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SPATIAL TRIANGULATION BY MEANS OF PHOTOGRAMMETRY

ABSTRACT

A method of precision spatial triangulation based on the
principles of ground photogrammetry is outlined. The geometry
and the least squares adjustment for the orientation of an indi-
vidual photogrammetric camera are derived and the mathematical
analysis for the sgpatial triangulation by means of intersection
photogrammetry is given. Numerical examples are added for the major
steps of the developed method.
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I. INTRODUCTION

Geodetic measuring methods are characterized by the measuring of
angles and distances. The corresponding problems in photogrammetry are
the determination of angles and distances from photographs. The pro-
blem may be considered in two ways, which are basically different in
thelr geometrical approach. Either these quantities may be determined
analytically from the coordlnates measured, or they may be derived pro-
jectively by reproducing the bundles of rays; for each exposure of the
gystem of cameras, Only 1n speclal cases does there exist a simple re-
lation between distances measured on a photograph and on the space obe
ject respectively. In general, however, photogrammetry deals only with
the determination of angles and this report will deal with such measure-
ments exclusively. The general problem of photogrammetric measurements
may, therefore, be defined as the triangluation pf spatial positions from
angle measurements. A8 1n geodesy, one uses ip photogrammetry elther the
intersection of resection methods.

The purpose of this. report 1s to outline a method of preclsion
spatial triangulation for aerial targets recorded on photographs, taken
at ‘ground stations. Therefore, we are dealing with a problem of ground
photogrammetry., Baslic conditions of conventional ground photogrammetry,
as distinguished from aerial photogrammetry, are:

l. The camers stations are on the earth.

2. The camera stations do not change their position with
time, so that 1t 1s justified to separate the geodetic
position measurements for the camera stations from the
photogrammetric measuring procedure.

However, one of the most important characteristics of conventional
ground photogrammetry should not be applied in our case, l.e., the.as-
sumption that the relation hetween the space position of the plate and
the local plumbline directlon, as obtained by levels, can be used as a
parameter in combining several stations for the purpose of triangulation,
The physical reasons for this limitation are explained in Chapter II of
this report. Consequently, not all the unknown elements of orientation
can be determined separately as 18 done conventionally. The elements
of the exterlor orientation defined,e. g., by the azimuth and tilt angles
of the optical axis and by the swing angle of the plate, must be deter=-
mined simultane oy, The nature of the rigorous least squares solution
for the plate orientation, given in Chapter III/3, makes it necessary to
determine these three quantities in connection with the computation of
the three elements of the interior orlentation, denoted by the principal
distance and the two plate coordinates of the prineipal point. These
complications call for modifying the evaluatlon procedure from the con-
ventional ground methods té those of aerial photogrammetry. The latter
are characterized by the fact that the determination of all parameters
of orlentation must be made simultaneously because of the changing posi-
tion of the camera,




The final triangunlation of the recorded aerial targets is obtained
from the projective relations which exist between pairs and triplets of
photographs made from different stations. Thus the spatial triangulation
is carried out by intersections or resections. In the outlined method,
each station is treated as an independent unit except for the final step
vhen corresponding rays are combined in a spatial triangulation. The
present report is, therefore, limited to a treatment of the problem based
on the principles of "photogrammetry by intersection®™. Consegquently, the
photogrammetric measuring procedure is applied at each measuring station
independentxy, The results for each recorded target point are expressed
in parameters which are related only to the particular measuring station,
o &y by two position angles,

This method is not the only photogrammetric method for triangulating
the spatial position of a point. As a matter of fact;, a more elegant and
more economic method may be used. This 18 based on the projective rela=-
tions between photographs taken from different locations; which may not
only serve to triangulate recorded points, but present the possibility to
determine the relative orientation of these photographs exclusively from
théir projective properties. In comnection with such a method, it is
possible to measuré two plates simultaneously with stereoscopic reading
devices, These methods will lead to a mechanical-optical solution of oumr
problem with the aid of a high-precision stereo plotting machine. This
- is essentially a three-=dimensional stereoscopic comparator by which the
spatial triangulation problem is similated.

Although this paper deals only with the method of photogrammetry by
intersection, the mathematical analysis of the problem of plate orienta-
tion is presented in a form which may be suitable for future.stereophoto-
grammetric measuring methods.

II, PHOTOGRAMMETRY BY INTERSECTION

The spatial triangulation of a recorded point from photographs taken
at two ground stations may be computed in ground photogrammetry by the
intersection method. (Fig. 1) The horizontal directions and the eleva=
tion angles, necessary for the intersection; are obtained if the princi-
pal distances d are known, by measuring the plate coordipates (X and y).
The directions of the camera axes against the base line or any other refer-
ehce datum are obtained either directly by readings of horizontal and :
vertical circles, or indirectly with the aid of additional reference points,
whose space coordinates must be known. The use of dials so far has not
proved to be sufficiently accurate to eliminate the need for control points.
Besides the unavoidable systematic instrumental errors, such a method is
affected by deflettiops of the vertical at the statlons, since the setting
of the phototheodolite (photogrammetric camera plus theodolite) is obtained
with reference to the vertical as indicated by levels. Precigion photo-
grammetry should, therefore,use the data of exterior orientatiqn obtained
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from dial readings with or without correction for plumbline anomalies

as approximation values only and evaluate the final orientation of the
plate with the aid of recorded control points. It is evident that the
coordinates of such reference points must be recorded in a way such

that they can be accurately identified and measured. It should be men=-
tioned here that the use of control points in geodetic practice is con-
sidered essential, especially in order to eliminate the influence of
systematic instrumental errorg on the final plate orientation. The fact
that it is possible to compute from recorded control points corrections
to the orientation elements of the plate, shows that the elements of
orientation may be obtained exclusively from measurements of such con-
trol points. Hence, dials and levels are not basic elements of photo-
grammetric instrumentation design. They may be useful to increase the
computing economy but it should be understood that the parameters ob-
tained from such auxiliaries should be considered only as approximations.
Consequently; a theory for a photogrammetric measuring method for pre-
cision triangulation must be established for a completely independent
photogrammetric camera. The so-called "Ballistic Camera®, which is used,
. g»,to record ballistic data of full-scale missiles in flight, repre-
sents’ this type of photogrammetric camera.,

“Suwmmarizing, the interior and exterior orientation of a camera may
be computed in a given coordinate system from recorded control points
if the coordinates of such points are given within the same reference
datum. Hence, the direction to an additional recorded target point may
be obtained from the computed plate orientation and the measured plate
goordinates of the point. The result may be expressed by two position
angles, . g.,by an azimuth and elevation angle. If such results from
two or more stations are combined, the space position of the target point
may be found by intersection.

The determination of space positions of missiles from photographs
taken at several ground stations ‘may be considered as a similar problem.
However, this problem is different in that the camera axes are directed
into space so that in general no terrestrial reference points will be
within the angle of view of the camera lens or at least they will be
recorded only on the edge of the plate. In such a case; it is possible
to use stars as control points, However, this procedure will give rise
to some difficulty which will be considered next, We have seen that the
control points must be known in the same coordinate system in which the
final orientation of the plate and the final measuring data are required.
This makes it necessary to establish the relation between the right ascen-
sion and declination coordinates of the stars and the local earth fixed
coordinate system of the measuring stations. It is well lmown that there
are formulas which allow us to express the azimuth and elevation angles
of a star as functions of right ascension, declination; sidereal time
and geographic latitude of the station, The right ascension. and declina-
tion values as well as the time measurements may be obtained with suf-
ficient accuracy. Hence, the problem is to determine the geographic
coordinates of the stations. The determination of the latitude and longi=-
tude of the stations may be obtalned by astronomical observations. These
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results, however, are not useful; due to the fact that the measurements
are affected by vertical deflections, caused mainly by mass irregularities
in the crust of the earth. The same problem exists in tlie astronomical
determination of the azimuth of a baseline. Another source for obtaining
the geographic coordinates are the triangulation results. However, tri-
angulation systems must be considered as local consiructions distorted

by unknown amounts., Especially poor is the jorientation of extended tri-
angulations. In addition the assumption is not Justified that the primary
orientation of the reference ellipsoid is so good that the relation be-
tween the celestial and the earth fixed system can be obtained accurately
enough to serve as a basic parameggr for a precision triangulation by two
or more photogrammetric stations.

In the following, a method is developed in which this difficulty
will be eliminated. It is obvious that the orientation of the plate may
be obtained in the right ascension = declination system from star measure- -
ments. With the measured plate coordinates for any recorded aerial target
point, the position of such a point in the sky may be expressed by right
ascension and declination angles; thus treating the recorded point as
an artificial star, Since the stars are at essentlally infinite distancs,
a given portion of the sky will show an identical pattern independent of
the location of the observer. However; the apparent place of the target
point in the sky will change with the position of the observer. There~
fore, the target point will have a different sat of right ascension and
declination values for each measuring station., Combining the results of
" two stations, it is possible to determine the spatial angle between two
sugh directions (angle o in Fig. 2). If a third measuring station is ,
combined with each of the two other stations, three such spatial angles
will be determined, By combining the angles with the slant distances
between the measuring stations; which may be computed from local geodetic
data, a pyramid is formed. We now have a typical problem of photogram-
metry, namely, that of determining the coordinates of a point in space
from three pdsition angles with reference to three known points, i.e.,
the well=known problem of resection in space. With this step the tri-
angulation problem is solved without resorting to the critical values
of geographic coordinates. The result is obtained by making the transi-
tion from the célestial to the earth-fixed system at that stage in the
computing procedure when a guantity is obtained. whose magnitude is inde-
pendent. of the eocordinate system used, The spatial angles between the
determining rays of the target point are such independent parameters.

It is noted, that if the exposures are made synchronously at all measuring
gtations, the time dogs not enter into the solution, with the exception
that an approximate sidereal time is needed to compute the refraction.

Compare BRL Report No. 746, H. Schmid, "Principles of Thxaical Geodeay
for the Establishment of a Long-Range Weapons Test Range-,
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If the star exposures at the different stations are made at different
times; this time difference only must be known accurately. This measure-
ment will enter into the solution as a corresponding correction to the
right ascension values, :

The conclusion is that for the establishment of a precision photo-
grammekric measuring system, using stars as control points, three stations
are sufficient and necessary in order to obtaina rigorous solution for a
spatial triangulation. A triangulation by intersection from any two sta=-
tions may be considered as adeguate only if a gystematic orientation error
of the base~triangle has been determined from the results of .a former
rigorous three-~station Solution. Thus, a correction to the agimuth of
the local triangulation system would be determined. This procedure will
:e réferred to in this report as the "calibration of a photogranmetric

ase line®,

IIT. ORTENTATION OF A PHOTOGRAMMETRIC CAMERA

1. The photogrammetric camera and the perspective properties of
- the photograph.

In a previous chapter, it has been shown that a precision photo-

Agrammetrlc triangulation method should be based on measurements obtained

from an independent photogrammetric camera,i.e., measurements not -
dependent upon azimuth and elevation dial readings. Mathematically,
we have to consider only the optical system as the center of projection

“and the photographic plate as part of a plane cutting a bundle of per-

spective rays. Each perspective may be explained as a.figure obtained:.
by cutting a bundle of perspective rays with a plane. Consequently,
each photograph represents a perspective figure. We distinguish between
the diapositive if the plane is situated between the object points and
the center of projection, and the negative, if the center of projectlon
1s located between the object points and the image plane.

The relative situat1on of the 1ndividnal perspective rays of such
a bundle is uniquely determined, and it may be congruently reconstructed
if the distance of the perspective center {in practice, the rear nodal
point) from the image plane, i. e., the principal distance d, and the
location of the principal point on the image plane are known. The %prin-
¢ipal point® is the intersection of a line perpendicular to the plate
through the perspective center. This line is called the photograph per-
pendlculer, The location of the principal point on the plate may be
given by two rectangular coordinates in any plate coordinate system repre-
gented by certain fiducial marks, and be denoted by A x and & y. (Fig. 3)
The principal distance and the coordinates of the principal point are the
three elements of interior orientation. A photograph of which the interior
orlentation is known. is called a photogram,
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Thus, the position of the center of projection is determined by three
perspective rays, The same three rays determine the reciprocal position
of the center of projection with respect to the corresponding polnt-objects.
The three space coordinates of the center of projection, (I s ¥, 2 ) the
spatial direction of the plate perpendicular (optical axls) exp ok [ e.g.
by two position angles (A and V) and the swing angle (KJ of any reference ’
line on the plate, represent the elements of exterior orientation. (Fig. 3)
Hence, the exterior orientation is determined by six parameters.

2. HMathematical Analysis of the Orientation Problem

In the preceding chapter, we have seen that the interior orientation
of a camera calls for the determination of three parameters and that the
exterior orientation requires six elements. In our case the space posi-
tion of the center of projection may be determined separately from geodetic
meagurements, thus reducing the number of unknowm elements for the ex-
terior orientation to three. Hence,the absolute orientation of a plate
in our case calls for the determination of six elements, three elements
of interior and another three elements of exterior orientation, These six
parameters of the absolute orientation:are:

(1) Princ{pal distance - d . '
(2) x-coordinate of the principal The three elements

point - Ax of interior
"(3) .y-coordinateé of the principal : orientation
point -« Ay .

(L) the azimuth angle of the plate
perpendicular - A
(5) the tilt angle of the plate
- perpendicular - v
(6) the swing angle of the plate
coordinate system - &

The three elements
of exterior
orientation

We have seen that the orientation of the plate must be determined
from recorded stars as control points. Therefore, the elements of &x-
terior corientation are detertmined with reference to the right ascension-
declination system.

The right ascension and declination coordinates are rectangular
spherical coordinates and may be represented on'a unit sphere., In order
to relate these spherical referdénce coordinates to the plane plate coordi-~
nates, a transformation of one of the iwo systems is necessary. With
‘regard to future theoretical work, it was decided to transform the spheri-
cal star coordinates into plane coordinates by projecting the stars in a
Plane.tangent to the unit sphere., The plane coordinates of the stars are
obtained according to the principle of central projection with the point
of projection in the center of the sphere (Fig. 4), If the plane is tangent
at the celestial pole and the coordinate system is oriented in such a way
that the g-axis repregsents the celestial meridian through the origin of
the right ascension measurements and the q =axis is perpendicular to the

PROPERTY OF U.S. ARMY
13 STINFO ERANCH
ERL, AP, MD. 21005
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& -axis; the plane (standard) coordinates § and 4 for a star may be ex-
pressed as functions of right ascension (RA) and declination (6). The
formulas may be read directly from Fig, 4. They are:

* g = -cot 6 cos RA_

(1)

4

+1[ = +cot 6r sin RA

The subscript “"r® indicates that the value has been corrected for refrac-
tion, The astronomical refraction for the stars may be computed as a
function of zenith distance with the conventional formulas used in
astronomical and geodetic practice. The effect of refraction on the
right ascension and declination of a star may be obtained with well-
known formulas derived,s. g.,in "Textbook on Spherical Astronomy™ by

Wo M, Smart; or in "Elements of Practical Astronomy" by W, W. Campbell,

Depending on the geographical position of the camera station, 1t -
may sometimes become necessary to choose a plane tangent to the celes-
tial equator; preferably at the point of origin of right ascension. In
addition, we will have need for 3 plane tangent at the gzenith of the
.camera station. In such a case, the § -axis represents the meridian
through the measuring station. The Q =axis ig perpendicular to the.‘[»
axis. The standard coordinates are in such a.cases

' ,tan & = tan g cos ¢
#lf (north) = = tan g, cos A L -

cos tr + tan g tan ﬁr
- (2)
- = gec 4 sin t.
cog t_+ tan g tan &
r r

* R (east) = = tan izr sin A

Zenith distance of the star

Azimith of the star, counted
clockwise from the south.

# = Geographic latitude of the
‘ camera station

Hour angle -~ Sidereal time of
exposure (8) minus
Right ascension

= n
[

(4
]
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We have seen that a photograph may be considered as an exact central
projection. (The necessary corrections to the measursd plate coordi-
nates due to distortion will be discussed later), Therefore,.a star
photograph represents a central projection of a certain portion.of the
sky.. Similarly, the projection of the stars in a plane tangent to a unit
sphere is an exact central projection. Both projections may be assumed
to have the point of projection in common. Hence; the plate images de~-
noted by the plate coordinates x and ¥ and the corresponding star pro-
Jections denoted by the standard coordinates é and?} , may be considered
as photographs taken from the same point. We must now determine the
geometric relations which exist between two photographs taken from the
same point. In accordance with the two different geometric approaches

to the problem, there are two different mathematical analyses.

First we will consider the projection method, which 1s felt to be
more intuitive; because the unknowns of the solution have precisely
defined physical meanings. '

Solution a)

In Fig. (5), L is the center of projection, The problem is to
orient the plane containing the plate which is shown as a diapositive,
in such a way that a bundle of rays originating from L and passing
~ through the plate images (8) intersects a plane tangent to the unit
sphere at the point L' in the corresponding star projections; (st),

We introduce the following coordinate systems:

g ,77 Standard coordinates. Plane rectangular coordinates of
' a star in the plane’ of projectiohy ~The origin'is a4t the
point L%, in which the projection plane is tangent to
the unit sphere.. § represents the meridian on the.unit
sphere through the point of origin of the agzimuth measure-
ments.

X, ¥ Primary plate coordinates. Plane, rectangular coordinates
of an image point, related to a system whose origin (0) is
the intersection of the X and ¥ axes, established by fidu-
clal marks.

X, ¥ Oriented plate coordinates. Plane;, rectangular coordi-
nates of an image point. The y-axis is the line of inter-
section of the image plane with a plane perpendicular to
the plane of projection which contalns the plate perpen-
dicular. The origin is the lsocenter . The x, y system
is tilted -against the X, y system by the swing anglej{.
(A counted ceunter-clockwise)

, ¥ Plane rectangular coordinates of a star in the plane
'~ of projection. The system corresponds in its' orlentation
to the x, y system. The origin is the corresponding
isocenter I™.

X

16
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Ax and A y_denote the coordinates of the principal point
(P} in the x, ¥ system.

A = azimuth of the plate perpendicular
v = tilt of the plate perpendicular
d = principal distance

x = (X -Ax) cos&- (¥ l-«Ay) sink’

(3)
y = (¥ -Ay) cosk+ (X -Ax) sink+ 4d * tan%
From Figures 5 and 6, we obtain
HT = HL » —9
sin v
()
t h
GI = Q0L = sTn v
AGLSO""G'A'HSOL, therefore
¢s' _ H
oL RS, ()
and . !
' ' 0
x LS Gs GL
R R M (6
X A ﬁ'E‘;

Since HS = LH-y and GSO' - C}I.-n-y‘Ir ; we have, from formulae 4, 5, 6,

' _ Gley _ __hy ' _oGLex | hx
y HL=y d=y sin v and X HL-y d=y sin v M

19




Furthermore:

§= -x sinh -(y +htany) cosa

(8) |
¥
”- —(y-rht.an%)sink-rx'cosﬂ : ’
For our case h = 1 and therefore
1 ;E Tt x [ ]
Y "3 sinv and X-® &5 shnv (7)
€= -(y'+tang-) cos A - x sinA
v
(8)
1
N= - (y +tan%) sin A + x cos A
From (7') and (8') we derive
+y co8 A + X sin A v o
€= ~d+ysinv - tanz cos A |
' (9)

qa ysin A =xcos A
-d+ ysinwv

-£an% sin A
Substituting (3) into (9)

& . {[(y‘-Ay)cosK +(x-4x)sin£.ﬂ cos v+d sin v_} cos Ajﬁx-éx)cosK (Y—dy)sinﬂsin A
Ey-Ay)cosK+(x-AK)sinKJ sin v -dcos v

(10%)
{[(y-Ay)cosK-r(x-Ax)sinﬂcos v+d sin v}sin A-[(x—dx)cosx-(y-Ay)sixAjcos A
[(Y-AJ’)GOSK-r(x-Ax)sinKJ sin v-d cos v '

7.

20




The formulag (10%) are in agreement yith the welllmown formulas.
Nos: 12a and 12b derived by O. v. Gruber,

The formmlas (10"“) express the standard coordinates 5 and 7} in
terms of the measured plate coordinates X and ¥ in any rectangular
plate coordinate system and in the six elements of orientation, namely,
the three clements of interior orientation d;d x; and4y and the three
elements of exterior orientation; A; v, and ¥ . These six parameters
are the unknowns of the solution. Because esach star gives rise to two
equations, one for & and one for 2} , three stars are necessary and suf-
ficient to obtain a unique solution. This result is in agreement with
the previously stated principle that the center of projection is fixed
with respect to the plate as well as object-points by any three perspec-
tive rays.

Solution b)

In the preceding paragraph the spatial direction of the optical
axis within the chosen reference system was expressed by two position .
angles, namaly an azimuth angle (A} and a tilt angle (v) (Fig. 5).
Although these parameters are essential for the final triangulation
problem, such an interpretation of the problem sometimes causes diffi-
culties due to the fact that the concept of an azimuth angle does not
exist anymore if the tilt angle v becomes zero. In order to have
formulas available which are useful in such z case, the spatial direc-
t:Lon(of the)opt.ical axis may be defined by the two tilt angles a and
w., (Fig. 7

Figure 7

Ferienkurs in Photogrammetrie by O. V. Gruber, Stutt.garb-?erlag von
Konrad Wittwer, 1930.
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a, e-tilt., denotes the angle between then & plane and a plane -
parallel to the » -axis which contains the optical axis. w,7 -tilt,
denotes the angle formed by the optical axis and its projection in the °

=plane, The relations between the a,w, £ angles and the A, v and
K) angles respectively, ares

'sina)- = gin v sin A COS v = COS G COS W
tan @ = « tan v cos A tan A = tan ® cosec @
cotak= cos v tan A - K oAk - &)
' where (A) = swing angle of
- method a.

The relations between the_standard coordinates é and;z and the
measured plate coordinates X, y may be obtained by applying the
formulas (5) twice. The result, obtained by a double projection, is
as follows:

[(Y-Ay)SinK*- (X-Ax)cosacosa{dcos m—[(y-Ay)cosK-— (x—Ax)sinn]sm a)} sin a
{d cos w-|(F-ay) cosk-(X-ax) s:.nx.]sux m}coa Q= [(:c—ﬁx) cosis (Y-ay) sinxJ sin a

k)

5 =

d sin cm-[(y-Ay) cosK,—-(x—Ax)@in )c] cos @
{ d cos w- [(y-Ay) cosK- (x-~ax) s:.nl(Tin,co} cos a= r (x=-ax) cosk+ (?-m)s:.nla sin a

=
These formulas agree with Gruber's formulas Nos. ;I.3a and 13b *

Solition ¢)

We will now consider the mathematical analysis of the orientation
problem based on the principles of photogrammetfy by amnalytical means.
In Fig. (8), L is the center of projection. A bundle of rays is cut by
two planes. One plane contains the plate (negative), the other plane
represents a plane tangent to the unit sphere at point L' with the center
at L. A star image in the plane.contalning the plate ig denoted by S.
The corresponding image in the plane of projectlon is § . We again intro-
duce the following coordinate lystemS‘

f > 7 Standard coord:l.nates. Plane rectangular coordinates of a
star in the plane projection. The origin is at the point
L', on which the plane is tangent to the unit sphere.
represents the meridian on the unit sphere through the
point of origin of the azimuth measurements.,

# Bee reference note on preceding page. ‘
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HI = HI, =

. .
GI =0L =g =h

Primary plate coordinates. Plane rectangular coordinates
of an image point, related to a system, whose origin (0)
is the intersection of the X and y axes, established by
fiducial marks.

Oriented plate coordinates, Plane, rectangular coordinates _ ;
of an image point. The y<4axis is the line of intersection .
of the image plane with a plane perpendicular to the plane

of projection which contains ths plate perpendicular. The

origin is the isocenter I. The x; y-system is tilted against

the x,y—system by the swing-angle K (& counted clocl-nﬂse?

Plane rectangular coordinates of a star in the plane of

projection. The system corresponds in its orientation

to the x,y system. The origin is the corrssponding isocenter

I, X, and y_ denote the coordinates of the origin of the
X, syStem. (0F in the X,y system.

A = azimuth of the plate perpendicular
v = tilt of the plate perpendicular
d = principal distance.

and 9, we obtain agains

d
81n v = d

40

]

A aLs ~ AHSOL ; therefore

and

Since HSO- LH=y and GS'O = GL-!-y,' we obtain again, from formulasg b, 5 and 6,

1 ‘ \ T hx ‘:‘.
yo= d=y sin v and x = d=-y sin v (7c)

t
o8 | )
- = (58)
o
' Gs, i
X L8 = o - gI_" ) )
= TR R “ i

o2k




00\\6&\an ¢/
suwesd / /
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Furthermore:
) [
§=-x sin A -y cosA-rgi.' )
?‘]m--:ri sinA*-x' cos A +7:: |

where %f.,”i are the standard coordinates of I in.theg, 7 system, and

Xx=Xcosk + ¥ sink+ X,
(12)
y=-y'coél(-'isinx+yo ‘

where X, ¥, are the coordinates of O in the x,y system.
For h =1 afld by means of formula g we obtain from formula 11:

=x.8in A =y cos A .
s' d=-ysiny * N 13)
13

_=Yys8in A+ x cos A .
_n d-ysinv +i§-1-

and from Formula (12):

é,ali'}blifcl

ax+ boy--r 1

(1k)

X+ by+ c,

a
2
n - =

1. T
a,x+ bo y + 1

where

-h' sin (A-&) +§i sin & +h' cos (A-%) +p, sink’

o | P | | 2 3

-h' cos (A-1D -4, cos K -h' sin (A-K) -; co8 kK -

b, = b =

\

1 0 2 i
d -y, @ -7,
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- i : ‘ wh? in Ae
h*(xo sin A+y _cos A) h (yo sin A-x _ cos A)

= +& = +
¢ a -y, Y ) -y, N
a s = 8in . aqa 13 = Sin'

(o] d'-yo o d'-yo _
ba - cos K _ b la - 295
o d'l..yo o l_yo
and the elemgnts of orientation may be computed by:
bank = -bo . -a,(az+by )+ b (a)-by)
o] "oi a 2 + b 2
: : o 0 ‘
dleg.t = -sinK _ -cos K _ 1 - "ao(al-b2)-bo(a2+b1)
e 3, % 5 a %+b 2
' a_+b o o
o o |
a {b -=a b})-b(a b, «b )
cot(A+K)=°°al 01_'002 o_a2.
fbo(bo 3 "3 bl) - aq(ao by - b, a2)
B = ao(bo & "3 bl) T bo(ao b, - b, a2) (d - yi )3
+ cos (A+K) Ve
- 'bo(bo e bl) - ao(ao b, = b, a2) (dr= ,)3
+ gin (A+K) Yo
Or introducing & ; and )li |
BMN1 =By S %i *
COt (A“'K) = - = = -b__f. —b
ao_‘li i 1 o®i 2
And L _ _ _ _ .
) h ( 8'o)\:i. al)(d' y’c')¢ - ( bov[i bl)("'l Jo )
- +sin(A+K) ) +cQs (A+K)
0 _ - - q - . -
(a8yr a)y, ) (bygy - DA -y.)
+cos (A+K) +sin (A+K)
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B d'-y l
TR
dl_y I
[C*G*Q Fasin A~ {c, ’”li) cosq | &’(16)
ccttd
' 1
d“(d“}r‘:)-i-yé —
¥
d=d sin y
gin v = l?‘
h
y; = dtan %
AX = = #’ 08 K+ (y' -y sink
e /] c '
4y = (y,- 3,) cosks x, sin K )

The formulas (1h) again express the relation between the standard
coordinates § 7?amd the plate coordinates X,y in any rectangular plate
coordinate system. The unknowns of the solution are the so-called plate
constants a., b1 b and a,; 5 Cop 2 “, b ', Formulas based on
plate constants wg}e uged In earlg %ork on “bal1fstic cameras and re-
lated problems and are described in various BRL Reports.¥*

s R. Se Zug, ™A Photometeroronic Method for Bomb Ballistics and for
"~ Measurements of the Flight Performance of Aireraft," BEL Report 279, p.35.

2, T. E, Sterne, "The Precise Determination of the Pbsition of a Point
in Space from Photographs taken at Two Ground Stationsy BRL Report 273,p. 1L,

3. R. 8. Zug, "High Altitude Range Bombinr by the Aberdeen Bombing Mission
Using Ballistic Cameras", LSD-Report 1, pp. 4O, L3,

4. L. G. deBey and R. S. Zug, #"History of th. Ballistic Camera and Range
Bombing Instrumentation®, BRL Report 577; p. 2.

5. R, d'E Atkinson, %A Shortened Method of Star-reductions for Calibrating
Ballistic Cameras, BRL Report 593, p. 12.

6. Virginia Farquar, WA Short Method for Reduction of Ballistic Camera
Observations™®, BRL Technical Note 50, p. 2.

7. Dirk Reuyl, “Full-Scale Free-Flight Ballistic Measurements of Aircraft
Rockets by Optical Methods“, BRL Report 676, p. LO.
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A comparison between formulas (1), (10a) and (10b), which obviously
express the same relations shows that six unkmowns are present in formulas
(10a) and (10b) and ten unknowns in formula 1. We have already seen that
six unknowns are necessary and sufficient to solve the problem geometri-

cally.

Consequently, the ten unknowns in formual (14) are not all inde-
pendent parameters, but four additional condition equations must exist
between at least some of the unknowns.® A first examination of the
terms expressing the plate constants in formalas (15) shows that

1) a = a,

2) b,

1
or

"0
The other two condition equations can hardly be eliminated from the

given relations, However, it is possible to write the equations {10a)
in the following arrangement:

y(-cos&cos v cos A + sinksin A)+x(~cosksin A - sinXcos v cos A) +

%- . _&y(cos¥cos v cos A-sinK sin Apax(cos Ksin A+sinKcos v cos A)=d sin v cos 4

=y cosk sin v=X sinksin v+ 4y cosksin v+4x sinksin v+d cos v

y(=cos&cos v sin A-sinkcos A)}+X(+cosK cos A-sink cos w sin A) +

n _ay(coskcos v sin A+sind cos A)+dx(-cosk cos A+sinKcos v sin A)-d sin v sin A

-§ cosX sin v-X gink’'sin v +Ay cosksin v+ 4x sinKsin v +'d cos v

o
]
+
o
o
+
(]

m
Ll

+
OU'
dq

+
[

‘where ‘
: _ = cosksin A sec v ~ sinkcos A } (17a)
5 by

# See BRL Memorandum Report L76 by S. T. Zarcodny, “On the Use of
Least Squares in the Determination of Plate Constants.%
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b. = + sinksin A sec v = coskcos A
1 i\
o. = =d tan v cos A+ax(cosk’sin A ssc v+sinifcos A)+dy(=-sink sin A sec v+cosicos A 79,
1 A . o
gonttd
_ * cosgcos A sec v ~ sinksin A
&2 7Y A
b = = sinXcos A se¢ v - cog&'sin A
P N
o o =0 tan v sin A+dx(~cos# cos A sec wsink sin A)way(sinAsin A sec v+cosA’sin A)
2 A )
- tan v sin &
ao = Y b == tan v cos &
(o] x‘
where A = d + tan v {(dy cosX+.Ax sink) . ' /
_ - a 2(aya, + bb,)
Therefore tanX = 1:—52 ~and sin 2A = a% 2 Zl 2 (18)
0 a8, + bo

and after suitable transformation, we obtain the following independent
condition equations:

]
1) a = a,

o
2) b =b
[¢] [¢] B
= (19)
3) aobo + ajb, + a2b2 0
2 2. 2 .2 _2_.2_
b al + & +a =b " -y 'l.)2_o

Using formula 105, the plate constants are given by the followin
expressions: «
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¢

. —4y(sink sec w-cosk tan w tan a)-ax{cosk sec wrgink tan w tan a)+d tan a
T .

gink sec w ~ cosAtanw tan o

2" . ~

cosAsec w + 8inAtan o tan a

hL* B ‘ >(17b)

- co‘sk sec a i o= ginXsec w tan a-cosA tan w
32 A o 2
b, = - 8inksec o . b = = cosk sec @ tan a+sinK tan o
2 A - T pY

(Ay cosK+4x gink+d tan o) sec a

02=

where

A=d¥ay(sinKsec w tan a+cosX tan w)+ax(cosK sec @ tan a-sinkKtan w) _J

The condition equations -mé.y be proved by substituting the expressions
for the plate constants obtained either from formulas 15, 17a or 17b.

- Formulas 1l with the ten plate constants and the four condition equa=
tions (formulas 19) represent now a system of six independent parameters.
Now, all three results, obtained from the two methods are consistent and
in agreement with the theory of the orientation problem,

All three formula systems (10a, 10band 1li/ 19) expreéss in rigorous
geometrical or analytical terms the relation buciween the standard coordi-
nates and the corresponding plate coordinates. Each of the three sys=-
tems allows the computation of the plate orientation from three stars.

In general; there will be more stars used than are necessary for a unique
solution. In such a case, the result must be determined a least squares
solution, which may be based on any of the three systems of formulas.

3. The rigorous least squares adjustment

The formulas 10a, 10b, and 1li, the last in combination with the
condition equations 19, represent the rigorous mathematical relation
between the plate coordinates measured in any plane rectangular system
on the plate and denoted by X and ¥, and the standard coordinates & and
77 computed as plane rectangular coordinates in a plane tangent at a cer-
tain point on the unit sphere whose center is at the point of projection,
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All three systems are therefore suitable for establishing the observa-
tion equations, },ﬁe will consider these possibilities:

a) Projection method, based on the formulas 10a

' The observations of the plate coordinates with reference
to a fiduclal marks-system are denoted by £ and L', corresponding to the
X and ¥ axes, The obsewatlonal (re.udual) errors of these rbservations
are denoted by Vv and V' ; hence; X = £+ v - and y = £'+v/, " Ax

and A y are the cuordinaves of the prinupal po:Lnt (P) with reference to
the fiducial mark system (X,y) whose origin is in O.

d = principal distance
A = azimuth of the optical axis
v » ti1t of the optical axis

K = swing angle of the fiducial marks system

From formula 10a we obtain

g _ (F-ayXcos&cos v cos A=sinK31n»'-(waJa (sin# cos v cos A+cosA sinp)+d sin v cos A oF
' (y-d.v) cossin v + (x -Ax) sinAsin v = d cos v

(20)

{F-4yXcosK cos v sin A+sink cosA)l-(x-.desmA:’cos v 8in A~cosx’cos AHd sin v sin & -y '
(y4y) cosxsin v + (X-4x) sinksin v - d cos v

nu

From the.Taylor expansion for the right side of these equatlions we have,
neglecting terms of second and higher order:

- _aF aF aF oF oF of oF aF
f‘ = €9+.-&343+-§§Av+_~5—&416+v-§a'4d+mﬁﬂdx\+-—ﬁdy+——v+—- v

ady P 3y

ars SF! aF! aF1 aF! art aF'!
N =N, *3adt 354+ s @d A 43+amﬁdy+-—v'+;§ !



- We have & - € o " AL€

c"No =47
where é.c”?c are standard coordinates computed from reference data.
Hence
F L F _F,, F . Fpp F . .
= & * &4 A m EZy g
(21)
oF ! oF aF ! aF ! oF! aFt
- V‘*—V'_AA*_A\“'_"' K Ad AA Xobrogme AAy- a
= 2 A . an aay ’7

We substitute pow*
A= AQ + A A
y = Vo + Ay
Kal +4K
° (22)
d = db + 44
4x -Axo + 44x 47 TAY, +A Ay

X = t +* v
y = 1' L ] v.
ﬂand introduce the following terms:

A-(B' -4y,) + B(& -4x ) + C+d, )
° o (a —Ay;) + E(l.,-A:;o) + Fed u

*For the computation of approximation values see pags 50.
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A’(l’ndyé) + Br(f£ -Axo) + G'»do t
o~ -4y, vEWT-Ax)+F 4 ~

where

oS o s A = i ' o i + g A
A=c (ocs.vo co Ao simto sin A A =csK° cos v_ s:LnAo_ ainfo cos &

0
. . - . , ig A =

Besink  cos v  cos A cosk  sin A°, B! = sink& cos v, sin A - cosk cos A
C = sin w_ cos A C' = sin v_ sin A

* o 0 ~ ~ o o
D =. cos I(Q s;l.n-?d
E = sin I% sin v,
F

= - cos v
o

From formulas 20 and 21 we obtain after suitable transformations”

the observation equations:

~B+ E xp+ D ' S

-4t ' o ' .
2 S ,

u .

(-B+ goE)z + (-A+ gon)z

with the weight p =

The entirely analytical computation of some of the coefficients:. agks for rather o
complex transformations. The result, however, may be obtained uirectly by

using vector analysis. Such a solution is shown in BRL Report No, 785,

H. Schmid, "Error Theory of Intersection Photogrammetry.”

3L

o S o R o _ : _ ’ oo 7__ S —



pY = v+ yi= +§'04A

- (l+77§) sin A *+1)  cos Ao:l Av
B

- :(I-Axo) _f-‘-:;i‘in- - (&'-4y,) il ;n°E]Az.
+ :T;?_.?E A4x | C?B‘“conf'd)

4n

2
u

(-B'+Q oE)E-w-(-.A +N OD)2

with the weight pt=

The number of unknowns may be reduced by eliminatirgd A. We divide for
this purpose each of the observation equations by the factor which is com-
bined with 4 A thus obtaining reduced observation equations.

We introduce furthermofe: :

_+b-§ E . | eBlen E
S al = ——
. +A-§on -Auﬁ o

% bre 1O

'c"goF ; +G'-7?0F

c = __T——- c. =B —_r.g__
L .. 48 L= + 22
o - o
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Formula 23 may be written as follows:

1+

p=a-v:b.:v' = JA+
?']o

2 .
°-" cos Ad+§'o sin A‘Jdu-[(l-dxo)b-(t'qyo)aj' AK

+a*d4x+b-Aay+c.Ad-L (23)

l- 2

pt=aty:b'vi=AA- [—Sono sin Ao+rtq cos. A‘] ““‘[‘.""‘o)b"("'”o)a] A

+al- A4 x+bt. 44 yrct» Ad-L!

or: . ) /
p= AA+aAWMBAL +a. Al X+tbhe 44 y+c-4d-L

pl=d A+atA v+B1AK +al. A4 x+b'4dd yrc'd d-L!

and with the help of the first normal equations, we obtain the reduced
observation equations:

p= (M)A v + (B)ak+ (C)aax + (D)day + (E)ad - (L)

(24)
pt= (A1)d v + (B)Ak+ (C') Asx + (D')day + (EN)Ad - (1)

where (A) = [a-i-a.'J (A1) =(ar 'E%J)

© = (a -1529); (@) o(ar -lz32]) |
(-8R, o) (o <20)
(e ) @)
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and

o 1250 S S Sy 5000 o

(26)

| =Y _—Rﬂp"'a' ’
v abl=atb

The reduced observation equations (24) have different weights due to the
fact that in each of the equations there is more than one observed quantity.
The weights ares

1
p =
32 +'b2
(27)
1
, L —
a'2 R b“2

The normal equations are:

[p(an)] 4 v + [p(aB)] 4K + [p(ac)] 44 x +[p(an)] 4ay + [p(aE}]aa- [p(aL)]=

0
[p(zB)|ak + [p(20)] 44 % +[p()]aay + [pem)]ad- [p(mL)]= o
T [p(cc)] a4 x +[p(cD)]ad y +[p(cE)]ad- [p(cL)]= 0
o [p(op)]44 ¥ ;E;(D_E)]Ad.- [p(OL)]= 0 @)

[p(ee)]4d- [p(eL)]= o

0

[p(zL)]=

where
[p(Mi' stands for E)(A) (a) + p'(A')(_A'_)] and the other terms in parentheses
are denoted correspondingly.
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After Av, Ak, 44 x, 44y and Ad are determined*, 4 4 is obtained from
equation 25, Thé residuals p and p' are computed from the reduced obser-
vation equations 2} and the residuals of the c¢riginal plate measurements
are obtained from forumlas 26,

The final result is obtained by applying‘the formilas (23).
Checks for the computations are:

![P] *le]-e , [op + ptotel] =[] « [vv] -[praag] (29)

The main check 1is made by means of formilas 10a. If the final
elements of orientation and the corrected observations X and ¥ are intro=
duced, the computed § and »7values must be in complete agreement with
the originally obtained standard coordinates 5' and» respectively.

In case of residuals which are caused by the neglected” second order
terms; the solution must be repeated by using the obtained results as
new approximations, It will be sufficient in such a cdse to use the
former coefficients in the normal equation system and to limit the addi-
tional computatlons to the computing of new L and L' terms.

The mean error of a measured plate coordinate may be determined by:

s EEEL

and the mean errors of the unknowns are:

m, =+ = = 3 omg= ot
YT VAR ax CC-L d EE-L
(31)
m
m, = % H m A 4
X =EBn 47 < oL

* For the reductions of the normal equations the “modernigzed" Gaussién

Algorithm is suggested. The method is closely related to the Doolittle
method and to Reicheneder's method. However, it is believed that the
modernized Gaussian Algorithmcombines a minimum of recording work with

a maximim or protection against computlng errors. Seé: Der,» odernlsnerte
Gauss‘sche Algor1thmus zur Aufl8sang von Normalgleichungen, by H. Wolf in
Zeltschrift fir Vermessungswesen#11 Novembsr 1950.

38 -




m, may be determined from formula (25) by combining the individual mean
efrors. However; the mean errors are not independent and therefore can=
not be propagated according to the Gauszian law of errors. The values
Ab.y, etec., have here the conventional meaning of the Gaussian reduction
method . ¥

b, Projection method, based on the formula 10b,

The observations of the plate coordinates with reference to a
fiduneial marks system are again denoted by 1 and 1' corresponding to the
X and ¥ axes, The observational errors of these observations are v and
v'. Hence, x =2 + vand y = £' + yi, Ax andAy are the coordinates of
the principal point (P) with reference to the fiducial marks system (x,¥)
whose origin is in 0. d denotes the principal distance, a = g =tilt angle
and @ =7) =tilt angle respectively. & denotes the swing angle of the fiducial
marks system. From (10b) we obtains

% » (foay)(sinKcos a-cosksin w sin a)+{(X-4x)(cosKcos a+sinKsin @ sin a)+d cos wsin a_,
(P-4y) (=cosk sin w cos a-sink sin a)+(T-4x)(sinksin w cos a-cosiksin a)+dcoswcos a

(32)-
- @=Ay) cosk cos © - (X-Ax) sinkcos © + 4 sin @ e
. = sy
(F-4y) (-cosiesin @ cos a-sinksin a)+(x~4x)(sinksin w cos a-cosk sin a)+d cos w cos a

From the Taylor""éxpansion for the right side of the above equations,
we have, neglecting terms of aecond and higher order:

oG oG oG aG- G oG aa - oG
= o A o+ A AR + =v A d+ AAXH A4+ — ¥ + — V!
§ 8o+ 5 h o FAe TRk A Fetax Fyaar TV
n="7, +Lp QF_E'AM g%ﬂd(-a %i 4 a+ %‘Gf; Ad x+ -g%;ddy‘* iﬁ;' v+ Q-G_:' v’
and with - = A .

770-’70‘4’7

vhere g‘ c ani)?c are standard coordinates computed from reference data.,

* Ref: A Text Book on the Method of Least Squares by Mansfield Merriman,
N.Y., 1911; or: Handbuch dar Vermessungs_Kunde-Ausgleichsrechnung by
Jordan Eggert, volume I, Stuttgart, 19483,
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a 6 ., & G 3G a , . & G -
-2 v. 8 yi- Fdas Thar Al ST adr s oaay- 48
ar &, & aG! aG! aa! ! 6! .
- v-= v=sda o Acn+-—a‘4¢+ —ad4d+ Ty 44 X+ 3 44y 4}7

We now substitute

a-ao-'-Ao‘.
cosmo-'-Aco
¢=£°+AA=
d=d°+Ad
4X = Axo-i-AAx
Aya‘Ayo +44y
X=4+v

i= l'-..vﬂ

and introduce the following terms:

A(8 -4y.) + B(L -dx)) + Cdo
g ° p( -Jyo) + E(4 -Axo) “+ Fed

At(L Q-Ayo) + B'(L -dx,) + C'ed,

70

D' -4y ) + E(L -4x ) + Fed_

vheres
A= s:i.nzp cos @ - cosxo sin go‘siﬁ c,
. B= cos(o cos a + sinz.o ‘'sin @, gin e,
€ = cos o, sin a

o]

L0

i

Flct

At = coazo cos

(34)

(35)

o]

B! =agin coS ¢
_ A:o ™

t a
C sin @,




o
]

- COS sinw_ cos a = sin sin a
- Ko (o} 0 zo 0

= g1 5 -
E s:mto sin o  cos @ cosgo sin <,

F=cosew cosa
o 0

From the formula (32) we obtain the observation equations after suitable
transformations™

-B+ § E -a+ & D

\ 2
‘;.-,=-——u-——v+-—aﬁ-—-w = +(1 i-go).da

+(7)0¢0 cos a -7, sin ao)dm

-A+& D ~B+& E | -
+[(£-4x0) ________#o = (Lr-ay,) ——-*——-—-—f 2 ]‘Uf

u

‘ , B

44x

=+ §' oD
+.

AA Yy

Cab ¥
$o 4d

u

+*

2
u

(-B+ & _E)°u(-psd D)

-.ngwith the weight p =

-Bi+n E -A'+7 D ' :
Pl —— v —g— V' =6, 4

+ [(l+1?02) cos a_+ go sin G;]Am

. -At+n D -B+h E
+ [(ﬂ-éxo) "% (b-gy)) —— q°:| 4K

u L I

See remark on page 3L



+ o aax
-A'+J7 D
o
+ = lAAy
cr-;;’, F
o
*+ m aAd
2
u .

~&y) vith the weight p!

(_B'l+ )?‘SE)Z.. (-AH- ,?OD)Q-

The number of unkmowns may be reduced by eliminatingaa. For this purpose
we divide each of the observation equations by the factor which is com-
bined with A a thus cbtaining reduced observation equations,

We introduce furthermore:

B+f B . BanE
a4 8 ——— al &
u.+%o‘s . ,?OOS?
-A D =A1 D
b = ___tf_‘_:’... bt = _..._.:..,..?_2._
u +€°-s 770-3
LU oEF ot oo
u +§°'SA - ‘ ,?o's

Formula 36 may now be written as follows:

p=-av+bv'=4u;b l:7?§¢°cos gg- qoad.n a,
2 +§)

Awr | -ax )o-(0r-47 )a | 4K+

adAx+b dayecad - L ' (36!)




1*-?'] 2 sin o

pl=alyrblviz Ag+ 2 008 G 4+ e | At (&-:A:i)b'-u."—Ayo)a' A+

o

050 Mo

at AAx+b' Aby+c?d d =~ L1

where L = L-ii;
o

LY -_--—Aﬁ_

Moo

The weight of the o{)servation equations iz p = -—E-l-—-ém
a- + b
| (37
p' = —5—-———51
a'"+ bt

The solution now follows the procedure outlined in the preceding paragraph,

¢) Analytical Method, based on formulas 1l and 19

Substituting a, = a ' and b = b !, formlas 1; become

él'fa- bl'fa- ¢, = a.oé';c' - bo¢§ -& =0
| | (38)

and
3K + B)F + ¢y = 4K = bNF == O

We again introduce X = 1 + ¥y and ¥y = 1' + v and approximation
values of the plate canstants as fellows

¢} o]
3 =2 +da , %27 %2 + 4,

© _ 4. 0 '
b, bl +4b, , by = by, + Ab,. (39)
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= c1° +~Acl 5 ¢

We obtain from formulas 38, by the Ta,ylor series, neglecting terms of
second order and highers:

p=fda 4 B Abi+ 4 cl-l.i aa -0 ban - +2a, O+ L b1°+c1°-=1.§ aoo-!.'e b°°

v(§a ®-a,")4v' (§ b -1, %)

(Lo)
pt=R4a,+114 t;2+<.4 cy=dNda -0 7 ab =N +ha,"+L1b, 4, =N a - b °
v(na ’-a,")+v! (N b °-b,°)
or
p=14 ai+£' Ab+bc, ¢ aa -f § 4 bo-I'.;, with weight p
(1)

pi=L4 a2+£‘4 b+ 4 czflr)cd ao-l"r) c4b,-L', with weight p!

! ‘e /
p= ( ¢. aoo'aio)z +(§- boo_b,lo)Z 5 p (n aoo_azo)a,_m b6°-b2°)2

The introduction of weighting factors becomes necéssary because in each
of the above derived observation equations more than one observation and
correspondingly more than one residual appear.

L= Lﬂ?f "‘blo * clo - lf caoo"v"f cboQ - g ¢

I o 0 o_ o_ o _
L 29,2 + ,sz *+ ¢, ﬂq %o z'q c % N,
where the computed standard coordinates are denoted byfc andr'l o
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The condition equations (19) must be satisfied by the unknowns. The first
two, namely a_s a, ' and bo bo? have already been introduced into the equa-
tions (38). The %third afld folirth conditions are:

3. aobo + albl + a2b2 =0

2, .2, 2_. 2 .
L. af+a” +a, —bo -bl -b2 0

By means of the substitutions made in formula 38 and the Taylor series,
neglecting terms of second and higher order, we obtain:

o O Q Q o ! o
b,"4a +a;"4b, + b, da, +a,db, + b "da+a "db +X =0

where 11 = a.obo + albl +* 52b2

and
o o (o] (4] (o] O
a°4a0+_a14al+a24a2-bodbo—bl Ablmb2 4b2+12-0

2 2 2 2 2 2 =
0. 0 .0 0 .0
ao +al +a2 -bo =b

2

where X2
After suitable transformation, we have
.tAalil'A bf‘ +da, (Rar+f101)+4 bz(l'a'-lb' )+4 ao(ﬂc'-l-.f,"c.i')*- Abo(l'c'-!d' )+

Qer«fr s (L2)

* If the approximation values a , ‘aré chosen

and b,
in such a way that they satisfy ti% cona;tioﬁ equ&tlons 323nd ly; both
A, and A, become zero. At the end of this paragraph a p;-ocedure for -
%btainlag such approximation values is shown. In routine reductions,
where usually the preceding result will be introduced as the approxima-
tion, the condition equations will in general be sufficiently satisfied.

L5



where

- (3)
d' =

e' = 3

0 and we obtain

‘For ) =0 and ), =0, e' = 0 and f*
4a1 = a'ﬁaé - btd b2 + ctd a, = d'dbo

(L)
Abl o b’4a2 * 'a'4b2 +d'da + c'dbo

Substituting 42 with e' = O and f' = O in the observation equations 4O,
we obtain the observation equations: :

Ac +(la'+!.'b‘)Aa +(Qrar-tp )4 b +(!.c'+f.‘d'——l.§ )Aa +(1'c'-1d'-!,'§ )Ab ~Lep.
(45)

Ac2 * L Aa2+ | r Ab2° 27?c A'éo' b’?c Abo-L'=p'




or
Ac, + ada, + pab, +7 Aa +dAb ~L = p

‘ (L6)
4 Co ¥ Edaf Q’fdbfﬂ? c‘dao' Ei’? cdboﬂ L? = p!

where
g = (Lat + L1b1)
B = (Lrai - fb!)
Ve [Uor-b )+ Loy s Faf e -E) - £a]

Before we form normal equations we eliminate the unknosms A ¢y and ci
Thus we obtain the reduced cobservation equations

(a-[ﬁlm (ﬁ-[—-])Ab (v - ]) (é‘-»-—)/.\b- (L-[-]> -0

(L7)
1 in \ L [u]
[])Aa + (EI-[_])A (', "[----—-';I ) ao-= (Lsn C- “ﬁ——'] )Abo-(L‘- HJ )=p'
or
Adayh BAb2‘+ CAa +Ddb = (L) = p with the weight p
(18)

A'Aaz-.a B‘Abz + G4 a + DA b, ~ (L') = p* with the weight p’

The corresponding normal equations ares

Lpiﬂd &y * E’Agd by + .E)A(EIA g * E’“E'A by - [pA(L):I =0
E’Eﬂﬂ b, + E;B(J]‘Aa + [pBI:J]Ab - [pB(L)] =0

[chi'IA ag + [poD] &b, ~ [po(@)] =0

[pmjl Ab - [p@)] =o

[P @)= o

- For these equations E) stands for E)AA + p'A'A] and the other terms
in parentheses are denofed correspondingly.
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After the unknowns Aaz,Abz,Aa and dbo are determine&'we compute 4 e
and 4 ¢, by solving

the equgt:.ons H

4 (@ (8 71 (4] (1J
c1=-'HAE"2 -HAbZ_HAao-EAbo"'H

: (2 (L9 ) (m L1 : '(50)
Aoy == gldey =5 Aby » rda s A, v

and from the equat:.ons (44) we compute A & and Ab

The ﬁ.nal plate constants are obtained from the equations (39).

As a first check these values are introduced in the condition equations
(formula 19), which must be satisfied. In case the condition equations -

are not sufficiently satisfied the solution must be repeated by using the
results as new approximations. ( Compare with p. 38 ) In such a case

it is advisable to compute the and by values with formulas 57 in order to
obtain approximation values whi ijﬁ satisfy the condition squations. The resi-
duals p and p' are computed with formulas 48 and the final residuals: of the
plate measurements v and v' are obtained from (4O) as follows:

p(nb °-v,%) - p*(§ v -5, °)

)
(§ -a1 ) (nb,°-b,%)~(n 2, %-2,°) (& b °-
_ (51)
A P'(-gaoo-alo) -p(n aoo-azo') _
AR
(5 aoo—alo) (7 b:-b2o)'( 7 aoo-a2o) (€l boo'blo)
A check is obtained by
_|I.'PJ =[P =0
and _ _ |
v+ [v'v] = [pep] + Cob'e = p(IL) 3 7 (52)

The finalcheck is made by means of formula 1. After the x and ¥ values
are obtained with x = £+ v and ¥ = ' + v' the corresponding standard
coordinates § and 7} must be in complete agreement with the originally com-

puted §  and 7 In addition the unknowns must satisfy the condition
equationd 19,

* Compare footnote on page 38.
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The mean error of an observed plate coordinate is:

fw] + Cv'y'] ‘ :
m=x | (53)
2n = 6

and the mean errors of the unknowns may be computed from:

m
ma. = 4 e
2 =V aL3
m
mb, = +
2 —\BB-3
(sh)
m
ma = +
°  =ycee3
m
mh = *

'%i

‘3

The valuaes AA-3%, BB-3, etc., have the conventional meaning of the
Qaussian reduction method. See footnote on page 39.

The mean errors of the other four plate constants denoted by m a1?
» M5 and m may be obtained from the formulas Ll and 50, The
ng%recg computafgon is rather complicated. Since the individual mean
errors of the unknowns are not independent, the computation must follow
such lines as given in the computation of the mean error of a function
of the unknowns.# For this purpose, the weight of these functions must
be determined, If the corresponding weights are denoted by P_,, Pbl’
cl’ and Pcz, the mean errors ares

/ 1
M. =+ m
al - ~Pal

Ma *

I+
=

(55)

M1 =

¥

mc2 =

1+
g

® Handbuch der Vermessungskunde Ausgleichsrechnyng by Jordan-Eggert,

Volume I - Stuttgart 1948 - p, 99
‘ 49



All three least asquares solutions described assume that the reference
data - i.e,, the computed standard coordinates, are free of errors. The
standard coordinates e‘ and 77 are, in our case, functions of the right ascen-
sion and declination values which, in turnjare results obtained from ob-
servations and therefore affeeted by uncertainties which may be expressed
in the form of mean errors, If the propagated mean errors of the standard
coordinates are not negligible in relation to the expected mean errors of
the plate measurements, it becomes necessary to make allowance for correc-
tions to the computed standard coordinates. In such a case;, we introduce
§ = §.* Vi and 7 =7, + vy , respectively. &Such a step calls for addi-

tional weighting factors. Unit weight of an individual plate measurément )

may be assumed for both the X and:y measurements; or Py = py = _]%_ =1,

where m is the expected mean error of the X and ¥ measurements,m If the
propagated mean errors of the standard coordinates are denoted by mg and
m n the corresponding weights will be:

p = —--]—C-——.——— = ___Iﬁ_
g (mg -d)2 msze d? _
(56)
yol = _..-_ls_——...-.— = ._-.—'.2!.2—.-—
r) (m7 cd)z m;?zad‘?

The fact that the orientation of the € , 7 system does not necessarily
correspond to the orientation of the X,y system must be considered in
computing the corrections V's and W,y ° .

The Computation of Approximation Values for the Unknowns.

Approximation values for the unknowns are needed in all three methods
of adjustment. In the projection method, approximation values of the
orientation elements, and in the analytical method approximation values
of the plate constants are necessary. The latter, in addition, should
satisfy the existing condition equations (19). The relation between the
orientation elements and the plate constants and their inverse transforma-
tion are given by formulas 15, 16 ,17a and 17b.

In routine reductions, approximation values will generally be avail-
able from the results of the preceding reduction. In the case that none
are available, the following procedure may be followed: With five stars
well distributed over the plate, the plate constants are determined from
formula (38). From the first equation, we obtain a5 bl’ 15 ao' and bo'

and from the second equation, we compute 255 b2 » Co) ao“ and bo“. The ao'

and a_" values and the bo' and b " values, respectively, are combined, by
forming the arithmetic averages:
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o
a = —
° 2
and
bt+bn
o]
b = ——
° 2

It is obvious that these approximations will not satisfy the condition
equations (19). As a next step, therefore, we compute a set of orienta=-
tion elements using formulas (16). These values may be taken directly
as approximation values for the adjustment of the projection method,

If the measuring camera is well adjusted, it normally will be sufficient
to take zero as the approximation values for the coordinates of the
principal point. Approximation values for the plate constants may now
be computed by applying formulas 17a or 17b. The final approximation
plate constants should be checked by the condition equations 19, before
they are introduced in the least squares adjustment of the analytical
method. For the analytical method a set of approximation values, con-
sistent with the condition equations 19 may be dlrectly computed with
the help of the equations

-a2b2 =3 b

. 0’0
Ty
with
. 2 )
a, + -'b a, + -b -b
b, = a2 ( %2 ) *a % 2+a22b 2+2a b,a,b,

2 2

The method of least squares adjustment which should be applied depends on the
particular situation. 1n tne case where all six elements of orientation
are unknown, the analytic method seems to be advantageous, because the
least squares adjustment can be arranged in such a way that only four
normal equations need be reduced. However, there may be the case in which
some orientation elements are known, e.g., from a preceding calibration
procedure; thus calling only for the detzrmination of the remaining un-
known elements, The formulas given in the least squares methods for the
projection method; are then preferred, because some of the unknowns will
be equal to gero. If phototheodolites are used, where the approximation
values are obtained from dial readings, the projection method offers a
decided advantage.
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Iv. THE MATHEMATICAL ANALYSIS OF THE SPATIAL TRIANGULATION PROELEM

The theoretical background of the triangulation problem is explained
in Chapter II. There it is shown that we have to deal with the two fol-
lowing triangulation methods:

1} The rigorous solution in triangulating a point from independent
fixed photoprammetric cameras calls for resection in space,

25 After ®calibration of the photogrammetric base line® the tri-
angulation may be obtained by spatial intersectign. :

The latter method has been described in many reports. A method of
least squares adjustment, suitable for combining two or more photogram-
metric measuring results for the purpose of triangulation by intersection;
is outlined in BRL Report 752#, However, it must be understood that al-
though the described method provides a rigorous least squares solution for
triangulation problems based on theodolite data, in our case it is-only
an approximation method due to the fact that the angular corrections and
not the corrections to the original plate coordinate measurements are
minimized. '

We will, in this report; deal only with the resection problen.
From the spatial coordinates of the measuring stations, denoted by x;.
r.» Bi.» which may be available in any coordinate system, the slant
distance between any two of suchstations can be computed. Assuming the
three camera stations A, B, and C, we have the slant distances a; b,
and ¢ between these stations. (Fig. 10) From the least squares adjust-
ment of the plate orientation; we have for each station a set of unkmowns,
Z P either plate constants or orienta=
tion elements, depending on which
-? method was applied. Introducing
the measured plate coordinates for
an additional recorded target point,
after suitable corrections for non-
perpendicularity of the comparator
axes and corrections for lens dis-
tortion are applied, the standard
coordinates & and 9 for such a tar-
get point are determined with the
formulas 10a, 10b, or 1L and the
X  corresponding direction angles may
be found by solvlng the equations
X or 2.

Figure
10

® BRL Report 752 by H. Schmid. Title: Spatial Triangulation by Least
Squares Adjustment of Conditioned Observations.
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From equation 1 for the resection method:

cot 6 =\h?2ﬂ+.¢ 2

(s8)

ta_n RA = ._“_5—
7
and from equation 2 for the intersection method:
tan z 132 +¢ 2 '
(59}

tan A = _:ji

K

The spatial angles ¢ (Fig. L and 10) ét the apex of the pyramid ABCP
may be computed by the following formulas:

cos ¢, = gin §, sin + cos § cos cosd RA
ab E 6I:zl_ 5br abr

a,
g = s5in & 5 + 6 cos & s 4 Ri
cos o, = sin a, sin e cos a, o ‘. cos 4 ac,. (60)
cos o, = sin " s8in 5 + cos cos §,. cos.d
be ayp [ ahp cf H‘p'bcr

The subscript “r* indicates that the anglers are corrected for refraction,
(See the remark about refraction on page 15. However, either astronomical
- or terrestrial refraction must be considered depending on the spatial po-.
gition of the target point.) A difference in time (converted to sidereal
time) of the orientation exposures at the different stations goes into
the solution as a corresponding correction to the right ascension values.
Our problem is now to determine the coordinates of a point P(xp, yb; zp)

(Fig. 10)}. First it becomes necessary to compute the length of the sides

of the pyramid denoted by 8,5 Sps 8.5 and finally the coordinates of the :
point by the intersection “of thrée spheres. The second part is a familiar
problem for a triangulation procedure using length measuring methods, such

as Doppler,; etc. A possible solution is outlined in BRL Report 7h8.# " Hence
we are left with the problem to determine the lengths of the sides of a
pyramid, given the length of the sides of the base triangle and the three
angles at the apex of the pyramid. This is the basic problem of the re-
section in space., For the three triangular faces of the pyramid, we have

the equations:

* BRL Report 748, H. Schmid. Title: A Rectangular Ellipsoidal Coordinate

System for Trajectory Measurements. pp.lh-l7, PP.23-25.
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2
a = sb + sc - 2 8 sc cos Gbc

2
b =5 "+ s " =283 cosa (61)

2 _ 2 2
c = Ba + 8 - 2 Saab cos cab

The further treatment of these equations results in an equation of the
fourth degree which is not especially suitable for numerical computations.
In view of the fact that an economical computation of the final coordi-
nates by the intersection of three spheres calls for the introduction

of approximation values of the spatial position of P, it seems advisable
to follow the following procedure: .

1) Suitablé approximation values for the target position denoted

° s and zp must be obtained. Such values may be computed by

by xp s Yb ‘
using the intersection method for any two stations. The necessary azimuth
and elevation angles may be computed from the declination and right ascen-
sion values with the sidereal time and the geographie coordinates of the

station by well-known formulas of spherical astronomy.%

sin&€ = sin g sin 5+ cos g cos Hcos t |
‘ (62)
sin A = ©O8 6 sin t

cos &
t = hour angle = sidereal time (8) - Right Ascension (RA)
With the approximation values for the coordinates of point P and the
coordinates of the stations the corresponding approximation values for

the sides of the pyramids (sio) may be computed.

Applying the Taylor series to the formulas (61) and neglecting all
terms of second and higher order, we obtain:

(o]
s =5 +d4s
a a

a
(o] ¥ " .
B, = 8, * 4S8 | .(63)
s =35%+4As
c c c

See references on page 15 and formulas at the end of this chapter.
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s +8° -2 :
o _o o _o_ __. & b o_ o
(sa -8, cos aab)dsa + (sb -8, CoS oab)Asb—- » + 8,8 ©08 O
s °2+s °2-b2
o _© o o _ “a c o 0
(sa -8, coS aac)d s, * (sc -5, cos crac)/.\ 8=~ ; +8 "8 coS O,
| o Oup 8022
(sbo-scocos abc)dsb + (sco-sbocos crbc).& 36=~ b 26 - + sboscocos oy,
or
Aldsa+ BlAsbscl
A2 Asa + B2 Asc = 02
A3 Asb + B3 ASC = 03
and therefore where _
e
D | Cl Bl 0
AS -
AS_ = a D =|C, 0
a '7D—I_—— l As:a| 2 BZ
as, = [P,
b b A, C. 0
D] 1 %
D, o I |DAsb| =|4; Gy By (64)
asg = < 0 C, B
oI 373
A B G}
|DAsc|" 4,0 G,
0. A3 03

A B O
|p| = Ay O B,

0 A3 33
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The final length of the sides of the pyramid are determined by the
The determination of the final ccordinates now follows
the procedure outlined in BRL Report 7L8.#

formulas (63).

During the orientation and the triangulation computations, there is
sometimes a need for direct or jnverse transformaticn of the elements of
orientation between the Right-Ascension-Declination system and the Azimuth=-
Elevation System. ‘

The following formulas may be used for this transformation:

d

§27
¢,

principal distance

Coordinates of the prineipal point

Swing angle of the plate coordinate system .
zenith.distance of the plate perpendicular

Astronomical azimuth of the plate perpendicular
counted clockwise from the south

Right Ascensionrof the plate perpendicular
counted counter=-clockwise

Declination of the plate perpendicular

Standard coordinates of a star in the azimuth-
elevation system

Standard coordinates of a star in the Ri-declination
system

See reference on page 53 .
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THE ELEMENTS OF ORIENTATION

In the Right Ascension- In the Azimuth-Elevation
Declination System (denoted System. @ latitude of station,
by #) @ = sidereal time of exposure
d# = d d = d#
Axit adx A Ax 3 Ax#
Ayx =Ay | Ay = dyx
" v# =90 - 6 - v =90 -€
A# = 360 - RA RA =86 -t (t = hour angle)
Kx=pg+AK . cos # sin A
sindk = —— o
cos &

sin 6 = sin # cos v - cos § sin v cos A

sin v sin A
gin t & c——— e
cos &

V. THE ACCURACY OF THE METHOD#

The accuracy of a measuring method is determined by the propagation
of the systematic instrumental errors and the random errors of the obser-
vations. The bagic requirement of any measuring method is that the sys-
tematic errors should be sufficiently small so that thelr influence on the
result can be neglected or the systematic errors must be known accurately
enough in order to apply corresponding corrections. The systematic errors
of an instrument or measuring method may be analyzed by discussing critically
the assumptions made in designing the instrument and in deriving the mathe-
matical znalysis of the measuring method.

* A detailed study of the accuracy of intersection photogrammetry will

be published in a separate report. See reference note on page 3.
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The following criteria characterize the systematic errors which we
must deal wlth in the solution of our problem:

1) The photograph produced by the camera should be an exact
central projection. To achieve this, the measured plate coordinates must
be corrected for distortion. The determination of this distortion is a
part of the camera calibration. It is not discussed in this report. Modern
measuring lenses are practically distortion free, e, g., the Wild MAviotar
lens", with a field angle of 609, has for all apertures from 1lsh,.2.to 1:16
a maximum distortion of less than L microns. In general, the distortion
curve for a certain lens may be expressed accuracté€ly enough as a function
of the radial distance from the principal point of- the plate and corres-
ponding corrections may be applied directly to the comparator measurements
of the plate coordinates, )

2) The comparator measurements of the plate coordinates should
be affected only by random errors in setting and reading. Hence, it is
assumed that the comparator is adjusted and calibrated. The procedure will
not be discussed in this report. Especially careful attention must be paid
to the perpendicularity of the mechanical axes of the comparator and to
the consistency of the scales. _

3) The formulas for astronomical and terrestrial refraction
must be adequate. The directions of the control points are affected by
lateral and vertical refraction. The lateral refraction is neglected,
The astronomical refraction is, hence, determined as a function of the
elevation angle and the temperature and pressure at the time and location
of exposure. Local variations of the refraction coefficient, if known,
may be taken into account. BResults obtained recently from a wide variety
of sources in extensive research on precision trigonometric leveling nets
indicate that the refraction anomolies are less than assumed heretofore,

L) The photographic emulsion must represent a plane with suf-
ficlent accuracy and no irregular shifts of emulsion must take place.

5) It ls assumed that the control points are essentially free
of errors. The reduction coefficients of the RA and & values for date
and time of exposure are taken from the American Ephemeris.x

6} The time interval between the orientation exposures of the
different stations must be known with sufficlent accuracy. (+ 0.01 sec =
+ 0,15 sec of arc.)

7) The target points must be recorded simultaneously.

Compare remark on page 50 .
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8) The relative spatial situation of the camera stations must
be known with sufficient accuracy from a local geodetic net.

9) The cameras must not change their interior or exterior
orientation during the time interval between the. individual orientation
exposure and the final target point registration.

The. triangulation results of the outlined photogrammetric method
will be the less affected by systematic errors the better the above-
mentioned conditiong are satisfied. If all steps in the arrangement of
a photogrammetric measurement are done with the necessary care the results
will be affected only by the random errors of the plate measurements.

The accuracy of the plate coordinate measurements depends on the image
quality. Star images and additional recorded target points are in general
measurable within a few microns. The influence of such a random error

(m) on the corresponding ray may be expressed with sufficient accuracy by
the relation of m to the principal distance (d). Therefore, assuming a
mean error of a reading of + 3 |k and d~ 300 mn we have to expect a rela-
tive angular deviation

pEAt 2N

. 3
4= 300,000 - .

The orientation of the plate will be obtained more accurately, when
more stars are carried in the least squares adjustment. However, it should
be realized that even with an accurately determined plate orientation,
the single spatial ray to any target point will be affected by the entire
amount of the error of the target image. Hence, it is. sufficient to carry
in the least squares adjustment of the orientation so many stars as are
necesgary to reduce the mean error of the plate orientation to an insig=-

nificant fraction of the angular error of the target images.

In general, it may be assumed that with a mean error of + 2-3 pu
and a focal length of 300 mm, the individual direction in space w111 be
obtained from a 10-star orientation adjustment with an angular accuracy
of 1 to 2 seconds of arc. Hence, the accuracy of the individual photo-
grammetric camera is 1:100+000 to 12200 000. The propagation of this
error during the triangulation procedure depends on the geometry of the
particular configuration.

VI. NUMEEICAL EXAMFLES

The first three examples demonstrate the validity of the geometry
of the solution expressed by the formulas 102, 10b, and 1h in connection
with 19. For each of the three solutions, a rigorous three~star computa-
tion wag computed. The least squares adjustment of an over-determined
solution is shown by three further examples. For all computations, the
coordinate system was oriented with respect to the horizon and %enith

of the station.
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1. Example based on the formula 10a of the projection method.
We use the results of a former.calibration as the following approximations:

(length unit is 1 decimeter = 0.l meter)

Ax = +,00192 sin x4 = +.00156110 A = -.72967230
Ay, = -.00188 | cos k& = +.99999878 _ B = =.630343LY4
d, = +3.01113 sin v, = +.340999L5 G = -.265038%
cos v = +.940063L9 A' = -.5927039L
K, = +00 51 22 ' . B' = +,77631620
v, = 19° 56! 160 sin Ay = -.62920358 C' = -,21455807
& = 218° 59t 29n cos A = =,77724053 _ : .
D = +,34099903
E = +,00053233
F = -,94006349

The standard coordinates of the ﬁhreg stars computed from astronomical
data with formula (2) are:

‘sc Te
3 +,16900891 ' +,04650153
- 10 +,15713779 +,3833288]
18 +. 48127491 . +.3961327,
M ate
coordinates
L £ L-pAx o 2 -8y s t

10
18

10
18

EH

+0.21350 =0,57731 +0.21158 -0.57543 -0.51155839 -0.1407496L
=0.56145 +0,00056 «0.56337 +0.,002hY -0 hLN72948 ~1,08486171
~0,01032 +0.63807 =0,0122L +0.63995 =1.2573040L4 -1.03486525

. t
u c‘of % ) A¢=¢; -% Af?‘?vc-vo‘;

o u

«3,02676182° +.16901178 +,04650172 =-.00000287 -.00000019
-2,83012124 +,15714149 +.38332694 -.00000370 +,00000187
-2,61243757 +.48127621 +.3961301L4 -.00000130 +.00000260

+L= -.é_g.. +L} =+.AJ a at
o o

3 +.00006172 =-,00000112 <17.29801637 +3.7670319k

- 10 +.00000965 +.00001190 - 2.17656068 +4.8903492)

18 +.00000328 +.00000540 = 2.71937570 +1.820L0370




i B a b
3 -3.76092138 -0,6215166h4 +4.47911206 +1,51750311 +5,.59365660
10 +0.L08l&LL3 -0.91214623 +0,58111286 +1,74513312 +0,72198824
18 +0.40052769 +0.38794159 +0.60935L35 +0.61727737 +0.86367L78
b1 c c!
3 -1.1896217k -0.75h2242k +0,33396677
10 -1.62664740 -0.10813877 =0.32782533
28 -0,57884482 +0,18107826 <0.12553003
[a + a'] /on = -1.9526946 pd
[6 + ') /2n = -0.68299176
[a + 2a'] /2n « +1.5915821L
To + b'] /2n = +0.63070094
[c + ¢] /2n = -0.133L4L556
IL + L1] /2n = +0,0000151)
A B c D. E L
(av) (ax) (aax) (Ady) (ad)
3. «15.34532173 -3.07792962 +2,88752992 +4,96295566 =0,62077868 -0,00004658
10 = 0.2238660L4 +1.09115619 -1.01046928 +0.0912873D +0.02530679 +0,00000549
18 = 0,76668106 +1,083519Lk5 =0.98222779 +0,2329738k +0.31452382 +0,00001186
3 + 5.71972658 +0,06147512 -0,07407903 -1.82032268 +0,L6741233 +0.00001626
10 + 6.,84304388 ~0.22915L47 +0.15355098 -2,2573483L -0,19U37977 +0,0000032L
18 + 3.7730983Lk +1,07093335 =0,97430L77 <«1.20954576 +0,00791553 +0.0000097k
The normal eguations ares:#
- awv) (ax) (AAx) @ay)
+329.8956076  +18.9810773  -L6,3799138  -106.7798210
»0+#+13,0414762 ~12,1376130 - 15,8135538
0ss+11,30198L0  + 1L.9763025
ovot 34,5657362
(ad) (L)
+10,6524313 +,000856387418 = O
- 2,1992076  -.000161894590 = 0O
. = 3.4269437 ~.000276603469 = ©
ovet 0.7412523  +,000039832489 = O

ol Weighting factors are omitted because this is a unique solution.
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Reduction of the normal
equations gives:

AA = #,00000793 = +1.6

The final orientation

elements are: (Length unit 1 meter)
A = 218° 59t 30,6 sina= +,00155480

zia +.00000£Eh = +1,20 v = 192 5?' 17.2% cosX = +.99999879
= «,00000846 = =1,3" M= +0 r 20,7
Ad = -,00002166 - d = 30111083 i " :,gtcl)ggﬁi
AAx = -,000001L) Ax = +,00019186 €os v= T
AAy = +,00002157 Ay = -,0001858) sin A= -,62920961
cos A= =,77723565
The check is obtained with formula 10%
’ Ae = L7 =
2-ax L1 -ay & S < » 7”7
in 8th in 8th
. decimal place decimal place
3 +0.0211581L -0.0575L4516 +.1690089L . =3 +,04650148 +5
10 -0.05633686 +0,00024184 +,15713778 +1 +.38332876 +5
18 -0.00122386 +0,0639928L +.L8127491 0 +,39613266 +8
2, Example based on the faormula 10° of the projection method.
We use the résults of a former calibration as the follow1ng approximations:
(length unit is 1 decimeter = 0.1 meter)
Ax_ = +,00192 sin 4 = +,79482675 A = +,72967232
By, = -.00188 os k. = +.60633652 B = *-6303U3Lk
Vo = = COS Ky = *» C = +,26503859
qo = +3903113 Sin'ﬁ')o = +92]J;55807 Al= +.59270295
= €00 cos w. = +,97671123 Bl= -, 77631621
K, = 52° 38 20.02n o Cla +.21453807
®, = 129 23 22,57 sin a = +,27135819
. = ~-,3409990
a, = 159 Wit L2.37" cos a_ = +.98247843 b - _.ggO§§§3ﬁ
- i F = +o9h0063h9

The standard coordinates of the
data with formula (2)- are:

three stars computed from astronomical

<c Ze
3 +,16900891  +.04650153
10 +.15713779  +.38332881
18 +.L8127WS1  +.3961327h
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10
18

10
18

10
18

Measured plate

coordinates
L : ,P.f L-px L-ay s t
+0.21350 -0,57731 +0,21158 ~-0,57543 +0.51155839 +0,1407)496k
=0,56145 +0,00056 =0.56337 +0,002lls +0.44472948 +1.08486171
=0,01032 +0,.63807 =0,01224 +0.63995 +1.2573040L +1.03486525
5 t ‘ _

b c:o=' u 702 u ) Ad%’% A-"=7ic-'??o
+3,02676182  +,16901178 +.04650172 =.00000287 -,00000019
+2,8301212,  +,1571414h9  +.38332694  -.00000370  +.,00000187
+2.61243757 +.48127621  +.3961301L -,00000130 +.ooooq_2__6_0
#L: —9——% ‘&’Ltﬁ 47?

l+¢0 do 70
- ,00000279 =,00002,18
=,00000361 +,0000310L
-.00000106  +.,0000136k

a at B pe . a
'¢00h913 62 +128 6563267h = |l7003235 +1.a 0365,4-5308 "020250197
-.04493296 + 19.0340554  +,15268999 + 2,379551L9  -.21738615
+,06170817 + 6,5256801 +.,12882238 - 0.97932866 -.19598763

al b bl c ¢!
+3263326183  -.25209086 -25.58231098  +.03409870  +7,18181425
+ }5525970  =.2700881) - 4.24349876 +.0LO#¥356  -0.85521071
+1,5582691L  -.2777851k - 1.4612491%  -.05824050  =0.31689090

[+ at] /26 = +25,68911405

[+ pid /2n = +2.47952599

-+ at] /2n = +6,35470838

b+ v /2n = =5.34797050

[c + ¢'] /2n = +1.00433740

[L + L] /2n = +.00000217
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Awp' = 10Aw

A B C D
Bew) (ax) Bax) (ady)

3 =2.569L0578 =2.6495583L <6,55721035 +5,09507964
10 -2,573L0T70 =2,32683600 =6.57209653 +5.07788236
18 «2,5627h358 -2.35070361 -6.55069601 +5.07018536
3 +10.2874123L +10.88592709 +26.27855345 ~20.,2343L048
10 - ,66550886 <0.09997450 -1,8021113L +1.10LL71T7Y
18 -1.9L63L639 -3.L5885u65 -L.796L392L +3.88672136

The normal equations are:s

E L
ad) _

-0,97023870 +,00000496
-0,9638838L +.00000578
-1,06257790 +,00000323
+6.17747685 +.,00002635
~1,85954811 -.00002887
«1,32122830 =,00001147

o (bw) (AxC) (anx) . (bay)
+129.7380661 +137,5028570 +331,.2778L73 +255.4947177
«..+118,04372116 +350.9014152 =271.0571917
.o +815.91688L7 -652,3570867
‘ o« 0+503.2065008

(ad)
+71,0162Lk61 +,000276370838
+79,.3147160 +,000295219811
+191 .6808813 +.000707812766

=147 .4116336 -.000538643211
ooot 46.3642906 +.000217800398

[ I R
CQOOO0

#

.Reduction of the normal The final orientation
equations gives: elements are:

da = +,00000295 = +0,61% a = 1690 Lht 42,980
Aw = +,00000577 = +1,19% w = 129 231 23,76"
A4 = «,00000038 = -0,08M K = 52° 387 19,94
Ad = -,00002163 d = .30111084
AAX = ~,00000187 Ax = +,00019181
AAy =

+,00002140 by = -.00018586

The check is obtained with formula 10P.

6l

Wedighting factors are omitted because this is a unique solution,

(Length unit 1 meter)

or transformed with
formula (11)

A = 218° 59t 30,6
v = 19° g6t 17,2

() =+ 0° 5t 22,7n

sin w = +,21456372
cos @ = +,97670999
sin ¢ = +,27136103
Co8 G = +.962LL??63

sin & = +.79482651
cos K = +.60683673



A£= Aqﬁ

2-ax Li-4y & é‘_c-d in 2 7,-7 in
| ' 8th dec. place 8th dec. place
3 +0.02115819 =0,0575L451L +,16900893 =2 +,04650155 =2
10 -0.05633681 +0,00024186 +.15713778 +1 +.38332879 +2
18 =0,00122381 +0,06399286 +.,8127489 +2 +, 39613276 -2

3. Example based on the formulas (1L) and (19) of the analytical nethod.
We use the results of a former calibration as the following approximations:
(length unit is 1 meter) .

a1° = +2,22842997
b.° = +2,57822963

© . +0.28198337 And the auxiliaries are:

a' = +.06119184
b! = =1.01063948
b,° = +2,09437269 ¢! = +.2670076)
d' = +.23161468

a,® = =2,74202238

© ai+0,2291347h

© = +0.00214801

o
1]

o
(o]
i

=1.20454409

These approximations satisfy the condition equations (19).
o, 0 o, o o, ©
1) a b, + & b," 4 a, b, = +.000000016

2 2 . 2 2 2 ‘
2) a,*a” +a, ~-b~ -b" -b, | = +,000000023
The measured plate coordinates 1 and 1' are corrected for distortion and
comparator constants,

) T (1) (2) (3)
(meters) aIthb195f+cl° a2gﬂ+b2°£'+c2 a091+bocﬁ'+1

3 +,021350 -,057731 +.18671653 +.0L968233 +1,06958539
10 -,056145 +.000056 +,15701255 +,38320287 +0,99981195
18 -.001032 +,063807 + 4119273 +,36960015 -+0.923139LL
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Computed from formula (2)

(L) (5)
3 2 <. x (3) 7. % (3)
(meters) , .
3 . +,16900891 +,04650153  +,180769L6 .  +.0L973736
10 +.15713779 +.38332881 +.1571082) +.38325673
18 +,48127491 +.39613274 +,1h1428385 +.36568576
L=(1)-(4)  -L'=(2)-(5) 1 11
(meters) :
3 -.00005288 =,00005503 +.00099281 -000268458
10  ~=.00009569 ~.00005386 =.02152200 +.000021L7
18 -.00009112 -,00008561 =.00040881 +.0252760)
a p Y 6
3 +.05965167  +.0180LLL9  ,-.01127907  -.0106025L
10 =-,00349221  -.05673893 "=.00615567  +.01301016
18  -.06L454902 +,00286149 +,01499976 -.01343273
Lal /3 = -.00279652
(pl /3 = -.0119L432
[vy1l/3 = ~-.00081166
[6]/3 = -.0036750L
L1/3 = -.00007990
[L£1/3 = -.01194233
147/3 = +.00204400
{€r)/3 = -.00697933
[@'71/3 = +.0075376L
[-L1/3 = -.00006L83
The observation equations ares#
I 1 1
Aa2 lOOA Ab ~'-6Ab Aao =——100 Aa ﬂb iﬁaAb
A B C D ' L
(43,) (ab,) (da) (ab )
3 +,06,2L4819  +.02.998881  -.01,0L46741 -,00.692750  +.00002702
10 -.00.069569  -.0L4.L479461 -.00.534401 +,01.668520 -,00001579
18 «,06,175250 +.,01.480581 +.01.581142 -.00,975769  -.00001122
3 +.03.329233% -.05.977500 -,00,79721h4 +.01,022222  +.00000980
10 -.04.L20267 -.00,198800 +,01.45k267 +.00.751617  +.00001097
18 +.01.091033 +.06.176300 =-,00.657052 =-.01,773840  -.00002078

# The decimal point in the coefficient A...D was moved for the convenience

of the numerical computations.
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The normal equations ares *

Aal, Abt,
+108 . 9492225 -2,3870512
00e+105,1676876

Aat
0
-26,0627025
" +2,0138737
eeetT.0634212 -

Ab’
o

-0,2710087

-28.2117716
-0,.2657310

+8.9723610

+.000200584298
~.000053955515
- .000015791011
+.000021007502

* Weighting factors can be neglected becauss this is a unique solution.

The solution of the

normsal. equations

iss

= =,00403404

-,00115042

-:00001111

The condition eguations reduce to:

+,00000161
+.00001853

Aa'o = -,0000403L04 Aao
Ap! = =.0000042328 ab_
or
Aal 5 = -,0000115042 Aaz
Ab'2 = «»,0000001111 Ab2
And with the formulas (L)) and (50):
ﬂa.l = -,00106071 .
Abl = +,00011L62
A'cl = +,00007172
A°2 = +.00007608
The plate constants are'npw:,
a,l = +2 ,22736926
bl = +2,5783Lh25
e = +0,28205509
a, = -2.74317280 1)
b, = +2,09436156 2)
e, = +0,22921082
2, = =0,00188603
b = =1,20496737
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If the solution is repeated to eliminate the influence of second order
- terms; we obtain the following new L and L' terms:

=L =], 1

3. +,0000007% + 00000000
10 +,00000089 + ,00000046
18 +,00000132 + 00000083

and the new absolute terms in the normal equaﬁions are:

[a()] = -.00000487717k

- [B(L)] = +.000004016334

fc(y] = + 000001078512

[p(w)] = -.000001090959
The corresponding reduction givess

Aal = +,00000127‘
ﬁbl == ,00000399
Acl = =_,00000098
Aa, +,00000856

Ab, = -,00000312
= =,00000035
= +,00001732
= +,00000313

And the final plate constants are:

a; = +2,22737161 a, = =2,74316815 : a, = =0,00187329
by = +2.5783L483 | b, = +2,09436279 b, = =1.,20496548
ey = +0,28205510 e, = +0,22921080

The condition equations reduce now to:

1) +.000000025
2) -.000000069
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The final check with equations (1L) gives:

L L & ags 7
3 +.021350 =-,057731 +.16900890 +1 +,014650153
10 =.056145 +.000056 +.15713779 0 +,38332882
18 -,001032 +.063807  +.L8127492 -1 +,39613273

a7 #
0

-1
+]1

The differences & & and A are in units of the 8th decimal
and ghow the difference against the origlnally computed standard

coordinates,

The computations of the orientation elements with formula (16) gives:

tan & = +,00155L6k

l=+0° 5t 20,670

sin & = +,0015546k
cos & = +,99999879

'} = -.13661481
&7 g = =-11059631

cot (A+x) = +1,23133735
(A+&) = 219° v 51,31

“sin (A+4) = -,63041732
cos {A+k) = -°?76256h0

30,640

sin A = -.62920976
cos A = ~.77723553%

ht = +2 .93250868

A = 218° g9

xc' = =,0001921L
yc' = +,05311185

d' = +.8830101L
sin v = +,34100496
v =19° 56 17.210]
viz = 9° 581 8.60w
tan v/2 = +,17577016
[a = .3017108L]
yo! = +,05292630
yo1 - y-c‘_l = -,00018555

[Ax = +.00019185
Ay = -000018585
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4. Example. Least squares solution based on formula 10® of the
projection system,

We use the results of a former calibration as the following approxi-

mations, .
(length undt is 1 decimetsr = 0.1 meter)
Ax, = -.00050 sin K = -.00058178 A = ~.72953695
Ay, = -.00150 cosk = +,99999983 B = -.63070287
C = -,26L55573
d = 3.01110 sin A = -.63112719
cos A = -,77567936  A' = -.59283365
L = -Q0 2 Bt = +.77602)439
A, = 219° 8¢ sin v, = +.34106326  C' = -,21525430
v, = 19% 56t 30m cos v = +.9400LO35
D = +.34106320
E = -,000198}2
F = -.94004035

The standard coordinates of the four
data with formula (2) are:

stars computed from astronomical

gc yc
3 +,16900891 +,04650153
10 +,15713779 +,38332881
17  +.54637688  +.15537271
18 +.h8127491 +,3961327L
Measured plate
coordinates
2 L L-ax L-oy, s t
3 +0,21350 =0,57731 +0.,21400 -0.57581 =0,5114995 =0.1h0723L4
10 -0.561h5 +0.00056 =0.56095 +0,00206 -0,4443139 -1,08L68L3
17 +0.60320 +0.40158 +0.60370 +0.40308 =1,4714209 =-0,.4186257
18 -0,01032 +0.63807 =0.00982 +0,63957 ~1,2570002 -1.034931L
aé Ay
u db 70 ’dguﬁ; T~
3 =3,0269856 +,16897983 +.0L6L4B9SG2  +.00002908 +,00001191
10 -2.8297416 +.15701571 +.38331567 +.00012208 +.,00001314
17 «2.6931995 +.5463L679  +,15543806  +,00003009 -,00006535
18 +,48116317 +.39615815  +.0001117h -.00002641

"2 [ 3 612 h19 8
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18

+L'=—.u.§. +L?s=+-é=.g
. &
3 - 00062552 +,00007048
10  ~,00031848  +.00008368
17 =,00019358 -,00011961
18 -,00028206 -,00005281
a at B B! a
3 -17.26807537 +3.77905943 ~3.77762362 -0.6189L165 +L.48162361
10 =2,17259130 +4.90743739 +0,L40617633 -0,90991300 +0,.581433L3
17  =6.82466631 +1,30365721 -0.7136068L +0.47757286 +1.5063LL36
18 =2.71499269 +1.82481662 +0,39818,03 +0.38919941 +0.60932290
al b bt c et
3 +1.5171737h +5.59373743 =1,19001006 -0.75117479 +0.33539071
10  +1.74673907 +0.72195129 -1.62850750 =0,10782366 =0.32652118
17  +0,527h41892 +2.1878153h4 -0,L43892801 +0,59488058 +0.04698605
18  +0.617h2k72 +0,863k8139 -0.57911576 +0.181L1981 =~0.12502015
P pt La*a’) /2n = -2,14566938
30,0195  0.2690 [8+6'] /2n = -0.5L361906
iﬁ; gjﬁg g:ggg [a*a’] /2n = +1.4hBL3512
18 0.895h  1.3955 [b+bf] /2n = +0.69130302
{e+e?] /2n = -0,01898283
i+l /2n = -0,0001797L
A B c D E
(av) Y (s8x) (aay) (aa)
3 -15.12240599 -3,23400456 +3.03318869 +4.902h3hL1 -0.73219196 +.000LL5T78
10 -0,02692192 +0,.94979539 -0,86700169 +0,03064827 -0,08884083 +.,0001387L
17  -4.67899693 -0.16998778 +0.0579092l +1.L49651232 +0.61386341 +.0000138k
18 -0,56932331 +0.94180309 -0.83911222 +0,17217837 +0.2004026l +.00010232
3 +5.92472881 -0,07532259 +0.06873862 -1.88131308 +0.3543735h -.00025022
10 +7.05310677 =0,36629394 +0.29830395 -2.31981052 -0,30753835 -,000253L2
17  +3.44932659 +1,02119192 -0,92101620 -1,13023103 +0.06596888 =.00006013
+3.97048600 +0,93281847 -0.83101040 -1.27041878 -0.10603732 ~.00012693
The normal equations ares
(av) (ax) (aax) (ady) (Ad)
+73.2853591 +12,6334215 -11,3514043 -23.712440k +0.210165k4 -,002065430595 = O
+5,5063456  =}4,9585661  =h,0841927 +0,1197973 -.000062L63830 =
+4. 4673729 - +3.6700301 -0,11480h1 +.000056030968 = 0
+7.674508L +0.0632622 +.000669398U48 = ©
+0.184291) -.000000438911 = O

+.000000094847 = O
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17
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Reduction of the normal equations The final orientation elements are:

givess (Length unit 1 meper)
AA = -.00007911 = =16.3M | A =219° 7v L3770
Av = +,00000627 = +1,3% | v = 19° g6 31,3
AIC = - 00014390 = -29,7% K= -0° 2t 297w
Ad = +,00010869 d = .30112087
AAX = -,00005625 Ax = =,000C5562
AAY = «,000118LL Ay = -,0001618}

[ pe]= +.000000008410

The computation of the residuals with formulas (24) and (26):

o o v v!
3 "11"0)4]43 +55-218 +21911 "1901‘9
10 +37.377 +58.0l1 +46,55  +1L .29
17 -10L4,804 +7.,375 «16.46 =36.57

18 +11.81L -50,.596 -31.59 +43.03 The mean error of an ob;erved
1l or 1' value is:
- 832
[ppp]= 8L1O. fvv] = 8386. m=fgg = + 6.51

The final check is cbtained with formuls (20) ofter the residuals-are applied.

A¢= . Ay =

XL ¥ 4+t < ﬁc- £. 4 "7c?’7

8th dec, 8th dec.
+,02135211 =-,05773295 +.16900889 +2 +.0L650156. -3
-.0561403L +.00005743 +.15713778 +1 +,38332882 -1
+.06031835 +.04015L3L  +.5L63768L + +.15537275 -
=,00103616 +.06381130 +.481274L90 +1 +,39613276 =2

A certain systematic deviation in the individual parameter of the solution
must be expected due to the very unfavorable weight p of point 3. This
small number is caused by the procedure which leads to the elimination of
AA, In the next example this reduction step was not carried out and
consequently the normal equation system has six unknowns, but more nearly
even weights, A comparison of the results of these least squares adjust-
ments at the end of this paragraph shows the influence on the numerical
values,
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5. Example. Least squares adjustment based on the formula 10° of
the projection method. '

We use the results of a former calibration as the following approxi-
mations:
(length unit is 1 decimeter = 0.1 meter)

Ax = =.,00050 sink = +,79465241 A = +,72953695
Ay = -.00150 cos K = +.60706L45 B = +,63070288
C = +,26L455573

d, = 3.01110 sin @ = +.21525430 ‘
) cos @ = +.97655803 At= +,59283366
K, = 52° 37% 20,840 B's -,77602439
@ = 12° 251 U9.6lt sina = +.27090631 C'= +,21525430

@ = 159 L3t 5,54 cos a_ = +,96260572

' D = -.34106320
E = +,00019842
F = +.94004035

The standard coordinates of the
data with formula (2) are?

four stars computed from astronomical

10
17
18

10
17
18

Qc vc

3 +,16900891  +,04650153

10 +,156713779 +,.38332881

17 +.5L637688  +.15537271

18 +,.48127491  +.39613274
Measured plate

coordinates :

J A L b~4xo Ly s t
+0,21350 <=0,57731 +0,21h00 =0.57581 +0,5114995 +0,140723L
«0,66146  +0.,00056 -0,56095 +0,00206 +0.LhL41i3139  +1.08L46843
+0,60320 +0,40158 +0.60370 +0.40308  +1.4714209 +0,L186257
~0,01032 +0.63807 =0.00982 +0.63957 +1.2570002 +1.034931L

v '50 7 +L=§:-£b =% %
+3,0269856  +,16897983  +,046l48962  +,00002908 +,00001191 -
+2,8297416  +,15701571  +.38331567 +.00012208 +.,0000131L
+2.6931995  +,5u63L67T9  +.15543806  +.00003009  -.00006535
+2,6124198  +,48116317 +.39615815  +.0001117h  -.00002541
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Y

-.17562028
+.15569375
-.11092166
+,15774386

br

-.20108770
-.25570127
-.23980691
-.27864918

(aay)

-10.2379357
+,2853012
© =.0603955

[] .o .+h L 28’46971

(Length unit 1 meter)

Or transformed
with formula (11)

A = 219°

a at B g
3  +1,02855,418 +.00785581 -,00503228 +1.01046388
10 +1,02465393  +,06018658 . -.04590669  +1.1L657879
17  +1,29849481 +.08492309 +,03963830 +1.13387202
18  +1.23151800 +,19061671 f.o7616699 +1.244,02843
v! a al b
3 +.10L58865  -.2083L898  +.25637175  -.,26005071
10  +.14287064 =.22287255 +.,27h265L8 -,27673524
17  -.26092040 =.2341)324  +.2881536L4  -.3L4006977
18 -,187268L3 -.2413882L4  +.2970820L4  -.34207519
¢ ¢! P p'
3 +.03492183 +,056674L26 9.0061 9.41%5
10 +,04133050 -.05126896 7.9205 7.1121
17  -.,09246708 +.02567068  5,8661 7.1154
18 -.07187094 - -.06015509 5.7050 6.0276
The normal equations are:
(Aa) (Aw) - (ax) (aax)
+36.,683) 722 +3.0979448  =,L037976 -6.5663873
00o*37.5031466 -1.3546933  +9.1603103
.00+l ,6279077 -.3492429
o e+3 07152807
(aq)
=.6217198  -,002212233932 =0
=.1919527 +,000487421823 =0
+,0152028 ~.000360623451 = 0
+.,0692633 +,000590375590 = 0O
+,1954602 +,000506051392 = 0
.o o#.1795880 +,000014184051 = 0O
o o*.000000239045 = 0
Reduction of normal The final orientation
equations gives: elements are:
Ag = +,00001945 = +},01% a = 15° L3t 9.5ow
Aw = +,00000132 = +0.27" @ =12° 25" L49.88%
AKX = +,00021846 = +45,06M K= 52° 38t 5,90
Ad = +,00011235 d = .30112124
AA x= -,00011082 Ax = =,00006108
Aay= -,00009036 Ay = =,0001590)

[pﬁvaa +,000000008325
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7! 53.65%
56t 33,28"

(€)= ~0° 27 37,53



The computation of the residuals with formulas {24) and (26):

P P v v
3 +3,061 +8.55h +1} .82 =23.6h
10 =13,852 +7,709 +42,71 +15,66
17  +17.271 +4,119 -17,78 =38.54
18 -3.6h2  -24.652 =13 '?2 +b1..6h The mean error of an observed
1l or 1' value is:

[pae]= 8311. © Lw = 8312.

mn./g%_ =+ 6.5

The final check is obta:.ned with ,formula, (32) after the residuals are
applied

| oz ay =
x: by y=Liavt ] fc-a 7 A

3 +,02135148 -.05773336 +.16900893  Othpdec.  qiesosy  Bthydec.
10 =.05614073 +,00005757 +.15713778 +1 +.38332882. =1
17  +,06031822 +.04015415 +.5h637688 0 +,15537273 -2

18 -.00103639 +.06381116 +.48127h94 -3 +,39613273 +1
6. Example: Least squares adjustment with.four stars based on

analytical method formulas (14) and (19).

We use the results of a former calibration as the following approxi-

mations:
(Length unit is one meter)

& = +2,22842997

blo = +2,57822963 And the auxiliaries are :
c,” = +0.28198337 a! = +0.0611918k
a,® = -2.74202238 b' = -1,01063948

b2 = +2'09h3??’69 d' = +0.23161468
c,” = +0,2291347h

a ® = +0.00214801

b % = -1,20454409
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These satisfy the condition equations (19)

1)
2)

+.000000016
+.000000023

The measured plate coordinates 1 and 1' are corrected for distortion and
comparator constants.

®

©,

®

a19£+b1?£'+q; a2tﬂ+b2CE‘+c2° a09&+bo°l'+l

(meters) _ 7
3 +.021350 -.057731 +.18071658 +.04968233
10 -.056145 +,000056 +,15701255 +.38320287
17 +.060320  +,040158  +,51993881 +,14784177
18  -.001032 +,063807 +,4L019273 +.36560015
Computed from formula (2) C:)
< 7e $xQ)
3 +.16900891 +.04650153 +.18076946
10 +.15713779 +.38332881 +.15710824
17 +.54637688 +,15537271  +.52001829
18 - +.L8127451 +,39613274 +.L1h28385
Q-0 OO 17
3 -.00005288 -.00005503  +.00099281
10 - 00009569 -.00005386 -,02152200
17 -.00007948 -.00003537 . +.00937208
18 -.00009112 -.00008561 -,00040881
-3 g Y b
3 +.05965167 +.0180LLLS  -.01127907 . -.01060254
10 =-,00349221 -,05673893 -,00615567 +,01301016
17 -.03689417  +.06341911  ~.00755037  ~.02518991
18 -.06454902  +,00286149  +.01499976  -.01343273
Cal /4 = -.01132093
Ll /b = +.0068965Y4
Lr1/4 = —-,00249634
EL1 /L = -.00007979
[L] /4 = +.00612325
LL] /4 = +,01157250
{81 /4 = -.00289148
[£'%9] /4 = +.00721310 '
[-L'] /4 = -.00005747

17

+1.06958539
+0.99981195
*0.95175749
+0,9231394L

75@)
+,04,973736
+.,38325673°

+, 1478771,
+,36568576

lfy

+.00002147
+,00623946
+.02527604

P p'

.0787
.0792
.0648

.0823
0711
0786



The observation equations ares#

1 | 1 o1
Aa) = opAa, Aby = qigAb,  Bagls ghgha,  Ab Te psb
A B c D <L
(aa,) (Abz) (ra ) (b}

3 +,07.097260  +,01,114795  -.00,878273 -.00,154878  +.00002691
10 +,00.782872  -.06.363547  ~.00,365933  +.02,206392  -,00001590
17  -,02,557324  +.05.652257  =.00.505403  -.01.613615  +.00000031
18 =.05.323809 -.00,403505  +.01.749610 -,00,L37897 -.00001133

3 +,01,522675  ~.06.930350  -.00,388429  +,00.989768  +.000002Lk
10 -,06,226825  -,01.151650  +,01.863052  +.00.719163  +.00000361
17  +,05.419675  +,02.858550 -.01,226356  +,00,09736L +,00002210
18 -,00.716525  +.05.223450  -.00.248267  -.01.806294  -.0000281L

®

in the numerical computatlons.

The deeimal point in thé coefficients A...D was moved for convenience

The normal equations are:

(& a'y) (av',) (aa' ) (abv' )
+11.6273018 +0,0301952 =2,4368121 +0.4123548 +.000027579431 = O
- +12,0045505 -0.4232678 =2,9733715. +.000003680403 = O
+0.674/305 +0,0342156 -.000003973645 =0
+0,9178321. +,000001339620 = O
+.000000000181 = O
The solution of the normal equation gives:
Aa ' = -,0000121886 - Aa_ = -.00121886
Ab ) = =,00000628lks Ab = ~.000628L)
or ‘ ‘
Aa,? = -.0000046976 ba, - ,0004,6976
Ab,! = =.0000022811 Ab, = -,00022811
pgo ;= +.0000000000835 |

And with.the formulas (Ll) and (50):
Aa, = ~-.00043917

Abl = +.00001070

Acl = +,00006731

acy = + .00006198
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The plate constants are nows:

+2,22799080
= +2,57824033
= +0,28205068
= -2,7h24921)
= +2,09411458
= +0,22919672 2)  +.,00000146
= +0,00092915

= =1,20517253

The condition eguations reduce to:

1) +.00000090

oc.om N n?'n? PP PP‘FP

If the solution is repeated to eliminate the influence of second order
terms, we obtain the following new L and L' terms:

=L Lt

3 +,00000269  +,.00000962
10 -.00001L4L45  +.00000827
17  +.00001571  +.00000445
18 -.00000399 =-.00002331

and the new absolute terms in the normal equations ares

TA(L)] = -.000000005030
[B(L)] = -.000000022879
[c(L)] = +.000000001219
[D(L)] = +.00000000632L
fL(z)] = +.000000000083

The corresponding reduction gives:

Aay = +.00000033
Ab, = -.00000019
ac, = +,00000001
aa, = +.00000016 .
ab, = +.,00000007
Ac, = -.00000001
aa_ = +,00000048

[o]
&b = -,00000055

PR = +.000000000083L
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And the final plate constants are:

a, = +2,22799078 : a, = =2,74249198 a, = +0.00092963
by = +2,5782L013 b, = +2 ,0941h165 b, = =1,20517308
¢, = +0.28205069 = +0,22919671

1 2
The condition equations reduce now to:

1) +,00000003 ‘
2) =.00000010

The computation of the residuals gives:

P P’ v v!
3 42,709 49,600 41,68 =2,32
10 =1L.457 +8.25L +4,50 +1.60
17 "'159726 "'h ohh-h -105)4 "3.80
18 "3 ¢978 -22 0309 ‘-h 018 "‘}-l .21

[prAl= 834 [w]= 831

Mean error of an observed 1 or 1! value is:

‘m = J—?%T = + 6,51

The final check with equation (1L) gives:

A~ 4y =

Lrv Brsw < €-£ 7 -7

: 8tf dec. : ~ 8th®  dec.
3 +,02135168 =.05773332 +.169008%0 +] +,0465015) -1
10 =,05614050 +.00005760 +,15713779 0 +.38332882 -1
17 +.06031846 +.0L015420 +.54637688 0 +,15537272 -1
18 -.,00103618 +.06381121 +,L48127492 =1 +,39613273 +1

The computation of the orientation elements with formula (16) gives:

tan & =-—,00077137

A= =0° .21t 39,11

sing= ~.00077137
cosK = +,99999970
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?i = -01363?h&)
&3 = -.11095L48

cot (A+K) = +1,231042L4
(A+Kk) = 219° &5t 15.)9n

sin (A +K) = -.63050832
cos (A +K) = ~.77618249

[a =219 71 sk.59m]

gin A = -,63110685
cos A = =,77569591

ht = +2,93189428

X' = +.00006146
y.' = +.05309946

©.d = +,88285555
sin v = +,34107642
v = 19° 561 32,89
v/2 - 9° 587 16.L4L*
tan v/2 = +,17580936

d = ,30112121
¥,' = +.05293993
Y,'-¥,' = =+00015953

Ax = -,00006134
Ay = -,00015958

81




*¢) o8ed uo yaewss Ies syTaseL I0g

*

TenpTsay

2N+ § 2°N 9T

moﬁ - meH M.H R

9°T + | a°f oL 6T ® WT seTIo]

g2 =1 L1 £ |t4 2=| 6°2€ 99 6T] 9°N9 L 6T2| 09T000°={ T90000°~ [ T2TTOE*| POUISH TeoTHATEUY

2o+ | =] gt .

6°C = { §°T LT

g°T + | €°1 +| 0T _ amﬁ BInIO

Mg = ST+ & [9°LE e=|€°€€ 95 61| 9°tS L 6T2| 6510007~ T90000°= Hmﬂom. Poy3eq uoT3oaforg

€ =] 2n-|et |

Le=|9T=]|LIT

AT + | L° +]| OT g0T BTNIO]

°T=|T°2+|€ |Ll6e 2=| €°T€ 99 6T]| L°En L 612) 29T000° = 990000°~ | TZTTOE*| Poyj3e uoridefoag

._\M..Q_E a A TuL | .Hmmw \ . o , o© “ .  4p x9 W PouIay
o A \4

SUOTIdALIO] | . UOT3BIUITIY JO BIUSHSTE

“ohm,.mpaoapms.nua eaqy3 oyl Jo s3Tnsed peTidwoo ayf

82




A comparison between the results obtained from the unlque 3 stars
solution and from the overdetermined L stars solution shows 9
an important fact, The square sum of the residuals [y¥] = 83.L and conse=-
quently the mean error of an individual observed plate coordinate -

me 83' = + 6.54, or expressed in angular terms with a plate dis-

tance of d~300 mm, m = + 4", We should now expect that the individual
parameters should differ only by: a comparably small amount between the
two solutions. However, between the unique and overdetermined solutions
there are differences of as much as 500% for the individual parameters.
This shows that the individual parameters are determined with relatively
large mean errors, Only their combined effect produces a high precision
result in representing an individual ray in space.

Consequently, some of the parameters are able to compensate, at
least partly, for errors on the other parameters. This opens the way, e.g.,
to determine in explicit form the tolerances for a camera design and allows,
on' the other hand, a shortening of the numerical computations by assuming
some of the unknowns as constants. It is obvious that an error in A x or
Ay will be partly compensated for by changes in azimuth or tilt, respectively.
The narrower the bundle of rays the more effective is this compensation.
By such a measuremen% the number of unknowns will be reduced to four and
therefore the final number of normal equations after ths ellmination of
AA will be only three.

VII SUMMARY

A method of high-precision spatial triangulation is described. The
relative angular accuracy of the method 1s better than 1: 100000, The
mathematlical analysis of the plate orlientation as well as the triangula-
tion by spatial resection is based on rigorous geometry. A rigorous least
squares adjustment determines the most probabls plate orientation and de-
livers the most probable corrections to the measured plate coordinates,
thus making it possible to determine the mean error of .the orientation
elements and of the target point directions. The relative angular mean
error of a final spatial direction to any recordsd target point is 1 to 2
seconds of arc. The triangulation is based on the principle of photogram-
metry by Intersection. Hence, each point is determined by combining the.
measured results of individual camera stations., The mean error of the

" final coordinates depends on the geometry of the individual triangulation
case,
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The method is useful for the determination of the spatial positien
of single points, e.. g,,for the purpose of calibration of other trajectory
measuring methods, as well as for the determination of complete trajectories.
The outlined method is free of systematic errors if the conditions discussed
in Chapter V are sufficiently satisfied. It must be understood that maxi-
mum accuracy with the method can be obtained only if during the time inter-
val between the exposure of the control points for plate orientation and
the exposures of the target points, the interior and exterior orientations of
the cameras can be considered as unchanged.

H, Schmid
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