‘UJ’? /_—
s
1 z ,_-a"'"'r-.

) ( SERVOMECHANISMS, EXPONENTIAL SMOOTHING, AND

A MULTIECHELON INVENTORY PROBLEM

DECISION studies group

CLEARINGHOUSE
FOR FEDERAL SCIENTIFI™ AND
TECHNICAL INFORMA'UUi\T
[ Hardcopy | Microfiche

'a.co s,5‘0 2 R

| ARCHIVE COPY




ST e,

SRS B

i e S

R B

=

TR by ., AR, e

. S

WY

B Sl i

SERVOMECHANISMS, EXPONENTIAL SMOOTHING, AND
A MULTIECHELON INVENTORY PROBLEM

by
Stuart A. Bessler
and

Peter W. Zehna

Prepared under Contract Nonr LL5T7(00)(NR 347-001)
for

Office of Naval Research

awe ca

Reproduction in Whole or in Part is Permitted for
any.Purpose of the United States Government

DECISION STUDIES GROUP
460 California Avenue

Palo Alto, California



[ m——

b el 20
B R

, . w—
F™3 N e ey oo e Y OO B AR BN PR e

. {*‘ 2o TR,
hanes ommmay ~an e ¥ . TSRO E M;L

SERVOMECHANISMS, EXPONENTIAL SMOOTHING, AND

A MULTIECHELON INVENTORY PROBLEM

1. Servomechanisms

1.1 Review of Previous Results
In a recent report [1] the problem of designing an inventory
system from a servomechanism point of view was examined. The inventory

model adopted was a periodic review system with fixed order points,

taken as the nonnegative integers for the sake of convenience. The tth

demand period is measured by real time between t-1 and t for
t=123,... . Adopting a fixed time lag T for delivery, an order

Gt is to be placed at the end of each demand period in anticipation of

future demands.

It is natural under the above circumstances, to suppose that the

demand during the tth demand period is described by a discrete parameter

stochastic process Xt’ t =0,1,2,... , where Xb = 0. Furthermore,

for t>1, 1t is assumed that X = m(t) + €

process in terms of its mean value function m(t) and an error term.

which describes the

The errors, [et}, are considered to be uncorrelated with E[et] =0

and V[et] = 02. If we define the inventory level over a safety level

at the end of the tth period to be I then, allowing back orders

t)
against future deliveries, a simple recursion relation exists relating

inventories to demands and orders, namely,

(1.1) I, =1 + 6 -X ol =012 B



In this relationship, Io =0 and Gm =0 for m<O. It is seen that,

e

admitting no control over demand, the inventory level is automatically
controlled once an ordering rule Gt is specified. It is this automatic e
control feature, employing the feedback of previous inventory levels,

that naturally suggests an analysis from a servomechanism point of view.

Adopting as a minimum requirement that an order rule should be

chosen in such a way as to control the inventory abcut a safety level,

order rules were further restricted to those which could be represented

as linear combinations of past demands and inventory levels. Thus, for

some sequences [Ao,Al,Ae,...} and (Bo,Bl,Ba,...], we require

t t

(1.2) 6, = Jgg Ay s * JZ% ByI,.y  t=21,25...

Next, recognizing that if X% is random then so is It’ the
concept of minimizing inventory level was replaced by that of minimizing

the expected value of the inventory level denoted Et = E[It]’ t =0,1,2,... .
Because of the amenability of the form of equations (1.1) and (1.2) to

z-transforms, equivalent expressions were then derived to yleld,

respectively,
(1.3) I(z) = zI(z) + zT+19(z) - X(z) and
(1.4%) 6(z) = A(z)X(z) + B(z)I(z) .

In the above notation, if [Vo,Vl,Va,...] is a sequence, its z-transform

(-}
E: szk will always be denoted V(z). Solving (1.3) and (1.4)
k=0
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simultaneously, it is possible to express the basic relationship between
inventory and demand as,
T+1A(z)_l

(1.5) I(z) = 8(z)X(z), where 8(z) = lfz-zT+lB(z)

S(z) is often called the transfer function and, if preferred, a similar re-
lationship exists between the expected inventory level and the mean

demand, namely,

 (1.6) E(z) = s(z)m(z)

S(z) 4is the same transfer function as defined in (1.5).

The problem is thus reduced to determining an order rule by means
of specifying the sequences [Ao’Al’Az""] and (Bo’Bl’BQ"°'} or,
equivelently, their transforms A(z) and B(z). Now for m(z) = 1,

i.e.,

Et would be the response in expected inventory to a one-time impulse

at t = 0. In this case, L(z) = 8(z), and the requirement that the

response eventually dampen, i.e., 1lim Et =0 of lim St =0 1is
t = t 5w

equivalent in the transform domain to the requirement 1lim (1-z)S(z) = O.
z2 =1
Since this in turn will be true if the poles of S(z) are outside the

X
unit circle in the z-plane, we follow Vassian [2] and let




In that case, S(z) has no finite poles and, with this determination
of B(z), all that remains is to choose A(z). Mathematically it turns

out to be easier to select a certain function of A(z) namely

T+1

A*(z) = zT+1A(z) Lli%;——l x(z) .

After some algebraic simplification and inversion from the transform
domain, it is possible to express [A%] as the sequence,

t+1+T

(1.7) B o = Toaap * 3=§+1 Xy t =0,1,2,... and

A%

! O for J=0,1,2,...,T .

Teking expectations,

t+1+T

(1.8) E(A*¥ . ] = E + n(J) -
t414T T CteleT J=§+l

In view of the basic role played by Aﬁ in (1.7), it 1s quite suitable

that ARy .p

period <t+1+T. Moreover, the requirement that lim Et = 0 forces
t o
t+1+T

A%,14p tO be chosen in such a way that E(A€+1+T) - ) m(J) »0
J=t+

be called the forecast of demand from period t+1 through

as t —«, This condition is referred to as asymptotically accurate

forecasting.

L by
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Finally, once an asymptotically accurate forecaster is selected,
we can easily express the order rule in terms of such a forecast by

means of the relation,

T
(1.9) 0, = A% .0 - ng 6y = I for t2T .

&

In terms of servomechanism diagrams, the inventory system can be
visualized quite easily as in Figures 1.l and 1.2 below, first as a
simple input-output system and, secondly, as a more complicated system

with a feedback loop clearly displayed.

X(z)® -—)[E{z) —»  TI(z)

Figure 1.1: Input-Output System

L )
A
X(z)
T+l
> Az) _’L =
B(z) &

Figure 1.2: The Inventory System
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1.2 Additional Results for the Case of Constant Mean Demand

Whenever the demand process 1s assumed to have a constant mean,
it 1s possible to obtain several explicit results which in turn provide
further insight into the inventory system just described. To this end,
we assume henceforth that m(t) = a where a > 0 so that, in trans-
form notation, m(z) = f? . Given the demand history Xj,...,X,
up to time t > T, we first use exponential smoothing to estimate mean

demand thereby obtaining

N

(1.10) a, =0 Z

LA
K=o

P Xt-k

where

B=1-0 and 0<a<l .

The constant Q@ 1s called the smoothing constant. It is then natural

to define the forecast of démand over the following T+l time periods by

A¥*

/N
$a14p = (THl)ay

thereby obtaining

E[A¥

for] = (TRE(R,] = a(r41)(1-6%) .

In this case,

t+1+T

E(Af 0 4n) - m(3) = -a(T+1)8® 20 as t -
3=En1

as required for asymptotic accuracy.

Having selected an appropriate forecast one can then find an
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explicit formula for A(z). Indeed, since

i - 4

it follows that

T,y - AT K(s)

A*¥(z) = (T+l)z Tz

But also,
T+1 T+1
ae(z) = 222 ) p(z)x(2)
so that, upon substitution,
(1.11) A(z) = —XT+1)(1-2)
(1-Bz)(1-zT11)

As a casual observation, with the above explicit formula for A(z), we

can express the transfer function explicitly as

T+l T
§(z) = ATz T 5 ok .
k=0

l-Bz
Since
E(z) = 5(z)m(z) = %%2 ’

it follows that

lim _ (1-z)E(z) =a lim _ s(z) = a[(T+1)-(T+1)] = 0
Z2 =1 z2 =1

as required.

A ..‘* a« ‘ "o ’..‘é‘ 3



With the present form for the transfer function it is also possible

to express the inventory level strictly in terms of past demands. Since

T+1 T+l ¥
I(z) = s(z)x(z) = KB o) - L2 =y,

it follows from inversion that

t-T-1 T {
{

k
(1.12) I, = a(T+l) gX - X for t>T .
t kgo t-T-1-k kgo t-k = ;
Also, |
R |
7\
(1.13) 6, = a(T+1)[xt-at_l] +X, for t>1 .

The above formulas will be useful in the ensuing discussion.

1.3 Variance of Inventory Level
While the requirement of asymptotic accuracy has a great deal

of intultive appeal and represents a minimum requirement in adopting
a forecasting technique, it is, after all, a mean value property. Even
though the expected inventory level is effectively zero after a certain
time, it does not of course follow that the actual inventory level is
even near zero at that time. This fact was dramatically demonstrated
recently by DeWinter [5]. Simulating.the above modei,random demands were
generated and the corresponding random inventory levels were observeg
for many time periods.

In one example treated by DeWinter, the expected inventory level

was effectively zero after 83 time periods. This was a case where

8
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a =16 and T = 4. Exponential smoothing, with a constant of & = 0.2
was used. The system was allowed to run for 1,000 time periods using a
random input corresponding to a Poisson demand with mean 16. Even after
900 periods, the actual inventory level was, at times, as low as -33 units
and as high as +27 units. Other examples treated by DeWinter showed a
similar behavior in the inventory fluctuations.

The above results are in a sense not too surprising since the
variance of the inventory level had never been considered explicitly.
With the formula (1.12) Q@erived above, it is now possible to analyze
the inventory variance expl:citly. Recall that in the present model
we have assumed xt =m(t) + € where the random variables (€ t} are
uncorrelated with constant variance. In that case (1.12) may be used to
compute the variance, Vt, of I, as follows. From (1.12) we may

t

write
i
Ios 7.X
b & 9T

where, for t > T

o(r+1)* T for 0<y<t-T-1
7J={-l for t-T<J<t
Since Xo =0,
t
I, = 7.X
t J;. JJ
and consequently,
t t-T-1
v, = o° z 7§ = ozde('rﬂ)a zl Be(t'T'l"j) + (T+1)0'2 ]
J= J=



After some simplification,

(1.14) v, = o2(T+1)[1 + %-E—;H (1-g2(-T-1)y;

Now, for positive K, the function

£(x) = 23X (1-x")

defined for 0 < x < 1 has a derivative equal to

Tl 21(%-1) + 1 L(21)]
(l+x)2

Since x° <1l and x°K <1, it follows that f'(x) <O so that f

is monotone decreasing in x. This means that Vt is monotone decreasing

in B or monotone increasing in Q. Moreover, for Q@ =0, V. = 0'2(T+l)

while for a =1, V,_ = 0'2(T+l)(T+2). Consequently we have found finite

t
bounds for the inventory variance, valid for all t > T

(1.15) 0'2(T+l) <V, < 0'2('I‘+1)(T+2) g

t

Allowing t to increase beyond bound in (1.14) the limiting variance,

V, of the inventory level is found to be

(1.16) v = o%(T41)[1 + %lgg—ll]

Of course V 1s monotone decreasing in B as is Vt' As a matter of

curiosity, taking the constants used by DeWinter in the above example,

10

o



i.e., T=4, a=.2 and a =16, we find a limiting variance of

V = 125. Now three standard deviations would be roughly 33 units.
Consequently for a value of t sufficiently large, an inventory level
of =33 (c.f. p. 8) would be compatible with the asymptotic variance.
The results of the simulations are thus quite in keeping with the theory.

Moreover, since E_ = E[It] = -a('r-i-l)Bt < 0 we would expect the actual

t
inventory levels to tend toward the negative side of the zero mean. Such

appears to be the case, not only in this example, but in others examined.

11




2. Exponential Smoothing

2.1 Bilasedness
For the simple problem described in Section 1.2, the exponentially
N

smoothed estimate of a is given by equation (1.10). The estimate a,

can be representéd recursively by,

/N N\
(2.1) a, = OX, +Ba, (t.=1;2,:..) ,
Pay /\
which exhibits at as a linear combination of at-l and X% with the

present observation receiving "weight" a.

N
Note from (2.1) that computation of a, does not require knowledge
N
of the entire demand history but only LYY and Xt. As a result, if

computations are performed on an electronic computer, memory is conserved.
This feature along with the intuitive appeal of weighting the present
more than the past and the computational simpiicity accounts for a large
part of the popularity of the procedure as an estimating technique.

It is interesting to note however that

a t
E[at] = (1-B“)a for t =1,2,... .

/N
8¢
a for all finite t, although it is unbiased in the limit. The amount

That is to say, the exponentially smoothed estimator underestimates

of bias is greatest for small t and in particular
/\
E[al] =0a .

When O is chosen between .1 and .3, as is often suggested, the

initial error can be substantial.

12
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Based on the first observation, our forecast of demand during the

o

next T+l periods is
A mag = (T+1)axl ’

which, on the average, will underestimate future demand. The resulting
order would then be inadequate to satisfy demands occuring during
the lead time and an unfavorable inventory position will occur.

Figure 2.1 shows I, for a simulated facility. Demand at the

t
facility in period t was generated according to a Poission distribution
with m(t) = 16. Lead time T was assumed to be 4 periods. Using

procedures described in Zehna [1],

ct

A% = (T+1)0 B X (t = 0,1,2,444)

t+14T

and

T
6, = At um - ,3;1 0.5 = It (t =0,1,2,00.)

Figure 2.1 shows that, after starting with Io =0, It falls
sharply until period 6 when the first order is received. Unfortunately,
the biased character of the forcast resulted in this order being
inadequate.

Subsequent orders are similarly inadequate and recovery from an
unfavorable position (-80 units) is seen to be slower than would be

desirable.

15
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2.2 Finite Exponential Smoothing*
In order to remove the bias inherent in exponential smoothing,'
a modification is proposed.
Let X'l,X'a,...,xt denote a sequence of observations from a process

having mean value function m(t) = a. Define the finite exponentially

smoothed estimate of a by

t
2 k
(2.2) 8, =0a ) BX
t t =) t-k
where
X =0, @ =—2r, 0gagl, and B=1-0 .
1-
It follows that 'é‘t has the desirable property that for all t
’ E[Et] =a .
That is, §£ is unblased and, a fortiori, asymptotically unbiased.

Analagous to expression (2.1) is the recursion relation
(2.3) a, =0 [Xt + (B/at-l)at-ll (t =1,2,...)

which follows from the expression (2.2). Since 1 + 5/0%-1 = l/at’
N
equation (2.3) shows that Et, like a,, 1is a weighted average of the
- A
present demand observation and the past estimate of a. As with 8,5

Et is simple to compute and does not require that the demand history

It will be convenient to abbreviate "exponential smoothing" by

e.s. and "finite exponential smoothing" by f.e.s.

15
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l,x;a,...,xt remain in computer memory if computations are computerized.

From the definitions of e.s. and f.e.s. it follows immediately that

A ~
at] = lim E[a

t —e

(2.4) lim [ =a

t 9o

&

2.5 An Order Rule for Finite Exponential Smoothing
One of the significant consequences of the automatic control
feature of the model presently being examined is the fact that once a
forecaster is given, the order rule is automatically determined and so
then is the inventory level. This is not to say, however, that an
explicit formula for Gt or It is easy to obtain.
We have Just seen that if finite smoothing is used for estimating
the constant mean, &, then the estimator Et is unbiased for all t.
t
However it should be noted that in the form &, =@, ) B'X, ., &
t t 1= t-k t
is expressed as the ordinary product of the tth term of the two sequences
t
[a%] and [2: kat k]. In this form, an explicit expression for the
k=0 B
z-transform, &a(z), 1is not easy to obtain. In fact, the z-transform of
a, = -2 is itself not a recognizable one in closed form. Also, while

t t
1-
it is still quite natural to forecast by means of the formula

(2.5) B4 = (DR B,

there is no convenient or even recognizable form for the z-transform,
A*(z). Looking over the development of Section 1.2, it is apparent
that, without such an explicit formula for A*(z), neither A(z) nor

S(z) can be expected in closed form by the same technique. In turn,

16
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this prevents an explicit formula for the inventory level It from being
derived by means of inverting transforms.

It is however possible to obtain an order rule analagous to (1.13)
directly from the recursive relations.

Letting

t
(2.6) P, = K§+1+T + égi X tim 18 eesl

so that 31 = ¢,, 1t can be shown by induction that

~

(2.7) 6, =P -9 _, for t>2 .

Upon substituting expressions (2.3), (2.5) and (2.6) into (2.7) we obtain,

for t>1,
(2.8) o, = at(T+1)(x£'at-1) + X
N N
the analogue of expression (1.13). Since a, and at are asymptotically

equivalent, it follows that Et

for large values of t, the order quantities, based on equivalent fore-

and Gt are similarly related. Hence,

casting techniques, will be the same as with e.s., and consequently,

the inventory levels will also be the same.

2.4 Use of Finite Exponential Smoothing
In Figure 2.2 the performance of the simulated facility when
using e.s. is compared with that using f.e.s. The simulation operated

identically except for the different smoothing procedures. The random

17
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sequence of demands was the same for both problems in order to facilitate
a comparison of results.
N
Ty
e.s. 1s employed as a forecast proceudre, and by Tt the corresponding

If we denote by the inventory at the end of period t when

variable when f.e.s. is employed, we note that
N
I, = Tt (t =1,2,...,5)

At the end of period 6, however, our inventory position is sub-
stantially better using f.e.s. This improvement is a result of the
unbiased character of the f.e.s. forecast. Periods 1 through 24 vividly
show the rapid recovery obtained with f.e.s.

There are suggestions in the literature that when a change in the
process generating the data is suspected one should disregard data which
originated prior to the change, since it is no longer pertinent to fore-
casting the future. If this is done one must employ f.e.s. to avoid the
bias that would result from starting anew and using e.s. as the forecast
procedure.

Figure 2.2 also shows that for periods 176 through 200,

N ~
It = It .

This result is expected for t sufficiently large in view of expression
(2.4).
The inventory at the end of period t 1is
-T-1 t

~ t
(2.9) I = égi gk - égg X

19




Substituting expression (2.7) into (2.9) and simplifying the summation

we note that

~

t
I =0Q -
t = Pporaa k;% %

Substitution for ¢ and simplification yields

=

t-T-1

= k
(2.10) I, = (T4)oy oy égg B X, po1-k" . Xex

&

Equation (2.10) is the f.e.s. analogue of equation (1.12).
A
Following the procedure described earlier for It’ we can obtain

¥, the variance of Et' Thus,

" t

I, = X

t J§1 75"
where

(T+1)a, gy gt T 1<cy<t-T-12
7d={4 t-T<I<t

Hence

-T-1

t
~D 2 2(t-T-1-3), 2
Vt = [('I'+l) + (T-l-l) d'et-T-l ng B ( J lo

which upon simplification yields

(211) ¥ = oP(ra) + (rm)((l B%_g_l)g)( ) -

For K> 1, the function

20
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s

K
£(x) = (=) (F)

-X
defined for O < x < 1 has derivative

K-1 K+l | 52K

2x

prix) o 22+ 2K - oKx
7 (1-x5)%(14x)°

To show that f£'(x) <O it is sufficient to show
- > Kxx-l(l_xa)

or, equivalently,

1 4%+ .00+ xK1 > keKL(14x) .

l\-\n

Vi ) ';-',,‘;‘

Noting that xK is a convex function of K, it follows that, for

1 <r<Kk,

K _ 1, xK+(K-r) . xr-l-l-(K-r)

X - < or
r-1 2K-r K=1 K s
X + X >x + X 5
Summing over r,
2K
Y Xt > KxK'l(l+x) as required
r=

U This follows from the fact that if f 1is convex, Y1 < Yo and

h>0, f£(y,) - £(y;) < f(y,+h) - £(y,+h).

2l



Thus, as would be expected, Vi is monotonically decreasing in 8.
For B =0, V- = o°(T41)(T+2) while, for B =1, L'Hospitals rule is
employed to yield V: = 02(T+l)[l + (T+l)(€:%:f)]' Hence for all t> T,

Vf; has finite bounds

(2.12) cS(THL)[L + (T+1)(t_-TlTl')] < v§ < P(TH1)(T+2) .

Allowing t to approach infinity in expression (2.11) yields the

limiting variance

(2.13) V= 0'2(T+l)[l + 2&%12] &
" ~
Denoting by Vt the variance of It and recalling that

it follows that for t> T

2
(2.14) v >

Letting t increase without bound,

1m ¥ = lm ¥
t t
t o t =9
Expression (2.14) would seem to be in conflict with the simulation
results, which indicated that the fluctuations about 2ero were smaller

for f.e.s. than e.s. The findings are however compatible since the

22
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/N
deviation about zero for I includes the effect of a bias term.

N N 5
is, if E_ = E[It],
E['f,f] - E[It-;‘..\t+gt]2
while
E[ii] = Vﬁ !

23

That



3. Multiechelon Supply System

3.1 A Servomechanism Model of the System
The system Just described may be generalized to a multiechelon

system by casting it into the framework of a multiple input-output
servomechanism. As an example, consider a system composed of two tenders
supplied from a common depot. Here there are two inputs, namely, the
demands xil) and Xiz) from the two tenders and there are three outputs
of interest; these are the respective inventory levels Iil) and Iéa)
at the tenders along with the inventory level IiB) at the depot. Of
course, the demand at the depot level is the sum of the two order rules
eil) and eﬁa) initiated at the two tenders.

Considering each of the tenders to be operating according to the
model outlined in the previous section each of the tender inventory levels

may be expressed by means of z-transforms in terms of separate transfer

functions. Thus,

(3.1) 112 = s 2)x()(2) - ana

1(2)(2) - S(2)(z)x(2)(z)

Now thinking of the depot as constituting still another version of the

same model with an input of Gﬁl) + 9£2), there is a transfer function

8(3)(z) such that

(3.2) 13)(2) = 83)(2)(6()(z) + o(2)(z))

Because of the relationship

2L

=] [ =iy omam a a— aE— AEaES — Ry

=t ]
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it is possible to express I(5 ) (z) further in terms of the demands at

the tenders. In fact, since

112y = sWanlt)zy

it follows that for 1 =1,2

9(1)(2) - A(i)(z)x(i)(z) ” B(i)(z)s(i)(z)x(i)(z)
- 1a8(z) + 38238t (2)] x{2)(2)

This result allows us to express all of the input-output relationships

simultaneously in matrix form. Following the notation of Howard [4],

we obtain,
— - ~ ) -
(3.3) I(l)(z) hy,(2) 0 B -
X(l)(z)
(2)
1'“/(z) = 0 h,,(2)
(3) X (z)
I %(z) hsy(z)  hs(z) o R
where B B ) N

n,(z) = s)
hyo(2) = 8(2)(2) ’
hjl(z) = 5(3)(z)[A(l)(z) + B(l)(z)s(l)(z)] and
hp(z) = 89)(2) B2 + 8(2)(2)5(2)(z))
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For visual aid, a flow chart of this multiechelon system is given

in Figure 3.1. We have assumed that T, is a delivery lag time

i
i=1,2,35, and in general Tl’ T2 and T5 are distinct. Observe that
the order rule at the depot level 9(3)(2), necessary to maintain its
own inventory level, is a linear combination of its input (the sum of

the tender orders) and its invenotry level. 1In fact,

63)(z) = aA3)(2)16M)(2) + 62N (2] + B3 (2)1(3)(2)

as in the single echelong model.

3.2 Reduction to Single Echelon Model 3
The final remark made in ﬁhe previous section suggests the i
possibility of analyzing the inventory at the depot level as simply
another single echelon model. This can in fact be accomplished but not £
without a little difficulty. Assume that the demands at the tenders
have constant means so that there exist constants a, and a, such
!

that a, =m,(t) = E[Xii)] for 1 =1,2, whence m(l)(Z) =75 and

m(z)(z) = ng are the respective transforms of the mean value functions.
Assume further that exponential smoothing is used to forecast demands

at each of the facilities. Without loss of generality we suppose that
each facility is required to use the same smoothing constant Q.

Now the results of Section 1 apply to each of the tender levels,

and we obtain as in that section,

(3.4) eii) - a(T1+1)[xi1)-q2] ¥ xii) 1e1,2
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where

ACO I Z il

8¢ -k

is the smoothed estimate of the constant mean a From this it follows

i.
immediately that

(3.5) E[G(i)] a, +a a(T +1)s i=1,2,

Consequently, E[Gil) + 6£2)] = (al+a2) + aat'l[al(Tl+l) + a2(T2+l)],

a quantity which depends upon t. This is unfortunate since 9£l) + eie)

is the input at the depot level. Thus, even though the simple model
of constant mean demand is imposed at the tender levels, it does not
follow that the same model applies at the depot level. .Because of the
nature of the input at the depot, namely, the expectzd value being
an exponential function of time, the analysis in terms of z-transforms
is not particularly suitable.

On the other hand, if finite exponential smoothing were used at
the tender level then the expected orders would be constant and the
simple model would then apply. Accordingly we require that the ith

tender place orders according to the rule,

31 = a (r )Pt 4 ()

where 3§fi is the finite exponentially smoothed estimate of mean demand

t-1
~(1) _ k(1) . o
ay given by at ] at 1 B Xt 1-k" As before, 0% = =1 In
k=0 1-
that case, we have
28
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zelt)) - o (T,+1)(a,-e,] +a, = a

i i’

s0 that

E[@ﬁl) + age)] =a, +8a, ,

a constant independent of time.

Letting xﬁj) = vﬁl) + @iz) denote the input to the depot, the

latter may now operate as a single echelon model with constant mean

demand a, + a,- The depot order rule ng) will then be determined

once the sequence Aij) or, alternatively, the depot demand forecast

*
A(3) is determined. 1In this regard, the depot now has a choice
t+1+‘I'3

between finite and ordinary exponential smoothing as a forecasting
technique and it should be observed that in either case the resulting

order rule 6(5) is a function of second order exponential smoothing

t
applied to the tender demands X£l)

input X§5) is already a weighted sum of tender demands.

and ng).. This is because the depot

The investigation of the variance’of the depot inventory level
is not so simple. For one thing the single echelon model does not quite
fit in this case for, even though the expected demand is constant, the
variance is not. In fact, if f.e.s. is used at the depot level then,

as previously derived,

aii) = o%(Ti+1)[xii)-Eif%] + xgi) for 1=1,2

or,

t-1
ggi) & [a%(Ti+1)+1]X£i) - af(Ti+1)at-l égé kat-l-k

29



in which case,

t-1
[Ott(Ti+l)+l]20'2 + diai_l('ri-bl)e Y K42 |

V[é,(ci) ]
K0

2 2
o [oé('riﬂ) + 2°‘t(T1+l) +1 + a0
Now it i1s quite reasonable to suppose that the order rules @ﬁl) and

5£2) from the two tenders are independent. In that case,

v[xi”] = v[ét(,‘l)] " V[@ge)] - Uz[dz(Tl+l)2 + 20, (T, 41) + di(freu) + 20, (T,+1)

2t
ros B2) B2

5 (7, 42)% + (T,41)%)]

l(

which is not a constant although 1lim V[Xﬁj)] is constant. What is
t 9w

worse, since both 3§l) and gie) are linear combinations of their
respective demand histories up to time ¢ it is not evident that the
members of the sequence [Xij)} are uncorrelated. Hence, the computation

of the variance of the inventory level

T
(3) 8057l % (3) 2 (3)
I,°/ = a(T;+1) B X Ta 1 - L XD
t 3 gﬁi t 'I'3 1-k = t-k

(for t> Tj) is not at all straightforward. Thus, simulation techniques
will have to be adopted to estimate the variance of the depot inventory

level.
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3.3 Generalization

The simple 3 facility system Just described can be generalized
to one composed of n facilities. Material is shipped between
facilities according to a supply procedure specified by a set of integers
fl,fe,--.',fn with fl =0 and 1< fJ <J for J> 1. The integer

f, 1is interpreted as the unique facility directly supplying facility

J

Je Let FJ = [klfk =3} (3= l,2,...,n) be the set of facilities

directly supplied by facility J.

It is convenient to assume that the basic time unit is the period
and that all units of tire can be expressed as an integral number of
periods.

Each facility, J, employs a periodic review policy whereby at the
end of RJ time periods it evaluates its stock position and if appro-

priate places an order with facility fj’ The order is delivered to

facility J, TJ perlods later.

Let iéd) denote the user demand at facility J in period t, and

let .
%, = XH¥2),.., ¥

be the vector of those demands. If a particular facility has no user

demand but only functions to supply other facilities then §$ £ 0.

In general we assume that the user demand process can be expressed

(J) - -
kt / mJ(t) + ej(t), ¥ = Ly By asn,f :

where

mJ(t) is the deterministic mean value function

5l



and

eJ(t) is a random variable with E[ej(t)] = 0.

Let J = (J|F, =@). Then for J e J 1let

J
(3). = %(3)
xt‘ - xt M b
and for J ¢ J.
(5'6) X£J) = i‘(b'j)"'z z 6: J = 1,2,...,11
meFJ u+Kh§(t-RJ+l,t)
where
62 represents an order from facility m made at the end of period
u,
and

Kh represents the lag between when an order is made at facility

m and the stock is removed at facility fm.

Thus if F.j # @ the demand imposed on facility J is composed of the
user demand and the demands which have arrived within the review period
from the facilities which it supplies. In many supply systems expression

(3.6) will simplify.

The previous example is a special case of this formulation in which

xf-,l) = X&E‘); xéa) = 3{1(:,3)
fy = f3 =1
F)=(23), Fo=0, Fs =0 ,



3.4 Depot Forecasting Information
The simulation described earlier was extended to the above
three facility, two echelon supply system. It was assumed that ﬁiz)

and iij) vere Poisson distributed random variables with parameters

My = XB =1, and T, =T, = T3 = 4. In accordance with Section 3.2,
(3.7) S R ORI

Simulation was used to examine the relationship between system
performance and the nature of the information transmitted from facilities

2 and 3 to facility 1.

Case I:
In this case we assume that the only information being received
by facility 1 is the order information. In particular, we assume that

a forecast is obtained from expression (2.5), where

1)

++1 1s given by expression (3.7).

Case II:
As an alternative to this forecast procedure at facility 1, we

examined the situation in which

3 - 12) %)

ﬁii (ai+1)[§£${ §+1 + (Bfoy )a(l)] (t > 0)

s

35
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In Case II, facility 1 makes its forecast from the demand information

originating at facilities 2 and 3. We assume that this information is
supplied to facility 1 without delay.

Demand information supplied without delay has two advantages. It
provides a preview of the order, Yéj) to be imposed on facility J
during the next period and thereby effectively reduces T. It provides
demand information whereas 6, describes demand information "confounded"
with inventory adjustments.

Because of the above advantages we might expect better performancg
in a system which supplies demand information to its supplier as it
originates.

Two hundred periods of system operation were simulated. The
performance of facility 1 as measured by the end of period inventory
is shown in Figures 3.2 and 3.3 for periods 1 through 50 and 150 through
200 respectively.

Figures 3.2 and 3.3 clearly indicate reduced variation in Case II.

Further investigation, both analytical and with simulation techniques

is desirable to examine the nature and source of the variation.
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4. Conclusions

4.1 Servomechanism Techniques

Servomechanism techniques continue to be helpful, not only in
finding explicit formulas for such quantities as order rules, but also
for obtaining a much better understanding of the inventory system and
the manner in which it operates. Analyzing the model treated in this
paper from such a point of view has served well to discover certain
weaknesses as well as strengths in the system. Certainly it has greatly
emphasized the important role played by forecasting techniques. This
type of analysis has also led to recognition of the trade-off in egponential
smoothing between response to changes in demand patterns and the desire
to minimize variation in inventory levels. Also, some progress has been
made in the direction of structuring a multi-echelon system using vector-
valued functions. The reduction of such a complex system to a more trac-
table one is another reason why this approach should be exploited in the

study of inventory systems.

4.2 Finite Exponential Smoothing
The analytical results and the confirming simulation indicate
the virtues of finite exponential smoothing as a forecast technique.
gt
position during the first several periods following any initialization of

was seen to be unbilased for all t. This meant a better inventory

the demand history.

Et can be computed recursively with two relations, thus requiring
N

only little more effort or computer storage than 8.
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5. Further Research
[

N\
We know that by making B large ce(Tt), 02(It) and consequently
cyclic variation can be reduced. The penalty in so doing is however

the loss of sensitivity. This occurs since the exponentially smoothed

/\ \
forecase at is & linear combination of Xt and a1 with 1-B as
the weight given to the current observation. Therefore, if B 1s large
N\

little change occurs in a, with Xi.

Consider a simple problem in which the mean function m(t) of the

demand process ({X(t)} has the following form

m(t) = a 1<t <t
m(t) =a +c t>t

In a situation such as this it would be desirable to employ f.e.s. with
B close to 1 throwing away all data occuring prior to the change.
Such a procedure would require a mechanism for detecting changes
in the demand pattern. Such procedures have been suggested in the
literature [5], [6]. The application, evaluation, and modification of
such procedures to the forecasting problem represents an important area

for further research.
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