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SPATIAL TRIANGULATION BT MEANS OF PHOTOGRAMMETRI

ABSTRACT

A method of precision spatial triangulation based on the
principles of ground photogrammetry is outlined. The geometry
and the least squares adjustment for the orientation of an indi-
vidual photogrammetric camera are derived and the mathematical
analysis for the spatial triangulation by means of intersection
photogrammetry is given. Numerical examples are added for the major
steps of the developed method*



This page Left Intentionally Blank



I. INTRODUCTION

Geodetic measuring methods are characterized by the measuring of
angles and distances. The corresponding problems in photogrammetry are
the determination of angles and distances from photographs. The pro-
blem may be considered in two ways, which are basically different in
their geometrical approach. Either these quantities may be determined
analytically from the coordinates measured,, or they may be derived pro-
jectively by reproducing the bundles of rayŝ  for each exposure of the
system of cameras. Only in special cases does there exist a simple re-
lation between distances measured on a photograph and on the space ob-
ject respectively. In general, however, photogrammetry deals only with
the determination of angles and this report will deal with such measure-
ments exclusively. The general problem of photogrammetric measurements
may, therefore, be defined as the triangluation pf spatial positions from
angle measurements. As in geodesy, one uses iji photogrammetry either the
intersection of resectipn methods.

The purpose of this report is to outline a method of precision
spatial triangulation for aerial targets recorded on photographs, taken
at ground stations. Therefore, we are dealing with a problem of ground
photogrammetry. Basic conditions of conventional ground photogrammetry,
as distinguished from aerial photogrammetry, ares

1. The camera stations are on the earth.

2. The camera stations do not change their position with
time, so that it is justified to separate the geodetic
position measurements for the camera stations from the
photogrammetric measuring procedure.

However, one of the most important characteristics of conventional
ground photogrammetry should not be applied in our case, i.e., the as-
sumption; that the relation between the space position of the plate and
the local plumbline direction, as obtained by levels, can be used as a
parameter in combining several stations for the purpose of triangulatidh.
The physical reasons for this limitation are explained in Chapter II of
this report. Consequently, not all the unknown elements of orientation
can be determined separately as is done conventionally. Thfe elements
of the exterior orientation defined,., e. g v by the azimuth and tilt angles
of the optical axis and by the swing angle of the plate, must be deter-
mined simultaneô ty. The nature of the rigorous least squares solution
for the plate orientation, given in Chapter III/3S makes it necessary to
determine these three quantities in connection with the computation of
the three elements of the interior orientation, denoted by the principal
distance and the, two plate coordinates of the principal point. These
complications call for modifying the evaluation procedure from the con-
ventional ground methods to those of aerial photogrammetry. The latter
are characterized by the fact that the determination of all parameters
pf orientation must be made simultaneously because Of the changing posi-
tion of the camera.



The final triangulation of the recorded aerial targets is obtained
from the protective relations which exist between pairs and triplets of
photographs made from different stations. Thus the spatial triangulation
is carried out by intersections or resections. In the outlined method,
each station is treated as an independent unit except for the final step
when corresponding rays are combined _in a spatial triangulation« The
present report is, therefore,, limited to a treatment of the problem based
on the principles of "photogrammetry by intersection"« Consequently, the
photogrammetric measuring procedure is applied at each measuring station
independently. The results for each recorded target point are expressed
in parameters which are related only to the particular measuring station,
e« go.by two position angles„

This method is not the only photogrammetric method for triangulating"
the spatial position of a point. As a matter of fact, a more elegant and
more economic method may be usedo This is based on the protective rela-
tions between photographs taken from different locations, which may not
only serve to triangulate recorded points, but present the possibility to
determine the relative orientation of these photographs exclusively from
the'ir protective properties. In connection with such a method, it is
possible to measure two plates simultaneously with stereoscopic reading
devices. These methods will lead to a mechanical-optical solution of our
problem with the aid of a high-precision stereo plotting machine. This
is essentially a three-dimensional stereoscopic comparator by which the
spsLtial triangulation problem is simulated,,

Although this paper deals only with the method of photogrammetry by
intersection̂  the mathematical analysis of the problem of plate orienta-
tion is presented in a form which may be suitable for future stereophoto-
grammetric measuring methods.

II. PHOTOGRAMMETRI BY INTERSECTION

The spatial triangulation of a recorded point from'photographs taken
at two ground stations may be computed in ground photograrametry by the
intersection method. (Fig. 1) The horizontal directions and the eleva-
tion angles, necessary for the intersection, are obtained if the princi-
pal distances d are Known, by measuring the plate coordinates (x and y).
The directions of the camera axes against the base line or any other refer-
ence datum are obtained either directly by readings of horizontal and
vertical circles, or indirectly with the aid of additional reference pointŝ
whose space coordinates must be known. The use of dials so far has not
proved to be sufficiently accurate to eliminate the need for control points.
Besides the unavoidable systematic instrumental errors, such 9. method is
affected by deflections of the vertical at the stations, since the setting
of the phototheodolite (photograrametric camera plus theodolite) is obtained
with reference to the vertical as indicated by levels. Precision photo-
grammetry should,therefore,use the data of exterior orientation obtained
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from dial readings with or without correction for plumbline anomalies
as approximation values only and evaluate the final orientation of the
plate with the aid of recorded control points. It is evident that the
coordinates of such reference points must be recorded in a way such
that they can be accurately identified and measured. It should be men-
tioned here that the use of control points in geodetic practice is con-
sidered essentials especially in order to eliminate the influence of
systematic instrumental errors, on the final plate orientation. The fact
that it is possible to compute from recorded control points corrections
to the orientation elements of the plate, shows that the elements of
orientation may be obtained exclusively from measurements of such con-
trol points. Hence, dials and levels are not basic elements of photo-
grammetric instrumentation design. They may be useful to increase the
computing economy but it should be understood that the parameters obr-
tained from such auxiliaries should be considered only as approximationŝ
Consequently, a theory for a photogrammetric measuring method for pre-
cision triangulation must be established for a completely independent
photogrammetric camera. The so-called "Ballistic Camera11, which is used.,
e. g.. to record ballistic data of full-scale missiles in flight, repre-
sents this type of photogrammetric camera.

SXunmarizing, the interior and exterior orientation of a camera may
be computed in a given coordinate system from recorded control points
if the coordinates of such points are given within the same reference
datum. Hence, the direction to an additional recorded target point may
be obtained from the computed plate orientation and the measured plate
coordinates of the point. The result may be expressed by two position
angles,e. g.,by an azimuth and elevation angle. If such results from
two or more 'stations are combined, the space position of the target point
may be found by intersection.

The determination of space positions of missiles from photographs
taken at several ground stations"may be considered as a similar problem.
Howevers this problem is different in that the camera axes are directed
into space so that in general no terrestrial reference points will be
within the angle of view of the camera lens or at least they will be
recorded only on the edge of the plate. In such a case, it is possible
to use stars as control points. However, this procedure will give rise
to some difficulty which will be considered next. Wfe have seen that the
control points must be known in the same coordinate system in which the
final orientation of the plate and the final measuring data are required.
This makes it necessary to establish the relation between the right ascen-
sion and declination coordinates of the stars and the local earth fixed
coordinate system of the measuring stations. It is well known that there
are formulas which allow us to express the azimuth and elevation angles
of a star as functions of right ascension, declination, sidereal time
and geographic latitude of the station. The right ascension, and declina-
tion values as well as the time measurements may be obtained.,fWith suf-
ficient accuracy. Hence, the problem is to determine the geographic
coordinates of the stations. The determination of the latitude and longi-
tude of the stations may be obtained by astronomical observations. These



results, however, are not useful, due to the fact that the measurements
are affected by vertical deflections, caused mainly by mass irregularities
in the crust of the earth,, The same problem exists in the astronomical
determination of the-azimuth of a baseline. Another source for obtaining
the geographic coordinates are the triangulation results. However, tri-
angulation systems must be considered as local constructions distorted
by unknown amounts. Especially poor is the jorientation of extended tri-
angulations. In addition the assumption is not justified that the primary
orientation of the reference ellipsoid is so good that the relation be-
tween the celestial and the earth fixed system can be obtained accurately
enough to serve as a basic parameter for a precision triangulation by two
or more photogrammetric stations.

In the following, a method is developed in which this difficulty
will be eliminated. It is obvious that the orientation of the plate may
be obtained in the right ascension - declination system from star measure-
ments. With the measured plate coordinates for any recorded aerial target
point, the position of such a point in the sky may be expressed by right
ascension and declination angles, thus treating the recorded point as
an artificial star. Since the stars are at essentially infinite distance,
a ĵ iven portion of the sky will show an identical pattern independent of
the location of the observere However9 the apparent place of the target
point in the sky will change with the position of the observer. There-
fore, the target point will have a different set of right ascension and
declination values for each measuring station. Combining the results of
two stations, it is possible to determine the spatial angle between two
such directions (angle cr in Fig. 2). If a third measuring station is
combined with each of the two other stations, three such spatial angles
will be determined. By combining the angles with the slant distances
between the measuring stations, which may be computed from local geodetic
data, a pyramid is formed. We now have a typical problem of photogram-
metry, namely, that of determining the coordinates of a point in space
from three position angles with reference to three known points, i.e»,
the well-known problem of resection in space. With this step the tri-
angulation problem is solved without resorting to the critical values
of geographic coordinates. The result is obtained by making the transi-
tion from the celestial .to the earth-fixed system at that stage in the
computing procedure when a quantity is obtainedawhos.e magnitude is inde-
pendent of the coordinate system used . The spatial angles between the
determining rays of the target point are such independent parameters.
It is noted, that if the exposures are made synchronously at all measuring
stations, the time doves not enter into the solution, with the exception
that an approximate sidereal time is needed to compute the refraction.

Compare BRL Report No* 7U6, H. Schmid, "Principles of Thysical Geodesy
for the Establishment of a Long-Range Weapons Test Range1!.
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If the star exposures at the different stations are made at different
times, this time difference only must be known accurately,. This measure-
ment will enter into the solution as a corresponding correction to the
right ascension values.

The conclusion is that for the establishment of a precision photo-
grammetric measuring system^ using stars as control points, three stations
are sufficient and necessary in order to obtain a rigorous solution for a
spatial triangulation. A triangulation by intersection from any two sta-
tions may be considered as adequate only if a systematic orientation error
of the base-triangle has been determined from the results of_a former
rigorous three-station solution. Thus, a correction to the azimuth of
the local triangulation system would be determinedo This procedure will
be referred to in this report as the "calibration of a photogrammetric
base line*.

III. ORIENTATION OF A PHOTOGRAMMETRIC CAMERA

1, The photogrammetric camera and the perspective properties of
the photograph.

In a previous chapter, it has been shown that a precision photo-
grammetric triangulation method should be based on measurements obtained
from an independent photogrammetric camera, i.e., measurements not
dependent upon azimuth and elevation dial readings. Mathematically,
we have to consider only the optical system as the center of projection
and the photographic..plate as part of a plane cutting a bundle of per-
spective rays. Each perspective may be explained as a: figure obtained,
by cutting a bundle of perspective rays with a plane. Consequently,
each photograph represents a perspective figure. We distinguish between
the diapositive if the plane is situated between the object points and
the center of projection, and the negative, if the center of projection
is located between the object points and the image plane.

The relative situation of the individual perspective rays of such
a bundle is uniquely determined, and it may be congruently reconstructed
if the distance of the perspective center (in practice, the rear nodal
point) from the image plane, i. e.̂  the principal distance d, and the
location of the principal point on the image planes are known. The "prin-
cipal point" is the intersection of a line perpendicular to the plate
through the perspective center. This line is called the photograph per-
pendicular. The location of the principal point on the plate may be
given by two rectangular coordinates in any plate coordinate system repre-
sented by certain fiducial marks, and be denoted by A x and A y. (Fig. 3)
The principal distance and the/coordinates of the principal point are the
three elements of interior orientation, A photograph of which the interior
orientation is known, is called a photogram.

11





Thus? the position of the center of projection is determined by three
perspective rays. The same three rays determine the reciprocal position
of the center of projection with respect to the corresponding point-objects.
The three space coordinates of the center of projection, (X-, YT, ZT).the
spatial direction of the plate perpendicular (optical axis) expressed,e.g.
by two position angles (A and y) and the swing angle GO"of'any reference
line on the plate, represent the elements of exterior orientation. (Fig. 3)
Hence, the exterior orientation is determined by six parameters.

2, Mathematical Analysis of the Orientation Problem

In the preceding chapter9 we have seen that the interior orientation
of a camera calls for the determination of three parameters and that the
exterior orientation requires six elements. In our case the space posi-
tion of the center of projection may be determined separately from geodetic
measurements, thus reducing the number of unknown elements for the ex-
terior orientation to three. Hence,the absolute orientation of a plate
in our case calls for the determination of six elements, three elements
of interior and another three elements of exterior orientation. These six
parameters of the absolute orientation;ares

(1) Principal distance - d
(2) x-coordinate of the principal [ The three elements

point - ̂x > of interior
(3) y-coordinate of the principal j orientation

point - ̂ y ,

(U) the azimuth angle of the plate

5- *~
(6) the swing angle of the plate

coordinate system - fC

We have seen that the orientation of the plate must be determined
from recorded stars as control points. Therefore, the elements of ex-
terior orientation are determined with reference to the right ascension-
declination system.

The right ascension and declination coordinates are rectangular
spherical coordinates and may be represented onv a unit sphere. In order
to relate these spherical reference coordinates to the plane plate coordi-
nates, a transformation of one of the two systems is necessary. With
regard to future theoretical work, it was decided to transform the spheri-
cal star coordinates into plane coordinates by projecting the stars in a
plane,tangent to the unit sphere» The plane coordinates of the stars are
obtained according to the principle of central projection with the point
of projection in the center of the sphere (Fig. 10, If the plane is tangent
at the celestial pole and the coordinate system is oriented in such a way
that the £-axis represents the celestial meridian through the origin of
the right ascension measurements and the h -axis is perpendicular to the

PROPERTY OF U.S. ARMY"
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the plane (standard) coordinates ̂  and ̂  for a star may be ex-
pressed as functions of right ascension (RA) and declination (6), The
formulas may be read directly from Fig, 1;, They ares

+ 4 ffl -cot 6 cos RA* r r
(1)

+ h - +cot 6 sin RAv ' r r

The subscript Mr" indicates that the value has been corrected for refrac
tion,, The astronomical refraction for the stars may be computed as a
function of zenith distance with the conventional formulas used in
astronomical and geodetic practice «, The effect of refraction on the
right ascension and declination of a star may be obtained with well-
known formulas derived, e, g., in ".Textbook on Spherical Astronomy" by
W. M. Smart, or in "Elements of Practical Astronomy" by W, ¥„ Campbell,,

Depending on the geographical position of the camera station, it
may sometimes become necessary to choose a plane tangent to the celes-
tial equators preferably at the point of origin of right ascension. In
addition, we will have need for a plane tangent at the zenith of the
.camera station. In such a case, the £ -axis represents the meridian
through the measuring station. The to -axis is perpendicular to the-/ -
axis,, The standard coordinates are in such a , cases

. tan 6 - tan $ cos t
* f (north) = - tan zr cos A - CQS t + tan ^ tan **

r r r
(2)

- sec $ sin t
tan sin A

CQS t + tan tan

z * Zenith distance of the star

A = Azimuth of the star, counted
clockwise from the south „

$ = Geographic latitude of the
camera station

t » Hour angle - Sidereal time of
exposure (0) minus

Right ascension



We have seen that a photograph may be considered as an exact central
projection, (The necessary corrections to the measured plate coordi-
nates due to distortion will be discussed later), Therefore, a star
photograph represents a central projection of a certain portion, of the
sky.. Similarly, the projection of the stars in a plane tangent to a unit
sphere is an exact central projection,, Both projections may be assumed
to have the point of projection in common. Hence, the , plate images de-
noted by the plate coordinates x and y and the corresponding star pro-
jections denoted by the standard coordinates ̂  and?? , inay be considered
as photographs taken from the same point. We must now determine the
geometric relations which exist between two photographs taken from the
same point. In accordance with the two different geometric approaches
to the problem, there are two different mathematical analyses.

First we will consider the projection method, which is felt to be
more intuitive, because the unknowns of the solution have precisely
defined physical- meanings .

Solution a)

In Fig, (£), L is the center of projection. The problem is to
orient the plane containing the plate which is shown as a diapositive,
in such a way that a bundle of rays originating,, from L and passing
through the plate images (S) intersects a plane tangent to the unit
sphere at the point L' in the corresponding star projections.',. (S1).
We introduce the following coordinate sys terns s

Standard coordinates. Plane rectangular coordinates of
a star in the plane" "of p̂ '̂'tî ^̂ ^̂ '̂' 'of%ĵ ~& ' ^̂ B
point L8, in which the projection plane is tangent to
the unit sphere. £ represents the meridian on the unit
sphere through the point of origin of the azimuth measure-
ments .

x, y Primary plate coordinates. Plane, rectangular coordinates
of an image point, related to a system whose origin (0) is
the intersection of the x and y axes, established by fidu-
cial marks.

x, y Oriented plate coordinates. Plane, rectangular coordi-
nates of an image pqint. The y~axis is the line of inter-
section of the image plane with a plane perpendicular to
the plane of projection which contains the plate perpen-
dicular. The origin i£ the isocenter J&. The x, y system
is tilted against the x, ,y system by the swing angle <.

counted counter-clockwise)

y' Plane rectangular coordinates of a star in the plane
of projection. The system corresponds in its orientation
to the x, y system. The origin is the corresponding
isocenter j$ ,

16
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y denote the coordinates of the principal point
(P) in the x5 y system,

A » azimuth of the plate perpendicular

v - tilt of the plate perpendicular

d = principal distance

x = (x ==̂ x) cosJg- (y --Ay)

y = (y -̂ y) coŝ  + (x -As) sin£ + d • tan •*

From Figures 5 and 6S we obtain

dHI - HL -

GI - GL = -—sin v

Lo thereforeo

G S HL
'

"GIT"

and

x LS GS GL
— ~ O & O =

sin v
00

0
0

9 t
Since HS s LH=y and GS « GL+y , we have, from formula @ li, 55 6,

hy . „.« GL'x hx
and x = HL^ = d^y sin v



Furthermore s

- x sin A - ( y + h tan •* ) cos A

(8)

V s -(y + h tan ) sin A + x cos A

For our case h = 1 and therefore

and x> "'

/ ' v '= - (y + tan 75- } cos A - x sin A

(8')

s - (y + tan »•) sin A + x cos A

From (7 ) and (8 ) we derive

(9)
y sin A °° x cos A +" v .„ .
f • d * y sin v ' tan 2 sin A

Substituting (3) into (9)

'my-<Ay)co3/g -»-(x-̂ ix)sin4ij cos v+d sin vj cos A-*-L(x-Ax)co3/̂ --(y-T4y)sin/qsin A
sin v -cfcos v

(ioa)

y-^y) cos/ff (x-4x)sin/^jcos v+d sin vlsin A-[(x-4x)cos<-(y-4y)sin/^cos A
=— "2 :

1 (y-4y)cos/<+(x-iAx)sin<J sin v-d cos v

20



The formulas (lOa) are in agreement w_ith the wellknown formulas
Nos* 12a and 12b derived by 0. v, Gruber.

The formulas (lOa) express the standard coordinates 4 and 7^ ̂
terms of the measured plate coordinates x and y in any rectangular
plate coordinate system and in the six elements of orientation, namely,
the three elements of interior orientation ds4x, and4y and the three
elements of exterior orientation. A, v,.and/( . These six parameters
are the unknowns of the solution. Because each star gives rise to two
equations, one for 5 and one for ft 3 three stars are necessary and suf-
ficient to obtain a unique solution. This result is in agreement with
the previously stated principle that the center of projection is fixed
with respect to the plate as well as object-points by any three perspec-
tive rays.

Solution b) .

In the preceding paragraph, the spatial direction of the optical
axis within the chosen reference system was expressed by two position
angles, namely an azimuth angle (A) and a tilt angle (v) (Fig. 5).
Although these parameters are essential for the final triangulation
problem, such an interpretation of the problem sometimes causes diffi-
culties due to the fact that the concept of an azimuth angle does not
exist anymore if the tilt angle v becomes zero. In order to have
formulas available which are useful in such a case, the spatial direc-
tion of the optical axis may be defined by the two tilt angles a and
co; (Fig. 7)'

Figure 7

Ferienkurs in Photogrammetrie by 0. v. Gruber, Stuttgart-Verlag von
Konrad Wittwer, 1930.

21



-tilt, denotes the angle between the q plane and a plane
parallel to the ?j -axis which contains the optical axis, at,̂  -tilt,
denotes the angle formed by the optical axis and its projection in the
|| -plane. The relations between the a,co, Bangles and the A,v and
(£) angles respectively, are;

sin a) => - sin v sin A cos v = cos a cos co

tan a = - tan v cos A tan A » tan co cosec a

= cos v tan A
where (tf) * swing angle of

method a,

The relations between thejstandard coordinates 4 and>? anc*
measured plate coordinates x, y may be obtained by applying the
formulas (5) twice. The result, obtained by a double projection, is
as follows s

|Xy^y)sin<+(x-4x)aDsJcosa-Hclcos co-j (y-Ay)cos<-(x-As)sin/clsin cot sin

•j.di cos co-|(y-4y)cos<-(x-4x)sin/dsin tolcos a-r(x-^x)cosK+(y
( 1 C )

.d sin co+Ky-^y)cos&-(x-4x)€iaK]cos co

Ja cos (X»-f(y-<ay)cos^-(x-(dx)sin/<]sin^a)/cos a-lT(x-4x)cosAr+(y-

•&
These formulas agree with Gruber's formulas Nos. 13a and 13b "

Solution c)

We will now consider the mathematical analysis of the orientation
problem based on the principles of photogrammetry by analytical means.
In Fig. (8), L is the center of projection. A bundle of rays is cut by
two planes. One plane contains the plate (negative), the other plane
represents a plane tangent to the unit sphere at point L' with the center
at L. A star image in the plane containing the plate is denoted by S«
The corresponding image in the plane of projection is S . ¥e again intro
duce the following coordinate systems s

£ 9 jj Standard coordinates. Plane rectangular coordinates of a
star in the plane projection. The origin is at the point
L' j on which the plane is tangent to the unit sphere.
represents the meridian on the unit spheri tterpugh the
point of origin of the azimuth measurements .

* See reference note on preceding page.

a
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x, y Primary plate coordinates. Plane rectangular coordinates
of an image point, related to a system, Whose origin (0)
is the intersection of the x and y axes, established by
fiducial marks.

xsy Oriented plate coordinates. Plane,rectangular coordinates
of an image point.The ŷ axis is the line of intersection
of the image plane with a plane perpendicular to the plane
of projection which contains the plate perpendicular. The
origin is the isocenter I. The x, y-system is tilted against
the x,y»system by the swing-angleK.(l£ counted clockwise).

xs,y! Plane rectangular.coordinates of a star in the plane of
projection. The system corresponds in its orientation
to the x,y system. The origin is the corresponding isocenter
r'̂ _ x and y denote the coordinates of the origin of the
x,y system-(0; in the x,y system.

A = azimuth of the plate perpendicular

v « tilt of the plate perpendicular

d = principal distance.

From Figures 8 and 9, we obtain again?

TTT TTT d J o r

GL = - = h'

AGLS ~AHS L, thereforeo o *

"°o HL
"SET s H§o

and

xl . LSo' .
 GSo ,m GX

x = -nr- mr~ " HSQ

Since HS = LH-y and GS = GL+y we obtain again, from formulas hs 5 and 6,

and x m
d-y sin v and x d-y sin v

2k





Furthermorei

- x sin A - y cos A
o j

- y sin A + x cos A +?}£

where '-t7 are the standard coordinates of I in the ̂> 7) system, and

x = x cosAf + y sin/f-t- x

y = y cos /C - x sin< •»• y

where x , y are the coordinates of 0 in the x,y system.
For h =°1 and by means of formula TQ we obtain from formula 11s

4 0.**
cos

d - y sin v

A •»• x cos A
<• d - y sin v

and from Formula (I2)s

a,x •»• b,y + c.

a x + b y + 1o orf

fc.
5*

(12)

(13)

where

-h sin (A-

-h cos (A-j

+h cos

d ~y^

sin-K

- h sin (A-/0 - cos

26 .



-h' (x sin. A+y cos A)

d« -y o . °—-

~h! (y sin A-x cos A,)
d,

, » . sin 1Clo d'-jr d'-y

cos b .. -§«£o d'-y.

and the elements of orientation may be computed bys

" o -a (a,)+b1)+ b (a..-t:
v . O c 1 . OX

d' _V, i . -sin^ _ -cosK = 1

V

1i
a (b

cot

h'

0 O

tx, ) - b (a^ b0 - bl o o 2

ao(bo

+ cos

-bo(bo a-L - ao ao(ao b2 * bo
+• sin

Or introducing ̂ . and >|.

-b
0ni - bicot

h'
+CQS

•i-cos (A+K) +sin

-bo(bo ^ -a 0b 1 ) - 'ao(a0b2 - bc

(d'-y «)3

+ •1.

cont'd

(16)
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d sin y

sin v
h

dtau |

ccrt'd

(yfl -

4y • (y0- ŷ ) cosAi* x̂  sin /C

The formulas (lU) again express the relation between the standard
coordinates £ , 7^ and the plate coordinates xsy in any rectangular plate
coordinate system. The unknowns of the solution are the so-called plate
constants a,, b.# c.,,, a 3 b and a«5 b_, c*, a ', b '. Formulas based on
plate constants were used in earlier work on °ballistic cameras and re-
lated problems and are described in various BRL Reports.*

l=<i R, S» Zug, "A Photometerorohic Method for Bomb Ballistics and for
Measurements of the Flight Performance of Aircraft," BRL Report 279, p.35.

2. T. E. Sternê  ttThe Precise Determination of the Position of a Point
in Space from Photographs taken at Two Ground Stations1,' BRL Report 273,P«

3. R. S« Zug, "High Altitude Range Bombinp by the Aberdeen Bombing Mission
Using Ballistic Cameras", LSD-Report 1, ?£• UO, U3.

U. Lo G. deBey and R. S. Zug, "History of tho Ballistic Camera and Range
Bombing Instrumentation", BRL Report 577, p. 2.

5. R. d'E Atkinson, WA Shortened Method of Star-reductions for Calibrating
Ballistic Cameras, BRL Report 593, p. 12.

6. Virginia Farquar, WA Short Method for Reduction of Ballistic Camera
Observations11, BRL Technical Note 50, p. 2.

7. Dirk Reuyl, "Full-Scale Free-Flight Ballistic Measurements of Aircraft
Rockets by Optical Methods", BRL Report 676, p. liO,
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A comparison between formulas (lU)s (lOa) and (lOb), which obviously
express the same relations shows that six unknowns are present in formula*
(lOa) and (lOb) and ten unknowns in formula llu We have already seen that
six unknowns are necessary and sufficient to solve the problem geometri-
cally.

Consequently, the ten unknowns in formual (llj.) are not all inde-
pendent parameters, but' four additional condition equations must exist
between at least some of the unknowns.* A first examination of the
terms expressing the plate constants in formulas (l£) shows that

*> a o 5 a o '
2> b o 5 b o '

The other two condition equations can hardly be eliminated from the
given relations. However, it is possible to write the equations (lOa)
in the following arrangement?

y(~cos£cos v cos A •»• sin/Ksin A) +x(-cos£ sin A - sin/icos v cos A) +

^y(cos£cos v cos A-sin£sin A)t4K(cos £sin A+sin#cos v cos A)-d sin v cos A
-y cos £ sin v-x sin£sin v+Ay cos /£ sin v+4x sin A, sin v+d cos v

y(-cos.£cos v sin A-sin/^cos A)+x(+cos/tf cos A-sin^cos v sin A) +

. 4y(cos£cos v sin A+sin*cos A)+^x(-cosX^cos A+sin^cos v sin A)-d sin \
-y cos/fsin v-5E sin^sin v +4y cos XT sin vf>dx sin/fsin v + d cos v

or1

x •»• b-j^ y + C;L

y +

ao x + bo y + 1

where

- cos#sin A sec v - sinK. cos A f (I7a)

* See BRL Memorandum Report U76 by S. T0 Zaroodny,
 W0n the Use of

Least Squares in the Determination of Plate Constants«H
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c

, + sin^sin A sec v - cos^cos Abi x

°°d tan v cos A.+£x(cos£s±n A sec v+sin/g'cos A)+4y(-sin£siri A sec v+cos/g'cos A
1 " X

+ cos£cos A sec v - sin/Csin A
~™~ \ : ' : ~

- sin/^cos A sec v - cos^sin A

tan v sin A+4x(-eos<'cos A see v+sin^sin A)+.Ay ( sin/^sin A sec v+cos/c'sin A), _ s ,

a . - . t anv sinX- - tan v0 x b o —

where X = d + tan v (4y

,0-7$,

sont'd

- a 2 U^a? + tyV
Therefore tan/C3 •—sr- and sin 2A = s 55 (18)

%2 * "a*

and after suitable transformation5 we obtain the following independent
condition equations!

j
1) a s a' o o

3) a b + a,b.. + a.b, » 0o o 11 2 d.

O O1 9 5 O O
U) aQ* + a^ > a2^ - b^ - b^ - bg = 0

Using formula 10 , the plate constants are given by the following
expressions %



sin<sec co - cos K tan w tan o

cos XT sec co + sin /C tan co tan a

-4y(sin^sec co-cos/g tan co tan a)-Ax(cos/£s.ec co+sing tan co tan a)+d tan q
s ~ '

cos # sec a - - sin/^sec co tan a-cosX^tan co
~ o = " Xa2. = ~ a

co

cos/<+/Ax sinXS+d tan co) sec a
2 __ .

where

X=d+dy(sin/£sec co tan a+cos/f tan co)-K4x(cos/<sec co tan a~sin/Ctan co)

The condition eqtiations may be proved by substituting the expressions
for the plate constants obtained either from formulas 15>s 17a or 17b<,

Formulas lit with the ten plate constants and the four condition equa-
tions (formulas 19) represent now a system of six independent parameters.
Now, all three results, obtained from the two methods are consistent and
in agreement with tho'theory ;of the orientation problem,.

All three, formula systems (lOa, .lObind ill / 19) express in rigorous
geometrical, or analytical terms the relation bt-oween the 'standard coordi-
nates and the corresponding plate coordinates. Each of the three sys-
tems allows the computation of the plate orientation from three stars,,
In general, there will be more stars used than are necessary for a unique
solution„ In such a case, the result must be determined by a least squares
solution,, which may be based on any ;of the three systems of formulas«

3« The rigorous least squares adjustment

The formulas lOa, lOb, and lU, the last in combination with the
condition equations 19a represent the rigorous mathematical relation
between the plate coordinates measured in any plane rectangular system
on the plate and denoted by x and y, and the standard coordinates 4" and
If computed as plane rectangular coordinates in a plane tangent at a cer-
tain point on the unit sphere whose center is at the point of projection.
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All three systems are therefore suitable for establishing the observa-
tion equations. Jpfe will consider these possibilities i

a) Projection method, based on the formulas lOa

The observations of the plate coordinates with reference
to a fiducial marks -system are denoted by JL and .£' , corresponding to the
x and y axes. The observational (residual) errors of these observations
are denoted by V and v' ; hence, x = & + / and y = 4'̂ v', Ax
and ̂  y are the coordinates of the principal point (P) with reference to
the fiducial mark system (x,y) whose origin is in 0.

d = principal distance

A = azimuth of the optical axis

v » tilt of the optical axis

X = swing angle of the fiducial marks system

From formula lOa we obtain

(y-4yXcps <cos v cos A°sin/(f3in4K'(x-4^(sin/^cos v cos A+cos/gsinA)+d sin v cos A

(y"-<dy) cos/£sin v + (x -dbc) sin/wsin v - d cos v

(20)

(y-4yXcos/£ cos v sin A+sin/^cosAVKx-idxXsinXS'cos v sin A-cos/fcos A)»d sin v sin Aff * T . T

cos/tfsin v + (x-,Ax) sin/fsin v - d cos v

From the Taylor expansion for the right side of these equations we have,
neglecting terms of second and higher order;



We have

where 4" »T) ar>e standard coordinates computed from reference data.* c ' c ^

Hence

"S '-I'1 ••****£*•
(21)

f^F ^ 3R SF " 3F1

ax ay • v

We substitute now

A a A + 4 A

V » V 4 A V

d = d
o

o

x - £ + v

y = JL' + v«

and introduce the following termss

* o o o

^° E U« -4y0) + E(i.-4x0) + F-do u

(22)

For the computation of approximation values see page 50.
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C'«d
F-

t
~

where

* cos v cos A -sin/£ sin A

B=sin/f cos v cos A +cos£ sin A

C = sin v- cos A• o o
D = cos K sin v

E = sin 1C sia v-o o

F = - cos v

A' cos v sin AQ+ cos AQ

B" = sin/6 /cos v sin A - cos/tf cos AQ

C' = sin v sin Ao o

From formulas 20 and 21 we obtain after suitable transformations

the observation equations?

-B+£ E -A-

cog

u

E
\A£

(23)

with the weight p =

• .

The entirely analytical computation of some of the coefficients-asks for rather
complex transformations. The result, however, may be obtained oirectly by
using vector analysis. Such a solution is shown in BRL Report No, 785,
S. Schmid, "Error Theory of Intersection Photogrammetry."
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P1
u u

cos AoJ

E

u
(2T'cont«d)

u

with the weight p' =

CI-J7 F

u

The number of unknowns may be reduced by elimlnatiî ĝ  A. ¥e divide for
this purpose each of the observation equations by the factor which is com-
bined with a4 A thus obtaining reduced observation equations.

We introduce furthermores

E
a =

-A'+ n D• o

c =

,d

n



Formula 23 may be written as follows?

p=a*v>b«V COS sin A

+a • 44x+b • 4Ay+c • 4 d-L (23')

p'=a'v-b'
>°

- sin. A + 77 cos Ao ( o o. 4v- "(̂ ,,.,,..0,;
y+c1

ors

P!

y+cM d-L'

and with the help of the first normal equations, we obtain the reduced
observation equations;

x - (L)

»)4 d -
(2U)

where (A) -f a -

(C) -

(D)--

(E) =

(L) =

(A') =(a' -

(B-)

(C»)

(c« -

a.)
36



and

_ . _ « n . n t . . t- a . ^Q+0tJ ' L^J*^J « ( f^ti\

2n 2n

ab'-a'b
(26)

ab'-a'b

The reduced observation equations (2li) have different weights due to the
fact that in each of the equations there is more than one observed quantity.
The weights ares

2 2
aT + b

>' =p 2 2a' + b8

(27)

1

The normal equations ares

|p(AA)] 4 v + [p(AB)J4£ + [p(AC)] ^4 x +£(AD)] (d4y + [p(AE)]4d- |p(AL)j- 0

- [p(BL)]- 0

[p(CC)] A4x +[p(CD)]44y *[p(CE)}Ad- [p(CL)]- 0

- [p(DL)]= 0

jp(EE)]4d- [p (EL)]- 0

jp(lL)]- 0

where

|P(AA)| stands for |p(A)(A) + pl(At)(Av)j and the other terms in parentheses

are denoted correspondingly.
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After A v, A£, A& x, AAy and Ad are determined , A A is obtained from
equation 25. The residuals p and p1 are computed from the reduced obser-
vation equations 2U and the residuals of the original plate measurements
are obtained from forumlas 26.

The final result is obtained by applying the formulas (23).
Checks for the computations ares

P'P'P1] - [vv[ + [v'v] - |p •

The main check is made by means of formulas lOa. If the final
elements of orientation and the corrected observations x and y are intro
duced, the computed 5 and Rvalues must be in complete agreement with
the originally obtained standard coordinates ^ and?? respectively.
In case of residuals which are caused by the neglected second order
terms , the solution must be repeated by using the obtained results as
new approximations. It will be sufficient in such a case to use the
former coefficients in the normal equation system and to limit the addi-
tional computations to the computing of new L and L' terms.

The mean error of a measured plate coordinate may be determined bys

n a ±V £n? 6

and the mean errors of the unknowns ares

m = + - mv -
(3D

For the reductions of the normal equations the "modernized" Saussian
Algorithm is suggested. The method is closely related to the Doolittle
method and to Reicheneder's method. However, it is believed that the
modernized Saussian Algorithm combines a minimum of recording work with
a maximum 01 protection against computing errors. See; Der-jnodernisierte*'
Gauss'sche Algorithmus zur Auflosung von Normalgleichungen, by H. Wolf in
Zeitschrift fiLr Vermessungswesen^ll November 1950.
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,-
f)

m. may be determined from formula (2S>) by combining the individual mean
errors. However, the mean errors are not independent and therefore can-
not be propagated according to the Gaussian law of errors. The values
M«4> etc., have here the conventional meaning of the Gaussian reduction
method„*

b. Projection method, based on the formula IQb.

The observations of the plate coordinates with reference to a
fiducial marks system are again denoted by 1 and 1' corresponding to the
x and y axes. The observational errors of these observations are V and
V' = Hence, x *> JL + v and y - P + vj. ^x and^y are the coordinates_of
the principal point (P) with reference to the fiducial marks system (x,y)
whose origin is in 0«, d denotes the principal distance, a = ̂  -tilt angle
and co =77-tilt angle respectively,, ,£ denotes the swing angle of the fiducial
marks system. From (lOb) we obtains

(y°̂ y)(sin<cos a-cos£sin co sin a)+(x°4x) (cos /Ccos a-*sin£sin co sin a)+d cos cosin a_

(-cos 1C sin co cos a-sin/K sin a)+(x'-̂ x) (sin/£sin co cos a-cos/isin a)+dcoscocos a

(32)

(y-Ay) cos^cos co - (x-^x) sin^cos co + ^ pin co . B
(y-Ay)(-cos/tJsin co cos a-sin£sin a)+(x-4x)(sin/^s4.n co QQS a-cosiK sin a)+d cos co cos a

From the Taylor Expansion for the right side of the above equations,
we have, neglecting terms of second and higher orders

and with

where? and^O are standard coordinates computed from reference data.,? c /c

* Ref? A Text Book on the Method of Least Squares by Mansfield Merriman,
N,Y«,, 1911 s ors Handbuch der Vermesstwigs^unde-AMsgleichsrechnung by
Jordan Eggert, volume I, Stuttgart, 19U8.
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a ¥.a

_a-, , . *<

We now substitute

a » a + A a

CO = 03 4- 21 COo

d = do + * d (3U)

x = JL + v

y = I" + v5

and introduce the following terras?

s
u

u

A = sin£Q cos o - cos^Q sin oo -sin aQ A' = cos/tfQ cos a>Q

B = cos/f cos at •»• sin4- sin co sin a B1 =-sin^ cos oo

C » cos eo sin a C1 = sin 01o o o



D = - cos £ sin an cos a = sintf sin ao o o o o

E = sin£0 sin COQ cos aQ- cos^Q sin a

F = cos co cos ao o

From the formula (32) we obtain .the observation equations after suitable
transformations*

p; = - - - v + - - - v = +(1

cos a - n sin a )A co

u-̂ • o' u

u

u

u

2
ith the weight p =

) Dp, LH_ v + L°_ v,K u u

p

* I (̂ Q̂ ) COS ac

D

Ji,

See remark on page 3U



11

-A'+fi Di o
u

C'-fc F
• Vo
u

with the weight p«< u

The number of unknowns, may be reduced by eliminating**!. For this purpose
we divide each of the observation equations by the factor which is com-
bined with 4 £t thus obtaining reduced observation equations.

We introduce furthermore!

-B» +77 Ei o

b1 =
-A« +77 Do

Formula 36 may now be written as follows!

a -^4 x+b -4 4 y+c 4 i - L (36«)



sin a
cos a •+>o

o J

a' ̂4x+b' ̂ Ay+c'^d -- L1

where L

L«

The weight of the observation equations is p

P'
a'S

(37)

The solution now follows the procedure outlined in the preceding paragraph.

c) Analytical Method^ based on formulas lii and 1°

Substituting as a ' and b a b ', formulas lli become

and (38)

x - 0

We again introduce x = 1 + v and y = I1 +
values of the plate constants as follows

and approximation

(39)



s C2°

b m b
0 0

We obtain from formulas 38, by the Taylor series, neglecting terras of
second order and higher?

(Uo)

or

1 4 b^ 4 &,-!$ c 4 aQ-i' A Q4 bQ-L, with weight p

(UD

«.L', with weight p'

The introduction of weighting factors becomes necessary because in each
of the above derived observation equations more than one observation and
correspondingly more than one residual appear.

where the computed standard coordinates are denoted byf and?*) .

kh



The condition equations (19) must be satisfied by the unknowns. The first
two, namely a s a « and b a b ' have already been introduced into the equa-
tions (38). $he °third and fourth conditions ares

3« aobo + albl * a2b2 = °

U. a/ * ai
2 * a/ - b/ - b,2 - b2

2 . 0

Ey means of the substitutions made in formula 38 and the Taylor series,
neglecting terms of second and higher order, we obtains

•M-
where X- = a b * anbn * a0b_1 o o 11 22

and

ao°4 V V4 al + a20<d a2 " bo°̂  bo ~ V4bl ~ b264 b2

2 2 2
O O O

where X9 = —2 .
^ »

After suitable transformation, we have

(U2)

If the approximation values a , a, , a_ , b , b-i and bp are chosen
in such a way that they satisfy the condition*""equations 3 and U, both
\1 and \p become zero. At the end of this paragraph a"procedure for '
obtaining such approximation values is shown. In routine reductions,
where usually the preceding result will be introduced as the approxima-
tion, the condition equations will in general be sufficiently satisfied.



where
a 0

a
0 - h ° h

, *1 a2 bl b2a = _ _

V,a2 " al b2

° * b°

c. v v -
J.

b

d« =
0 , 0 0 , 0. b + a b,_ _ __

-bi xi • V x
2

al +

f l
2 2

For X., = 0 and X? = 0, e' =0 and f' = 0 and we obtain

*o-*4 bo

1 ' " ~a2 + a'4b2 + d '4ao + c > 4 bo

Substituting U2 with ef = 0 and f' = 0 in the observation equations
we obtain the observation equations? '



or

o- L = p ,

(U6)

where

« = (ia8 + i'b')

p = (i»a« -Jtb')

r-
Before we form normal equations we eliminate the unknowns A C-, and 4 ci,
Thus we obtain the reduced observation equations §

' Kl H
a0+ (tf >H

J) 4 bo« (L-
1 )̂ - p

(U7)
M M y?3 P^o] [L.]'

) .0- (t^ 0- -5— )Ab0-CL.- -

or

•»• C^a + D<Ab - (L) = p with the weight p

(U8)
+ C»^ aQ * D'4bQ - (L«) - p! with the weight p'

The corresponding normal equations ares

Q - [pA(L)] - 0

Q - [pB(L)] - 0

[PCC]4 ao * [pCDJ 4 bo - [pC(D] - 0

[PDD| 4b0 - [pD(D] - o
[p(L) (LJ| • 0

For these equations mA^ stands for [pAA + p'A'Aj and the other terms
in parentheses are denoted correspondingly,



After the unknowns A a. % Ab-9Aa and Ab are determinedTwe compute A c,
and A Cp by solving the equStions: °

fa] [RJ

[t] [10 ttTfl [£'7fl CL-]
_ b2 * — ao * -~ bo * -

and from the equations (Ui) we compute A a, and Zib- .

The final plate constants are obtained from the equations (39) .

As a first check these values are introduced in the condition equations
(formula 19), which must be satisfied. In case the condition equations
are not sufficiently satisfied the solution must be repeated by using the
results as new approximations. ( Compare with p. 38 ) In such a case
it is advisable to compute the a-, and b̂  values with formulas 5>7 in order to
obtain approximation values whicn isatis'fy the condition equations. The resi-
duals p and p1 are computed with formulas U8 and the final residuals: of the
plate measurements v and v1 are obtained from (Uo) as follows:

. , .
Oao -

s/J, . 0 ,
)(<bo -l̂

A check is obtained by

D3 = Q>!] ? 0
i

and

CVv/] + [v'V'J = CPPPJ + CF̂ 'P'J '.- P(LL) -3 (52)

The finalcheck is made by means o_f formula lU. After the x ̂ nd y values
are obtained with x = &-»• v and y = £' + v1 the corresponding standard
coordinates <5 and ?7 must be in complete agreement with the originally com-
puted £ and 77 . In addition the unknowns must satisfy the condition
equations 19. °

Compare footnote on page 38.



The mean error of an observed plate coordinate is?

m = •+•

and the mean errors of the unknowns may be computed from?

(53)

(5W

The values AA°3<> BB°3<» etc., have the conventional meaning of the
Gaussian reduction method,, See footnote on page 39.

The me'an errors of the other four plate constants denoted by m ,,
m.,, m .,, and nrp may be obtained from the formulas UU and 5>00 The
correc? computation is rather complicated. Since the individual mean
errors of the unknowns are not independent, the computation must follow
such lines as given in the computation of the mean error of a function
of the unknownsB* For this purpose, the weight of these functions must
be determined. If the corresponding weights are denoted by P ,, P,,,
P ..5, and P 2* the mean errors ares

m
al

"bl + m
bl

Handbuch der Vermessungskunde Ausgleichsrechnung by Jordan-Eggert,
Volume I - Stuttgart l£U8 - p, 99
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All three least squares solutions described assume that the reference
data - i.e., the computed standard coordinates, are free of errors« The
standard coordinates £ and 7) are/ in our case, functions of the right ascen-
sion and declination values which, in turn,are results obtained from ob-
servations and therefore affected by uncertainties which may be expressed
in the form of mean errors. If the propagated mean errors of the standard
coordinates are not negligible in relation to the expected mean errors of
the plate measurements, it becomes necessary to make allowance for correc-
tions to the computed standard coordinates. In such a case, we introduce
^ - £ •»• vt and 7) =77 + v* s respectively. Such a step calls for addi-

tional weighting factors. Unit weight of an individual plate measurement
may be assumed for both the x and-y measurements, or p » p • % = 1,

— — IBwhere m is the expected mean error of the x and y measurements. If the
propagated mean errors of the standard coordinates are'denoted by mi and
m^ the corresponding weights will bes '

k m2

,d)2 m£

k -m2

(56)

r) 2 2 2
(m/j «d) m« »d

The fact that the orientation of the ̂  ̂ 77 system does not necessarily
correspond to the orientation of the x,y system must be considered in
computing the corrections v * and v^ ,

The Computation of Approximation Values for the Unknowns.

Approximation values for the .unknowns are needed in all three methods
of adjustment. In the projection method, approximation values of the
orientation elements, and in the analytical method approximation values
of the plate constants are necessary. The latter, in addition, should
satisfy the existing condition equations (19) ° The relation between the
orientation elements and the plate constants and their inverse transforma-
tion are given by formulas 15, 16 , l?a and 17b«

In routine reductions, approximation values will generally be avail-
able from the results of the preceding reduction. In the case that none
are available, the following procedure may be followed? With five stars
well distributed over the plate, the plate constants are determined from
formula (38) . From the first equation, we obtain a, , b, , c- , a ' and b '

and from the second equation, we compute a?, b?, c,,, a " and b '*. The a *

and a M values and the b ' and b " values, respectively, are combined, by
forming the arithmetic averages s



V + ao"

and

ob
2

It is obvious that these approximations will not satisfy the condition
equations (19)» As a next step, therefore, we compute a set of orienta-
tion elements using formulas (16). These values may be"taken directly
as approximation values for the adjustment of the projection method.
If the measuring camera is well adjusted, it normally will be sufficient
to take zero as the approximation values for the coordinates of the
principal point. Approximation values for the plate constants may now
be computed by applying formulas IZa or 17b. The final approximation
plate constants should be checked by the condition equations 19, before
they are introduced in the least squares adjustment of the analytical
method. For the analytical method a set of approximation values, con-
sistent with the condition equations 19 may be directly computed with
the help of the equations

bl

The method of least squares adjustment which should be applied depends on the
particular situation. In the case where all six elements of orientation
are unknown, the analytic method seems to be advantageous, because the
least squares adjustment can be arranged in such a way that only four
normal equations need be reduced,, However, there may be the case in which
some orientation elements are known, e0g., from a preceding calibration
procedurej thus calling only for the determination of the remaining un-
known elements. The formulas given in the least squares methods for the
projection method, are then preferred, because some of the unknowns will
be equal to zero. If phototheodolites are used, where the approximation
values are obtained from dial readings, the projection method offers a
decided advantage.



IV. THE MATHEMATICAL ANALYSIS OF THE SPATIAL TRIANGULATION PROBLEM

The theoretical background of the triangulation problem is explained
in Chapter II. There it is shown that we have to deal with the two fol-
lowing triangulation methods?

1) The rigorous solution in triangulating a point from independent
fixed photogrammetric cameras calls for resection in space.

2) After ''calibration of the photogrammetric base line" the tri-
angulation may be obtained by spatial intersection.

The latter method has been described in many reports. A method of
least squares adjustment, suitable for combining two or more photogram-
metric measuring results for the purpose of triangulation by intersection,
is outlined in BEL Report 752*. However., it must be understood that al-
though the described method provides a rigorous least squares solution for
triangulation problems based on theodolite data, in our case it is -only
an approximation method due to the fact that the angular corrections and
not the corrections to the original plate coordinate measurements are
minimized.

We wills in this report, deal only with the resection problem.
From the spatial coordinates of the measuring stations ., denoted by xis
y. , Zj_, which may be available in any coordinate system, the slant
distance between any two of such stations can be computed. Assuming the
three camera stations A, B, and C, we have the .slant distances a, b,
and c between these stations. (Fig. 10) From the least squares adjust-
ment of the plate orientation, we have for each station a set of unknowns,

either plate constants or orienta-
tion elements, depending on which
method was applied. Introducing
the measured plate coordinates for
an additional recorded target point,
after suitable corrections for non-
perpendicularity of the comparator
axes and corrections for lens dis-
tortion are applied, the standard
coordinates ̂  and ft for such a tar-
get point are determined with the
formulas lOa, 10b, or lU and the
corresponding direction angles may
be found by solving the equations
1 or 2.

BRL Report 752 by H. Schmid. Titles Spatial Triangulation by Least
Squares Adjustment of Conditioned Observations.



From equation 1 for the resection methods

cot 6

tan RA
7

and from equation 2 for the intersection methods

tan z

tan A =
"

The spatial angles a (Pig. U and 10) at the apex of the pyramid ABCP
may be computed by the following formulas;

cos a , = sin 6 sin & + cos 6 cos ̂  cos -4 RA ,
r T r r r

cos a = sin 6 sin 6 + cos 6 cos 6 cos A RAac a c «' C,

cos a, = sin 6, sin 6 + cos 5. cos 5, , cos A RA.be T)r- cr \ e± D̂cr

The subscript Mrw indicates that the angler are corrected for refraction.
(See the remark about refraction on page 15" • However, either astronomical
or terrestrial refraction must be considered depending oh the spatial po-
sition of the target point.) A difference in time ('converted to sidereal
time) of the orientation exposures at the different stations goes, into
the solution as a corresponding correction to the right ascension values.
Our problem is now to determine the coordinates of a point P(x, y_, z )

(Fig. 10). First it becomes necessary to compute the length of the sides
of the pyramid denoted by s s s, , s a and finally the coordinates of the
point by the intersection of thrie spheres„ The second part is a familiar
problem for a triangulation procedure using length measuring methods, such
as Dopplera etc. A possible solution is outlined in BRL Report 7U8.# Hence
we are left with the problem to determine the lengths of the sides of a
pyramid, given the length of the sides of the base triangle and the three
angles at the apex of the pyramid. This is the basic problem of the re-
section in space. For the tHree triangular faces of the pyramid, we have
the equations?

BRL Report 7U8, H. Schmid. Titles A Rectangular Ellipsoidal Coordinate
System for Trajectory Measurements. pp«lU-17, pp»23-25.
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2 2 2a = s, + s - 2 s,s cos ov
b C b C bC

2 2 2
b s s

a * sc - 2 sasc cos CTac

° = Sa + sb - 2 sa
sb cos aab

The further treatment of these equations results in an equation of the
fourth degree which is not especially suitable for numerical computations.
In view of the fact that an economical computation of the final coordi-
nates by the intersection of three spheres calls for the introduction
of approximation values of the spatial position of P, it seems advisable
to follow the following procedures

l) Suitable approximation values for the target position denoted
by x , y , and z must be obtained. Such values may be computed by

using the intersection method for any two stations. -The necessary azimuth
and elevation angles: may be computed from the declination and right ascen-
sion values with the sidereal time and the geographic coordinates of the
station by well-known formulas of spherical astronomy.*

sinf = sin $ sin 6 •»• cos tf cos 6 cos t

(62)
sin A - COS 6
sin A

t = hour angle = sidereal time (I) - Right Ascension (RA)

With the approximation values for. the coordinates of point Rand the
coordinates of the stations the corresponding approximation values for
the sides of the pyramids (s. ) may be computed.

Applying the Taylor series to the formulas (6l) and neglecting all
terms of second and higher order, we obtain;

Sa ' sa° + * sa

sb = Sb° + A Sb ' (63)

.
See references on page 35 and formulas at the end of this chapter.



(sa°-sb°cos (sb°-sa°cos

2 2. -%.«V . oa b o o+ sa sb cos aab

2 2
«°%8°-b2

(s °-s °cos a )4s + (s °-s °co3 a ),4 s = + s °s °cos aa c ac a c a ac c 0 a c ac

(sb°-Scos° c
0

2 2
-a

or

sa + h A sb = Cl

and therefore

Asb = I 4sbl

AS,
4s,

P.!

where

D

As,

G, 0 B2

°3 A3 B3

A1C1°

2.

Al Bl

A 2 0

0 A

(6U)

0

A, 0 B,

0 A B



The final length of the sides of the pyramid .are determined by the
formulas (63). The determination . of the final coordinates now follows
the procedure outlined in BRL Report 7U8,#

During the orientation and the triangulation computations, there is
sometimes a need for direct or inverse transformation of the elements of
orientation between the Right-Ascension-Declination system and the Azimuth-
Elevation System. •

The following formulas may be used for this transformations

d » principal distance

1s Coordinates of the principal point

K = Swing angle of the plate coordinate system

v = zenith-distance of the plate perpendicular

A = Astronomical azimuth of the plate perpendicular
counted clockwise from the south

RA = Right Ascension of the plate perpendicular
counted counter-clockwise

<f = Declination of the plate perpendicular

, ~n = Standard coordinates of a star in the azimuth-
elevation system

«M> JA,

, /) = Standard coordinates of a star in the RA-declination
system

jt

See reference on page 53 .
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THE ELEMENTS OF ORIENTATION

In the Right Ascension- In the Azimuth-Elevation
Declination System (denoted System. $ latitude of station,
by #) t = sidereal time of exposure

d* - d d 2 d*

A x* =

4 y* =

' v* = 90 - 6 v » 90 - £

A* = 360 - RA RA = 6 - t (t = hour angle)

£ * = <, + iA /£ cos ̂  sin A

cos 6

sin 6 = sin j^ cos v - cos ̂  sin v cos A

sin v sin A
sin t

cos 6

V. THE ACCURACY OF THE METHOD*

The accuracy of a measuring method is determined by the propagation
of the systematic instrumental errors and the random errors of the obser-
vations. The basic requirement of any measuring method is that the sys-
tematic errors diould be sufficiently small so that their influence on the
result can be neglected or the systematic errors must be known accurately
enough in order to apply corresponding corrections«, The systematic errors
of.an instrument or measuring method may be analyzed by discussing critically
the assumptions made in designing the instrument and in deriving the mathe-
matical analysis of the measuring method.

A detailed study of the accuracy of intersection photogrammetry will
be published in a separate report. See reference note on page 3U«



The following criteria characterize the systematic errors which we
must deal with in the solution of our problems

1) The photograph produced by the camera should be an exact
central projection. To achieve this, the measured plate coordinates must
be corrected for distortion. The determination of this distortion is a
part of the camera calibration. It is not discussed in this report. Modern
measuring lenses are practically distortion free, e, g., the Wild "Aviotar
lens", with a field angle of 60°, has for all apertures from IsU.2-to Is16
a maximum distortion of less than h microns. In general, the distortion
curve for a certain lens may be expressed accuractely enough as a function
of the radial distance from the principal point of the plate and corres-
ponding corrections may be applied directly to the comparator measurements
of the plate coordinates.

2) The comparator measurements of the plate coordinates should
be affected only by random errors in setting and reading. Hence, it is
assumed that the comparator is adjusted and calibrated. The procedure will
not be discussed in this report. Especially careful attention must be paid
to the perpendicularity of the mechanical axes of the comparator and to
the consistency of the scales.

3) The formulas for astronomical and terrestrial refraction
must be adequate. The directions of the control points are affected by
lateral and vertical refraction. The lateral refraction is neglected,.
The astronomical refraction is, hence, determined as a function of the
elevation angle and the temperature and pressure at the time and location
of exposure* Local variations of the refraction coefficient, if known,
may be taken into account. Results obtained recently from a wide variety
of sources in extensive research on precision trigonometric leveling nets
indicate that the refraction anomolies are less than assumed heretofore,

U) The photographic emulsion must represent a plane with suf=
ficient accuracy and no irregular shifts of emulsion must take place.

£) It is assumed that the control points are essentially free
of errors. The reduction coefficients of the RA and f values for date
and time 'of exposure are taken from the American Ephemeris.*

6) The time interval between the orientation exposures of the
different stations must be known with sufficient accuracy. (+_ 0.01 sec =
+; O.l£ sec of arc.)

7) The target points must be recorded simultaneously.

Compare remark on page $0 .
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8) The relative spatial situation of the camera stations must
be known with sufficient accuracy from a local geodetic net.

9) The cameras must not change their interior or exterior
orientation during the time interval between the. individual orientation
exposure and the final target point registration,

The. triangulation results of the outlined photogrammetric method
will be the less affected by systematic errors the better the above-
mentioned conditions are satisfied. If all steps in the arrangement of
a photogrammetric measurement are done with the necessary care the results
will be affected only by the random errors of the plate measurements.
The accuracy of the plate coordinate measurements depends on the image
quality* Star images and additional recorded target points are in general
measurable within a few microns. The influence of such a random error
(m) on the corresponding ray may be expressed with sufficient accuracy by
the relation of m to the principal distance (d) <, Therefore, assuming a
mean error of a reading of +_ 3 ̂ > and d*** 300 mm we have to expect a rela-
tive angular deviation

30o7o5o 2"

The orientation of the plate will be obtained more accurately, when'
more stars are carried in the least squares adjustment. However, it should
be realized that even with an accurately determined plate orientation,
the single spatial ray to any target point will be affected by the entire
amount of the error of the target image. Hence, it is sufficient to carry
in the least squares adjustment of the orientation so many stars as are
necessary to reduce the mean error of the plate orientation to an insig-
nificant fraction of the angular error of the target images .

In general> it may be assumed that with a mean error of +_ 2-3 n
and a focal length of 300 mm, the individual direction in space will be
obtained from a 10-star orientation adjustment with an angular accuracy
of 1 to 2 seconds of arce Hence, the accuracy of the individual photo-
grammetric camera is 1; 100 -000 to Is 200 000. The propagation of this
error during the triangulation procedure depends on the geometry of the
particular configuration .

VI. NUMERICAL EXAMPLES

The first three examples demonstrate the validity of the geometry
of the solution expressed by the formulas 10a, 1013, and lU in connection
with 19 o For each of the three solutions, a rigorous three-star computa-
tion was computed. The least squares adjustment of an over-determined
solution is shown by three further examples. For all computations, the
coordinate system was oriented with respect to the horizon and Zenith
of the station.
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1. Example based on the formula lOa of the projection method.

We use the results of a former.calibration as the following approximations!

(length unit is 1 decimeter =0.1 meter)

Ax =+.00192 sin AT = +.00156110 A = -.72967230o o
AyQ = -.00188 COSKO = +.99999878 B - -.6303k3kk

do = +3.01113 sin VQ = +.3U0999U5
 C ' -'26?°38S?

cos VQ • +.9k0063k9 A« = -.5927039k

/TQ = +0° 5' 22« ' . B» - +.77631620

v - 19° 56' 16" sih A- = -.62920358 C1 - -.21U55807o o
AQ - 218° 59' 29" cos AQ - -,7772kQ53

D = +.3U099903

E = +.00053233

F = -.9k0063k9

The standard coordinates of the thre^ stars computed from astronomical
data with formula (2) ares

3 +.16900891 +.OU650153
10 +.15713779 +.38332881
18 +.k8l27U91 +.3961327k
Measured plate

3 +0.21350 -0.57731 +0.21158 -0.575U3 -0.51155839 -0.1U07U96U
10 -0.561U5 +0.00056 -0.56337 +0.002l4t -O.UUU729U8 -1.08U86171
18 -0.01032 +0.63807 -0.0122U +0.63995 -1.25730UOU -1.03U86525

u Qo= u Vo= u fl>Cft= c ~^o ' 'c VQ,

3 -.3.02676182 +.16901178 +.0k650l72. -.00000287 -.00000019
10 -2.8301212k +.l57lklk9 +.3833269k -.00000370 +.00000187
18 -2.6l2k3757 +.k8l27621 +.3961301k -.00000130 +.00000260

a«-

3 +.00006172. -.00000112 -17.29801637 +3.7670319k
10 +.00000965 +.00001190 - 2.17656068 +U.8903U92U
18 +.00000328 +.000005UO - 2.71937570 +1.820U0370
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3 -3.76092138 -0.62151661* +L* .1*7911206
10 +0.1*08161*1*3 -0.91211*623 +0.58111286
18 +0.1*0052769 +0.38791*159 +0.609351*35

b' c c'

3 -10189.62171* -0*751*221*21* +0.33396677
10 -1.62661*71*0 -6.10813.877 -0.32782533
3.8 -0.57881*1*82 +0.18107826 =0.12553003

[a + a«] /2n = -1.952691*61*

[§ + P'D /2n = -0.68299176
[a + a'J /2n = +1.59158211*

Ib.+ b«J /2n = +0.63070091*
[c + c<] /2n = -0.1331*1*556
[L + L«] /2n = +0.0000151U

3-
10
18
3

10
18

-15
- 0
- 0
+ 5
+ 6
+ 3

A
(Av)

.3U532173

.22386601*

.76668106
,71972658
.81*301*388
.77309831*

-3
+1
+1
+0
-0
+1

The normal
(Av)

+329,8956076
e o

B
(Art)

.07792962

.09115619

.0835191*5

.0611*7512

.22915UU7

.07093335

equations

(A*)

+2.
-1«
-0.
-0.
+0.
-0.

are

+1*8.9810773
.+13.01*11*762

0

C

88752992
010̂ 6928
98222779
071*07903
15355098
971*301*77

:*

(AA.

+1*.
+0.
+0.
-1.
-2.
-lo

x)

-1*6.3799138
-12,1376130

..+11.301981*0

+1.51750311 +5.59365660
+1.71*513312 +0.72198821*
+0.61727737 +0.863671*78

D

9629556'6
09128730
23297381*
82032268
25731*831*
20951*576

(A
-106.
- 15.
+ 11*.

...+ 31*.

E
(Ad)

-0.62077868
+0.02530679
+0.311*52382
+0.1*671*1233
-0.191*37977
+0.00791553

Ay)
7798210
813553B
9763025
5657362

L

-0.00001*658
+0.0000051*9
+0.00001186
+0.00001626
+0.00000321*
+0.0000097lt

+10,6521*313
+ 2,3608737
- 2.1992076
- 3.1*2691*37

(L)

+ .0008563871*18 - 0
+.000172898966 = 0
=.000161891*590 =« 0
-.0002766031*69 - o
+ .0000398321*89 • 0

Weighting factors are omitted because this is a unique solution.
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Reduction of the normal
equations gives?

AA - +.00000793 • +1.6»»
Av -• +.0000058U - +1.2"
A# = -.000006U6 - -1.3"
Ad = -.00002166

AAx - -oOOOOOlUU
A Ay . +.000021^7

The final orientation
elements are; /T ., ... -, . \(Length unit 1 meter)

A = 218° 59' 30.6" sin*= +.00155U80
v = 19° 56' 17.2"
x= +0° 5' 20.7"

.30111083
• +.00019186

d
Ax
Ay .0001858U

+.99999879
sin v= +.34100^92
cos v= +.94006151
sin A- -.62920961
cos A- -.7772356£

The check is obtained with formula 10.

3 +0.0211581U -0.0575U516 +.1690089U
10 -0.05633J686 +0.0002U18U +.15713778
18 -0.00122386 +0.0639928ii +.U8l27li91

in 8th
decimal place

. -3
+1
0

+.OU6501U8
+.38332876
+.39613266

in 8th
decimal place

+5
+5
+8

2. Example based on the formula 10 of the projection method.
We use the results of a former calibration as the following approximations!

(length unit is 1 decimeter =0.1 meter)

= +.00192

= -.00188

dQ - +3.01113

KQ = 52° 38« 20.02"

«o = 12° 23' 22.57"
15? 142.37"

sin AT =o
COS fCQ =

sin co ••o
COS 6> =o

sin a =o
cos a =

0.

+.75482675
+ .606836U2

+.21455807
+.97671123

+ .2.7135819

+ »9621j781i3

A - +.72967232
B = +.6303U3UU
C - +.26503859

A'= +.59270395
B'= -.77631621
C«= +.21U55807

D a -.3L.099903
E = - !o0053234
F = +.94006349

The standard coordinates of the three stars computed from astronomical
data with formula (2)-ares

3
10
18

+ol6900891
+.15713779
+ A8127U91

+.OU650153
+ .38332.881
+ .396l327ii
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Measxtred plate
coordinates

0 0 o 0nAvJL* Ju Jb —AX
O

3 +0.21350 -0.57731 +0.21158 -C
10 -0«56lU5 +0.00056 =0.56337 +0.0021*1* +0,44^.7291*8 +1.081*36171
18 -0.01032 +0.63807 -0.01221* +0,63995 +1.257301*01* +1.031*86525

3
10
18

3
10
18

3
10
18

3
10
18

u

+3...02676182
+2.83012121*
+2.6121*3757

-.00000279
-.00000361
-.00000106

a

-c 001*913 82
-.01*1*93296
* .06170817

a8

+32^3326183

+1.558269U*

Qt + aQ

[p + Pij

(a + a«l

[b + b']

& + o«3

[L + L«]

^ _ £ _ _ t

O " U ' O~ U

+ .16901178 + ,01*650172
+ ol57lkli9 +.3833269U
+ .1*8127621 +.3161301U

•=.000021*18

+ .00001361*

a' p

+128.5632671* =.17003235
+ 19.031*0551* +.15268999
+ 6.5256801 +.12882238

b b'

-.25289086 -25.58231098

/2rf = +25.6891UU05

/2n - +2,1*7952599

/2n = +6 ,,351*70838

/2n = =5031*797050

/2n = +1.00l*337UO

/2n = +,00000217

A<K-<J. A

-.00000287
-.00000370 +
-.00000130 +

P'
+11.3651*5308
+ 2.3795511*9
- 0.97932866

c

+ .031*09870

-'.05821*050

•7-V%
.00000019
.00000187
.00000260

a

-.20250197
-.21738815
-.19598763

c'

-o! 85521071
-0.31689090

63



B

co1

3 -2o569ko578 -206k95583k -6.55721035
10 -2 .£731*0770 -2.32683600 -6,57209653
18 -2.5627k358 -2.35070361 -6.55069601
3 +10.287kl23k +10.88592709 +26.278553U5
10 - .66550886 -0.099971+50 -1.8021113k
18 -1.9L63k639 -3»U5885U65 -k.796k392k

The normal equations ares-fr

+5.0950796k
+5.07788236
+5c070l8536

-20.23k3kOk8
+1.10kk717k
+3.88672136

+129.7380661

(Ad)

+71.0162U61
+79o31k7l60
+191 o68088!3

U6.361i2906

+137.5028570
...+1U8.U372116

+.000276370838
+.000295219811
+.000707812766
-.0005386U3211
+.000217800398

+331.2778̂ 73
+350.901U152
.+8U5.91688U7

0
0
0
0
0

E
(4d)

-0.97023870
-Oo96388381i
-1.06257790
•6.177k7685
-Io8595k8ll
-1.32122830

• .00000k96
-.00000578
-.00000323
-.00002635
-.00002887
-.ooooiik?

-27100571917
-652.3570867
0+503.2065008

Weighting factors are omitted because this is a unique solution.

Reduction of the normal
equations givess

The final orientation

Act = +.00000295
Aco = +.00000577
tut = -.00000038
Ad = -.00002163

AAx = -.00000187
+.0000211*0

+0e6l»
+1.19"
-0.08"

elements ares

a
co
tf
d
Ax

15° UU' U2o98»
12° 23' 23.76"
52° 38' 19. 9k»
.3011108U

« +.00019181
= -.00018586

(Length unit 1 meter)

or transformed with
formula (ll)

A = 218° 59' 30.6"
v = 19° 56' 17.2"

(X) = + 0° 5' 22o7"

sin oo = +.21U56372
cos co = +.97670999

sin a = +.27136103
cos a m +,962^7763

sin X = +.79U82.651
cos K = +.60683673

The check is obtained with formula 10



8th dec. place 8th dec. place

3 +0,02115819 -0.0575U51U +.16900893 -2 +.OU650155 -2
10 -0.05633681 +0.000214186 +.15713778 +1 +.38332879 +2
18 -0,00122381 +0.06399.286 +..U8127U89 +2 +.39613276 -2

3. Example based on the formulas (lit) and (19) of the analytical method.
We use the results of a former calibration as the following approximations:

(length unit is 1 meter)

a.̂  = +2.228U2997

bj0 = +2,57822963

c^ = +0.28198337 And the auxiliaries are:

a ° = -2.7U202238 a'
b' = -1.010639U8

b2° = +2.09U37269 c1 = + .26700761;
d» = +.23161U68

c2° =,'+0.22913U7U

aQ° = +0.0021U801

o

These approximations satisfy the condition equations (19).

1) ao°bo° + a-ĵ
0^0 + a2°b2° = +.0*000016

22 2 2 2 2 !

2) a °+a,° + a ° - b ° -b,0 -b?° «• +.000000023

The measured plate coordinates 1 and 1' are corrected for distortion and
comparator constants.

o o, (1) (2) (3)

Uetera)

3 +.021350 -.057731 +.18071658 +.OU968233 +1.069̂ 8539
10 -.0561U5 +.000056 +.15701255 +.38320287 +0.99981195
18 -.001032 +.0.63807 +.UUU19273 +.36560015 +0.923139UU
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Computed from formula (2)

(meters )
3 .+.16900891 +.OU650153
10 +.15713779 +.38332881
18 +.U8127U91 +.3961327U

(U)
x

+ .l8076fl*6
+.1571082U
+ .1*1*1*28385

(5)

+ . 01*973736
+.38325673
+-.'36568576

-L«=(2)-(5)
(meters)

3
10
18

3
10
18

-.00005288
-.00009569
-.00009112

a

+.05965167
-.0031*9221
-.061*51*902

-.00005503
-.00005386
-.00008561

P

+ .01801*14*9
-.05673893
+ .0028611*9

+.00099281
-.02192200
-.0001*0881

Y

.-.01127007
-. 00615567
+.01^99976

-.00268U58
+.000021U7
+.0252760U

6

-.0106025U
+.01301016
-.0131*3273

Cpl/3

CYl/3

C-J.3/3

= -.00279652

= -.011914*32
= -.00081166

- -.00367501*
= -.00007990

= -.01191*233
= +.00201*1*00

= -.00697933
- +.00753761*

= -.000061*83

The observation equations ares*

/3
[f ^ /3

3
10
18
3
10
18

A a1 - 1 Aa
^ 2 " 100 ^ 2

A
Ua2)

+ .06.21*1*819
-.00.069569
-.06.175250
+ .03.329233-
-.01*. 1*20267
+.01.091033

i 1 A ,
>At>2 "100 Ab2

B
(Ab2)

+.02.998881
-.Ol*.l*79U6l
+ .01.1*80581
-.05.977500
-.00.193800
+.06.176300

)Aao =IOOAao
C

(Aa0)

-.01.01*671*1
-.00.5314*01
+ .01.58111*2
-.00.797211*
+ .01.1*51*267
-.00.657052

Ah' - Ah
i)fl o 100 ̂  o

D
UbQ)

-.00.692750
+.01.668520
-.00.975769
+.01.022222
+.00.751617
-.01.77381*0

»L

+.00002702
-.00001579
-.00001122
+ .00000980
+.00001097
-.00002078

* The decimal point in the coefficient A..«D was moved for the convenience
of the numerical computations.

66



The normal equations ares #

Aa' A-b'
O

+108.91*92225 -2.3870512 -26.0627025 -0.2710087 +.000200581*298 = 0
... +105. 1676876 +2.0138737 -28.2117716 -.000053955515 = 0

... +7. 0631*212 -0. 2657310 -.000015791011 - 0
... +8. 9723610 +.000021007502 = 0

Weighting factors can be neglected because this is a unique solution.

The solution of the normal equations is;

Aa'Q = -.00001*031*01*
 Aao = -.00l*03ll0l*

Ab' = -.000001*2328 Ab = -.0001*2328o o

or

A a « 2 = -.000011501*2 Aa2 = -.0011501*2

, - -.0000001111 Ab2 = -i00001111

And with the formulas (1*1*) and (50)s

A^ = -.00106071 .

Ab-L = +.000111*62

AC-L = +.00007172

Ac2 - +.00007608

The plate constants are nows

s^_ = +2.22:736926

bx = +2.57831*1*25
c-^ = +0.28205509 The condition equations reduce to;

a2 = -2.71*317280 x) +e00000l6l

b2 = +2.091*36158 2j H

c2 = +0.22921082

aQ - -0.00188603

bQ = -1.201*96737

67



If the solution is repeated to eliminate the influence of second order
termss we obtain the following new L and L* termsi

3-
10
18

+ .0000007̂
+.00000089
+.00000132

+ .00000000
+ .OOOOOOU6
+ .00000063

and the new absolute terms in the normal equations ares

TA(L)] = -.OOOOOU87717U

= + .00000ii0l633ii

= +,000001078512

[p(L)] - -.000001090959

The corresponding reduction gives?

Aa-ĵ  = +.00000127

A^ = -.00000399

AC-L - -.00000098

Aa2 = +.00000856

Ab2 « -.00000312

Ac2 = -.00000035

A a - +.00001732

Ab = +.00000313

And the final plate constants ares

-2.7U316815

+2.09U36279

- +2.22737161 a,<

= +2.57831^83 b,
c.

= +0.28205510 c2 = +0,22921080

The condition equations reduce now tos

1) +.000000025

2) -.000000069

ao = -0.00187329

b = -1.20U965U8
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The final check with equations (lU) givess

I V $ A£* y A?? *

3 +.021350 -.0^7731 +.16900890 +1 + ,0li650l53 0
10 -.0561U5 +.000056 +.15713779 0 +.38332882 -1
18 -.001032 +.063807 +.U8l27li92 -1 +.39613273 +1

»*

The differences &£ and A TJ are in units of the 8th decimal
and show the difference against the originally computed standard
coordinates,

The computations of the orientation elements with formula (16) gives:

tan ff = + ,OOl£5U6l|.

\fC= +0° 5' 20.67"

sin AT = +.00155U64
cos K = +.99999879

7) . = -.13661481
<£:; - -.11059631

cot (A+*) - +1.23133735

(A+«) - 219° UB 51.31"

sin (A+X) * -. 630l;1732
cos (A+Xf) = -.776256UO

['A = 218" 59' 30.

sin A = -.62920976
cos A = -.77723553

h« = +2.93250868

x « - -.0001921Uc
y ' = +.05311185C

d' = +.88301014

sin v = +.3U100496

jy = 19° 54' 17.21"

v/2 = 9° 58« 8.60W

tan v/2 = +.17577016

| d = .3Q11108U |

yo' = +.05292630

Ax - +.00019185
Ay - -.00018585
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iu Example. Least squares solution based on formula 10 of the
projection system,,

¥e use the results of a former calibration as the following approxi-
mations .

(length unit is 1 decimeter =0.1 meter)

AxQ = -.00050
= -.001̂ 0

d = 3.01110o

K - -0° 2'o
AQ = 219° 8'

v = 19° 56' 30»

-.00058178 A = -.72953695
B
C

cos/rQ = +.99999983 B = -.63070287

sin A = -,63112719
cos AQ = -.77567936 A' = -.59283365

B' = + .776021*39
sin VQ - + .31*106326 C' = -.215251*30

cos VQ - + .91*001*035
D * + .31*106320
E * -.0001981*2

F * -.91*001*035

The standard coordinates of the four stars computed from astronomical
data with formula (2) ares

3 +.16900891 +.01*650153
10 +.15713779 +.38332881
17 +.5U637688 +.15537271
18 + .1*81271*91 + .39613271*

Measured plate

3
10
17
18

coordinates

B/ Jl1 JL-Ax
+0.21350 -0.57731 +0. 211*00
-0.5:611*5 +oeooo56 -0056095
+0.60320 +0,1*0158 +0.60370
-0.01032 +0.63807 -0..00982

u <t

3 -3.0269856 +.16897983
10 -2.82971*16 +.15701571
17 -2 . 6931995 + . 51*631*679
18 -2.6121*198 +.1*8116317

Jt'-Ay
-0.57581
+0,00206
+0.1*0308
+0.63957

' O

+.OU6U8962
+.38331567
+ .1551*3806
+.39615815

g

-0.5111*995
-0.1*U1*3139
-1.1*711*209
-1.2570002

c~ o

+.00002908
+.00012208
+ .00003009
+ .00011171*

t

-l!o8l*68l*3
-0.1*186257
-1.031*9311*

~ /c~'o

+.00001191
+ .00001311*
-.00006535
-.0000251*1
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3
10
17
18
3

10
17
18

3
10
17
18

3
10
17
18

3
10
17
18

-15.
-0.
-1*.
-o.
+5.
+7.
+3.
+3.

3 -.00062552 +.0000701*8
10 -.0003181*8 +.00008368
17 =.00019358 -.00011961
18 -.00028206 -.00005281

a a« p P' a

-17.26807537 +3.7790591*3 -3.77762362 -0.61891*165 +I*.l*8l6238l
-2.17259130 +l*6907l*3739 +0.1*0617633 -0.90991300 +0.5811*331*3
-6.821*66631 +1.30365721 -0.71360681* +0.1*7757286 +1.50631*1*36
-2.711*99269 +1.821*81662+0.398181*03 +0.3891991*1+0.60932290

a" b b« c c'

+1.51717371* +5.5937371*3 -1.19001006 -0.751171*79 +0.33539071
+1.71*673907 +0.72195129 -1.62850750 -0.10782366 -0.32652118
+0.5271*1892 +2.18781531* -0.1*3892801 +0.591*88058 +0.0i*6986o5
+0.6171*21*72 +0.8631*8139 -0.57911576 +0.1811*1981 -0.12502015

po La+a«] /2n = -2.11*566938

0.0195 0.2690 I>P'J /2n = ~°«&361906

oil!*!? 2O239 fr**9] /2n * +1«^8^3512
0.8951* 1.3955 (b+b'3 /2n = +0.69130302

fc+c'] /2n = -0.01898283

[L+LD /2n - -0.00017971*
A B O D E

1221*0599 -3.231*001*56 +3.03318869 +1*. 9021*31*1*1 -0.73219196 +.0001*1*578
02692192 +0.91*979539 -0.86700169 +0.03061*827 -0.08881*083 +.00013871*
67899693 -0.16998778 +0.05790921* +1.1*9651232 +0.6138631*1 +.00001381*
56932331 +0.91*180309 -0.83911222; +0.17217837 +0.2001*0261* +.00010232
921*72881 -0.07532259 +0.06873862 -1.88131308 +0.35U3735U -.000250221

05310677 -0.36629391* +0.29830395 -2.31981052 -0.30753835 -.0002631*2
1*1*932659 +1.02119192 -0.92101620 -1.13023103 +0.06596888 -.00006013
9701*8600 +0.9328181*7 -0.8310101*0 -1.2701*1878 -0.10603732 -.00012693

The normal equations ares

+73

(Av) (4*) (A Ax) (AAy) (Ad)

.2853591 +12.6331*215 -11.3511*01*3 -23.7121*1*01* +0.2101651* -.0020651*30595' =
+5.50631*56 -̂ .9585661 -1*. 081*1927 +0.1197973 -.0000621*63830 =

+1*.1*673729 +3.6700301 -O.lli*80l*l +.000056030968 =
+7.671*5081* +0.0632622 +.0006693981*1*8 =

+0.181*2911* -.0000001*38911 -
+ .000000091*81*7 •
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Reduction of the normal equations
gives s

The final orientation elements ares
(Length unit 1 meter)

A = 219° 7« U3.7"

v - 19° 56' 31.3"

K = -0° 2' 29.7"

d = .30112087

Ax = -. OOOC£562

Ay = -.0001618U

The computation of the residuals with formulas (2U) and (26) 5

A A - -.00007911 = -16.3M

+.00000627 = +1.3"

-.00011*390 = -29.7"

Ad = +.00010869

A Ax = -.00005625

A Ay = -.000118UU

+.000000008U10

3 -lU.liltf +55.218
10 +37.3-77 +58.0U1
17 -10lu8oU +7.375
18 +11.81U -50.596

Cp/V*:j- 8U10.

+21.11 -19.U9
+U6.55 +1U.29
-16.U6 -36.57
-Ul.59 +U3.03

Cwl - 8386.

The mean error of an observed
1 or I1 value iss

The final check is obtained with formula (20) ofter the residuals are applied.

**~- *y *
x-f,i-v y=Jtr+T' C ^-^ v 7-^7•" * c 'C '

3
10
17
18

+.02135211
-.0561U03U
+.06031835
-.00103616

-.05773295
+.000057U3
+.OUQ15U3U
+.06381130

+.16900889
+.15713778
+.5U63768U
+.U8127U90

8th dec.
+2
+1
+U
+1

+ .OU650156.
+.38332882
+.15537275
+.39613276

8th dec.
-3
-1
-It
-2

A certain systematic deviation in the individual parameter of the solution
must be expected due to the very unfavorable weight p of point 3. This
small number is caused by the procedure which leads to the elimination of
AA. In the next example this reduction step was not carried out and
consequently the normal equation system has six-unknowns, but more nearly
even weights. A comparison of the results of these least squares adjust-
ments at the end of this paragraph shows the influence on the numerical
values.
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5. Example, Least squares adjustment based on the formula 10 of
the projection method„

We use the results of a former calibration as the following approxi-
mations s

(length unit is 1 decimeter = 0.1 meter)

= -.ooo5o
= -,ooi5o

d = 3.01110
0

52° 378 20.8U"

.607061Ui5

sin co » +.21525U30o
cos co = +.97655803o

co =• 12° 25" U9.61" sin a * +.27090631
O 0
a = 15° U3" 5.5V1 cos a - +.96260572o o

A = +.72953695
B = +.63070288
C = +.26U55573

A'- +.59283366

B«- -.77602U39

C1- +.21525U30

D - -.3U106320

E = + . 000198U2

F = +.9UOOU035

The standard coordinates of the four stars computed from astronomical
data with formula (2) ares

3
10
17
18

3
10
17
18

+..16900891
+.15713779
+ .51+637688
+.1+81271*91

Measured plate
coordinates

3 +0.21350
10 -0.5611*5
17 +0,60320
18 -0.01032

=0.57731
+0.00056
+O.U0158
+0.63807

+ .01*650153
+.38332881
+ .1^37271
+.3961327U

+0.21UOO
-0.56095
+0.60370
=0.00982

-0.57*81
+0.00206
+O.U0308
+0.63957

U

+0.511U995
+O.UUU3139
+1.U71U209
+1.2570002

+0.1U0723U
+1.08U68U3
+O.U186257
+1.03U931U

+3.0269856
+2.8297U16
+2.6931995
+2.6l2itl98

+.16897983
+.15701571
+.5U63U679
+.U8116317

+.OU6U8962
+.38331567
+..155U3806
+.39615815

+ .00002908
+.00012208
+.00003009
+.0001117U

+.00001191
+.0000131U
-.00006535
-.000025U1



a«

3
10
17
18

3
10
17
18

3
10
17
18

+1.028551*18
+1.021*65393
+1.2981*91*81
+1.23151800

Y1

+ .101*58865
+ .11*287061*
-.2609201*0
-.1872681*3

c

+.03U92183
+ .01*133050
-.0921*6708
-.07187091*

+.00785581
+.06018658
+ .081*92309
+.19061671

-.20831*898
-.22287255
-.231*11*321*
-.21*138821*

c'

+ .056671*26
-.05126896
+.02567068
-.06015509

The normal equations ares

(A a) (Aa>)

+36.6831*722 +3.09791*1*8
.+37.50311*66

-.00503228
-.01*590669
+.03963830
+.07616699

a«

+.25637175
+.27U265U8
+ .28815361*
+ .29708201*

P
9.0061
7.9205
5.8661
5.7050

+1.0101*6388
+1.11*657879
+1.13387202
+1. 21*1*0281*3

b

-.26005071
-.27673521*
-.31*006977
-.31*207519
P1

9.1*195
7.1121
7.1151*
6.0276

(A*)

-.1*037976
-1.35U6933
.+1.6279077

-6.5663873
+9.1603103
-.31*921*29

.. .+3.7152807

-.17562028
+.15569375
-.11092166
+ .15771*386

b'

-.20108770
-.25570127
-.23980691
-.27861*918

(A Ay)

10.2379357
-8.1386151
+.2853012
-.0603955

.+lu 281*6971

-.6217198
-.1919527
+ .0152028
+.0692633
+ ,19514602

,.*:i795880

.002212233932

.0001*871*21823

.000360623U51

.000590375590
,000506051392
.ooooil*i81*o5i
.00000023901*5

Reduction of normal
equations gives:

A a = +.0000191*5 - +U.01"

Aco = +.00000132 = +0.27"

4<= +.0002181*6 = +1*5.06"

Ad = +.00011235

AAx= -.00011082

AAy= -.00009036

+.000000008325

- 0
= 0
- 0
= 0
- 0
= 0
= 0

The final orientation
elements ares

(Length unit 1 meter)
a 15° U3«
co = 12° 25'
K = 52° 38'

d = .30112121*
-.00006108

Ay = -.00015901*

9.55"
1*9.88"
5.90"

Or transformed
with formula (ll)

A = 219° 7' 53.65"
v - 19° 56' 33.28"
(*). -0° 2' 37.53"
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The computation of the residuals with formulas (2U) and (26);

3
10
17
18

_/»
+3.061

-13.852
+17.271

=3.61*2

ys»

+8.551*
+7.709
+lul!9

-21*. 652

V

+ll*.82
+1*2.71
-17.78
-1*3.92

V
-23.61*
+15.66
-38.51*
+1*1.61*

8311. 8312.

The mean error of an observed
1 or I1 value is:

m 6.5n

The final check is obtained with formula (32) after the residuals are
applied.

3
10
17
18

+ .0213511*8
-.05611*073
+.06031822
-.00103639

-.05773336
+ .00005757
+ .01*0151*15
+ .06381116

+ .16900893
+.15713778
+ .5U637688
+ .1*81271*91*

Sthpdec .

*1
0

-3

+ .01*650157
+.38332882
+.15537273
+.39613273

Sthidec
-1
-2
+1

6. Examples Least squares adjustment with four stars based on
analytical method formulas (lit) and (19).

We use the results of a. former calibration as the following approxi-
mations s

(Length unit is one meter)

a1° . +2.228U2997

bj0 • +2.57822963

C.J0 - +0.28198337

a2° - -2.7li202238

b2° = +2.09U37269

c2° = +0.22913U7U

a ° = +0.0021U801o

bo° = -1.20U5UU09

And the auxiliaries are i

a' = +0.0611918U

b« = -1.010639U8

c« - +0.26700761*

d« - +
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These satisfy the condition equations (19)

3
10
17
18

3
10
17
18

1) +.000000016
2) +.000000023

The measured plate coordinates 1 and 1'
comparator constants . /T\

$, JL' ' o eg °
(meters) al * 1 ̂  +c-l

+.021350 -.057731 +.18071658
-.0561U5 +.000056 +.15701255
+ .060320 + .OU0158 + .51993881
-.001032 +.063807 +.UMa9273

Computed from formula (2)

3 +.16900891 +.OU650153 +
10 +.15713779 +.38332881 +
17 +.5U637688 +.15537271 +
18 *.U8127U91 +.3961327U *

3 -.00005288 -.00005503 +
10 -.00009569 -.00005386
17 -.000079U8 -.00003537 +
18 -.00009112 -.00008561

a p Y
+.05965167 +.0180UUU9 -.01127907
-.003^9221 -.05673893 -.00615567
-.03689U17 + .063U1911 -.00755037
- .06U5U902 + .002861U9 + .01U99976

Cal A " -.01132093

CpH A • +.0068965U

Cr3A " -.002U963U

CS3 A = -.00905376

E-L3 A = -.00007979

111 A • +.00612325
LJL'IA = +iOii5725o

Llyl A • -.002891U8
IVifl A • +.00721310
|>L'J A • -.oooo57U7

are corrected for distortion

a2
ce-b2

c.E'+<

+.OU968233
+.38320287

+ J6540015

^©
.180769U6
.1571082U
.52001829
.1M28385

.00099281

.02152200

.00937208

.OOOU0881

6

.-.0106025k
+.01361016
-.02518991
-.013U3273

•

=2° *c>b0'i.+:
+1.06958539
+0.9^81195
+0.951757U9
+0.92313'9liU

©
+.OU973736
+.38325673
*.1U78771U
+.36568576

-.00268U58,
+ .000021U7
+ .006239U6
+ .02527601;

P P'
.0787 .082,3
.0792 .0711
.06U8 .0786
.0670 ,0707
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The observation equations ares*
.1 -^ A & t_ -*- kl

3
10
17
18
3

10
17
18

2 100 2

A
(Aa2)

+.07.097260
+.00.782872
-.02.557321*
-.05.323809
+.01.522675
-.06.226825
+ .05.1*19675
-.00.715525

2 " 100 2

B
fob2)

+ .010lll*795
-.06.36351*7
+.05.652257
-.00.1*03505
-.06.930350
-.01.151650
+.02.858550
+ .05.2231*50

G
feao)

-.00.878273
-.00.365933
-.00.5051*03
+ .01.71*9610
-.00.3881*29
+.01.863052
-.01.226356
-.00.21*8267

o " 100 o

D
(Abo)

-.00.151*878
+.02.206392
-.01.613615
-.00.1*37897
+.00.989768
+.00.719163
+ .00.097361*
-.01.806291*

-1

+.00002691
-.00001590
+ .00000031
-.00001133
+ .0000021*1*
+ .00000361
+.00002210
-.OOOQ2'8li*

The decimal point in the coefficients A...D was moved for convenience
in the numerical computations.

The normal equations ares

= 0
• o
= 0
= 0
= 0

+11«6273018 +0.0301952 -2.1*368121 +0.1*12351*8 +.0000275791*31
+12.001*5505 -0.1*232678 -2.9733715 +.0000036801*03

+0.67W305 +0.031*2156 -.00000397361*5
+0.9178321 +.000001339620

+.000000000181

The solution of the normal equation gives?

' = -.0000121886

| = -.000006281*1*

or

-.000001*6976

-.0000022811

-.00121886

-.0006281*1* '

-.0001*6976

-.00022811

,j?= +.0000000000835

And with the formulas (1*1*) and (50)s

- -.0001*3917

= +.00001070

= +.00006731
JL.

Ac2 = +.00006198
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The plate constants are now?

^ - +2022799080

+2.57821*033

Cl = +0'282°£°68 The condition equations reduce tos
a - -2.7U2U9211+

b2 - +2 .091014*58
 1} +'00000°90

c2 = +0.22919672 2) +.000001U6

aQ = +0.00092915

bo - -1.20517253

If the solution is repeated to eliminate the influence of second order
terms , we obtain the following new L and L' terms:

_L -L'

3 +.00000269 +.00000962
10 -.00001UU5 +.00000827
17 +oOoooi57i +.OOOOOUU5
18 -.00000399 -.00002331

and the new absolute terms in the normal equations ares

£A(L)] = -.000000005030
[B(L)] - -.000000022879

[C(L)1 = +.000000001219

[D(L>] = +.00000000632U
[L(L)3 = +.000000000083

The corresponding reduction gives s

Aa-L = +.00000033

A^ = -.00000019

Â  •> +.00000001

Aa2'= +.00000016

Ab2 » +.00000007

Ac- - -eOOOOOOOl

A a" - + .0000001;8

Ab - -.00000055
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c2 = +0.22919671

And the final plate constants ares

^ = +2.22799078 ' a2 = -2.7l*2li9198

b-L = +2.57821*013

c-ĵ  = +0.28205069

The condition equations reduce now to?

1) +.00000003 /
2) =-.00000010

The computation of the residuals givess

/> /»' V V*

3 +2.709 +9.600 +1.68 -2032
10 -1U.U57 +8.251^ +U.50 +1.60
17 +15.726 +U.liUU -1.5U -3.80
18 -3.978 -22.309 -U.18 +U.21

CP/V^?S 83^ £w]= 831

Mean error of an observed 1 or I1 value iss

m = w - + 6.5(J.

The final check with equation (lU) gives?

Jt+v 8,14

3 +.02135168 -.05773332 +.16900890
10 -.05611*050 +.00005760 +.15713779
17 +.0603l8lt6 +.0lt0l51i20 +.5U637688
18 -.00103618 +.06381121 +.h8l27ii92

8tfi dec.
+1
0
0
-1

a « +0.00092963o
b = -1.20517308o

+.OU65015U
+.38332.882
+.15537272
+ .39"613273

8th dec,
-1
-1
-1
+1

The computation of the orientation elements with formula (16) givess

tan * = - .00077137

*= -0 .2' 39.11"

-.00077137
. cos*= +.99999970

80



-o!3637li60

cot (A+K) = +1.231QU2UU

(A+K) - 219° 5» 15. U9"

sin (A +*) • -.63050832
cos (A +K) - -,776l82]49

A = 219° 7° gU.59"!

sin A - -.63110685
cos A - -.77569591

h1 - +2o93l89U28

X » - +.000061U6

y « =

d« - +.88285555

sin v • +.3U1076U2

v - 19P g68 32.89W

v/2 - 9° 58" 16 ,

tan v/2 - +o 17580936

d.- ,30112121.

yo' - +,05293993

y0'-yc' ••• -.00015953
Ax - -.0000613U
Ay = -.00015958
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A comparison between the results obtained from the unique 3 stars
solution and from the overdetermined k stars solution shows •, •>• :

an important fact. The square sum 6f the residuals £v«Q => 83»h and conse-
quently the mean error of an individual observed plate coordinate

m = / TTTjf = + 6.5m or expressed in angular terms with a plate dis-

tance of d~300 mm, m » +_ U". We should now expect that the individual
parameters should differ only by a comparably small amount between the
two solutions. However, between the unique and overdetermined solutions
there are differences of as much as £00" for the individual parameters.
This shows that the individual parameters are determined with relatively
large mean errors. Only their combined effect produces a high precision
result in representing an individual ray in space.

Consequently, some of the parameters are able to compensate, at
least partly, for errors on the other parameters. This opens the way, e.g.,
to determine in explicit form the tolerances for a camera design and allows,
on the other hand, a shortening of the numerical computations by assuming
some of the unknowns as constants, It is obvious that an error in A x or
Ay will be partly compensated for by changes in azimuth or tilt,respectively.
The narrower the bundle of rays the more effective is this compensation.
1$y such a measurement the number of unknowns will be reduced to four and
therefore the final number of normal equations after the elimination of
A A will be only three,,

VII SUMMARY

A method of high-precision spatial triangulation is described. The
relative angular accuracy of the method is better than 1:100000. The
mathematical analysis of the plate orientation as well as the triangula-
tion by spatial resection is based on rigorous geometry. A rigorous least
squares adjustment determines the most probable plate orientation and de-
livers the most probable corrections to the measured plate coordinates,
thus making it possible to determine the mean error of-the orientation
elements and of the target point directions. The relative angular mean
error of a final spatial direction to any recorded target point is 1 to 2
seconds of arc. The triangulation is based on the principle of photogram-
metry by intersection. Hence, each point is determined by combining the
measured results of individual camera stations. The mean error of the
final coordinates depends on the geometry of the individual triangulation
case.
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The method is useful for the determination of the spatial position
of single points, ec go^for the purpose of calibration of other trajectory
measuring methods, as well as for the determination of complete trajectories.
The outlined method is free of systematic errors if the conditions discussed
in Chapter V are sufficiently satisfied. It must be understood that maxi-
mum accuracy with the method can be obtained only if during the time inter-
val between the exposure of the control points for plate orientation and
the exposures of the target points, the interior and exterior orientations of
the cameras can be considered as unchanged*

H. Schmid
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