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ABSTRACT I
Measured elevations in the wave train of' a Rankine ovoid are

compared with computed elevations for an ideal source and sink.

The measured elevations are in phase with the computed elevations

but have smaller amplitudes. The discrepancy in amplitude is

attributed to t%,urbulent boundary layer and wake in the flow

around the real ovoid.

ZUMSAMNOWASSUNG

Die gemessenen HB-hen im Wellenzug eines Rankineschen eifarmigen

K6rpers werden mit den berechneten H6hen freine ideale Quelle und
Senke verglichen. Die gemessenen Ho-hen sind gleichphasig mit den

berechneten, haben aber kleinere.Amplituden. Die 1Jnstimmigkceit

ihinsichtlich der Amplitude wird auf' die turbulente Grenzschicht und

die Nachlaufstr~mung am wabren eif'6rmigen K~rper zuruckgef'ibrt.

RESUME

On compare les 616vations mesurdes du train d'ondes d'un ovo~ideI

de Rankine avec les 616vations calculdes pour une source et puits

iddale. Les 616vations; mesurdes sont en phase avec les 6ldvations
calculdes, mais prdsentent des amplitudes plus rdduites. La dif-

f~grence d'ampliltude est attribude h la couche limite et au sillage

turbullents du courant qui entoure l'ovo~ide rdel.
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INTRODUCTION

A project at the Naval Weapons Laboratory has ai its ultimate

objective the computation of flow around surface ships of finite

4 breadth in water of finite depth. In the pursuit of this project

there has been prepared a system of four computing routines, which

compute the components of velecity in the wave train of a point

source.

A project at the David Taylor Model Basin has had as its objec-

tive the measurement of wave elevations in the wave train of a

Rankine ovoid. When deeply submerged, the Rankine ovoid is that

streamline of zero stream function Wiiich would be generated by a

simple source and sink. A representative streamline is illustrated

in Appendix A.

The wave elevations as measured at the David Taylor Model Basin

present an ideal opportunity for a comparison with wave elevations

as computed at the Naval Weapons Laboratory. One objective of the

present report is to explore the possibility that the measured wave

elevations might indicate how a sourcewise representation should be

modified in order to allow for boundary layer and turbulent wake.

Before any conclusions would be possible it has been necessary to

evaluate in detail all sources of discrepancy between measured data

and computed data.

The components of velocity in the wave train of a point source

may be derived from the Havelock integral, which is a double Fourier

integral in wave number space. The evaluation of the integral is

achieved by radial and azimuthal integration in the wave number

space. Following a suggestion from the David Taylor Model Basin,

DiDonatol in 1958 developed a method of integration in which the

path of integration is so displaced in the complex plane as to

avoid a singularity in the integrand. Radial integration was per-

formed by Simpson's rule and azimuthal integration was completed
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with Gauss' rule. Without reference to this prior work, Yim2 in

1963 has reexamined the problem of integration in the near field. F

With the aid of formulae of Barakate, or after radial integration

with Laguerre-Gauss quadrature, the azimuthal integration was
completed with Legendre-Gauss quadrature. Yim examined also the

problem of integration in the far field both along the center line

behind the source and along the critical line of wave crests.

However, the derivations were extended only as far as the first

two terms of the asymptotic expansion in each case.

In the meantime, the present writer 5 has made an extensive in-

vestigation of possible methods of integration. At an early date

it was realized that radial integration generates the complex expo-

nential integral. In the sense that this function is an elementary

function, the problem of integration is reduced to the problem of

azimuthal integration alone. The high accuracy rule for the inte-

gration of a cyclical function is just the trapezoidal rule for

equally spaced angles, and the above use of Gauss quadrature is

not appropriate. Even the trapezoidal rule is inefficient for

applications of importance to surface ships, and a new method of

integration by parts was found in which integration could be per-

formed through many oscillations of the integrand. It was recog-

nized that the integrand is the product of a monotonic factor and

an oscillatory factor. When the monotonic factor was approximated

in terms of positive integral powers of the argument of the

oscillatory factor, the integration could be completed by recourse

to recurrence relations. Further improvement in efficiency was

achieved through the expansion of the monotonic factor in terms

of positive and negative half integral powers of the argument of

the oscillatory factor. Finally the asymptotic series for sta-

tionary phase with quadratic approximation near the center line

or with cubic approximation near the critical line has been

carried to the ultimate term of smallest magnitude. These methods

of integration are the basis for the four computing programs

2
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*1 I
for the computation of wave trains for a point source. The four

programs provide iomputations with maximum efficiency or with con-

trolled accuracy and with no limitation as to direction or distance

from the point source. The programs were first reported in 1965.

All of the above work is concerned with the steady state wave

pattern. In the integration of the double Fourier integral the

classical approach was to use the Cauchy principal value but this

led to a train of waves in front of the source as well as behind

the source. Inasmuch as wave trains in front of the source are

unacceptable on the basis of physical observation, the singularity

in the integrand was avoided through the introduction of an imag-

inary term which is the so-called frictional term but is in

reality merely a mathematical device to compel the path of inte-

gration in the complex plane to pass on the correct side of the

singularity. An alternative approach is to recognize that the

integrand at the point of singularity satisfies identically both

the boundary equation and the Laplace equation and can be added

therefore in arbitrary amount. When it is added in the correct

amount to eliminate waves in front of the source, the integrand

becomes analytic and the path of integration can be varied. A

more convincing determination of the term to be added would be

derived from an analysis of the limit approached by the transient

"atdisturbance which arises when a point source is started from rest
and moves with constant velocity thereafter. Starting with a

formula of Maruo 7 , an analysis was made by Hsui in 1965, who con-

cluded that there was a transient system of circular waves which

were centered at the starting point and a stationary train of

waves which trailed halfway back from the source to the startingSpoint. In view of the importance of the transient waves as a
guide to the properties of the stationary waves, the formula of

Hsu is rederived herewith and is transformed further to reveal the

character of the wave train.

-- 3J
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The analysis of transient waves has been used by Hsu and Yim4 in

1966 to interpret the experimental data on the wave profiles of the

Rankine ovoid. Only the wave profiles on or near the center line were
considered for interpretation whereas the wave profiles farther away
from the center line are more interesting although more unstable.

The experimental wave profiles were shifted with respect to time so

as to match the theoretical wave profiles at a point of zero elevation.

It was concluded from a comparison of the matched profiles that the

ideal wave theory predicts wave profiles for fully subm6rged bodies

with sufficient accuracy for practical purposes. On the other hand,

a. systematic discrepancy in amplitude of the measured ana computed

wave profiles was noted and was thought to be the result of viscous

effects.

A series of determinations of wave profile have been made by

D. A. Shaffer9e'1 at the David Taylor Model Basin. A Rankine o;oid

was towed at various speeds, and wave elevations were recorded on a

Sanborn recorder for various distances off Lhe line of travel. The

position of the ovoid was determined from the angle of rotation of

a drum around which the towing cable was wrapped. Contacts on the

drum transmitted signals which were recorded on the Sanborn record.

Correction was made for slippage of the cable on the drum. The

model was provided with a projecting lug which tripped a switch of

known position and recorded a step on the Sauborn record. With this

calibration the zero point of time when the center of the ovoid was

opposite each recording station coald be computed and marked on the

record.

The ovoid had a length of 4 ft with a ratio of length to

diameter of 7. It was towed by a cable of-!" diameter at P sub-

mergence of 1.1 ft in water with a depth of 20 ft. The depth of

submergence was uncertain to ±l1.5" because of sag in the cable.

"i
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The length of travel at constant velocity was 205 ft. In one

I series of runs the wave elevation was measured at 0 ft and at

22.75 ft to one side of the line of travel while in: another

series of runs the wave elevation was measured at 11.375 ft and

at 34.125 ft away from the line of travel. The speeds of the

ovoid were 6, 7.3. 9, and 10 (ft)/(sec).

The amplitude of wave elevation was observed to fluctuate

with speed with a minimum near 4 (ft)/(sec) and with a maximum

near 7.3 (ft)/(sec)Y The minimum was interpreted in terms of

interference while the maximum was correlated with critical

Froude number.

Some deviation from a steady state wave profile occurred down-

stream from the model because there had not been enough time for

the waves to develop their full height and because there was inter-

ference from waves which had been reflected off the walls of the

basin. The unsteady region could be recognized by comparisons

between records for different distances of travel. The length of

the fully developed wave train was reported to be half of thef distance of travel.

I
STEADY STATE

Let a point source be moving at a depth h below the suxrace with

a speed U. A point in the fluid is located at Cartesian coordinates

x, y. z in a right handed coordinate system, with origi at t-he sur-

face over the source. The x-coordinate is the distance forward,

tne y-coordinate is the distance tc the right, and the z-coordinate

is the distance downward. hc veloac2ity fn4 the fluid is expressed

V-p
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as the negative gradient of a velocity potential q). The computing

routines give the Cartesian components u, v. w of velocity in accord-

ance with the equations

axay 'Z

The velocity potential is the sum of three patertia-I in accordance

with the equation

S= ý + p2 + s (2)

where % is the potential of the source in an unbounded fluid, T 2

is the potential of an image suurce over the free surface, and %
is a Fourier integral. The potentials a + q cancel at the free

surface, while the potential ps is the sum of a monotonic term and

an oscillatory term. The monotonic term is responsible for a

solitary wave or Bernoulli hump over the source while the oscillatory

term is responsible for a wave train or Kelvin wake behind the source.

Limiting formulae for the wave elevation on the line directly astern

of a unit source may be derived from the asymptotic expansion of the

potentials. For deep submergence the elevation in the solitary wave

tends to vary like

U x
2- 22

• (x2 + h )I

For down stream the elevation in the wave train tends to vary like
I$

I ocos(Y)Ox (4)

where the critical wave nwmber xY is defined by the equation

= -- (5) _

The asymptotic formula for the wave train is not useful over the

source where it goes to infinity.

6
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L It is of interest to note that when the source strength is

proportional to U the amplitude in the wave train has a maximum with

respect to U where

x0h (6)

This corresponds to a critical speed of 9.8 (ft)/(sec) when the depth

of submergence is 1.5 ft.

The wave length X of the waves directly behind the source is given

by the equation

(7)
XO

Interference between a source and sink will occur if their distance

anart is an integral multiple of wave length, while reinforcement will

occur if their distance apart is half an odd integral multiple of wave

Slength. Representative data for the experimental ovoid are given in

A the following table

A Source Separation Phase Correlation Speed (ft)/(sec)

N Reinforcement 3.7760

Interference 4.6247
-k. Reinforcement 6.5403

It may be noted that reinforcement prevails for the experimental speeds.

CoDuted wave profiles have been obtained for the first two speeds in

the above table together with the experimental speeds. The speeds, the

critical wave nxz.b-ers, and the wave lengths for which there are com-

-puted profiles are summarized in Table I.

;" 4
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SOURCEWISE REPRESENTATION

The streamline for a deeply submerged source and sink was deter-

mined by iteration. Let the source and sink be of strength ±q at

the positions ±a on the x-axis. If the free stream velocity is

unity, then the flux Q through any circle of radius r at the posi-

tion x is given by tho equation

2- (x - a) 2 +(r)

The equation of the streamline is Q = 0. In the limiting case

where r - O, the equation of the streamline is reduced to

axq I

(X2 a2)2 n (x 2' (9)

where x is the half length of the ovoid. In the limiting case

where z - 0, the equation of the streamline is reduced to

"aq -Ar2 (r=-) (10)

va2 + r2  14

where r is one seventh of the half length of the ovoid. Iterative

solution of the simultaneous equations (9) and (10) for a length I
I = 4.5 ft leads to the equations

a = 2.0884 ft q = 0.3284 (ft)2  (C1)

The radius r at any position x on the streamline is determined by the

Newton-Raphson iteration

C1 Q--- r -- (12)

a t"

8

5
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In Table II are given recomputed values of radii for the same positions

which were used in the specification of the model, The recomputed

values do not quite agree with the original values, but the discrepan-

cies between values are not much more than a hundredth of an inch in

the worst cases.

The partial derivatives of Q are given by the equations

C1Q l r2 q ~yq2 -,} (13)
ax (x - a)' + r*2' {(x + a)' + rf

and

Q .,(x - a)q ½,r(x + a)q3Q 22 . . . . . .

f(x a)2 + r212  {(X + a)2 + ,.2}2

j The components of unit vectors tangent or normal to the streamline

can be expressed in terms of the partial derivatives of Q. Along a

vertical plane of symaetry, the velocity normal to the streamline at

a point is given by the expression

aQ aQ
ax(u-U)± 1 r(15)

(9Q) + ( ) 2 ((L +)2

where the ± sign depends upon whether the point is topside or bottomside.

The sum of normal components of velocity for the source and sink is zero

for deep submergence, but when the ovoid is near the surface, there are

contributions to velocity from the surface waves. The resultant velocity

for the source and sink does not quite give a vanishing normal component

at the surface of the ovoid. The normal component at the vertical plane

has been computed for the experimental conditions. The worst case was

for 6 (ft)/(sec) where the normal component was not more than 1.6% of the

free stream velocity.

A 9]



FREE SURFACE

One of the errors in the mathematical mode is a lineariza-

tion of the boundary condition at the free surface. Let the

equation of the free surface be

z - f(x. y) = 0 (16)

For steady state conditions the velocity potential at the free surface

satisfies the boundary equation

(- + L )8 + -l q f - = o (17)
ax i8x ay 8Y 8

and also the Bernoulli equation

+ 8~} gf= 1112 (8

which becomes the equation

S+ 8( )+ +( g_ (19)

after differentiation with respect to x. To the first order of small I

quantities the equation of the surface is

U 8a (

g, ax

A7

0 1



"whence the derivatives of f are given by the equations

Saf g a2• Uf ga2q
2 (21)

9! Z gr ax ay gr axay

Substitution of these expressions of first order into the expressions

of second order leads to the second order boundary equation

+ ( L (22)

1x _3Z 1 ax1 ax ay 2 '9ZJ

The second order term in this equation is the derivative of a quantity

which is positive and fluctuates between minima and maxima such that

the minima are about half the adjacent maxima in magnitude. The wave

number of the fluctuation of the second order term is twice the wave

number of the fluctuation of first order terms. The neglect of the

second order term in the boundary equation leads to an error in

elevation whose amplitude is estimated to be equal to the maxima of

the quantity

1 8)2 !)2 1

ff ax ay 2 azj

Values of this quantity have been computed for the experimental condi-

tions and the largest maxima for each speed are summarized in Table III.

The largest error in elevation is only about 2.0$ of the largest

am-litude of elevation.

! I
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CAPILLARITY

Another error in the mathematical model arises from a neglect

of surface tension at the free surface. A surface tension y acts

on a line element dr in the surface in a direction which lies in

the surface and is orthogonal to dr. The component of this force

in the direction of increasing z is given by the product of this

force and the rate of change of f in the direction orthogonal to

dr. The component of force is given by the scalar product

- yvf k x dr (24)

where k is a unit vector in the direction of increasing z. The

resultant force on a closed contour with position vector r is given

by the circuit integral

- y f Vf - k x d- (25)

where the path of integration is taken in the right-handed direction

relative to the vector k. The surface tension on the contour is

balanced by the action of a pressure against that surface which is

contain ,d within the contour. Application of triple product expan-

sions and of the Stokes theorem to the circuit integral shows that

the pressure is given by the equation

P = yV Vf (26)

The Bernoulli equation is modified therefore through addition of the

term

y a2f a2f.I(- +-) (27)

1 y2 1
1
t-

12 I



__and to first order the boundary equation becomes

a2  aq y a4'q
8X2  0  -Z pga•2aZ2o (28)

The effect of surface tension is a change in amplitude and wave length

by the fractional amount

--Y 2 (29)
P9

Inasmuch as the coefficient of 4 in this expression is on the order

of

"I = 8 X lo-5 (ft)2 (30)
Pg

the effect of surface tension was negligible for the experimental

conditions. The effect of capillarity is not important as long as

the towing speed substantially exceeds the minimum speed1 2 ofI 0.76 (ft)/(sec).

TRANSIENT STATE

The ovoid was started and stopped in a tank of finite size.

,Only a limited part of the recorded wave elevation approximates

the limiting profile for steady state. The extent of good profile

can be deduced from an analysis of the transient wave pattern.

Let the Cartesian coordinates x, y, z of a point in the fluid

at time t be referred to a fixed origin with z measured downward.

13



I
Let the velocity in the fluid be the negative gradient - Vp of a

velocity potential p which is a solution of Laplace's equation

V" Vcp = 0. The dynamical equation is the Bernoulli equation

1 2
- + -(VT) + - - ez = constant (31)

C1t 2 p

where p :,s the density, P is the pressure, and g is the accelera-

tion of gravity. Let the equation of the free surface be

z = f(x. y. t) (32)

and let a source be created below the origin at a depth k and at the

time zero in a fluid initially at rest.

In the limit of instantaneous formation of a finite source all

terms in the Bernoulli equation including P/p remain bounded at the

free surface and 8i/8t therefore must also remain bounded at the

free surface. If each term in the Bernoulli equation is integrated

with respect to time, then the term aq/at becomes the change in

potential but the other terms become infinitesimals. In the limit

of instantaneous formation of the source the potential remains

constant, and the boundary conditions require that the formation

of a source beneath the surface be accompanied by the formation of

an image over the surface. For a unit source below the surface the

potential q2 is given by the equation

1 (33)
Vx 2 + y2 + (z- 0)2

14
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Sad for an ae source over the surface the potential (2 is given

by the equation

T2 =-(34)
vx 2 + y2 + (z + h)2

The Fourier transforms of the potentials %iand q7, are given by the

equations

ff" e - "' dxd (35)_ -xlzh + £ x(zeo3B+8 fl÷ ~ &(~

and

q:'2 _ f+•f Q-x(z + i) + yx(xcose + yslnO)dG (')

To these must be added a potential %s which is initially zero but

meets the boundary conditions at the free surface.

The linearized Bernoulli equation at the free surface is

34 + ff = 0 (37)

at

while the kinematic equation at the free surface is

a + af =o (38)
0Z at
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Elimination of f from Equations (37) and (38) leads to the boundary

equation

t2 g = 0 (39)

zI
The Fourier amplitude A(x, 0, t) of the potential rs therefore

satisfies the equation

a2 A 91Tp + ,.A - - =o0 (40)

of which the appropriate solution is

A ~ t) 1 Cos V, gx tAi(x, 6. 1t)-vg (41)

7EX rLx

If an instantaneous creation of a finite source is followed after a

time interval dt by the instantaneous annihilation of the finite

source, then tle Fourier amplitude per unit pulse is merely

A (x, 8. t0 =-Vsin v/gxt (4-2)

and from the boundary equation (37) the surface elevation per unit

pulse is given by the equation

1 m -- -- •xh " x(xCCOS9 " In) (
f f cosVgrxt e xdxO (43)

- K
I
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The surface elevation is initially a hump but oreaks ultimately into

"the well -known system of concentric waves.

An alternative formulation is achieved through the substitution

xcosG + ysin = rc-osd (44)

and from the definition1 s

Jo (z) = f . cos (z cos 4)dO (45)

SThe surface elevation per unit pulse is given by the equation

-f z2 f Cos sgx t e Jo(xr) Yd. (46)
4 C

I

From the Lipschitz integral"L the equation for the hump at t = 0 is

I recovered. The initial surface elevation thus is given by the

equazion

- =(t =0) (4?)

1 (h2 + 1-2)2

After a number of aronmiex transform.at ions cf variable the elevation

f:r r = 0 is obtained. The surface elevation at the origin is given
by the equation

ft2  02

2F 1 Tt 2  g 2 1 t2i -

L2(343 4-h du ( o) (48)L. 4h Z- -- 4h0

17
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The integral in this equation is the Fresnel integr& of imaginary

argument. The surface elevation at the origin subsides gradually

with time until it is negative, then becomes positive, and finally 4

returns to zero.

I:f the Bessel function in Equation (46) is replaced by its

7II

asympt~otic value,

1 7

J(- )' cos ( xr - -) (49)7Lxr 4

then there apDears in the integrand the product

cos ( xr - - ) cos Vex t (50)
4

This oroduct makes the most contribution to the integration when the

arguments of its factors differ by a multiple a of 2n and furthermore

the derivatives of these arguments are equal. The product then

behaves like the square of a cosine and is positive over the longest

range of integration. The derivatives are equal when

t• =- -t(51)
2 Vx

and the arguzents differ by a multiple of 2w when

-- 2TO- (52)

4r 4

18
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The amplitude of the waves is limited by the exponential function

in the integrand of Equation (46). Since neither the trigonometric

function nor the Besse! function are ever more *#han unity, the

amplitude cannot exceed the initial elevation at the origin.

If a unit source is created below the origin at depth h and at

time zero and then moves along the x-axis at constant speed U, the

elevation of the surface may be obtained through integration of the

effects nf pulses which have been created during a succession of

differential time intervals dT from T = 0 to ¶ = t. The resultant

elevation at time t thus is given by the equation

-% x (z - ar) cosi8.+Ysin8} 4l(~
, - = sir Cos t/ gr(t - -.)e- * • -o ) os * s x dx} d. (53)

Integration with respect to T leads to a formula equivalent to that

"of Hsui, while further development in terms of half time leads to

the equation

I y ! sin '( Vgx + x17cos19) t -x + i xf (z - -U- e0 o SO + ysIn8)+i'f-
f 1f 2 xdxde

I gx + xUcos 6

1 sin'(Vjx-xUcos19)t -xh• 1-{(x-li)cosU+ysine6}l- iVXxt
+ -f e 2 xdd6 (54)7 v,: ex - XU Cos

In the limit as t - m there is no major contribution to the integra-

tion except in the neighborhood of a singularity of the denominator

of either integrand where

X cs 2e 0 ()

".9
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Local expansions in terms of x in the neighborhood of a singularity
are given by the equations

Sex ± xIcoso =-Ulcosl=u+... (56) [

and

i x(• (-ut)cosO+ ysinO) ±0 ,1 - =

2
ixo_

o {(-t) cosS+ ysine 61+ iI(x-EUt)cos0+ ysinO)u + (57)

Required for the evaluation in the limit as t - W is the remarkable
integral

Ssinmaucos bu 0 if jai < IbiI~i = o =du n (58)

0 1-2 if !fa > lbi

where a is positive but b may be of either sign and a, b are identified
as follows:

== ulcoselt b = (x- Ut)cos&+y sin0 (59)

The nonzero part of the wave train is confined between boundaries where
Ijai IbI

1he leading edge of the wave train is defined by the equation

(x - Ut)cos 8 + y sin = 0 (60)

I

20 Ai
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4and the trailing edge is defined by the equation

(x - Uft)cos0+y sin0= 0 (61)

Whether the boundary of the wave train is inclined forward or backward

depends upon the signs of sinO and cos9 at the points of stationary

phase. The phase is stationary where

d x - fit y sin C-)Scos-- (62)

A or where

I
l sin2e

Y s;n 2e -Cos 6 (X - Ut) (603)
1: + sin8

Substitutions from Equation (63) into Equations (60), (61) show that
the wave train is confined to the region where x satisfies the

inequality

IUt Ccos 20 < X < Ut (64)

Along the center line where = 0 the trailing edge of the wave train

is at x = .Ut while along the critical line of wave crests where

8 = sin-_ 1 the trailing edge is at x = -Ut. The divergent waves

extend farther back than the transverse waves, as might be expected

from a simple Huygens construction.

2
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When Equation (54) is so rearranged as to replace x-!Ut by %

x- Ut the result is the equation

f, in( Ve x+ xlCos C)t -xh + ix{(x - rt) cosa ysifalnO}y•Z•O

,-"7 + LXU cos e 9

1 sin( Vg x- xUcos 8)t -,h + ix{(x- 17t)cos8 + ysInelxxa e
+--ff :

R'ry- xl cos 8

+ .sin 2( gx + xU. cos O)t - +i•x{ (x - ct)Cosa + ys Im}+ fi, - xdxd8
"V 'ex• + Y.LU cos 6

- fsin 2½(,: gx- ycosy )t -x -. ic{ - Ut)cosa + ys! no}
---- n 2 _g COS xdxdO 65

r VfX - Y-9CosO

in the first two integrals of this equation there is no major
contribution to the integration except in the neighborhood of the
singularity as before where a local expansion can be made in terms
of U. The integration requires the value of the integral

sin au •

d-u (a >0) (66)
0 2

where a is defined now -:y the equation

a = lUicos61t (67)

In the second two integrals the integrands are multiplied by the
square of a sine which is always positive and in the limit as I
t - has the effect of weighting the Cauchy priucipal value by .

22£
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The first two integrals lead to the singular term which must be

added to the steady state solution to eliminate waves ahead of the

source while the second two integrals lead to the Cauchy principal

vaive which gives waves ahead as well as behind the source.

S•UFACE ELEVATION

The components of velocity for the steady state have been corn-

puted on AM at 0. 5221 ft intervals in x from 52.21 ft ahead of

the line of wave crests to 104.42 ft behind the line of wave crests.

The data for u at O.M084 ft from the midpoint between sources were

multiplied by the quantity

(68)

and were subtracted to obtain the computed wave elevations for the

simple source and sink. The data for x were converted to time

through division by U. The computed wave elevations are plotted

against time as solid lines in Figures 1 to 28.

in order to obtain digital values of the experimental results

for comparison with the computed results, readings have been taken

at 0.1 sec intervals from the Sanborn records in reference 10. The

records for 133 ft of travel have been selected for utilization in

the present analysis because the data for this distance of travel

were understood to be the most reliable. Some discrepancies in

zero point settings were noted and were called to the attention

of Mr. Shaffer, who has reanalysed the data and has obtained more

accurate results. The improved data are plotted as dotted lines

in Figures 9 to 24.

I.
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The timing of the experimental data is believed to have a pre-

cision of ±0.02 sec but some remaining inconsistency suggests that

the accuracy may be less. Thus the agreement between theory and

experiment is better for those runs where the distances off center
line were 0 and 20S ft than it is where the distances off center-

line were 11 ft and 341 ft. The discrepancy is especially evident

in Figures 10, 14, and 22 where the experimental wave profiles lead

the theoretical wave profiles.

DISCUSSION

The theoretical and experimental wave profiles compare quite

favorably with respect to phase in the range of fully developed

wave train and there is correspondence between double wave crests

at higher speed. There is some disagreement as to amplitude,

however, part of which may arise from uncertainty as to depth of

submergence. That this may have a substantial effect on amplitude

is indicated by Table IV where the estim-ted decrease in amplitude

for 1.5" increase in depth is listed. The effect decreases with

increase in speed and is relatively unimportant at 10 (ft)/(sec)-

A checkrun for this speed with the depth increased from 1.5' to

1.625' confirmed the predicted decrease in amplitude and indicated

that wave shape was not appreciably affected.

The tests were run in water of finite depth and at the highest

Zpeed the wave length of the transverse waves was nearly equal to

the depth of water in the tank. A checkrvn with a computing

routine for finite depth showed that the effect was negligible

even at 10 (ft)/(sec) speed.

Tle duration of good wave train is terminated when the trailing

edge of the wave train passes the recording station. The elapsed

time from the passage of the model to the passage of the trailing

edge is the time for the trailing edge to advance the remaining
L
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half distance at half of the speed of the model. Times of termina-

tion in seconds are given in Table V. These values are for the

limiting case of infinite time and the actual durations of steady

wave train tend to be less.

After the model has stopped the wave train tends to persist

undiminished except at the tip which becomes rounded off. The

rate of propagation of the tip of the wave train is reduced to group

velocity or to half the model speed. The residual wave train is

reflected from the far wall of the tank but should not perturb the

recorded elevation until after the reflection has returned to the

recording station. The reflecting wall of the tank was more than

271 ft from the starting point of the model, and the residual wave

would not be reflected back to the recording station in less time

than it would take the trailing edge of the wave train to reach the

recording station. It must be concluded that the recorded data for

133 ft of travel offer a shorter duration of good wave train than

the data for 187 ft of travel. Whereas the data for 133 ft of

travel were used in the preparation of Figures 1 to 24, the data

for 187 ft of travel have been used in the supplementary Figures
25 to 28. The better agreement between measured and computed
elevations for the greater distance is noteworthy.

Error in the boundary conditions of the mathematical model

cannot contribute more than a few per cent error to the amplitude

of elevation. The assumption of ideal flow should be valid at

the free surface which is several radii above the test model, but

the assumption of a simple source and sink is undoubtedly in error

because of boundary layer and wake. During the towing tests the

Reynolds number of the model was in the range 2 X 10' to 4 X 106.

It seems likely that the flow over the model was fully turbulent,

inasmuch as the model was preceded by a long towing cable which

could induce turbulence at the nose of the model. The simplest

effect of boundary layer separation with trailing flow ii the wake

would be a reduction in strength and a backward displacement of the

25
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sink. The reduction in strength could be inferred from 7zhe drag on
the ovoid but there do not seem to be data on drag for Rankine
ovoids, and data on drag for torpedoes could not be extrapolated ••

because of disparities in prismatic coefficient. The drag for aI

Rankine ovoid is probably at least as great as the drag for a sphere
of the same diameter.

The presence of a boundary layer has the effect of slowing down
the real flow with respect to the ideal flow with a spreading of the
streamlines in the neighborhood. The spreading becomes pronounced

toward the rear where there is separation of the boundary layer.
The decrease of longitudinal flow in the turbulent wake is compensated
by a decrease of convergent flow to the sink. The decrease of flow
may be inferred from the drag or rate of transfer of momentum to the
fluid. The drag D is given by the equation

D = Ip&SC• = .2 pR Uf urdr (69)
0

where S is the projected area, C. is the drag coefficient, and the
integration of longitudinal speed u is with respect to distance r
from the axis of the wake. For a sphere of diameter d the projected
area is given by the equation

S = 2 (70)

while the fractional reduction in the flow is given by the equation JI
27Ef urdr

07 I ~ CD (71)L•d..2
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At the experimental values of the Reynold's number the drag

* coefficient 1 1 is on the order of 0.2 for a sphere and the reduction

of strength of the sink should be at least 10% for the ovoid. That

it is closer to 25% can be inferred easily from reruns of the com-

putations with the strength of the sink reduced by appropriate

amounts. It is desirable that the matter be settled more definitely

with the aid of photographic data as determined from smoke traces

in air tunnels or frcm bubble traces in water tunnels.

Since the preparation of this report, a model of the Rankine

ovoid has been made at the Naval Weapons Laboratory and is being

tested at the Notre Dame University. Preliminary photographs 1 4

with smoke traces indicate a detectable spreading of the stream-

lines behind the ovoid. Improvements in experimental design will be

necessary before quantitative conclusions can be drawn from the ex-

perimental streamlines.

CONCLUSION

The experimental and theoretical wave profiles compare quite

favorably in view of experimental difficulties. The principal error

in the theoretical wave profiles arose from the use of a simple source

and sink for an approximation of the ovoid. The sourcewise approxi-

mation could be improved from an analysis of experimental data on
streamlines.

1 27
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TABLE I

Speeds for which Wave Profiles were Computed

U(ft)/(sec) x0 (lt)- X(ft)

3.7760 2.2565 2.7845

"4.6247 1.5043 4.1768

6.0 0.8933 7.0337

7.3 0.6035 10.4112

9.0 0.3970 15.8267

10.0 0.3216 19.5373
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TABLE II

Offsets for Rankine Ovoid

with Length to Diameter Ratio of 7

x (in) r (in)

0.000 3.85?

2.592 3.857

5.184 3.854

7.776 3.850
t

10.386 3.842

12.960 3.830

15.252 3.809

18.144 3. 757

20.724 3.642

•21.600 3.570

23.328 3.316

25.200 2.669

25. 920 2.182

2( 400 1.685

27.000 0.000 ( I
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TABLE III

Maximum Effect of Linearization on Surface Elevation

U(ft)/(sec) Error (ft)

3.7760 .0002

4.624" .0006

6.0 .0017

1 7.3 .0018

9.0 .0018

10.0 .0017
I

I
II

f
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TABLE IV

Percent Decrease in Amplitude for 1.5' Increase in Depth

0(Ift )/(sec) % Decrease

3.7760 28

4.6247 19

6.0 11

7. -' 7 12

9.0 5

1o0.0 4

71
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TABLE V

Times of Termination of Steady Wave Train

o: Speed (ft)/(sec)

4 Distance (ft) 6.0 7.3 9.0 10.0

I time (see)

48 8 7 5 5

63 11 9 7 6

95 16 13 11 i0

133 22 18 15 13

187 31 26 21 19

I
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APPENDIX C

Plots of Elevation E (ft) versus Time T (sec)

NOTES

1. Figures I to 24 refer to 133 ft of travel.

2. Figures 25 to 28 refer to 187 ft of travel.

3. Dotted lines represent measured elevations in the transient

wave train of a Rankine ovoid.

4. Solid lines represent computed elevations in the steady state

wave train of a source and sink.
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