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FOREWORD

This report presents a
portion of a thesis with the same
title prepared while the author
was a student at the University
of Tennessee Space Institute at
Tullahoma, Tennessee. Special
thanks are due Dr. k.A. Kroeger,
Assistant Professor cf Aerospace
Engineering for his many sugges-
tions and assistance in conducting
the investigation which led to
the thesis,

The author also wishes to
acknovwledge the 2id of the per-
sonnel of the Air Force Flight
Test Center in preparing this
paper. The author was assigned
to the Flight Research Branch of
the Flight Test Center pricr tc
studying at the Space Institute
and drew on this experience in

ABSTRACT

conducting this study at the
University of Tennessee Space
Institute.

This material was presented
at the AFSC Junior Officer's
Science and Engineering Symposium,
23 August 1966. Publicaticn of
this techrnical report does not
constitute Air Force approval of
the study's findings or conclusions.
It is published only for the ex-
change and stimulation of ideas
in the area of VSTOL aircraft
stability.

During recent years, in-
creased interest has been shown
in Verticali and Short Take-off and
Landing (VSTOL) aircraft. Although
several aircraft have been designed
and flown, prcgress in VSTOL Aair-
craft development has been slow.
This is due in part to lack cf
specific mission requirements and
handling qualities criteria as
well as suitable power plant and
airframe combinations. The
optimization of engine-airframe
combinations and the specification
of handling qualities require accu-
rate aerodynamic data. Conflicting
results have been obtained from
ground-based facilities. Because
of limited flight experience, data
obtained by ground testing have
not been compared with flight
test results. In order to design
better ground test facilities and
to specify handling qualities
criteria, the aerodynamic parame-
ters that effect VSTOL aircraft

a1 W

behavior must be identified. The
purpose of this astudy was to
identify these parameters for the
critical flight regime of hover
through transition. Both analcg
and digital computers were used in
the study. The purpose .f the
analog simulation was to qualita-
tively analyze the behavior of
VSTOL aircraft to control inputs
and identify the most important
derivatives. Two typical VSTOL
aircraft were investigated. The
method used to determine the
important derivatives was that of
varying the stability derivatives
about some basic value. The
amount of simulator response
identified the most important
derivatives. Once the important
derivatives were iden:ified, the
digital computer was us.? to
affix & magnitude to the ‘clative
importance of each derivative.

To establish the relative impor-
tance, a sensitivity factor was




derived. The informaticn necessary
to calculate this factor was
obtained from a mathematical
analysis of the equations of
metion. The important derivatives
were identified for both longitu-
dir.al and lateral-directional
motion.
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INTRODUCTION

Stability derivatives are
directly related to the natural
frequency and damping ratio of an
aircraft's dynamic response and
thus are important parameters to
the flight test, control system
design, and handling qualities
engineer. The purpose of this
study was to identify the impor-
tant stability derivatives of two
typical VSTOL aircraft for the
critical flight regime of hover
through transition. These air-
craft were the XC-142 and X-22A.

In order to simplify this
task, only the open loop stick-
fixed dynamics were investigated.
This entails investigating the
transient response of the air-
craft to disturbances from trimmed
flight. Both analog and digital
computer programs were used in the
analysis and the important longi-
tudinal and lateral-directional
derivatives were identified. An
attempt was also made to establish
the relative importance of each
derivative.

ANALYSIS

The study was conducted in
two phases. The first phase
utilized analog simulations to
qualitatively identify the impor-
tant derivatives and the second
phase made use of a digital pro-
gram to provide quantitative in-
formation on the relative impor-
tance of each derivative in
determining vehicle dynamics.

The linearized equations of
motion given in reference (1) were
used fcr the analog simulations.
Wind tunnel values were used for
the stability derivatives. The
aircraft was disturbed in the
longitudinal mode of motion by an
elevator pulse and in laterai-
directional motion by rudder and
aileron pulses. The stability
derivatives were varied indepen-
dently about their wind tunnel
values by #100 percent and the
amount of change in simulator
response was indicative of their
importance. Several trimmed
flight speeds were investigated
for the hover and transition
regime.

The linearized equations of
motion conveniently form two sets

of three simultaneous, constant
coefficient, and non-~homogeneous
differential equations. One set
describes longitudinal motion

and the other get describes the
lateral-directional motion. These
differential equations are reduced
to algebraic equations by using
Laplace transfcrm theory. The
algebraic equations are solved

by obtaining the roots of the
characteristic equations formed

by expand:ng the determinant of
the coefficients. The coefficients
of the characteristic equations
are the stability derivatives.

The roots are the principal modes
of motion of the aircraft and are
direct functions of the stabhility
derivatives.

The solution of the longi-
tudinal characteristic equation
had two forms for the XC-142.
These forms were:

2 2

(8" + 2;spwn

(52+2prn rwl)=o (1)
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and
‘g + T 1 (s + 7 1 )
Py spP,
g2 ,
is” + Zcpun + wn ) o] {2)
p P

The solution of the lateral-
directional characteristic equa-
+ion was of the form

1l 1
‘s + =)(s + =—)
Tr TS
. 2 2
3T + tuw + w ) = 0 : (3)
nD nD

The terms are defined as
follows:

¢t = damping ratio

= undamped natural fregquency

wn
wg = damped natural frequency
Ti = time constant of ith mode

The subscripts sp and p corre-

spond to the well known short
period and phugoid modes respec-
tively, D to the Dutch roll mode,
r to roll mode, and s to the spi-
ral mode.

Solving for the complex roots
of the equations gives

s = - tw, ? ianI - g2

or

S = - fu, t iud

Thus, the real part of the complex
root corresponds to the damping
ratio multiplied by the natural
freguency and the imaginary part
to the damped natural frequency.
Four roots are possible for each

solution of the characteristic
equation and they are normally
presented on a root-locus similar
to figqure 1.

A
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. i Q—i— ! L;ﬂg_g
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- Lup, rad. fsec.

Figure , A typical root-lccus diagram.

Charocteristic Equation:

..1_ ,_‘_ 2 ¥ I ;o 2 =
(S OT)(S Ts)(s Z,Dy"D onD) 0

4

As the derivative values are
varied, the roots migrate or move
about in the complex plane. This
movement denotes changes in damp-
ing ratio and frequency. Thus,
the importance of each derivative
could be defined in terms of the
amount of root migration. 1In order
to attach a numerical value to this
migration, a sensitivity tactor
was defined. The following terms
are used in the definition of the
sensitivity factor:

K = wind tunnel value of derivative
¢ = induced errxor in a derivative

K. = value of derivative with
induced error




SO

Rc = K{(1 + ¢)

Consider point A on figure 2
to be the location cof one com=lex
root with wind tunnel values used
or the derivatives. 1In this cal-
cuiation, ¢ is equal to zero.

Now increase one derivative to 1.1
times its wind tunnel value by
setting ¢ equal to 0.1 while hold-
ing all the other derivatives at
their tunnel values. The root has
now migrated to point C. Since
the root is complex, the real part
has increased by A(Zwp,) and the
imaginary part by aA(iwg). Con-
sidering the total movement from

point A to point C to be represented
by a vector, the magnitude would be

2

ACS = [A(Cwn)lz + [A(imd)l2

In order to represent the
increase in magnitude of this
number, the sensitivity factor
was defined as

| (azw )2} + (au ) ?|
|(Ac)2|+ I(A;wn)2| + I(Aimd)zl

If ¢ is varied in increments of
0.1, the sensitivity factor is

100 times the value of AC?. Since
it is possible for all roots to
change in magnitude with a change
in one stability derivative, each
root change has a sensitivity fac-
tor associated with every deriva-
tive change.

Problem: Calculate a sensitivity
factor for the s3 root due to the

derivative C“B'

Assume the roots of the
lateral-directional characteristic
equation have the following values
based on the wind tunnel values
of the stability derivatives.

Figure ? The geometry of the
sensitivity factor.

31 w ~0,7 =

= -0,]1 =

Hrd "ara

S
2 -]

Sy, 8, = -0.4 * 10,6
= - 7w t iy
L ny ny,

This corresponds to poir% A on
figure 2. Assume C“B to have a

wind tunnel value of -0.002 per
degree. Holding all derivatives
at their wind tunnel values Cp

is allowed to increase as follows:

Kc = K(1 + ¢)
or

Cnﬁ = -0,002{(1 + 0.1) = - 0.0022



The rooLs are now

s1 = -0,8

2 =z ~0,2

and

Sys S, = -0.5 ¢+ i0.8

This root location for s3 corre-
sponds to point B on figurc 2.
Now compute a sensitivity factor
for the root, sj.

l(siug)?|= [t0.8 - 0.6)%]= 0.04
tazu) ¥ = |1-0.5 - (-0.4)1%]= 0.01
l(ae)j= (0.1 - 01%= 0.01

The value of the s3 sensitivity
factor due to Cna becomes

0.01 + 0.04

S= 9T+ 00l + 008 = 0:833

RESULTS

Sensitivity factors for all
derivatives were calculated for
each of the four roots of the
characteristic equation using a
digyital computer program. Thus,
the importance of each stability
derivative in determining root
location or value was =stablished.
The derivatives were varied :100
percent about their wind tunnel
values by allowing ¢ to vary from
-1.0 to 1.0,

LONGITUDINAL

The data obtained from the
analog simulation showed M, Mq,
Zw, and X 6 to be the most impor-
tant derivatives for both XC-142
and X~22 in hover. Both aircraft
exhibited an unstable oscillatory
mode in hover and low-speed flight.

The solution of the longitu-
dinal characteristic equation was
or the form given by equation 2.
This solution gave two real roots
and a complex pair. The roots
are designated as follows:

s, = the largest real root in
absolute magnitude

s, = the smallest real roct in
absolute magnitude
]
SRR — Yoo -

S3 and Sy = the complex roots

Only s3 of the complex pair will
be shown on root-lcocus diagrams.

Figure 3 shows the XC-142
periodic or oscillatory mode to
be unstable in hover. The damp-
ing of this mode is seen to de~-
pend on Mg and Xy and the natural
frequency is determined by My.
The intersection of the My, Xy and

vectors is the root location
for wind tunnel values of the
stability derivatives and the
vector lengths are indicative of
each derivative's importance. This
is verified by the sensitivity
factors for My, Xy, and Mg given
for s3 given in table I for a
velocity of 1 foot per second.
Figure 4 shows the dependence of
the real roots, s; and sz, on the
various derivatives. This graph
shows the value of the s; root
located on the lower half of the
figure to be dependent on My, Mg,
and Xy. The root, s;, is shown on
the top half of figure 4 and de-
pends in value only on Zy. It
should be noted that these roots
have only real parts, and so for
clarity each root is shown with a
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My = 405073

_ ~\ X, = 249x10°3

-101
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Figure 3 Migation of the longitudinal s, with error for the XC-142 at a
velncity of 1 ft /sec
d 3
new zero vertical location, All determining the value of s3 at 1
rcots use the same horizontal scale. foot per second.
Table I shows the sensitivity
values for My, HAq, and Xy to be Their order of importance
is much larger than other derivatives from table I is:
for 8] at 1 foot per second. It 5
also shows the sensitivity factor M, = 4.87 x 10~
of Z, to be several orders of mag-
nitude larger than those for other -3
derivatives for the root, sa. Mg = 4.05 x 10
Table I is a tabulation of all the -3
derivative's sensitivity factors Xp = 2.49 x 10
for each root. Thus, the relative
importance of each derivative to Xg = 4.86 x 1078
all four roots may be found for
the speeds shown by comparing the -7
1 values of the factors from the My = 9.31 x 10
horizontal line opposite each root
and speed in question, Zg = 1.64 x 10'7
Example: Find the relative im- -8
portance of each derivative in Zy = 5.21 x 10
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tor tne XC-142 at a velocity of 1 ft, sec,

Table II gives the same in-
formation for the X-22A. This
table shows My, ¢ Xur Xy, and 2y
to be the only impertant deriva-
tives in hover and this is verified
by fiqures 5 and 6.

Fiqure 7 shows the oscilla-
tory root of the XC-142 to be

stable at a speed of 67 feet per
second. Fiqure 8 shows sy toc be
stable and s] unstable at this
speed, As these fiqures indicate,
more derivatives become important
as the plane accelerates throuqgh
transition. Again, table I should
be consulted to obtain their
relative importance.
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Frgure 5 Migiation of the tongitudinal s witl error for the X-22A at a

velocity of 11t sec

Figure 9 shows the change in
aircraft behavior as the XC-142
progresses through transition. It
shows the root locations at several
different speeds usirqg wind tunnel
values for the stability derivatives,
The root, s3, is seen to beccme
stable between 0 and 33 feet per
second. The root, s, is irnitially
stable, then goes unstable. The
root s; remains stable throughcut
the speed range and finally com-
bines with s; to form a stable
short period oscillatory mode at
the higher speeds. This fiqure
shows the aircraft to be unstable
at hover and low spceds and then
becomes stable with characteristics
similar to a conventional aircraft
at higher speeds.

B LATERAL-DIRECTIONAL

The analog simulations of the
XC-142 and X-22A showed the Dutch
roll mode to be unstable up to
about 100 feet per second. The
important derivatives for hover
were Ly, Ly, and Np.

Figure 10 shows the Dutch

roll mode to be dependent on Ly
and L, only. The damping changes
at essentially constant freguency
for variations in Lp. Fiqure 11
shows the spiral and roll modes
sensitive to Ly, Lp, and N,. Both
modes are stable in hover as well
as the other speeds through transi-
tion, “ables III and 1V give the

Lt




derivative sensitivity factors

for the three modes of lateral-
directional motion of bLoth the

XC-142 and X-22zA.
relative imporcance of each deriva-
tive to a particular mode of motion
i3 shown for several speeds.

As before, the

L Zero vy
- — Sy Root
— —— S Root
L
-
4
Loy
- =%,
4+ - xu
<4 . Mq
_L-..Mu
g rad./sec.

L
4
-4
-t
4
+ - 2,
« - %
-4 - X
4 - Mq
_ -M,

. o 1 ! I ] 1 A J

0.4 0.2 0 -0.2 -0.4 -06 -0.8 -1.0 -1.2

Lug rad./sec.
Figure 6. Migaration of the longitudinal s; ana s- witlh

crror for the X-22A at a velocity of 1 tt./sec.
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for the XC-142 at a velocity of 1 ft./sec.

13




TABLE Il

XC-142 LATERAL AND DIRECTIONAL
DERIVATIVE SENSITIVITY

T - ) T T T = AT o

-

. ) Derivative Sensitivity i
s (W ST TR % ] R ] W T %
| 00 ) 1eax10?|278x10 | 5.78x10% | 4@x10t | 136x108 329109 |  — | = —
1.8 1 1.04x103 [276x104 | 9.50x107 | 1.36x120°5 | 258x100 |9.36x 1076 | 2.09x107 |6.83x10720 [2.40x 1071
& 2.6 | 1530107 (8200100 | 5.2x10¢ | 4ax10 | 43 x106 (2285105 | 177205 {351 x 1010 {197 x 2010
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N8 | 27x10% |7.84x1070 | 246x1075 | 1981075 | 4241076 [L48x103 | 1.81x207 |6 9510713 (2,22 10712
%2 6.6 | 419x104 [6.55x 107 &-53110" 15x104 [2a7x10° [3.03x10% | 5.46x1076 [2.09x 1071 ;1.55:10‘15
1 omno 1 1.89x10 13.39x10% | 1.72x203 } 2.68x103 | 4ex10® [7.40x203 [ 115x207 |a97x107M 172y 1078 |
1o [15Bx10309.00x10% | 159x108 i 204x108 | 2935207 3662010 — - -
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TABLE 1\

X-22A LATERAL AND DIRECTIONAL
DERIVATIVE SENSITIVITY

R Derivative Sensitivity
Rosty | Velacity S
Rosec. | L L L Ny Ny N, Y, Y,
— - B I
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Lo |smxioMsoxwl)] - - - [s.sox10? J200x10716 -
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[
=2 .
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s
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dous [amxt0dfzento? (150107 {30010 ] 48910 Jr.o1x 10 J2.88x10¢ -
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Figure 12 shows the root
locations at several speeds for
the XC-142 using wind tunnel values
for the stable derivatives. 1In
hover, the Dutch roll meode is un-
stable with a time to diverge to
double amplitude of about 3 sec-
onds. The Dutch roll mode becomes
stable around 1G9 feet per second
and has the same characteristics
as a conventional aircraft.

0.6
HOVER
0.5}
O HOVER
A 33,81t /sec.
0.4} O  67.7 f./sec.
> O O 118 ft./sec,
iud, rad. /sec.
0.31
0.2
0.1}
HOVER | HOVER
- L . >————a—d L O e YO
0.3 n.2 0.1 0 -0.1 f0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8
-Cun, rad. /sec.
Fagure 17 Miegvation ol the XC-142 lateral characteristic

roots with velocity.
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C ONCLUSIONS

An analysis of the longitu-
dinal and lateral-directional
characteristics of two typical

and icw speeds. Conventional
aircraft usually have a com-
plex pair, i.e., the short

-0.8

VSTOL aircraft revealed the follow-

period and phugoid mode.

ing:
4. The longitudinal dynamic
1., Unstable periodic modes response in hover depends
exist in hover for both heaviiy on the derivatives
longitudinal and lateral- My, Mg, Xyr X, and 2.
directicnal motion. This
unstable longitudinal mode 5. The lateral-directior.al
is due primarily to M, which dynamic response in hover
can normally be neglected is determined by the values
for conventional aircraft of Ly, Lp, Yy, and Np.
investigations.
6. As normal forward flight
2. The aircraft become stable speeds are approached, the
as forward flight speeds are dynamic response depends on
approached. more of the derivatives.
The relative importance of
3. The solution of the longi- these derivatives to particu-

tudinal characteristic equa-
tion yields two real roots
and a complex pair at hover

IREFERENCES

1. Northrop Aircraft, Inc.,

lar modes has been established
and tabulated in tables I -
Iv.

"Dynamics of the Airframe,”
Navy Bureau of Aeronautics

Report AE-61-4-11, September,

1954.
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