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ABSTRAQCT

This report describes a method for scheduling preventive
maintenance to minimize expected average hourly maintenance cost
based on a criterion of periodically observing deterioration In one
or more equipment performance characteristics. The mathematical
procedure requires expressing the deterioration phenomenon in the
form of a simple Markov process. The implication of this mefhod is
that a forecast of equipment failure is based only on existing per-
formance level and 1is independent of any history of prior deteriora-
tion rate. The criterion for scheduling preventive maintenarmce 1is
expressed as a method involving matrix multiplieation rather than as
a simple algebralc formula or a series of curves, This was necessi-
tated by the large number of input parameters consisting of mainte-
nance cost parameters and a matrix of probahllities descriptive of
the deterloration phenomenon,

Hypothetical numerical examples establisned the potential of
this method fox achleving real saving in maintenance cost, The
method provides a systematic search for "lemon" equipments, and, con-
versely, protects against discarding those egquipments which tend to
maintain high performance levels over extended perilods of time,

As an added result of this analysis, th~ algebraic¢ method pro-
vides a technlque for collecting deterioration data In terms of dis-
tributions and not Just averages, .

It was apparént in the numerical work that the underlying fail-
ure density function 1s critical in determining the amourt of saving
which can be achieved by this method. The coefficient of variatlon
is especilally critical, More theoretical studies and fleld data
collection in this area are indicated. It is important to observe,
however, that the method is distribution free since it does not
depend on prior knowledge of the time to fa‘lure density function,
However, the methods of data collection, definition of states or per-
formarice levels, and the selection of proper time intervals present
pecullar problems which require care in the application of this
method. These polnts are discussed in some detail in the Appendix. .,
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I, INTRODUCTION

The first ARINC Research Corporation monograph in this serles
presented a method for determining a preventive malntenance schedule
based upon part replacement prior to in-service fallure.* The model
used in that,monograph related equipment operating time between such
preventivé maintenance actions to the expected daverage hourly cost
of maintenance. This model was based on the assumption that s meas-
ure of equipment deterloiratlon was mot avallable; consequently, the
method 1s applicable in those cases where deterloration is the pri-
mary'cause of fallure but cannot be measured., For those cases in
which 1t 1Is possible to monitor equipment performance periodically,
and thus to measure the degree of deterloration, a different proce-
dure for the selection of a minimum-~-cost preventive maintenance
schedule can be used. 7The development of such a procedure 1s the

purpose of this second paper in the series.

Basic to>this paper are the assumptions that gradual deterilora-
tion is the principal cause of failure in many equipments, and that
deterioration 1s reflected in the experimental data collected In an
equipment. study. Measuvements of equipment deterioratlon, together
with‘assbciated failure probabilitles and cost parameters, are used
to compute expected averagé hourly malntenance costs. The "optimum"

preventive maintenance schedule 1s that In which the expected average

*+ Welker, E. L., Relationship Befween Equipment Reliablility, Preven-

tive Maintenance‘?ol’ic¥I and Operating Costs (Monograph No. 7 J,
: eseare orporation, Washington, D. C., February 13, 1859

(Publication No. }01-9-135).
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hourly cost of malntenance 1s at a minimum, The ancwer 1s expressed
in terms of the level of equipment performance and the time between

performarnice measurements.

1.1 Type of Maintenance Situatlon Described in the Paper

The maintenance situation modeled here is illustrated by the
case 1in which malntenance personnel for a fleet of trucks periodically
neasure the depth of tire tread. As the tread wears down there 1s an
increasing probabllity of tire fallure in a given subsequent time
periocd, If fallure of the tire in service 1s assoclated with costs
above that of the actual cost of replacing-the tire (e.g., a blown
tire would result in lost man-hours or a wreck) it is desirable to
replace the tire at some convenlient scheduled time prior tc the time
of this in-service faillure., Replacing the tire too soon will inerease
the cperating cost through wasted tire-miles. Replacing the tire
after the tread has become extremely worn will mean high cost through
a high in-service fallure rate. Obviously there is an "optimum” depth

of tread which, from a cost standpoint, warrants replacement of the

tire.

Similarly, the ratio of signal-plus-noise to nolse in a radio
recelver might be a performance characteristic upon which a computa-
tion of "optimum" time for repair could be based. As the ratio of
signal-plus-noise to nolse decreases, there 1s an increasing prob-'“
ability that the receiver will fail in operation within a given sub-
seqﬁent time perilod. ‘Ihtuitively, there should be some optimum ﬁétio

of signal-plus-noise to nolse which, from a cost standpolnt, warrants

)

equipment repair.
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1.2 Critical Basic Assumptions :

As indicated earlier,\Qwo assumptions are impilclit in the method
A

==
to be described. It 1s assumed, first, that system failure results

A\\

primarily from a process of degeneration with time, and, second, that
the most significant wear-out phenomena are reflected in the perform-
ance charactefistic which 1s measured. Thus, changes in transconduct-
ance, an increase in leakage, and mistuning might all be reflected imn,
for example, the ratio of signal-plus-nolse to noise, Obviously, it
1s rare to find all modes of fallure reflected in a single measured
characteristic, In the fire 1llustration, measurements of tread

g “ . would give no direct clue to the probabllity of sidewall failure; and,
1 sidewall fallure contributed significantly to in-service Ffailure,
measurement of tread alone would be an insufficlent test, In the

‘ following‘material, only one measurement of equipment pecformance 1s
- A discussed, although the method can be ex?ended to those situations

]
in which several measurements are taken (see Section 2,1.4).

Equipment fallures are usually determined by elther or botn of

two classes of personnel -- by maintenance personnel, who evaluate

= . the operational level of the equipment through periodlc tests or

]

?l 3 1.3 Definition of Failure
i measurements; or by operating personnel, who evaluate the equipment
4 3
|

through observation of performance, the end out-put of the egalpment
operatioh.

T
M~ ‘

¥ ‘ , During periodic checks maintenance personnel will remove an

equipﬁent from seryice Aif in thelr Judgment the performance level 1s

service even though the operator does not express dlssatisfaction with

Y
{

1

|

i iy § .

i too low to be adequate. Thus, the equlpment may be removed from
I b
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pvvformuﬁcc”‘ On the other hand, the dferatoy may. rejeet the equipment
even i i1%s performance -- ag subsequently measured by the maintenance
man -- 1s falrly high. An equlpment which is taken out of service for
repalr as 4 result of dissatisfaction on the part of either the main-
tenance man or the operator 1s defined as a failure in this paper.
Maintenance actlions p.rformed as a resglt of such removal from service
are to be disginguished from maintenance actions on equipments whose

leyel of performance 1s consldered adequate by both groups of persons

nel. The latter actlons are defined as preventive maintenance.

1.4 The Maintenance Problem

The maintenance pfbblem can be examined in more detaill by refer-
ence to Figure 1. The curve, beginning with peak performance scaled
av 1,0, 1s typlcal of the average level of a Peésured performance
characteristic of an equipment over time. {See Section 2,2.2 for a
discussion of variations about the curve,) The dotted line in Figure

1 1s the level of the measured characteristic at which failure

AR-0203"

LEVEL OF MEASURED PERFORMANCE

TYPICAL DETERIORATION OF A PERFORMANCE
CHARACTERISTIC
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oceurs ;_'; level below whiq? tﬁeré 1s agreement that the performance
o%‘thé set will not’be‘satisfacfory. It 18 recognized that there 1s
no clear ling af demarcat;on betwean satisfactory and unsatisfactory
performance; the 1eveloindicated by the aotted line in Figure.l is
1ntrqdu¢ad.only for reasons of exposition. Possibly it 1s better
stated that there exists a different probabllity of failure — as
defined in Seection 1,31~~‘with each performance level. This differ-
encé in the probabillity of fallure 1s reflected in the probability

matrlx to be used, and 18 dlscussed in detall later, .

The maintenance personnel examine an equipment at time £ and
note the measured level of operation. If performance has a value
comparatively close to the dotted line, the decision may be made 1o

repair, Thiﬁ is particularly true if maintenance personnel conclude

that there is a high probability of failure prior to the next mainte-
nance 1inspection, The time interval to the next inspection is
obviously involved, since the longer this interval the greater the
probabllity of failure in the interval. Thus, the longer the time
interval to the next inspection the higher must be the level of
performance at which preventive action should take place. The gues-
tion to be answered is: What level of performance with what time in-
terval between inspections will provide minimum operating cost? The
model developed in Section 2 is offered as one method by which the

{
answer to ‘this Qquestion may be determined.

e e




2, GENERAL METHODOLOGY

2.1 The Markov Process

The maintenance situation described in the previous section
implies a medel which can be described in terms of a Markov Process.*
In ordez to do this, it 1s useful to think of the equipment perform-
ance characterlstics as discrete variables whose separate measured
levels are called "states." Similarly, it is convenient to assume a
discrete time variable for perlodic performance measurement. This
time interval can be associated with the concept of "trial" commonly
encountered In discussions of Markov processes, In a Markov process,
one 1s concerned with the probabilities of transition from one state
to another in a single trial. The analogue in the present case is
the probability of a transition from one equipment performance level
to another in the time interval between inspections, It is now
necessary to describe these probabilities in mathematical form, using
the words "state" and "trial" for brevity of expression and to facil-
itate reference to the discussions of the Markov process in the l1it-

erature.

The essential element of a Markov process 1s 4 set of conditional
probabllities, P13 the probabllity that if the equipment is known to
be in state 1 1t will pass to state J in a single trial. These prob-

abllitlies can be conveniently written as a matrix, called the

* For a discusslon of dlscrete Markov chalns, see Feller, W.,
An_Introduction to Probability Theory and Its Applications,
John Wiley & Sons, Inc,, 1950, Chapters 15 and 1.
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transition matrix of' the Markov proddss,* Pur as simpi: case 1in yhiéh

1 Yy

~there were iLwo gbates, the transition mulrix would appedar ai:

al a:_)
41 P11 P1p
a2 Pp3 Ppo

For clarity, the states are indicated in the rows and columns as aq
and 84. The matrlx value P11 15 the probablility that 1f state a4
existed at trial k, thls state would still exist in the nezt trlal,
k + 1, The value plg is the probability that i state ay existed at
trial k, 1t would change to state ap in trial k + 1. Thus, we have

a set of condltienal probablilitles: gilven that state ay exlsts, Pij
1s the probabllity of belng in state dy following the immedlately
subsequent trilal. Since the above transitlon matrix states only what
happens during the transition should state aj exist, it is necessary

to know initially what state does, in fact, exist.

The initial pr wvabllitiles assoclated with the exlstence of the
various states are convenilently written as a probability vector -- a
vector with as many cclumns as there are possible states.* For the
two-parameter situation above (aj, ap), the probabllities =f initlally
belng in the two states are written as the vector :

[ay Q]
where q; 1s the probabllity of beginning in state a2y, and g 1s the
probability of beginning in state a,. If an experiment always begdn
in state a;, then the vector would be:

[1.0 0]

-

—

* A probubilllty vector is a one-row matrix whose ¢lements are non-
negative and total 1.0.
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If there were an equal chanee that the experiment would start out in
elther of the two classes, t:2 vector would be:

[.5 .51 .

If this vector 1s multiplied by the transition matrix, it will
produce the probabilitles of being in the two states at the end ofr
the first period. The product also will be a probability veetor. If
this second vector ig multiplied by the transition matrix, it will,
in turn, produce the probable states in the second period, and so on,

This procedure is referred to as "chaining,"

A matrix of transition probabllities (in fact any stochastic
matrix), together wlth a set of initlal probabilities, completely

determines a discrete-parameter Markov chain,¥*

To 1llustrate, consider the followlng example: A man tdkes a
business trip and leaves hls wife at home., It 15 well establlshed
that wives consider business trips only as riotous Iinterludes to a
humdrum existernce which, 1in theilr position of servitude, they are
denied. To mollify her sense of soclal injustice, there 1s a certain
probability that the wife will immediately buy a new hat, Thus, there
are two possibile states: hl’ in which a hat 1s purchased; and hp, in
which a hat is not purchased. There are probabillities awsoclated with
each, which‘each businessman must empirically detgrmine for himself.
Thus, the traveléd anticipating a possible ouvcome of his trip could
put these two states in a probabllity vector, 2:

I

[

* A matrix is stochastic if each of the rows totals J.0 and there
are no negative terms, In this paper, only this type of matrix
is discussed. : :
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hl ng
2= [.9 I

In vector z, hj denates "hat", and h, denotes "no hat."

For every week that the mur 1s away from home, there 1L uanother

set of probable events. At the end of the week, or at the beginning

, of the utecound perlod, there is 4 probubllity thut the wife, having

purchased the hat, keeps 1t (py1); the probability thut the wile, not
having previously purchased the hat, does co (pzl)5 the probabllity
thuat the wife purchaéed the hat and returned it (p12)3 und the prob-
ability that the wife did not purchase the hat and therefore did not
return 1t (ppo). (Note that the first number in the subscript per—

tains to the state in the first perlod and the second number to the

state in the second period.) These probabilities form the transition

matrix breviously described -- {.e., the sum-tofal of all possible
outcomeis. Since the first subscript is the row subscript in the
matrix notaéion, the rows will denote the states in the first time
period k, and the columns (the second subscript) will denote the
states in the second ime period. For example, a transition matrix

might have tge followlng values:

hy ha
h .8 .2
ho ¢ S0 .

‘ If one multiplies matrix A by the probabllity vector z, the
result will be the probability that the wife will have a hat ut the

conclusion of the first time perilod -- 1l.e., one week.¥* Tnus,

# This 15 row-column multiplication of mutrices. For those not
familiar with mutrix algebra, a short, lucld discussion can be
found in Mood, A. M., Introduction to the Theory of Statistics,
McGraw-H11l Book Compuny, iInc., Now York, 1950, p. 171,

10
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.8 .2 hl h;:
h, h
roe = [.90.8) + .10.7)  .90.2) + .1(.2)]
.9 .1}
g .3
hi b
= [.,79 21y o= (1),

The provabllity of having « hat at the end of the first week, hl’ is
the probubility that « hat was purchased times the probability that
the hat, having been purchased, was kept (.9 x .8), plus the probupil-
ity it was not purchased at the beginning of the first week times the
probability 1t was purchased at the end of the week (.1 x .7)., Thuc,
the probabllity that the wife owns a new hat at the beginning of the

second week 1s .79.

What happens as the secord week passes? If one assumes that the
wife's feelings of servitude have not Increused with the resulting
purchase of a grand plano, an estimate of events may then be had by
multiplying the second vector, z(l), times the transition matrix,

.8 2 hy ho
=[.779  .221] = z(2)
7

Thus, there 1s a smaller probabillity that the wife will own a new hat

[.79 .21]

at the end of the second week than at the end of the first. (It is
hoped that the loglec of this outcome will not invalidate fﬁe axample. )
Successive multiplications of the resulting vectors times the original
matrix wi%} produce the probtabllitlies for succeeding weeks away from

home .

After a few multiplicatlions (weeks), the businessman will note
that the two values change very little between suctessive weeks and

soon become "stabllized." This would indicate that after u while, a

1
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longer stay will not materially change the probabllities that « hat
will be purchased. For the third multiplication, z(2)a,
. . b hy

[.779 .221) = [.T7T79

[

Thage same vectors, z(l), z(g), 2(3), .ens z(n), ve.s Can be
generated by ralsing the matrix to successively higher powers and

multiplying each power of the matrix by the original probabllity

vector, 2, Thus,
.78 L2
(.9 .11 a2 = [.9 1] “
7 .23
= [.779 .e21] = =2(2)
(.o .11 a3 = [.7779 .ee2a] = z2(3)
et cetera,

Also, as the stochastic matrix is raised to higher and higher powers,
agy and akj approach equality for every i and k., ZEach row will
approach the same values as the probabllity vector obtained by multi-
plying this power of the matrix by the probability vector.*

4

+ fThe following discussion will involve only the above-mention.d ma-
trix characteristics. A more complete discussion can be found in
Kemeny, J. G., Snell, J. L., and Thompson, G. L,, Introduction to
Finite Mathematics, Prentice-Hall, Inc., 1958, Chapter V, Ssctions
7 and B. On pages 220 and 221, there are two theorems of interest:

(1) If P 18 a regular stochastic matrix, then:
(a) the powers P" approach a matrdx T,
{(b) each row of T 1s the same a3 the probablility vector t,
{(c) the components of t are positive,

(2) If P 13 a regular stochastic matrix and T and t are glven
by the previous theorem, then pP"” approaches $l whenever p
i1s any probabllity vector,

e e
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This "utable stale", as 1t will be referred to hereafter, is
approached as a limit,

1im z(MA = 1im 2aP*] = z( @),
n— o n — ®©

]lcvw:*ver, 1t 1a not necewssary to carry out this limiting process to

“dotomine w2 (@),

It can be determined as a vector which, when multi-
plied on the right by the Lransition matrix, will reproduce itself.
This meang that z( @) canh be found by solving a system of linear
equatlons, I the voector z(w) is represcnted by [a‘l a?_] » and the
same stochastlc mairlx as in the previous example 1s used, we have:

.8 .2

i
”~
Q
)
R .
n
-

[ay @yl |
.7 .3 ’
By regular matrix multiplication, we obtain the system of equations,
Ba; + Tap = aj
@] + 3ap = ag -
These are two linear, homogeneous equations with no unique, non-
trivial solution. However, one equation can be replaced by

a, +a, = 1 ,

1

which follows from the fact that z(m) is a probabllity vector. This
gives the system
2@y - .Ta, = 0
a; + @, = 1
The solution of these two linear equations ylelds a, = 2/9 and
ay =7/9, orap = .2222 . . . anday = 7777 . . . . Note that thesze
values are not greatly different from those in 2(%) ana a:(s)~ This

fact indicates very rapid donvergence in this Markov chain,

. SRR
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2.1.1 Markov Process and Continuous Mudel

This’Mafkov process i1s clearly a discrete one, consisting of
finite steps or trials. Such a model 1s 1ldeal for desecribing some
phenomena which occur 1n dlstinct steps rather than continuously with
time. Experiments in genetles often furnish good examples. A given

mating will produce an offspring with probabllities of certain given

characteristics. The mating of the offspring -~ a finite step —-
willl produce the given characteristics with another set of probabll-~
ities. In the field of electronics, the return of a signal on each
rotation of a radar antenna ~- the blip/scan ratio -- has been de-
seribed by a Markov process. Here each turn of the radar forms a
distinet "trial." However, in the equipment deterioration phenomenon
considered here, the situation is no longer discrete but is a contin-
uous function of time and the values which appear in the transition
matrix are dependent upon the time interval selected., Consider dete-
rioration from state a; to state a,. The value of p;, would be con-
siderably smaller if determined over an interval of one hour, than ir
determined over an interval, say, of one month. In dsing a Markov
process 1ncdeterioration models one must be aware of this discrete
aspect. This alone should not present great difficulties, for contin-
uous phenomena have long been approximated by discrete methods and it
i1s a natural consequence of perlodic rather than contlnuous monltoring
of equipiment performance. But it means that the seiectlon of the time
o “ interval for developlng the transition matrlx must be made with some

E. ° ] considerztion of this inherent discrete characteristic.

Attention 13 called to another aspect of the Markov process.
The development of each step in the Markov chain uses only the infor-

mation (the probable states) which existed in the immedlately

[
o

24
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;; preceding time period and no other. In other words, the states
exlsting prior to the immediately preceding ore are not drawn upon

for Information, rior is the manner in which the preceding stufe was

reached used as contrinsuting information. Thls 1s stated by Feller

(p.337) -- "Conceptually, a Markov process 1S the probabilistic ana-

logue of the process of classi=zal mechanles where the future develop-

ment 1s completely determined by the present state and 15 independent |
of the way in which the present state has developed."

If the deterioration process preceding a measurement has been {
exceedingly rapild, or conversely slow, the incorporation of this in-

formation should contribute to a better prognostication of system

perforiiance, To the degree that this information 1s not used, the

first-order Markov process may leave room for improvement in actual

application.* Perhaps similar application of higher order processes K
R
may correct this, but this i1s not belicved to be a critical deficiency ﬁ

in the model in v1§y;of i1ts intended application. The procédure to
T

be used here does AEXQ use of a significant portion of the avallable

AN ¥

information and later ARINC Research Corporation studies will examine |

methods by which the additional information might be incorporated,

L et

~

~--2.1.2 Application of the Model to a Theoretical Problem

-

gﬁé transition matrix i1s determined experimentally in the manner
described 1in thé;apbendix. The probabilities Pgy are determined {rom

1 periodic measurements of the performance of a number of equipments.

Ql?"

*# The Markov process described in the previous example is a first-
order or simple Markov process. Higher order Markov processes
are those in which the transition probabillties depend on two or
more preceding time perlods. See Dood, J. L., Stochastic Processes,

p.89, John Wiley, 1953, | BRI
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At each measurement perlod, the number of equipments which have moved
from one state to another 1s recorded. The number of Jdevels of
equipment -states 1s a matter of Instrumentation and Judgment. More
sensitive instruments will permit the selection of more elasczes or
states into whlch the variable can be divided. Generally, the more
clagses there are 1n the transitlon matrix the better, since we are
approximating continuous phenomena by discrete steps. However, a
large number of classes may require that processing be done by machine,
since the matrlx computations are certain to be laborious, For pur-
poses of explanation, assume only four classes or states of system
performance. Iet state ay be peak performance, state an be inter-
mediate performance, state ag be marginal performance, and state ay
be fallure. A series of observations of equipment performance would

yield the following matrix:

al a2 2.3 3.4
a3 P11 P12 P13 Py
A 2 Po1 Paa Fpz Py
%3 “ Ps1 Pgp Pz Py
q Nl Puz Pue Pyz Py .

The interval selected for collection of data must be sufficlently
short that only a few equipments will "skip" classes a5 their perform-
ance deteriorates. What this interval 1s wlll depend upon experimen-
tation and experience with the equipment., 7The error resulting from
Selectlon of too short an interval willl not be large. However, 1f too
long an interval 1s selected, "second generatlon" equipments which
have been repaired and returned to higher levels of operation may

materially affect the data. This problem 1s covered In the appendix.,
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2.1,3 Classification of Fallures In the Trancitlion Matrix

In the preceding dlscusslon, operating state ay was defined as R
fallure, However, equipments whlch actually have values higher than '

a) may be removed from serylce If cperating personnel are dissatls-

4 fled with performance., Thus, when the transition matrlix is prepared
from experimental data, class‘a4 will have a dual meaning. For ex-

ample, if an equlpment has measured performance in class ap, but is

i; known to have been ordered removed from service by the operator during 1
|

the interval, this equipment 1s classed in state ay. Unless there 1is

: perfect functional dependence between the measured characteristic and

the frequency of fallure, state ay will include & combination of

equipments -- those actually observed to be in state ay at the end of
the interval and all other equipments removed for repalr, regardless

of their measured level of operation,

o

This failure classification can be described another way.
Suppose that the transition matrix i1s based solely on the measured
values of equipment performance, and the same four levels of the

characterlstic are assumed. The matrix can be written as

P e By i .
s

31 32 83 au
%1 P1n P12 P13 Puy
( A 82 Poy  Paz  Pa3 Py
( =
; &3 P31 P32 P33 Py |
’ a, 0 0 0 1 .

With each level of performance, there 1s a certain probability of
failure, and as the performance level decreases, we expect an increas-
ing probabillity of failure. Thus there are fallure prodbabilities

assoclated with each statey
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al 1'3.2 33 au‘

[ £ £, f3 1] .

Again it 1s assumed that the last measured state unmistakably

represents an equipment fallure.

The probability that an equipment in state a; 1s not declared a
faillure 1s 1 - f;. A fallure/non-failure matrix can be written:
1-1fy 0 0 £y
0 1-7F5 0 =
0 0 1 - f3 f3
0 0 0 1
Then,
Py (1-f1)  Prp(1-fp)  Py3(A-f3)  Pygfytpopf #PasfarPyy
Po1(1-f1)  Ppp(1-f5)  Pp3(1-T3)  PoylytPpofotPpslatPoy
P3y(1-f3)  Pgp(1-fp)  P33(I-T3)  Pypfy+Pgnl+Pagfatay
0 0 0 1

In this example, pjj(l - £3) 1s the probability that after one

time interval the equipment will remain in state aj 1f fallure has

~not_occurred; p12(1 - f2) 1s the probabllity that after one time
interval the equipment wll; have moved to state an, again if fallure
has not occurred; and so on. The fourth column gives the fallure
probabilities in the dual sense. This type of transition matrix 1is
the one which is dealt with in the remainder of the paper.

S ‘ 2.1.4 The Extension to More Than One Performance
] o Q : Characteristic

The fallure probability vector has two extremes, which for four

measured levels are

AN
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[0 0 0 1]

and
[ 14 1/4 1/4 1/4 ]
In the first extreme, fallure 1s functlonally dependent upon the

L

measured performance characteristic; in the second, when each entry
is 1/4, the measured performance characteristic is of no value in the
prediction of fallre and another characteristic should be sought.
Between these two extremes, a comblnation of characteristics is

suggested ~- that 13, a second measured characteristic may account for

‘,.A-., P

I

|
|
|

causes of fallure not covered by the first one. It 1s posslible to

form a system of stater based upon a combilnation of measuremants of 3

the two characteristics in the following manner. Suppose, for example, ﬁ

that the states of the initial characteristic are aj, ap, ag, and ay,
and that the states of the second characteristic ave by, bp, and bg.

This array of combined states may be written as

a; a, ag 2y
by | ¢y ey cg ey ’
1‘ pa 05 s c7 cg
b3 g 20  °m;1 %12 -

Thus, Crp represents state az for the first characteristic and state
by for the second characteristic, It is now possible to treat the

¢4 as a new variable with 12 states, by use of the methods described

herein. The extension to more than two characteristics 1s obvious.

2.2 Numerical Example of the Model

fonslder a numerical example of a transition matrix.#

r # This matrix was developed as the matrix AF in Section 2.1.3, For
convenlence it will be denoted simply by A in the remainder of the
paper. i
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This mat.1x has the property that once an equipment progressszs into
2 lower state 1t wlll not, in the interval, go to a higher state,
i.,e., repalr 1tself. Thus 4 i35 a triangular matrix in which the pij
are all zero for 1> j. (Note also that Pyy = 1.0. If a set begins a
period in the failure state, Ay 1t will be there at the end of

period, )

Usually, one would expect a transition matrix to have non-zero
values below the maln dlagonal. However, i1f the characteristlic belng
measured is really a deterioration phenomenon, the probabilitiles of
transition to higher performance states should be quite small, The
m22ix should tend to be triangular in the sense that the values of
pij should be very small 1f 1> j. Furthermore, one would usually
expect pij to be quite small if 1 1s much smaller than J. In summary,
+his means that the performance characterlstic selected for measure-
ment should be one for which improvement 1s rare, deterloration 1s

common, and states are so defined that equipments do not commonly

.deteriorate more than one state in the baslc time interval of the

transition matrix. All three of these properties are satisfled by
the numerical example selected. Tha first conditlon 1s satislied
since Pnys 931’ p32, pql, Pyos and phB are all zero. The non-zexro
values of P11, P12s» Pans Pu3> P33s P3ys and ppy are consistent with
the second property. Finully, the zero values for P13, P1Y4» and pny
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reflect the third property. It should be ost.«used, however, thut the
method can be used to develop state distributions no matter what the

form of the stochastlc transition matrix.

From an engineering viewpoint, it 1s Important to reallze that

the assumptions of deterloration and acecurat-: instrumentation natu-

rally lead toward a trlangular matrix., If the experimental data do
not reflect this, it would suggest that the measured churacteristic
is not a good one on which to base prediction of faillure, or that the
accuracy of measurement is too crude to monitor equipment perlformance,
or that both of theue conditions hold. In this case, the situation
must be examined to see 1f another characteristic must be selected,

or 1f instrumentaticn can be improved.

We can, from this Informatlon, generate the failure density func-

tion of the equipment. If the equipments a2ll begin in state aj, then

the 1initial probability vector is:
al 3.2 8.3 'd‘u'

(1 0 0 v]

If this vector is multiplied by the transition matrix, the
distribution by state at ths end of one time intervel is obtained.
Repetition of this process generates the state distribution over time
as shown in Table 1., Columns 2 through 5 give the state distribution
for the times shown in Column 1, This constitutes an important de-
scription of the equipment deterioration pattern, based entirely on
the transition matrix. The fallures, which were identified as state
ay, are shown in Column 5 in the form of the unreliadbllity function,
U(t). This results from the fact that the process includes no repalr,

so the cumulative fallure frequency is developed. The fallure density

21
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COMEUTATIONS FOR THE NUMERICAL EXAMPLE

TABIE 1

- wnwn¢|; - - Failure- Rellabllity Averzge
Time ay ag ag ay Density Function 52e
(¢) Fallure Function Yalues
1(t) u(t) R(t)

(1) @ | e () (6) W ()
0 0 o 0 1 1,00
1 .5 .5 0 0 1 1.50
2 .25 5 .25 0 1 2.00
3 125 275 €75 .225 .225 175 2.690
b4 0E25 250 215 4725 2475 5275 3.10
5 03125 L1566 L1465 .6660 .1935 »3340 3.55
6 -012625 -09375 (L3275 73785 .13185 0+20215 3.67
7 .0078125 L0546878 .0561525 .8813475 .0384675 .1186425 3.81
8 .00370625 23125 .032959 .93188475 .05053725 06811525 3.89
ER .00195513% .017578125 .0189209 .96154785 02966310 .03845215 3.94

w Lu09T6L525 009765625 .0106811525 .97857666 .01702881 .02142334 3.97

i1 .00043E28125 ,00537109375 .00595092775 .98818969725 .00961203725 .001810320275 3.98

o 0 1.000 .01181030275 | © 4,00

t>11
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't panetion, u{t), in Column 6, mives the probability of fallure'in

' edch tlme perfpd. (See Figure 2.) It s obthined, by taking differ- . .
ences between U(t) values of Column 5. The reliability function,
shown in Column 7 i1s computed from Column 5 by the formula

R(t) = 1 - U(t) .

The average level of measured equipment performance was basic in
the statement of the problem glven earlier in this report. Such an
average level 1s in reality an "average state" as a function of time.
In order to compute such an average state and to draw a graph for the
iransition mairlx, 1t is necessary to identify states numerically in-
stead of Jjust by names 815 8py eeey a5. Column 8 shows average state
based on the assignment of numerical value 1 to ay, 2 to ap, ete,
Thus, each entry in Column 8 is the average state of the probability
vector in Columns 2 through 5 [for the time shown in Column 1.

AR-0203
25 T T -y = E— T —r T — T =T
20
5 A8
™
(<]
S 0
05
o i 1 1 l‘ 4 1 1 1 4
o 1 2 3 4 & 6 7 ] 14 10 1 »N
TIME ¢
FIGURE 2

TIME-TO-FAILURE DENSITY FUNCTION, uft)
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v arainst timdy Column 1. In additlon, the state distribution for
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fime t = 3 1ls schown in the upper right hand corner of the figure.
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FIGURE 3
AVERAGE DETERIORATION OF A PERFORMANCE CHARACTERISTIC

It should be noted that the method of selecting a preventive
maintenance criterion 1s not dependent on the assignment of numerical
values to the various states, Numerical values are assigned¥* hers
only in the deslire to describe the deterioratibn phencmenon by means
of the transition matrix, and to relate the computations in the re-
maining portion of this report to the problem stated In terms of

deterioration.

e e e L S e e ot S Ve

* In most cases, the numerical values would be given directly by
the characterlstlc measurement.
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2.3 Scheduling of Preventive Maintenance

The forepolng dlscussion 1s concernzd primarily with the
development of the basiec concept that deterioratlion phenomena can
be represented by a Markov process. Reference has been made to the
problems associated with data collection, definition of suitable
rerformance levels, and determination of a time interval for the

fundamental transition matrix consistent with repair-time require-

ments.,

At thils point, 1t 1s necessary to describe methods whereby
matrices can be modlified to provide for repair of in-service failure
at times consistent with normal maintenance practices, and also to
provide for independently scheduled preventive maintenance. It is
reasonable to assume that preventive maintenance will be scheduled

at intervals which are long compared to the time requirzd for the

repair of an in-service faillure,

When the unit of time is the interval covered by the basic tran-
sitton matrix, the problem is to develop a method for computation of
the expected number of In-service failures which will occur in n time
unit intervals ~- with repair of in-service fallures at the end of
each unit interval and preventive maintenance at the end of the pth
unit interval -- and to express the entire process in matrix form,

It 1s assumed here that maintenance always occurs at the end of each

unit interval,

For the sake of convenience, the numerical matrix shown on
page 20 1s repeated here. It wiil be recalled that state ay con-

i

stitutes fallure,
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ar %2 % Ay
.5 .5 o 0
0 .5 .5 0
A=
o 0 0] .1 .9
o] 0 0 1.0 .

If it iz assumed that repalr of an in-service failure returns
the equipment to the hipghest operating state, the basic matrix is
modified by adding Column 4 to Column 1 to form a new Column 1.
Since such repairs are made at the end of each time interval, the

basic transition matrix becomes:

.5 5 0 l
A...l = 0 v5 »5
.9 0 .1 ’ .

Note that Column 4 and Row 4 of Matrix A have been deleted, Thiz is

done here because the repair of Iln-service fallures precludes the

existence of equlpments in state ay, and therefore a matrix with

three rows and three columns 1s adequate to describe the situation.*

* Tt is of interest to note that thils operation can be expressed
as a matrix product. This leaves a four by four matrix contain-
ing A_3j and indlcating the shift of equipments from ay to aj.

5 .5 0 0 1 0 0 O S5 0 0
0 .5 .5 0 0 1 0 o© 0 .5 .5 0
0 0 .1 .9 o o 1 oll |l .9 o .1 o
' | o o o 1.0 1 0 0 O 1.0 0o o o]l .

Thus, A is multiplled on the ri;ht by u matrix expressing that
the probability is 1,0, that state ay will remain ay, that as
will remain nn, thut a will remain ., ad oy D111 becone uy.
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Delctlon of one row aund one column is indisated bv the subgeript in
the symbol A_y. The notation will be extended later as the matrix is

reduced by deletlion of additional rows and columns.

If the process of repairing in-service fallures is continued in-

definitely, a stable state is approached,* as illustrated at the end

of Section 2.1, If the stable state is

z(®) = [a; @y a3],

then

Z(m) ALy = z(m)

This gilves the system of equations

S5a21 +  J9ag = aj

.5‘11 o+ .5 (12 = a2

.5“2 + .1 a3 = 03

a3 + ap + ay = 1.
Therefore, 20®) - [3013 .3913 .oi7a) .

In the stable-state condition, the expected number of in-service
failures in one time interval can be obtained by multiplyiug the

vector z(a)) by the fourth column of matrix A:

‘5 -5 0: O
1 ‘
aj as ag ay o £ '5'|‘ 0
o o0 .1 .9
z(°°)A= [.3913 .3913 .2174 0] |
0] 0 0 1.0 »
The fourth element in the product is (.9) (.2174) = .1957. Therefore,

this 1s the expected frequency of in-service fallures in each time

interval after the stable $tate has been reached.

* If no repairs are made, the stable state developed from matrix
Ais[oo00O1]).

l
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2,5.1 Computlations [or o Modnbeganee Crele of g Tlme
. Fnterva 15 - .

To illustrate the coupubatlopal procedure, supposce prevenillve

- malntenance were perfourmed at the end of every osixih interval., Then
the total number of maintenance actions would bLe the sum of repaire
of ln-service faillurcs -~ performed at the end of cach intervul --
and the requlred preventive maintenance actions ut ithe eud ol the
sixth interval, With four states, a;, ap, az,, and &), with ay, teing
fallure, the aa¢wOu1d bve chifted by repalr of in-ctervice fallure to
a; at the end of each interval, Preventive maintenance would conzio
of trancfer of 33 (cr a and a2) to ay at the end of every sixth

time interval,

These maintenance actlons can be expressed ln matrix notation

in the manner shown below,

k. #
o Let
R % = [x3, xp, #3)
;: - denote the probability vector for the initial distribution of eguip-
f:' ments by states, The transition matrix A_, describes the state tran-
sition in one time interval if in-service fallures are repaired but
;A ‘- no preventive maintenance is performed.® The probability wvector at

the end of one time interval is the product xA_., This vector be-
comes xA?l at the eag of the nEE interval. In applylng tha. method
it is convenient to compute powers of A-l' The power: of interezt in

thiq example are shown below.

# A3 indicated 1n Sectlon 2.3, the notation A_j was adoptled Lo
denote the deletion of one row and one column following the
addition of Column 4 to Column 1. If the preventive maintenance
schedule called for repalr of equipments in state &, two columns
would be added to Column 1, and the notation would ée A o; ete.

28
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.25 .50 .25 || 350 .35 .2T5 |
A%y = | .45 25 30 A3y =1 .495 350 .155
.5 45 .01 279 A% 226 E
4225  ,3625  .2150 || L404T5  .39250 .20275 ,
%) = |l.3870 4225 1905 |f A3, = “ .36495 .4O4T5 23030 "
.3429 .3870 .2701 Q454 36495 .22051
| 38485 .39862 ,21652 ,78729 ,39175 ,22096
A, = |l .38974 .38485 .22540 ATy = |l 39773 .38730 .21496
‘} l 40572 .38974 .20452 .38694 .39773 .21538 |
i .39252 .38952 .21796
A8, = | 39234 .39252 .21514
| 38726 .3923% .22040 f| -
% It will be noted that the rows converge toward the stadle-state vector
r 3(®) = [.3913 .3913 .a7a) , “

which was derived by the method described in Ssctions 2.1 and 2.3.

If the preventive maintenance schedule requires the trensfer of
state a3 equipments o state a; at the snd of n intervals, the stable-
state vector at the end of the nil interval is determined hy the same

wethods. For exawple, if n = 4 (note ltl). the trensition matrix is

‘_2-

{ %225 + .2150 .3625 u n L6375 .362% '
| .3870 + .1905 .4225 .

»STTS5 k225
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which, when multiplied on the left by the stable-state probubility

vector [a; as], reproduces this vector. Thus

(a ] 6375 .3625 H
1 %2 = [@ 22] .
5775 Jb4o25
This 1s equivalent to
6375 a3 + 57750, = a;
.3625:11 + 42250, = a,
Replacing one equation by a3 +a, = 1, the solution is found to be
Gl = .614,0'2 = 03860

Therefore, the stable-state vector in thils instance is

[.614 .386] .
This is really an abbreviation for the vector [.614 .386 0 0],
which indicates that no equipments are left in states as and ay from
one preventive-maintenance interval to another. It must be remem—
bered, however, that the equipments do pass through these states in

the intervals between preventive maintenance actions.

Stable-state probability vectors for a selection of preventive

' maintenance schedules are shown below:

Preventive-Maintenance Interval (n) Stable-State Vector
n El 82 83 8.3
1 [.5 .5 o 0]
2 [.6 R o 0]
3 [.63% .366 0 0]
4 [.614 .386 0O 0]
8 [.6381 .3619 0 01,
30
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' The number of fallures which occur in the time inlerval between
preventive maintenance actlons 1is determined by chaining the nth
stable-state vector, using multiplication by matrix A "n" times.#*

This procedure is illustrated for the case where preventive malilnte-

nance occurs every fourth interval.

Perlod
1 [.614 .386 o0 0}JA = [.3070 .5000 .1930 0] = z(2) ,

2 [.3070 .5000 .1930 O]A = [,15350 .40350 .2693  .1737] 2(?)
<1737 + .15350 = ,3272%¢

[.3272 .4035 .2693 OJA = [,16360 .36535 .33868 .24237]

[.40597 .36535 .22868 OJA = [.20299 .38566 .20554 .20581]

[]
[}

Ne)
N0}

L

-y

=

1
e g

The total number of in-service failures which occur during each

?{

four-interval period between preventive maintenance actions is
0 + 1737 + 2434 + ,2058 = ,6229. The number of equipments which
undergo preventive maintenance, those in state 33 at the end of the

fourth period, 1is .20554,

The total number of in-service failures and preventive mainte-

nance replacements for other groups of intervals are determined in a

similar fashion. The chaining occurs a different number of times

e e

and the assoclated stable states are different for different intervals.
Computations for preventive maintenance every sixth intervul are given

below,

#  See procedure given on page 27.

#% During the second interval, .1737 fallures occurred. Since it 1 -
was hypothesized that these equipments wsre repaired durlng the
interval (restored to state a;), there 1s no state a; beginning
with the third intervsl. '
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z(0) = [.6067 .3932 0 0]
- z(1) = [.303% .5000 .1966 0]

z(2) = [.3286 .4017  .2697  {.1769)%]
z(3) = [.4so10 .3652 .2278 (.2427)]
z(#) = [ 4085 .3861 .2054 (.2050)]
z(5) = [.3891 .3973 .2136  (.1849)]
z(6) = [.3868 .3932 .2200 (.1922)]

ny = 1.0017 = number of ln-service fallures

no, = .2200 = number of preventive replacements.

Table 2 gives the number of in-service failures (“1) and the
number of equipments replaced during preventive maintenance (ny) for

various values of n, the number of intervsls between preventive main-

tenance actions.

TABLE 2

NUMBER OF IN-SERVICE FAILURES AND PREVENTIVE REPLACEMENTS, WHEN
PREVENTIVE MAINTENANCE IS SCHEDULED EVERY SIXTH INTERVAL

Interval In-Service Fallures Preventive Replacements

(n) (nl) (n2)

1 o .25

2 .18 L7

3 L4062 .2311

y .6219 ‘ 2055

5 .8109 L2137

6 1,002 .2200

7 1.3842 i .2169

2.3.2 Summary of the Mathematical Model

The mathematical model developed in preceding sections expresses
the deterioration pattern of an equipment ln the form of a Markov

® State ay 18 parenthesized because these values have been added to
state aq.

L
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process. This trunsltion matrix covers an interval of tlme which 1s
sufficlently short to preclude the influence of second-generation
equipments -- that is, equipments which are repaired and returned to
service before the end of the interval.# The distribution of equip-
ments by performance level or state at any subsequent time is ex-
pressed as the product of the initial state distribution and an
appropriate power of the transition matrix. This power is equal to
time, expressed 1n units of the interval for which the transition

matrix 1s applicable,

Maintenance procedures can be expressed as moéirications of the
transition matrix. Repair of in-service fallures is reflected by
the addition of the faillure-state column to the column representing
the state following repair. Preventive maintenance 1s reflected by
the addition of lower-state columns to higher-state columns as
appropriate. In the present discussion, 1t is always assumed that
preventive maintenance and repair of in-service failures restore the
equipment to the highest state, which is represented by the first

column of the matrix,

If in-service failures are repaired iilodiatcly after occurrence
(1t 1s implicitly assumed that they will be repaired within the time
period covered by the transition matrix) and equipments in certain
states lower than state 83 are repaired at the end of every nth n-
terval, a stable state is developed around this replacement pattem.

* The selection of appropriate intervals 13 discussed in Section 1
of the Appendix, -

33
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Each replacement pattern will generate a different number of
failures since each will have 1its own stable state. The arlithmetic
1s expressed in terms of matrix multiplication. By computing veverul
replacement patterns which differ both as to time interval and re-
placement level, 1t is possible to compare the total number of in-
service failures and preventive replacements generated by each main-
tenanée patte;ﬁ. This comparison provides the data required te ue-
termine which pattern of maintenance ylelds the lowest cost. All cost
computa;ions can be based nn 3table-state distributions, since the

ultimate average cost is independent of the initial state distribution.
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3. DETERMINATION OF OPTIMUM MAINTENANCE SCHEDULES

Z.1 The Coct Eguatlion

The expected average cost per unit time 1s given by the equation:

ky =
ko =
k3-

nl-

n2-

C=—— [ kny + kpnp + k3] ,

the number of time units beitween periodic preventive

maintenance actions; one time unit is the period of time

for which the transition matrix is developed.,
the cost of repair of an in-service failure,
the cost of a scheduled preventive maintenance action.

the cost of periodic test or measurement of performance
level,

the expected number of in-service failures in h time units.

the expected number of scheduled preventive maintenance
actions in h time units,

The situations of interest are those in which the cost of repair-

ing an in-service failure i- considerably greater than the cost of a

preventive maintenance action at scheduled muintenance intervals

(the,re would be little reason for preventive maintenance if it were

more expensive than repair of an in-service fallure).

Therefore, in

the numerical illustrations which follow, it is assumed that the
values of k) are considersbly larger than the vu_luu of ky. It is
also assumed that the values of k3 (the cost of meking tm periodis
check of equipment performance) are less than either of the other
costs, although this is not a necessary assumption and hes no effect
on the validity of the method.
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3.2 A Four-State Example

To illustrate the method, coust computations for the above

o

numerical example are made for a selection of coul parumetlers.

Assume two sets of values:

e e R et £ e i T M

(l) k3=l, ke—l-l-, kl=8

) (2) k3 =1, k=4, Ik =16,
If no preventive maintenance is performed -- that 1s, if eaquip-
ment 1s repaired only after failure -- there will be a constant fail-

ure rate of ,1957 per time interval (see page 27), and the cost

equation is

{
<
b
]
3
|
<‘ TABLE 3
AVERAGE COST PER UNIT TIME WHEN PREVENTIVE MAINTENANCE IS PERFORMED
i EVERY nill INTERVAL BY REPLACING EQUIPMENTS IN STATE ag
Replacement Cost Cost Schiedule 1% Cort Schedule z#
Interval Equation kl = £ ky = 16
‘ l‘. [ 3 p
1 I Oky + .25k + ks) .00 2,00
2 %- { 1Bk + .27kp + k3l ‘ 1.76 2.48
3 % [.4062ky + .2311ky + k) 1.72 ‘ z.81
1
4 7 [.6219k; + .2055k; + kg 1.70 ‘ 2.94
’ 5 ,4?‘% [.8110k; + .2136k; + ky) | 1.€6 2.97
I,
6 © & [1.002; + .2200kp + k3l 1.65 2.98 [
1
8 § [1.384k) + .2169k; + k3] 1.62 3.00
® In both cost schedules, kp = 4 and k; = 1.
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c - 1 [.1957 ky + Okp + Ok3] = 1.56, if ky = &

3.13, if kp = 16.

Assume preventive maintenance ls performed every nﬁg-interval by
restoring equipments in state a; to state a;. Then the resulting cost
equations and total costs are those shown in Table 3. The costo
listed in the table are plotted in Figure 4. These curves lead to
the following observations. When Schedule 1 costs are zssumed, pre-
ventive maintenance at any time interval is more costly than none at
all (the cost of repair of in-service failures with no preventive

maintenance is indicated by the horizontal line marked k; = 8). on

the other hand, when‘Schedule 2 costs are assumed, any preventive
maintenance 1s better than none, irrespective of time -- the optimum
situation being obtained when preventive maintenance 1s performed at

the end of the first measurement interval,
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By a slmilar procedure, Lhe relative costc of other pabterns of
preventive malmtenance -- for example, replaccment of eguipmenic in
states ag and ap -- can be determined. Such a comparison would Le

neceusary for a complete cost analysis. However, in view of the

small number of performance levels involved here, further study of

this simple example is unwarrunted.

Intuitively, or2 would expect the optimum time for replacement
to occur comeyhere between the first and the infinite intervals; i.e.,
. there would seem Lo be a few actual situations in which maintenance
e "as early as pogssible” or "not at all" would be warranted. In fact,
the small simple matrix used in the preceding example would fit few
actual situations, Because of the values selected and the small num-
ber of clasces used, a stable state 1s reached very quickly, which
forces second~- and third-generation fallures to enter rapidly into
the average fallure rate. Table 2 (see page 32) indicates that fall-

ures begin in the second interval, that nearly two-thirds of them

have occurred by the end of the fourth interval, and that new~
generation falilures have ozcurred by the end of the sixth interval,
Thus, the equipments rapidly reach a random-age distribution, and
the fallure density function for the second generation so overlaps
the first-generation density that the cost curves (which reflect

system failures) are quite smooth.#®

# Welker, Dr. E., L., Relationship Between Equipment Reliability
Prevontive Maintenance ¥olicy, and Operatinr, Gosts, ARING Research
orporation, February 13, I§é§ (Fﬁﬁﬁcaﬂ:on NG. Iﬁt-g-l?)‘j),
pp. 20 fL, S
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t should also be noted that the curves shown in Figure 4 bepin
at the first time interval, All cost curves start with this interval,

as cost equations and number of fallures can be determined only for

intervals which are at least as long as the one selected for the
transition matrix, If the basic time interval in this example were
shortened, the beginning value for both curves in the figure would be
considerably higher, because the cost of nearly continuous checking

(k3) would be much higher over any given interval of time.

3.3 A _Seven-State Example

To 1llustrate a more typical case, another example is given, In
this example, the underlying density function has a smaller coeffi-

clent of variation, a property which will turn out to be critical in ‘ N

developing a more usual deterioration pattem.

a) ap a3y ay ag % ay
0 1 0 0 0 0 0
0 0 1 ) ) 0 )
| 0 ) ) 1 0 0 0
s- o o o [3TTHTTETTE
{ 0 0 o 1o .5 .5 0
| 0 ) ) : ) 0 a 9
0 0 0 10 0 © 1.0 .
;
It will be noted that the submatrix shown in the lower right- .

hand corner is identical to the one used in previous illustrations,

Appending the first three rows and columns has the effect of shift-

ing the fallure density to the right by three time intervals (see
Figure 3). Thersfore, the mean of the distribution is now 8.1 time
units, but the standard deviation of 2.0 is unchanged from the original
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*example.* 'f%e nét effect of this shlft 1o to decreace the coefficlent

of variation from .40 to .25. The addiiional columns cun be regarded
as additional states., State ay now desiynates fallures which, when

repaired, are returned to state aj.

32.3.1 "bummy" Columns in the Trunsition Matrix

In actual practice, it may be neceussary to add "dummy'" columngs
to the transition matrix derived from empirical data. Whether or not
thls is done depends upon the testing instruments used in the erperi~
ment, For example, if these are sufficiently sencitive to meusure
seven rather than four classes of performarice, there may be values
other than zero or one in the first three columns. On the other hand,
if the equipment is a recelver with a considerable number of redundant
elements, 1t willl probably register performance close to peak levels—
state a; -- for a long period of time and then fail quite rapidly.
In this situation, the average operating level would remain almost
constant and then drop off sharply, as shown in Figure 5.

AR-0203
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AGURE 5
AVERAGE OPERATING LEVEL AS A FUNCTION OF TIME

# See Appendix, Section 4




Actually, under the hypothesis that fuilure is a gradual

deterioration phenomenon, it can be assumed that the deterioration

shown In Figure 5 began at time ty but that the instrument was unable

to measure it, Thus, dummy columns would be required to zhifi the

failure density function to the right, as in the case of matrix B.
The portion of the curve to the right of t; is analogous to the entire

curve shovn in Figure 2, This matter is discussed in more detail in

Section 2 of the Appendix.

3.3.2 Cost Equations for Matrix B

The computations assoclated with matrix B are carried cut in the

same manner as those of the previous example, Addition of Column 7

to Column 1 constitutes repair of in-service failures, while addition
of any other columns to Column 1 constitutes preventive maintenance.
Cost equations for preventive maintenance at intervals up to 10 are
shown in Tables 4 and 5 -- Group I equations for maintenance involv-
ing replacement of equipments in state 8¢, and Group II equations for

maintenance involving replacement of equipments in states ag and ag.

The following sets of costs are used in the tables.

Cost Schedule 1 Schedule 2 Schedule 3  Schedule 4

s S

kg 8 1n 15 19
Ko 4 4 T 4
k3 1 1

The cost equation and saintenance costs for repair of in-service

failures only (60 preventive maintenance actions) are:

A
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TABLE A
GROUP I COGT EQUATIONS: AVERAGE COST PER UNIT TIME WHEN PREVENTIVE
MAINTENANCE IS PERFORMED EVERY LYl INTERVAL BY REPLACING
EQUIPMENTS IN STATE ag
Cost S:hedules®
Re; lacement Coat — e
Interval Equati.n 1 - :
kl =11 kl = lf' }21 -1
1 + [0ky + .13 + kg) 1.5, 1.5 ’ 1.7
z Loz + 1380 + k) 1.49 1.5 ’ 2.0
4 1Ly + J1sfkg ¥ k) L2 1.t0 ; 2.1
b L oy + lieiip+ k) 1.:8 1.9 220
1 -t
8 L Libtky 4+ (170K + k3] 1.5+ 1.6 2.0l
E =0
19 B [heleiy + Lok 4 K] 1,57 1.5 l 2.iE
% In cach of the three .ost ~cheales, Lp = 4 and kg = 1,
TABLE
GROUP II COST EQUATION: AVERAGE COST PER UNIT TIME WHEN FREVENTIVE MAINTENANCE
1S PERFORMED EVERY Dl INTERVAL BY REPLACING EQUIPMENTS IN STATES a, AND a,
Cont Suledulea*
Replacement Cost 7 ¥ T
Interval Equation ; -
ky = B ky; =11 ky; = 19 ky = 1y
1 3 [oky + .2kp + k3] 1.8 1,0 1,40 1.50
2 L ok + .3750kp + k3] 1.25 1.2, Leet Lot
4 # (158K + .50Tkp + k3] 1.07 1.19 1.3y 1.0
6 } L.532%; + 565Kz + k3] 956 1.1 Los 1.0
8 g L18oky « 27Tkp +13) | 300 1.55 Wi | e
10 fh1.987; + 356k + k3] | 1.03 1.33 . 20

L4 m.uhormrwrcutccmuu.%‘,-umd k, = 1.
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C = [.1233k; + Okp + Oksy]
Schedule 1 = (.9

Schedule 2 = 1,36

i

Schedule 3 1.85

It

Schedule 4 2.34

i

The curves in Figures 6 and 7 show the effect of different cost
schedules and replacement times on the average hourly cost of replac-
ing, respectlvely, state ag equipments only and state a6 and state a5
eguipments. Figure 6 indlcates that preventive maintenance 1s con-
sistently less costly than repalr of In-service fallure when the
latter has values of kj = 15 and k; = 19 (see two top curves). When

repairs of in-~service failures have values of k1 = 11, preventive

maintenance 1s less costly only when performed somewhere between the
sixth and the tenth intervals, the optimum time being at the end of
the eighth interval,.

In Figure 7, showing tlie variation in costs of replacing equip~
ments in states ag and a5, an extra curve based on schedule 1 costs
is included, When this schedule is assumed, the minimum cost occurs
when preventive maintenancedis performed at the end of the sixth in-
tervel; however, at this point, preventive maintenance 1s still
slightly more expensive than no preventive maintenance., For kl = 11,
the optimum point occurs at the end of the sixth interval, and there
is a distinct advantage in preventive maintenance except when per-
formed at the end orvthe first interval, A similar advantage is
gained by performing preventive maintenance when k; = 15 and k; =19,
but the optimum time for replacement is now the end of the second
rather than the end of the sixth interval.

3
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APPENDIX

1. Sele:z:tlin o1 Ma'‘ntenance Interval and Time Poricu £or Lhe
Tranci> 1-n Matrlx

The Murkov process regulres that the trancition matrix be
raised to povers hijsher thuan one in order to determine the prohable
states of the equipment zfver, say, n time intervals., The method
assumes that if an equipment fails in service, it will not ke re-

turned to service until the beginning of the next time interwval.

If the interval selected is one day, for example, it must be
assumed that equipments which fail during the day will be repailred
during the night shift and be returned to service the next morning.
However, suppose that in practice the equipments which fail are
replaced in one-half hour's time by the substitution of other equip-
ments. Thls would mean that second-generation equipments will be
introduced within the ftime period used for the transition matrix.

If this should occur, then increasing the powers of the transition
matrix, say to n, will not generate the same probable vtates that
actually would result at the end of n periods. However, if the
transiticn matrix is based upon a time interval of one-half hour,
then successive chalnings of the transition matrix will always match
the actual performance pattern. The time 1ntgrval of the transltion

matrix must correspond to the repalr interval, and the time interval

between the times of data collection must be correspondingly short.
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In the example presenten on pase 20, staben ag, ap, ax and ap
wore wred Cor Llhwetrative purposes, with no discuscion of hew they
would be chesen in an application of this method, In practice, the
ravw sdatn would best be recorded ac direct numerical oboervations,
oopecinlly if the instrumentation were scensitive or the measurement
aeale were long., Then the definition of chates would te the prac-

il problem of data prouwpins,

Anoume that the curve in Fipurae 8 reprecentc the averare chanre
in performance with time, and that ty ani i, dencte, recpectively,
the hezinning and end of the perled »f obzervation. The Tollowing
method 1s one which misht be used to select state boundaries, The
time interval, ty Lo tp, may he divided into an arbitrary number of
dirfereni rroupings which are eqﬁal to the number of states to ke
used 1n *“he transition matrix. The seleztion of this number is
entirely one of Jjudgment. Tor example, assume that elght 1s the
selected number of statec, and divide the time axis into eight
uniform divisions, Vertical and horizontal lines drawn Trom these
divisliona to intersect the curve, as indicated in Fipure 8, will
divide the vertical scale into as many different classes ap there
are diviaslons of the time axis. The probabllity that an equipment
will be In any one of these grouplings is computed by the method
llustrated. These groupincs will not produce uniform, numerical
fdivislons on *he ordinate scale unless the averape curve 1s linear,
Nevertheress, the divisions will be "uniform" insofar as they
renreient an average range of performance covered by the equipment

In the uniform time period selected on the time axis.
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FIGURE 8

SELECTION OF STATE BOUNDARIES FROM OBSERVED
VALUES OF A PERFORMANCE CHARACTERISTIC

There is one further cocncideration. The average curve may be
nearly horizontal for low values of t, as shown in Figure 5 -- for
example, when parallel redundancy exists. In this instance, the
peffoxmance measurement will tell nothing of the probable relation-
ship of the equipment to the time axis in this interval. However,
the transition matrix can reflect the fact that the equipment is
moving uniformly through this time interval or through the classes
below the horizontal portion of the curve., Such a2 matrix would have
zero's and one's in the columns which pertain to these classes as in
matrix B, page 39. It should be noted that the performance charac-
teristic measured will usually be an operating characteristic corre-
lated with, but not identical to, the part deterioration character-
istic itself. '
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IU the foresoing procedure should resuli in the lnclusion of
certaln "unnecessary" states, these chould be eliminatied. For
example, 1f the transition matrix should indicate very low probablil-
! .es that an equipment vlil be in state CI at the beginning of the
interval, 1t 1s proper to say that state ay, is uaimportant and can
be combined with state a, _, or state T

3. Method for Computation of Djj of Trangition Matris from
Empirical Da‘a

To illustrute the method for computing the Py o' the trancition
matrix from empirical data, assume four equipments und four levelo of
performance, They are observed for a maximum of eipht time intervals.
The data -- whlch could be derived Jjust as well from obcocervaiionz on
one equipment which wag repaired or returned to operating level a4
four times -- are listed in Table 6. The point to stress is that
each line represents the deterioration of one equipment from a higher
operating state to fallure, state ay. If the eguipment falls and is
restored to a higher state through repair, another line must be added

to the table,

In recording data for use in developling a transition matrix, it
183 not sufflcient simply to list all equipments which are in a given
state at the end of any given time period, for this information does
not lndicate the states which the equipments were in before progres: -
ing to the observed states. The observed state and the immediately
preceding state must both be recorded for each equipment at the end
of each interval, so that the matrix will indicate the transition

from one state to another within the interval.
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TABLE &
FREQUENCY OF PASSAGE FROM ONE GIVEN STATE TO ANUI}{ER IN A
QIVEN TIME INTERVAL, FOR FOUR BQUIFMENTS
Equipment Part T Part II
Number State in Each Intexrval Frequenzy of Pavsape from State ay to Stute a
in One Interval 3
v 1 2 3 4 5 6 7 B [a;n ayp a3 e Aage  8p3 By 453 8z ;
(1) (=) (3) () ) (B (o (&) (%) '
3 2 1
1 ay ay; a3 oy Bx ap a; By 3y 3 1 2 1 1
—_—
P 1 1 :
4
2 a4y o3 o3y 8, @y ag @ 4o, 3y 4 1 4 1
W 1 f
S
3 ay up o3y Gy 3y &, 4 1
-
. 1 .
H Y
N ag w; @, 4 ap A a8 E 1 1 i
—— S—
1 1
Total 9 b3 1 1 ; o 5 3

Part I of the table lists the states observed for each of the
equipments in each of the eight intervals. The values at time O are
beginning values, those under "1" are values at the end of the first
interval, and so on. Thus, Equipment No. 3 was observed to be in
state a; for four intervals, and it failed during the fifth interval,
Part II indicates the number of times the equipments passed from one
given state to ancther in one interval., The first four columns give
the frequency of passage from state a; to lower states; the next
three columns gilve the frequency of passage from state e to lower
states; and the last two columns gilve the frequency of passage from

state a3 to failure, ay. The Py j are computed from these frequencies.

The following tabulatlion and estimated stochastic matrix are

determined from the¢ values in Table 6.

aj as ag ay 2
a) 3 1 1 1 12
an : T 2 0 ‘ 9

aj 5 3 8 .
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ay a.12 1/12 1/18 1,12
i ‘ 7/9 2/9 0
ag |l 5/8 3,8
ay (L .

4, Fajilure Density and Rellability Funebions

The unrellabllity functlon ic developed by mulrix multiplicuiion
if one of the vtutes is defined as failure, In the nutwl lon useu
throughout this paper, the state in the richt-hand positlon in the
matrix has been so defined. (Ia the examples, this hao been ctale
ay or state 37.) The density function is obtained by computing the
differences between successive values of the unreliability function.

As an example, take the four-state transition matrix given previously,

-5 5 0 0
0 5 .5 0
o 0 .1 .9
0 0 0 | .

The distributlon by state, the values of the unreliabillity function,
and the values of the density function for integral values of time
from t = 0 to t = 11 are shown in Table 7, tcgether with the density

value for t >11., Table 7 shows unrounded values in all cases.

Before illustrating how the density functilon u(t) can be used
to compute the mean and varilance, it 1z of interest to show how the
mean time-to-failure 1s computed directly from the transition matrix.
Denote by 2; the mean time-to-fallure of an equlpment, given that
the performance level 1s in state 1. Then Zq is the mean time-io-

failure of a new equipment -- l.e., an equipment with performance

Lo
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in the hlghest level, sinte 2y Since %bate‘a“ denotes failure in g -

LS s * ’
this exarple, x5, = O.

The mean times-to-failure satisfy the following syotem of

linear equations:

zg = .5 (27 + 1) + .5 (35 + 1)
Zy = .5 (zp + 1) + .5 (35 + 1)
2y = .1 (33 + 1) + .9.

The solution of thls system of equations is

23 = 1049, zp = 2879, and z7 = 46/9.

The Justifisation of each of the foregoing egquations is depend-
ent upon an argument of the following type. Consider the first equa-
tion of the system as an example. If an equipment is in state a,
initially, its mean life 1s Z,, the left side of the equation. The
right side of the equation expresses this mean life as a two-step
evaluatlion: the transition in one time interval and the expected
mean life thereafter, If an equipment is in state 2y, the best
estimate of 1ts expected life remains 24 in the absence of other
Information regarding this variable. Thus, the .5 of the eqﬁipments
that remain in state a; at the end of the time interval have an
expected life of Zy to be added to the one time interval previously
survived. The .5 of the equipments which deterilorate to state ag
have, at the end of the time interval, an additional expected life of
Zp. The sum of these two gives the right side of the first eguation
of the set., The second and third equations are Justified in the

sama manner, It should be noted that fhe third equation simplifies,

since éu = 0,
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When the mean and variance are computed directly from the ,
density function (which here has the form of an open-end distribution)U
it 1s necessary, or at least advisable, to include the failures which
occur after the 11 time intervals shown in the computation. This can
be done by selecting an approximate length of life for theée }ailurea
vwhich will yield the correct mean f»r the failure-density function,
u(t), as computes above, z; = 46/9. In the example, this turns out
to be t = 13,2, Thus, it i1s assumed as an approximatiocn that at”

t = 13.2, there were .01181030275 failures. It is %ow possible to .
use ordinary formulas to compute the mean 1life (5.111) and the vari-“

ance (4.0972).
Q

It should be noted that the preceding computation is based on
the assumption that failures occur exactly at the end of the time
interval, An alternative assumption is that failures occur at the
midpoint, Using this assumption, the mean would be reduced to 4,611

and the variance would be unchanged.
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