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NOTATION

A constant which characterizes the adiabatic nature of the
liquid medium (for water B = 3000 atmospheres)

Isentropic sound speed in the medium as a function of ambient
and transient pressures

Sound speed in the undisturbed liquid medium
Specific enthalpy of the liquid medium

A constant which characterizes the adiabatic nature of the
liquid medium (for water, n = 7)

Pressure in the liquid at the bubble wall

Pressure of the gas inside the sphere

Initial pressure of the gas inside the sphere

Pressure in the liquid outside the bubble wall

Pressure in the undisturbed liquid medium; ambient pressure
Instantaneous radius of the imploding sphere

Initial radius of the imploding sphere

Standoff (measured from the bubble center); component in the
direction of the radial spherical coordinate

Time

Time measured at the bubble wall; time measured when the
Eulerian position vector r = R

Instantaneous velocity of the bubble wall

Eulerian velocity in the fluid outside the bubble wall
Instantaneous specific volume of the gas inside the bubble
Initial specific volume of the gas inside the bubble
Polytropic gas constant for an adiabatic process

Density of the undisturbed liquid medium

iv
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ABSTRACT

This paper presents a method for calculating the inatantaneous pressure,
velocity, acceleration, and radius associated with the collapse of a spherical
gas-filled cavity in an infinite compressible liquid. The method is an independ-
ent approach which makes use of Hamming's technique to numerically integrate
Gilmore’s differential equations which describe the collapsa.

Included is a computer program which will perform the necessary calcula-
tions on & IBM 7090/1401 digital computer. Results obtained are in good agree-
ment with those of Hickling and Plesset, whose work was unknown to the present
author when he undertook the study.

It may be inferred that the peak shock wave pressure is significantly re-
duced by a decrease in ambient pressure, an increase in internal pressure, and/or
a variation of the specific heat ratio by proper selection of the gas. Control of
the last two parameters can be investigated as a possible means of protecting
glass spheres against sympathetic implosion in multiple sphere buoyancy
systems.

ADMINISTRATIVE INFORMATION
This work was funded under Special Projects Office Project Order Number 6-0002.

INTRODUCTION

PURPOSE

Because of the excessive weight-displacement ratios obtained with tough metals such
a8 steel or aluminum, designers are turning toward nonductile materials for use in buoyancy
systems for all depth vehicles. Spherical glass shells are among the components for such
systems.!* 2 In a system which contains a number of buoyancy spheres, it is essential to
know the effect that the collapse of one sphere will have on neighboring spheres in order to
prevent catastrophic failure. A two-part investigation has been initiated:

1. The definition of the free-field pressure-time history due to the implosion of a single
sphere.

2. Determination of the loading and response of a sphere to the pressure field generated
by the implosion of a neighboring sphere.

‘m..um«npu
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This report deals with the analytical determination of Part 1, based on the assump-
tions that the spherical shell has negligible weight and thickness and that it contains air at
arbitrary pressure.

BACKGROUND

The need for more complete understanding of the hydromechanical problem of cavita-
tion and the gas bubbie phenomena of underwater explosions has encouraged more and more
detailed investigations into the pulsations of underwater gas bubbles. One of the earliest of
these investigations was made by Rayleigh in 1917.3 A more refined treatment was success-
fully completed by Herring in 1941.* Sometime later (1952), Gilmore® took a different ap-
proach and postulated equations to descyibe the growth or collapse of a spherical bubble in
a viscous compressible liquid. Gilmore’s description is presented in the next section.

THEORY

GILMORE'S BUBBLE WALL EQUATION

On the basis of the Kirkwood-Bethe hypothesis,® Gilmore has derived an equation
(w’ich he calls a ‘‘second order’* approximation) which accurately describes the (nonmigra-
tory) oscillations of a spherical gas-filled cavity in an infinite compressible liquid. If R is
the radius of the sphere, .4 the specific enthalpy of the surrounding liquid, and C the isen-
tropic sound speed in the liquid, then Gilmore’s equation is:

s R\ 3 . R R\ RH[ R
( C)+SR(1 30) H(1+C)+ 0(1 C)

(1.1]
R(O) =R, R(0)=0
where
_n;l‘
Cac, (:.:BB)" [1.2]



and
’ -1
-1/n Pe + 8 n
“n-‘f P+8 dp Xt P+8 -1 (1.3]
4 . +B Pes (n-1) p,, P.*+B

Here ¢, 7, and p_ are respectively sound speed, pressure, and density in the undisturbed
liquid. B and n are constants which characterize the adiabatic compression of the liquid

(for water, B = 3000 atm, n = 7). P is the pressure in the liquid at the bubble wall. If vis-
cosity and surface tension are neglected and the pressure p inside the bubble is uniform,

then pressure is continuous across the boundary of the sphere, i.e., P = p except at time

¢ = 0 when the pressure in the fluid is artificially and discontinuously reduced from P = p

to P = p(0) = p,. The gas can be assumed to undergo an adiabatic expansion (or compression).
From thermodynamics, for an ideal gas,

Pord = pv¥ [1.4a)

where y is a constant (the speciric heat ratio), » is specific volume, and the subscript 0 refers
to some initial state. Since the volume of a sphere is proportional to its radius

v R_\3
—v?- -(—-R—o—) [1.4b]

Po t=0
P= RO 3y (1.4c)
P=- ?o -E- t>0

For air (y = 4/8), the exponent 3y becomes 4. Usually the value of y is taken to be 1.4 for
sir. This value repreaents the behavior of air fairly accurately, but since y decreases with

incressing pressure, 4/8 represents a rouéh average. It will be seen later that the use of a
constant value of y leads to a deficiency in the model.



Combining Equations [1.1], [1.2], [1.3), and [1.4c] and taking n = 7 yields the follo
ordinary differential equation for R:

= T' RO 4 6/7

RR|1-R _Pat8 i A 1 *o\&) *°

5 Po\%/ *8/ L

R,\* 3”7

é Pon"'B ndd é Po‘—R- +8 8&2

P P — - — : + -
+c,, 2\ * e, ?.+8B 2

—_— B

R3 s+ B \ ¥7 4p, . (Ro) 4
- + R e
2, R)* PocCoe R P+ B
— B
Po R + i
"3 . +B
- Ro +8B

RO) = Ry,  R(0)=0

Once B, -Ro, Por Poo? and ¢ are specified, it is possible to find a numerical solution for
R(®), R(®), #(t), and p().

The initial velocity R(0) is taken throughout this paper to be zero. With the help of
Equation [1.5], Gilmore has pointed out that near ¢ = 0, there is a small finite jump in velocity
during an infinitesimally small interval of time, i.e.,

P‘nc.

R(0,) =

Hickling and Plesset” give a good physical explanation of this jnmp in terms of the initial
pressure discontinuity between P, 8nd p_. This velocity jump may lead cae to choose
R(0,) = (Pg = 7.}/ PoeCr 88 the initial condition on the velocity. Since the difference
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between (p, - 7_)/p,0,, 8nd zero is small compared to the magnmlde of the velocities of
interest, the question as to whethar to start the solution at .?(0) = 0 or at R(0+) (®o - 7)Y
PuCe i8 SOmewhat academic. Tho plots of bubble wall velocity do not show this initial jump
because the writer’s solution of Gilmore’s equation was actually carried out from £ = 0_ to
avoid an infinite initial acceleration. (One of the terms appearing in the expression for the
initial acceleration is the derivative with respect to time of P as given in Equation [1.4c};
this derivative is infinite at ¢ = 0). The approximation (p, - 2.)/p,C,, = 0 Was made to
simplify the calculations of the initial values of R and R which are tedious even with such
an approximation.

It should be emphasized that one of the inherent assumptions upon which Equation
[1.5) is based is that the cavity remain spherical throughout the collapse and subsequent
oscillations. In some bubble collapse experiments,® however, the single bubble has occa-
sionally been observed to dissociate into many smaller bubbles at the end of the first collapse.

THE INTEGRATION: HAMMING'S METHOD

An ordinary differential equation of the.form
dy
o @y 9=z =y, [2.1]

can be integrated numerically by one of various finite difference methods. One of these, the
Hamming method, which is particularly well suited for the solution of Equation {1.5] can be
found in Ralston and Wilf.? It is outlined briefly here:

1. The z-axis is equally divided into a lu'g.e number of small intervals. The value of y
at the end of the nth interval (i.e., the interval between z, and z a=1) 18 denoted by y .

2. Knowing the values of y, and y; at previous intervals z; up to and including the nth
(¢ = n), it is poesible to calculate p a+1» @ first approximation to t.he {(n + 1)* value of
at 2 by means of

Yat+1
n+1?

4h rd rd rd
Pasy =Vams* 5 (W5 =¥ +2,))

wheie A is the width of the interval; P, i8 called the predictor.

8. Since the prediction p, +1 i8 based on the value of a series expansion of y, error due
to truncation is incurred. Most of the difference between the true value of y and the estimated

value of y is taken. into account by the modifier (denoted by M.,y
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Ppry *Prs1 = EI (pn-cu)

M 4

where ¢, is as defined in the next paragraph and the derivativeofm ism  , =

f(zn+1’ mn+1)°

+1

4. The predicted value is compared with a quantity called the corrector
1 ’ » I *
cn+l = E [gyn = yn-l + 34 (mn+l + 2yn = ?'..-1)]

5. If the predictor p__, lies close to ¢, , within some specified tolerance, then the final

+1
value of Yoe1 8L 2,4, is taken as

Ynt1 " Cper t Té_i (pn+1 = cn+1)

6. If the predictor p  , does not lie close enough to ¢ then either (1) a new value of

n+1’
Pn#l :

9

Prpr ™ cn+l + -151 (Pn-rl - cu+l)

may be calculated and an interative process carried out or (2) the interval may be halved.
This is discussed in more detail in Appendix A.

In order to solve Equation {1.5] by the procedure jus. outlined, it is necessary to
reduce the equation to a system of two simultaneous differential equations of the form of
Equation [2.1]. This method is mentioned in Hildebrand.1® Write U for R; then Equation
[1.5] can be written

e
[}
<

{1.6a]




and

.+ B
4 &7
+B
T E [1.6b]
‘ p— —
.+ B 7
1-U ——4-—
ﬁ +B
J po k

Hamming’s method can be applied simultaneously to Equations [1.6a] and 71.6b] to yield a
numerical solution. The justification for use of this particular method is di: cussed in
Appendix B.

The function R(¢) (from which U(¢) and p(¢) at the bubble wall can be obtained), deter-
mined by Equation [1.6], constitutes one of the boundary conditions necessary to find the
Eulerian velocity and pressure fields in the fluid outside the bubble wall.

THE EULERIAN VELOCITY AND PRESSURE FIELDS IN THE LIQUID

In his *‘second order’’ approximation, Gilmore uses the Kirkwood-Bethe hypothesis in
conjunction with the method of characteristics to determine the (Eulerian) velocity and pres-
sure fields in the liquid. If the standoff r is greater than or equal to the initial radius R,
then the velocity u associated with the standoff will not be of the same order of magnitude
as the sound speed except for the mout severe implosions. Provided the approximation
u? << ¢? is valid, the following set of equations (the expr-essions derived by Gilmore) are
sufficient to determine the velocity and pressure fields u and 7 in the liquid when U/ and R,
the bubble wall velocity and radius, ere known functions of time.

K y2 K2y4
3 3
wr, )= 1 + 1- 2. (3.1]
Cu’ 372 \ c2r 2%+



where y and X', are given by

y= + 1- [3.2]

e R 2\ 2R U
K3 - - v - (1 - [3-3]

y? 2¢ 2 y Coo

2

2 [ 2
- y u ) y U

- - — - - — .4
K', ‘) P“(f 2)"’ 2c2(f 2) (8.4]

t=ty + <5-:-'-2-) (1 L ) [3.5)
c~ G”f

Here ¢p, is the time at which the bubble radius is & and the bubble wall velocity is U. An
event which occurs at the bubble wall at time ¢, requires finite time ¢ - £, to propagate irom
the bubble wall to the point r in the fluid. This time lag is indicated by Equation [3.5].

If the approximation u? << ¢? is not made, then the numerical integration for u and 7
is more complicated and requires a great deal more time on the computer. Hickling and
Plesset9 avoid making this approximation. Ingtead of using values of U and R in Equations
[8.1] through [3.5] to find 7 and u at dis~rete points, they use U and R as coefficients in a
differential equaticn-which determines 7 and u. Then each time U and R are determined at
a single point, another differential equaticn must be solved to find 7 and u. Each solution
of this second differential equation gives p and u as a function of distance ffom the bubble
at one spacific instant in time (i.e., that instant in time at which the bubble radius is that
value of R(¢) used in this second differential equation).

RESULTS

The integration of Equation [1.8] (the equation which determines bubble radius and
bubble wall velocity and acceleration)has been coded in FORTRAN for a 7090/1401 com-
puter according to the procedure outlined. The program and some sample input and output
are given in Appendix C. Plots from computer output of R, , U, and p (the bubble radius,
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bubble wall velocity and acceleration, and pressure at the bubble wall, respectively) as
functions of time can be found among Figures 1 through 5 for various ambient and internal
pressures.

Equations (3.1] through [3.5] (those equations which determine the Eulerian velocity
and pressure fields in the fluid outside the bubble wall) have been incorporated into the
program. From computer output, plots of » and p (Eulerian velocity an~ ressure) were ob-
tained and are found with the corresponding plots of R, U, l}, and p (Figures 1 through 4).

DISCUSSION

Dynamically, the air inside the bubble behaves in a peculiar fashion which is quite
evident in the more violent implosions (those at great depths). During the greater part of
the collapse, the air offers insignificant resistance to the inrushing water. Just before the
instant of minimum radius, however, the air violently arrests further decrease in volume,
behaving very much like a rigid sphere. This is borne out especially by the curves for bub-
ble wall acceleration. At the instant of minimum radius, the water in the immediate vicinity
of the bubble ‘‘sees’* a rigid sphere, but that water a little further from the wall continues
to rush in since the water is compressible. The result is a spherical shock wave propagating
from the wall out into the fluid.

Comparisons among Figures 1 through 5 lead to the following observations:

1. As the depth at which the implosion occurs becomes greater, the peak pressure in-
creases, the rise time decreases, and the collapse time decreases.

2. Increasing the initial internal pressure of the gas inside the sphere has roughly the
same effect as decreasing the depth of implosion. Specifically, the peak pressure can be
effectively attenuated by increasing the initial internal pressure. Comparison between Fig-
ures 2e and 3e, for example, shows that the peak pressure pulse from an implosion at 1000 ft
of water is reduced by almost 40 percent when the initial internal pressure is increased from
1to 2 atm.

3. As the pressure peak propagates away from the cavity wall, it suffers an attenuation
proportional to 1/r.

4. Comparison Setween Figures 1, 2, and 5 indicates that for constant initial internal
pressure and radius, the collapse time varies approximately inversely with the square root
of the depth at which the implosion occurs.

It should be noted that the present theory does not account for the effect of migration.
The model presented here is excellent for a ratio of initial internal pressure to ambient pres-
sure which is less than perhaps one-tenth.
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Figure 8 — Spherical Collapse as a Function of Time for a

Water Depth of 1000 Feet, an Initial Radius of 1 Inch,
and an Initial Internal Pressure of 2 Atmospheres
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Figure 4 — Spherical Collapse as a Function of Time for a
Water Depth of 1000 Feet, an Initial Radius of 1 Inch,
and an initial Internal Pressure of 10 Atmospheres

[~

AN -

g

™ p

$

BUBBLE RAﬂUémm

a2
° & 02 03 04 Qa5 O a7 08 09
TWE IN MILLISECONDS
Figure 4a — Bubble Radius

140

120

100

80

ITY N INCHES/SECOND x 10%
o888
]

|
J |
i :

o o2 o3 o4 3 os ar os 09
TIME IN MILLISECONDS

Figure 4b — Bubble Wall Velocity
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Figure 5 ~ Spherical Collapse as a Function of Time for 8
Water Depth of 10,000 Feet, an Initial Radius of 1 Inch,
and an Initial Internal Pressure of 1 Atmosphere
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As stated earlier, the **well behaved® spherical collapse of the model occasionally
may not conform to the behavior of a real bubble in its final stage of implosion. At very
high ratios of ambient to initial internal pressure, the possible dissociation of the cavity
inte numerous smaller bubbles represents a departure from the behavior of the model. At the
standoff of interest (» > R), however, the field variables (pressure and Eulerian velocity)
are thought not to deviate significantly from values obtained using the model.

All the results mentioned so far may be extended to cases for spheres of any radius.
Suppose that at depth A a solution exists for a sphere with initial radius R and initial inter-
nal pressve p,. The radius, velocity, acceleration, and pressure are known functions of
time at the bubble wall or at some standoff in the fluid. If the initial radius is multiplied by
A = constant, then pressure and velqcity will remain the same if radius, time, and standoff
are multiplied by A and acceleration divided by A.

After the writer’s program was completed, it was discovered that Hickling and Plesset
had solved the free-field implosion problem numerically in a similar but more elaborate man-
ner without making the approximation u? << ¢2. Their program requires 20 min of computer
time for each case compared to only 2 min for the program presented here. They report two
cases; the first (p, = 10~3 atm, p_ = 1 atm) was solved by the program presented here, but
the second (p, = 10™4 atm, p_ = 1 atm) is too violent an implosion for the writer’s program
to be applicable because the approximation ¥2 << c2 may not be valid. (Note that this sec-
ond case reported by Hickling and Plesset represents such a violent implosion that it has
little in common with the type of implosion expected in a buoyancy sphere system even as
deep as 30,000 feet of water).

In an attempt to verify the soundness of his approach, the writer used the initial con-
ditions of Hickling and Plesset’s first case (;30 = 1073 atm, p_ = 1 atm) as input in his pro-
gram. Very little discrepancy (less than 2 percent) can be found in the bubbic radius and
bubble wall velocity even though the Hickling and Plesset results are based on a value of
y = 1.4 and the writer’s are based on a value of y = 4/3. It can be seen from the differential
(Equation [1.5]) that a small change in y has little effect on the radius-time curve.

However, a marked difference appeared between the results of the two programs when
the peak pressures inside and outside the bubble were compared. The Hickling and Plesset
results showed peak pressures which were about twice those obtained in this study. This
discrepancy can be readily resolved by noting the different values of y used. The results of
both programs indicate that a minimum radius Rum = 0.0170 will be obtained when a sphere
of initial radius B = 1 and initial internal pressure 2" 10™3 atmospheres is imploded at
the ambient pressure p_, = 1 atm. The pressure at the boundary, by Equation [1.4c), is

R, 3y
=P 'E"

4 n




. 1 4.2
Pqu - po (m) [4. 1]
and when y = 4/3
1 4.0
p-Ax - PO(M) [4-2]

By dividing Equation [4.1] by Equation [4.2], p, A; is (1/.0170) 2 or 2.25 times p,, , - Had
a value of y = 1.4 been used in the writer’s program, the peak pressure at the bubble wall
would have compared well with that obtained by Hickling and Plesset. A similar statement
is true for those peak pressures in the fluid outside the bubble wall, because the peak pres-
sure varies inversely as the distance from the center of the bubble (i.e. as 1/r). This veri-
fies the validity of the writer’s program and the assumption u2 << ¢2 for the range of interest
(. £1000 atm, Po < 1 atm).

The verification against the work of Hick!* -7 and Plesset shows that small variations
in y, the specific heat ratio, can lead to large variations in the peak pressure associated
with a collapse. Such behavior suggests that the present equation of state, the ideal gas
law, is a deficient description of the gas inside the cavity and that the use of a more elabo-
rate equation of state (e.g., the Beattie-Bridgeman!! equation of state) would give more ac-
curate results. Use of the Beattie-Bridgeman equation could be made to investigate the dif-
ferences in behavior of the collapse for different gases.(representing different values of y).
Variations of the kind of gas inside the cavity along with variations in its initial internal
pressure may be used to control the characteristics of the pressure pulse emitted when a
glass buoyancy sphere collapses. Such control might ultimately be used to reduce the dis-
tances between glass spheres in buoyancy sphere systems without increased risk of sympa-
thetic implosions.

SUMMARY AND CONCLUSIONS

1. A program to integrate Gilmore’s equations describing the collapse of a ~pherical gas
filled cavity has been written (see Appendix C). The program is general enough to be used
in the study of such phenomena as cavitation and underwater explosion gas bubble pulses,
provided behavior is adiabatic.

2. Parameters from the program for various ambient and initial internal pressures have
been plotted (see Figures 1 through 5).




8. The pressure shock wave associated with the implosion may be controllable in two
different ways:

a. Proper variation of the initial internal pressure of the gas inside the sphere.

b. Proper variation of the specific heat ratio y by changing the kind of gas in-
side the sphere.

These two effects should not be overlooked as possible means of protecting glass buoyancy
spheres from sympathetic ir.plosions.

FUTURE WORK PLANNED

1. An experimental verification will be carried out to determine how good Gilmore’s
model is.

2. The velocity and pressure curves can be used to synthesize analytical functions to
describe the free-field implosion. This information will then form a foundation for the anal-
ysis of the effects of a single implosion in a system of buoyancy spheres. Such an analysis
has, in fact, been started.

3. The present computer program is now being altered by replacing the ideal gas law by
the Beattie-. 'idgeman equatinn of state.
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APPENDIX A
A PROCEDURE FOR HALVING THE INTERVAL OF INTEGRATION

The description of Hamming's inethod pointed out that if the predictor does not lie
close enough to the corrector, then one alternative is to halve the interval. According to
Ralston and Wilf,? a suitable set of interpolation formulas for Hamming’s method is:

h ’ 4 ’
yu—l/? - .2—5; (803/" + 135!/11-1 + 403/»--2 + yn—3) + '2—53 (-15yn'+ 903/,,-1 + 15!/,,..2)

1 A , ,
Ypesn ™ 358 (12y, + 185y, _, + 108y _, +y, .} + 556 (-3y, - 54y, +27y,; )

where A is the original step size.
In the particular program which was written for the solution of Equaticn [1.5], the
following procedure was adopted:

1. Ifp,,, was not close enough to ¢_,, then an iteration was carried out.

2. If, after the first iteration, the value of p , was still not clrse enough to ¢, ,, then
the interval was halved and the entire integration process at that step was carried out from

the beginning using the new half interval.

As the radius of the bubble approaches its minimum, the radius and wall velocity
become more and more difficult to predict, that is, it becomes more und more likely that
Pn+1 Will not fall within the desired limits of ¢, ,. With the above procedure, more coordi-
nates will be calculated near the minimum where the functions are changing most rapidly
than are calculated in regions of small slopes.




APPENDIX B
JUSTIFICATION FOR THE USE OF HAMMING’S METHOD

The choice between an elaborate procedure like Hamming’s method and some other
iterative routine to integrate the equations is easy to make if it is based on economy of com-
puter time. When an iterative technique is used to converge on the correct value of the de-
pendent variable at each step, the finite difference form of the differential equation may have
to be evaluated many timec because the initial prediction of the dependent variable is not
likely to be very accurate. In the case of Equations [1.5], it is desirable to avoid the eval-
uation of the finite difference equation as often as possible because it involves so many
calculations: Hamming's method, on the other hand, makes a much more accurate initial pre-
diction of the dependent variable at each step simply because more information about past
values is utilized in making such predictions. Consequently, Hamming’s method yields a
more rapid convergence because the finite difference form of the equation has to be evaluated
only once or twice at each step to obtain an accurate value of the dependent variable there.

One disadvantage in using this technique is that it is not self-starting. Values of R,
U, and ¥ in at least four equally spaced intervals near ¢ = 0 are required. Such values may
be computed by expressing R(¢) in a Taylor Series in ¢ about zero and using Equations [1.5]
to evaluate the coefficients. This approach for solving differential equations can be found
in any elementary text on the subject, for instance, Coddington.1? Because of the difficulty
of differentiating Equation [1.5], Herring's* equation

p BB 3 dr\? 2(d1?3 R [dR\ [d3R
de? 2 \dt Co dat Co dt de?

dR
Pt - p,, R dp(t r

- ‘ AU P (5.1]
Poe PosCo dat Cy

rather than Equation [1.5] was used to find the first four values of R, U, and U. This equa-
tion has also been derived by Gilmore and called the *‘first order approximation.®’

As mentioned 'n the discussion under Equation [1.5], to find the initial acceleration of
the bubble wall, Equation [5.1] should be evaluated at ¢ = 0 + father than at ¢ = 0 in order to




avoid an infinite initial acceleration. It can be seen from Equation [1.4c] that Equation

{5.1] evaluated at ¢ = 0 contains the infinite term % o The result is
=
d?r Po = P
2 [+
dt o0, PouCo

in agreement with acoustic theory.




APPENDIX C

THE COMPUTER PROGRAM FOR 1BM 7090

The following is a list of FORTRAN IV symbols used in the program.

FORTRAN Symbol

A
B

BDYP

B@
B@D

32, Bs, 84, '85, 'Bs

C
D

DU

PA
PL

PP
P@D

Rand T

STF1, STF2,

STFD1,
STFD2, STFD()
(I=1,23)

Corresponding
Symbol Used
in Discussion

R
B

Poo

<

Explanation

Instantaneous radius of the imploding sphere.

A constant which characterizes the adiabatic na-
ture of the liquid medium (for water, -B = 3000 atm)

Pressure in the liquid at the bubble wall
Initial radius of the imploding sphere

A dimensioned variable name under which the B@,
the unitial radius is read in

Coefficients of the Taylor Series expansion of R
about £ =0

Sound speed in the undisturbed liquid medium

Density of the undisturbed liquid medium (for
water, p_ = 2 slugs/cu ft)

Instantaneous acceleration of the bubble wall
Depth at which the implosion takes place

A dimensioned variable name under which H, the
depth of implosion, is read in

Atmospheric pressure (14.7 psi)
Pressure in the undisturbed liquid medium
Initial pressure of the gas inside the sphere

A dimensioned variable name under which P@, the
initial internal pressure, is read in

Time measured at the bubble wall

The step size, or size of the interval over which
the integration is to be performed

The five standoffs for which Eulerian velocities and
pressures are calculated; note STF(1) = STF3, etc.

Dimensioned variable names under which the above
five standoffs are read in




FORTRAN Symbol

STFPC1, STFCP2,

STFPC(I)
1=1,2,8

STFUCI1, STFUC2,

STFUC(])
1-1,238

T and R

TSTF1, TSTF2,
TSTF(I)
1=1,2,8

U
Y

YK

AP4, APS

A4MH, ASMH

Corresponding
Symbol Used
in Discussion

?

Ppr Pasy

Yne1/22 Yn~32

rd
TS LR

Cu? cn+1

mn+l

Mat1
Cps cu+l
Pnr Pat1

Yne1/2' Yp--32

JSPOTEN

Explanation

PN S TP VT NN

Five instantaneous pressures evaluated at the
standoffs STF1, STF2, STF3, STF4 and STFS3,
respectively; note: STFPC(1) = STFPC3 etc.

Five instantaneous Eulerian velocities evaluated
at the standoffs STF1, STF2, STF3, STF4, and
STF'5, respectively

Time measured at the bubble wall

The time for each of the -five pressures and veloc-
ities evaluated at each of the five standoffs,
respectively

Instantaneous velocity of the bubble wall

A constant used in the expression for the Eulerian
velocity (see Equations {3.1] and [3.2])

A constant used in the expression for the Eulerian
velocity (see Equations [3.1] and [3.3])

Predicted values of the radius, AP 5 is the pre-
dicted value being tested at the (n + 1)th interval,
and AP4 is the previous predicted value of B
which was cloest to the actual value of R at the

n th interval

When R at the (n + 1).h interval is being predicted
and the half interval routine is required, then these
are the interpolated values of R between the nth
and (n ~ 1) th interval and between the (n ~ 1)th
and (n ~ 2) th interval, respectively

Modifier for U, also derivative of the modifier for
R

Correctors for U; C5 is the corrector being tested
at the (n + 1)th interval and C4 is the corrector at
the previous interval

Modifier for B

Derivative of the modifier for U

Correctors fcr B (see C4, C5)

Predicted values of the velocity (see AP4, AP5)
Half interval values of velocity (see A4MH, ASMH)

[ T T




THE COMPUTER PROGRAM

The simplified flow chart is shown in Figure 6.

START

Read in initial radius, depth, initial internal pressure and
five values of stando

[ 3
Find a suitable size for the initial time interval on the basis
of the initial radius, initial internal presswe, and depth just
read in

%

Using the Taylor series expansion, calculate four initial values,
l.e., values in four intervals for each of the following: radius,
velocity, accaleration, and pressure at the bubble wali; velocity
and pressure at each of the five standoffs

* A
Let the predictor and corrector for U at step 4 he the actual value
obtained from above for U at step 4. Likewise for R

[ ]

Catty out the procedute for Lg

Predict U and R In the next .y
interval

[ ]

halving the interval

Calculate the modifiers, derivatives of the -
A modifiers, and the correctors for U and R.

[
Test the predictor against the corrector (use the

i rtedlctg‘r:na'r‘\;i correctors corresponding to U

| Guess at new predictors |
YES

¥
is the predictor ciose enough to the Is this the first failing attempt to |
cortector? ———wl0 | sredict U and R at this step? NO

YES
i
For this interval, use the predictors and correctors to calculate U and R;

 then calculate pressure and acceieration at the bubble wall and velocity
and pressute at each of the five standoffs

NO

~—ag——{ Ae there encugh points to determine a curve? |

" YES

1
{ Print out the values caiculated |

YES '

—ag——] Are there any more cases to be run? |

NO

END

Figure 6 - Simplified Flow Chart




DATA INPUT

The first data card is read according to the format (I12) and must have a number no
greater than 50 in the first two columns (see Figure 7). This number should equal the num-
ber of data cards to follow. Each of the following data cards should contain the initial infor-
mation for a single collapse. Eight pieces of information are placed on each cerd; the card
is divided equa'ly into eighnt parts, 10 spaces each. Information is read in according to the
format (§F10.4). The [lirst two pieces of information are the depth of collapse in feet of
water and the initial bubble radius in inches, respectively. The next five divisions are set
off for five values of standoff in inches from the bubble center at which a pressure and
(Eulerian) velocity time history are desired. The last division is reserved for the initial
internal pressure inside the bubble in pounds per square irch. The first eight pieces of
information, corresponding to one collapse, will require no more than 2 min of running time.
Each additional card, i.e., each additional collapse, requires no more than 1 min.

DATA OUTPUT

For each data card, the computer will print 2000 lines of cutput. The first 1000 lines
of numbers are printed under headings TIME, RADIUS, VELOCITY, ACCELERATION, BDYP,
TSTF1, STFPC1, STFUC1, TSTF2, STFPC2, STFUC2 (see Figure 8). The first five quan-
tities refer to the bubble wall; BDYP is the iniernal pressure inside the bubble (absolute
pressure, not overpressure). Each line refers to the state of the motion at one instant in
time. STFPC1 and STFUCI1 are the overpressure (pressure above ambient pressure) and
(Eulerian) velucity as functions of the time TSTF1 for the first standoff given in the data.
Similarly for STFPC2, STFUCZ2, and TSTF2. The next 1000 lines give similar information
for the third, fourth, and fifth standoffs specified. The headings are TSTF3, STFPCS3,
STFUC3, TSTF4, STFPC4, STFUC4, TSTF5, STFPC5, STFUC5. All time is given in milli-
seconds, the radius in inches, all velocities in inches per second, the acceleration in inches
per second per second, and all pressures in pounds per square inch.
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