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ABSTRACT

Measured elevations in the wave train of a Rankine ovcié are
compared with computed elevations for an ideal source and sink.
The measured clevations are in phase with the computed elevations
but have smaller amplitudes. The discrepancy in amplitude is

attributed to turbulent boundary layer and wake in the fiow
around the real ovoid.

ZUSAMMENFASSUNG

Die gemessenen HOhen im Wellenzug eines Rankineschen eifGrmigen
Korpers werden mit den berechneten Hohen fur eine ideale Quelle und
Senke verglichen. Die gemessenen Hohen sind gleichphasig mit den
berechneten, Laben aber kleinere Zmplituden. Die Unstimmigkeit
hinsichtlich der Amplitude wird auf die turbuiente Grenzschicht und
die Nachlaufstromung am wahren eif6rmigen Korper zuriuckgefibhrt.

RESUME

On compare les élévations mesurées du train d'ondes d'un ovoide
de Rankine avec les élévations calculées pour une scurce et puits
jdéale. Les élévations mesurdes sont en phase avec les élévations
calculées, mais présentent des amplitudes plus réduites. La dif-
férence d'amplitude est attribuée 2 la couche limite et su sillage
turbulents du courant qui entoure lfovoide réel.
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Analysis and computztions were comgleted by 7 June 1966. The
figures were prepared or. 2 dot plotiing cathode ray printer at
the Naval Weapons Laboratory. The Japanese abstract and the
schematic diagram were prepared on a vector plotting cathode
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INTRODUCTION

A project at the Naval Weapons Laboratory has as its ultimate
objective the computation of flow around surface ships of finite
breadth in water of finite depth. In the pursuit of this project
there has been prepared a system of four computing routirces, which
compute the components of velccity in the wave train of a point
source.

A project at the David Taylor Model Basin has had as its objec-
tive the measurement of wave elevations ir the wave train of a
Rankine ovoid. When deeply submerged, the Rankine ovoid is that
streamline of zero stream function waich would be generated by a
simple source and sink. A representative streamline is illustrated
in Appendix A.

The wave elevations as measured at the David Taylor Model Basin
present an ideal opportunity for a comparison with wave elevations
as computed at the Naval Weapons Laboratory. One objective of the
present report is to explore the possibility that the measured wave
elevations might indicate how a sourcewise representation should be
modified in order to allow for boundary layer and turbulent wake.
Before any conclusions would be possible it has been mnecessary to
evaluate in detail all sources of discrepancy between measured data
and computed data.

The components of velocity in the wave train of a peiat source
may be derived from the Havelock integral, which is a double Fourier
integral in wave number space. The evaluation of tke integrai is
achieved by radial sand azimuthal integration in the wave number
space. Following a suggestion from the David Taylor Model Basin,
DiDonato! in 1958 developed a method of integration in which the
path of integration is so displaced in the complex plane as to
avoid 2 singularity in the integrand. Radial integration was per-
formed by Simpson's rule and azimuthal integration was completed
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with Gauss' rule. Without reference to this prior work, Yim? in
1963 has reexamined the problem of integration in the near fielgd.
With the aid of formulae of Barakat®, or after radial integration
with Laguerre-Gauss quadrature, the azimuthal integration was
completed with Legendre-Gauss quadrature. Yim exemined alsc the
problem cf integration in the far field both along the center line
behind the source and along the critical line of wave crests.
However, the derivations were extended only as far as the first
two terms of the asymptotic expansion in each case.

In the meantime, the present writer® has made an extensive in-
vestigation of possible methods of integration. At an early date

it was realized that radial integration generates the complex expo-
nential integral. 1In the sense that this funciioa is an elementary

function, the problem of integration is reduced tc the problem of
azimuthal integrztion alone. The high accuracy rule for the inte-
gration of a cyclical function is just the trapezoidal rule for
equally spaced angles, and the above use of Gauss quadrature is
not approprizte. Even the trapezoidal rule is inefficieat for
applications of importance to surface ships, and a new method of
integration by parts was found in which integration could be per-
formed through many osciilations of the integrand. It was recog-
nized that the integrand is the product of a monotonic factor and
an oscillatory factor. When the morotonic factor was approximated
in terms of positive integral powers of the argument of the
oscillatory factor, the integration could be completed by recourse
to recurrence relations. Further improvement in efficiency was
achieved through the expansion of the monotonic factor in terms
of positive and negative half integral powers of the argument of
the oscillatory factor. Finally the asymptotic series for sta-
tionary phase with quadratic approximation near the center line

or with cubic approximation near the critical line has been
carried to the ultimate term of smallest magnitude. These methods
of integration are the basis for the four computing progrems
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for the computation of wave trains for a point source. The four
programs provide computetions with maximum efficiency or with con-
trolled accuracy anc with no limitation as to direction or distance

Y. 1K L N
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from the point source. The progrems were first reported in 196°%.
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All of the atove work is concerned with the steady state wave
pattern. In the integration of the double Fourier integral the
classical approach was to use the Cauchy principal value but this

led to a train of waves in front of the source as well as behind
the scurce. Inasmuch as wave trains in front of the source are
unacceptable on the basis of physical observation, the singularity
in the integrand was avoided through the introduction of an imag-
inary term which is the so-called frictional term but is ir
reality merely a mathematical device to compel the path of inte-
gration in the complex piane to pass on the correct side of the
singularity. An alternative approach is %o recognize that the
integrand at the point of singularity satisfies identically botn
the boundary equatiorn and the Laplace eguation and can be added
therefore in arbitrary amount. When it is added in the correct
amount to eliminate waves in front of the source, the integrand
becomes analytic and the path of integration can be varied. A
more convincing determination of the term to be added would be
derived from an analysis of the limit approached by the transient
disturbance which arises when a point source is started from rest
and moves with constant velocity thereafter. Starting with a

] formula of Maruo’, an analysis was made by Hsu® in 1965, who con-
cluded that there was a trausient system of circular waves which
were centered at the starting point and a stationary train of
waves which trailed halifway back from the source to the starting
point. In view of the importance of the transient waves as a
guide to the properties of the stationary waves, the formula of
Hsu is rederived herewith and is transformed further to reveal the

character of the wave train.




The analysis of transient waves has been used by Hsu and Yim* in
1966 to interpret the experimental data on the wave profiles of the
Rankine ovoid. Only the wave profiles cn or near the center line were
considered for interpretation whereas the wave profiles farther away

PO I RIIEL L S g B i e+ ke A BT S FYAR LY 195K, D,

from the center line are more interesting although more umstable.

The experimental wave profiles were shifted with respect to time so

as to match the thecretical wave profiles at a puint of zero elevaticn.
It was concluded from a comparison of the matched profiles that the
ideal wave theory predicts wave profiles for fully submerged bodies
with sufficient accuraczy for practical purposes. On the other hand,

a systematic discrepancy in amplitude of the measured anu computed
wave profiles was noted and was thought to be the result of viscous
effects.

A series of determinations of wave profile have beer made by

D. A. Shaffer® 1% at the David Taylor Model Basin. £ Rankine o.oid
was towed at various speeds, and wave elevations were recorded on a
Sanborn recorder for various cdistances off ihe line of travel. The
position of the ovoid was determined from the angle of rotation of
a drum around which the towing cable was wrapped. Contacts on the
drum transmitted signals which were recorded on the Sanbcrn record.
Correction was made for slippage of the cable on the drum. The
model was provided with a projecting lug which tripped a switch of
known position and recorded a step on the Savborn record. With this
calibration the zero point of time when the center of the ovoid was
opposite each recording station cculd be computed and marked on the

e m—y ot 7§
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record.

The ovoid had a length of 43 £t with a ratio of length to
diameter of 7. It was towed by a cable of 3" diameter at a sub-
mergence of 1§ ft in water with a depth of 20 ft. The depth of
submergence was uncertain to #1.5" because of sag in the cable.
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The length of travel at constant velocity was 205 ft. 1In one
series of runs the wave elevation was measured at 0 ft and at

- 22.75 7t to one side of the line cf travel while i another
series of runs the wave elevation was measured at 11.375 ft and
at 34.125 £t away from the line of travel. The speeds of the
ovoid were 6, 7.3, 9, and 10 (ft)/(sec).

The amplitude of wave elevation was observed to fluciuate
with speed with a minimum near 4 {ftj/{sec) and with a maximum
near 7.3 (ft)/{sec). The minimum was interpreted in terms of
interference while the maximum was ccrrelated with critical
Froude number.

Scme deviation from a steady state wave profile cccurred down-
stream from the model because there had not beer enough time for
the waves to develop their full height and because there was inter-

E ference from waves which had been reflected off the walls of ihe
i basin. The unsteady regicn could be recognized by comparisons
between records for different distances of travel. The lengtih of
the fully developed wave train was repcrted tc be half of the

3

2 .

g distance of travel.
1

STEADY STATE

Let a point source be moving at a depth h below the suriace with
a speed U. A point in the fluid is locatec at Cartesian coordinates
x, ¥, z in 2 right handed coordinate system with origin at tkre sur-
face over the source. The x-coordinate is the distance forward,

tne y-coerdinate is the distance tc the right. and the z-coordinaie
! is the distance dvwnwardé. Thc verociiy in the fluid is expressed

2 R st R ma o -
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as the negative gradient of a velocity potential ¢. The computing
routines give the Cartesian components u, v, w of velocity in accord-
ance with the equations

Y -

_Z? y:-a_? w:_.a;? (1)
ox dy dz
The velocity potential is the sum of three pectertiale in accordance

with the equation

P=¢ + ¢ + G (2)

where ¢, is the potential of the scurce in an unbounded fluid, ¢,
is the potential of an image suvurce cver the free surface, and @
is a Fourier integral. The potentials @ + @, cancel at the free
surface, while the potential ¢, is ithke sum ¢f a monctonic term and
an oscillatory term. The monotonic term is responsible for a
solitary wave or Bernoulli hump over the source while the oscillatory
term is responsible for a wavs train or Kelvin wake behind the source.
Limiting formulae for the weve elevation on the lipe directly astern
of a unit source may be derived from the asymptotic expansion of the
potentials. For deep submergence the elevation in the solitary wave
tends to vary like

.25" _x—? {3)
g (=% + 8232

Fer down streem the elevation in the wave irain tends te vary like

i
2

2n

4Xn s

b
e *o%cos(xyx -'Z) (4)
where the critical wave number x, is defined by the eguation

g .
Xo ='55 (s)

The asymptotic formula for the wave train is not useful over the
source where it goes to inTinity.
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It is of irterest to nnte that when the source strength is

proportional to U the amplitude in the wave train has a maximum with
respect to U where

. xh = (6)

ol

This corresponds to a critical speed of $.8 {ft)/(sec) when the depth
of submergence is 1.5 ft.

The wave length A of the waves directly behind the source is given
by the equation

(7)

>
"
SN

‘S

Interference between a source and sink will occur if thkeir distance
A apart is an integral multiple of wave length, while reinforcement wiil
l:»’ occur if their distance apart is half ar odd integral multiple of wave
2 length. Representative data fer the experimental ovoid are given in
é} the following table
| Source Separation Phase Correlation Speed {ft)/(sec)
: |
3 3 Reinforcement 3.7760
% A Interference 4.6247
3\ Reinforcement 6.5403

It may be noted that reirforcement prevails for the experimental speeds.

Ccmputed wave profiles have been obtained for the first two speeds in

the above table together with the experimental speeds. The speeds, the

critical wave numders, and the wave lengihs for whi
. ‘puted profiles are summarized in Table I.
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SOURCEWISE REPRESENTATION

The streamline for a deeply submerged source and sink was deter-
mined by iteration. Let the source and sink be of strength ig at
the positions #a on the x-axis. If the free stream velocity is
vnity, then the flux Q@ through any circle of radius r at the posi-
tion x is given by the equation

Q=nr2-—-}:{l— x-a ]q+3{1— x+a }q (3)
2 ./(:c-a)2+r2.r 2 vix+a)+r?

The eguation of the streamline is 0 = 0. Ia the limiting case
where r —= 0, the equation of the streamline is reduced to

axq

l
E - © (x=-é)(9)

where x is the nalf length of the ovoid. In the limiting case
where x —~ 0, the equation of the streamline is reduced to

a l
..____:7_____-_--“,2 (r==—) (20)
va? + r? 14
where r is one seventh of the half length of the ovoid. Iterative

solution of the simultaneous equations (9) and (10) for a length
l = 4.5 ft leads to the equations

a = 2.0884 ft g = 0.3284 (ft)? (11)

The radius r at any position x on the stireamline is determined by the
Newton-Raphson iteration

r—~r - 56 (12)
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! Ir Table II are given recomputed values of radii for the same positions
which were used in the specification of the model.® The recomputed
values do not quite agree with tbe original values, but the discrepan-
cies between values are not muck more than a hundredth of an inch in
the worst cases.

The partial derivatives of Q are given by the equations

a0 %r’q %rzq
—= 5 - 3 (13)
{{x - a)? + r2)2 {(x + a)? + r?)?
and
1 (x - 1
-ag _ onr - 3r(x - a)g 5+ ir{x + a)q . (12) .
ar {(x - 3)2+¢2)2 {(z 4+ a)? + )

The components of unit vectors tangent or normal to the streamline
can be expressed in terms of the partial derivatives of ¢. Along a
vertical plane of symmetry, the velocity normal to the streamline at
a point is given by the expression

| 2 20
' o= (s - 7) = or - ¥ (15)
30 2 2 d 3
V(,—Q + (3—Q V(rg) + (,—Q
3x ar ax ar

where the % sign depends upou whether the point is topside or bottomside.
The sum of normal componernts of velocity for the source and sink is zero
for deep submergence, but when the ovoid is near the surface, there are
contributions to velocity from the surface waves. The resultaat velocity
for the source and sink does not quite give a vanishing normal component
at tne surface of the ovoid. The normal component at the vertical plane
has been computed for the experimental conditions. The worst case was
for 6 (ft)/(sec) where the normal component was not more than 1.6% of the
free stream velocity.
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FREE SURFACE

U A

!

One of the errors in the mathematical modsl is a lineariza-
tion of the boundary condition al the free surface. Let the
eguation of the free surface be

A

z- f(x, y)=0 (16)

T AU i)

For steady state conditions the velocity potential at the free surface
satisfies the boundary equation

3. af B89af 89 _ )
(0+ ax)ax ayay-az—o (17)

and also the Bernoulli eguation

2

w2 )+(a"’) +(&F )} =3 (18)

wLich becomes the equation

19, 32 3p af _
153+ 2243y +(F )+(—)} £ =0 (29)

after differentiation with respect to x. To the first order of small
guantities the equction of the surface is

mmu&uww%umﬁwﬁmwmhw,mw. ..

“
]
g | oy
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¥IS

(20)
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<3 whence the derivatives of f are given by the equatioms

32
9x2

-

]
|

wig
Q4~m
D3 S

ox3Jy (21)

Substitution of these expressions of first order into the expressions
of second order leads to the second order boundary equation

2 9 .2
G+ G5 =0 @@

The second order term in this eqguation is the derivative of z quantit
'} y

which is positive and fluctuates betxeen minima and maxima such that
the minima are about balf the adjacent maxima in magnitude. The wave
number of the fluctuation of the second order term is twice the wave
é number of the fluctuation of first order terms. The neglect of the

; second order term in the boundary equation leads to an errer in
elevation whose amplitude is estimated to be equal to tke maxima of
the quantity

ek biaiens

ml»l»

{(@)’ (25 (Zf)‘"} (23)

ﬁ' Values of this quantity have been computed for the experimental condi-

i tions and the largest maxima for each speed 2re summarized in Table III.
The largest error in elevation is only about 2.0% of the largest
zmclitude of elevation.
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CAPILLARITY

Another error in the mathematical model arises from a neglect
of surface tension at the free surface. A surface tension Yy acts
on & line element dr in the surface in a direction which lies in
the surface and is orthogonal to dr. The component of this force
in the direction of increasing z is given by the product of this
force and the rate of change of f in the direction orthogonal to
dr. The component of force is given by the scalar product

A}

e e ORI UM N T byt

- YVf kX dr (24)

where k& is a unit vector in the direction of increasing z. The
resultant force on a closed contour with position vector r is given
by the circuit integral

-Y$ V- kxdr (25)

where the path of integration is taken in the right-handed direction
relative to the vector k. The surface tension on the contour is
balanced by the action of a pressure against that surface which is
contair. 'd within the contour. Application of triple product expan-
sions and of the Stokes theorem to the circuit integral shows that
the pressure is given by the equation

«
1
i
;
.
b
H

p=YV-Vf (26)

The Bernoulli equation is modified therefore through addition of the
term

- ——,‘;"l"—-—z (27)

I¥'T
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and to first order the boundary equation becomes

3%y dp Yy 3¢ _
3% %03 ppafa  ° (28)

The effect of surface tensicn is a change in amplitude and wave length
by the fractional amount

Y 2
o 1 (29)

Inasmuch as the coefficient of x2 in this expression is on the order

of )

X - g x 1075 (1)’ (20)
og

the effect of surface tension was negligible for the experimental
conditions. The effect of capiliarity is not important as long as
the towing speed substantially exceeds the miaimum speed? of
0.76 {ft)/(sec).

TRANSTENT STATE

The ovoid was started and stopped in a tank of finite size.
Only a2 limited part of the recorded wave elevation approximates
the limiting profile for steady staie. The extent of good profile
can be deduced from an analysis of the transient wave pattern.

Let tbhe Cartesian coordinates x, y, z of a point in the fluid
at time t be referred to a fixed origin with z measured downward.

13
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Let the velocity in the fluid be the negative gradient - Vg of a
velocity potential ¢ which is a solution of Laplace's equation
VevVp =0. The dynamical egquation is the Bernoulli equation

s onal R,

av 1 2 9
- — —{(V - - =
5t + 2( p) + 5 gz = constant (31)

e ARG e
™

PN
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where p is the density, # is the pressure, and g is the accelera-
tion of gravity. Let the equaticn of the free surface te

z=f(x, y, t) (32)

and let a source be created belox the origin at a depth & and at the
time zero in a fluid initially at rest.

In the limit of instantaneous formation of a finite source all
terms in the Berncuili eguation iancluding $/p remain bounded at the .
ree surface and d¢/8t therefore must also remain bounded at the
free surface. If each term in the Bernoulli equation is integrated
with respect to time, then the term 3¢/3t becomes the change in
potential but the other terms become infinitesimals. In the limit
of instantaneous formation of the source the potential remains

i
H
§
t
H
H

constant, and the bouncary conditions require that the formation
of a source beneath the surface be accompanied by the formation of
an image over the surface. For a unit source below the surface the
potential ¢, is given by the equation

@ = (33)

14
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and for an image source over the surface the potential ¢, is given
by the equatior

h]
P = - (34)
v¥z?2 + y2 + (z + 4)?

The Fourier transforms of the potentials ¢,and ¢, are given by the
equations

1 ™ ° -x|z-a] + ix(xco38 + ysine)
e

o ==JJ dxdé (35)
en
-x O
and
4T ©® - .
g = _i f f . x(z+ 2a) + ix(xcosa+ysln6)dxd6 (36)

To these must be added a potential ¢, which is initially zero but
meets the boundary conditions at the free surface.

The linearized Bernoulli equation at the free surface is

3
§+gf—o (37)

while ihe kinematic equation at the iree surface is

dp If

— = 38
&z ot 0 (38)




Elimination of f from Equations (37) and (38) leads to the boundary
equation

d%¢ 3
762 4 5; =0 (39)

The Fourier amplitude A(x, 6, t) of the potential ¢, therefore
satisfies the equation

824 4
— t+ xgA - — =
sz TxA- =0 (40)
of which the appropriate solution is
- 1 cos ’—;t
Ax, 5, t) = = _ Z5rEM” (41)
e 4 e 4

If an instantanecus creation of z finite source is followed after a
time interval dt by the instantaneous annihilation of the finite
source, then tle Fourier amplitude per unit pulse is merely

1 —
A(x, 6, t) = - V%sin Vet (42)

and from the boundary equation (37) the surface elevation per unit
pulse is given by the eguation

1 *x e _
-f=;-tf J cosvgxte

~1tO

-xk + ix(xcosf + ysin§)

wdxd8 (43)
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The surfaoce elevation is initially a2 hump but orecks ultimately into
the well known system of concentric waves.

An 2lternative formulation i3 achieved tarough the substitution

xcos6 + ysinf = roosd (44)

and from the definition!®
1 F )
Jolz) = = J cos{z cos ¢)d¢ (45)
*a

The surface eievztiOn per unit pulse is given by the eguation

—

- — -xk
~f=2J cosvgute  Jy(xr)udx {s6)
[

Trom tke Lipschitz integrall® tize ecuation for the hump at ¢t = 0 is
recoverec. The initial surface elevation thus is given by the
equation

24

(81

((2 + r2)

a2 numper of complex tramsformations of variable the elevation
¢cr r = 0 is obtzined. The surface elevation at the origin

is given
&ty the equation
Et‘.’ 522
2 2 s\ [t an § ah o ]
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The integral in this equation is the Fresnel integre of imaginary
argunent. The surface elevation at the origin subsides gradually
«with time until it is negative, then becomes positive, and finally
returns to zero.

IS the Bessel function in Equation (46) is replaced by its
asymptotic value,

s

o) = (=)

n
cos(wur - =) (49)
nur 4

then there appears in the integrand the preduct

n —
cos(xr—z)coslgxt (50)

This product makes the most contribution to the integration when the
arguments cof its factors differ by a multiple m of 2n and furthermore
tne derivatives of these arguments are equal. The product then
ovenaves like the square of a cosine and is positive over the longest
range of integration. The derivatives are equal when

r=%V§t (s51)

and the arguwents differ by 2 multiple of 2n when

t2
LA 2™ -
4r

(52)

]
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The smplitude of the waves is limited by the exponential function
in the integrand of Equation (46). Since neither the trigonometric
function nor the Bessel function are ever more han unity, the
amplitude cannot exceed the initial slevation at the origin.

If a unit source is created below the origin at depth % and at
time zero and then moves along the x-axis at constant speed U, the
elevation of the surface may be obtained through integration of the
effects of pulses which have teen created during a succession of
differential time intervals dT from T =0 to T = t. The resultant
elevation at time t thus is given by the equation

pod

xh + 4 - 0t)cosé 8
5= L prf cosvam(t - 1) R ixlE T IR)ces8 ¢ ysin Y dndbidn (53)

.‘-I

Integration with respect to T ieads to a formula equivalent to that
of Hsu®, while further development in terms of half time leads to
the equation

s = f.sm;(»/gx+ xJcos € )t S in{(x-LE)cose + ysine} + 3wt
vex + Wcos§

wdudf

-ﬂ,sm_(./gx xi cos 6 )t e-xh+in{(x-%'t)tosa*75189}°%/F“u’d6 (54)

vV gr - flicos &

In the limit as ¢ —~ ® there is no major contribution to the integra-
tion except in the neighborhood ¢f & singularity of the dencminator
of either integrand where

~ S
cos28 0 (55)
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Local expansions in terms of % in the neighberhood of a singularity
gre given by the equations

/}—x t xlcos 6 = - UlcosBlu+ ... (56)

A}

.y
LS IR RI LT -+ o

and

ix{(x - 3Ut)cos 6+ ysinf) # é/-g_xt =

i N ) . e
x"‘,‘,n {(x-Ut)cosg9+ysinb} + t{(x-30t)cosé+ ysinfju + ... (57)
ces® 6

Required for the evaluation in the limit as ¢ - @ is the remarkeble

integral
® sinau cos bu 0 if |a] < |b]
J du = { o (s8)
— 32 1 b]
[o] 2 13 la! > '

where @ is positive but b may be of either sign and a, b are identified
as follows:

a = {Ulcos 8]t o = (x-20t)cos6+ysiné (s9)

8 KM S bl s hsn Tkt

The nonzero part cf the wave train is confined between boundaries where
2
lal = |b] .

The leading edge of the wave train is defined by the equation

(x - Jt)cos6+ ysiné =0 (60)

"“"W;WWWMW.\» .o
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and the trailing edge is defined by the equation

(x - 30t)cosB+ysinf=0

(61)

¥hether the boundary of the wave train is inclined forward or backward
depends upon the signs of siné€ ané cosé at the points of stationary

phase. The phase is stationary where

=0

d (I-Ut+ysin6\
d8\cos® cos?é&/

or where

L sin?6 ~
ysiné = - 1T % cosf {(x - [t)

(62)

{(83)

Substitutions from Equation (63) into Equations (60), (61) show that

the wave train is confined to the region where
inecuality

30Ut cos?6< x < [t

i
o
iz

A5 tae center line where = 0 the trailing

pete
n
v
(4

x = 20Ut while along the criticel line of

-1

(]

6 = sin the trailing =dge is at x = 1Ut.

V3

extend farther back than the transverse waves,

'y

rom a2 simple Huvgens constructicn.

21

x satisfies the

(64)

edge of the wave train
wave crests where

The divergent waves

as might be exgpectieu




¥hen Equation (54) is so rearranged as to replace x—%Ut by
x - Ut the result is the equation

= _.frsm(igx+ xJ cos 6)t “uk+ in{{<~-rt)cos6 + ysins} ddd
en “en+ vllcos 6@

__frsm(igr xl cos 6)t -xk+ ix{{x- gt)coso + ysine}xdxde
2w v gr.-wljcos 8

: s 23 f . :

1 in*Z2 (v gx+ xFcos 6)t -xn+ ix{(x - Ut)cos® + ys126}
+ [} 2- e xdxd8
vV or+ricosé

i

21
in?1(y E% - 25 coS Bt —xh + ix x{{x~ gt)coz6 + ystnb}
fs ad P = d xdxd6  (65)

n /gx xlicos €

-

in the Tirst two integrals of ihis ecuaticn there is nc msjor
contribution to the integration except in the neighborhood of the
singularity as before where 2 lccal expansion can be made in terms
of u. The integration recuires the value of the integral

(a >0} (s8)
where @ is defined now Ly the equation
e = 30]cos §jt (67)

In tbe second two integrals the integrands are multiplied by the
sguare of a cine which is always positive and in the 1imit as

t - « has the effect of weighting the Cauchy priucipai value by %

~ -
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The first twe integrals lead to the singular term which must be
added to the steady state solution to eliminate waves ahead of the
source while the second tws integrals lead to the Cauchy principal
vaive which gives waves ahead as well as behind the source.

SURFACE ELEVATION

The components of velocity for the steady state have been com-
puted on NORC at 0.5221 ft intervals in x from 52.21 ft ahead of
the line of wave crests to 104.42 ft benind the line of wave crests.
The data for » at $2.0884 ft from the midpoint between sources were
multiplied by the quantity

q
47,

(68)

and were subtracted to obtain the computed wave elevations for the
simple source and sink. The data for x were converted to time
through division by U. The computed wave elevations are plotted
against time as solid lines im Figures 1 to 28.

in order to obtain digital values of the experimental results
for comparison with the computed results, readings nave been taken
at 0.1 sec intervals from the Sanborn records in reference 10. The
records for 133 ft of travel have been selected for utilization in
the present analysis because the data for this distance of travcl

were understood to be the most reliable. Some discrepancies in

zero point settings were noted and were called to the attention
of 'r. Shaffer, who has reanalysed the data and has obtained more
accurate results. The improved data are plotted as dotted lines
in Figures 9 to 24.




The timing of the experimental data is beiieved to have a pre-
cision of 10.0Z2 sec but some remaining inconsistency suggests that
the accuracy mey be less. Thus the agreement between theory and
experiment is better for those runs where the distances off center
line were 0 and 223 £t than it is where the distances off center-
line were 113 ft and 34% ft. The discrepancy is especially evident
in Pigures 10, 14, and 22 wnere the experimental wave profiles lead
the theoretical wave profiles.

‘nry‘. ‘o le‘ﬂm.‘\fwwﬁmwﬁ g K
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DISCUSSION

The theoretical and experimental wave profilies compare quite
favorably with respect to phase in the range of fully developed
wave train and there is correspondence between double wave crests
at bigher speed. There is some disagreement as to amplitude,
however, part of which may arise from uncertainty as to depth of
submergence. That this may have a substantial effect on amplitude
is indicated by Table IV where the estimuted decrease in amplitude
for 1.5" increase in depth is listed. The effect decreases withn
increase in speed and is relatively unimportant at 10 {ft)/(sec).
A checkrun for this speed with the depth increased from 1.5° to
1.625' confirmed the predicted decrease in amplitude and indicated
that wave shape was not appreciably affected.

The tests were run in water of finite depth and at the highest

PP ER T M

speed the wave length of the transverse waves was nearly equai to

7 wlé vm

the depth of water in the tank. A checkrun with a computing
. routine for finite depth showed that the effect was negligible
even at 10 (fi)/{sec) speed.

A MLy

The duration of good wave train is terminated when the trailing
edge of the wave train passes the recording station. The elapsed
time from the passage of the model tc the passage of the trailing
edge is the time for the trailing edge to advance the remaining

'Muwmw
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half distance at half of the speed of the model. Times of termina-
tion in seconds are given in Table V. These values are for the
limiting case of infinite time and the actual durations of steady
wave train tend to be less.

After the model has stopped the wave train tends to persist
undimirished except at the tip which becomes rounded off. The
rate of propagation of the tip of the wave trainm is reduced to group
velocity or to half the model speed. The residual wave train is
reflected from the far wall of the tank but should not perturb the
recorded elevation until after the reflection has returned to the

. recording station. The reflecting wall of the tank was more than

271 ft from the starting point of the model, and the residual wave
would not be reflected back to the recording station in less time
than it would take the trailing edge of the wave train to reach the
recording station. It must be concluded that tke recorded data for
133 £t of travel offer a shorter duration of good wave train than
the data for 187 ft of travel. Whereas the data for 133 ft of
travel were used in the preparation of Figures 1 toc 24, the data
for 187 ft of travel have been used in the supplementary Figures

25 to 28. The better agreement between measured and computed
elevations for the greater distance is noteworthy.

Error in the boundary conditions of the mathematical model
cannot contribute more than a few per cent error to the ampiitude
of elevation. The assumption of ideal flow shouvld be valid at
the free surface which is several radii above the test model, but
the assumption of & simple source and sink is undoubtedly in error
because of boundary layer and wake. During the towing tests the

' Reynolds number of the model was in the range 2 X 10° tc 4 Xx 108.

It seems likely that the flow over the model was fully turbulent,
inasmuch as the model was preceded by a long towing cable which
could induce turbulence at the nose of the model. The simplest
effect of boundary layer separation with trailing flow ii the wake
would be a reduction in strength and a backward displacement of the
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sink. The reduction in strength could be inferred from ithe drag on
the ovoid but there do not seem to be data on drag for Rankine
ovoids, and data on drag for torpedoes could not be extrapolated
because of disparities in prismatic coefficient. The drag for a
Rankine ovoid is probably at least as great as the drag for a sphere
of the same diameter.

. ,‘p,’f‘“_“w'a v, 5

*

T A YR WALE S -
W o macd.

The presence of a boundary layer has the effect of slowing down

the real flow with respect to the ideal flow with a spreading of the
" stresmlines in the neighborhood. The spreading becomes pronounced

toward the rear where there is separation of the boundary layer.
The decrease of longitudinal flow in the turbulent wake is compensated
by a decrease of convergent flow to the sink. The decrease of flow
may be inferred from the drag or rate of transfer of momentum to the
fluid. The drag D is given by the egquation

@

b= }pDQSCD =2npl0 § urdr (69)
)

where S is the projected ares, Cp is the drag coefficient, and the
integration of longitudinal speed s is with respect to distance r
from the axis of the wake. For a sphere of diameter d the projected

area is given by the equation é
i
;
S =1nd? (70) :
while the fractional reduction in the flow is given by the equation §
H

@

2nf urdr

°
— =10, (71) L
1nd?3y 34
1

.o

PRS-
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At the experimental values of the Reynold's number the drag
coefficient!? is or the order of 0.2 for a sphere and the reduction
of strength of the sink should be at least 10% for the ovoid. That
it is closer to 25% can be inferred easily from rerums of the com-
putations with the strength of the sink reduced by appropriate
amounts. It is desirable that the matter be settled more definitely
with the aid of photographic data as determined from smoke traces

in air tunnels or frc:m bubble traces in water tunnels.

Since the preparation of this report, a model of the Rankine
ovoid has been made at the Naval Weapons Laboratory and is being
tested at the Notre Dame University. Preliminary photographs!*
with smoke traces indicate a detectable spreading of thne stream-
lines behind the ovoid. Improvements in experimental design will be
necessary before quantitative conclusions can be drawn from the ex-
perimental streamlines.

CONCLUSION

The experimental and theoretical wave profiles ccmpare quite
favorably in view of experimental difficulties. The principal error
in the theoretical wave profiles =rose from the use of a2 simple source
and sink for an approximation of the ovcid. Tke sourcewise approxi-
mation could be improved from an analysis of experimenial data on
streamlines.

27
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APPENDIX B
TABLIES I to V




TABLE I

Speeds for which Wave Profiles were Computed

o(ft}/{sec) Xo(ft)™? A(2t)
3. 7760 2. 2565 2.7845
4. 6247 1.5043 4.1768
6.0 0. 8933 7.0337
3 7.3 0. 6035 10. 4112
i 9.0 0. 3970 15. 8267
, 10.0 0.3216 19.5373
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TABLE II . %
Offsets for Rankine Ovoid 4
with Length to Diameter Ratio of 7 %
x {in) r {in) g
0.000 3.857 R ';
2.592 3.857 ;
5.184 3.8%54
7.776 3.850
10. 386 3.842 i
12.960 3.830
15.252 3.809
18. 144 3. 757
20.724 3. 642 .
21. 600 3.570 %
23.328 3.316 : -
25.200 2.669
25.920 2.182 i
2¢ 400 1.685 g
27.000 G.000 § !
g -
E

e
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+
[
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TABLE III

Maximum Effect of Linearization on Surface Elevation

u(£t)/(sec) Error (ft)
3.7760 . 0002
4.624% . 0006
6.0 . 0017
7.3 . 0018
8.0 .0018
10.0 . 0017
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TABLE IV

Percent Decrease in Amplitude fer 1.5* Increase in Depth

o{fs)/ (sec) £ Decrease
3. 7760 28
4.6247 19
6.0 11
7.3 72 i .
9.0 5 ‘
0.0 4
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TABLE V

Times of Termination of Steady Wave Train

Speed {ft}/(sec)

] Distance (ft) 6.0 7.3 Q.0 10.0
time (sec)
‘ 48 8 7 5 5
| 63 11 9 7 6
1 95 16 13 11 10
133 22 18 15 13

187 31 26 21 19




APPENDIX C

Plots of Elevation £ (ft) versus Time T (sec)

NOTES

Figures 1 to 24 refer to 133 ft of travel.

Figures 25 to 28 refer to i87 ft of travel.

Dotted lires represent measured elevations in the transient
wave train of a Rankine ovoid.

Solid lines represent computed elevations in the stcady state
wave train of a source and sink.
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FICURE 14
SURFACE ELEVATION
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