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NOTATION

B A constant which characterizes the adiabatic nature of the
liquid medium (for water B - 3000 atmospheres)

C Isentropic sound speed in the medium as a function of ambient
and transient pressures

cm Sound speed in the undisturbed liquid medium

H Specific enthalpy of the liquid medium

n A constant which characterizes the adiabatic nature of the
liquid medium (for water, a - 7)

P Pressure in the liquid at the bubble wall

p Pressure of the gas inside the sphere

PO Initial pressure of the gas inside the sphere

T Pressure in the liquid outside the bubble wall

pM Pressure in the undisturbed liquid medium; ambient pressure,

R Instantaneous radius of the imploding sphere

R0 Initial radius of the imploding sphere

r Standoff (measured from the bubble center); component in the
direction of the radial spherical coordinate

t Time

tR Time measured at the bubble wall; time measured when the
Eulerian position vector r = R

U Instantaneous velocity of the bubble wall

u Eulerian velocity in the fluid outside the bubble wall

V Instantaneous specific volume of the gas inside the bubble

W0 Initial specific volume of the gas inside the bubble

y Polytropic gas constant for an adiabatic process

ple Density of the undisturbed liquid medium

iv
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ABSTRACT

This paper presents a method for calculating the instantaneous pressure,
velocity, acceleration, and radius associated with the collapse of a spherical
gas-filled cavity in an infinite compressible liquid. The method is an independ-
ent approach which makes use of Hamming's technique to numerically integrate
Gilmore's differential equations which describe the-collapse.

Included is a computer program which will perform the necessary calcula-
tions on a IBM 7090/1401 digital computer. Results obtained are in good agree-
ment with those of Hickling and Plesset, whose work was unknown to the present
author when he undertook the study.

It may be inferred that the peak shock wave pressure is significantly re-
duced by a decrease in ambient pressure, an increase in internal pressure, -nd/or
a variation of the specific heat ratio by proper selection of the gas. Control of
the last two parameters can be investigated as a possible means of protecting
glass spheres against sympathetic implosion in multiple sphere buoyancy
systems.

ADMINISTRATIVE INFORMATION

This work was funded under Special Projects Office Project Order Number 6-0002.

INTRODUCTION

PURPOSE

Because of the excessive weight-displacement ratios obtained with tough metals such
as steel or aluminum, designers are turning toward nonductile materials for use in buoyancy
systems for all depth vehicles. Spherical glass shells are among the components for such
systems. 1, 2 In a system which contains a number of buoyancy spheres, it is essential to
know the effect that the collapse of one sphere will have on neighboring spheres in order to
prevent catastrophic failure. A two-part investigation has been initiated:

1. The definition of the free-field pressure-time history due to the implosion of a single
sphere.

2. Determination of the loading and response of a sphere to the pressure field generated
by the implosion of a neighboring sphere.

I.fmmne. an listed cO Pae 36.
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This report deals with the analytical determination of Part 1, based on the assump-
tions that the spherical shell has negligible weight and thickness and that it contains air at

arbitrary pressure.

BACKGROUND

The need for more complete understanding of the hydromechanical problem of cavita-
tion and the gas bubble phenomena of underwater explosions has encouraged more and more
detailed investigations into the pulsations of underwater gas bubbles. One of the earliest of
these investigations was made by Rayleigh in 1917.3 A more refined treatment was success-
fully completed by Herring in 1941.4 Sometime later (1952), Gilmores took a different ap-
proach and postulated equations to describe the growth or collapse of a spherical bubble in
a viscous compressible liquid. Gilmore's description is presented in the next section.

THEORY

GILMORE'S BUBBLE WALL EQUATION

On the basis of the Kirkwood-Bethe hypothesis, 6 Gilmore has derived an equation
(w'.ich he calls a "second order" approximation) which accurately describes the (nonmigra-
tory) oscillations of a spherical gas-filled cavity in an infinite compressible liquid. If R is
the radius of the sphere, .H the specific enthalpy of the surrounding liquid, and C the isen-
tropic sound speed in the liquid, then Gilmore's equation is:

R(1 )+.4. k2 (1 H) H(1 + )+ .¶ R[11

R(O) Ro, (O)- 0

where

P +B 2nI (o 1.2]
p, +
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and

B / dp " (Pn+") P P+B \ 1
p1p ._+9 p.-(n-l1)p, +A p B) -j (13

Here c,, p", and p. are respectively sound speed, pressure, and density in the undisturbed
liquid. B and n are constants which characterize the adiabatic compression of the liquid
(for water, .B - 3000 atm, n - 7). P is the pressure in the liquid at the bubble wall. If vis-

cosity and surface tension are neglected and the pressure p inside the bubble is uniform,

then pressure is continuous across the boundary of the sphere, i.e., P - p except at time
9 - 0 when the pressure in the fluid is artificially and discontinuously reduced from P - p.
to P a p(0) - p0. The gas can be assumed to undergo an adiabatic expansion (or compression).

From thermodynamics, for an ideal gas,

Fol - p0 Y [1.4a]

where y is a constant (the speciric heat ratio), v is specific volume, and the subscript 0 refers
to some initial state. Since the volume of a sphere is proportional to its radius

(-- ) 3  [1.4bl

Elimination of volumq between Equation [1.4a] and Equation [1.4b] yields

P "R 3y [1.4c1
P " Po \T 0

For air (y - 4/8), the exponent 3y becomes 4. Usually the value of y is taken to be 1.4 for
air. This value represents the behaiior of air fairly accurately, but since y decreases with
increasing pressure, 4/8 represents a rough average. It will be seen later that the use of a
contstant value of y leads to a deficiency in the model.



Combining Equations [1.1], [1.2], [1.8], and [1.4c] and taking A - 7 yields the follo,

ordinary differential equation for R:

4 V7

+• B_ 3/ . + B\ P\ + Bp le .0) ]P+B 2 -

/ .m+B 3/7 4Po

RB)

Io + B

8(0) - Ro, i(0) - 0

Once B, Ro' Pop P., and c. are specified, -it is possible to find a numerical solution for

8(t), Rk(t, -fi(t), and p(t).
The initial velocity R(O) is taken throughout this paper to be zero. With the help of

Equation [1.51, Gilmore has pointed out that near t - 0, there is a small finite jump in velocity
during an infinitesimally small interval of time, i.e.,

R(0+) - 0o - PmPO ...

Hickling and Plesset 7 give a good physical explanation of this jnmp in terms of the initial

pressure discontinuity between p0 and p... This velocity jump may lead ras to choose
R(0+) - (po - p.)/p., . as the initial condition on the velocity. Since the difference

4



between (po - p-)/-p, and zero is small compared to the magnitude of the velocities of

intereet, the question as to whether to start the solution at ,(0) - 0 or at k(o+) - (Po - P-/

p.o. is somewhat academic. Tho plots of bubble wall velocity do not show this initial jump

because the writer's solution of Gilmore's equation was actually carried out from 9 - 0+ to

avoid an infinite initial acceleration. (One of the terms appearing in the expression for the

initial acceleration is the derivative with respect to time of P as given in Equation [1.4c];

this derivative is infinite it t - 0). The approximation (Po - pj/pC. 0 was made to

simplify the calculations of the initial values of R and h which are tedious even with such

an approximation.

It sh6uld be emphasized that one of the inherent assumptions upon which Equation

[1.51 is based is that the cavity remain spherical throughout the collapse and subsequent

oscillations. In some bubble collapse experiments, 8 however, the single bubble has occa-

sionally been observed to dissociate into many smaller bubbles at the end of the first collapse.

THE INTEGRATION: HAMMING'S METHOD

An ordinary differential equation of the form

dy
a f(u, Y4 AZO) - Y[.1]

can be integrated numerically by one of various finite difference methods. One of these, the
Hamming method, which is particularly well suited for the solution of Equation (1.51 can be
found in Ralston and Wilf. 9 It is outlined briefly here:

1. The "-axis is equally divided into a large number of small intervals. The value of y
at the end of the nth interval (i.e., the interval between -- and zx .) is denoted by y,,.

2. Knowing the values of y, and ya at previous intervals zi up to and including the nth
(i - n), it is possible to calculate p.+,' a first approximation to the (n + 1 )*t value or,

at a ,+, by means of

4A
'8+1 - $',,3 + 7- (2y y,~ + 2y'~.4

wheie A is the width of the interval; p,,+ is called the predictor.

8. Since the prediction p.+1 is based on the value of a series expansion of y, error due

to truncation is incurred. Most of the difference bet*een the true value of y and the estimated

value of , is taken. into account by the modifier (denoted by rn,,+ 1)

5
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where c is as defined in the next paragraph and the derivative of m11+1 is M,f(zn,+ 4++,1)"

4. The predicted value is compared with a quantity called the corrector

X+1 [gyn - Y + 3k + 2, -n

5. If the predictor p.+, lies close to c+, within some specified tolerance, then the final

value of yn,+, at z+, is taken as

9

Yn+I 0 1n+1 + 721 (Pn+I - ¢n+1

6. If the predictor p.+, does not .lie close enough to c.+1, then either (1) a new value of

P.+1 .+I+1+ -

may be calculated and an interative process carried out or (2) the interval may be halved.

This is discussed in more detail in Appendix A.
In order to solve Equation [1.51 by the procedure jus, outlined, it is necessary to

reduce the equation to a system of two simultaneous differential equations 'of the form of

Equation [2.1]. This method is mentioned in Hildebrand. 10 Write U for R; then Equation

[1.5] can be written

RU 1 [.6a]



and

p+B 3741/po 
O( + B /

S - u --

, ,., ,(._2 o •JRO _ + B

0 B

(0Tp.+ B /(.b

+___ B (/7 PO .) + B p.+ B_3/7

PO0 ) ( +8B

Hamming's method can be applied simultaneously to Equations (1.6a] and rl.6b] to yield a
numorical solution. The justification for use of this particular method is diL cussed in

Appendix B.
The function R(t) (from which U(9) and p(t) at the bubble wall can be obtained), deter-

mined by Equation [1.6], constitutes one of the boundary conditions necessary to find the
Eulerian velocity and pressure fields in the fluid outside the bubble wall.

THE EULERIAN VELOCITY AND PRESSURE FIELDS IN THE LIQUID

In his "second order" approximation, Gilmore uses the Kirkwood-Bethe hypothesis in
conjunction with the method of characteristics to determine the (Eulerian) velocity and pres-
sure fields in the liquid. If the standoff r is greater than or equal to the initial radius Rot
then the velocity u associated with the standoff will not be of the same order of magnitude
as the sound speed except for the most severe implosions. Provided the approximation
U2 << C2 is valid, the following set of equations (the expessions derived by Gilmore) are
sufficient to determine the velocity and pressure fields u and T in the liquid when U and R,
the bubble wall velocity and radius, are known functions of time.

u(r, m + k -2  
/ K32 V4

+ +C. 3 p-72  C 2. 2C.M,

!a



where y and K3 are given by

2 P! 2p0 C2
J RU _/ _2 l.u4P.

3= -.. (2' 1- -j--( 1- [3.3]

2U /RC

+ 22-
2, - 2c.2) 2) 3.4

2 ) + (2)[3.5

Here 9 is the time at which the bubble radius is R and the bubble wall velocity is U. An

event which occurs at the bubble wall at time tR requires finite time t - t. to propagate !trom

the bubble wall to the point r in the fluid. This time lag is indicated by Equation [3.51.

If the approximation u2 << c 2 is not made, then the numerical integration for u and 1

is more complicated and requires a great deal more time on the computer. Hickling and

Plesset 9 avoid making this approximation. Instead of using values of U and R in Equations

(8.11 through [3.51 to find j and u at discrete points, they use U and R as coefficients in a
differential equatinn-which determines j and u. Then each time U and R are determined at

a single point, another differential equation must be solved to find T and u. Each solution

of this second differential equation gives T and u as a function of distance from the bubble

at one specific instant in time (i.e., that instant in time at which the bubble radius is that
value of R(4) used in this second differential equation).

RESULTS

The integration of Equation [1.6] (the equation which determines bubble radius and

bubble wall velocity and acceleration)has been coded in FORTRAN for a 7090/1401 com-

puter according to the procedure outlined. The program and some sample input and output

are given in Appendix C. Plots from computer output of R, u, .0, and p (the bubble radius,

8 m



bubble wall velocity and acceleration, -and pressure at the bubble wall, cespectively) as
functions of time can be found among Figures 1 through 5 for various ambient and internal

pressures.

Equations [3.1] through [3.51 (those equations which determine the Eulerian velocity
and pressure fields in the fluid outside the bubble wall) have been incorporated into the
program. From computer output, plots of u and p (Eulerian velocity an ressure) were ob-
tained and are found with the corresponding plots of R, V, LI, and p (Figures 1 through 4).

DISCUSSION

Dynamically, the air inside the bubble behaves in a peculiar fashion which is quite
evident in the more violent implosions (those at great depths). During the greater part of
the collapse, the air offers insignificant resistance to the inrushing water. Just before the
instant of minimum radius, however, the air violently arrests further decrease in volume,
behaving very much like a rigid sphere. This is borne out especially by the curves for bub-
ble wall acceleration. At the instant of minimum radius, the water in the immediate vicinity
of the bubble "sees" a rigid sphere, but that water a little further from the wall continues
to rush in since the water is compressible. The result is a spherical shock wave propagating
from the wall out into the fluid.

Comparisons among Figures 1 through 5 lead to the following observations:

1. As the depth at which the implosion occurs becomes greater, the peak pressure in-
creases, the rise time decreases, and the collapse time decreases.

2. Increasing the initial internal pressure of the gas inside the sphere has roughly the
same effect as decreasing the depth of implosion. Specifically, the peak pressure can be
effectively attenuated by increasing the initial internal pressure. Comparison between Fig-
urea 2e and 3e, tor example, shows that the peak pressure pulse from an implosion at 1000 ft
of water is reduced by almost 40 percent when the initial internal pressure is increased from

1 to 2 atm.

3. As the pressure peak propagates away from the cavity wall, it suffers an attenuation
proportional to 1/r.

4. Comparison b3etween Figures 1, 2, and 5 indicates that for constant initial internal
pressure and radius, the collapse time varies approximately inversely with the square root
of the depth at which the implosion occurs.

It should be noted that the present theory does not account for the effect of migration.
The model presented here is excellent for a ratio of initial internal pressure to ambient pres-
sure which is less than perhaps one-tenth.

9
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Figure 3 - Spherical Collapse as a Function of Time for a

Water Depth of 1000 Feet, an Initial Radius of 1 Inch,
and an Initial Internal Pressure of 2 Atmospheres
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Figure "4 - Spherical Collapse as a Function of Time for a
Water Depth of 1000 Feet,. an Initial Radius of 1 Inch,

and an initial Internal Pressure of 10 Atmospheres
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Fiue 5 -Spherical Collapse as a Function of Time for a

Water Depth of 10,000 Feet, -an Initial Riadius of I Inch,

and an Initial Internal Pressure of 1 Atmosphere
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As stated earlier, the "well behaved" spherical collapse of the model occasionally

may not conform to the behavior of a real bubble in its final stage of implosion. At very

high ratios of ambient to initial internal pressure, the possible dissociation of the cavity

into numerous smaller bubbles represents a departure from the behavior of the model. At the

standoff of interest (r > R0), however. the field variables (pressure and Eulerian velocity)

are thought not to deviate significantly from values obtained using the model.

All the results mentioned so far may be extended to cases for spheres of any radius.

Suppose that at depth A a solution exists for a sphere with initial radius Ro and initial inter-

nal pressure po. The radius, velocity, acceleration, and pressure are known functions of

time at the bubble wall or at some standoff in the fluid. If the initial radius is multiplied by

A - constant, then pressure and velqcity will remain the same if radius, time, and standoff

are multiplied by A and acceleration divided by X.

After the writer's program was completed, it was discovered that Hickling and Plesset

had solved the free-field implosion problem numerically in a similar but more elaborate man-

ner without making the approximation u2 << c 2. Their program requires 20 min of computer
time for each case compared to only 2 min for the program presented here. They report two

cases; the first (po - 10-3 atm, p. - 1 atm) was solved by the program presented here, but
the second (p. - 10-4 atm, p, 1 atm) is too violent an implosion for the writer's program

to be applicable because the approximation u2 << C 2 may not be valid. (Note that this sec-
ond case reported by Hickling and Plesset represents such a violent implosion that it has
little in common with the type of implosion expected in a buoyancy sphere system even as

deep as 30,000 feet of water).

In an attempt to verify the soundness of his approach, the writer used the initial con-
ditions of Hickling and Plesset's first case (Po - 10-3 atm, p. = 1 atm) as input in his pro-
gram. Very little discrepancy (less than 2 percent) can be found in the bubbie radius and
bubble wall velocity even though the Hickling and Plesset results are based on a value of

y - 1.4 and the writer's are based on a value of y . 4/3. It can be seen from the differential

(Equation [1.5]) that a small change in y has little effect on the radius-time curve.

However, -a marked difference appeared between the results of the two programs when
the peak pressures inside and outside the bubble were compared. The Hickling and Plesset
results showed peak pressures which were about twice those obtained in this study. This
discrepancy can be readily resolved by noting the different values of y used. The results of
both programs indicate that a minimum radius RMIN = 0.0170 will be obtained when a sphere

of initial radius R. - 1 and initial internal pressure po _ 10-3 atmospheres is imploded at
the ambient pressure/p - 1 atm. The pressure at the boundary, by Equation [1.4c], is

SPPo 
3y



When y - 1.4

.1 ~ 4.2
A"4\.0170/.1

and when y = 4/8

Px "P0o4.0 [4.4

By dividing Equation [4.1] by Equation [4.21, PUAX is (1/.0170).2 or .. 25 times PMAX" Had

a value of y - 1.4 been used in the writer's program, the peak pressure at the bubble wall

would have compared well with that obtained by Hickling and Plesset. A similar statement

is true for those peak pressures in the fluid outside the bubble wall, because the peak pres-

sure varies inversely as the distance from the center of the bubble (i.e. as lir). This veri-

fies the validity of the writer's program and the assumption u 2 << c 2 for the range of interest

( 1000 atm, -P0 -< 1 atm).

The verification against the work of Hickl] • and Plesset shows that small variations

in y, the specific heat ratio, can lead to large variations in the peak pressure associated

with a collapse. Such behavior suggests that the present equation of state, the ideal gas

law, is a deficient description of the gas inside the cavity and that the use of a more elabo-

rate equation of state (e.g., the Beattie-Bridgeman1 1 equation of state) would give more ac-

curate results. Use of the Beattie-Bridgeman equation could be made to investigate the dif-

ferences in behavior of the collapse for different gases.(representing different values of y).

Variations of the kind of gas inside the cavity along with variations in its initial internal

pressure may be used to control the characteristics of the pressure pulse emitted when a

glass buoyancy sphere collapses. Such control might ultimately be used to reduce the dis-

tances between glass spheres in buoyancy sphere systems without increased risk of sympa-

thetic implosions.

SUMMARY AND CONCLUSIONS

1. A program to integrate Gilmore's equations describing the collapse of a .-pherical gas

filled cavity has been written (see Appendix C). The program is general enough to be used

in the study of such phenomena as cavitation and underwater explosion gas bubble pulses,

provided behavior is adiabatic.

2. Parameters from the program for various ambient and initial internal pressures have

been plotted (see Figures 1 through 5).



. The pressure shock wave associated with the implosion may be controllable in two

different ways:

a. Proper variation of the initial internal pressure of the gas inside the sphere.

b. Proper variation of the specific heat ratio y by changing the kind of gas in-
side the sphere.

These two effects should not be overlooked as possible means of protecting glass buoyancy
spheres from sympathetic implosions.

FUTURE WORK PLANNED

1. An experimental verification will be carried out to determine how good Gilmore's
model is.

2. The velocity and pressure curves can be used to synthesize analytical functions to
describe the free-field implosion. This information will then form a foundation for the anal-

ysis of the effects of a single implosion in a system of buoyancy spheres. Such an analysis
has, in fact, been started.

8. The present computer program is now being altered by replacing the ideal gas law by
the Beattie-. 'idgeman equation of state.
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APPENDIX A

A PROCEDURE FOR HALVING THE INTERVAL OF INTEGRATION

The description of Hamming's method pointed out that if the predictor does not lie

close enough to the corrector, then one alternative is to halve the interval. According to

Ralston and Wilf,9 a suitable set of interpolation formulas for Hamming's method is:

YnI/ " (801n + 135y1n-..+ 40yn-.2 + Yn-3) + 256• (-15y/, + 90y/,._. + 15v,;_2.)

1 A

Y-3/- 7- (12yn + 135y,_I + 108y_,,2 + Y.-d + 2•-6 - n,_1 + -27).

where A is the original step size.

In the particular program which was written for the solution of Equation [1.5], the

following procedure was adopted:

1. If p.+, was not close enough to c,+, then an iteration was carried out.

2. If, after the first iteration, the value of pv+, was still not clcrqe enough to c,,+1, then
the interval was halved and the entire integration process at that step was carried out from
the beginning using the new half interval.

As the radius of the bubble approaches its minimum, the radius and wall velocity
become more and more difficult to predict, that is, it becomes more and more likely that

Pn+1 will not fall within the desired limits of c,+,. With the above procedure, more coordi-
nates will be calculated near the minimum where the functions are changing most rapidly

than are calculated in regions of small slopes.



APPENDIX B

JUSTIFICATION FOR THE USE OF HAMMING'S METHOD

The choice between an elaborate procedure like Hamming's method and some other
iterative routine to integrate the equations is easy to make if it is based on economy of com-
puter time. When an iterative technique is used to converge on the correct value of the de-
pendent variable at each step, the finite difference form of the differential equation may have
to be evaluated many timer because the initial prediction of the dependent variable is not
likely to be very accurate. In the case of Equations [1.5], -it is desirable to avoid .the eval-
uation of the finite difference equation as often as possible because it involves so many
calculations, Hamming's method, on the other hand, makes a much more accurate initial pre-
diction of the dependent variable at es~ch step simply because more information about past
values is utilized in making such predictions. Consequently, Hamming's method yields a
more rapid convergence because the finite difference form of the equation has to be evaluated
only once or twice at each step to obtain an accurate value of the dependent variable there.

One disadvantage in using this technique is that it is not self-starting. Values of R,
V, and N in at least four equally spaced intervals near t - 0 are required. Such values may
be computed by expressing R(t) in a Taylor Series in t about zero and using Equations [1.5]
to evaluate the coefficients. This approach for solving differential equations can be found
in any elementary text on the subject, for instance, Coddington. 12 Because of the difficulty
of differentiating Equation (1.5], Herring's 4 equation

d2Rt 3 cIR N2 2 3 d\l2
- 2dt -+ c -\d L .1

PM. p.c.. dt c

rather than Equation (1.5] was used to find the first four values of R, U, and U. This equa-
Uion has also been derived by Gilmore and called the "first order approximation."

As mentioned "n the discussion under Equation [1.5], to find the initial acceleration of
the bubble wall, Equation [5.1] should be evaluated at t - 0+ rather thnn at t - 0 in order to



avoid an infinite initial acceleration. It can be seen from Equation [1.4c) that Equation

[5.1] evaluated at t - 0 contains the infinite term dLpI . The result is

d2R PO - pow

dt2 WOOP,, O +

t-0O+

in agreement with acoustic theory.

"A4



APPENDIX C

THE COMPUTER PROGRAM FOR IBM 7090

The following is a list of FORTRAN IV symbols used in the program.

Corresponding
FORTRAN Symbol Symbol Used Explanation

in Discussion

A R Instantaneous radius of the imploding sphere.

B B A constant which characterizes the adiabatic na-
ture of the liquid medium (for water, B - 8000 atm)

BDYP P Pressure in the liquid at the bubble wall

BO o Initial radius of the imploding sphere

B0D A dimensioned variable name under which the B$,
the unitial radius is read in

B2, B3, B4, B5, -B6 Coefficients of the Taylor Series expansion of R
about t - 0

C co Sound speed in the undisturbed liquid medium

D pM Density of the undisturbed liquid medium (for
water, p. - 2 slugs/cu ft)

DU U Instantaneous acceleration of the bubble wall

H Depth at which the implosion takes place

UID A dimensioned variable name under which H, the
depth of implosion, is read in

PA Atmospheric pressure (14.7 psi)

PL Pressure in the undisturbed liquid medium

PO P0  Initial pressure of the gas inside the sphere

POD A dimensioned variable name under which P0, the
initial internal pressure, ,is read in

R and T t Time measured at the bubble wall

S h The step size, or size of the interval over which
the integration is to be performed

STF1, STF2, The five standoffs for which Eulerian velocities and
STF(I) (I - 1, 2, .3) pressures are calculated; note STF(1) - STFB, etc.

STFD1, Dimensioned variable names under which the above
STFD2, STFD(I) five standoffs are read in
(I - 1, 2, 3)



Corresponding
FORTRAN Symbol Symbol Used Explanation

in Discussion

STFPC1, STFCP2, P Five instantaneous pressures evaluated at the
STFPC(I) standoffs STF1, STF2, STF3, STF4 and STFS,
101, 2, 8 respectively; note: STFPC(1) - STFPC3 etc.

STFUC1, STFUC2, u Five instantaneous Eulerian velocities evaluated
STFUC(I) at the standoffs STF1, STF2, STF3, STF4, -and
I - 1, 2, 8 STF5, respectively

T and R t Time measured at the bubble wall

TSTF1, TSTF2; t The time for each of the-five pressures and veloc-
TSTF(I) ities evaluated at each of the five standoffs,

I - 1, 2, 8 respectively

U U Instantaneous velocity of the bubble wall

Y y A constant used in the expression for the Eulerian
velocity (see Equations [3.1] and [3.21)

YK K3  A constant used in the expression for the Eulerian
velocity (see Equations [3.1] and [3.3])

AP4, AP5 PAO Pn+, Predicted values of the radius, AP 5 is the pre-
dicted value being tested at the (n + 1) th interval,
and AP4 is the previous predicted value of R
which was cloest to the actual value of R at the
n th interval

A4MH, ,A8MH yn-t2' Y/2 When R at the (n + 1),.h interval is being predicted
and the half interval routine is required, then these
are the interpolated values of R between the n th
and (n - 1)th interval and between the (n - 1)th
and (n - 2) th interval, respectively

COD mn+l, m,+t Modifier for U, also derivative of the modifier for
R

C4, CS cat c+ 1  Correctors for U; C5 is the corrector being tested
at the (n + 1)th interval and C4 is the corrector at
the previous interval

DOD Ma+1 Modifier for R

DC0D Derivative of the modifier for U

D4,D5 on, -0+1 Correctors frr R (see C4, C5)

UP4, UP5 Pat ,, Predicted values of the velocity (see AP4, APS)

U4MH, U3MH Yf-W' .n-3A Half interval values of velocity (see A4MH, A3MH)

26



THE COMPUTER PROGRAM

The simplified flow chart is shown in Figure 8.

START

of the Initial radius, Initial internal pressure, and depth just

Using the Taylior series expansion, calculate four Initial values,
iLe., values In four Intervals for each of the following* radius,

Lote thepredo and corre castor fo tse p ruenhatulvau

CalcuFigur 6 moiies Simplifie Flo Char



DATA INPUT

The first data card is read according to the format (12) and must have a number no

greater than 50 in the first two columns (see Figure 7). This number should equal the num-

ber of data cards to follow. Each of the following data cards should contain the initial infor-

mation for a single collapse. Eight pieces of information are placed on each cerd; the card
is divided equally into eight parts, 10 spaces each. Information is read in according to the

format (SF10.4). The first two pieces of information are the depth of collapse in feet of

water and the initial bubble radius in inches, respectively. The next five divisions are set

off for five values of standoff in inches from the bubble center at which a pressure and

(Eulerian) velocity time history are desired. The last division is reserved for the initial
internal pressure inside the bubble in pounds per square inch. The first eight pieces of

information, corresponding to one collapse, will require no more than 2 min of running time.

Each additional card, i.e., each additional collapse, requires no more than 1 min.

DATA OUTPUT

For each data card, the computer will print 2000 lines of output. The first 1000 lines
of numbers are printed under headings TIME, RADIUS, VELOCITY, ACCELERATION, BDYP,

TSTFI, STFPC1, STFUC1, TSTF2, STFPC2, Si FUC2 (see Figure 8). The first five quan-
tities refer to the bubble wall; BDYP is the in.rnal pressure inside the bubble (absolute
pressure, not overpressure). Each line refers to the state of the motion at one instant in

time. STFPC1 and STFUC1 are the overpressure (pressure above ambient pressure) and

(Eulerian) velucity as functions of the time TSTF1 for the first standoff given in the data.

Similarly for STFPC2, STFUC2, -and TSTF2. The next 1000 lines give similar information
for the third, fourth, and fifth standoffs specified. The headings are TSTF3, STFPC3,

STFUC3, TSTF4, STFPC4, ,TFUC4, TSTF5, STFPC5, STFUC5. All time is given in milli-

seconds, the radius in inches, all velocities in inches per second, the acceleration in inches

per second per second, and all pressures in pounds per square inch.
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Figure 7 - Data Input for Computer Program
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COMPUTER PROGRAM

AU I -EFN SOURCE STATEMENT -IFN(S)-

C PROGRAMMER 14- LILLISTON. CODE 745. FXT 3357
C DuCENSITY IN SLUGS/CU*Fr.HNOEPTH IN F79POsINITIAL INTERNAL PRESSURE
C IN LOS/SO.IN*8021NITIAL RADIUS IN INCHESC=SPEED OF SOUNOIN MEDIUM IN
.C INSEC*PA=ATMOSPHERIC PRESSURE IN LOS/SO*IN,STF*STANDOFF IN INCHES
C AND TINE IS IN MILLISECONOS

C INITIAL VALUES
REACIS. I21 )PM

101 FORWAT(12)
DIMENSION TSTP(3.1COC).STFPC(3.1000).ISTFUC(3.IO0fl).STF(3)
DIMENSION A(j41)*U(Il~Jý)),DU(IOk:')

DIMENSION HC(51),UOOt5'2),STFOI(5a).STF02(5C).STFD(3.53).POO(50)
REAI0(5999)(HO(J).80D(J).STFOI(J),STF02IJ).(STFD(I.J),tlul.3),

IPOD(J).JmI.MM)
99 FORMAT(GF1094)

HzHO(J)

STFI=STFO1 (J)
STF2=STF02( J)
DC 9 1=193

9 STP11)*STFD(IsJ)
PCUPOCD J)

C VALUES OF CONSTANTS FOR THE LIQUID -WATER

0*2*O
e=4.A lEA

Cz6.0EA
PA. IA.?
PLwCO~iO32. 21144 .'2PA

C I-EACING
WRITEI6.ee)8O;H.POSTFISTF2.I(STFII).I.1.3)

S8 FORMAT(lHI/lH3/1'//*2X#4AH GILMORES SECOND ORDER APPROXIMATION FOR
I THEI/15X#14H[MPLOSION OF A9F4*1,19H INCH RADIUS SPHEREI//45X*14H
2 AT A DEPTH OFoF8*1*,IAH FEET OiF WATSR///33X*51HWHE" THE INITIAL IN
3TEPNAL PRESSURE IN THE SPHERE ISoF5el*5H PS'IAi///ATX*33H AND THE ST
4ANDOFFS ARE. IN INCHES/b//A8X* 1CHSTANOOFF I ,F21.2///48X*1OHSTANOOFF
5 2.F21*2///A8X~l4CHSTANDOFF 3*F2I*2#//fA8XIOHSTANOOFF A.F21*2/l
64AX91CHSTANOOFF 5eF21*2)

C CALCULATE INITIAL VALUES OF THE RADIUS AND VELOCITY
82u(2.1G73be4).lPO-PL)/1eO.De2.01
B~Ja4.COB2U62/13.ý'eC)-l2.76AeEA).PO*s21(eODO~C)
84.3.'3'82O83/C-A.(.*(820.2)/(3S).Oo0),(2.3736E4')*(-PO*83/(BO*0#C)

I-PL*82,391006*OO8O02).+4.2*PO*(t32**2)/(3*3O9OeD*CO*1))
8Su2.8'182*'3)/(C*80)-2.9o82*t03/80+1.6.te3'.2)/C,3.2'82o'l4,fC

1+12.C73b *(1.2.3UPL*e3/aD.8O..2)-e.0.P*4/(O*eA'&oC.D)
224*lf~JPU"83*82/(eO.O*C4*2))

SO- 1-690. 82002 )0e3~( 15..'*C'O) 44. ý^0bA*83/CGI. '*62't85.(3.0'C)
1-Il 20920*3" 19. *800*2 )-2o9*83*02/2.C '80)-qe 4082*84/(13. 0*80)
2+1 2.-)36F4)'(l .2'PO*A3602/1IiO0D*C..2)+6.4*PO*B20e4/(3.O'SOD0*C*02)
3-2.*CPOOe5/(3.3080*0.C)-PL.B3/1 1.3O*D8O**3)

Sin(1.44E-4)O5ORT(D30*PU00(1.C/39..')*O/PLO*(5.C,/6eD)
WHITEIO. 130)

C NEADINGS
*100 FORVAT(123Hl TIME RADIUS VELOCITY ACCELERATION BDYP



RU - FN SOURCE STATEMENT -IFN(S)-

I TSTF£ STFPCI STFUCI TSTF~2 STFPC2 srpu
2C2)
OC66 1=1,4ol
A( 1)=eO,.RuaN2,B3.Ra.3,*2oI2*4epe*24R*92'05#R**34.RO*3086*Rue3
U(1)22..aN,2*R,3.'*B3*R.*2+4.3*R*64*R**24!ý.C*R**2*85*R**2.

eCYP=PO'BQ*4*/A( J **4

3-U I )/CA( (OCYPsUI/(PL.8) 3**(3oC/i7.C?))

5-u(I1.'C*(PL4e3/(80YP+t3)))/(A(I)-A(1)'U(1i'/C.((PL+S)/(BOYP

Y=A(1)3U(1)##2/2.C,(2.Q736E4)9A(I)*(BOYP-PL)/O*(1.2-
1(2..736E4)*(eDYP-PL)/(2.oO'*C**2))
YK=U(J).(A(Id*#2)*(C*03-)*(100-U(1I#.2/(2.c*C**2))/Y**2

CASTFU=Y*C/SVF14YK*Y6*2/(C**3*STFIV*2)I(C4*2-Y/STFI
1,(YKE*2/CO*3)*(YO*4/C**3)/(2.C*STFI**4)I
STFUCI=C4s Tpu/c**2
STFPCZ=O#( Y/STF 1-STFUC I *2/2. fi 3(2. p736EA 3
I+*(/TISFC*22402/20(*202C3E)
TSTFI=((STF1-A(l))/C)U(1.C-U(I)*A(I),'4C#STFI)),R
CASTFU=Y*C/STF24YK*Y9*2/tC**345TF2**2)* fC**2-Y/STF2

STFUC2=C4STFU/CO*2
STFPC2=OO(Y/STF2-STFUC2**2f2.u)/(2oC736E4)
14C*( (Y/STF2-STFUC2**2/2.C)**2 )/(2.O'(C*'2)*(2o0736E4) I
TSTF2=( (STF2-A(I) )/C)'( 1.0-U(I )*A( 1)/f C'STF2))HR
DO 7,*9 KK=193
C4STFU=Y*C/STF(XKKJYK4YO#2/(C**3aSTF(KK)*42)*(C**2-Y/STF(KK)
1.(YK**2/C#*3)e(Y*04/C**3)/(2..,*SrF(KK)0*4))
STFUC(K#IC.I)=C4STFU/C**2
STFPC(KK,1)=C*(Y/STF(KK)-STFUC(KK,1)0*2/2.O)/(2.0o736E4)
1,CU(fY/STF(KK)-S1FUC(KK*&fl*42/2.()**2)/(2.O'IC**2)*(2.0736E4))

709 TSTF(KK,1)=(lSTF(KK)-A(I))/C)*~lo.C-Ull)9A(1)/(C*STF(KK)Y)+R
PRwlI.~-E3
TSTFI=TSTFZ*3 .0EZ
TSTF2=1STF2*1£ OE3
RITe (6, 11*)RA( 1) U( I) ,U( 1) ,5YP,1STFISTFPCISTFUCI ,TS1F20

ISTFPC2#STFUC2
110 FORliAT(F11.6.Fe.5.2El13.5,E12.5,2(F9.6,2El3..5))

R*R*1 ..F-3
TSTFI TSTF 101.OE-3
TSTF2=TSTF2' I .*E-3

66 R=R4S
TZR

C INITIAL VALUES FOR PREDICTORS AND CORRECTORS
UP4=U(4)
AP*=A(43
C4sU(*)
C4sA(4)
0=

C USING THiE FO~UR CALCULATED INITIAL VALUES ABOVE, B3EGIN INTEGRATION
00669 1=591(.r.091



RUI I -EFII SOURCE STATEMENT -IFN(S)-

250 L=3
700 U~P52Ut1-4)*490*S*(2.*.*OUt1-2)-OUt1-2)+2..-*OU(I-3))/3.O

230 CQOCUP5-1 12.C'*tUP4-C4)/121o0~
GOCzAP5-1 12*vtAP4-Q4)/121o*

1-3o..COO*U2/2.0-7.'0OtPL,8)/(6.O00)*t2.C736E4)t 1.2

2-I tPOutt3O/OO)e44+0)/(PL45))'Ote.,;/7.0)+COO/C*t(PL
3+8)jt4PO'tBO/DOOO)@'4.8))*.t3.C#7.O)-CIJO/C*t tPO'tBO/DOO) 044+8)/(PI-
4+8) )6*t J.../7.C))
5-4.!ICOOOPOOt8O/000)0*4/(O*C)Ot2.O'136E4)*(ttPOtBO/DOD)"*4

7-COC'COO/C*ttPL4e)/tPOOteO/000)'*4IO))"t(3.0/7.O))
C52t9.3*Ut 1-1)-Ut 1-3),3.J.S*tCCOO+2.O~OU( I-I -DUt 1-2)) 3/8.0

G=AGStUPS-CS)

C IALF W~ERVAL PROCEDURE
400 SMS/2.0

A4MHst8.;.0'At 1-I )*135.0'At I-2)+4E4.C'At -3)+At 1-4) )/256.0

4,S*t-3. , UtI-1)-!,4..*OU(I-2)427.'*U(1-3))/128.O

At 1-4)=A3MH
At1-,3)=At 1-2)

At 1-2)=A4MH
Ut 1-4)=U3mM
U~t -3)=Ut 1-2)
Ut 1-2)UA4Mt

0CY0=PO*tliO/At 1-4) )~4*

1-3.K.'*Ut 1-4)O#2/2o0-7.C*tPLie)/t6.0*O)*(2.0736E4)*t1.Q

4-4.iJ*UtI-43u8O0YP/tOeC)*t2eO736E4).ttf.ZýYP.B)/tPL

OUt 1-3)=OUt 1-2)
eCYP*POut 8O/At-1-2) )f*4
OUt 3-2)=1 tUtI-2)"*3)Ot t PL.B)/ttUDYP+B) )*'t3.Q/7.O) )/t2.0*C)

4-4.o7'UtI-2)*OOYP/tO*C)*t2.0736E4)*DttBDYPR)/(PL

b-A(I-2)eU(1-2)/CettPL,8)/t50VPb)).*t3.O/7.)3))

L=L* I

C SET UP FOR I~ TEATION
260. UPS=C54'.C4 tUP5-C5)/)dl90.

AP5xD5+9.02'tAP5-O5)/121.O



RU I-EFN SOURCE STATEMENT -IFN(S)-

C CALCULATION UF FINAL VALUES
210 U(I)=C5.9*04(UP5-CS)/121*0
500 A(I)=O5+.i.')(AP5-D5)/I2I.0

BCYPmPO*B**4~/A( I)**4

2-((8DYP,8)/(PLD))#*(6.0/7.C0),U(I)i/C*((PL+U)#'(BOYP+8+.**(3.e0/7.0)

4-4..*U(I)BODYP/(O*C)*(2.;736E4)*U((BOYP+13)/(PL+8))'*(4.%/7.O)

6+L1') )**( 3.*i/790) I
Y=A(!)*U(1)a*2/2.c+(2.C736E4)*A(I)*(BDYP-PL)/O*(1.0-

1(2.1736E4)*(ROYP-PL)/(2.;'*OeCe*2))

I-A( I )(C**2)'(1.4-U( I)/C)/Y
C4STFU=Y*C/STF1,YK*Y**2/IC**3*STFI**2I *(C**2-Y/STFI
1,(YK*,2/COe3)I(Y444/C**3)/(2.C*STFI**4))
STFUCI1C4STFU/C*02
STFPCI=C*(Y/STFl-STFUCIO'2/2.Jl/(2.0736E4)
I4C*((Y/STFI-STFUC1*U2/2.O)**211(2.C*(C**2)*(2.0736E4))

C4STFU=Y*C/STF2*YK*Y**2/( C"3*STF2*'2) *(C**2-Y/STF2

1,(Y'c**2,Ce*3)*(Y444/C**3)/(2.(*STF2**41)

STFUC2=C4STFIJ/C*02
STFPC2=nU(Y/STF2-STFUC2**2/2.(,)/C2.,)736E4)
1I0ceUY/STF2-STFUC2e42/2.O)**2)/(2O*0*C**2)*(2.0736E*))
TSTF2=f(STF2-A(I))/C)*(1.0-U(I)*A(I)/(C*STF2I))T
DO 718 KK=193

C4STFU=Y*C/STF(KK),YKOY**2/(CA*3*STF(-KK)*2)I(C**2-Y/STF(KK)
1,(YK**2/C**3)*(Y**4/C"*3)/I2.C*STF(KK)**4))
STFUC(KK I )=C4STFU/C**2
STFPC(KK.I)=O.(Y/STF(KK)-STFUC(KKI)*02/2.0)/(2.0736E4)
140*((Y/STF(KK)-STFUC(KK.I)**2/2.O)*42)/t2.O4(C**2)*(2.0736E4))

708 TSTF(KKI)=(tSTF(KK)-A(l))/C)*(1.0-U(J)*A(I)/(C*STF(KK)))4.T
T=T*1.OFE3
TSTFI=TSTF 1*1.OE3

TSTF2=TSTF2' 1 * E3
WRITEf 6,169 )T, A( 1) U( I) .U( II.9YP ,TSTFI, STFPC 1.STFUC I.TSTF2$

1STPPC2. STFUC2
169 FORMAT(F1I.6,FS.5.2E13.!,E12.5,2(F9.6.2E13.5))

T=T*I .OE-.3
TSTF 1=TSTF 1*1 OE-3
TS1F2=TSTF2*1I.)E-3

C RELOCATE CERTAIN QUANTITIES FOR THE NEXT STEP OF THE INTEGRATION
C42CS
O045D
UP4=Ups
AP4=APS

IF(A( 1)-At 1-1) )6699669.240
240 IF(UtI))7sh6699669
669 T=T+S

GO TO 7'
71 wRtTE46.75)
75 FORMAT(57HTPC PROCESS 'IS.NOT CONVERGING QUICKLY ENOUGH AT SOME STE



RU I - EFN SOURCE STATEMENT - IFN(S) -

ZP)

70 IF(N-|.'t,'?7.)223,223

223 WR1TE(6*224)
224 FOAMAT(9"H 1(0OO VALUES HAVE B.EN CALCULATED BUT THESE VALUES 00 NO

IT COMPLETE T'E E.NTIRE FIRST PERIOD)

7 WRITE(6,1.)7)
107 FURMAT(120HI rSTF3 STFPC3 STFUC3 TSTF4

I STFPC4 STFUC4 TSTFS. STFPC5 STFUCS

00 715 is1.3
00 715 t4u1s,1U0

715 TSTF(I.N)u.rSTF(I9W)*1*.0E3
WRITEI6.?31)(UTSTF( 1.N) STFPC(I.N) STFUCI jN)oul 3) ,NutI.00) )

701 FORMATtS(FV'.e.2EISe6))
I CONT INUEZ

222 STOP
ENO
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