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SERVOMECHANISMS,  EXPONENTIAL SMOOTHING,  AND 

A MULTIECHELON INVENTORY PROBLEM 

1.      Servomechanlsms 

1.1   Reviev of Previous Results 

In a recent report [l] the problem of designing an inventory- 

system from a servomechanism point of viev vas examined.    The inventory 

model adopted vas a periodic reviev system vith fixed order points, 

taken as the nonnegative integers for the sake of convenience.    The t ' 

demand period is measured by real time betveen    t-1   and    t   for 

t = 1,2,5,...   •    Adopting a fixed time lag   T    for delivery, an order 

0.     is to be placed at the end of each demand period in anticipation of 

future demands. 

It is natural under the above circumstances, to suppose that the 

demand during the t     demand period Is described by a discrete parameter 
I 
I 
ft stochastic process    X., t = 0,1,2,...  ,    vhere    X   = 0.    Furthermore, 

m for   t > 1,    it is assumed that    X.   = m(t) + e.,    vhlch describes the 

process in terms of its mean value function   m(t)    and an error term. 

r The errors,     {€+},    are considered to be uncorrelated with   E[e. ] = 0 
2 

and   V[e  ] = cr .    If ve define the Inventory level over a safety level 

at the end of the t     period to be    I ,    then, allowing back orders 

against future deliveries, a simple recursion relation exists relating 

inventories to demands and orders, namely. 

^ ^ = Vl + Vl-T " Xt t = 1.2,3,... 



■ 

In this relationship, 1=0 and 0=0 for m < 0. It is seen that, 

admitting no control over demand, the inventory level is automatically 

controlled once an ordering rule 0. is specified. It is this automatic 

control feature, employing the feedback of previous inventory levels, 

that naturally suggests an analysis from a servomechanism point of viev. 

Adopting as a minimum requirement that an order rule should be 

chosen in such a vay as to control the inventory about a safety level, 

order rules were further restricted to those which could be represented 

as linear combinations of past demands and inventory levels. Thus, for 

some sequences (A .A^Ap,...) and {B .B-^Bp,.. •), we require 

(1.2) e. 
t      t 

AJL . + f B^,    t = 1,2,3,... 
J=0 5 50 J t-J  »» O-J 

Next, recognizing that if X.  is random then so is L, the 

concept of minimizing inventory level was replaced by that of minimizing 

the expected value of the inventory level denoted E. =£[!.], t =0,1,2,... . 

Because of the amenability of the form of equations (l.l) and (1.2) to 

z-transforms, equivalent expressions were then derived to yield, 

respectively. 

(1.3) 
T+l I(z) = zl(z) + z  0(z) - X(z) and 

(l.iO 0(z) = A(z)x(z) + B(z)l(z) 

In the above notation,  if    (V0,V1,V2,...)    is a sequence,  its z-transform 

T   V, z     will always be denoted   V(z).    Solving (1.3) and (l.U) 



I simultaneously, it is possible to express the basic relationship between 

inventory and demand as, 

J 
T+l./     N    .. 

■ (1.5) I(z) * S(z)X(z),    vhere   S(z) =    Z     ^r1     . 
J        o l.z-zT+1B(z) 

I 
i S(z)    is often called the transfer function and,  if preferred, a similar re- 

I 

I 
I 

r 
c 

* ft 

lationship exists between the expected inventory level and the mean 

demand, namely, 

(1.6) E(z) = S(z)m(z) . 

S(z) is the same transfer function as defined in (1.5). 

The problem is thus reduced to determining an order rule by means 

of specifying the sequences {A ,A1,A2,...) and [B .B,,!^,...) or, 

equivelently, their transforms A(z) and B(z). Now for m(z) = 1, 

i.e.. c 
r 1 if t = 0 

I m(t) = io if t>0 ' 

! E. would be the response in expected inventory to a one-time impulse 

at t = 0. In this case, t;(z) = S(z), and the requirement that the 

B equivalent in the transform domain to the requirement  lim (l-z)s(z) = 0. 

I 

response eventually dampen, i.e.,  lim E. = 0 or  lim S. = 0 is 
t -♦ « *        t -»» 

z -> 1 

Since this in turn will be true if the poles of S(z) are outside the 

unit circle in the z-plane, we follow Vassian [2] and let 



  I'll 

1-z 

In that case, S(z) has no finite poles and, vlth this determination 

of B(z), all that remains Is to choose A(z). Mathematically It turns 

out to be easier to select a certain function of A(z) namely 

A.(z) = zT+1AU) %!^ X(2) . 

After some algebraic simplification and inversion from the transform 

domain, it is possible to express [At]   as the sequence, 

t+l+T 

(V?)      At+i^ " Vi^ + ^+1 
XJ ' t ■ 0,1,2,...  and 

A* = 0 for J = 0,1,2,...,T 

Taking expectations, 

(1.8) 
t+l4T 

E^+l^
] m\*UT* X*  m(j) 

In viev of the basic role played by A^ in (1.7), it is quite suitable 

that A* l4j_ be called the forecast of demand from period t+1 through 

period t+l+T. Moreover, the requirement that  lim E. = 0 forces 
t -»oo t 

t+l+T 
A* l4JT to be chosen in such a vay that E(A* 1+T) - T 

j=t+l 
m(j) -»0 

as    t -»«.    This condition is referred to as asymptotically accurate 

forecasting. 
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Finally, once an asymptotically accurate forecaster is selected, 

we can easily express the order rule in terms of such a forecast by 

means of the relation, 

T 
(1.9) 0. A* t+l-HT " k ^ - I.    for   t > T 

In terms of servomechanism diagrams, the inventory system can be 

visualized quite easily as in Figures 1*1 and 1.2 below, first as a 

simple input-output system and, secondly, as a more complicated system 

with a feedback loop clearly displayed. 

Figure 1.1:    Input-Output System 

* 
1 T r»N 

1-z ■i-V*/ 
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X(z) * 
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A(z) x5)> T+l z 
1-z 
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Figure 1.2:    The Inventory System 
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1.2 Additional Results for the Case of Constant Mean Demand 

Whenever the demand process is assumed to have a constant mean, 

it is possible to obtain several explicit results which in turn provide 

further insight into the inventory system just described. To this end, 

we assume henceforth that m(t) = a where a > 0 so that, in trans- 

form notation, m(z) = •=— . Given the demand history X,,...,X. 

up to time t > T, we first use exponential smoothing to estimate mean 

demand thereby obtaining 

l!' 

(1.10) at = aXßkxt- 
k=0 

t-k 

where 

ß = 1 - a, and 0 < a < 1 

The constant a   is called the smoothing constant. It is then natural 

to define the forecast of dfemand over the following T+l time periods by 

At+i-Kr = (T+l)*t 

thereby obtaining 

EU* ^J = (T+l)E[aJ = a(T+l)(l-p'i;) . "t+l-KT 

In this case. 

t+l-KT 
E[A*+1+T] -  V  m(j) = -a(T+l)ß1' -* 0 as t -»«, 

as required for asymptotic accuracy. 

Having selected an appropriate forecast one can then find an 

6 
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i 
I explicit formula for A(z). Indeed, since 

a(z) = l^T 

I 
!A*/ \  /m^\ T+l^/ x  a(T+l)z1'r-LX(z) 

A*(z) = (T+l)z  a(z) = N xlß z 
N / * 

But also, 

I 

I 

r 

it follows that 

T+l, 

T+l/, T+lv 
A*{z)*Z     ^Z  ^A(z)X(z) 

j so that, upon substitution, 

f (1.11) AW. s^aiüaj 
d-ezjd-z^) 

As a casual observation, with the above explicit formula for A(z), we 

can express the transfer function explicitly as 

1 pz    k=0 

Since 

E(z) = S(z)m(z) = 2|1|2 , 

it follows that 

lim ^ (l-z)E(z) = a lim _ s(z) = a[(T+l)-(T+l)] = 0 
z -»l' z -> l" 

as required. 



' i ,.... 

With the present form for the transfer function it is also possible 

to express the inventory level strictly in terms of past demands. Since 

„frnj-i \  T+l       ,  T+l 
l(z) = S(z)X(z)=2iT+il5_x(z).l^_X(z) , 

it follows from inversion that 

t-T-1 
(1.12)    I = a(T+l)  £ ßkx. t-T-l-k -I. 

k=0 
Xt-k for * - T 

Also, 

(1.15) 0t = a(T+l)[Xt-at_1] + Xt  for  t > 1 

The above formulas vill be useful in the ensuing discussion. 

1.5 Variance of Inventory Level 

While the requirement of asymptotic accuracy has a great deal 

of intuitive appeal and represents a minimum requirement in adopting 

a forecasting technique, it is, after all, a mean value property. Even 

though the expected inventory level is effectively zero after a certain 

time, it does not of course follow that the actual inventory level is 

even near zero at that time. This fact was dramatically demonstrated 

recently by DeWinter [3]« Simulating-the above mode], random demands were 

generated and the corresponding random inventory levels were observed 

for many time periods. 

In one example treated by DeWinter, the expected inventory level 

was effectively zero after 83 time periods. This was a case where 

8 
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a = 16   and   T = 4.    Exponential smoothing, vlth a constant of   a = 0.2 

vas used.    The system vas allowed to run for 1,000 time periods using a 

random Input corresponding to a Polsson demand vlth mean 16.    Even after 

900 periods, the actual Inventory level vas, at times, as lev as -35 units 

and as high as +27 units.    Other examples treated by DeWlnter shoved a 

similar behavior in the inventory fluctuations. 

The above results are in a sense not too surprising since the 

variance of the Inventory level had never been considered explicitly. 

With the formula (1.12) derived above, it is nov possible to analyze 

the inventory variance explicitly.    Recall that in the present model 

ve have assumed   X.   = m(t) + €.    vhere the random variables    {€  )    are 

uncorrelated vlth constant variance.    In that case (1.12) may be used to 

compute the variance,    V.,    of   I.    as follovs.    Prom (1.12) ve may 

vrite 

vhere, for   t > T 

a(T+l)ßt"T"1'J      for     0<J<t-T-l •{T 7J      t -1 for      t - T < j < t 

Since    X   s 0, 
0 

h - £ ^ 
and consequently. 

J=l   i jsl 



' 

After some simplification, 

(1.110 Vt = a2(T+l)[l + 2^i (l-p2^1-1')] . 

Now, for positive   K,    the function 

tM  . ^ (l-x2«) 

defined for   0 < x < 1   has a derivative equal to 

(l+x)2 

2 2K 
Since x < 1 and x ^ < 1, it follows that f'(x) < 0 so that f 

is monotone decreasing in x. This means that V.  is monotone decreasing 
p 

in ß or monotone increasing in a.    Moreover, for a = 0, V. = o* (T+1) 
P 

while for  a = 1, V. = (r (T+l)(T+2). Consequently we have found finite 

bounds for the inventory variance, valid for all t > T 

' 

(1.15) (T2(T+l) < V. < o-2(T+l)(T+2) . 

Allowing t to increase beyond bound in (1.14) the limiting variance, 

V, of the inventory level is found to be 

(1.16) V = a2(T+l)[l + 2^1 

Of course V is monotone decreasing in ß as is V.. As a matter of 

curiosity, taking the constants used by DeWinter in the above example. 

10 
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i.e., T = 4, a = .2 and a = 16, we find a limiting variance of 

V = 125. Now three standard deviations would be roughly 33 units. 

Consequently for a value of t sufficiently large, an inventory level 

of -33 (c.f. p. 8) would be compatible with the asymptotic variance. 

The results of the simulations are thus quite in keeping with the theory. 

Moreover, since E. = E[It] = -a(T+l)ß < 0 we would expect the actual 

inventory levels to tend toward the negative side of the zero mean. Such 

appears to be the case, not only in this example, but in others examined. 

11 
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2.  Exponential Smoothing 

2.1 Blasedness 

For the simple problem described in Section 1.2, the exponentially 

smoothed estimate of a is given by equation (1.10). The estimate a. 

can be represented recursively by. 

(2.1) a,. *= COC + ßa t-1 
(t =1,2,...) , 

which exhibits a. as a linear combination of a. , and X. vith the 

present observation receiving "weight" a. 

Note from (2.1) that computation of a. does not require knowledge 
/\ 

of the entire demand history but only   a.   ,    and   X..    As a result,  if 

computations are performed on an electronic computer, memory is conserved. 

This feature along with the intuitive appeal of weighting the present 

more than the past and the computational simplicity accounts for a large 

part of the popularity of the procedure as an estimating technique. 

It is interesting to note however that 

E[at] = (l-ßt)a   for   t = 1,2, 

That is to say, the exponentially smoothed estimator a. underestimates 

a for all finite t, although it is unbiased in the limit. The amount 

of bias is greatest for small t and in particular 

ECa.] = oa . 

When   a   is chosen between    .1   and    .3,    as is often suggested, the 

initial error can be substantial. 

12 
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Based on the first observation, our forecast of demand during the 

next T+l periods is 

A?«+i = (^K • 

vhich, on the average, vill underestimate future demand.    The resulting 

order vould then be inadequate to satisfy demands occuring during 

the lead time and an unfavorable inventory position vill occur. 

Figure 2.1 shows   I.    for a simulated facility.    Demand at the 

facility in period   t   was generated according to a Poission distribution 

with   m(t) s 16.    Lead time   T   was assumed to be 4 periods.    Using 

procedures described in Zehna [1], 

t 

k=0 
At+1+T = (T+l)a  t   ^t-k (t = 0'1'2'---) 

and 

9t = A!+l« " ^ V) " ^     (*-0.1,2,...)   . 

Figure 2.1 shows that, after starting with   I   = 0,    I.    falls 

sharply until period 6 when the first order is received.    Unfortunately, 

the biased character of the forcast    resulted in this order being 

Inadequate. 

Subsequent orders are similarly inadequate and recovery from an 

unfavorable position (-80 units) is seen to be slower than would be 

desirable. 

13 
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2.2   Finite Exponential Smoothing 

In order to remove the bias Inherent In exponential smoothing, 

a modification Is proposed. 

Let   XJJJU,..^X*.    denote a sequence of observations from a process 

having mean value function   m(t) ■ a.    Define the finite exponentially- 

smoothed estimate of   a   by 

vhere 

X   s 0,   a= -^-r       0 < a < 1 .    and   ß = l-a   . 0 t     1-f "    " 

It follows that a. has the desirable property that for all t 

E[at] ■ a . 

That Is,    a.    Is unbiased and, a fortiori, asymptotically unbiased. 

Analagous to expression (2.1) is the recursion relation 

(2.3) at = Ot [Xt + W<*tml)*tmil      (* = 1,2,...) 

vhlch follows from the expression (2.2).    Since    1 + ß/OL-i  = l/oL* 
^ /s 

equation (2.3) shows that    a.,    like   a.,    is a weighted average of the 

present demand observation and the past estimate of   a.    As with   a., 

a.     is simple to compute and does not require that the demand history 

It will be convenient to abbreviate "exponential smoothing" by 

e.s. and "finite exponential smoothing" by f.e.s. 

15 
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X,,Xn,...,Xt   remain in computer memory if computations are computerized. 

From the definitions of e.s. and f.e.s.  it follows immediately that 

(2.10 lim   [a.] =   lim   E[ät] = a 
t -> • t -» «o 

2.3 An Order Rule for Finite Exponential Smoothing 

One of the significant consequences of the automatic control 

feature of the model presently being examined is the fact that once a 

forecaster is given, the order rule is automatically determined and so 

then is the inventory .Tevel. This is not to say, however, that an 

explicit formula for 0.  or I. is easy to obtain. 

We have Just seen that if finite smoothing is used for estimating 

the constant mean, a, then the estimator a.  is unbiased for all t. 

I t  k 
However it should be noted that in the form at = a. T   P ^t-v' *t 

th    ^^ 
is expressed as the ordinary product of the t  term of the two sequences 

(a. ) and {][] ß X. . ). In this form, an explicit expression for the 
k=0 

z-transform, ä(z), is not easy to obtain. In fact, the z-transform of 

a. = r is itself not a recognizable one in closed form. Also, while 
t     l-ß* 

it is still quite natural to forecast by means of the formula 

• 

I 

1 

I 

I 

(2.5) X* 
t+l+T (T+l) a. 

there is no convenient or even recognizable form for the z-transform, 

A*(z). Looking over the development of Section 1.2, it is apparent 

that, without such an explicit formula for A*(z), neither A(z) nor 

S(z) can be expected in closed form by the same technique. In turn. 

i 

16 
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this prevents an explicit formula for the inventory level    I,    from being 

derived by means of inverting transforms. 

It is however possible to obtain an order rule analagous to (1.13) 

directly from the recursive relations. 

Letting 

(2.6) 't = xt+l«
+ k4 ^    t-1'2'- 

so that   &. = cp ,    it can be shown by induction that 

(2.7) 0t = <Pt - q>t-1     for     t > 2    . 

Upon substituting expressions (2.3), (2.5) and (2.6) into (2.7) we obtain, 

for   t > 1, 

(2.8) 0t = at(T+l)(Xfc-at,1) + Xt   , 

the analogue of expression (1.13).    Since    a.    and   a.    are asymptotically 

equivalent, it follows that    9.    and   9.    are similarly related.    Hence, 

for large values of    t,    the order quantities, based on equivalent fore- 

casting techniques, will be the same as with e.s., and consequently, 

the inventory levels will also be the same. 

2.k   Use of Finite Exponential Smoothing 

In Figure 2.2 the performance of the simulated facility when 

using e.s. is compared with that using f.e.s. The simulation operated 

identically except for the different smoothing procedures.    The random 

17 
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sequence of demands vas the same for both problems in order to facilitate 

a comparison of results. 

If ve denote by   I.    the Inventory at the end of period   t   vhen 

e,s.  Is employed as a forecast proceudre, and by   1.    the corresponding 

variable vhen f.e.s. Is employed, ve note that 

I.  =1 (t = 1,2,...,5) 

At the end of period 6, hovever, our Inventory position Is sub- 

stantially better using f.e.s.    This Improvement Is a result of the 

unbiased character of the f.e.s.  forecast.    Periods 1 through 2k- vividly 

show the rapid recovery obtained vlth f.e.s. 

There are suggestions in the literature that vhen a change in the 

process generating the data is suspected one should disregard data vhlch 

originated prior to the change, since it is no longer pertinent to fore- 

casting the future. If this is done one must employ f.e.s. to avoid the 

bias that vould result from starting anev and using e.s. as the forecast 

procedure. 

Figure 2.2 also shows that for periods 176 through 200, 

h-h 

This result is expected for t sufficiently large in viev of expression 

(2.4). 

The Inventory at the end of period t is 

t-T-1     t 

t       k=l  k  k=0 ^ 

19 



Substituting expression (2.7) into (2.9) and simplifying the summation 

ve note that 

Substitution for cp and simplification yields 

(2.10) it = (T+Da,.^ '"g1 ßh^.^ ^ xt.k   . 

Equation (2.10) is the f.e.s. analogue of equation (1.12). 

Following the procedure described earlier for   I.,    ve can obtain 

if.    the variance of   I..    Thus, 

vhere 

Hence 

r (T+l)at_T-1 ß*^"1^ 1 < J < t - T - 1 
7j=\-l t-T<J<t 

t-T-1 
V^ . [(T+l) + (T.!)2^ lr f^-lhS 

which upon simplification yields 

2(t-T-1) 
(2.11)    V^ = a2(T+l)[l + (T+l)( |±:rT)(i±T^ )] . 

(l-ß   ) 

For K > 1, the function 

20 
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defined for 0 < x < 1 has derivative 

f (x) = ■2 + 2KxK"1 - 2KxK+1 + 2x2K 

(l-xK)2(l+x)2 

To show that    f'(x) < 0    it is sufficient to show 

l-x2K > ^^(l-x2) 

or, equivalently, 

1 +x + ... + x2^1 > Kx^l+x) . 

Noting that x  is a convex function of K, it follows that, for 

1 < r < K, 

K . xr-l < xK+(K-r) _ xr-l+(K-r) or 

x^1 + x
SK-r > x«"1 + /  . 

Summing over r. 

2K 

r=l 
x1""1 > Kx^l+x) as required 

This follows from the fact that if f is convex, y1 < y2 and 

h > 0, f(y2) - f(y1) < f(y2+h) - f(y1+h). 

21 
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•v2 Thus, as would be expected,    v.     is monotonlcally decreasing in   ß. 

For   ß = 0,    ^ = (r2(T+l)(T+2)   while, for   ß = 1,    L1 Hospitals rule is 

employed to yield   ^ = «T2(T+l)[l + (T+lK^^)].    Hence for all   t > T, 

^T   has finite bounds 

(2.12) (T2(T+1)[1 + (T+DC^)] < ^ < cr2(T+l)(T+2)    . 

• 

Allowing   t    to approach infinity in expression (2.1l) yields the 

limiting variance 

(2.13) V = a2(T+l)[l + 4^11]    . 

C2 Denoting by   V.    the variance of    I.    and recalling that 

a 
at = 1    ' 1     l-P* 

it follows that for   t > T 

{2.1k) ~2     02 
vt>vt 

Letting   t    increase without bound. 

lim   ^2 =   lim   V^ 
t -» » t  -> » 

Expression (2.14) would seem to be in conflict with the simulation 

results, which indicated that the fluctuations about zero were smaller 

for f.e.s. than e.s.    The findings are however compatible since the 
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deviation about zero for I.  includes the effect of a bias term. That 

is, if Bt = E[It], 

E[It
2] - E[It.Et+Etl

2 

vhlle 

*l$ i % 
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3.      Multiechelon Supply System 

3.1   A Servomechanism Model of the System 

The system Just described may be generalized to a multiechelon 

system by casting It Into the framevork of a multiple Input-output 

servomechanism.    As an example, consider a system composed of tvo tenders 

supplied from a common depot.    Here there are tvo Inputs, namely, the 

demands    X^  '    and   xi  '    from the two tenders and there are three outputs 

of Interest; these are the respective Inventory levels    1^  '   and   1^ ' 

at the tenders along with the Inventory level   1^ '   at the depot.    Of 

course, the demand at the depot level Is the sum of the two order rules 

Ö^1'   and   e^2'    Initiated at the two tenders. 

Considering each of the tenders to be operating according to the 

model outlined In the previous section each of the tender Inventory levels 

may be expressed by means of z-transforms In terms of separate transfer 

functions.    Thus, 

(5.1) I(l)(z) = S(l)(z)x(l)(z)   and 

l^\z) = S^(z)x(2)(z)    • 

Now thinking of the depot as constituting still another version of the 

same model with an Input of    0+      + 0i    >    there Is a transfer function 

S^'(z)    such that 

(3.2) I(5)(z) = S(3)(z)(9(l)(z) + 0(2)(z))    . I 

Because of the relationship 

2k 
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e(i)(z) - A(i)(Z)X
(i)(z) + B(i)(z)l(i)(z)   i = 1,2 

it is possible to express P '(z) further in terms of the demands at 

the tenders. In fact, since 

i^U) = s^W1^) , 

it follows that for i = 1,2 

9(1^) = ^\z)P\z) * B(1'(»)8(1)(«)X(15(.) 

= [A(1>(S) + B(
1
){Z)S(

1
>(.)J X«1^) . 

This result allows us to express all of the input-output relationships 

simultaneously in matrix form. Following the notation of Howard [k], 

we obtain. 

(3.3) 

where 

—                ~ 

i(1)U) 

I(2)(z) at 

I(%) 
„ 

^(z) 

h22(z) 

h5l(z)  h52(z) 

hj2(.) 

s(1)(.) , 

S(2)(z) , 

S(})(z)[A(l)(z) + B(l)(z)S(l)(z)] and 

S(5)(z)[A(2)(z) + B(2)(z)S(2)(z)] . 
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For visual aid, a flov chart of this multiechelon system is given 

in Figure 3.1. We have assumed that T. is a delivery lag time 

i = 1,2,3, and in general T,, T« and T, are distinct. Observe that 

the order rule at the depot level 0^ '(z), necessary to maintain its 

own inventory level, is a linear combination of its input (the sum of 

the tender orders) and its invenotry level. In fact. 

as in the single echelong model. 

3-2   Reduction to Single Echelon Model 

The final remark made in the previous section suggests the 

possibility of analyzing the inventory at the depot level as simply 

another single echelon model. This can in fact be accomplished but not 

without a little difficulty. Assume that the demands at the tenders 

have constant means so that there exist constants a. and a2 such 

that ai = m^t) = EfX^
1'] for i = 1,2, whence m^(z) = ^ and 

(2)     a2 
nr (z) = •=— are the respective transforms of the mean value functions. 

J-" z 

Assume further that exponential smoothing is used to forecast demands 

at each of the facilities.    Without loss of generality we suppose that 

each facility is required to use the same smoothing constant   a. 

Now the results of Section 1 apply to each of the tender levels, 

and we obtain as in that section, 

O.k) e[^ = aCT^iHx^-^] + x^     i = 1,2 

26 
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vhere 

^ -«i fitl 

is the smoothed estimate of the constant mean a . From this it follows 

immediately that 

(3.5) E[e(i)] = a1 + aia(T1+l)ß
t"1 i = 1,2. 

Consequently, ELe^1^ + d[2h = {a^+a^  + aßt"1[a1(T1+l) + a2(T2+l)], 

a quantity which depends upon t. This is unfortunate since ©i  + 6+ 

is the input at the depot level. Thus, even though the simple model 

of constant mean demand is imposed at the tender levels, it does not 

follow that the same model applies at the depot level. Because of the 

nature of the input at the depot, namely, the expected value being 

an exponential function of time, the analysis in terms of z-transforms 

is not particularly suitable. 

On the other hand, if finite exponential smoothing were used at 

the tender level then the expected orders would be constant and the 

simple model would then apply. Accordingly we require that the i 

tender place orders according to the rule. 

^ - c^M^-i'-b+ 4° 

where aW is the finite exponentially smoothed estimate of mean demand 

al Siven by a«^ = Vl f^ ß
1^^. As before, <*t - ^ ■    I» 

that case, we have 
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E^1)] = at(Ti+l)[ai-a1] + a1 « a^^ ,    1 = 1,2 

so that 

E[^l) + 9[2)] = a1 + a2 

a constant Independent of time. 

Letting TP' -^y   + ^2  denote the Input to the depot, the 

latter may now operate as a single echelon model with constant mean 

demand a, + a2. The depot order rule Q)s      will then be determined 

once the sequence A^ ' or, alternatively, the depot demand forecast 

(3)* 
^t+l+T ^  determined. In this regard, the depot now has a choice 

between finite and ordinary exponential smoothing as a forecasting 

technique and it should be observed that in either case the resulting 

order rule 0^ ' is a function of second order exponential smoothing 

applied to the tender demands X^ ' and X^ . This is because the depot 

(3) 
input X| ' is already a weighted sum of tender demands. 

The investigation of the variance of the depot inventory level 

is not so simple. For one thing the single echelon model does not quite 

fit in this case for, even though the expected demand is constant, the 

variance is not. In fact, if f.e.s. is used at the depot level then, 

as previously derived, 

^ = VV1^1^-!3 + ^      f0r  i = 1'2 

or. 

k=0 
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in vhlch case. 

vtf^h = [at(Ti+i)+i]2c72 + ^^(T.+D
2
 f; ß2V 
k=0 

,2t 
= ^[^(T^l)2 + 2at(Ti+l) + 1 + a^a

2^!^!)2 ^ ^]  for i = 1,2. 
1-ß 

Now it is quite reasonable to suppose that the order rules 9^ ' and 

9^ ' from the two tenders are independent. In that case, 

Y[X^h  = V^1^ + V[y[2h  = (^[Q^T-L+I)2 + 2at(T1+l) + C^(T2+1) + 2at(T2+l) 

,2t. 
+ 2 + Ü^i oto? , ((vD2 + (vD2)] 

(1-ß2)  * t"1   !       2 

which is not a constant although  lim V[xi ] is constant. What is 
t -♦ » 

worse, since both   9^  '   and   8i  '   are linear combinations of their 

respective demand histories up to time   t    it is not evident that the 

(3) members of the sequence    (Xl    )    are uncorrelated.    Hence,  the computation 

of the variance of the inventory level 

:<') - a(Vl) 'f'1 f%l 
k=0 5 k=0 

(for t > T,) is not at all straightforward. Thus, simulation techniques 

will have to be adopted to estimate the variance of the depot inventory- 

level. 
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3*3 Generalization 

The simple 3 facility system Just described can be generalized 

to one composed of n facilities. Material Is shipped between 

facilities according to a supply procedure specified by a set of Integers 

^1ff2t'"ftn   with f 1 ^ 0 and 1 < fj < J . for J > !• The Integer 

f. Is Interpreted as the unique facility directly supplying facility 

J. Let F. = {k|f. = J) (J = 1,2,...,n) be the set of facilities 

directly supplied by facility J. 

It Is convenient to assume that the basic time unit Is the period 

and that all units of time can be expressed as an Integral number of 

periods. 

Each facility, J, employs a periodic review policy whereby at the 

end of R. time periods it evaluates its stock position and if appro- 

priate places an order with facility f.. The order is delivered to 

facility J, T. periods later. 

~(1) Let XJ.*  denote the user demand at facility J in period t, and 

let 

^   Ml)  ~(2)    ^(n)v 

be the vector of those demands. If a particular facility has no user 

demand but only functions to supply other facilities then "X?1 = 0. 

In general we assume that the user demand process can be expressed 

ytti = mj(t) + e^t),    J = 1,2,...,n 

where 

m.(t) is the deterministic mean value function 
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and 

e.(t) is a random variable with E[e.(t)] = 0. 

Let J = (JlFj = 0). Then for J e J let 

X(J)._*(J) 
Ät ■ - At  ' 

and for J ^ J. 

(5.6)   X|J)=^J)
+E      Z 9"   J.l,2,...,n 

^ *     meF, u+K 6(t-R.+l,t) 

where 

0  represents an order from facility m made at the end of period 

and 

K  represents the lag between when an order is made at facility 

m and the stock is removed at facility f . 

Thus if F. ^ 0 the demand imposed on facility J is composed of the 

user demand and the demands which have arrived within the review period 

from the facilities which it supplies. In many supply systems expression 

(3.6) will simplify. 

The previous example is a special case of this formulation in which 

x(l)sot(2)   x(2)=3t(5) At   At '  t - h 

f 2 = f5 = i 

F1 = {2,3), F2 = 0, F3 = 0 , 
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/..:. -4, 

J = (2,3) 

R-L = Rg = R5 = 1 

J«1*-   Depot Forecasting Information 

The simulation described earlier was extended to the above 

•H(2) 
three facility, two echelon supply system.    It was assumed that    X; 

\p = X,, = 1,    and   T,   = T2 = T, = U.    In accordance with Section 5.2, 

and   X;  '   were Poisson distributed random variables with parameters 

(3.7) ^=9t2)+9t5) (t^ 

Simulation was used to examine the relationship between system 

performance and the nature of the information transmitted from facilities 

2 and 3 to facility 1. 

Case I: 

In this case we assume that the only information being received 

by facility 1 is the order information.  In particular, we assume that 

a forecast is obtained from expression (2.3), where 

*(1) 
't+1 is given by expression (3.7). 

Case II: 

As an alternative to this forecast procedure at facility 1, we 

examined the situation in which 

35 



In Case II,  facility 1 makes its forecast from the demand information 

originating at facilities 2 and 3-    We assume that this information is 

supplied to facility 1 without delay. 

Demand information supplied without delay has two advantages.    It 

provides a preview of the order,    Xr   '     to be imposed on facility   j 

during the next period and thereby effectively reduces    T.    It provides 

demand information whereas    0.    describes demand information "confounded" 

with inventory adjustments. 

Because of the above advantages we might expect better performance 

in a system which supplies demand information to its supplier as it 

originates. 

Two hundred periods of system operation were simulated.    The 

performance of facility 1 as measured by the end of period inventory 

is shown in Figures 3.2 and 3.5 for periods 1 through 50 and 150 through 

200 respectively. 

Figures 3.2 and 3.3 clearly indicate reduced variation in Case II. 

Further investigation, both analytical and with simulation techniques 

is desirable to examine the nature and source of the variation. 

! 
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k.      Conclusions 

k.l    Servomechanism Techniques 

Servomechanlsm techniques continue to be helpful, not only In 

finding explicit formulas for such quantities as order rules, but also 

for obtaining a much better understanding of the Inventory system and 

the manner In vhlch It operates. Analyzing the model treated In this 

paper from such a point of vlev has served well to discover certain 

weaknesses as well as strengths In the system. Certainly it has greatly 

emphasized the Important role played by forecasting techniques. This 

type of analysis has also led to recognition of the trade-off in exponential 

smoothing between response to changes in demand patterns and the desire 

to minimize variation in Inventory levels. Also, some progress has been 

made in the direction of structuring a multi-echelon system using vector- 

valued functions. The reduction of such a complex system to a more trac- 

table one is another reason why this approach should be exploited in the 

study of Inventory systems. 

k.2    Finite Exponential Smoothing 

The analytical results and the confirming simulation indicate 

the virtues of finite exponential smoothing as a forecast technique, 

a. was seen to be unbiased for all t. This meant a better inventory 

position during the first several periods following any initialization of 

the demand history. 

I a  can be computed recursively with two relations, thus requiring 

r 
only little more effort or computer storage than a 
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5.  Further Research 
• 

We know that by making ß large o- (1.), ^ (^^ and consecluen'tly 

cyclic variation can be reduced. The penalty in so doing is however 

the loss of sensitivity. This occurs since the exponentially smoothed 

forecase a. is a linear combination of X. and a., with 1-ß as 

the weight given to the current observation. Therefore, if ß is large 

little change occurs in a.  with X.. 

Consider a simple problem in which the mean function m(t) of the 

demand process {X(t)) has the following form 

m(t) = a    1 < t < t 
o 

m(t) = a + c    t > t 
— o 

In a situation such as this it would be desirable to employ f.e.s. with 

ß close to 1 throwing away all data occuring prior to the change. 

Such a procedure would require a mechanism for detecting changes 

in the demand pattern. Such procedures have been suggested in the 

literature [5], [6]. The application, evaluation, and modification of 

such procedures to the forecasting problem represents an important area 

for further research. 
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