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ABSTRACT 

A cylindrical antenna, either infinite or finite, which is imbedded 

in a concentric dielectric rod has been investigated by employing a 

rigorous formulation . The infinite case is solved easily by a Fourier 

transform method; the finite case is solved first by a numerical method, 

then by a two-term approximation. The mathematical analysis is intricate 

nevertheless, the results obtained for the finite antenna are as simple as 

for the free-space dipole. It is shown in both cases that the input 

conductances are larger than for the corresponding free-space antennas, 

and the field patterns tend to be more broadside. The method is 

applicable regardless of the thicknesses of the antennas and the dielectric 

rod. This study is limited to thin antennas in rather thick dielectric 

cylinders. However, the dielectric rod is still not thick enough to 

support a T. M. mode. 
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I. INTRODUCTION 

!(* 

The problem of an antenna in a dielectric rod, eometime. called a 

dielectric.coated antenna has already been discussed by several 

investigators [1], [2], As pointed out by Wu, when the coating and the 

antenna itself are very thin, the current distribution differs very little 

from that of a thin dipole in free space and can be put in a form 

equivalent to that for a thin dipole with a slightly modified radius and 

with a surface impedance. As the dielectric coating becomes thicker and 

thicker, changes are to be expected. For a very thick dielectric rod, 

the current in the antenna should behave more or less like that in a 

homogeneous dielectric medium. However, due to the complexity of 

the Green's function, an exact solution is very difficult to obtain. 

In this study, an infinite cylindrical dielectric-coated antenna 

was investigated first. The current was expressed explicitly in an 

integral form and numerical values were calculated by computer. The 

contribution to the current from the simple pole, which is associated 

with the surface wave, is called the transmission current; the 

contribution from the branch cut, which is associated with the radiation 

field, is called the radiation current. Radiation patterns, radiation 

and transmission conductances, percentage power radiated and per¬ 

centage power transmitted have been obtained. These results are 

useful in predicting some of the characteristics of a finite antenna. 

Next, an exact integral equation for the current in a finite 

dipole in an infinitely long dielectric rod was formulated and solved 
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by a numerical method. The accuracy depends on the number of points 

taken and the accumulated round-off error. For a reasonable number of 

points the results show excellent agreement with experiments; they are 

consistent with the predictions made from the infinite antenna. That is, 

when the.-dieléctric layer ie thick the current is dominated by the 

transmission current. From this property, an approximate current 

can be found by a two-term method with a propagation constant equal to 

the surface wave number. The field pattern can be calculated more 

easily from this approximate current than from the numerical data. 

II. INFINITE CYLINDRICAL DIELECTRIC-COATED ANTENNA 

A. Boundary-Value .Problem 

Figure 1 shows a schematic diagram of an infinite cylindrical 

dielectric-coated antenna with a slice delta generator at z=0. Assume 

the antenna to be thin and rotational symmetry to be maintained, 

Ô0* =0, 80 thít OIÚV the a-components of current and vector potential are 

excited. By defining a vector potential and a scalar potential in the con¬ 

ventional way^B - V X A, E = -Ä and using the Lorentz-gauge 

condition V-A1+eiWoi,=0 inregionl, V-i2+ Vo02 = O in region II, 

where subscript 1 indicates quantities in region I; subscript 2 indicates 

quantities in region II, the wave equations of the one-component vector 

potentials in the two regions become 



FIG. I A SCHEMATIC DIAGRAM OF A 
DIELECTRIC COATED INFINITE 
CYLINDRICAL ANTENNA WITH A 
DELTA GENERATOR AT z=0 
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V Alz + kl AJZ = 0 

*2a2z + koA2z = 0 

a< r< b 

b< r<1 

(d 

(2) 

where V U the Laplacian operator, k! k0 = are, 

respectively, the wave numbers in the dielectric medium and in free 

space; to is the angular frequency; po and eo are the free-space 

permeability and dielectric constants; Cj and €r are the absolute 

dielectric constant and the relative dielectric constant in the dielectric 

medium so that The dielectric medium is assumed to have 

the same permeability as free space. After taking Fourier transforms 

of (1) and (2) with respect to z, according to the relations 

F(k)= i“F(z)eikzdz 
J -00 

F(z)= 1. i' F(k)e-ikzdk 
J -00 

Where F(z) can be any field quantity, and F(k) is called the Fourier 

transform of F(z) (1) and (2) become two Bessel equations. Solutions 

can be expressed in well-known cylindrical functions. They are 

Alz = ClJo('r) + CzYo(tl) 

A2z = C3Ho ' (5) 
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where 

? = -k2 cp = Vk2 -k2 
1 o (6) 

Jo> Yo are Bessel functions of the first and second kinds and zero order 

Ho ) is the Hankel function of the first kind and zero order, C, , C , C 
^ 2 3 

are arbitrary constants to be determined from the boundary conditions. 

All transformed field components can be expressed in terms of 

Ã^. They are 

^10 = 5lr = ÏÏlz = ^20 = B2r = B2z = 0 (7) 

E, = ã 
!z ,2 Alz (8) 

= i^A 
k2 2z 

w k 

o 

(9) 

(10) 

(11) 

(12) 

(13) 
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By applying the following boundary conditions: 

fa) Tangential E-field continuous at r = b 

fa; 1 angential B-field continuous at r = b 

(c) Tangential F-field at r=a, ÎTjJr = a) = -V which is the 

Fourier transform of -v6(z) and by the use of the Wronskian of Yo and 

Jo> the con®tants are determined. They are ¿iven by 

Cl = 

Vk 

2~7 [^Hj^fcpb)Y (çb) - 
iwÇDfk) erCP H^ícpb) Yjfçb)] (14) 

Vkf (l) 
C2 2- (cpb)J (fb) 

iu§¿D(k) 1 ' o' e^nj^fcpb) Jjí^b)] (15) 

C 
3 

Zk^V 

üonbÇcpD(k) 

whe re 

D(k) = Í ÇH1(1)(cpb)[Jo(ça)Yo(Çb) - Jo(?b)Yo(ça)] 

-^^^(cprJt^ífajY^fb) - J1(Çb)Yo(ça)]} 

(16) 

(17) 

The next step is the substitution of (14), (15), (16), and (17) together with 

(4) and (5) into (7) to (13). The transformed field quantities can now be 

written explicitely as follows: 
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Iz = " DfeíÇHf^tcp^tYjÇbíJ^Çr) - J (?b)Y (Çr)] 

rd) - ercpH (tfbHY^b) JjÇr) - J1(Çb)Yo(Çr)]} (18) 

2€rCpV 
OK 

'2z = ' fibëCîïï) Ho ^r) (19) 

kV rd) 
lr - " -TçDÍk) f?Hl (cpb)[Yo(gb)J1(Çr) - Jjçb)Yjí^r)] 

.„(1) 
erf.Ho (cpbHYjfçbíJjíÇr) - JjtebjYjíÇr)]) (20) 

F _ r „(1), 
2r - - Í7TblD(k) H1 (cPr) (21) 

kl2y íl) 
Bie = ' ÍwTD(k) ^H{ (cpbJtY^Ç^JjíÇr) - J^fbjYjter)] 

" )(cPb)tYl<çb)Ji^r) * JjdbjY^fr)]} (22) 

2k12V 
O), 

20 = ‘ ujrrb^k) H1 (çPr) (23) 

By inversion of the Fourier transform the actual field quantities can be 

calculated according to (3-b). The singularities and path of integration 

will be discussed in the next part. It is noted that by this approach the 

vector potential is discontinuous at r = b. Therefore, fields existât 
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r = b only in the limit sense, as r-b, either from the outside or from the 

inside. An alternative procedure is to solve the wave equation for E 

directly. The solutions are precisely the same. 

B. Current Distribution 

The transformed current in the antenna can be found from the 

application of the fourth boundary condition-which has not been used 

so far. It concerns the tangential E-field at r=a. If the antenna is 

assumed to be a perfect conductor, it is 

Too =^E10 (r = a) 
(24) 

With the substitution of Ble from (22) with r = a and the inversion of 

the Fourier transform according to (3-b), the current distribution as a 

function of z is found to be 

I(z) = iauej V l ikz 
die 6 * 

~eb(kr feHi (<Pb)tY0(f btJjlFa) - Jo(çb)y1(Ça)] 

- er'l)Ho - Jjl^lYjfÇa)]] 

(25) 

The contour of integration, the branch cuts,and the principal Riemann 

sheet are defined in Figure 2. The contour of integration is defined to 

satisfy the radiation condition, and the branch cut is drawn so that the 

path of integration can be deformed and easily computed. 
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Before carrying out any calculation, the singularities of the 

integrand must be investigated. Note that the points k= ±1^ are not 

branch points. This can be verified easily by adding rr to the argument 

of Ç =Vk12 - k2 the integrand is unchanged. The only branchpoints left 

are at k=iko. Poles can be determined from the equation D(k) = 0, 

which will be discussed step by step as follows: 

(a) On the real axis kjClkJc», define 

a =^ík~^ = -iç ; ß =Vk2 -k^ = -icp (26) 

which are real and positive. Equation (17) can be rewritten as 

D(k) = I {aKjißbtfyabJK^aa) - Io(aa)Ko(ab)] 

+ ße^ißbJfl^abJK^aa) + ^(aaJK^ab)]} (27) 

where Kq, Iq and Kj, ^ are modified Hankel and Bessel 

functions of zero and first order. For real and positive a and 

^ Ko> Io> KP J1 are a11 real and positive. Moreover, 

Io(ab)>Io(aa), Ko(aa)> Ko(ab) so that D (k) is always greater 

than zero. No pole exists on this part of the real axis. 

(b) On the real axis kQ< Ik^, the equation D(k) = 0 becomes 

ÇKjípb^J^ajY^b) - Jo(Çb)Yo(Ça)] 

+ e^^ípbJ^ÍÇaíY^fb) - J1(Çb)Yo(Ça)] =0 (28) 



i 

IMAGINARY AXIS 

RG. 2 ^N_T^^I0N PATHS C.C'aND SINGULARITIES ON 
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which is just the characteristic equation of a Goubau transmission 

ime [3], [4], It can be shown by plotting (28) that for e = 3. 00 
r , 

koa = 0. 04, b/a up to 8 that only the lowest fundamental mode 

(or Eoo mode) exists. This is called the Goubau surface-wave 

mode. It has no cutoff. Its wave number is designated by k 

Figure 3 shows the curve as a function of the thicknes's 

b/a when er = 3.00, koa=0.04. 

(c) On the real axis 0<|k|<ko, and on the entire imaginary axis, 

if there is a pole which makes D(k) = 0, then 

t[J0(ïa)Yo(çb) - Jo(tb)Yo(Sa)] H^itpb) 

^"iJolÇalYjtebl-JjteblY^alJ = (29) 

The left-hand side is always real (on either side of the branch 

cut). The right-hand side is in general complex and equal to 
J (cpb) + iY (cpb) _ 

J^b) 4 iV°(tpb) ’ FOr the rÍght-hand Side be 

it is necessary that 

Jicpb) Yo(cpb) 

J^cpb) " Y^cpb) 

It follows /rom the Wronskian of Jq and Yo, that this equality 

can nevei¡ be satisfied except at infinity and at k = £k —which 
o 

will be discussed later. Consequently, there is no pole on 

either side of the branch cuts. 
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(d) For very large values of |k|, the asymptotic form of the Bessel 

functions can be used. It can be shown that D (k) behaves like 

D(k)~ 
TTÇyabncp f-iÇ sin[?(b-a)] + ercp cos[ç(b - a)]} (31) 

which has an essential zero at infinity. In the finite domain of 

iarge |k|, the existence of a pole, or a zero of D(k), requires 

that 

tan [ç(b - a)] = -i^0 æ + ie 
ç r r (32 -a) 

or tanh[a(b-a)] (¾ + er (32-1 

or + (32 _ c 
r 

where the upper sign is for -£<arg a<f and the lower sign is 

for n.<arga<^; n is a very large integer. In either case, 

(32-c) breaks down owing to the different algebraic signs of the 

real parts on the two sides. Furthermore, the zero at 

infinity is just canceled out by the zero in the numerator at 

infinity, so that the whole integrand behaves like 

-i? cos[ç(b - a)] - ercpsin[ç(b-a)] 

?{ -iÇ sin I§( b - a)J + e *cp cost? (b-a)Jj 
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which is always finite on the principal sheet. Therefore, the 

conclusion is reached that there is no pole in the domain of very 

large |k| including infinity. 

(e) In the finite complex plane, the poles are very difficult to locate. 

From the above knowledge, and from the limit behavior of the 

integrand as kj-k^ it can be shown that there is no pole in the 

finite complex plane. Ask^k D(k) approaches -^H^toa) 

Which has no zero anywhere except at infinity; therefore, if D(k) 

has a zero somewhere on the principal sheet of the finite complex 

plane it must go somewhere else in the limit as kj-k,. However, 

Since it can neither cross the branch cut and go into the other 

Riemann sheet by (c), nor go to infinity by (d) (since it must 

cross the region of large |k| ) the only possible path for this 

zero if it is to vanish is to go through kQ. Now, the problem is 

to show that in the vicinity of ko, there can be no pole except 

ks during the process k^. The existence of a pole 

requires that 

CpHo(cpb) 5 fJ0(ia)Yo(rb) - J0(Çb)Yo(?a)] 

«iW ' ÇUo^atVjlçb) - J1(eb)Yo(jaFf (33) 

In the vicinity of k,, let k=ko+ fiei0, where « can be made 

arbitrarily small and -TT < 0<IT. Let the left-hand side of (33) be 

arguments of the Bessel functions. Thus, expanded for small 
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TTbYiTô^V0/2 o 

2 
(34) 

-vstô1/2 i[lnhjEZ 
O TT L 2 + i| + y] (35) 

where y is Euler's constant. Let the right-hand side of (33) be 

expanded in a Taylor's series. The resulting equation is 

(36) 

where A is equal to the right-hand side of (33) with k replaced 

by kQ and B is equal to the derivative of the right-hand side of 

(33) with respect to k and then with ko substituted for k. Both 

A and B are constants independent of Ô . If the real and the 

imaginary parts of (19) are equated, the result is 

b~\jzk Ô 

2bkoô [^n-2~~~ + = Acos0 + ô B (37) 

bkoôe = -Asine (38) 

In (37), Ô can certainly be sufficiently small so that both y and 

B are negligible compared with the logarithmic term. If they 

are omitted and (38) is divided by (37) the following final 

formula is obtained: 



i 
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tan 0 = 

2 In 

(39) 

For very small Õ, (21) is true only at 0=0, that is on the real 

axis. But the behavior of D(k) on the real axis is well-known: 

there can be no pole other than k . It follows that the whole 
s 

complex plane has been studied, that the only singularities on 

the principal sheet are the branch cuts drawn from the branch 

points at ±.k and two simple poles at ±.kg. 

In the evaluation of the integral (25) for the current, the contour 

of integration C can be closed in the lower half plane for positive z, 

since there is no contribution due to the big circle at infinity. As shown 

in Figure 2, the contribution from the simple pole at -k which is 
S ' 

called the surface-wave current or the transmission current and is 

designated by I (z), is s 

Is(z> = 
4aue1Ve~ikz 

— d — , {^(ßb^Y^J^a) - J (Çb)Y (Fa)] 
ÇdkD(k) 

+ erßKo(ßb)[Y1(Fb)J1(Fä) - J^Fb)Y1(Ça)]}-'k__ 

(40) 

Equation (40) shows that the transmission current has a constant 

amplitude and a real and finite value at z =0. 



The contribution due to the branch-cut integration C, which is 

called radiation current and designated by yz), can be expressed as 

follows : 

I r (z) 
16ide,^ V 1 r 

tt3K2 TT D 

_ e-y2 dv_ 

(kl +y¿) {[A(Vkf+yk2 +y^)+ [B(Vk^ +y2, Vk^+y2)]2] 

(41) 

where 

A(P, q) = pJjíqbJfY^ípbJ^ípa) - J0(pb)Yo(pa)] 

- erqJoíqWoípajYjípb) - J1(pb)Yo(pa)] (42-a) 

B(P, q) = pY1(qb)[Yo(pb)Jo(pa) - J(pb)Yo(pa)] 

- Sq^íqbíÍJoíPaíY^pb.) - J1(pb)Yo(pa)] (42-b) 

Equation (41) shows that the real part of the radiation current is finite, 

and the imaginary part infinite at z = 0. These are the same properties 

which characterize an infinite cylindrical antenna in free space [5]. 

Both transmission current and radiation current have been computed. 

These are shown graphically in Figure 4 for er = 3. 0, k a = 0. 04; 

and b/a varies from 1.1 to 8. 



‘ 
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C. Asymptotic Behavior of the Current at Infinity and 

Near the Driving Point 

The graphs in Figure 4 indicate that the radiation current decays 

very rapidly along the line, while the transmission current is constant. 

As Z-*» the asymptotic expansion of the radiation current can be found 

by the successive integration by parts of (41). The leading term is 

obtained after two integrations. It is 

nz‘{(kf-k¿)[Yo(Vkf-k¿ b)^(Vk^a) - JoaAj-k¿ b)Yon¿f k£a)]]2 

(43) 

This differs from the current along an infinite cylindrical antenna in free 

space whose asymptotic current distribution is essentially constant or 

decays slowly as 1/fnz. The asymptotic behavior of the current at 

infinity for an infinite dielectric-coated antenna is 1/z2. The current 

very close to the driving point is determined by the asymptotic form 

of (24) as k-*», which is 

Kk-») 
iZrracj V 

~IM (44) 

From an inspection of the table of cosine transforms, it is seen that 

I(z-*- 0) should behave as 

1(2-^0) ~ -^auejVinz 
(45) 
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It is very similar to the free-space case [6] in that both have a logarithmic 

singularity at the driving point. It differs from the free-space case only by 

a factor er. Another interesting fact is that the current very close to the 

driving point as given by (45) is independent of the radius of the 

dielectric cylinder b, and is the same as in an infinite dielectric 

medium. 

D. Radiation Pattern 

The magnetic field in region II is obtained by inverting B* in (23). 
20 

The result is 

-Kfv 

iUTT b 

HpV) 
>D(k) (46) 

where the path of integration is the same as defined in Figure 2. After 

a change to the spherical coordinated ( R, @), $) with 

z = Reos© , r = Rsin© (47 

let R-*». It then follows from (46) that 

: TT 
k1‘'Ve"l4 

B29(R—) ~ -2—J- V UT?b V TTÄsin© 

;iR(cpsin(H) - kcos ©) 

B(k)- dk 

(48) 

I 
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An application of the method of steepest descents and the evaluation of 

the integral at saddle point k= -k cosfà 
o V—yields the asymptotic form of 

®20 as R-*00. It is 

2k2 V r 
B20 ^00) ~ —2~ 

unb TD(kT 
eikoR 

k=-k COS0 (49) 

The Poynting vector in the far field i is, by definition, 

S = *T- = 1 |R i 2 

2 2 29 

. 2kíerV\/¿ 

TT4 R2 b2 V ÇD(kT 
k= -k o cos 0 

Let the radiation factor be defined as follows: 

2 k2e2V2 
Rr(@) = 4nR2S = -? r , 

15n4b2 rtîk] 
k= -kocos(H 

(50) 

(51) 

Equation (51, has been compute(J and represented graphicaUy in F.gure 5 

The radiation factor is zero at 6=0. This agrees with the 1/z2 asymptoti, 

behavior of the current. The far field should decay as 1 /R. If the 

«eld decays faster than 1/R in certain directions, the radiation 

pattern must have a zero in that direction. On the other hand, if the 

field decays slower than 1/R, then the radiation pattern should be 
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ini1 rute in that direction as in the case of an infinite cylindrical antenna in 

free space at (h)= 0 [9]. 

E. Transmission Admittance and Transmitted Power 

The transmission admittance Ys due to the surface-wave mode is 

defined to be lira , With the help of (40), it is found to be 

Y = s 

- 4au) e 
J—7- {ÇKj(pb)[Yo(çb)Jj(Ça) - ^(FbtY^ea)] 

LejÉD(k) 

+ ereKo(ßb)[Y1(?b)J1(?a) . Jjíçb)Yjlça)]} 
k= -k 

(52) 

Equation (52) shows that the transmission impedance is a real quantity 

Note that Ys =GS is the transmission conductance. The transmitted 

power is 

The same answer is obtained if the normal component of the part 

of the Poynting vector associated with the surface-wave mode is integrated 

over two infinite surfaces perpendicular to the antenna at +z and -z 

respectively. This is shown in Appendix 1. 
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FIG. 5 RADIATION PATTERNS OF DIELECTRIC COATED INFINITE 
CYLINDRICAL ANTENNAS 
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F. Radiation Conductance and Radiated Powe: 

The radiation conductance G is defined as follows: 

, IR(z) , 

With (22), it is 

G = 
r 

16(00,0 1 r 
_.3v 2 
TT D (k12-x2){A 

dx 

kl -x2,Ã2-x2)]2 + [B(\/kp-x^,\/k^-x^)]2} 

(54) 

where A(p, q) and B(p, q) are defined in (42-a) and (42-b). The radiated 

power can be calculated immediately from 

P = Iy2G 
r 2 r (55) 

Again, the integration of the normal component of the Poynting vector (50) 

over a very large sphere yields the same answer. This is shown in 

Appendix 2. 

The total input conductance is, therefore, G. = G + G G C 
in s r' s ’ r’ 

and ^in are shownin Figure 6 as functions of b/a with 0 = 3 00 
r ’ 

koa = 0.04. The efficiency of transmission Es and the radiating efficiency 

are defined as follows: 
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E 
s 

P 
s 

p~+p 
s r 

G 
s 

G. 
in 

E 
r 

P 

p-rir 
s r 

(56) 

(57) 

These quantities are shown graphically in Figure 7 as a function of b/a. 

G. Conclusions 

The above analysis and the results obtained suggest that a 

comparison with an infinite cylindrical antenna in free space is of 

interest. Note that the latter can always be considered to be a limiting 

case of a dielectric-coated antenna as b/a- 1. Important differences 

can be summarized as follows: 

(a) For a dielectric coated infinite cylindrical antenna a T.M. 

surface wave or Goubau wave is excited. Therefore, there are two 

kinds of current in the antenna*, the one called transmission current 

and the other called radiation current. It is noted, from the results 

shown in Figure 4, that the radiation current decreases while the 

transmission current increases as the dielectric coating gets thicker. 

In the limiting case, as the thickness of the coating tends to zero, only 

the radiation current remains. This is just the case of the infinite 

cylindrical antenna in free space. It is also noted, that as the coating 

gets thicker, the transmission current immediately becomes the 

dominant part. When b/a = 8, the radiation current is very small and 
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can certainly be neglected compared with the trans mission current except 

very close to the delta generator, where theoretically the radiation 

current is unbounded. 

(b) The asymptotic forms of the radiation current as *_» + „ 

are different in the two cases. For a dielectric-coated antenna it behaves 

as 1/z , whereas for a noncoated one, it is essentially constant or 

l/inz. 

(c) Associated with those two kinds of current are two kinds of 

power flow for a dielectric-coated antenna. The transmitted power 

flows toward ±z directions, and the radiated power is transferred to 

all of space. The former increases and the latter decreases as the 

coating gets thicker. In the limiting case b/a=l the transmitted power 

vanishes. 

(d) The radiated pattern changes greatly with b/a. Figures 

shows that the antenna has end-fire characteristics at first with b/a 

very small, but gradually acquires a broadside behavior as b/a 

increases With the uncoated antenna, the radiation pattern goes to 

infinity at 0=0 as can be predicted from the results in Figure 5. 

(e) From the properties discussed before, predictions can be 

made for a finite antenna in a dielectric rod. Since for a rather thick 

dielectric-coated infinite cylindrical antenna the dominant current is 

transmitted along the cylinder with the propagation constant k, rather 

than radiated with the propagation constant ko, it may be anticipated 

that the current in a finite coated antenna, instead of being 
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approximated by a sine and a shifted cosine term with the propagation 

constant k0, should be represented by a sine and a shifted cosine term 

with the propagation constant k . 
s 

m. THE FINITE CYLINDRICAL DIELECTRIC-COATED ANTENNA 

A. Formulation of the Integral Equation 

One way to formulate the integral equation for the current in a 

finite antenna is to derive the Green's function first. Suppose there is a 

ring delta-function current source with radius a, oriented in the z-directio: 

inside a concentric dielectric rod with radius b as shown in Figure 8(a). 

Rotational symmetry still holds, and only the z-component of the vector 

potential, £=Gi, is excited. The vector potential G in the dielectric 

medium and in free space due to this delta function source satisfies the 

following wave equations. 

Fè<'£>^+>,2G = -U° 
02 

1 G = " ¿nr" ® 6(r-a) 0< r< b (1) 

1 ô . BG, , a2G , 2 
“ òr + 'TT + koC = 0 

02 
b< r< 

(2) 

where a factor ^ is used to make the total current equal to unity, 

the method used in Section II, the Fourier-transformed vector 

potential S(k, r) in each region can be obtained. It is given by 

BY 



¡ 
s - 

FIG. 8 SCHEMATIC DIAGRAMS OF A RING DELTA 
AND A FINITE DIPOLE (b) IN A INFINITE 

SOURCE (a) 
DIELECTRIC 

BBH 



-23- 

Cjík, r) = CjJ^ÍFr) 
O < r < a (3) 

G2(k,r)= C2Jo(?r) + C3Yo(tr) a < r < b (4) 

r)= C4Ho(cpr) b < r < (5) 

where Ç-Vkj -k , cp=Vk^-k2 is defined in the same manner as before. 

The boundary conditions in this case are: 

(a) Tangential electric field continuous at r=ai 

Gj (k, a) = G-(k, a) 
(6) 

(b) Tangential magnetic field discontinuous at r=a. The 

integration of (1) from a-6 to a + 5, where S is a very small positive 

quantity, gives 

ôGjík, a) 

dr 

ôG2(k,a) 

5r (7) 

(c) Tangential electric field continuous at r=b 

g2 (k, b ) = -S2- G3 (k, b+) 
k (8) 

(d) Tangential magnetic field continuous at r = b 
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ÒG (k,b-) ÒG.(k, b+) 

-½- = -½- (9) 
i 

After the evaluation of Cp C2, andC4 from the above four 

boundary conditions, the Greenis function in each region may be found. 

In region I, 0 < r< a, it is 

[e^Y^bm^cpb) - i;Yo(Çb)Hj%b)]Jo(pa) 

UoJo(?r)[ + t^ygb)^%b) - e^tebm^cpblpyga)] 

ÎTTÎçbîï^^b) - c^J^çbJH^Ícíb)] 

(10) 

(Di 

CTj (k, r) = 

In region II, a<r< b, it is 

(UcpYjfÇblH^’tpb) - tYo(fb)^11)(tpb)]Jo(Çr) ' 

»j¿M + -ercpJ1(;b)H|i1)(tpb)]Yo(;r)j 

4[eJo(çb)Hj1,<<(,b) - e^JjlÇblH^’fcpb)] 

(11) 

In region III, b< r<œ? it is 

G-(k, r) = ^oeo Jo(^a)Ho(Çr) 

2ncpb[çJo(?b)HP(cpb) - e^JjíÇbjH^ícpb)] ÜT (12) 
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At r - a, either (10) or (11) can be rearranged to give 

r(D 
ercPHo '(îpbJtJ^faJY^çb) - JjieMY^ifa)] 

G?(k,a) = - UoJo(Ça)L'ÇHl(1)(cpb)[Jo(?a)Yo(^b) -Jn(çb)Yn^a)] 

4[çJo(çb)HP(cpb) - £rcpJ1(çb)Hj)1,(cpb)] 
o 

(13) 

In order to invert (13) from the k-domain into the real z-domain, 

the singularities of (13) on the complex k-plane must be carefully 

investigated. Similar to Section IIB, there are only two branch points 

at k = £ko. Points at k = £k1 are not branch points, but are two 

simple poles. This can be recognized easily by employing small 

argument expansion for Bessel function with arguments Ça and Çb in 

(13). The leading term is 

lim G,(k, a) 
k-ikj Z 

= lim jwPH^V) 

(14) 

The numerator of (13) is again the characteristic equation of a Goubau 

wave given by (17) in the previous section; therefore, (13) has two 

zeros at k = ±kg. Other poles can be found by locating the zeros of 

the denominator. If the branch cuts are drawn in the same manner as 
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bcfore (Figure 9), and the same steps are followed as discussed in 

Section IIB, similar conclusion can be drawn. 

(a) There is no pole on the real axis in the range k^< |k| <». In 

this range the denominator of (13) can be expressed as 

"tt + Where K and I are modified 

Hánkel and Bessel functions, a and ß are defined by (26) in Section II. 

The quantity within the bracket is always greater than zero. 

_There is no pole on the real axis in the range k < |k| <k for 
-i / 2 2* ° i 

kj -k b<2. 405. In this range, the vanishing of the denominator 

requires that 

ÇJ^ÇbjKjtéb) - e^J^bJK^ßb) = 0 (15) 

Equation (15) is the characteristic equation of a dielectric wave guide [11] 

(p. 263). The lowest cutoff frequency is at V^2 -k2 b = 2. 405. No mode 

is excited or no pole exists in this portion of the real axis for 

"^kj2 -k2 b < 2.405. 

(c) There is no pole on either side of the branch cuts. The 

arguments a^the same as those in Section IIB(c). That is, the real 

quantity can not equal the complex quantity H^(cpb)/H^^cph) 

on both sides of the branch cuts. 

(d) There is no pole in the domain of very large |k| including 

infinity. For large |k|, the denominator behaves like 
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i(cpb-J) 

~ Tf d ^ f -iÇcos(Çb-^-) + ercpsin(Çb-^)] 

Which has an essential zero right at infinity, but ^(k, a) behaves like 

^ocos (?a -^) {-ercpcos[g(b-a)] + igsin[g(b-a)]3 

2n?a {iÇcos(|b-^) + crcpsin(|b-} 

which is everywhere finite. Similar to (32-c) in Section II a necessary 

condition for having a pole is 

±Vk2-k? b + iJ = Ullfl 
1 4 2m 1+0 

~ r 

which, however, can never be satisfied 

+ inn 
(16) 

since the signs of the real parts 

proof 

are different on the two sides. 

(e) There is no pole on the finite complex k-plane. The 

is precisely the same as that in Section IIB(e). 

With this information and for z > 0, by closing the Fourier 

inverse contour in the lower half plane the Green's function may be 

expressed as follows: 
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G2(2’a> = à I ^(k,a)e-ik2 dk 2rr 

= 1 
^kf - kg Ko(-^2 ■ k^ b) eikll; 

+ i| 

Zirbkj [ZKjiVkj2 - k2 b) + ^Vk^-k^ b KQ(Vk^ - k^ b)] 

° ^0gr[J0(Qa)]2 eixz dx 

!0 TT3b2{[QJo(Qb)J1(Pb) - frP(Qb)Jq(Pb)]2 

+ [QJ^QbjYjiPb) - erPJ1(Qb)Yo(Pb)]2} 

^er[Jo(Va)J2e'yZ 
XT 

dy 

to ^{[VJiVbJJ^Ub) - erUJ1(Vb)J0(Ub)]2 

+ [VJo(Vb)Y2(Ub) - erUJ1(Vb)Yo(Ub)]2} 

(17) 

where 

q = V^T^ 
P = Vk2 - X2 

o 

U = Vk2 + y2 

V = V^f + y2 
(18) 
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The first term comes from the residue at -k^ the second and the third 

terms come from the branch cut, as shown in Figure 9. 

Once the Green's function is known, it is possible to proceed to 

analyze the finite antenna. As shown in Figure 8(b) a finite tubular 

dipole is imbedded in an infinite dielectric rod with a delta generator 

at z-0. From the condition that the tangential electric field vanish on 

the surface of the antenna, Hallén's integral equation is obtained. It is 

I(z')K(z - z') dz' = 14TT r , V 
T— LCcosk^z + — sink. 
11 i ¿ 1 (19) 

whe re 

K(z-z') = -i- G-(k,a)e"ik(z'z,) dk = In G2(z-z',a) (20) 

(21) 

and C is a constant to be determined by the condition that the current 

vanish at z = £h. 

Up to this point, there has been an ambiguity in the inverse 

iourier integration in the complex k-plane. The question is, should 

the contour of integration c, where it meets the poles at £^, go as 

shown in Figure 9 or in the opposite direction, that is, downward at -1^ 
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$ÊtÊiÊâ&SSÊÊÊÊÊt9æ; 

and upward at +1^. Although the contribution from this pole contributes 

nothing to the actual fields, it is important to determine how this 

difference influences the results obtained from the integral equation (19). 

This ambiguity can be clarified by the following facts. The contribution 

to the Green's function X(z -z') by the pole at -k, can be expressed as 
¿k I * 

F^l^e 1 where Ffkj) is an odd function of k^ and is explicitly 

given by (17). Owing to the symmetry of the current, I(z) = I(-z), it can 

be proved that 

rh 
I Hz') Flkj) e'^l " z' I d2, 

= ZFik^coskjZ / I(z')elklz' dz 

+ F (kjKe1*! ikiZ / "ik-z1 , . -ik,z 
1(2-)6 1Z dz' - e-lKl5 e+ikiz 

(22) 

The first part on the right-hand side of (22) has nothing to do with current 

distribution I(z). It only changes the constant c in (19). The second 

part on the right-hand side of (22) is an even function of kp which is 

independent of the sign of kp Consequently, the path of integration c can 

go either way. The residue at -kj or kj gives the same answer for the 

current distribution. 

v>sr* 

dz '] 
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B. A Numerical Method 

Equation (19) is an exact integral equation for the model shown in 

g e 9. When kjb«l the small-argument expansion of the Bessel 

functions can be used to approximate the kernel. This is discussed by 

Wu [1], The kernel has been expressed in a form similar to that of the 

kernel of a dipole in free space but with a slightly modified radius and a 

surface impedance. Accordingly, the prediction can be made that the 

current distribution when both the antenna and the coating are very thin 

Should be close to that of a free-space dipole. On the other hand, it 

is more interesting to know the change in the current distribution when 

the coating gets thicker. This is the main purpose of the investigation 

in this section.. Since no simple approximation can be made for the 

kernel, it is difficult to obtain even an approximate solution. The method 

employed here ls a numerical one given by Andrew Yourg[12], [13]. [n 

his two papers, first integrals of the product of two functions f(x) and 

0(x) are expressed in the form 

b n 

/ f(x) g(x) dx = 1' f(xr) + R 

J* r=l 
(23) 

where ^ are the n abscissae with which are associated 

weights Yp V2, . . . Yn; R is a correction term. It has been shown 

that by expanding f(x ) in a Taylor's series about the mid-point of the 

A' 

1 
¡a 
-.¾ 

jg 
I 

•# 

*>•# 
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interval between a and b, and by equally spacing the n abscissae that is 

n n-1 “ n-1 "Xn-2 " ' ' ‘ =x2"xl = t> Y18 can be expressed in a 

matrix form. For instance, for n= 3, they are 

where 

Li = — (x-x2)sg(x) dx 

(24) 

(25) 

s ? 0, 1, 2 

The remainder term R is proportional to the fourth derivative of 

f(x) Within the interval. The next step is to apply the approximate 

product-integration (23) to the numerical solution of integral equations. 

To begin with, because of the symmetry of the current I (z) = I(-z), (10) 

may be rewritten as 

I(z') [K(z-z') + K(z+z')] dz1 

_ i4n r _ , V . . 
- L Ceos kjZ + j sin kj J z J ] (26) 
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•1 
' V-, 

€ 

The interval (0, h) may be divided into ¿sub-intervals. Within each sub- 

interval, an approximation of the type (23) is used. That is, by expanding 

the current I(z> in each sub-interval into a quadratic form (or n = 3) 

about the mid-point of the sub-interval, the right-hand side of (26) 

becomes: 

M 

I(z')[K (z-z')+K(z+z')] dz' m 

■2t 4t r6t 

-il + +f + . 

,0 J2t J4t 

■ Ztt 

g 
+ l 31 (z')[K(z - z')+K(z + z')]dz' 

= ¿ CvJ1(z)%-2)t] + Y2J (z)lfe-l)t]+J(z)I[2jt]] 
j=l 

(27) 

where t = ~ 
21 

By defining 

Un(mt) 1 
Ln-. 

il* 1 
2' ’ K (mt - z') dz1 

! 

= 1 Mn(-mt) 
(28) 

m 
i 
*5» 
y uv 

n = 1, 2, 3; m = 0, 1, . . . 4/.1 
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all the y's in (27) can be expressed in terms of the u's. According to the 

relation (24), they are 

Vl (z) = J f "^2^-z “ J + 1-^ Cz + - l)t ] 

+ U3[z -(2j- l)t] + |i3[z + (2j - l)t] 

J(z) = jij [ z - (2j - l)t ] + |ij[ z + (2j - 1 )t ] 
2 

- M3[z-(2j-l)t}!4. ^[z + (2j - l)t] 

Y3^Z^ ~ 2 ^2^-2 " J z + " 1 ^ Í 

+ U3[ z - ( 2j - 1 )t ] + ^i3[ z + (2j - l)t ]} (29) 

Now let z =mt in (26) together with (27) and let m change from 0 to 2f. 

In this manner a set of 2f + 1 linear equations are generated with 2i+ 1 

unknowns. Since the current vanishes at z = 2ft, there are only 2f 

unknowns for the current plus an unknown constant C. In matrix 

notation 

[a] [I] = [G] 
(30) 

where [I] and [G] are 2<+1 by 1 column matrices 
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1(0) 

Kt) 

I(2t) 

K2ft-t) 

C 

0 

[G] = i2rrV 

Ci 

sin(k^t) 

sin(2k^t) 

siniZikjt) 

(31) 

by 2i+1 s<luare matrix whose elements A are 
P» Q given by 

q = 1 

q = even number 

q = odd number 

q = 2jÍ+ 1 

ap, i= ví 

Ap, q = V^/2(pt)+Y?/2 + 1(pt) 

A = + 1 (pt) 
P, q y2 'pt; 

A - i4TT . , 
p, 21+1 C08(Pk1t) 

(32-a) 

(32-b) 

(32-c) 

(32-d) 

The Vs are given by (28); they are all complex quantities. If the 

square matrix [A] is inverted, the numerical value of the current and 

constant C are immediately obtained. Thus: 

[I] = [Aj-’lC] (; 

It is noted, that all of the constants p given by (28) are in double 

integral form. By interchanging the order of integration, one of them 
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can be carried out easily and the other is left for the computer. Explicit 

formulas for the (j's are given in Appendix 3. 

C. Numerical Results 

Computations have been done by an I. B. M. Computer 7094. 

Since many integrations of Bessel functions are involved in generating 

the constants |i and then the matrix elements Ap; q, a considerable length 

of time is required in order to achieve one curve of the current 

distribution. Fortunately, a way has been found which can save much 

computing time and give a number of curves simultaneously. Beginning 

with the longest antenna to be investigated, the length h is divided into 

f subdivisions as described before, and the 2£+ 1 by 2i+ 1 matrix [A] 

is formed. Then, for shorter antennas with length h-(j.)n, n = l, 2, < 

the matrix elements Apj q in each case are precisely the same as before 

except in the last column, which should always keep cosine terms. The 

only significant change is that the order of the matrix shrinks by two 

each time n is increased by 1. Consequently, once the 2f+1 by 2f+l 

matrix is formed, by redefining the last column each time, the 

current distributions for f different lengths are obtained almost 

simultaneously. 

Some typical results have been obtained for e = 3 00 
r > 

koa - 0. 04, kQh = 0. 7 5, £ = 24, and three different thicknesses of the 

dielectric coating, namely, b/a = 2, 4, and 8. For each set of 
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values a 49 * 49 [A] matrix was formed and then enverted step by step. 

The current distributions for 24 different lengths have been obtained, of 

which only fcoh = I £, !„ are shown in Figures 10 to 12. Also shown in 

Figures 10 and 11 are the experimental curves by David Lamensdorf*. 

They provide an excellent check on the theory. Note that when the 

antenna becomes longer, beautiful standing waves are formed along them 

as shown in Figure 12. The wavelengths are close to the surface-wave 

length especially when b/a is large. This agrees with the results of 

Section I, that the current in a dielectric-coated infinite cylindrical 

antenna is primarily the transmission current and not the radiation 

current when the coating is reasonably thick. 

Another interesting pa rt of the results is the input admittance. 

Since calculations are based upon the assumption that the voltage across 

Che delta generator is 1, the real part of the current at a = 0 is the 

input conductance, and the imaginary part at 2--0 is the input 

susceptance. Figure 13 shows the curves of the input admittances as 

the length of the antenna changes. Experimental points by David 

lamensdorf are superimposed on them. It is noted, that the input 

conductances agree very well, but not the input susceptances. The 

reason is simple. Since a delta generator at a = 0 was assumed, the 

input susceptances should theoretically be infinite at z = 0 as discussed 

a* diheeieec?r!crÍS:ê“wMchawas0much tfr0m ^La—d<-f who used 

sleeve is not important, so long as it is muchl^ft^ Se^ [16] 
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in Section HC. Therefore, the more points are taken in the calculation of 

the current distribution, the higher the input susceptance will be. 

Nevertheless, the general shape of the input susceptance curve, obtained 

in the manner previously described, is still good. If one point is 

calibrated the rest are known. 

Comparisons with free-space dipoles [14] are also interesting. 

In general, the input conductances are larger for dielectric-coated 

antennas, and the input susceptances are more inductive. This is 

because the antenna is effectively thicker in the dielectric rod than in 

free space. The resonant and anti-resonant lengths are shorter for 

dielectric-coated antennas. In other words, the effective length of an 

antenna in a dielectric rod is greater than that in free space as was 

anticipated before doing any calculations. 

There is an interesting characteristic for the case b/a = 8. 

The second resonant peak is greater than the first resonant peak, as 

shown in Figure 13, which also agrees with experiment. The 

explanation is that when b/a = 8 the transmission current is a much 

more important part of the total current than when b/a is nearer 1. 

After a sequence of reflections at each end, a standing wave is 

produced along the antenna. The resonant peak occurs when a 

maximum is located at z = 0, if the radiation current is completely 

neglected. Actually, this is not the whole story, because whenever the 

transmission current is reflected at an end it gives rise to a radiation 
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current. Therefore, two kinds of standing waves exist along the line. At 

the second resonance, the antenna is quite long; the radiation current 

originating at the ends dies out quickly, so the standing wave of the 

radiation current is very small at z = 0. It has little influence on the 

peak of the transmission current at z = 0. However, for the first 

resonance, the antenna is quite short and the standing wave of the 

radiation current is not small at z = 0. It partially cancels the 

standing wave of the transmission current near z = 0; a reduced 

maximum is the result. 

D. Second Solution—Approximating the Current by Two Terms 

A study of the curves of the current distribution obtained by the 

numerical method shows that their general shapes are similar to those 

of the current in dipoles in free space. The real part is mainly a 

shifted cosine term, and the imaginary part is mainly a sine term, 

though the wavelength is no longer the free-space wavelength, but 

seems to be more nearly the surface-wavelength. Attempts were 

made to find an approximate current which contains these two terms 

only. 

The use of two terms to approximate the current distribution of 

a free-space dipole, first discussed by King [15], was based upon the 

principle that the real part of the kernel of the integral equation 

behaves like a delta function, so the current should behave more or 
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less like the right-hand side of the integral equation. Checking the 

kernel in integral equation (19), M(z -z') given by (20) does not have 

this property. Because of the residue from the simple pole at k = -k8, 

K(z -z’) has a term with constant amplitude independent of z. In order 

to make the method applicable, some kind of modification is needed. 

In fact, the integral equation of a finite dielectric-coated antenna 

given by (19) is not a unique form. More generally, (10) can be written as 

fh 
I I (z ') K#(z - z ’) dz’ 

J-h 

[Ccosk2Z + ^-sink^z] (34) 

where k^ can be any arbitrary propagation constant and 

^2 “ £o k (35) 

K'(z - z'), differs slightly from K(z - z')j it is given by 

K'(z - z') = 

oo . 2 ,. 2 i 2 . k, (k - k, ) ..i , 
__—_—G-(k, a) e 1 1 dk 
kffk^-k“) ¿ -œ i 2 

(36) 

Equation (34) can be verified easily either by taking a Fourier transform 

on both sides or by adding a second layer with dielectric constant and 

propagation constant k2 just outside the conducting cylinder and 

taking the limit as the thickness of this artificial layer goes to zero. 
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The singularities of G^fk, a) have been studied in Part A of this 

section. They consist of two branch points at k = £ko, two simple poles 

at k=±.kj, and two zeros at k = ±.k . Accordingly, if one choses k_=k 

in (36), then the integrand has neither a pole nor a zero in the 

complex k-plane. The only singularities left will be two branch points 

and two branch cuts associated with them, which are very similar to 

the free space Green's function. The Green's function hK'(z - z') is 

shown in Figure 14 with k,=k for e =3.00, k a = 0.04, and three 

different values of b/a, namely, 2, 4, and 8. 

As for the free-space dipole, an equivalent form of (34) is [15] 

i4n 
7 cos k h 
®s s 

(37) 

where 

Md(z, z') = K'(z - z ') - K'fh - z') 

I(z:) K'fh - z1) dz' 

M = sin (k h -■ k | z j ) oz s s 

(38) 

(39) 

(40) 

F = cos k z - cos k h 
oz s s (41) 

(42) 
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Let it be assumed that an approximate current has the form 

I(z) = tt [T M + T, F ] 
Ç cosk h L a oz b oz J s s 

(43) 

where and Tb are two complex constants to be determined. Let 

dz'Fo^d<Z> z') = ,Iduuroz + *duvMoz + Vz> (44) 
f-h 

dz'Moz'Kd(z’zl) = + + V,(z) 
'-h 

dvu oz dvv oz ’2' (45) 

where Vj(z), are small. If Vj(z) and are neglected and 

(32) and (33) are matched at z = 0 and z = h - , all of the constants 
s 

can be determined. Also define 

* 
V 

,.h 

M K1 (h, z1) dz oz ’ 
-h 

u F K 1 (h, z1) dz1 
OZ 

(46) 

(47) 

If the approximate current (43) is substituted in (37) and (39) and use is 

made of the relations (44), (45), (46), and (47), the constants T and T 
a 

can be evaluated. They are: 
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T = 
i(^ u 

^uu c o s k h ^ 

(«1 dvu 
^ ----- y ^ 

cos k h ^duv " -r-r~) y S v duu cos k Vi ' cos kgh dvv 

(48) 

T, = 

Calculations have been made for three 
cases : 

(a) er = 3 0°’ koa=0'03990, koh= 0.375n, b/a = 2 

(49) 

that ksA = 1.0959, k h = 2 
It is found 

582. 

Ka) = -0.0216((-0.0024 -io. 1 
55,Moa + (0.0287-i0.0307)F 1 

r\r* J 

(b) er=3-00’ V = 0.03990, kQh = 0. 375tt, b/a = 4. It i 

02' 

(50) 

that ks A =1.3010, k h = 3 
s found 

066. 

Kz) = -0. 0217((-0.0011 - 1 o. 1 

(c) er = 3. 00, k a = o. 

75^Moz + (°-0216 - 10.0399)F 1 
02 J 

(51) 

'°a = 0' 3"0’ koh=°- 3^5^ b/a = 8. It is found 
that ksA0= 1.5128, k h = 3.563. 

Ka) = -0.0276((+0. 0025 - i 0. 
200)Moz + (°- 0313 - i 0. 0387)F ] 

02 J 

(52) 
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Graphs for the cases (a), (b), and (c) are shown in Figure 15. At the 

same time, comparisons are made with curves obtained by the numerical 

method. The agreement is only fairly good because the Green's function 

shown in Figure 14 is not as ideal as that in free space. The real part 

oi the Green's function in free space approximates a delta function more 

closely. It rises steeply toward the source point and falls off rapidly to 

zero at kQz = 1.5, whereas in the present case, the rise toward the 

source point is less steep and decreases to zero at k z = 2 or greater 

as b/a increases. In terms of k z it is even larger. This also 

explains why the case b/a = 8 is less satisfactory than others. However, 

the results are good enough to calculate the far field or field patterns 

in the engineering sense. These are discussed in the next part. 

Explicit formulas for the *'s are listed in Appendix 4. 

E. Field Patterns 

Once the current is known, the far field and field pattern can be 

calculated easily. The transformed vector potential in region III 

Gß(k, r) due to a ring delta source is given by (12), so that the 

Q-component of the magnetic field in this region due to this ring delta 

source can be expressed as follows: 

CuoJ0(Ça)H(11,(cpr) 

anbrçJdbtH^fcpb) - eytpJjtëbtH^lcpb)] 
(53) 
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The actúa1 magnetic field due to this ring delta source ,is the inverse 

Fourier transform of (53). By superposition, the total magnetic field 

®30 ^ue t° current in the whole antenna is 

= I h I,z') dz1 Í_dk e-*<^ 
36 

l-h ic ^^btçjdbjH^fwb) - 

(54) 

It is now convenient to change to spherical coordinates (R, ^H), $), with 

Z=Rcos@, r= Rsin©in (54). Then, as R-*» (54) becomes 

lim B = lim 
R-*» -30 R-«» 

I(z ') dz' ?uoJo(ea)e e 

.3 
ikz' -14 1i 

l-h ,c 4n2b[ÇJo(|b)H(11,(Cpb) - ercpJ1(Çb)H(1,(Cpb)] 

w -[/ 2 _iR(cp sin@ - k cos(h) ) , 
x VTKpRsin0 e W ^7 dk (55) 

The method of steepest descents already used in Section IID applies. The 

evaluation of the integral (55) at the saddle point k = -kocos@, gives 

B30 
K“* oo 

ik R r 
e ° 

2ttR 
n[ÇbJo(Çb)Hp{ipb) - ercpbJj(Çb)Ho(cpb)] 

-€|i0J0<?a) 

I(z')e_ik°z ' cos(H) dz, 

k= “k0cos(H) 

(56) 

l-h 
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The Poynting vector in the far field and the radiation factor are defined by 

f5C) and (51) in Section II. If the field factor is defined as the square root 

of the radiation factor, it can be expressed as follows: 

(57) 

Three different methods are considered in obtaining the field pattern by 

(57). 

(a) Use can be made of the numerical solution obtained in Part C. 

This again involves the approximate method described in Part B of 

dividing the antenna into Í subdivisions (same number as before). Within 

each subdivision the current is approximated by a quadratic form, and 

the integral involved in (56) can be put in the form (23) with n= 3. The 

final result is 

k= -k cos 0 
o 

l 

(58) 

where as before and 



-47- 

yJ = “^2^^ + |J3^^ 

YJ2 = - 2u3(j) 

Y3 = U2(j) + u3(j) 

(59-a) 

(59-b) 

(59-c) 

^l(j) =~{sin(2jw) - 8in[(2j-2)u]] (60-a) 

^2^) =-7 fcos (2ju) +u sin(2j(o) - cos[(2j-2)u] + (j sin[(2j-2)<j]) 

(60-b) 

A ? 
U3(j) = — [2u cos(2jcj) + (10 -2)sin(2ju) 

tü 

+2(jcos[(2j-2)u] - (w2-2)sin[(2j-2)u]3 (60-c) 

u = tkocos@ (61] 

The currents I(mt), m = 0, 1, ... 21, are replaced by the numerical 

values obtained from Part C. 

(b) The two-term solution obtained in Part D may be introduced. 

If the current in (56) is replaced by the approximate current in (43), 

the result obtained from (57) is 
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_4VÎI ghJo(ga) 

?scos(ksh)[?bJ0(?b)Hi(cpt>) - c^bJjiÇbî^^cpb)] 
k= -k cos 

o 

X (62) 

where 

M e-iko2'cos(H) 
oz* dz' 

2k h [ cos(k h cos(h) - cosk h] 
S_ o s 

(63) 

P e"ik0z'cos 
oz' dz1 

2kgh [koh sin(ksh) cos (k hcos| ©) cos© l-kghcos(kgh) sin(kohcos( R)>] 

(kV -k2h ' s 0 
L2 COS2(g)) kQh cos ( B) 

(64) 

(c) The two-term solution obtained in Part D, may be used without 

including the contribution from the polarization in the dielectric rod (or 

the n-p term on its surface). This can be accomplished simply if the 

free-space Green's function is used to calculate the field, which is 
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ikrtR 
B3q(R-*co) ~ -^okosin®el ° 

4rrR I(z')e-iko2'cos® dz. 

-h 
(65) 

If I(z') is replaced by the approxin/áte current in (43), the field factor 

(57) becomes 

^ zVTsnk hsin(H) 

F'-(®) Çcos k3h IVm'®1 + TbGm<@>l (“) 

where ^((h)) and Gm(@) are the same functions defined in (63) and 

(64) respectively. 

Numerical calculations have been carried out with each of the 

above three methods for three antennas with dielectric layers of 

different thicknesses. Their two-term approximate currents are 

listea in Part D. The results are shown in Figure 16. The study of 

these curves and of the differences among (a), (b), and (c) shows that 

the field patterns obtained by the three different methods have the same 

shapes; but that their magnitudes differ somewhat. The field pattern 

for the dielectric-coated antenna has greater broadside characteristics 

than the free-space dipole, and this property becomes more prominent 

as the dielectric is made thicker. Although a part of the imaginary 

part of the current has a reversed sign, there is no miror lobe because 

the antenna is still shorter than one wavelength in free grace. The 

contribution to the field by the time-varying polarization in the dielectric 
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rod is very small compared with that by the current in the antenna itself 

(the difference between (b) and (c)), and this difference is roughly 

proportional to the thickness of the dielectric layer. If the dielectric 

layer is not extremely thick, as in cases previously discussed, the 

contribution by the polarization can be neglected for engineering 

purposes . 

F. Conclusions 

Two methods have been used in this section to solve the problem of 

a finite dipole in an infinite dielectric rod. The first is an entirely 

numerical method. Excellent results have been obtained as compared 

with experimental data. Theoretically speaking, there is no limitation 

on the length of the antenna,. However, for longer antennas, more points 

should be taken in order to have a reasonably accurate solution. A 

limitation exists in the number of storage locations available in a computer. 

For I. B. M. computer 7094, fifty mesh points taken on a dielectric- 

coated antenna is close to the upper limit. This method certainly is not 

confined only to this particular problem. Actually, it can be used to 

solve any kind of finite cylindrical antenna problem, once its Green's 

function is known. The second method, approximating the current by 

two terms, gives only a fairly good solution, and is applicable when the 

antenna is not too long, say koz<TT. Its advantage is its analytic form, 

which is useful for practical purposes either in design or in the calculation 

of field patterns. 



(o)-BY NUMERICAL SOLUTION 

(b) -BY TWO-TERM SOLUTION 

(c) -BY TWO-TERM SOLUTION EXCLUDING POLARIZATION 

FIG 16 FIELD PATTERNS €r = 3 0 , k0a = 0.04, k0h = |-7r 
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Finally, no matter how complicated the mathematics may be, for 

engineering purposes, a dielectric-coated finite cylindrical antenna can be 

treated simply as a free-space dipole. The imaginary part of the current 

is well represented by a sine term, the real part by a shifted cosine 

term, both with Goubau surface-wave numbers rather than the free- 

space wave numbers. The field pattern can be calculated with the 

free-space Green's function as in the case of a conventional free-space 

dipole. 



APPENDIX 1 

The power associated with the surface wave transmission mode in 

a dielectric-coated infinite cylindrical antenna can also be calculated by 

integrating the appropriate part of the Poynting vector over two large 

surfaces perpendicular to the cylinder. That is 

Ps = Re {2nJ rElr H10 dr + 2t,J rE2r H2e dr} 

= P, + P 
Is 2s (A-1 ) 

where a factor 2 is involved since power is transferred in both +z and -z 

directions. The first part of (A-l), power in the dielectric 

medium, and the second part of (A-l), P_ is the power in free space. 

The field components H^g are obtained from the residue 

term in the inverse Fourier transform. Following (20), (21), (22), and 

(23) in Section I, they are 

2Vk elksz 

Elr = TT?F(k ) tA(ks)Ji<Çr) - BtkgíY^Çr)] (A-2) 
s 

4e k VelksZ 
-J-1- K (ßr) 

TT bf F(kg) 

2VueieiksZ 

-ïïgFlk.T tA<ks)Jl^) - B(ks)Yl(?r)] 
s 

(A-3) 

(A-4) 

4u e1 VelksZ 

TT2b£F(ks) 
Kj ( ßr) (A-5) 
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where 

A(ks) = ?K1(pb)Yo(çb) + ereKo(ßb)Y1(eb) 

B(ks) = 5Ki<eb)J0(?b) + crßKo(eb)J1(5b) 

e = 
1 s = Vk2 - k2 

s o 

and F(k ), which is 
S 

2k a 
s 

dk D(k) 
k= -k 

, can be expressed as 
s 

F(ks) = "ÏÏT [A(ks)Jl(?a) - B(ks)Yi(?a)] 

(A-6) 

(A-7) 

(A-8) 

2k b 

+ -Klm [Jo(?a)Yl<?b) - Ji(Çb)Y0(Ça)] 

x [2^ Ko(eb)Ki(^)(1 + + IKi(eb)]2(i - er) + €r[Ko(eb)]2(i + 

(A-9) 

Note that in deriving (A-9), some important equalities involving A(k) and 

B(k) are used. They are 

AiyjjUb) - B(ks)Y1(çb) = ^ Kjlßb) (A-10) 

A(ks)Jo(?b) - B(ks)Yo(5b) = -¾. Ko(eb) (A-ll) 

A(ks)J0(?a) - B(ks)Yo(?a) = 0 (A-12) 
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Following (A-12), it can also be proved that 

Afk^JjlCa) - B(ka)Yj(Ça) = --j 
4Kj(ßb) 

TT Çab[Jo(!a)Y1(?b) - J1(?b)Yo(Ça)] 

(A-13) 

(A-13) is substituted in (A-9), F(k ) becomes 

F(ks) = - 
2k a 

[AíkglJjíÇa) - Bfk^YjÜa)] 

8k í2gFKo(Pb)Kl(@b)(1 + ÊI>+ - er) + er(K0(Eb)]2d + 

-r— 
TT Ça 

€rß‘ 

JH T?a) - Blk^Y^a)) 

(A-14) 

If the field components E^, H®0 , E^, are substituted in (A-l) and 

the integration is carried out with the help of the formulas in [10](p, 90), 

together with the relations (A-10), (A-11), and (A-12), the results are 

Is 
8v2->Vl rVn. \_r T f»-u2 

n?2ÍF(ks)]2Ja 
A^k^rtJ^Çr)]2- ZAÍk^Bík^rJ^ÇrjY^Çr) 

+ B (ks)r[Y,(Çr)J“>dr V?r)]2)< 

16 V ujks ej 

ir3Ç2[F(ks)] 

(, 2 0Z 2 2e 8 
■2 f[K,(eb)]2 + -j-fK^eb)]2 + K (8b)K (ßb) 

L ç Ç b 

2 2 
—f-fAfk^JjIßa) - B(kg)Yj( ßa)] (A-15) 
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32V (jEjk 

>28 = 'nWSr? L e^Kl^>r dr 
S -/ D 

16v "eiks r 
TTJ52[F(k )]2 (‘ 

2e 
er[Ko(ßb)1 +-pF K0(Pb)K,(ßb) - C^Kjlpb)]2 

(A-16) 

When (A-15) and (A-16) are added, the total power associated with 

surface wave transmission is 

P = 
s 

16V weiks r ? e ß2 

^[F(k >]2 ^[K°(pb,] (i+7r »+ - s' 
s « 

2e 

+ ßb Koípb)KlíPb,íl+^l)-II^-[A(ks)J1(|a)-B(ks)Y1(Ça)]2J 

(A-17) 

With the help of (A-14), (A-17) can be written alternatively 

2 toEjaV2 

-JFUTT tAíks)Jií5a) - Bik^Yjda)] 

as 

P = 
s (A-18) 

Equation (A-18) is precisely the same as (23) in Section I. 
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APPENDIX 2 

The power radiated from a dielectric-coated infinite cylindrical 

antenna can also be obtained from the integration of the normal component 

of the Poynting vector (50) in Section II over a great sphere. Owing to 

symmetry, it is possible to write the radiated power as follows: 

f- 
Pr = 4rrR2 ^ S sin0 d0 (A-19) 

where S is the Poynting vector. With (50) of Section II, (A-19) becomes 

P = 
8k?e V2 1 r 

5, 2 
rr b 

TT 

2 
fDTkT sin0 d0 (A-20) 

k= -k cos© 
o 

After the transformation x=kocosQ dx =-kosin0 d0 has been made, the 

following is obtained: 

P = 
r 

8 y e, £ V* 
1 r 

—.3, 2 
TT b 

dx 

(k^-x2) |D(-x)| 
(A-21 ) 

where |D(-x)|2 = [AiVk^-x2, Vk^-x2)]2 + [BiVl^2 -x2, Vk^ -x2)]2 

A and B are defined by (42-a) and (42-b) in Section II. Equation (A-21) 

is indeed the same as (55) in Section II. 
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APPENDIX 3 

The explicit formulas for calculating the constants, 

In Section III, are listed below; 

UjiO) = -2R(1 - cos kjt) 

•k t 
o 

- 2 M(u) 1 - COS JiL 
u 

d(o 

• 00 

+ 2 N(y) l-e'^ 
(0 dw 

+ Í2R sinket 

+ i2 /’koM(W) ^ d« 
(0 

(ij(mt) = - 2R sin(kjt) sin (mk^t) 

rkQt 

- 2 / °M(U) ^nWsin(mu) 

Jo 

du 

+ 1 N(u) e‘<m-1)u du 

+ Í2R sin (kjt) cos (mkjt) 

M(ü) s in (j cos (mtj) 
(0 

du 

given by (28) 

(A-22) 

+ i2 
(A-23) 
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U2(0) = 

|i2(mt) 

ia3(0) = 

sinfot) - k.tcostk.t) 
2R , T cos (mk^t) 

V 
V 

+ 2 I Miu) Sln(t) ^(jcosy cog 

(0 

(A-24) 

+ f N(to) + 2U) 
(0 
2—- e"(m-1)w dW 

sin(k.t) - k-tcosik-t) 
+ Í2R-j~- sin (mkjt) 

M 
+ 12 / Mfu) -^n.ü ~ Pcos U sin(mto) du) (A-25) 

U 

m = 1, 2, ... 4Ü-1 

2R 

i 2.2 
kj t cos (kjt) - 2k^t sin (k^t) - 2cos(kt) + 2 

-T7-- ^- 
V 

k t , o 2 
+ 2 I - cos CJ ~ sin tj - 2 cos a + 2 

o w3 

dw 

+ 2 I N(U) + 

V 
du 

2.2 

+ i2R 
kjt sin (kjt) + 2k^t cos (k^t) - 2 8^(^) 

kft2 

k t _ 
. o 2 . 

+ i2 I M(u) — Sln + 2tocos(j - 2 sinu 

to3 
du (A-26) 
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H3(mt) = -2R 
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2 2 
kjt sin (kjt) +2^1 cos (k^) - 2sin(k1t) 

- 
sin (mkjt) 

•ko‘ 2 
- 2 M(U) 2Mcosu- 2sin^ sin(mu) 

dw 
(J 

+ Í N(h?) ^2" ZU + 2) ~ (^2 + 2(q+2) e~2tJ e-(m-l)(o 

(0 

2.2 . 
ki t sin (k, t) + 2^1008(^1) - 2 8^(^1) 

+ Í2R —--L 1_I_ 1 

1^7" 

M 2 
+ i2 / M(w) — sin^+ Zucosu - 2 sin y 

(0 

m = 1, 2, . . . 4Í- 1 

cos (mkjt) 

cos (mw) d(j 

(A-27) 

where R = 
2erVk?-ko2bKo(V^-k2b) 

(kjb)2 [2K1(Vk12 -k^ b) + erVk2 -k2 b K ;o/kf. k2 b)] 
(A-28) 

Mitj) and Niu) are defined by 

M((o) = -- 
4erJ;(Qa) 

TT {QbJ0(Qb)JjiPb) - €rPbJ1(Qb)Jo(Pb)]2 

+ [QbJ^ÎQbjY^Pb) - erPbJ1(Qb)Yo(Pb)J2} 

(A-29) 

N(W) = 
4erJ(Va) 

tt{[ VbJÎVbJJjOJb) - erUbJ1(Vb)Jo(Ub)]2 

+ [VbJQ(Vb)Y1(Ub) - erUbJ1(Vb)Yo(Ub)]2} 

(A-30) 
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APPENDIX 4 

Explicit formulas for the s defined by (32), (33), (34), and (35) 

in Section III are listed as follows: 

-kJi 

* = 
k h sin {¿(cos L) - cosk h) 

-2/ --dy 

kgh - W 

k h(l + e 2e wcosk h) 
+ / N'(W) ---*-£- dw 

Khz + w2 

° k h cos cj(cos (j - cosk h) 
+ i2 I M'((¿)  -7-^5-,-Î— du _ 

K h - M ’ o s 
(A-32) 

^ = 
u 

-k h 
° kgh sin w (w cos (¿sink h - k h sin cj cos k h) 

2 / M'(u) —---®-!_s_ 
w(k¿h¿ - (o ) 

du 

k h[cosink h(l +e-2u) - k h cos k h(l -e'2w)l 
+ / N'(W) -5-1---%-£_ ;J d(J 

-T~1-T~ 
u(kV+cj¿) 

s 

'k0h 

+ i2 / M'(cj) 

'o 

kgh cos io (co cos co sin k h - k h sin jj cos k h) 
s s 

/1 2,2 27 co(k h - co ) 
S 

dco 

(A-33) 

Let the four new quantities A, B, C, and D be defined as follows: 
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. . 2k h(w sink h - k h sin u) 
A= * Moz»Nd(o, z') dz' = / M'((o) —1- s s TFl T 

k h - CJ s 

du 

2(k he W-k hcosk h + usink h) 

N'(“> -5-b“T-— 
k h + cj s 

dcj 

k^h 
2k h(coscj - cos k h) 

+ i / M'(w) —1. 8 
TZ~2 T 
ksh - co 

du - ^ (A-34) 

B = 
■k^h 

MoZiKd(uu, z') dz1 = / M'(u) 
°^rti 2[w + kgh cos kgh sin (uu) - kah sin u cos (uu)] 

-h 
1,2, 2 2 
ksh -u 

■du 

+ N'(u) 
o 

2 [u + k h e cosh (uu) - k h cos k h e "WW1 
s s s J 

,2 2 2 
kgh + u 

du 

-k h 
° 2k h cos (uu) (cos u - cos k h) 

+ i' -rrr-2-— 
k_h - u 

du - ^ 

(A-35) 

C = 
Foz,Kd^0, dz' 

'-h 
'k0h 

M'(u) 

2 
2[u (1 - coskgh) - kghusinu sinkgh - kgh2cos kgh(cosu - 1)] 

Fo 
oo 

+ I N'(u) 

o 

n ¿~1 T7 
u(k h - u ) 

S 

du 

2[u£'(1 - cosk h) -k2h2 cos k h + k h e"w(usink h + khcosk h)l 
___ s & s. S S .<s 

u(k2h2+ u2) 
s 

s s s 
du 

'koh 

+ i / M'(u) 
o 

2k h (ucos u sink h - k hsinu cosk h) s s 
/7,2,2 2. 

u(k h - u ) 
s 

du - ^ u 

(A-36) 
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^ I ^oz'^d 

-h 

jç 2 

M ' (w) — (sinksh'^osksh)+k3h cosk8h-kshcos (m) ((js inws i nks h+ kg h cos (je osk h)] 

. .2. " 'duj w(k^h2- (j2) 

+ f UL!Slnksh“COSksh^ “ksh cosksh + kshe ücosh((j(j)((jsinkwh+k.hcosk h)1 

u(k h + (j ) 

k h 
j.: f t*,/ , 2kshcos(Mj)(ucosusioksh-kahsinucosk h) 

Jo “ ~du-*u <a-37» 
S 

The n. 
(1 - cos ksh)B - (sink h - cos k h) A 

dvv - 1 . cos kh - sin k hTsink h - cosk h) 
o S 

(A-38) 

A - sink h B 
s 

dvu 1 - cosk h - sink h (sink h - cos ÏThT 
° S> s S 

(A-39) 

xTî _ " cos ksh)D - (sinkgh - cos ksh) C 

duv I-cosk h - sink n (sink h - cosk h) 
° s s s 

(A-40) 

C - sink hD 
\¡r -_s 

duu 1 - cos k h - sin k h (sink-K - cosk HT 
a s s s 

(A-41 ) 

w = - ïu-ü) 2k h 
s (A-42) 

whe re 
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4er(ks A0)2 (kfh2-w2) J2(Qa) 

TT (kV-w ){[QbJo(Qb)J^Pb) - c^bJ^Qb)Jo(Pb)]2 

+ [QbJ^QbJYjiPb) - erPbJ1(Qb)Yo(Pb)]2} 

(A-43) 

_4er(ksAo)2 (k2h2 + ü2) Jo2(Va) 

n2(k2h2+ij2){[VbJo(Vb)J1(Ub) - £rUbJj(Vb)Jq(Ub)]2 

+ [VbJo(Vb)YjfUb) - 0rUbJ1(Vb)Yo(Ub)]2} 

(A-44) 

M'(u) = 

N'(u) = 

P = "^k2 - ^ 
° h 

Q = Vk2 - ^ 
h 

U =~\/k2 + ^ 
° h 

V = l/k2 + ^ (A-45) 
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