Questions by Computer: A Survey,"
Coimmunications of the Association fo: Computing Machinery, Vol. 8,
No. 1, pp. 53-70, January 1965.

16. Leviett, R. E. and M. E. Maron, Reiational Data File: A Tool for
Mechanized Inferance Execution and Data Retrieval, The RAND
Corporation, Ri-4793-PR, December 1965.

17. Uspenskii., V. A., "The Problem of Coitstructing a Machine Language
for ,in Information Machine," Problems of Cybernetics II, A. A.
Lyapunov (ad.), New York: Pergamon Press, 1961, pp. 356-371.

DOCUMENT CONTROL DATA
I ORIGINATING ACTIVITY 2a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
THE RAND CORPORATION 2b. GROUP

3. REPORT TITLE

A CGMPUTER SYSTEM FOR INFERENCE EXECUTION AND DATA RETRIEVAL

4. AUTHOR(S) (Lost nome, first nome, initiol)

Levien, R. E. and M. E. Naron

5. REPORT DATE Go. TOTAL No. OF PAGES 60. No. OF REFS.
August 1966 35 17

1. CONTRACT OR GRANT No. & ORIGINATOR'S REPORT No.

AF 49(638)-1700 1RM-5085-PR

90 AVAILP1dlLITY/ LIMITATION NOTICES 9b. SPONSORING AGENCY
United States Air Force
Project RAND

10. ABSTRACT ,,. KEY WORDS

Describes the Peletional Data File, a Data processing
computer-based data retrieval system nov Information storage and
partly operational, capable of storing retrieval
millions of facts and of retrieving data Command Control
both directly and through logical infer- Cybernetics
ence. A large collection of information Language
about cybernetics research vas used as Computer programs
the data base. Facts are stored in the Research and Development
form of sentences in an artificial infor- Management
mation language, each representing a bi- Development
mnary relationship betveen tvo entities.
Data are entered by means of special in-
put forms; a translation program in a
special programaing language, FOREMAN,
derives the relational sentences that
are then internally coded and stored in
the data file. An intensional file that
stores facts about relationships permits
many data sentences to be derived vhen
needed, rather than stored explicitly.
Counting space for all auxiliaries, one
IBM 1301 disk holds 232,000 sentences in
the information language. The system op-
erates on an IBM TOkk computer.

