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ABSTRACT

This report describes a method for scheduling preventive
maintenance to minimize expected average hourly maintenance cost
based on a criterion of periodically observing deterioration in one
or more equipment performance characteristics. The mathematical
procedure requires expressing the deterioration phenomenon in the
form of a simple Markov process. The implication of this method is
that a forecast of equipment failure is based only on existing per-
formance level and is independent of any history of prio-' det/eriora-
tion rate. The criterion for scheduling preventive maintenance is
expressed as a method involving matrix multiplication rather, than as
a simple algebraic formula or a series of curves. This was necessi-
tated by the large number of input parameters consisting of mainte-
nance cost parameters and a matrix of probai~tlities descriptive of
the deterioration phenomenon.

Hypothetical numerical examples established the potential of
this method for achieving real saving in maintenance cost. The
method provides a systematic search for "lemon" equipments, and, con-
versely, protects against discarding those equipments which tend to
maintain high performance levels over extended periods of time.

As an added result of this analysis, th'" algebraic method pro-
vides a technique for collecting deterioration data in terms of dis-
tributions and not Just averages.

It was apparent in the numerical work that the underlying fail-
ure density function is critical in determining the amourt of saving
which can be achieved by this method. The coefficient of variation
is especially critical. More theoretical studies and field data
collection in this area are indicated. It is important to observc,
however, that the method is distribution free since it does not
depend on prior knowledge of the time t•o failure density function.
However, the'methods of data collection, definition of states or per-
formance levels, and the selection of proper time intervals present
peculiar problems which require care in the application of this
method. These points are discussed in some detail in the Appendix.,'
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I i. INTRODUCTION

The first ARINC Research Corporation monograph in this series

presented a method •for determining a preventive maintenance schedu]e

based upon part replacement prior to in-service failure.* The model

used in that monograph related equipment operating time between such

preventive maintenance actions to the expected avierage hourly cost

of maintenance. This model was based on the assumption that a. meas-

ure of equipment deteroioation was not available; consequently, the

method is applicable in those cases where deterioration is the pri-

nsary cause of failure but cannot be measured. For those cases in

which it in possible to monitor equipment performance perlodical1y,

and thus to measure the degree of deterioration, a different proce-

dure for the selection of a minimum-cost preventive maintenance

schedule can be used. The development of such a procedure is the

purpose of this second paper in the series.

Basic to this paper are the assumptions that gradual deterlora-

tion is the principal cause of failure in many equipments, and that

deterioration is reflected in the experimental data collected In an

:equipmc-t.study. Measurements of equipment deterioration, together

with associated failure probabilities and cost parameters, are used

to compute expected average hourly maintenance costs. The "optimumn'

preventive maintenance schedule Is that in which the expected average

SWelker, E. L., Relationship Between Equipment ReiiliyPreven-
tiveMaintenanceFo lickya and Operating costs (Mobogrpn O 7).

7ARNC Research Corporation, Washington, D. C., February 13, 1959
(Publication No. 101-9-135).
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hourly cost of maintenance is at a minimum,. The answer is expresned

in terms of the level of equipment performance and the time between

performance measurements.

1.1 Type of Maintenance Situation Described in the Paper

The maintenance situation modeled here is illustrated by the

case in which maintenance personnel for a fleet cf trucks periodically

measure the depth of tire tread. As the tread wears d~wn there is an

increasing probability of tire failure in a given subsequent time

period. If failure of the tire in service is associated with costs

above that of the actual cost of replacing>ýhe tire (e.g., a blown j
tire would result in lost man-hours or a wreck) it is desirable to

replace the tire at some convenient scheduled time prior to the time

of this in-service failure. Replacing the tire too soon will increase

the operating cost through wasted tire-miles. Replacing the tire

after the tread has become extremely worn will mean high cost through

a high in-service failure rate. Obviously there is an "optimun" depth

of tread which, from a cost standpoint, warrants replacement of the

tire.

0

Similarly, the ratio of signal-plus-noise to noise in a radio

receiver might be a performance characteristic upon which a computa-

tion of "optimum" time for repair could be based. As the ratio of

signal-plus-noise to noise decreases, there is an increasing prob-

ability that the receiver will fall in operation within a given sub-

sequent time period. Tntuitively, there should be some optimum ratio

of signal-plus-noise to noise which, from 'a cost standpoint, warrants

equipment repair.

2
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1.2 Critical Basic Assumptions

As indicated earlier,',two assumptions are implicit in the method

to 'be described. It is assumed, first, that system failure results

primarily from a process of degeneration with time, and, second, that

the most significant wear-out phenomena are reflected in the perform-

ance characteristic which is measured. Thus, changes in transconduct-

ance, an in3rease in leakage, and mistuning might all be reflected in,

for example, the ratio of signal-plus-noise to noise. Obviously, it

is rare to find all modes of failure reflected in a single measured

characteristic. In the tire illustration, measurements of tread

,would give no direct clue to the probability of sidewall failure; and,

if sidewall failure contributed significantly to in-service failure,

measurement of tread alone would be an insufficient test. In the

following material, only one measuremenit of equipment perfornmance i1

discussed, although the method can be extended to those situations

in which several measurements are taken (see Section 2,1.4).

"1.3 Definition of Failure

Equipment failures are usually determined by elther or both of

two classes of personnel -- by maintenance personnel, who evaluate

the operational level of the equaipment through periodic tests or

measurements; or by operating personnel, who evaluate the equipment

through observation of performance, the end out-put of the eAuipment

S * operation.

During periodic checks maintenance personnel will remove an

equipment from service if in their Judgment the performance level .s

too low to be adequate. Thus, the equipment may be removed from

service even though the operator does not express dissatisfaction with

i=C ..... .• ,,
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S.* •erfor~a'.:Ic 4 .,On lte other hand, the dierato*' may4 reJect the equipmerA

even i' its perfoxmance -- an subsequently measured by the maintenance

man -- is fairly high. An equipment which is taken out of service ,for

r'epai, as. A result of dissatisfaction on the part of either the main--

tenance man or the operator is defined as a failure in this paper.
Maintenance actions purformed as a result of such removal from service

are to be distinguished from maintenance actions on equipments whose

level of performance is considered adequate by both groups of person,-

nel. The latter actions are defined as preventive maintenance.

1.4 The Maintenance Problem

The maintenance problem can be examined in more detail by refer-

ence to Figure 1. The curve, beginning with peak performance scaled

aL 1,0, is typical of the average level of a pleasured performance

characteristic of an equipment over time. (See Section 2.2.2 for a

discussion of variations about the curve.) The dotted line in Figure

i is the level of the measured characteristic at which failure

AR-0203'
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occurs -- a level below which there is agreement that the performance

of the set will not be satisfactory. It is recognized that there is

no clear line *)f demarcation between satisfactory and unsatizfactory

performance; the level indicated by the ,otted line in Figure.1 is

introduced only for reasons of exposition. Possibly it is better

stated that there exists a different probability of failure -- az

defined in Section 1,3 .-- with each performance level. This differ-

ence in the probability of failure is reflected in the probability

matrix to be used, and is discussed in detail later.

The maintenance personnel examine an equipment at time t and

note the measured level of operation. If performance has a value

comparat\kvely close to the dotted line, the decision may be made to

repair. This is particularly true if maintenawoe personnel conclude

that there Is a high probability of failure prior to the next mainte-

nance inspection. The time interval to the next inspection is

obviously involved, since the longer this interval the greater the

probability of failure in the interval. Thus, the longer the t1me

interval to the next inspection the higher must be the level of

performance at which preventive action should take place. The gues-

tion to be answered is: What level of performance with what time in-

terval between inspections will provide minimum operating cost? The

model developed in Section 2 is offered as one method by which the

answer to "his question may be determined.

(<K
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2. GENERAL T-ITHODOLOGY

2.1 The Markov Process

The maintenance situation described in the previous section

implies a model which can be described in terms of a Markov Process.*

In ordev to do this, it is useful to think of the equipment perform-

ance characteristics as discrete variables whose separate measured

levels are called "states." Similarly, it is convenient to assume a

discrete time variable for periodic performance measurement. This

time interval can be associated with the concept of "trial" commonly

encountered in discussions of Markov processes. In a Markov process,

one is concerned with the probabilities of transition from one state

to another in a single trial. The analogue in the present case is

the probability of a transition from one equipment performance level

to another in the time interval between inspections. It is now

necessary to describe these probabilities .n mathematical form, using

the words "state" and "trial" for brevity of expression and to facil-

itate reference to the discussions of the Markov process in the lit-

erature.

The essential element of a Markov process is a set of conditional

probabilities, PiJp the probability that if the equipment is known to

be in state i it will pass to state J in a single trial. These prob-

abilities can be conveniently written as a matrix, called the

• For a discussion of discrete Markov chains, see Feller, W,
An Introduction to Probability Theory and Its Applications,
John Wiley & Sons, Inc., i1950, Chapters 15 and 1b.

7 "1 I
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transoition matrix of, tht,- MLa-kov pro~dds.' 'V'i .• •imp';a;J'o in whi h

theru weo'e two iUatos, the transition mutritx would appear a,;

aI ap2

a 2  P21 P22

For clarity, the states are indicated in the rows and columns as al

anO a 2 . The matrix value pll is the probability that if state a,

existed at trial k, this state would still exist in the next trial,

k + 1, The value p1 2 is the probability that if state a, existed at

trial k, it would change to state a 2 in trial k + 1. Thus, we have

a set of conditional probabilitie6: given that state ai e.ists, PiJ

is the probability of being in state aj following the immediately

subsequent trial. Since tha above transition matrix states only what

happens during the transition should state ai exist, it is necessary

to know initially what state does, in fact, exist.

The initial pr oabilities associated with the existence of the

varlous states are conveniently written as a probability vector - a

vector with as many columns as there are possible states.* For the

two-parameter situation above (a,, a 2 ), the probabilitiezzif initially

being in the two states are written as the vector

(q, q2]

where ql is the probability of beginning in state a,, and q 2 is the

probability of beginning in state a 2 . If an experiment always began

in state a,, then the vector would be:

[1.0 0]

* A probability vector is a one-row matrix whose elements are non-
negative and total a.0.

-. .....__ _ _ _-_ _"_ _-_ _"'_ _- --__ _ _



If there were an equal chance that the experiment would start out in

either of the two classes, ti 3 vector would be:

[.5 .5]

If this vector is multiplied by the transition matrix, it will

produce the probabilities of being in the two states at the end of

the first period. The product also will be d probability vector. If

this second Vector is multiplied by the transition matrix, it will,

in turn, produce the probable states in the second period, and so on,

This procedure is referred to as "chaining."

A matrix of transitiQn probabilities (in fact any stochastic

matrix), together with a set of initial probabilities, c~mpletely

determines a discrete-parameter Markov chain.*

To illustrate, consider the following exampae: A man takes a

business trip and leaves his wife at home. It is well established

that wives consider business trips only as riotous interludes to a

humdrum existence which, in their position of servitude, they are

denied. To mollify her sense of social injustice, there is a certain

probability that the wife will immediately buy a new hat. Thus., there

are two possible states: hl, in which a hat is purchased; and h 2 , in

which a hat is not purchased.. There are probabilities a.sociated with

each, which each businessman must empirically determine for himself.

Thus, the travelgi' anticipating a possible outcome of his trip could

put these two states in a probability vector, z:

A matrix is stochastic if each of the rows totals 1O, and there
are no negative terms. In this paper, only %t•-, t•pe of matrix
is discussed.

777 7.7
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[.9 .1]

In vector z, hlg1 notes "hat", and hb denotes "nu hat."

For every week that the man is away from horme, there iL another

set of probable events. At the end of the week, or at the beginning

of' the ,econd period, there is a probability that the wife, h;ving

purchazcd the hat, keepz it (plj); the probability that the wife, not

having previously purchased the hat, does so (pl); the probability

that the wife purchased the hat and returned it (P12); and the prob-

ability that the wife did not purchabe the hat and therefore did not

return it (P22). (Note that the first number in the subscript per-

tains to the state in the first period and the second number to the

state in the second period.) These probabilities form the transition

matrix previously described -- ý1.e., the sum-total of all possible

outcomeo. Since the first subscript is the row subscript in the

matrix notation, the rows will denote the states in the first time

period k, and the columns (the second subscript) will denote the

states in the second VIme period. For example, a transition matrix

might have t6e following values:

hl h 2

A. hl .8 .2

hp .7 .3

If one multiplies matrix A by the probability vector z, the

result will be the probability that the wife will have a hat "t the

conclusion of the first time period -- i.e., one week,* Tnus,

This is row-column multiplication of matrices, For those not

familiar with matrix algebra, a short, lucid discussion can be
found in Mood, it. M., Introduction to the Thooi•j or' Statistic-s,
McGraw-Hill Book Company, Inc., NZ'w Yrk, l9q,0, p, 171.

10
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.2 hl.8 .2 h1 L
h1  h2  - [.•(.8) + .+(.7) .- (.(.]) +

[.9 .1]
.7 .3

hl h2

[.79 .213 -L)

The prpbaibility of having d hat at tha end of the firzst week, hl, iz

the probability that a hat was purchased timeo the probabiluty th..t

the hat, having been purchased, was kept (.9 x .8), pluj the probabil-

ity it was not purchased 4t the beginning of the first week times the

probability it was purchased at the end of the week (.1 x .7). Thuz,

the probability that the wife owns a new hat at the beginning of the

second week is .79.

What happens as the secornd week passes? If one assumes that the

wife's feelings of servitude have not increased With the resulting

purchase of a grand piano, an estimate of events may then be had by

multiplying the second vector, z(1), times the transition matrix,

.8 .2 b1  hi2II
[.79 .21] =[1.779 .221) = z(2)

.7 .3

Thus, there is a smaller probability that the wife will own a new hat

at the end of the second week than at the end of the first. (It is

hoped that the logic of this outcome will not invalidate the example.)

Successive multiplications of the resulting Vectors times the original

matrix will produce the probabilities for succeeding weeks away from

home.

After a few multiplications (weeks), the businessman will note

that the two values change very little between successive weeks and

soon become "stabilized." This would Indicate that after a while, a

11P



longer stay will not materially change the probabilitieo that a hat

will be purchased. For the third multiplication, z(2)A,

.8 .2 hl h2

[.779 .2211 = [.7779 .2221] = z

.7 .3

These same vectors, z(1), z(2), z .... , z()_). ... cdn be

generated by raising the matrix to successively higher powers and

multiplying each power of the matrix by the original probability

vector, z. Thus,

[.9 .1] A2  
= [.9 .1]( 2

11 .77 .23

= [.779 .222] z(2)

[.9 .1] A3  = [.7779 .2221] z(3)

et cetera.

Also, as the stochastic matrix is raised to higher and higher powers,

aij and akj approach equality for every i and k. Each row will

approach the same values as the probability vector obtained by multi-

plying this power of the matrix by the probability vector.*

• The following discussion will involve only the above-Taentiont-d ma-
trix characteristics. A more complete discussion can be found in
Kemeny, J. G., Snell, J. L., and Thompson, G. L, Introduction to
Finite Mathematics, Prentice-Hall, Inc., 1958, ChaLpter V, ections
7 and U. On pages 220 and 221, there are two theorems of interest,-

(1) If P is a regular stochastic matrix, theni
(a) the powers pn approach a matrix T,
(b each row of T is the same as the probability veotor t.,
(c) the 'components of t are positive.

(2) If P is a regular stochastic matrix and T and t are given
by the previous theorem, then ppn approaches ti whenever p
is any probability vector.

12



"4

Thll "stable ntate", as it will be referred to hereafter, is

approached au a limit,
. m, z nWA - 2im, zAn+l - z (u. CO

un - D rn zAý z(D,
fl--W G n-., o)

]1owever, It 1.9 not noc eLiary to carry out this limiting process to

"(If L 'l~ml) (11f). It can be determined as a vectorl which, when multi-

plied oln the right by the traiw;ition matrix, will reproduce itself.

Thi. means that z( ( ) call be found by solving a system of linear

equationo. If the vctov z(r ) is represented by [a, a 2 ] , and the

same stochastic mabri.x as in the previous example is used, we have:

.8 .2

.'7 .3

By regular matrix multiplication, we obtain the system of equations,

.8a 1l -• "72 = a,1

'.2al + .3"2 = a2

These are two linear, homogeneous equations with no unique, non-

trivial solution. However, one equation can be replaced by

a I + C2= 1

which follows f'rom the fact that z( D) is a probability vector. This

gives the system

.2al - .7c2 0

a1 + Q2

The solution of these two linear equations yields a, - 2/9 and

al - 7/9, or a 2 = .2222 . . . and a - .7777 N. ote that theve

values are not greatly different from those In =(2) and z0) Th, S

fact indicates very rapid convergence in this Markov chaln.



2.1.1 Markov Process and Continuous Model

This Markov process is clearly a discrete one, consisting of

finite steps or trials. Such a model is ideal for describing some

phenomena which occur in distinct steps rather than continuously with

time. Experiments in genetics often furnish good examples. A given

mating will produce an offspring with probabilities of certain given

characteristics. The mating of the offspring -- a finite step --

will produce the given characteristics with another set of probabil-

ities. In the field of electronics, the return of a signal on each

rotation of a radar antenna -- the blip/scan ratio -- has been de-

scribed by a Markov process. Here each turn of the radar forms a

distinct "trial." However, in the equipment deterioration phenomenon

considered here, the situation is no longer discrete but is a contin-

uous function of time and the values which appear in the transition

matrix are dependent upon the time interval selected. Consider dete-

rioration from state a, to state a 2 . The value of P1 2 would be con-

siderably smaller if determined over an interval of one hour, than if

determined over an interval, say, of one month. In using a Mmarkov

process in deterioration models one must be aware of this discrete

aspect. This alone should not present great difficultles for contIrn-

uous phenomena have long been approximated by discrete methods and it

is a natural consequence of periodic rather than continuous monitoring

of equipment performance. But it means that the selection of the time

interval,for developing the transition matrix must be made with some

consideration of this inherent discrete characteristic.

Attention is called to another aspect of the Markov process.

The development or each step In the Markov chain uses only the Infor-

mation (the probable states) which existed in the immediately

I) 14
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preceding time period and no other. In other words, the states

existing prior to the immediately preceding one are not drawn upon

for information, nor is the manner in which the preceding state was

reached used as contr!outing information. This is stated by Yeller

(P.337) -- "Conceptually, a Markov process is the probdbilistic ana-

logue of the process of class~ial mechanics where the future develop-

ment is completely determined by the present state and is independent

of the way in which the present state has developed."

If the deterioration process preceding a measurement has been

exceedingly rapid, or conversely slow, the incorporation of this in-

formation should contribute to a better prognostication of system

performance. To the degree that this information is not used, the

first-order Markov process may leave room for improvement in actual

application.* Perhaps similar application of higher order processes

may correct this, but this is not belicved to be a critical deficiency

in the model in view of its intended application. The procedure to I
be used here does make use of a significant portion of the available

information and later ARINC Research Corporation studies will examine

,methods by which the additional information might be incorporated,

- .2.1.2 Application of the Model to a Theoretical Problem

The transition matrix is determined experimentally in the manner

described in the appendix. The probabilities Pij are determined from

periodic measurements of the performance of a number of equipments,

The Markov process described in the previous example is a first-
order or simple Markov process. Higher order Markov processes
are those in which the transition probabilities depend on two or
more preceding time periods. See Doob, J. L., Stochastic Procfes3eS,
p..89, John Wiley, 1953.
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At each measurement period, the number of equipments which have moved

from one state to another is recorded. The number of levels of

equipment-states is a matter of instrumentation and judgment, More

sensitive instruments will permit the selection of more clazzes or

states into which the variable can be divided- Generally, the more

classes there are in the transition matrix the better, since we are

approximating continuous phenomena by discrete steps. However, a

large number of c~asses may require that processing be done by machine,

since the matrix computations are certain to be laborious. For pur-

poses of explanation, assume only four classes or states of system

performance. Let state aI be peak performance, state a2 be inter-

mediate performance, state a 3 be marginal performance, and state a4

be failure. A series of observations of equipment performance would

yield the following matrix:

a1 a2 a3 a4

a l  P 11  P12  P1 3  P1 4

A a 2 P21 P 2 2  p 2 3  p2 4

a 8 a3 P3 1  P3 2  P33 P3 4
a4 p 4 1  P4 2  P 4 3  P44

The interval selected for collection of data must be sufficiently

short that only a few equipments will "skip" classes az their perform-

ance deteriorates. What this interval is will depend upon experimen-

tation and experience with the equipment. The error resulting from

selection of too short an interval will not be large. However, if too

"A. long an interval is selected, "second generation" equipments which

have been -repaired and returned to higher levels of operation may

materially affect the data. This problem is covered in the appendix.

S.• 16



i

2.1.3 Classification of Failures in the Transition Matrix

In the preceding discussion, operating state a 4 wan defined as

failure. However, equipments which actually have value.s higher than

a4 may be removed from service if operating personnel are dissatis-

fied with performance. Thus, when the transition matrix is prepared

from experimental data, class a4 will have a dual meaning. For ex-

ample, if an equipment has measured performance in class a2 , but is

known to have been ordered removed from service by the operator during

the interval, this equipment is classed in state a 4 . Unless there is

perfect functional dependence between the measured characteristic and

the frequency of failure, state a4 will include a combination of

equipments -- those actually observed to be in state a4 at the end of

the interval and all other equipments removed for repair, regardless

of their measured level of operation.

This failure classification can be described another way.

Suppose that the transition matrix is based solely on the measured

values of equipment performance, and the same four levels of the

characteristic are assumed. The matrix can be written as

aI a2  a3  a4

a1I p11  P12  p1 3  P14

a2  P2 1  p2 2  P2 3  P24

3 p3 1  32 P3 3  P34
a• 0 0 0 1

With each level of performance, there is a certain probubility of

failure, and as the performance level decreases, we expect an Increea s

ing probabillty of failure. Thus there are failure probabilities

associated with peach state-
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a, a2  a 3  a4

2 I f2 f3 ]

Again it is assumed that the last measured state unmistakably

represents an equipment failure.

The probability that an equipment in state a1 is not declared a

failure is I - fi. A failure/non-failure matrix can be writteni

I l 0 0 f

0 - f 2  0 f2

0 0 2 - f3 f3

0 0 0 2

Then,

Pll (1-f:) p2 2 (1-f2 ) p-13 (-1-f3) P22:f2--P22fý'+p 2 3f3-f-P24

P2 1 (1-fl) P2 2 (l-f 2 ) P2 3 (2-f3) P2 1f :!+P 2 2 f 2+P23 f 3+P2 4

P3 1 (1-fl) P3 2 (l-f2) P3 3 (1-f 3 ) p3 1fa+P3 2 f 2 +p3 3 f 3 +p3 4

0 0 0 2

In this example, pll(l - fl) is the probability that after one

time interval the equipment will remain in state a, if failure has

not occurred; P12(0 - f2) is the probability that after one time

interval the equipmcnt will have moved to state a2 , again if failure

has not occurred; and so on. The fourth column gives the failure

probabilities in the dual sense. This type of transition matrix is

the one which is dealt with in the remainder of the paper,

2.1.4 The Extension to More Than One Performance
"Characteristic

The failure probability vector has two extremes, which for four

measured levels are



[0 o 1]

and

[ 1/4 1/4 1/4 1/4]

In the first extreme, failure is functionally dependent upon the

measured performance characteristic; Jn the second, when each entry

is 1/4, the measured performance characteristic is of no value in the

prediction of fail')e and another characteristic should be sought.

Between then;e tWo extremes, a combination of characteristics is

suggested -- that is, a second measured characteristic may account for

causes of failure not covered by the first one.. It is possible to

form a system of stater based upon a combination of measuremants of

the two characteristics in the following manner. Suppose, for example,
that the states of the initial characteristic are a1 , a 2 , a3 , and

and that the states of the second characteristic are b1 , b2, and b3 .

This array of combined states may be written as

a 1  a 2  a 3  a 4

03 c

2 c5  6 c7  c8

b3 c9 C10 C11 c12

Thus, c7 represents state a 3 for the first characteristic and state

b2 for the second characteristic. It is now possible to treat the

ci as a new variable with 12 states, by use of the methods described

herein. The extension to more than two characteristics is obvious.

2.2 Numerical Example of the Model

Consider a numerical example of a transition matrix.*

* This matrix was developed as the matrix AP In Section 2.1.3. For
convenience it will be denoted simply by A in the remainder of the
paper.

19
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Sal ar) a3 a4

Ii

A =

0 0 .1 .9

0 0 0 1.0

This mat.,ix has the property that once an equipment progresse.3 into

t lower state it will not, in the interval, go to d higher otate,

i.e., repair itself. Thus iý is a triangular matrix in which the PiJ

are all zero for i> J. (Note also that P44 = 1.0. If a set begins a

period in the failure state, d4, it will be there at the end of

period.)

Usually, one would expect a transition matrix to have non-zero

values below the main diagonal. However, if the characteristic being

measured is really a deterioration phenomenon, the probabilities of

transition to higher performance states should be quite small, The

m:':aix should tend to be triangular in the sense that the values of

Pij should be very small If i> J. Furthermore, one would usually

expect Pij to be quite small if i is much smaller than J. In summary,

•his means that the performance characteristic selected for measure-

ment should be one for which improvement is rare, deterioration is

common, and states are so defined that equipments do not commonly

deteriorate more than one state in the basic time interval of the

transition matrix. All three of these properties are satisfied by

the numerical example selected. The first condition is satisfied

since P2 1, P3 1 ' P3 2 ' P4 1 0 P42 , and P4 3 are all zero. The non-zero

values of Pll, P1 2 , P22, P23' P3 3 ' P34, and pj. 4 are consistent with

the second property. Finally, the zero values for Pl-, plIt, and P24

2,0
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reflect the third property. It should be ot_-.-used, howevur, that the

method can be used to develop state distributions no matter what the

form of the stochastic transition matrix.

From an engineering viewpoint, it is important to realize that 4
the assumptions of deterioration and accurat<• instrumentation natu-

rally lead toward a triangular matrix. If the experimental data do

not reflect this, it would suggest that the measured characteristic

is not a good one on which to base prediction of failure, or that the

accuracy of measurement is too crude to monitor equipment performance,

or that both of these conditionj hold. In this case, the situation

must be examined to see if another characteristic must be selected,

or if instrumentation can be improved.

We can, from this information, gunerate the failure density func-

tion of the equipment. If the equipments all begin in state a,, then

the initial probability vector is:

aI a 2  a 3  a 4

0 0 U]

If this vector is multiplied by the transition matrix, the

distribution by state at the end of one time interval is obtained.

Repetition of this process generates the state distribution over time

as shown in Table 1. Columns 2 through 5 give the state distribution

for the times shown in Column 1. This constitutes an important de-

scription of the equipment deterioration pattern, based entirely on

the transition matrix. The failures, which were identified as state

a 4 , are shown in Column 5 in the form of the unreliability function,

U(t). This results from the fact that the process includes no repair,

so the cumulative failure frequency is developed. The failure density
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itltion. u(t), in Colu 6, gives the probability of failure'in

"edch time perlpd. (See Figure 2.) It ts obtttned.by tqking differ-

encez between U(t) values of Column 5. The reliability function,

shown in Column 7 is computed from Column 5 by the formula

R(t) = 1 - U(t)

The average level of measured equipment performance was basic in

the statement of the problem given earlier in this report. Such an

average level is in reality an "average state" as a function of time.

In order to compute such an average state and to draw a graph for the

transition mt.~rIx, it is necessarl to identify states numerically in-

stead of just by names a,, a 2 ..2 , a 5 . Column 8 shows average state

based on the assignment of numerical value 1 to a., 2 to a2, etc.

Thus, each entry in Colunn 8 is the average state of the probability

vector in Columns 2 through 5 for the time shown in Column 1.

AR-0203
.25

.20

Is .
0

1.10

.05

I. p , l , I , I I I I I I I ,

0 1 2 3 4 6 6 7 a 9 10 11 ýl1

FIGURE 2
TIME-TO-FAILURE DMITY FUNCTION, u(t)
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"P, 1,"ure 3 Lst a 1.;raph of tcho average state values in Column 8 plotted

-. ,:agnst ttmd, Column 1. In addition, the state distrtbution for 4

I ree t 3 Is shown I.n the upper right hand corner of the figure.

AR-0203K1 , , i ! I I I I |I

U,

S4 9-tu

AI 3IGU RE 3

S~AVERAGE DETERIORATION OF A PERFORMANCE CHARACTERISTIC

It should be noted that the method of selecting a preventive

maintenance criterion is not dependent on the assignment of numerical

values to the various states. Numerical values are assigned* here

only in the desire to describe the deterioration phenomenon by means

of the transition matrix, and to relate the computations in the re-

maining portion of this report to the problem stated in terms of

deterioration.

* In most cases, the numerical values would be given directly by
the characteristiýc measurement.
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2.3 Scheduling of Preventive Maintenance

The foregoing discussion is concerned primarily with the

development of the basic concept that deterioration phenomena can

be represented by a Markov process. Reference has been made to the

problems associated with data collection, definition of suitable

performance levels, and determination of a time interval for the

fundamental transition matrix consistent with repair-time require-

ments.

At this point, it is necessary to describe methods whereby

matrices can be modified to provide for repair of in-service failure

at times consistent with normal maintenance practices, and also to

provide for independently scheduled preventive maintenance. It is

reasonable to assume that preventive maintenance will be 4cheduled

at intervals which are long compared to the time required for the

repair of an in-service failure.

When the unit of time is the interval covered by the basic tran-

Sition matrix, the problem is to develop a method for computation of

the expected number of in-service failures which will occur in n time

unit intervals -- with repair of in-service failures at the end of

each unit interval and preventive maintenance at the end of the -th

unit interval -- and to express the entire process in matrix form.

It is assumed here that maintenance always occurs at the end of each

unit interval.

For the sake of convenience, the numerical matrix shown on

page 20 is repeated here. It will be recalled that state a4 con-

stitutes failure.

25
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al a2  a 3

.5 .5 0 0

o .5 .5 0
A=

o 0 .1 .9

0 0 0 1.0

If it is assumed that repair of an in-service failure returns

the equipment to the highest operating state, the basic matrix is

modified by adding Column 4 to Column 1 to form a new Column 1.

Since such repairs are made at the end oP each time interval, the

basic transition matrix becomes:

' 5 .5 0

A1.1  0 .5 ,5

.9 0 .1

Note that Column 4 and Row 4 of Matrix A have been deleted, This is

done here because the repair of in-servIce failures precludes the

existence of equipments in state a4 , and therefore a matrix with

three rows and three columns is adequate to describe the situation.*

II
It is of interest to note that this operation can be expressed
as a matrix product. This leaves a four by four matrix contain-
ing A. 1 and indicating the shift of equipments fror. a4 to al.

.5 .5 0 0 1 0 0 0 .5 -.5 0 0

0 .5 .5 0 0 1 0 0 0 .5 .5 0

0 0 .1 .9 0 0 1 0 .9 0 -l 0

0 0 0 1.0 1 0 0 0 1.0 0 0 0

Thus, A is multiplied on the ri;ht by a matrix expressing that
the probability, is 1.0, that state a1 wtil reenain al, that ap,
will eemain a that a will remain a, :ii L.. I ioco.w aL.

26
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Deletion of one row and one column Is ind!icated bvt the zubocrl pt in

the symbol A_,. The notation will be extended later as the matrix is
reduced by deletion of addttional rows and columns.

If the process of repairing in-service failures is continued in-

definitely, a stable state is approached,* as illustrated at the end

of Section 2.1. If the stable state is

,(O)5 = [a a 2 a3],

then Z( o) A- 1  = z( 0) .

This gives the system of equations

•5aI + .9 a 3 = a,

• 5al + .5a 2 = a 2

.5a 2 + "la 3 = a 3

a1  + a 2  + a 3 = 1.

Therefore, z( -) [.3913 .3913 .21741

In the stable-stato= condition, the expected number of in-service

failures in one time interval can be obtained by multiplyi~g the

vector z( OD by the fourth column of matrix A:

.5 .5 0 1 0

a, a 2  a 3  a 4  0 .- 5 1 0

( A = [.3913 .3913 .2174 0] 0 0 .1 -9

0 *0 0 1.0

The fourth element in the product is (.9) (.2174) - .1957. Therefore,

this is the expected frequency of in-service failures in each time

interval after the stable state has been reached.

* If no repairs are made, the stable state developed from matrix
A is [0001].

27
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To illustrate the oomputatlonal proc edlrc, _upponc preventive

maintenance were perfurmed at the end of everj sixth interval. Then

the total number of maintenance actions would be the zumn of repairz

of in-service failures -- performed at the end of cach interval --

and the required preventive maintenance actions at the end oI the

sixth interval. With four states, a,, a 2 , a-, and a., with a4 beirn

failure, the a4 wzould be shifted by repair of in-Lervice failure to

aI at the end of each interval. Preventive maintenance w,;ould cou~zlt

of tranzfer of a, (or a3 and a 2 ) to a1 at the end of eveyj sixth

time interval.

These maintenance actions can be expressed in matrix notation

in the manner shown below.

S~Let

*X -[X, x2 , z 3 ]

denote the probability vector for the initial distribution of equip-

ments by states. The transition matrix A_1 describes the state tran-

sition in one time interval if in-service failures are repaired but

no preventive maintenance Is performed.* The probability vector at

the end of one time Interval is the product YA_. This vector be-

n t1h
comes xA- 1 at the ejd of the n-h interval. In applylnc thý. method

it is convenient to compute powers of A_1 . The powerz of Intere.-tn

this example are shown below.

* As indicated In Section 2.3, the notation A_, was adopted to
denote the deletion of one row and one column following the
addition of Column 4 to Column 1. If the preventive maintenance
schedule called for repair of equipments in state a-, two columns
would be added to Column 1, and the notation would te A- 2 ; etc.
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4 4#4

!0
•5 .5 0

0 .5 .5

.9 0 .1

.25 .50 .25 .350 .375 .275

A =j .45 .25 .30 - .495 .350 .155

'54 .45 .01 .279 .4,1 226

.4225 .3625 .2150 r4o475 .39250 .20275

A•.I - .3870 .4225 .1905 A5
1  .36495 .40475 .23030

.3429 .3870 .2701 ,41454 .36495 .22051

.38485 .39862 ,21652 .-,,,8729 .39175 .22096

A .38974 .38485 .22540 All- .3973 .38730 .21496

.40572 .38974 .20452 .38694 .39773 .21538

.39252 .38M5 .21796

8 - .39234 .3925i2 .21514.*38726 .39234 -2204o

It will be noted that the rows converge toward the stable-state veotr

[.3913 .3013 .21714

which was derived by the method Geso•lbed In Sectlons 2.1 and 2.3.

If the preventive maintenanoe scheftle re•uLres the tisWer of

state a3 equiPents to state a, at the end ot a intezvals, the stable-

state vector at the epd or the nlA interval to determIned by the 0

methods. For ezaqm1e, Lf a - 4 (note A!,). the tra~nsition matrix S&I.4225 +. .2150 ..36251 i6375 .3629-;

£4 -. 3870 + IM90 .142 IS775 .42251
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which, when multiplied on the left by the stable-otate pirububility

vector [aI Q2 ], reproduces this vector. Thus

.6375 .3625

.5775 .4225

This is equivalent to

.6375 al + .5775a2 = aI

•3625al + .42250a2 = a 2

Replacing one equation by a, + a 2 = 1, the solution is found to be

1I = ,614, a 2 = .386.

Therefore, the stable-state vector in this instance is

[.614 .386]

This is really an abbreviation for the vector [.614 .386 0 0],

which indicates that no equipments are left in states a3 and a4 from

one preventive.maintenance interval to another. It must be remem-

bered, however, that the equipments do pass through these states in

the intervals between preventive maintenance actions.

Stable-state probability vectors for a selection of preventive

maintenance schedules are shown below:

Preventive-Maintenance Interval (n) Stable-State Vector

n a1  a2 a 3 a 3

1 1.5 .5 0 0]

2 [.6 .4 0 0o

3 1.634 .366 0 0 ]

4 [.614 .386 0 0 ]

Wr 8 [.6381 .3619 0 0QI
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The number of failures which occur in the time interval between

preventive maintenance actions is determined by chaining the nth

stable-state vector, using multiplication by matrix A "n" timnes.*

This procedure is illustrated for the case where preventive mainte-

nance occurs every fourth interval.

Period

1 [.614 .386 0 O]A = [.3070 .5000 .3930 0] =

2 [.3o70 .5000 .1930 O]A = [,15350 .40350 .2693 .1737] = Z(2)

.1737 + .15350 - .3272**

3 [.3272 .4035 .2693 O]A - [.16360 .36535 .33868 .24237] = (
(4)4 [.40597 .36535 .22868 O]A - [.20299 .38566 .20554 .20581] = z

The total number of in-service failures which occur during each

four-interval period between preventive maintenance actions is

0 + .1737 + .2434 + .2058 - .6229. The number of equipments which

undergo preventive maintenance, those in state a3 at the end of the

fourth period, is .20554.

The total number of in-service failures and preventive mainte-

nance replacements for other groups of Intervals are determined in a

similar fashion. The chaining occurs a different number of times

and the associated stable states are different for different intervals.

Computations for preventive maintenance every sixth interval are given

below.

* See procedure given on page 27.

cc During the second interval, .1737 failures occurred. Since it
was hypothesized that these equimnts wre, repalred during the
interval (restored to state a 1 ), there is no state *4 beginniM
with, the third interval.

1
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z(O) = .606( .3932 0 O]

z(l) = [.3034 .5000 .1966 O]

z(2) = [ .3286 .4017 .2697 (.a769)*]

z(3) [ .4o7o .3652 .2278 (.2427)]

z(0) -= [.4085 .3861 .2054 (.2050)]

z(5) = [.3891 .3973 .2136 (.1849)]

z(6) = [.3868 .3932 .2200 (.1922)]

n, - 1.0017 = number of in-service failures

n2 - .2200 = number of preventive replacements.

Table 2 gives the number of in-service failures (n2 ) and the

number of equipments replaced during preventive maintenance (n2 ) for

various values of n, the number of interv,1s between preventive main-

tenance actions.

TABLE 2

NUMBER OF IN-SERVICE FAILURES AND PREVENTIVE REPLACEMENTS, WHEN
"PREVENTIVE MAINTENANCE IS SCHEDULED EVERY SIXTH INTERVAL

Interval In-Service Failures Preventive Replacements(n) n (n 2)

1 0 .25
S.18 .17
3 .4o62 .2311
4 .6219 .2055
5 .8109 .2137
6 1.002 .2200
7 1. 382 .2169

2.3'.2 Stunary of the Nathematical Model

The mathematical model developed in preceding sections expresses

the deterioratlor pattern of an equipment In the form of a Narkov

* Stat, a4 Is parenthesized because these values have been added to
state aI.
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process. This transition matrix covers an interval of time which is

sufficiently short to preclude the influence of second-generation

equipments -- that is, equipments which are repaired and returned to

service before the end of the interval.* The distribution of equip-

ments by performance level or state at any subsequent time is ex-

pressed as the product of the initial state distribution and an

appropriate power of the transition matrix. This power is equal to

time, expressed in units of the interval for which the transition

matrix is applicable.

Maintenance procedures can be expressed as modifications of the

transition matrix. Repair of in-service failures is reflected by

the addition of the failure-state column to the column representing

the state following repair. Preventive maintenance is reflected by

the addition of lower-state columns to higher-state columns as

appropriate. In the present discussion, it is always assumed that

preventive maintenance and repair of in-service failures restore the

equipment to the highest state, which is represented by the first

column of the matrix.

If in-service failures are repaired immediately after occurrence

(it is implicitly assumed that they will be repaired within the time

period covered by the transition metrix) and equipments in certain

states lower than state a 1 are repaired at the end of every nak In-

terval, a stable state Is developed around this replacameut pattern.

0 The selection of appropriate Intervals is discussed in Uection I

of the Appendix.-
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Each replacement pattern will generate a different number Cf

failures since each will have its own stable state. The arithmetic

is expressed in terms of matrix multiplication. By computing several

replacement patterns which differ both as to time interval and re-

placement level, it is possible to compare the total number of in-

service failures and preventive replacements generated bj each main-

tenance pattern. This comparison provides the data required to ce-

termine which pattern of maintenance yields the lowest cost. All cost

computations can be based on stable-state distributions, since the

ultimate average cost is independent of the initial state distribution.

I3
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3. DETERMINATION OF OPTIMUM MAINTENANCE SCHEDULES

3.1 The Cost Equation

The expected average cost per unit time is given by the equation:

= [ klnl + k2n 2 + k3]

where:

h - the number of time units between periodic preventive
maintenance actions; one time unit is the period of time
for which the transition matrix is developed.

kI - the cost of repair of an in-service failure.

k 2 - the cost of a scheduled preventive maintenance action.

k3 - the cost of periodic test or measurement of performance
level.

n, - the expected number of In-service failures in h time units.

n2 - the expected number of scheduled preventive maintenance
actions in h time units.

The situations of Interest are those in which the cost of repair-

ing an in-service failure Il considerably greater than the cost of a

preventive maintenance action at scheduled atintenance intervals

(there would be little reason for preventive maintenance if It were

more expensive than repair of an In-service failure). Therefore, In

the numerical illustrations which follow, it Is assumed that the

values of kI are considerably laiger then the values of 1c2. It is

also assumed that the values 9t k3 (the cost of mka the perloW

check of equipment peoroimance) aev less than either of the other

costs, although this Is Tot a meoessry assnotLon and Mes so effetat

on the validity of the method.

,.I,
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o 3.2 A Four-State Example

To illustrate the method, coat computations for the above

Snumerical example are made for a selection of co•L, pairameters.

Assume two sets of values:

(2) k3 = 1, k 2 = 4, k 1 = 16.

If no preventive maintenance is performed -- that is, if equip-

ment is repaired only after failure -- there will be a constant fail-

ure rate of .1957 per time interval (see page 27), and the cost

equation is

TABLE 3

AVZRAGE COST PER UNIT TIME WHEN PREVENTIVE MAINTE4ANCE IS PERFORMED
VERY ni-h INTERVAL BY REPLACING EQUIPMENTS IN STATE a3

Replacement Cost Cost Schedule 1* Coct Schedule 2*
Interval Equation kI = kI = 16

1

1 [Ok, + .25k2 + k31 k.O0 2.00

2 2 .lkl + .27k2 + k3) 1.76 2.48

31 [.4062kI + .2311k2 + k3] 1.72 2,8133'

S1 .6219k + .2055k 2 + 1.70 2.94

5 •2•[.8110kI + .2136k2 + k3] 1.66 2.97

{i•6 '" [1.002k1 + .2OOk2 + k3] 1.65

81.364k + .2169k 2 +k 1.62 3.00

, In both cost schedules, k 2  4 1 and kl = 1.
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c [.1957 kI + Ok2 + Ok3 ] = 1.56, if k1 = 8

= 3.13, if kI = 16.

Assume preventive maintenance is performed every nth interval by

restoring equipments in state a3 to state a,. Then the resulting cost

equations and total costs are those shown in Table 3. The costs

listed in the table are plotted in Figure 4. These curves lead to

the following observations. When Schedule I costs are assumed, pre-

ventive maintenance at any time interval is more costly than none at

all (the cost of repair of in-service failures with no preventive

maintenance is indicated by the horizontal line marsed kI = 8). On

the other hand, when Schedule 2 costs are assumed, any preventive

maintenance is better than none, irrespective of time -- the optimum

situation being obtained when preventive maintenance is performed at

the end of the first measurement interval.
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By a slmilar procedure, thu relutiveŽ Q.cto of other patternz of

preventive maintenance -- for example, replacement of equipments in

states a3 and a 2 -- can be determined. Such a comparison would be

necessary for a complete cost analysis. However, in view of the

small number of performance levels involved here, further study of

this simple example is unwarranted.

Intuitivel).:,, or- would expect the optimum time for replacement

to occur somewhere between the first and the infinite intervals; i.e.,

there would seem to be a few actual situations in which maintenance

"as early as possible" or "not at all" would be warranted. 2n fact,

the small simple matrix used In the preceding example would fit few

actual situations. Because of the values selected and the small num-

ber of classes ased, a stable state is reached very quickly, which

forces second- and third-generation failures to enter rapidly into

the average failure rate. Table 2 (see page 32) indicates that fail-

ures begin in the second interval, that nearly two-thirds of them

have occurred by the end of the fourth interval, and that new-

generation failures have oacurred by the end of the sixth Interval.

Thus, the equipments rapidly reach a random-age distribution, and

the failure density function for the second generation so overlaps

the first-generation density that the cost curves (which reflect

system failures) are quite smooth.*

* Welker, Dr. Es L., Relationship Between Equipment Reliability,
Preventive Xa!ntenance Polcy,-and Operating Costs, ARlN Research
corpomtiof, "ebruary 1, -1959 (Publication No. 101-9-135),
pp. 20 ff.
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t should also be noted that the curvez shown in Figure 4 begin

at the first time interval. All cost curves start with this interval,

as cost equations and number of failures can be determined only for

intervals which are at least as long as the one selected for the

transition matrix. If the basic time interval in this example were

shortened, the beginning value for both curves in the figure would be

considerably higher, because the cost of nearly continuous checking

(k3) would be much higher over any given interval of time.

3.3 A Seven-State Example

To illustrate a more typical case, another example is given. In

this example, the underlying density function has a smaller coeffi-

cient of variation, a property which will turn out to be critical in

developing a more usual deterioration pattern.

a, ap a3  a4  a5  a6 a7

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

B- 0 0 0 1 5 . 0

o o 0 10 .5 .5 0

o o 0 0 0 .1 .9
0 00 I 0 0 0 1.0

It will be noted that the submatrix shoam in the lower right-

hand corner is Identical to the one used in previous illustrations.

Appending the first three rows and columns has the effect of shirt-

Ing the failure density to the right by three time interwals (se

Figure 3). Thero,"ore, the mean of the distribution is now 8.1 tim

units, but the standard deviation or 2.0 Is unohamed from the og1mal
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"example.* The net effect of this shift is to decrease the uoefflclernt

of variation from .40 to .25. The additional columns can be regarded

as additional states. State a.7 now designates failures which, when

repaired, are returned to state a 1 .

3.3.1 "Dunmy" Columns in the Transition Matrix

In actual practice, it may be xieceosary to add "dummwy" coluiann

to the transition matrix derived from empirical data.. Whether or not

this 1s done depends upon the testing instruments used in the e:peri-

ment. For example, if these are sufficiently sensitive to measure

seven rather than four classes of performance, there may be values

other than zero or one in the first three columns. On the other hand,

if the equipment is a receiver with a considerable number of redundant

elements, it will probably register performance close to peak levels-

state a, -- for a long period of time and then fail quite rapidly.

In this situation, the average operating level would remain almost

constant and then drop off sharply, as shown in Figure 5.

AR.02c3

Ull.

!

TIM

AVWAGE OPUATM4 MMV AS A PJNCTION OF TWL

* See Appendix, Section 4
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1 Actually, under the hypothesis that failure i3 a gradual

i• deterioration phenomenon, it can be assumed'that the deterioration

!-f

shown in Figure 5 began at time to but that the instrument w.as unable

to measure it. Thus, dummy columns would be required to ohift the

failure density function to the right, as in the case of matrix B.

The portion of the curve to the right of tI is analogous to the entire

curve shown in F~igure 2. This matter is discussed in more detail in

Section 2 of the Appendix.

3.3.2 Cost Equations for Matrix B

The computations associated with matrix B" are carried out in the

same manner as those of the previous example. Addition of Column 7

to Column 1 constitutes repair of in-service failures, while addition

of any other columns to Column 1 constitutes preventive maintenance.

Cost equations for preventive maintenance at intervals up to 10 are

shown in Tables 4 and 5 -- Group I equations for maintenance involv-

ing replacement of equipments in state 86, and Group II equations for

maintenance involving replacement of equipments in states &5 and a6.

Vhe following sets of costs are used in the tables.

Cost Schedule 1 Schedule 2 Schedule Schedule 4

kI 8 11 15 19
k2 4 4 4 4

Ik3  1 1 1 1

The cost equation and maintenance costs for repair of in-service

failures on1y (no preventive maintenance actions) are:

AL
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TABLE 4l

GROUP I COST EQUATIONS: AVERAGE COST PER UNIT TIME WHrnJ PREVE1TIVE
MAINTENANCE IS PE3FORMED EVERY I fl|TERVAL BY REPLACING

EQUIPMENTS IN STATE a,;

Cost S-,heduleo*Rel lacement ctCost
Interval Equat in

I 1 :okI + .14ik + k31 1.5" 2.5;' 1.;7

+ -13-+.1 c2 + k) .1.49 1.16 2.01

| .. [.. ' . . 2 + .t.

([ , + 21,.2:2+ ]

8 1, [.',b7i• 1 + .1. ukL + k,] 1.24 I.t 2.01
M

+0 I,] 1.03EI0 •'01 [[i.1!•i + .i.::'• +k] 1.' .. .[

In cach of the tLree .ozt !1.eJ~1eU, ;. and 15 1.

TABLE 5

GROUP II COST EQUATION: AVERAGE COST PER UNIT TIME WHEN PREVENTIVE MAINTEIANCE
13 PVOWWD EWjY 4 th INTEVAL BY REPLACING EQUIPMENTS IN STATES a, AND a6

Cost Saj.0.julo.*
Replacement Cost I

Interval Equation 1 kl 11 k __- 15

1 • [o0l + .2k 2 + k3 ] 1So. 1.,0 .,0,

2 " [Okl + .3750k% + k3 ] 1.25 1. $ 1.I- 1...,

2I
4. (.158k1 + .507k2 + 1(3] 1.O 0.1. .3

6. 1 .ý32kl + .565kZ2 + k,31 .9D6 1.1t,1.

8 1.789ki * .27%k + Ic3 ] 1.05 1.51.74 X14

10...987ki + .356k + k2 10 1

In , . t3W twr cost sahdulfav * 2  and
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C = [.1233kI + Ok + Ok3 ]J

Schedule 1 = 0.9

Schedule 2 = 1.36

Schedule 3 = 1.85

Schedule 4 = 2.34

The curves in Figures 6 and 7 show the effect of different cost

schedules and replacement times on the average hourly cost of replac-

ing, respectively, state a- equipments only and state a 6 and state a 5

equipments. Figure 6 indicates that preventive maintenance is con-

sistently less costly than repair of in-service failure when the

latter has values of k1 = 15 and k, = 19 (see two top curves). When

repairs of in-service failures have values of k, = 11, preventive

maintenance is less costly only when performed somewhere between the

sixth and the tenth intervals, the optimum time being at the end of

the eighth interval.

4

In Figure 7, showing the variation in costs of replacing equip-

ments in states a 6 and a 5 , an extra curve based on schedule 1 costs

is included. When this schedule is assumed, the minimum cost occurs

when preventive maintenance is performed at the end of the sixth In-

tervEal; however, at this point, preventive maintenance is still

slightly more expensive than no preventive maintenance. For IC _ 11,

the optimum point occurr at the end of the sixth interval, and there

is a distinct advantage in preventive maintenance except when per-

formed at the end of the first interval. A simLlar advantage Is

gained by performing preventive maintemnmce when k- - 15 and Ic1  19,

but the optimum time fotar replsmet is now the end of the second

rather than the end or the &UM iih tea,,ia.
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--- COST OF WtANI OF Ir4-SERVICE FOULRE5 ONLY

COST OF SC4WUWD PREVENTIVE MAINTINANCII _______

REPLACEMENT INTERYAl

FIGURE 6
COST OF REPAIR Of IN-SERVICE FAILURE vs. COST OF

SCHEDULED PREVENTIVE MAINTENANCE, WHEN EQUIPMEN[TS
IN STATE a6 AME REPLACED AT VARIOUS INTERVALS

AR-0.203
3.0 -- _ _ _
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FIGURE 7
COST OF REPAIR OF IN-SERVICE FAILURE ms COST OF

SCHEDULED PREVENTIE MAINTENANCE WHM8 EQtWUIPB S
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APPENDIX

1. SeletL:,n uf Mihntenan,•c Interval and Time Pc, f',)r thc
Tranz' 1*i"n ... tr...

The Yjarkov process requirea that the transition matrix be

raised to povers higher than one in order to determine the probable

states of the equipment after, say, n time intervals. The method

assumes that if an equipment fails in service, it will not be re-

turned to service until the beginning of the next time interval.

If the interval selected is one day, for example, it must be

assumed that equipments which fail during the day -will be repaired

during the night shift and be returned to service the next morning.

However, suppose that in practice the equipments which fail are

replaced in one-half hour's time by the substitution of other equip-

ments. This would mean that second-generation equipments will be

introduced within the time period used for the transition matrix.

If this should occur, then increasing the powers of the transition

matrix, say to n, will not generate the same probable states that

actually would result at the end of n periods. However, if the

transition matrix is based upon a time interval of one-half hour,

then successive chainings of the transitio _matrix will always match

the actual performance pattern. The time interval of the transition

matrix must correspond to the repair interval, and the time interval

between the times of data collection must be correspondingly short.

4
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In tI'' oxamnillc pro(ent(?1 (fn pWC 90. .on 2 t0., al, a,-, a-; and a4

i-oero u.-,6 f,,r Illwztrative pu rpooe., with no ,liscwizion of how they

* would bo chonen In nn application of thin method. In practice, the

raw data would best be recorded as direct numerical observations,

enpecdill:; If the instrumentation were sensitive or the meazurement

scale were long. Then the definition of states would be the prac--

1 -il problem of data grouping.

Assume That the curve in Fi[gure 8 represents the avora.e chan.e

in performance with time, and that to anl tn denote, respectively,

the becInnm.n- and end of the period o-f obzervation. The following

method in one which mirht be used to select state boundaries. The

time interval, to to tin, may be divided into an arbitrary number of

different r:rouplngs which are equal to the number of states to be

used in 'he transition matrix. The seleit ion of this number is

entirely one of judgment. For example, assume that eight is the

selected number of states, and divide the time axis into eight

uniform divisions. Vertical and horizontal lines drawn from these

divwsions to intersect the curve, as indicated in Figure 8, will

dl'vie the vertical scale into as many different classes as there

are divisions of the time axis. The probability that an equipment

will be in any one of these groupings is computed by the method

.I~ustratoe. These groupln-s will not produce uniform, numerical

d1ivisions on 4`he ordinate scale unless the average curve is linear.

Nevertheless, the divisions will be "uniform" insofar as they

renreoent an average range of performance covered by the equipment

In the uniform time period selected on the time axis.
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NOTE, THE al ARE SHOWN AT

LOWER IOUNDARY OF

EACH STATE.

I ., -- 4 1I
04

FIGURE 8
SELECTION OF STATE BOUNDARIES FROM OBSERVED

VALUES OF A PERFORMANCE CHARACTERISTIC

There is one further consideration. The average curve may be

nearly horizontal for low values of t, as shown in Figure 5 -- for

example, when parallel redundancy exists. In this instance, the

performance measurement will tell nothing of the probable relation-

ship of the equipment to the time axis in this interval. However,

the transition matrix can reflect the fact that the equipment is

moving uniformly through this time interval or through the classes

below the horizontal portion of the curve. Such a matrix would have

zero's and one's in the columns which pertain to these classes as in

matrix B, page 39. It should be noted that the performance charac-

teristic measured will usually be an operating characteristic corre-

lated with, but not identical to, the part deterioration character-

istic itself.
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Ii' the for',:ouLnG proc uilure zhould re.;ult in the incluý;1en )(if

certain "unnecessary" statez, theou should be eliminated. Fur

example, if the transition matrix should indicate very low probabil-

es that an equipment will be in state a, at the beginning of the

initerval, it is proper to say that state a,, is unimportant and can

be combined with state ak-1 or state ak+I.

3. Method for Computation of Pij of Transition Matri. fr':m
Empilrical Data

To illuztrate the method for computing the Pij of' the trarinition

matrix from empirical data, assume four equipments and four levels of

performance. They are observed for a maximum of eiL•ht tinre intervals.

The data -- whioh could be derived just as well from observations on

one equipment which was repaired or returned to operating level a1

four times -- are listed in Table 6. The point to stress is that

each line represents the deterioration of one equipment from a higher

operating state to failure, state aj4. If the equipment fails and is

restored to a higher state through repair, another line must be added

to the table.

In recording data for use in developing a transition matrix, it

is not sufficient simply to list all equipments which are in a given

state at the end of any given time period, for this information does

not indicate the states which the equipments were in before progreo;-

ing to the observed states. The observed state and the immediately

preceding state must both be recorded for each equipment at the end

of each interval, so that the matrix will indicate the transition

from one state to another within the interval.

L.F ______ ______________



OP~~~T1L PAS6 ~O4-,
FMEVEUNCY OF PASSAGE FROM ONE 1V•"2( STATE TO A11OTIOM IN A

OIVM24 TIME INTERVAL, POl FOUR EQUIPM4ENTS

Equipment Part 1 Part II
Numblr State in Each Interval Frequency of Pa•aaeu frotm Lttatl aI to Stute a

in one interval3

U 1 3 3 4 5 6 7 8 all al? &13 a14 a-L a23 u211 aU 3 f 4

(1) (2) (3) (4) (,) (b) (7) (L) (9)

2 1

1a aa a 2 3 1 2 13.

I 1

Total 9 1 1 2 , 5 3 p
Part I of the table lists the states observed for each of the 1

equipments in each of the eight intervals. The values at time 0 are

beginning values, those under "1" are values at the end of the first

interval, and so on. Thus, Equipment No. 3 was observed to be in

state a, for four intervals, and it failed during the fifth interval.

Part II indicates the number of times the equipments passed from one

given state to another in one interval. The first four columns give

the frequency of passage from state a, to lower states; the next

three columns give the frequency of passage from state a2 to lower

states; and the last two columns give the frequency or passage from

state a 3 to failure, a4. The Pij are computed from these frequencies,

The following tabulation and estimated stochastic matrix are

determined from the values in Table 6.

a, a2  a3  a4

a, - 1 1 1 12

a 2  7 2 0 9

a3 5 3 8.
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ti a

aI Ci 12 1,/12 1/12 i/'12

a 7/9 2/9 0

a3  5/8 3/8

a4  (1)

4. Failure emnsity and Reliability Functi.unr

The unreliability function is developed bj matrLx multiplication

if one of the otatec is defined aP failure. In the nuti'_ion uzeu

throughout thiz paper, the otate in the ri:ht-haxt] position in the

matrix hau been so defined. (Li the e:-ampies, thl3 has beenr state

aj or state a,.) The densitj function is obtained by computing the

differences between succesoive values of the unreliability function.

As an example, take the four-state transition matrix given previously,

.5 .5 0 0

o .5 .5 0

0 0 .1 .9

0 0 0 1

The distribution by state, the values of the unreliability function,

and the values of the density function for integral values of time

from t = 0 to t = 11 are shown in Table 7, together with the density

value for t >11. Table 7 shows unrounded values in all cases.

Before illustrating how the density function u(t) can be used

to compute the mean and variance, it is of interest to show how the

mean time-to-failure is computed directly from the transition matrix,

Denote by zi the mean time-to-failure of an equipment, given that

the performance level is in state i. Then zI is the mean time-to-

failure of a new equipment -- i.e., an equipment with performance

[0
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In. the highest level, statle aI. Since sqbate all denotes failure in $.-
this exa-.ple, .) = 0.

The mean times-to-failure satisfy the following system of

linear equations:

z= .5 (zl + 1) + .5 (z, + 1)

*= .5 (z2 + 1) + .5 (z3 + 1)

* 3 =.1 (z 3 + l) + .9.

The solution of this system of equations is

23 = 10,/9, z 2 = 28/9, and z! = 46/9.

The Justifia-t•on of each of the foregoinC equations is depend-

ent upon an argument of the following type. Consider the first equa-

tion of the system as an example. If an equipment is in state a1

initially, its mean life is zl, the left side of the equation. The

right side of the equation expresses this mean life as a two-step

evaluation: the transition in one time interval and the expected

mean life thereafter. If an equipment is in state a., the best

estimate of its expected life remains z. in the absence of other

information regarding this variable. Thus, the .5 of the equipments

that remain in state a1 at the end of the time interval have an

expected life of zI to be added to the one time interval previously

survived. The .5 of the equipments which deteriorate to state a.

have, at the end of the time interval, an additional expected life of

z2 . The sum of these two gives the right side of the first equation

of the set. The second and third equations are justified in the

same manner. It should be noted that the third equation simplifies,

since 4= 0.

-5N
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When the mean and variance are computed directly from the

density function (which here has the form of an open-end distribution)

it is necessary, or at least advisable, to include the failures which

occur after the 11 time intervals shown in the computation. This can

be done by selecting an approximate length of life for these failures

which will yield the correct mean fir the failure-density function,

u(t), as computeo above, z1 = 46/9. In the example, this turns out

to be t 13.2. Thus, it is assumed as an approximatton that at

t 13.2, there were .01181030275 failures. It is now possible to

use ordinary formulas to compute the mean life (5.111) and the varl-

ance (4.09(2).

It should be noted that the preceding computation is based an

the assumption that failures occur exactly at the end of the tune

interval. An alternative assumption is that failures occur at the

midpoint. Using this assumption, the mean would be reduced to 4,611

and the variance would be unchanged.
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