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BALLISTIC RESEARCH LABORATORIES 

REPORT NO. 615 

Curr y/Wy att/e j s 
Aberdeen Proving Ground, Md, 
19 August 1946 

A STUDY OF INVERSE INTERPOLATION OF THE ENIAC 

ABSTRACT 

A study is made of methods of using the Eniac to convert a table 
giving values of two functions x(t,0), for evenly spaced values of t and 0 
into a table giving t for evenly spaced values of x and 0. At the same time 
there maybe additional functions of t and 0 tobe expressed in terms of x 
and 0. A basic scheme fordoing this is set up and programmed in detail. 
This scheme contains three additional functions y,z,w. The basic scheme 
is such as tobe readily modified; some modificatipns arestudiedand pro- 
grammed in somewhat less detail than the basic scheme. 
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INTRODUCTION 

1.1 The problem of inverse interpolation may be stated as follows. Suppose we have a table giving values 

of a function x(t), and possibly some additional functions, for equally spaced values of the argument t. It is 

required to tabulate t and the additional quantities for equally spaced values of x. 

1.2 This problem is important in the calculation of firing tables. Suppose the trajectory calculations have 

given us the coordinates (x,y) of the projectile as functions of t (time) andCP (angle of departure.) For the 

tables we want t and Cp as functions of x and y; indeed we wish to determine Q) so as to hit a target whose 

position (x,y) is known, and t is needed for the fuze setting or other purposes. This is a problem of in- 

verse interpolation in two variables; it can be solved by two successive inverse interpolations on one vari- 

able. 

1.3 In'this report the problem of inverse interpolation is studied with reference to the programming on the 

Eniac as a problem in its own right. A basic scheme of programming is set up in detail in such a way that 

it can readily be modified to suit circumstances. Some modifications are also programmed in somewhat 

less detail than the basic scheme, and general principles regarding modifications are discussed. However 

no attempt is made to deal exhaustively with these modifications. The special requirements of firing table 

calculations, except in so far as they furnish motivation, are not gone into here; a separate report on that 

subject is planned. 

1.4 The process of inverse interpolation is essentially a combination of direct interpolation with solution 

of an algebraic equation. Thus if we let u be the independent variable, after a suitable change of scale and 

of origin, and let f(u) be an interpolatory approximation to a given function x(t), the inversion of x(t) is es- 

sentially equivalent to solving the equation. 

f (u) = a 

for a succession of equally spaced values of a. This is done here by an iterative process. The advantages 

of an iterative process are: 1) that it is eminently suitable for the Eniac, and 2) the process is in principle 

independent of the choice of the formula for f(u). In order to make a detailed program it is necessary to 

make a specific choice of f(u); but the use of a different f(u) is a special modification of the sort mentioned 

in the preceding paragraph. 

1.5 In order for the process to have a unique solution we must suppose that 

•     dx , „ 
^=dt^° 

within the range considered.   Here we shall suppose that 

f>0. 
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The case — < 0 can be taken account of by changing the sign of either x or t but not both.   For some pur- 
dt 

poses we shall also suppose that 

X = —r- <  0. 
dt'^ 

The case that x >  0 can be reduced to this by changing the sign of both x and t .   Some but not all of the 

conclusions, however, are valid even if x changes sign.   These assumptions of course apply strictly to the 

x(t) as- represented by the interpolation formula f(u).   We really suppose the function such that all the f(u) 

(for the various t,) are such that the above inequalities apply to the function they represent, 
k 

1.6 The above assumptions suffice for the discussion of general principles. For the detailed programming 

more specific assumptions are necessary, as follows. 

1.7 For the present basic scheme the approximation f(u) is formed by ordinary interpolation with third 

order differences; i.e. f(u) is a cubic polynomial through four consecutive points, two on either side of the 

point desired. There are three additional functions, called secondary functions and designated y(t), z(t), and 

w(t) respectively, which it is desired to tabulate as functions of a. The same interpolation formula is to be 

used in calculating these secondary functions by direct interpolation as was used in par. 1.4. The quantities 

x(t), y(t), z(t), and w(t) are given for evenly spaced values of t on a file of cards with one card for each value of 

t- the cards are arranged in order of increasing t. Thus it is not necessary to set these functions on the 

switches. The output is to be a file of cards containing t, y, z, w for each value of a, one card for each 

value of a. If these quantities are ten-figure numbers the three secondary functions represent the maximum 

capacity of the machine under the circumstances mentioned. For four successive values of each function 

are needed; one of these values is on the card in position, and hence is stored in the constant transmitter; 

the other three must be stored in accumulators. This makes twelve accumulators tied up for storage; since 

four accumulators must be free in order to operate the multiplier, and four more are needed for quantities 

to be printed, the Eniac is jammed full. In actual practice we may need less than three secondary functions 

(thus for the main part of the firing tables we may need only x and y), or we may need more (e.g. for dif- 

ferential effects); in the former case extra accumulators will be available for elaborating certain aspects 

of the computation as discussed below, or for a higher order of interpolation; in the latter case it will be 

necessary to have two or more cards for each value of t (see sec. 10). 

1.8  In some problems, for instance in the calculation of firing tables, it is desired to perform the inverse 

interpolation on functions of two variables, the inverse interpolation being withrespect to one variable while 

These changes in sign of x and t can of course be accomplished in the scheme below by simply changing 
the sign of A a and At respectively.   There is no other change necessary.   The different possibilities are 
as in the following table: 

x X        Aa        At 
+ - + + 

+ 
+ + - - 
- + - + 

If the signs are as in this table, the theory for x^ o,x < o applies. A brief discussion under the assumption 
X > o, X > 0 is given in pars. 3.23f.       _ ■ _ 
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the other is held constant. Here this second variable is designated CP with the understanding that it is not 

necessarily the angle of departure for a trajectory. Then we have a file of cards and a separate process of 

interpolation for each value of cj). Let us call such a file of cards with constant Cf a group. It is then desir- 

able to so program the calculation that the groups can be combined into a single file, and that, on finishing 

with one group, the machine will automatically make the necessary adjustments and proceed with the next 

group. This refinement is incorporated in the present basic scheme. It is supposed that the cards in each 

group satisfy the assumptions in the preceding paragraphs--in particular that they are arranged according 

to increasing t--; and that the groups are arranged in order of increasing cp . 

1.9 Further, more specialized assumptions are as follows. The problem requires several constants, viz.: 

the intervals At, Aa, Ab between successive values of t, a, and b respectively (where a represents x and 

b represents 0 as the arguments of the output); the initial values t , a , b of these same three variables; 

and a constant X in the successive approximation scheme. All these constants we suppose to be with only 

one significant digit, so that in order to multiply by one of these numbers it is sufficient to use a shifter and 

a repeat switch. (This applies particularly to X and At; cf par. 7.6). Again we suppose there are at least 

two cards in every group preceding the first value of a; and also two cards following the last value of a. 

(On what happens if this is not true see par. 11.4 (c)). 

2.   GENERAL OUTLINE OF THE CALCULATION 

2.1 As explained in the introduction we suppose that the input cards give the four quantities, x, y, z, w, as 

functions of t and cj) for equally spaced values of t and cc . The cards are supposedly sorted into groups, in 

each of which cP is a constant and the cards are arranged in order of increasing t; the groups are then ar- 

ranged in order of increasing CP . 

2.2 It will be convenient to adopt a certain terminology here. The variable c? will be known as the para- 

meter; the variable t as the argument or, when it is desired to be specific, the in-argument. The argument 

of the output, or out-argument, is of course x; but it is convenient to call it a in connection with the output, 

so that X is reserved for the input function. Likewise it will be convenient to designate the parameter d , 

when considered with reference to the output, by a special symbol b; in such a case CD would be called the 

in-parameter, b the out-paralneter. 

2.3 We consider the cards of a single group. Let t, , x, , y , z, , w, be the values appearing on the (k+l)st 

card of the group (so that t , x , y , z , w , are the initial values). 
0       0      0       0        0 

Then 

Suppose now that 

ti, = to + kAt. (2.1) 

\^^<\+l. - (2.2) 
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(2.5) 

Then we can set 
t-t 

u = ^  . (2.3) 

The main problem of inverse interpolation, viz., the determination of t   so that 

X (t ) = a, 
a 

can be regarded as the solution of 

F(u) = f(u) - a = 0, (2.4) 

where f(u) is the polynomial approximation to x(t   + u At). 

According to the introduction f(u) is the third degree polynomial such that 

f.l = f(-l)=x^_^, 

f;=f(o)=x^, 

fl=f(l)=x^^^, 

This can be represented, in a form convenient for Eniac computation, thus: 

6f(u) = 6A+(u+l)    6B+U   [3C+(u-l) D]    , (2.6) 

where (in the notation of advancing differences) 

B =Af , =f   -f , 
-1      0      -1 

C = A^f , = f,  - 2f   +i , -11 0-1 

D =   A^f . = f„  - 3f, + 3f   - f  . 
-I       A 1 0-1 

2.4 By our hypotheses the equation F(u) = f(u) -a = 0 will have a unique solution between 0 and 1, We shall 

call this solution u . The corresponding values of t, x, y, z, w, will also be indicated by the appropriate 

letter with subscript a; thus x = a and t =t+u At = t„ + (u - 2) At. The quantities to be printed are 

then a, t , y , z , w , as well as CD and auxiliary constants (card numbers etc.) 
3.      3      3.       3. I 

2.5 The calculation relating to a single value of a will be called a round. The first job in a round is to read 

cards until (2.4) is satisfied, with proper safeguards to change the value of a or to start a new group.   This 

will be called the set-up. The next main job is to calculate u ; this will be called the primary interpolation. 

When this is completed it remains to calculate y , z , and w ; these interpolations, which are direct, will be 
3    3 a 
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called secondary interpolations. They are supposed to use the same interpolation formula as the primary 

interpolation. Finally there is the printing and the clearing and readjustments necessary to conclude the 

round. These last, which are simple, are conveniently treated as part of the last secondary interpola- 

tion. The primary interpolation can be advantageously divided into two parts: the first or preparatory 

part consists of the calculation of the coefficients of f(u) and other items which are the same in all the ap- 

proximations; the second part, or the iteration consists of repetitions of what is essentially the same pro- 

cess to give the successive approximations themselves, 

2.6 The entire computation procedure can thus be divided into certain major parts which are repeated over 

and over according to the programming. These major parts will be called processes, and will be designated 

by Roman numerals as follows: 
I.   The set up. 

II. Preparatory part of the primary interpolation. 

in. Iteration. 

IV. Secondary interpolation for y. 

V. Secondary interpolation for z. 

VI.   Secondary interpolation for w and closure of the round. 

2.7 Before proceeding to details it is necessary to discuss certain matters theoretically. The theoretical 

discussion of Process HI, which forms the heart of the computation, will occupy section 3. The discrimin- 

ations necessary in Processes I and III involve some matters of principle which will be discussed in sec- 

tion 4. Finally the formation of the coefficients in II, IV, V, and VI proceeds by a special case of some gen- 

eral theorems which may be of interest on their own account; these are the subject matter of section 5. 

2.8 The detailed program will concern us in sections 6-7. However since it will be expedient to refer to 

some of the programs worked out as illustrative examples in the theoretical discussions of sections 4 and 

5, it will be necessary to make a general explanation of the technique at this point. Each process is broken 

into pieces, called stages, which are imits in the following sense. Each stage is a program sequence with 

an input and one or more outputs. The input of each stage comes from the output of one or more other 

stages of the same or different processes; the outputs all go to the input of some other stage or are blank. 

Otherwise there is no program interconnection between the stages, although stages may run simultaneously 

and the transmission and reception of the same quantity may be programmed in separate stages. It follows 

that if one knows what actions the various stages order and how they are connected to one another, he can 

determine the course of the whole computation without regard to the programming within the stages. The 

stages can be programmed as independent units, with a uniform notation as to program lines, and then put 

together; and since each stage uses only a relatively small amount of the equipment, the programming can 

be done on sheets of paper of ordinary size. 

2.9 The interconnection of the various stages will concern us in section 6; here we are interested only in 

the programming technique for the details. Instead of seven-column computing paper used in a previous 

report, ordinary 20 x 20 coordinate paper is used with a rectangle 1/2" x 1" for each item. The location of 

the various indications in the programming is shown in the Code for Programming Conventions in Fig. 35. 
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The following special conventions will also be used. A line drawn horizontally across the column for an 

accumulator indicates clearing. A horizontal line with gaps across the column for a stepper is to indicate 

the positions of the stepper; the gaps indicate the positions which are possible at the step in question. A 

double horizontal line across a column indicates the column is to be used from that point on for a different 

piece of equipment; the nature of the new equipment shown by a new heading written immediately under the 

double line. On some schedules portions of the program which repeat as a unit are enclosed in boxes formed 

by dashed lines. 

2.10 The programs for the separate stages in the basic scheme are given in Figs. 7-26; the schedules for 

fitting these together in Figs. 28-34. A flow-chart showing the interconnection of the various stages is 

given in Fig. 44. 

3.   THEORY OF THE ITERATION 

3.1 We are concerned with the solution of the equation (2.4), viz. 

F(u) = f(u) - a = 0 

under the assumption that F (0) < 0, F(l) > 0, F'(u) > 0 throughout the interval from 0 to 1. The special 

assumptions of section 1, in particular the fact that f(u) is a cubic, will not be used in this section. 

3.2 The equation (2.4) can be put into the form 

u = G(u), 

which is suitable for an iterative process, if we set 

G(u) =u -   XF(u), 

where X may be a function of u.   The corresponding iterative process is 

u    , = G(u ) = u   - X    F(u ). (3.1) n+1 n       n        n       n ^     ' 

It is clear that if this process converges, say 

lim 
u   = u   , n->-oo       n      a ' 

and if \    converges to a limit X    not zero, 
n a 

then 
u   = u   - X   F(u ), a       a a       a ' 

and hence 

F(u ) = 0. (3.2) 
a. 

Thus the convergence, if any, is to a root of the equation (2.4) 

3.3   Many of the well known processes are special cases of the iterative scheme (3.1).   Thus if 

X    -    .1 
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the process is kncfwn as Newton's method.   On the other hand if 

^ ■  _      D      n 

^n = f(u^) -f(u^) 

where \ is a point such that f(u^) and f(u ) have opposite signs, the iteration is essentially the "Rule of 

False Position" (Whittaker, E. T. and Robinson, G., The Calculus of Observations, Blackie and Son, 3rd 

edition, 1940, sec. 49). 

3.4 The process has also a simple geometrical interpretation. In the (u,x) plane--with u as abscissa, x as 

ordinate—the equation of a line of slope fx. through the point (u , F(u ) ) is 

x-F(u^) =//(u-u^) , 

i-e- u = u^ + — (x-F(u^) ). (3.3) 

The intersection of this line with the axis of abscissas is u    , if // = 1/ X    . Thus to locate u       we draw n+1     r- n -^j^\ 

a line with slope 1/  X     through the point on the curve x = F(u) for which u = u ; the intersection of this line n n 
with the axis of abscissas is then u -.. In the following it will be convenient to call the line (3.3) the approx- 

imating line and to understand that the terms curve and tangent refer to the curve x = F(u). 

3.5 We shall now investigate analytically the general conditions on X in order that the process (3.1) may 

converge.   In this we make use of the fact that there is a unique u   in the interval 0  < u   < 1 for which 

Hence we have 

F(u ) = 0. 
a. 

u   = u   - A    F(u ). a      a        n    ^ a 

If we subtract this equation from (3.1) we have 

Here we can apply the law of the mean and so obtain 

Vl-\=^-V(l-^nF'(n)). (3.4) 

where TI is some value between u and u . From this, supposing X>0, X->A > 0, we can draw the 

following conclusions. (These conclusions are called cases, although they are neither exhaustive nor mu- 

tually exclusive. The cases are illustrated by Figs. 1-4. In these figures the point on the curve where u = 

u,  is labelled P ). 

Case 1.  If throughout the interval from u   to u   we have 
n        a 

0<X^F'(u)<l (3.5) 
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then u 1 - u has the same sign as u - u and is smaller. As long as the condition persists the sequence 

(u - u ) is monotone and decreasing in absolute value; if it persists indefinitely, as it will if (3.5) holds for 

0 < u < 1, then it must converge to a limit which is zero by the argument following (3.1). Hence in this 

case we get convergence, although it may be slow. Geometrically this case arises when the slope of the 

approximating line is greater than that of the tangent to the curve x = F(u) throughout the interval. The 

situation is illustrated in Fig. 1. Case 1 will be called the monotone case. 

Case 2.   If throughout the same interval we have 

KX F'(u) (3.6) 

then u   and u        are on opposite sides of u ; as long as the condition persists the sequence /u -u "V    is 

alternating.   If further the condition 

KX  F'(u) < 2 (3.7) 

persists, the sequence is decreasing in absolute value; but we cannot say that it converges to zero. The 

conditions (3.6, 3.7) will both hold for all n ^ k if they hold for 0 < u < 2 and 0 < u, < u < 1. Geo- 

metrically Case 2 is that where the slope of the approximating line is less than that of the tangent; examples 

are Figs. 2a, 2b. Of course if 1 - X F'(u) does not have a fixed sign we may have a combination of Cases 

1 and 2; Fig. 3 is an example. Case 2 will be referred to as the oscillating case. 

Case 3.   Let -TQ \ (n>l) be a sequence of positive quantities less than 1 and-I t   I the sequence such that 

f    = 1     f = 9 <f    . , 
^ o      '    -^ n+1      n+1   ^ n *^ 

Suppose that-I ^     y converges to zero.   Then a sufficient condition that the sequence fu   - u \ converge 

to zero at least as rapdily as -T^   \ is that 

1-9   <X F'(u)  < 1+9 (3.8) n —    n —       n ^     ' 

throughout a sufficiently wide interval.   If we suppose that throughout that interval 

0<cc^ < F'(u)<p^ (3.9) 

(where the suffix  n  indicates that we are for the present allowing the interval to depend on n), then (3.8) 

will hold if 

1 - 9 <X     oc   <X     fi    < 1+9 , n—   n      n—   n   "n —       n 

i.e. if 

1-9 1+9 
^< X„<^ (3.10, 
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The best obtainable 9   which satisfies (3.10) is that which makes the upper and lower bounds equal; this is n 

k   -1 B n ,       ,        '^ n 
«n = k-Tr'™h«^^kn=^ (3-11) 

n n 

3,6   These considerations show the reason for the extremely rapid convergence in the case of Newton's 

method.   For under the assumption of convergence and continuity of F' (u) we have 

lim    X F'(u) = 1, n ->oo     n 

when u varies in any way between u   and u .   Hence (3.8) holds for a sequence SQ \ such that M 
lim    9=0 n-^oo   n 

and consequently the sequence <t V converges faster than any geometric series. It is however possible 

to get divergence with Newton's method (see Fig. 4), 

3,6a For the Eniac, however, extremely rapid convergence is not necessary. The calculation F(u) takes, as 

we shall see, approximately 60 addition times, while the interval between card-readings or printings is 0.6 

second or 3000 add-times. Thus the bulk of the time, even for a relatively large number of approximations, 

is taken up by card feeding. Allowing for incidental calculations we may have as many as forty approxima- 

tions without a great increase in the total time. A far more important consideration than speed of conver- 

gence is simplicity of programming, 

3,7 Such simplicity can be attained by taking a fixed value for "X . Indeed we can take a value which is not 

only independent of n, but is fixed for a considerable range of values of a. To investigate this, let us sup- 

pose that we are concerned with a piece of the curve x = F(u) in which 

0<c^<F'(u) </3 (3.12) 

In the discussion of Case 3 above let 9 =9 be independent of n, and let a: = oc (3 ^ - (i . Suppose that 

we are satisfied to terminate the iteration at the nth step is .        - 

u    , -u     <10'^. 
n+1     a   - 

A sufficient condition that this will happen for n < 40 is 9     < 10 

i,e, 
9 < 0.708. 

The maximum value of k =^/c(is that satisfying (3.11), viz. 

i.e. 

^ -9 
k+1     ^' 

k = i±^ = 5.85. 
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Thus if our computation is confined to a range for which the ratio of the maximum F'(u) to the minimum is 

less than about 6, a constant value of > can be found which will do for the whole computation. We can also 

take for u   any value such that   |u   - u R 1; the simplest choice is to take u =0, but another choice will 
O I     3, 01 O 

be recommended later on. 

3.8 Since this restriction on F' (u) = f (u) is likely to be satisfied in a great many computations, the basic 

program of this report is planned for a fixed X. Inasmuch as the computation is not sensitive to X , the 

assumption that X is a one figiore number is justified. This arrangement greatly simplifies the program- 

ming; it is not necessary to use either the divider or, so far as multiplying by X is concerned, the multi- 

plier. The basic scheme may be modified to cover a wider interval in ways which the following discussion 

will suggest. 

3.9 It is necessary, however, to incorporate some protection against divergence or excessively slow con- 

vergence in certain cases. This may arise through some error in planning,because we reach the boundary 

of an interval in which the above conditions hold, through some mal-functioning of the Eniac, through some 

roughness in the data, or what not. In such a case it is desirable to so program the Eniac as to sense the 

situation and make necessary adjustments or give a signal. In order to study methods of doing this we con- 

sider more in detail what happens in these abnormal cases. This will now be done under the assumption 

that 

X    =X> 0. n 

3.10 To this end we return to the hypothesis (3.6) of Case 2,  From (3.1) we have 

Vk+i = Vk-^^(Vk) 

Subtracting and applying the law of the mean we have 

Vk+i-Vi = (Vk-V(i-^F'(n)) (3.13) 

where now Tl is between u and u , . From this we can conclude that so long as we remain within an in- 

terval for which Case 2 holds, u . - u . and u j^ - u have opposite signs. In particular, for k = 2, 

the differences u„ n -^o all have one sign, while the differences u„ q -Uj, , all have precisely the oppo- 

site sign. Hence--always under the proviso that we remain within an interval for which Case 2 holds—the 

sequences u„, u„, u., . . . and u., u„, u^., . . . are both monotone, and in opposite directions. The case they 

are both monotone away from u   we shall speak of as the expanding case; that where they are both mono- 
3. 

tone toward u   the contracting case; it may happen that the sequences become stationary. 
3. 

3.11 In the above we have distinguished the cases on the basis of behavior of F'(u) within an interval. We 

may also make the distinction on the basis of the behavior of F' (u) at the point or points u = "q . Thus we 

can distinguish the cases thus 
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0< XF' (T^) < 1 Monotone case 

XF' (T\) = 1 Trivial (u   = u ) 

XF' (T\ ) > 1 Oscillating case 

(1- XF' (-1^-,^) )   (1- XF' (•r\2) ) < 1 Contracting case 

(1- XF'(l^^))   (1- XF'(T\2)) =1 Stationary case 

(1- XF'(T|^))   (1-XF'(T|2)) >1 Expanding case 

In the first three cases we take k = 1 in (3.13) and suppose y\ is between u   and u        (this is equivalent, so 

far as disntinguishing cases in an interval is concerned, to the earlier choice of T\l). 

In the last three cases T| . is between u   and u    „,T\ „ between u    ^ and u      .    With this understanding we 

can pass from one case to another during the computation; the above interval conditions are sufficient con- 

ditions for the cases to occur or to persist. 

3.12   If the contracting case persists indefinitely there will be two values u.  and u   such that 

lim   u„   = u,      lim   u„    ^ = u n-»-oo   2n       D   n->-oo  2n+l c 

This may also happen under other circumstances (for instance the stationary case.)   If u^ = u , then we 

have convergence, and we have shown above that the limit must be u .   If u, / u , then since u    <u   we 
a D       c o       a 

have u, < u < u .  This case we shall speak of as stabilized divergence. There is some interest in investi- 

gating the conditions under which it occurs.   From (3.1) we have 

V+i = V^F^V' 

^2n+2 = V+1 - ^F (^2n+l)- 

Passing to the limit n->-oo, 

Subtracting the second equation from the first we have 

2(u^-u^)=>[j(u^)-F(u^)] 

u   ,o - u    . u    ,  - u 
i.e. if the monotone or oscillating cases persist both the ratios — —   and -^ —  are necessarilv u.-u u-u ■' n+1      n n      a 

positive in the one case and negative in the other. However this is not necessarily true at a time of transi- 

tion from one case to the other. 
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Hence by the law of the mean, there is an ■q between u,   and u   such that 

7.F'(ri) = 2. 
This is a necessary condition. 

3.13 One possibility remains to be considered. It is conceivable that at some stage the u . calculated by 

(3.1) may be outside the region in which the hypotheses of section 1 hold. In such a case almost anything can 

happen; the process may even converge to another root of f(u) (which, under the special assumptions, is a 

cubic).   Thi? possibility will be known hereunder as Case 4. 

3.14 We may now consider what may be done in programming this procedure for the Eniac to guard against 

these abnormal occurrences. -It is supposed, of course, that at the end of each approximation the Eniac will 

test to determine whether F = 0 to within the tolerance, and according to the result of this test, proceed to 

the next step or discontinue the iteration. At the same time the Eniac can make other discriminations to 

test for the abnormal cases, and give a signal or take appropriate actions when they occur. Methods of 

doing this will be considered later.   We consider here what some of these auxiliary tests may be. 

3.15 If we include a test to determine whether u is within the interval fromO to 1, or, more generally, 0 to h, 

we shall have protection against indefinite continuance of the expanding case and also some protection against 

Case 4. We shall not, however, have absolute protection against Case 4. For if, due to some error, our 

hypotheses are not fulfilled, we may have Case 4 even in the interval from 0 to 1. Moreover our assump- 

tions pertain to the nature of the function f(u); and even though .the physical function x(t) may satisfy the 

hypotheses, it is conceivable f'(u) may be zero, particularly if there is roughness in x(t)-'-. This possibility 

would require too detailed an investigation to be given here. The difficulty in that case pertains to the 

adequacy of f(u) as an approximation and not to the method of inversion. In the nature of things it is not 

possible to have absolute protection against Case 4. 

3.16 We may also count the number of approximations in a stepper, changing the programming when a cer- 

tain number is exceeded. With this test and the preceding one we have, except for the remote possibility of 

an anomalous Case 4, protection against all abnormal cases.^ If these abnormalities are expected to oc- 

cur rather rarely, so that all that is needed is to stop the machine and signal the operator in case of ab- 

normality, then these protections suffice. 

3.17 On the other hand there are many stiuations where it is desirable to distinguish between different 

causes of abnormality. Thus the number of approximations will be excessive in the monotone case when 

the value of X is too small, in the oscillatory case when the value of X is too large. The above procedures 

do not distinguish between excessively slow monotone convergence and stabilized divergence. 

3.18 These cases can be distinguished by having the Eniac, in testing the vanishing of F, take a different 

action in case F > 0 from what it does if F < 0.   According to ovir assumptions we start with u   < u , 
o       a 

F < 0. As long as we have the monotone case we shall have F < 0; as soon as we have F > 0 we shall 

know that the oscillating case has occurred.   We can even go further than this and allow the Eniac to take 

Thus in Fig. 5 we have an example of a cubic through the four points with evenly spaced abscissas and in- 
creasing ordinates, which nevertheless has a maximum. 
2 This ignores the effect of X on the tolerance (see par. 3.21). 
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remedial measures automatically.   Thus, if we have a series of values of X available, the Eniac can insist 

on the monotone case by decreasing the value of X as soon as F(u) > 0 occurs.   Then, if the number of 

steps is excessive it must be because > is too small, and we can program an increase. 

3.19   Let us discuss this situation theoretically under the assumption that 

F" (u) < 0, 

an assumption which is verified in most firing table computations. Then F'(u) is a decreasing function;  the 

curve is concave downward. The maximum F' (u) is at the beginning of the computation; if X is such that we 

have the monotone case at the start, we shall have it throughout.  If t is the tolerance on u    .  -u   (which   is 
^ n+1     n 

X times the tolerance on F(u ) ), and if 0    = e , then the condition for monotone convergence within n or 

less approximations is (3.10) with 1 + 9 on the right replaced by I-'-) 

1-Q 1 
-^<X<^   . (3.14) 

The right inequality, which is sufficient for the monotone case, is satisfied if X = -.   Suppose now that 

u    1 - u   has failed to be within the tolerance.   Let ' n+1       n 

n   n-1 

where now 

u    . <Ti     <u . n-1^  Inn 

Then P   is increasing with n.   Hence n ^ 

e=Q^<u    .-n <p^    (u.-uXp'^. 
n+1    n        n  M    o —     n 

Therefore for all u> u   we shall certainly have n 

Now let 

1> 1- XF'(u)>P^ >9. (3.15) 

r > 1. 

Then (3.15) gives us, on multiplying through by r 

r > r-r \F' (u) >r-l, 

i.e. 

0 <r XF' (u) <1. 

In the monotone case we have 1 instead of 1+9   on the extreme right in (3.8), and hence in (3.10). 

RESTRICTED 



RESTRICTED 19 

Thus if r "X is substituted for > , we shall still have the monotone case. This may be repeated; if so each 

set of steps until a change in X will be known as a grade. If we have p grades with the same r the maxi- 

mum value of ^ for which we shall get convergence in not more than pn steps, is r^. The values of n and 

r are shown for various values of r and p in the following table. It is noteworthy that in no case where pn 

< 40 do we get a larger value of ^ than in the above discussion of Case 3; this is because ininsisting on 

the monotone case we cut down ^by a factor of zr—^. The last line of the table shows the value of -g- for 

one stage of non-monotone convergence. 

Calculation of 9, n, r such that 

9 = (1 - 4' 9^ = 10-6 

r 1.5 2 3 4 

9 0.333333 .500000 .666667 . 750000 .800000 

n ■ 13.0 19.9 34.1 48.0 61.9 

r 1.5 2 3 4 5 

2 
r 2.25 4 9 16 25 

3 
r 3.375 8 27 64 125 

4 
r 5.0625 16 81 256 625 

5 
r 7.59375 32 243 1024 3125 

r(l+9)  2 3 5 7 9 

1 
^ = 1-9 

n 10 12  15 20 25 30 40 50 60 80 100 

9 .251 .316  .398 .501 .575 .631 .708 .759 .794 .841 .871 

r 1.34 1.46  1.66 2.00 2.36 2.71 3.42 4.14 4.86 6.31 7.75 

2 
r 1.78 2.14  2.76 4.02 5.55 7.34 11.7 17.2 23.6 39.8 60.1 

3 
r 2.38 3.13  4.59 8.06 13.1 19.9 40.2 71.1 115 251 466 

4 
r 3.18 4.57  7.62 16.2 30.8 53.9 138 294 559 1581 3611 

5 
r 4.25 6.69 12.7 32.4 72.5 146 471   1220 2715 9965 27992 

r(l+9) 1.67 1.92  2.32 3.01 3.71 4.42 5.85 7.28 8.72 11.6 14.5 

3.20 In the foregoing we have been considering a series of approximations for a single round. This is not 

trivial; indeed if we are approaching a maximum of F(u)--as in certain firing table calculations near maxi- 

mum range--wemay have large values of-^ even in a small interval. But the discussion takes on a broader 

significance for a group of rounds with a large number of different values of a.   Of course every time we 
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read a new card we change f(u); but the assemblage of functions f(u) forms an approximation to x(t) which 

we may reasonably suppose becomes less and less steep as we proceed. If now we take u = 0 whenever we 

read a new card, while in the case of two or more rounds without a change of input card we let the u for 

one round be the final value for the preceding round, then the assumptions made for a single round will apply 

to the group as a whole. In such a case with several values of A attached to the various positions of a 

stepper we can obtain as adequate a coverage of a large variation in F'(u) as if we calculated a separate 

A for each value of a. Of course for a large n we may lose a card cycle or sowhen the stepper is stepped; 

but since this occurs only a few times in the entire group, the time lost is insignificant. 

3.21  There is, however, one serious difficulty in all this.   The above discussion has reference to a fixed 

tolerance on u    -, -u ; whereas what we want is a determination of u   with a prescribed error. Now we have n+1    n' a 

u    , -u   = - XF(u ) n+1     n ^ n 

X[F(U^)-F(U^5] 

X(u^-u^)F'(T^) (3.16) 

where u < T\ <u .   Hence n     V     a 

U    , 1   -U >\(X (u n+1     n ^ a u ) n 

so that if 

u   1 = u n+1      n < e 

we have 

0 <u   - u   < —£— 
a      n^    Xcx oc 

(3.17) 

This shows that slow convergence is objectionable not only because of the time element but because of its 

effect on the accuracy of the result. If oi is a known positive number, (3.17) shows how e can be deter- 

mined to insure against excessive error; in the case of a multi-grade procedure, naturally the smallest 

value of X must be used in order to be safe.    If the cX is very small, or if, as in the case where we   are 

approaching a maximum, it is unknown (note that anrt always exists if a u    exists, viz. oC = F'(u )--in 
a a 

such a case our hypotheses are fulfilled for 0 <u <u ,) it is advisable to take into account the effect of 
3, 

the second derivative.   Let m be a lower bound for -F"(u).  Then instead of (3.16) we have 

n+1 -u   = -X n F(u^) + (u^-u^)F'(u^)+^V^F"(n) 

where "n is within the same limits as before.   Then 

^ ^ VrV^^'^^-V + ^ r K-""/- 
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This gives (solving the inequality by completing the square and rationalizing the numerator) 

u^ - u^<         ^^ •    - (3.18) 

XoC +~\j 2 "Xme    + X     o( 

If we put cc = 0, this gives as upper bound on the error near a maximum 

«a-"„S^=#f=- <»») 
3.22 Let us pause a moment to consider some modifications. If we are to use a stepwise variation inX , 

why not determine X advantageously at the beginning of each round? A suitable value of /3 , call it /? , is 

available in the machine: viz.p = F(0) - F(-l) = x, -x ^ --in special cases we may also have ^=F'(0). 

To calculate 1//3 in such case would require the divider, and also fixrther use of the multiplier to form X 

F(u). This procedure, although it may well be feasible if the number of secondary functions is reduced, is 

impossible in the basic scheme. An alternative is to use a stepwise variation of X as above, with a dis- 

crimination at the beginning of every round, so as to insure that 

This test makes it certain that the round will start with the most advantageous value of X . That decreases 

the probability of excessively slow convergence, but will not altogether eliminate it, as the above discussion 

shows; however it is then rather unlikely that the lost time or the error will be serious. 

3.23 Of course a similar discussion can be made if 

F"(u) > 0. 

The situation is, in a sense, converse to that above. We shall have the minimum F'(u) at the beginning, if 

we set X=—rr-we are protected against excessively slow convergence throughout the calculation. If at the 

m'th approximation our tests show that oscillation has occurred, then for all u> u m 

XF'(u) > 1, 

hence ^^ F'(u)> |^ = 1-9. 

We can therefore decrease X by a factor r and still be protected against excessively slow convergence. 

With appropriate modifications we can then have a multi-grade computation with the same increases in 

f3 l<x as before. The procedure will be slightly faster than that for F"(u) < 0, since the change in X may 

occur for a small value of m. We also have automatic protection against error due to too small a X. 

3.24 On the other hand there is the difficulty that when the tests show X should be decreased, the value of 

u is already incorrect; in order to have a theoretically correct procedure it is necessary to retain u 

somewhere. Of course we might go back to u = 0, or continue with the same X to u ., which the theory 

shows is <u ; but although, in view of our safeguards, one of these procedures might work out as a practl- 
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cal matter, the example of Fig. 6 shows difficulties which are theoretically possible. The procedure is also 

not so well adapted for operating near a maximum or minimum of x(t). 

3.25   Let us now sum up this.discussion.   Between approximations the Eniac can make discriminations (a), 

(b), (c), with alternatives as follows 

(al) XF(u^) <e 

(a2) XF(u^)<-e 

(a3) XF(u^) > e 

(bl) o^Vi<h 
(b2) Vi < 0 
(b3) u    1 > h n+1 

(cl) n< N 

{c2) n> N 

where h is an upper limit on u. These discriminations can be made in any order; having made one discrim- 

ination we proceed to the next in case the first alternative is the one for which a new approximation is de- 

sired. In the schemes below it is convenient to make the tests in the order (c) (a) (b). It will be noted that 

the essential discrimination is (a); the discriminations (b) and (c) are only safeguards which could be 

omitted if such safeguards were unnecessary. 

3.26 In the basic scheme below all three discriminations (a) (b) (c) are provided for. There is a single 

value of X . The alternatives (a3), (b2), (b3), (c2) each have an open output; if one of these alternatives 

occurs the Eniac will stop, the positions of the steppers indicating the reason--suGh behavior will be called 

an error signal. The case (al) signals that the iteration is complete and orders the secondary interpola- 

tions to begin; while (a2) orders a new approximation through (b). The limit h is set at 2. This scheme is 

conservative. Not only does it contain the tests (b) and (c), but it insists on the monotone case and so re- 

stricts -^unnecessarily. In fact the basic scheme is not intended to be used as such; it is designed, as its 

name suggests, as a basis which ca,n be modified according to circumstances. Aside from the possible 

omission of tests (b) and (c) the following modifications are suggested by the foregoing theory. In this dis- 

cussion the stepper used in (c) will be called the counting stepper. Further modifications will be considered 

in sections 8, 9, and 10. 

(A) In case we wish to use only one X but do not wish to insist on the monotone case, we should 

connect (a3) to the same output as (a2). In this case it is essential because of the possibility of stabilized 

divergence, that (c2) be an error signal. 

(B) If we wish to incorporate the method outlined above for having a stepwise variation in X con- 

trolled by a counting stepper for F"(u) < 0, the counting stepper should have several positions. Each posi- 

tion will have a counter switch setting, and the stepper will step automatically when the number set on the 
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switches--which need not be the same number in the various positions--is exceeded. The output of each 

position, except the last, will be the same as (cl) except for the difference in the values of X; the last 

position should give an error signal (to prevent the stepper from cycling back to the initial position.) It is 

essential that (a3) give an error signal. - For further discussion of this modification see section 8. 

(C) If we wish to use the step-wise scheme for F"(u) > 0, the output of (a2) should order a new ap- 

proximation through a stepper with a different value of \ for each position. The output of (a3) should step 

this stepper to a new position, replace u by u ^, if available, and then do the same as (a2). If reliance is 

placed on safeguards to warn of pathological conditions, we may replace u by 0 or, using the same u ,go to 

the same output as (a2) before stepping the stepper.  The output of (c2), (b2), (b3) should be an error signal. 

(D) Since a stepper can be stepped in the negative direction by stepping it one stage less than a com- 

plete cycle in the forward direction, the modifications (B) and (C) can be combined. This modification is not 

tied to any assumption as to F"(u). On the other hand some of the protection against a Case 4 error has 

been removed, and without an additional counting stepper it is conceivable there might be indefinite oscilla- 

tion between a larger and a smaller value of X .   The modification is also more difficult to program. 

We also have the following, which are not modifications in III, but involve changes in II; 

(E) In case we wish to use a stepwise variation in X controlled at the beginning of a round we re- 

quire a discrimination in process II. Consider the case where F"(u) < 0. Suppose, as a first assumption 

that we haveX^<l taken care of. Then we require a two-way discrimination on the relative magnitudes of 

r X/3 and 1; if rX/3>l we proceed with the calculation, if not we step to the next value of X and retest. The 

value of X is of course a program using shifters and repeat switches; we have to put r through this pro- 

gram while later in III we need to put F(u ) through it; this requires a complication in the programming. 

The complication is even greater if (E) is combined with (B). The matter will be discussed further in sec- 

tion 8. 

(F) A similar modification can be made if F"(u) > 0.   This will not be further discussed. 

(G) If we wish to form a X for each round by division, we require the divider or an equivalent pro- 

cedure involving steppers etc. The use of the divider is only feasible if there are less than three secondary 

functions. In that case the modification is obvious. Except for a note in section 8, this modification is not 

further considered in this report. 

3.27 No attempt will be made to program all of these modifications. Methods of adding certain of them to 

the basic scheme, and also certain further modifications will be considered in sections 8 and 9. 

3.28 If a counting stepper is used there is a difficulty with regard to clearing it. For modifications (B) and 

(D) it is necessary that the stepper counter be cleared, without disturbing the stepper position, at the end of 

every round (in (D) at the end of every grade); while the stepper itself is cleared at the end of every group. 

For the other modifications and the basic scheme the counter stepper will need to be cleared at the end of 

every round. As the Eniac is at present designed there is no direct provision for doing this. The stepper 

decade counters can be cleared only by either the initial clear gate or the counter reaching the value set on 

the switches. This is a defect in the design of the Eniac as the engineers on the project have themselves ad- 
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mitted. With the addition of one or two tubes per decade of the master programmer, it would be possible to 

arrange it so that either the clearing of the counter can be programmed or the clearing will take place auto- 

matically whenever the stepper is stepped or cleared. In the latter case clearing of the counter without 

stepping can be achieved by stepping the stepper through a complete cycle. 

4.   METHODS OF DISCRIMINATING 

4.1 It is evident from the above discussion that in the program of inverse interpolation it is frequently 

necessary for the Eniac to take different actions according to the relative magnitudes of two quantities or, 

what amounts to the same thing, according to the sign of their difference. Such action by a computing ma- 

chine is known as discrimination. We consider here ways of making the various discriminations needed in 

the present problem expeditiously. 

4.2 The fundamental principle of discrimination in the Eniac is that thePM of an accumulator gives a means 

of detecting the sign of its contents. When the accumulator transmits from one of its digit outl-ets, the PM 

of that outlet transmits 9 pulses or no pulses according to circumstances. If now a line is taken from that 

PM to a program input (in an accumulator or stepper) the flip-flop will be set in the case of 9 pulses and 

will not be set in the case of no pulses. At the end of the addition time we shall get a program output in 

the case of 9 pulses and none otherwise. If we want an output in neither case, but different outputs in the 

two cases, the above program output can be taken to the direct input of a stepper; then the next regular in- 

put to that stepper will come out in a different position in each case.   In the following discussion it is as- 
2 

sumed this is done . 

4.3 From the above it would appear that a digit outlet of an accumulator and a stepper are necessary for 

each discrimination. Considering the number of discriminations to be made in this problem, considerable 

equipment would be used up on that basis. It is therefore worth while to discuss ways in which equipment 

can be conserved. In this discussion it will be convenient to use letters x, y, z, u, a, b, etc. to denote vari- 

ables which are not necessarily the same as those so denoted in the body of the report. The accumulator in 

which the quantity is tested will be called the test accumulator, the outlet from which thePMis taken will be 

called the test outlet, and the quantity tested in the test accumulator will be called the test quantity. The 

case where there is a signal from the PM will be called the positive case; the other the negative case, 

4.4 Suppose that after testing a quantity x in the test accumulator we put in a second quantity y and test 

again.   Then the position of the stepper will indicate the number of positive tests.   Evidently if we have a 

This is the same addition time as that in which the nine pulses are emitted.   The program output will be 
simultaneous with that which would ordinarily follow immediately after the transmission.   In the diagrams 
the input to the abovedummy program comes from the PMof a transmission occurring in the same addition 
time, not the preceding. 
2 
i.e. we are ignoring other methods of doing this such as taking lines from the PMs of both the A and the 

S outlets.   The latter procedure ties up two accumulator outlets; in the present problem steppers are less 
in demand than accumulator outlets. 
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6-position stepper we can test as many as five quantities and get a discrimination on the number of positive 

cases.   A test of this character will be called a cardinal test, because it tests a cardinal number. 

4.5 An example where a cardinal test is useful is where we have m ^ 5 given quantities x^, . . .x , con- 

cerning which it is known that x^ < x„ < . . . < x , and we wish to determine in which of the m+1 half 

open intervals into which x^, . . .x divide the real line another quantity y lies. This can be done by a 

cardinal test on the m quantities y-x, i=l,2, , . ,, m, and requires an m+1 position stepper. 

4.6 Another type of multiple test is the following. Suppose we make a test T.; a second test T„ if and only 

if T-. is positive; a third test T„ if and only if T„ is positive; and so on, the negative cases and the last posi- 

tive case giving the different alternatives. With a six position stepper we can make as many as three such 

tests giving four alternatives. This can be done by having aregular input to the stepper after each test, and 

having the stepper stepped on the outputs of the second and fourth positions. The first, third, fifth, and sixth 

positions give the four alternatives. Such a multiple test, involving two or three single tests will be called 

a chain test. 

4.7 In general if a given test leaves two or more positions of a stepper free, those positions may be used for 

a further test provided the stepper is first stepped into the first of the free positions. 

4.8 Let us now consider more in detail methods of making certain tests. The question of what happens when 

the test quantity is zero, which was ignored in the above discussion, will now be taken into account. This 

behavior is slightly different in the different ways of making a test. 

4.9 If we are testing a single quantity x, then the A outlet will give a positive test if x < 0; the S outlet will 

give a positive test if x > 0. 

4.10 If we are making a simple comparison between x and z there are 8 ways of making the test as shown 

in Table 4.1 below.   Here the column headed t gives the test quantity and the columns headed A and S the 

conditions for a positive test on the A and S outlets respectively. In the cases c and d the 1 indicates a unit 

in the right hand-most decade; such cases can arise through the addition or deletion of a subtract correction 

pulse. 

Table 4.1 
t A . S 

a    x-z x< z x> z 

b    z-x x> z x^ z 

c    x-z-1 x^z x> z 

d    z-x-1 x>z ^        x<z 

Note that the cases b and c separate the alternatives x < z and x > z; the others the alternatives x < z 

and x> z. 

4.11 Suppose now we have three quantities x, y, z concerning which we wish to distinguish the cases: 

Case 1 X < z y^ z 

Case 2 X <z < y 

Case 3 X > z y> z 

Case 4 y < z < X 
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Then we are making tests of the type b or c (in Table 4.1) on (x, z) and (y, z). For the four possible ways 

of combining the tests of Table 4.1, the positive tests are indicated in Table 4.2. Here the first symbol in 

any pair refers to the (x, z) test, the second to the (y, z) test. 

Table 4.2 

Case 1 Case 2 Case 3 Case 4 

bb SS SA AA AS 

be SA SS AS AA 

cb AS AA SA SS 

CO AA AS SS SA 

4.12 In many applications of this test we know that x<y so that Case 4 is excluded. Then the possibilities 

bb and cc are suitable for a cardinal test to distinguish the remaining three cases. In other instances Case 

4 may be more or less pathological and need to be guarded against in some way. In such an event we might 

use one of the other types of test, or a chain test. 

4.13 An example of this kind occurs in Process I where we seek to test the inequality (in the notation of 

par. 2.3) ^ „ ^ ^ 
^k ^ ^ < ^k+1 

Here for x, y, z we have x , x, ., a, respectively. In this example Case I would require the reading of a 

new card; Case 2 would be the signal to proceed with the primary interpolation; while Cases 3 and 4 would 

not normally arise. Hence the natural procedure would be to line up Cases 3 and 4 in a position which gives 

an error signal. This is done in Fig. 9a below by a chain test of type bb on the S outlet. This leaves two 

positions of the stepper free and brings Case 1 out of the fourth position. The last two positions can, there- 

fore, be conveniently used to prevent the reading of cards past a maximum of x(t). Two such amplified 

tests are shown in Figs. 9b and 9c (in Fig. 9b we think of z as x); they will be discussed in section 8 below. 

4.14 Let us now suppose that the cases to be distinguished are 

Case 1 x< z y<z 

Case 2 x^z<y 

Case 3 x>z y^z 

Case 4 x>z     y<z 

Here the test on (x,z) is again of Type b or c, while that on (y,z) is of type a or d (in Table 4.1).   Instead of 

Table 4.2 we have the analogous Table 4.3. 

Tabie 4.3 

Case 1 Case 2 Case 3 Case 4 

ba SA SS AS ■  AA 

bd SS SA AA AS 

ca AA AS SS SA 

cd AS AA SA SS 
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4.15 If x< y then Case 4 is impossible. To make the distinction between the other three cases by a cardinal 

test we must use Types bd or ca. Since type c and d of Table 4.1 are slightly more difficult to program than 

Types a and b, the tests of Table 4.2 are preferable when x < y. But when x=y Table 4.3 must be used. In 

that event a discrimination by Table 4.3 will be called an equality discrimination. Equality discriminations 

thus form the principal field of application of Table 4.3. They are evidently symmetric in x and z. Since 

three positions of the stepper are used, two such tests can be made with a single test outlet and one six- 

position stepper. 

4.16 An instance of this test which is not an equality discrimination is what is known later as the auxiliary 

test.   In this test the three alternatives are 
(1) Wj^+2zj^<0 

(2) Wj^-2Zj^<0<Wj^+2Zj^ 

(3) 0 < Wj^ - 2Zj^ 

Of these alternatives the second is regarded as normal and allows the computation to proceed; while the 
first and third signal card reading. Under the hypothesis that z > 0 Case 4 is impossible, and the effect of 

the test is confine computation to the case where w/z is between -2 and +2. This test has naturally nothing 

to do with the general theory of the basic scheme; it is included as an example of, and to save room for, 

special tests which will vary with the particular application. Its motivation is a possible application to 

antiaircraft firing tables where z is specialized to x and w toy; then w/z is the slope of the trajectory 

which must then lie between -2 and +2, The test is programmed as a chain test of type ba on the S-outlet 

in Fig. 8. Since in this test the limiting cases of equality are of little importance an essentially equivalent 

test of type bb (Table 4.2) could have been programmed; but such a program, when tried, appeared to use 

the equipment less efficiently than that in Fig. 8. 

4.17 An instance of an equality discrimination is the test for starting a new group. We must have the out- 

argument b in one of the printer accumulators. After positioning a card we read and compare its cp with b. 

If they agree the card belongs to the correct group and the computation proceeds. If Cp>b the card belongs 

to the next group, and the adjustments to start a new group are made. If cp<b it may mean an error has 

occurred, in which case an error signal is appropriate; or it may mean that the rest of the group is to be 

skipped, in which case the reading of cards is in order, 

4.18 This test is combined, in the program below, with another equality discrimination. The latter, which 

is purely a safety precaution, is a comparison of a card number c, supposed to occur on all the input cards, 

with a similar number c* stored in the machine. An error signal is given in either of the cases of inequality. 

For the combined programming of these two tests seethe two alternative schemes in Figs. 7a, 7b. Of these 

the former has been selected for the basic program. Note that in either case the -1 needed for tests of 

type c is obtained by adding a subtract correction pulse to the negative of the test quantity before subtract- 

ing it into the test accumulator. 

The advantage of Fig. 7a is that it saves a dummy at the expense of an addition time. If the saving of time 
should be more important Fig. 7b could be used. 
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4.19 Let us now consider the discrimination between the approximations as described in par. 3.25. It is 

'convenient to go through the counting stepper first and then form ■\F(u ), so that the discriminations (a) 

(of par. 3.25) impose a tolerance of u ^^-^ rather than on F(u ). This preliminary adjustment, which is of 

no interest here, is shown in Fig. 18. To make the discrimination (a), assume that the tolerance c can be 

imposed on \F by cutting off some of the last digits and requiring the so amputated \F, here called "XF, 

to be zero. Then the discrimination (a) is an equality discrimination with z= >.F, x=y=0. If - XF is carried 

into the test accumulator by a subtraction, then the deletion of the last few digits also deletes the subtract 

pulse, thus furnishing the -1 required by the above theory. Since the test requires only three positions of 

the stepper, and since the discrimination (b) can be made by a cardinal test of the type which uses Table 4.2, 

the two can be combined on a single stepper and test outlet.   A program on this basis is shown in Fig. 19. 

4.20 In all these tests the stepper should be one without attached decades. To insure that the stepper is 

cleared at the beginning of the test, the stepper direct clear input should be pulsed at the start. This would, 

if it were desirable, allow the test outlet to be used for other purposes while the test is not in progress. 

5.   THEORETICAL CONSIDERATIONS RELATED TO THE FORMATION OF 

LINEAR EXPRESSIONS 

5.1 The problem of forming differences differs from that in a previous reporl in that instead of reading the 

functional values from a function table, we have these values in accumulators. In fact three of these values 

are stored in accumulators by virtue of our previous hypotheses; while the fourth, which is in the constant 

transmitter, is put into an accumulator in order to combine it with the others. The formation of differences 

is thus a special case of a general theorem, which, since it is likely to be useful in other connections, will 

be stated and proved here. The theorem gives a general method of transforming a set of n quantities x^ ,x 

..., x^ into another set y^, y^, ..., y^ by means of n accumulators. In this section the x., y., have no con- 

nection with those in the rest of the report.  This theorem is as follows: 

5.2 Theorem   Let the n accumulators A,, A„, ..., A   contain initially the n quantities x,, ..., x   respec- 
1     ^ n In 

tively.   Then a necessary and sufficient condition, that y,, ,.., y   be such that there exist a series of trans- 

fers between the A,, ..., A   without clearing which ends with y,, ..., y   in A,, ..., A   respectively, is that 
in inln 

there exist a matrix of integers C = (C..) such that 

y. = C.^   X. + C.„x   + ... + C. x      i = 1, 2, ..., n and C. 

where  IC..|   is the determinant of the matrix C. 

5.3   Proof of Necessity.   If the y's can be generated as stated in the theorem, then they can be generated by 

a series of steps each of which consists of transmitting once the contents of some one of the A's to another 

BRL Report #613, A Study of Fourth Order Interpolation on the Eniac by Haskell B. Curry and Max Lotkin. 
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oen of the A's; for multiple transfers can be accomplished by a succession of such single transfers. Sup- 

pose now that after m such steps we have a set of y's which satisfy the stated conditions with a matrix C, 

Let the (m+l)st step consist of adding A. to A^^ or subtracting A. from A^^. Then the new set of y's will 

satisfy (1) with a matrix C' formed by adding the 1th row to the kth row (or the corresponding subtraction). 

The matrix C' will have integer elements if C does; moreover C and C' have the same determinant; hence 

the condition holds after m+1 steps.  Since for m=0 the matrix C is the unit matrix 

C   -P^^^=J 
^ij    \0 if i ;^ j 

the necessity follows by induction on m. 

5.4 Proof of Sufficiency. It will suffice to show that by succession of steps, each consisting of modification 

of one row by the addition to it (or subtraction from it) of the elements of another row, the matrix C can be 

reduced to the unit matrix; for then the reverse process, when interpreted in terms of accumulators, gives 

a method of generating y.,, . . ., y . This reduction, which is well known, will be presented here for com- 

pleteness. It will be divided into three stages: 1) the reduction to the form where all the elements in the 

last column, except the last, are zero, while the last is 1; 2) reduction to the semidiagonal form where all 

the elements in the principal diagonal are 1 and all the elements above the principal diagonal are zero; 3) 

the reduction of such a semi-diagonal matrix to the unit matrix. 

5.5 To complete the first stage: the elements in the last column are not all zero since the determinant is 

not. Choose an element whose absolute value is positive and as small as possible; let this be C^^. By add- 

ing this to or subtracting this from each of the other rows a sufficient number of times we can bring it 

about that the absolute value of each of its other elements in the last column is less than IC^^I . If not all 

these other elements are zero we can choose another i and repeat the process.   Eventually we arrive at a 

case where C   ;.^0 while all other elements in the nth column vanish.   Then C.   divides the determinant and 
in m 

so C     = + 1   If it is -1 subtract the i'th row from the j'th and thenadd the j'th back to the i'th;we then have 
in    ~ 

C     =1 while all other elements in the n'th column vanish.   Finally if j ^ n add the j'th row to the n'th and 
in 

then subtract the n'th from the j'th. 

5.6 To complete the second stage: suppose that we have reduced the matrix to a form in which the k last 

columns have all zeros above the main diagonal and all I's in it. Then we can apply the operations of the 

first stage to the first n-k rows and columns; if the corresponding operations are carried out on the whole 

matrix the last k rows and the last k columns will not be affected. In this way we can increase the number 

k by one unit.   So we can continue until k = n.   (Note that the nth step is vacuous; for when k = n-1 we have 

5.7 To complete the third stage it is merely necessary to add the first row to (or subtract it from) each of 

the others until all .the elements in the first column below the main diagonal are zero; then add the second 

row to (or subtract it from) each of the succeeding ones until all the elements in the second column below 

the main diagonal are zero, and so on. 

5.8 This theorem can be paraphrased by saying that the most general transformation which can be accom- 

plished by non-clearing accumulators alone is a modular transformation. Since the modular transformations 
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form a group, such a transformation can be inverted; this is also clear directly from the fact that the pro- 

cess above outlined is reversible. 

5.9 Note that the above process of reduction is much simpler, and is also essentially unique, in case the 

matrix C is semi-diagonal to begin with. This is the case if the y's are the differences of the x's; it is also 

apt to be the case if the y's are the coefficients in an interpolation formula of any kind. The program for 

forming the differences in the present problem which this theorem suggests is shown in Fig. 27. On this 

same figure the formation of differences what is essentially the difference method of the report mentioned 

in par. 5.1 is shown for comparison. 

6.   SCHEDULE OF STAGES FOR THE BASIC SCHEME 

6.1 We have now discussed theoretically how various partial computations which are essential for inverse 

interpolation may be performed. We must now turn to the problem of making a program for the whole com- 

putation in accordance with these principles. 

6.2 According to par. 2.8 the computation is broken into pieces, called stages, of such a character that the 

stages are repeated as wholes in the different parts of the computation. This division can, in principle, be 

made a priori on the basis of the foregoing discussion. In practice a preliminary schedule of stages was 

made, and revised as the study went on in the light of experience with the detailed programming. The 

schedules given below give the final revision. 

6.3 Before proceeding to the schedules an illustration will be given of one of the principles according to 

which division into stages was made. Consider the operation of constructing f(u) when u is given. This is 

done with a certain set of coefficients A, B, C, D, in each step of the primary interpolation, and with dif- 

ferent coefficients in each of the secondary interpolations. Now the processes of multiplication and the in- 

termediate adjustments are the same, aside from the differences in the coefficients, in all of these instances. 

These processes can be separated from the generation of the coefficients as a connected sequence of pro- 

grams. This is known hereafter as Stage III 2. This stage is repeated each time an f(u) (or the analogous 

expression in the secondary interpolations) is calculated. It opens gates for the reception of coefficients at 

appropriate times, but the coefficients themselves must come from another stage. The latter stage is ni 1 

in the case of the primary interpolation and IV 2, V 2, and VI 2 for the respective secondary interpolations. 

Thus the program elements are grouped into stages according to the frequency, so to speak, at which they 

repeat; when an operation involves elements which recur more frequently than the others, the more fre- 

quently recurring elements can be grouped into a stage by themselves, which stage can run concurrently 

with other stages.   Of course a further division into stages may be made for other reasons, 

6.4 We can now proceed to the schedule of stages. Each stage is given an arable numeral which is used in 

connection with the number of the process where the stage first occurs (it may be repeated in later pro- 

cesses.) After the number and name of the stage and a description of its function the input (i) and the outputs 

(ol, G2, . . .) are listed. The schedule maybe studied in connection with the overall program inFigs. 28-31, 

which will be explained in par. 7.8, and the flow chart in Fig. 44. Note that the start of the computation is 

through stage I 10. 
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I.   SET UP. 

1. Card reading. Pulse R. to order reading of new card. The reader interlock (Rj is connected 

on same line as R. as there is no use for the interlock feature, (See discussion of 1 5.) May be concurrent 

with part of I 8. 

i: I 5   (ol), 1 9  (o2) 

ol: 12 

2. Group test. Test on cp and c. Test c = c*, CD = b as described in par. 4.17f. Read Cp and c 

from card, also c* from CT,   May be concurrent, in part, with 1 8. 

i: 11,   I   8 or I  7   (o2) 

ol: (c = c*, qj = b)   I   3 

o2: (c = c*,   Cp>b)   I  7 

o3: (c = c*, qXb) Error ( 

o4: (c > c*)             Error 

o5: (c < c*)            Error 

3.   Auxiliary test.  This is described in par. 4.16.   As stated there the test is only an example. 

It provides a place for insertion of tests which will presumably vary with the problem. 

i: I  2   (ol) 

ol: (Wj^ -2zj^^0 <vj^+2z^)   I   4 

o2: (0 < Wj^ - 2Zj^)   1   5 

o3: (Wj^ + 2Zj^ < 0)   I   5   (or   I   7)^ 

4.   Principal test.   Test whether x, , x    ^, bracket the value a; if they are both below it, take steps 

to read new card.   See par. 4.13. 

i: I  3   (ol),   1  6 

ol: (Xj^ < a < x^^^)   n  1 

o2: {x^ < a,     x^^^ <  a)   I  5 

o3: (x,   >  a) Error or   I   6   (See par. 8.11) 

This output cannot go to I   5 because items read from the card into accumulators 2 and 3 might interfere 
with the operation of the principal test at the beginning of the next group. 

2 
If the output from I   2(o3) is to I  9, the output from I   3(o3) can go to I  7.   Under the assumption that 

wji/zjj is monotone decreasing, the effect in either case is to read cards to the end of the group without 
further calculation. 
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5, Preparation for new card. Clear x ., y ^, z i, w ^; replace x., y., z., w. by x. ., y. ^, 

z. -., vj. respectively for j = k-1, k, k+1. The values for j = k+2 are obtained from CT within the 50 add 

times after the reader is pulsed. Clear Myer (to get rid of previous u ). Concurrent with I  1 (see under o2) 

i: 14  (o2),   I  3   (o2 and o3), 

ol: I  1 

o2: R   if desired. There is no point in this because the entire stage 

I  5 must be completed within the 50 addition times after the input to I  1 in order to avoid error.  Since we 

must depend on the programming for protection against such an error, the reader interlock is useless. 

6. Preparation for new round.   Add A a to a Clear the accumulators from which y , z , w , and 
3.       3,        3, 

t   are printed, 
a 

i: VI  7, possibly I  4   (o3) 

ol: to  I 4 

7. Preparation for new groiip.  Add Ab to b. 

1: I  2  (o2) 

ol: I  8 

o2: I 2 through dummy (in case I 9 is used.) 

8. Initiation of a group.   Clear all stored quantities except b (by selective clear). In case b is in 

the same accumulator with a, a must be cleared without disturbing b.  Reset counting stepper if used.   Put 

initial value a   for a.   If a   < 0 we must put a   for x, , x,   .   to insure that the principal test will not be o o "^       o k     k+1 
blocked on the first card.   If a   =0 the stage consists of clearing and resetting only.  Concurrent with I  1, 

^ ^' 1: I  7   (ol),   I 9  (ol) 

o: none or, in case I  9 is not used, I  2. 

9. Special card reading. Dummies to separate I 1 from I Sin case output from I 2 (o3) is needed. 

In contrary cases can be merged with I 10. Can be omitted in the latter case if also a = 0,b = 0. (On the 

reason for distinction between I  9 and I  5 see footnote to I  2 (o3).) 

i: I   2   (o3),   I   10 

ol: I   8 

o2: I  1 

10.  start.  Sets in initial value of b     (If a   = b   =0 the calculation can start from the Reader 
0 0 0 

Start Button.) 

. i: Initiating pulse 

ol: I 9 
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n.   PREPARATION FOR THE PRIMARY INTERPOLATION. 

1. Formation of X coefficient.   Form differences of x (in connection with II  2), reading x       from 

CT.   If we start with u   = 0 we can begin by putting x,   in position for f(u )-   In some modifications Aa   and 
o K n 

"X should be set,   (See sec. 8.)   Concurrent with II   2, 

1: ,1  4  (ol) 

ol: II 2 . 

o2: III   1 (in case modification for u   = 0 is used, to III  3) 

2. Reception of third difference. The reception of the quantities for the third difference is made 

a separate stage because it recurs in connection with the secondary interpolations. Concurrent with II 1, 

IV   1, V   1, VI   1. 

i: II  1   (ol)   IV   1   (ol),  V   1   (ol),  VI  1   (ol). 

No output (If the o2 from II  1 is always to III   1, an output from II  2 can be taken to III  2; this would take 

the place of ol' in III   1, IV   2, V   2 and VI  2, and save four dummies.) 

in.   ITERATION. 

1. Coefficients for x interpolation. Form coefficients A, B, C, D and transmit them at proper 

times.   Concurrent with III   2. 

i: II  1   (o2). III 4   (o3).      ' 

pi: III  2 

o2: III  3 

2.  Interpolation formula.  The multiplications etc. for forming the expression 

6A + (u+1) 6B + u   [3C + (U-1)D] 

where the coefficients A, B, C, D are from a concurrent stage.   Concurrent with III   1,  IV   2, V   2, VI   2. 

i: in  1   (ol), IV   2  (O1),V  2   (ol), VI 2  (ol). 

No output. 

3.   Form "XF(u ).  Discrimination on n by counting stepper, and formation of 'XF(u ) from f(u ). 

(Note that f(u ) as formed by III   2 is multiplied by 6). 

i: ml   (o2) 

ol: (if n< N)   III 4 

o2: (if n> N)   Error, or in   5 
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4.  Inter approximation tests.   Form u    -i = u   - XF(u ).   Make the tests described in pars. 3.25 

and 4.13. 

i: in  3 (ol) 

ol: (if 1 >,F(u )l<£ )   IV   1 

o2: (ifXF(u)>e)    Error (HI  6) -     ^ 

o3: (ifXF(u^)<-£ and 0 <u _^^ < 2)    III   1 

o4: (if >.F(u )< - fe , u _^  <0)     Error 

o5: (if\F(u)<-  £,u       >2)      Error or III  7 

5. Reserved for action to increase \.   (Not programmed in basic scheme.) 

6. Reserved for action to decrease "X .   (Not programmed in basic scheme.) 

7. Reserved for action if u    , > 2 (see sec. 8 below.) 

IV. SECONDARY INTERPOLATION FOR y, 
3 1. Formation of y differences.   Clear  A x and auxiliaries in III.   Read y       from CT and form 

differences in y.   (Third difference received by II  2).   Concurrent with II  2. 

1: III 4   (ol) 

ol: II  2 o2: IV   2 

2, Formation of y coefficients.   Supply coefficients for forming 6y   by formula analogous to (2.6). 
3. 

Note that it is necessary to take accoimt of the factor 6 in the secondary interpolations, whereas in the pri- 

mary interpolations it could be absorbed in the value of X .   Concurrent with III  2. 

i: IV 1   (o2) 

ol: ni 2 

o2: IV 4 

o3: IV 3 

3. Secondary transition.   Clear third difference. Transfer u   from Myer for storage while multi- 
3, 

plying by 1/6 (in IV  4).   Read 1/6 from CT (to be received in Myer in IV  4).   Return u   to Myer after the 

multiplication.   Concurrent with IV  4, V   3, VI  3. 

i: IV   2  (o3), V   2  (o3), VI  2   (o3) 

No output. 

4, Formation of y .   Receive 1/6 in Myer, and multiply.   (Note 6y   is in Mike from IV   2.)  Re- a a 
ceive and dispose of y .   Concurrent with IV   3. 

i: IV   2  (o2) 

ol: V   1 

RESTRICTED 



RESTRICTED 35 

V. SECONDARY INTERPOLATION FOR Z. 

1,   Formation of z differences.   Receive y   from multiplication in IV  4. Read z    „ from CT and 

form differences of z.   Similar to IV   1.   Concurrent with II  2. 

i: IV   4 

ol: II 2 

o2: V  2 ' 

2.   Formation of z coefficients,   (see IV   2)   Concurrent with III  2. 

1: V   1   (o2) 

ol: III  2 

o2: V   3 

o3: IV   3 

3.   Formation of z .   (See IV   4),   Concurrent with IV   3. 

1: V   2   (o2) 

ol: VI 1- 

VI.   SECONDARY INTERPOLATION FOR W AND CLOSURE. 

1. Formation of w differences.   (Analogous to IV   1 and V   1).   Concurrent with II  2. 

i: V   3 

ol: II  2 

o2: VI  2 

2. Formation of w coefficients.   Analogue of IV   2 and V   2.   Conciirrent with III  2. 

i: VI  1   (o2) 

ol: III  2 

o2: VI  3 

o3: IV   3 

3.   Formation of w .   This is analogous to IV   4 and V   3 with a difference at the end due to the 

fact that the Eniac is full and that it is not necessary to clear the multiplier.   Concurrent with IV   3. 

i: VI 2    (o2) 

ol: VI 4   ' 
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4. Formation of t .   This is done according to the formula 

t   = t,   _ + (u   - 2) A t a      k+2     ^ a 

where t    „ comes from CT and the multiplication by At is accomplished by a shifter and repeat switch. 

i: VI  3 

'    ol: VI  5 

5. Closure.   Restore values of w, z, y by reversing difference formation. Reset counting stepper 

decades, if used.   (See par. 3.28) 

i: VI 4 

ol: VI  6 

o2: VI 7 

6. Restoration of x-values.  This  is a separate stage because of connection with Sec. 8 below. 

i: VI   5   (ol) 

No output 

7. Printing.   Print (So far as the basic scheme is concerned this can be put on the input line of 

VI  5.  Card number can be put on output cards by the emitter, see sec. 7.) 

1: VI  5  (o2) 

ol: I  6 

7.  DETAILED PROGRAM FOR THE BASIC SCHEME 

7.1 The schedule of stages discussed in thepreceding section could be planned and, except for minor changes, 

actually was planned, before the assignment of equipment. Likewise the details of the individual stages can 

be planned more or less in the abstract, with program lines, accumulators, etc., unassigned. To make a 

complete program it is necessary to put these elements together and to assign equipment in detail. This is 

more or less of a routine matter; but there are some matters of technique which can profitably be explained 

here. 

7.2 The assignment of equipment involves two main phases: first, the assignment of major items of equip- 

ment, such as accumulators, fields of the constant transmitter, steppers, multiplier, etc., also the input 

program lines, to the various stages; and second, the assignment of individual program lines, digit trunks, 

and program controls.   It will be convenient to consider the input program lines of the stages as belonging 

An alternative program in which At can be taken from CT and multiplied into u   by use of the multiplier 
is laid out in Fig. 24b. 
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to the first phase; while the program lines connecting the elements of the same stage to each other -- these 

will be called internal program lines -- belong to the second phase. Then the first phase can be planned on 

the basis of the schedule of stages in par. 6.4; the second requires, except for the program inputs of the 

stages, that the programming of all the stages be completed in detail. 

7.3 We proceed to the discussion of the first of thesephases. Certain incidental observations of importance 

for the timing etc, of the detailed program will be mentioned as we go along. 

7.4 In regard to the accumulators it has already been noted that twelve accumulators, here called storage 

accumulators, are necessary to store the values of x, y, z, w, from the three preceding cards. These ac- 

cumulators are therefore not available for auxiliary calculations, except dummies and reversible calcula- 

tions of the type considered in sec. 5. The latter calculations are performed in the storage accumulators 

wherever possible in order to save room in the others. The storage accumulators are 1-8, 12, 14-16. The 

accumulators 9 (Myer), 10 (Mike), 11 (LP), and 13 (Prod) are used in multiplications; they may be used for 

auxiliary calculations while not multiplying, and one of them, 13, can be used for printing. This leaves ac- 

cumulators 13, 16-20 for printing.   The quantities to be printed are a, b, y , z  , w  , t ;  of these a and b a    a     a    a 
have only a small number of digits and accordingly they are placed together in accumulator 17; the other 

quantities are placed in 18, 19, 13, and 20 respectively. (Other quantities, such as card numbers, can be 

printed through the use of the emitter on the IBM printer or certain decades on the master programmer; 

these are not used in the basic scheme.) Accumulator 17 then has the same characteristics as a storage 

accumulator. On the other hand the accumulators 18-20 are not used for storage until the secondary in- 

terpolation; and since their digit outlets are not essential to the main calculations, they are eminently suit- 

able as test accumulators for the discriminations in I and III. It is possible to program all these tests on 

the four digit outlets of accumulators 18 and 19. 

7.5 In the above it is assumed that only a ten figure product is kept, so that accumulators 12 and 14 are 

disconnected from the multiplier. It is in fact supposed that the places and significant figure switches are 

set at 9. 

7.6 As to the constant transmitter (CT) it is not necessary, for the purposes of this report, to plan in de- 

tail where the various quantities shall be stored; and it is neither necessary nor desirable -- for reasons 

of flexibility -- to specify the wiring of the Reader plug-board. All that is essential is to see that the ca- 

pacity is not exceeded. The following are the quantities we need from each card: x, y, z, w, t, 0, c. Of 

these the first four are ten digit numbers, the last three we can suppose are at most five digit numbers, so 

that 55 digits are used in all. Besides these we need the following constants: 1/6 (as needed for secondary 

interpolations) c*, a , b , Aa, Ab, At, and X, Of these At and X are needed only as multipliers, so 

that they can be taken care of by repeat switches and shifters. The others can be stored in the remaining 

45 digits of CT. If a , b , Aa, and Ab are one digit numbers, c* is five digits, while the 1/6 is stored to 

ten digits, all these numbers can be set on the switches. It is not, however, necessary to do this; for certain 

of these numbers can be punched on a master card and locked in the relays ^by the "reset control" on the 

reader plugboard. For the sake of definiteness in the present programming, and for no other reason, these 

numbers are assigned to fields of CT as in Table 7.1. 
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Table 7.1 

A X 

B y 

C z 
D w 
E t 

F c, Cp 

G c*,— 

H Aa,   Ab 

J a , b 
o'    0 

K 1/6 

■It should be noted that the function tables, which are not used in the basic scheme, are available for additional 

constants in modifications. 

7.7 As regards the master programmer, the scheme of par, 6.4 requires five steppers as follows: four for 

the discriminations of I 2,1 3,1 4, and III 4 respectively, and a counting stepper for III 3. It is not neces- 

sary to specify which of the steppers on the Eniac are used for this purpose; they will simply be designated 

L.,  Lp,   Lo>  I4, and Zf-.  The rest of the master programmer is free. 

7.8 The role of the various pieces of major equipment is shown in the major program schedule, (Figs. 28- 

31). Here there is a column for each stage, as shown by the heading at the top, and also a column headed 0 

for each major process. The zero column is to show the assumed state of affairs at the beginning of the 

process; the other columns show the changes during the stage. There is a row for each accumulator, in- 

cluding tworows for the doubly-functioning accumulator 17; also rows for other pieces of major equipment, 

for the input and output program lines, and for the concurrent stages if any. Where a quantity is indicated 

opposite an accumulator in any column it indicates the contents of the accumulator at the end of the stage 

or may indicate contents during stage and clearing at end (in the case of the zero-column, at the beginning 

of the process ); clearing of an accumulator is indicated by a dash; nothing at all indicates no change (in that 

case the accumulator retains what it held in the stage which furnished the input to the given stage, which is 

not necessarily the next stage to the left.) Opposite CT an entry indicates the quantity or quantities read 

out during the stage. Opposite MP the use of the steppers E^ to I^ is indicated. In the row for other 

equipment we have M for multiplier, R for reader, P for printer, C for selective clear, I for initiating pulse. 

An X on the left of a column indicates that the equipment on that row is used during the stage other than as 

dummy; a < (i.e. a half x), that it is similarly used in a concurrent stage. Dummies are indicated by a 

circle o or half-circle on the left; these, of course, are entered on the chart after the second main phase of 

In case the process is repeated, the 0 column shows the assumed state of affairs for atypical case. Initially 
many of the quantities listed may be zero. 
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the programming. The chart also shows the input and output program lines. Items in parentheses indicate 

alternatives not a part of the basic scheme.  The other entries on the chart are self expanatory. 

7.9 In passing to the second phase of the programming we must have plans for thedetailed programming of 

the various stages. It is possible to make such plans, at least preliminary ones, on the hypothesis that each 

stage is an autonomous piece of computation subject only to the restrictions imposed by the first phase 

which we have just discussed. In these preliminary plans we designate the input line by i, the output lines 

by ol, o2, . . ., and the internal lines by (1) (2) (3) (4), . . .; the program controls, digit trunks, etc., could 

be similarly treated, but we found it feasible to ignore them. Figures 9b and 7b are examples of such pre- 

liminary programs. On some of the discrimination programs, certain items have been inclosed in dotted 

rectangles.   These are repeat schedules using the same controls, lines, and digit trunks. 

7.10 After the preliminary plans are made we are in a position to assign the program lines and other de- 

tails. So far as the program lines are concerned this can be done by Table 7.2. This table shows the figures 

where the final editions of the detailed programs are to be found, the input program lines already assigned 

in the first phase, the number of internal program lines of two sorts, viz. those which can be made by 

jumpers and those which have to use a wire in a program tray, and finally the assignment of these lines 

to program trays (the jumpers are treated as if they belonged to program trays p, q, r, and are indicated 

by *). For the other items we simply established an order of preference for the stages and assigned the 

program controls one by one using the wiring diagrams (explained below) and making changes when neces- 

sary. 

7.11 The final product of all this programming is the set of wiring diagrams in Figures 32-34. 

7.12 The wiring diagram shown in Figure 32 gives the planning of the twelve program controls for each of 

the twenty accumulators. The symbols signify various settings according to their position in the rectangle 

according to the following code (analogous to Figure 35). 

a i 
bed 

h 

where the a, b, . . . stand for the following items: 

a input program line 

b function or selective switch setting 

c    clear switch setting 

d repeat switch setting 

i    stage number 

h    output program line 

Items in parentheses are possible additions to, but not part of, the basic scheme. Thus by studying this dia- 

gram, we know what controls have been used and therefore what controls are still available for further pro- 

gramming. We also know the settings of the switches, the program lines used, and the stage number for any 

particular control. With this information we may refer to the detailed programs through the stage number 

and program line of that stage. 
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Table 7.2 

Stage Figure Input 
No. of Program Lines 

Program lines Jumper Jumper Trays 

I 2 7a a2 12 e9,j7-jl0,k7- 
klO, h8-hl0 

I 3 8 a3 1 5 m6-ml0 q8 
I 4 9a a4 1 5 ml-m5 q7 
I  5 10 a5 12 1-    10,c9,cl0 
I   6 11 a6 1 d8 
I  7 12 a7 1 d9 
I  8 13 a8 3 g7-g9 
I  9 14 a9 0 
I   10 alO 

11   1 15 bl 1 3 f 1 -f 3      ■ pl 
II  2 15 b2 0 — 

in 1 16 b3 3 3 f4-f6 p2-p4 
m 2 17 b4 5 el-e5 
III  3 18- b5 1 blO 
III  4 19 b6 8 nl-n8 
III  5 b7   
in 6 b8   
m 7 b9 ___ 

IV   1 20 cl 1 3 gl-g3 q4 
IV   2 16 c2 3 3 g4-g6 p5-p7 
IV   3 21 c3 1 4 c4,e6-e8 q6 
IV   4 22 c5 0   

V   1 23 c6 4 hl-M 
V   2 16 c7 3 3 h5-h7 pB-plO 
V   3 22 c8 0 — 

VI  1 23 dl 1 3 jl-j3 q5 
VI  2 16 d2 3 3 i4-j6 ql-q3 
VI  3 22 d3 0 — 
VI  4 24 d4 4 f7-fl0   " 
VI  5 25 d5 5 kl-k5 
VI  6 26 d6 1 k6 
VI  7 d7 --- 

7.13 In Figure 33a the wiring diagram is given for the twenty-four controls of the high speed multiplier and 

the thirty controls of the constant transmitter.  Also the connections for the digit trunks are listed. 

7.14 For each multiplier control, the coding is as follows: 

pm    h 

a    input program line (M is used to indicate semi- 
permanent connections between the high speed 
multiplier and its associated accumulators,) 
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i stage number 

h output program line 

k myer switch (with clear indication) 

1 mike switch (with clear indication) 

m product disposal switch setting 

p places switch 

Here, as in Figure 32, we have a fairly complete listing of the programming and may refer directly to the 

detailed program through the stage number and program line number. 

7.15 For the controls of the constant transmitter, the coding is as follows: 

a i 
b 

■h 

where a, b, i, h are the same as listed above. 

7.16 The digit connections are given in Figure 33a for a , |3, l(', S , e , A, S, for each of the twenty accumu- 

lators. The numbers listed show the digit trunk connections which determine the setting of thea ,/3 , / , S , 

e , switches in receiving according to the digit connections on A and S in transmitting. For example if an A 

is programmed on accumulator 7 to transmit a value to accumulator 2, the^ switch must be programmed in 

accumulator 2 to receive this value as A is on digit trunk 2 and must be received from this digit trunk. 

7.17 In Figure 34 the programming of connections 1-11 of program trays a-o inclusiveare given. Also trays 

p, q, r, are added for jumper connections. By checking this diagram it is possible to determine what trays 

have been used and what trays are still available for programming. For each line the stage number is given 

together with the program line number as listed in that stage. For example, if in tray g2 the programming 

is IV 1 (2), g2 is the program line (2) in stage IV 1. If the program line is a stage input, only the stage to 

which it is an input is listed; the stages to which it is an output may be found from the schedule of par. 6.4 

or the major programming schedule Figures 28-31. Thus c3 is input tostage IV 3; reference to the schedule 

of par. 6.4 shows that it is output of stages IV 2, V 2, VI 2. 

8.   MODIFICATIONS NEAR A MAXIMUM 

8.1 Many cases arise in practice, and these cases are frequent in the calculation of firing tables--where 

x(t) is increasing toward a maximum, and we wish not only to follow the curve toward the maximum, but to 

locate, at least approximately, the maximum itself. We consider here modifications of the basic scheme to 

meet this situation. We suppose that x < 0; and that the fit of the interpolation approximation is such that the 

approximation satisfies the assumptions made for x(t) itself, except for the unavoidable jumps in the deriva- 

tive. 
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8.2 The first difficulty to be noticed is that if a is not exceeded by any of the x , the principal test will read 

cards past the maximum, and will continue to read cards until they are exhausted or a new group is ordered. 

Thus the value of a in question is lost. See Figures 36 and 37. In order to prevent this it is necessary to 

modify the principal test to stop the reading of cards near the maximum. The arrangement of the principal 

test is convenient for this purpose. For the output o2 of I4--which orders card reading--comes out of the 

fourth position of the stepper, while the fifth and sixth positions are free. We can therefore modify the prin- 

cipal test by programming a direct input to the stepper and a further discrimination on the fourth position, 

with outputs o2 and a new output o4, which stops the reading of cards, coming from the fifth and sixth posi- 

tions. Of these outputs o2 has the same effect as before, while o4 would be joined to ol,but may if desired, 

make some special adjustments. 

8.3 There are two methods of making the additional test required. If the derivative of x(t) is available, say 

z(t) = x(t) 

then the card reading can be stopped as soon as z    . <0.   Then z   > 0, z    -, < 0, so that the maximum occurs 

for t  < t< t    ,.   This modification of the principal test is shown in Fig. 9b.   On the other hand if x(t) is not 

available, the reading can be stopped as soon as x,   „-x,   , < 0. k+2    k+1 — 
In that case we have x^ < x^^^ < TL^^^ < x • therefore by the law of the mean and our assumption as to 

the univariance of x, there is a maximum of x(t) for 

^k<^<^k+2 

Examples (see Figs. 36 and 37) show that the maximum of x(t) may be on either side of t      .   This second 

modification is shown in Fig. 9c.   Note that if we merely stopped the card reading when z^ 0 or x    -, - x 

< 0 the maximum might occur for t< t .   Both of the schemes require additional transceivers. 

8.4 By means of the above modifications of the principal test we can cause the Eniac to commence Process 

II when there is a maximum between t   and t    „ (or t      ) even if neither x   nor x,      exceeds a.  Now if we 

insist on the monotone case the theory of section 3 applies if there is a root u   between u   and the maximum a o 
and the assumptions hold for u < u <u . What happens for u>u is irrelevant. Under the assumptions of 

this section the argument of section 3 shows that persistance of the monotone case can be guaranteed. Hence 

we shall always get at least theoretical convergence to u as long as a root u exists. Moreover the maxi- 

mum is to the right of u ; for either u = 0, in which case the matter was settled in the above modification 

of the principal test, or it is the final u of the previous round, in which case the argument is one of mathe- 

matical induction. It follows that there are only two difficulties to be provided for: first the possibility of 

slow convergence, and second the possibility that a may be larger than the maximum value of f(u). 

8.5 We consider first the second possibility. This is an instance of Case 4 in par. 3.13. More specifically 

we have the behavior illustrated in Fig. 38. The u will increase indefinitely with n and eventually will ex- 

ceed h (defined in par. 3.26). This will cause an output from o5 of III 4; moreover this output will be char- 

acteristic of the situation. Thus appropriate actions-can betaken by carrying this output to the proper stage. 

8.6 If it is not desired to locate the maximum any more accurately than can be done by locating the largest 

a, in the set of evenly spaced values, for which a t   exists, and if no special card is to be printed, then the 
3, 
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appropriate action in the present case is to terminate the group. This suggests a pulse to I 7, It is, how- 

ever, necessary to see that the output o3 from I 2 is to I 9 so as to read cards until one comes up with a new 

CD , Note that the pulse to I 7 automatically clears all the extraneous quantities from the machine. In this 

case there is no need of a special stage III 7.   In all the other cases the output of III 4 (o5) will be to III 7. 

8.7 If it is desired in addition to print a special card, more elaborate modifications are necessary. To op- 

erate the printer there should be an output (from III 7) to VI 7. The printer output should go through a 

stepper whose normal output, i.e. from the first position, is the present ol of VI 7, During III 7 this 

stepper must be stepped; the output from the second position should then be to I 7 as in the preceding para- 

graph. Provision must be made for restoring this stepper to normal after an output from the second posi- 

tion; this could be done by setting the counter in the second position at l,but this runs into the difficulty that 

there must then be a counter in the first position which cannot be cleared, without modifying the Eniac as 

above explained, when the stepper is stepped. It may be desirable to clear or adjust the accumulators used 

for t , y , z , w  . There must be a special punch to indicate the special card; this may be obtained by using 
a, a,        a, Si 

a printing decade in the master programmer, which must be cleared, or by putting a digit in some column 

which would ordinarily have none (for instance a negative sign in the accumulator for t ). It is doubtful if 

these additional complications are worthwhile, and no attempt has been made to program them in this re- 

port. 

8.8 More interesting is the case where we wish to change the intervalAa in order to locate the maximum 

more accurately. We suppose that we have available a set of values of Aa of increasing fineness which are 

controlled by a stepper L „ which is ordinarily in position to deliver the coarsest Aa. The input to III 7 can 

then begin by subtracting the current Aa from a to restore it to its value in the previous round. We can 

then step Up. so as to insure that from then on a finer Aa will be used. This general principle requires 

some changes in detail which will now be considered. 

8.9 In the first place we are now proposing to start a new round at the end of process III. It is necessary 

to restore the differences in x which were generated in II, but not the differences in y, z, w. (This con- 

sideration did not arise in the previous cases because these values were cleared by I 8.) For that reason 

one of the outputs of III 7 must be VI 6. Furthermore dummies must be used so that I 6 is not pulsed until 

VI 6 is completed. 

8.10 In the second place the Aa which was used inl 6 must bestored somewhere in order that it can be sub- 

tracted from a. Let us suppose that Zr, controls reading out Aa from CT or a function table. Then it must 

be read into some accumulator and subtracted from a. The reading out of Aa from CT and its reception 

must be separated in both I 6 and III 7. Alternatively Aa.can be stored in some accumulator or being read 

out in I    6; in that case it must be cleared in IV 1; moreover none of the accumulators of the multiplier can 

be used.  On this matter see also par. 9.9 ff. 
8.11 In the third place when the output of I 6 leads us back to I 4 we may have the situation leading to o3. 

This is now not an error; it arises because we have decreased afrom a previous value. Therefore it is es- 

sential that the output o3 of I 4 should be to I 6. 

The difficulty can be got around as in footnote to par. 11.4(C) 
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8.12 In the fourth place the output of the last position of E^ cannot be like the others; otherwise the stepper 

might cycle back to its first position. This output must terminate the group in the manner explained for the 

case where the output o5 of III 4 went directly to I 7. 

8.13 A program for III 7 embodying these ideas is given in Fig. 39.   The two outputs of III 7 are then 

01 to VI6 

02 to I 6 

This program uses the first of the alternatives mentioned in the third preceding paragraph. If the scheme 

is used the modifications above listed must be made in I 6, I 2, I 4. 

8.14 Let us now consider the question of slowness of convergence. Evidently this is a real difficulty here 

because there is no positive lower bound for a. Consequently it will probably be necessary to use one of the 

variations in sec. 3 employing a step wise or round-to-round variation inX. It is therefore appropriate to 

consider how such modifications can be programmed, 

8.15 The first step is to consider the storage of values of X. In stage III 3 multiplication byXwas achieved 

in taking F(u ) from Mike into LP by means of repeat switches and shifters. In the programming of the 

basic scheme an endeavor was made to keep as many of the controls of Mike and LP open so that there 

would be room for more than one such program. Inspection of the wiring diagrams shows that there are 

two transceivers free in Mike and five in LP, and that digit inputs S and e. of LP are free. There are also 

transceivers and digit inputs free in Myer.   This allows for a considerable range of values of X. 

8.16 Leaving aside the question of the capacity in values of X, let us next consider the control of these 

values. Evidently these must be controlled by a stepper in which the output of the last position is an error 

signal or some program, such as an order to terminate the group, which prevents stepping back to its first 

position. This stepper will be called the X stepper. If this modification B of par. 3.26 were sufficient it 

would be possible to combine this stepper with the counting stepper in the manner described under B of par. 

3.26. But it is evident that so far as avoiding error is concerned, modification E is more apt to be advan- 

tageous.  We therefore turn to the control problem for that modification. 

8.17 If modification E is used there are two cases where multiplication by X is employed--viz. in the test 

in Process II and in Stage III 3. In accordance with our principle regarding resolution into stages, multi- 

plication by X has now to be a separate stage, we call it the stage II 4. In III 3 we pass toll 4 as soon asF(u ) 

is formed in Mike. In II we put r0 into Mike where r is obtained from, let us say, CT; this r need not be 

exactly the ratio of successive values of X but may be an approximation to it. We have reserved the stage 

n 3 for the formation of r/3 ; however this may be combined with II 1. The stage II 4 is followed in II by a 

stage II 5 constituting a test of the inequality rXp>l; this in turn is followed b^ a repetition of II 4 with a 

new value of Xif the test is negative. In order to do this we can give II 4 an output through a stepper to sep- 

arate this behavior from that desired in III 3. This stepper may be combined with that used for the discrim- 

ination in II 5. In fact we can give the stepper a direct clear at the start of II; take the initiation of Stage 

II 5 from the first position, the negative and positive outputs of II 5 respectively from the second and third 

positions, and the output of III 3 from the fourth position; at the same time providing a direct input from 
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the first and third positions and a direct clear from the second (thus making these direct imputs separate 

stages ).  See also par. 9.14. 

8.18 If it is desired to combine modifications B and E the only additional complication is to have a 2 position 

counting stepper separate from the X stepper. In that case the first position should be the normal (C 1) posi- 

tion; the second should have its counter switch set at 1 and its output should step theX stepper as well as 
2 

continue the calculation . 

8.19 A modification not mentioned in Sec. 3 is also possible, viz. a test of the inequalities 

[f(vi) -'K^ ^ Vi -\^' ^f(Vi) -'K^ 

i.e.    XF(u^^^)<0^r    XF(u^^^) - (r-1)   XF(u^) 

=   r  \ [^^+1^-^^)] ^ ^^K^ 
The left hand inequality is redundant. A test of the right hand one could be programmed, but will not be 

further considered. 

8,20 It is evident that these modifications require more equipment. In view of the crowded condition of the 

wiring diagrams there is doubt as to whether all these complications can be embodied in the basic scheme. 

But it is not worth while to investigate this further. The reason is that the restriction to three secondary 

functions with which we started in section 1 is an arbitrary one. In practice we might have a smaller or a 

larger number; in the former case there will be more equipment available and in the latter case, if we give 

See footnote to par, 8,18, 

2 
The stepper in par. 8.17, which we shall call for the moment L , may be provided with counters as follows: 

Position 
C ounter 
Setting Output 

1 1 115 

2 1 Direct clear and 
return to II 4 

•3 1 ni 1 (in place of 
output from II 1) 

4 N in4 

5 2 Error signal 

In this case II„ functions as a counting stepper. If we wish to use the scheme of par, 8,18, it is only neces- 

sary for the output of the fifth position to step the X stepper, put 4 pulses into the direct input ofY.„, so as 

to restore it to position 4, and go on to III 4, Of course provision for clearing the stepper must be made as 

per par. 3.28.  Also we must provide that (3 , F(u ) etc. are in proper positions. 
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the data on a set of cards, (see section 10) there may well be. The number of possible modifications is very 

large. Until some experience is available as to the importance of various modifications it is fruitless to go 

beyond a discussion of general principles. 

8.21 Mention should be made however of what can be done with modification G of par. 3.26. The formation 

of X by division would naturally be a part of II. This X is available as a number, and the formation of XF(u) 

would be by use of the multiplier. In that event it is easy to incorporate modification (B) also; for we simply 

multiply "X by r.   We can evidently continue doing this indefinitely. 

9.   A SECOND METHOD OF SUCCESSIVE APPROXIMATIONS 

9.1 We consider the following modification suggested by Lt. Col. T. E. Sterne. Instead of computing u . 

by (3.2) let us suppose that the machine has a number of values of Au, and that 

u    , = u   + Au (9.1) n+1       n ^     ' 

whereAu is varied stepwise in the following manner.    Let the machine calculate'(9.1) with the value of Au 

used in the previous approximation and then test F(u    ,) < 0; in the positive case we allow u       to stand 

and proceed to the next approximation;  in the negative case we go back to u   and either take a smaller Au 

or, if Au is already the smallest possible, terminate the iteration.   Then, except for the effects of rounding 

and tolerance in the calculation of F(u), the final u   will differ from u   by at most the smallest value of Au, 
n 3, 

This process is essentially what a desk calculating machine does in performing division. It bears the same 

relation to that action of a desk calculator that the process of sec. 3 does to division by iteration. More- 

over it is by and large the same process as Horner's method of solving equations, as taught in freshman 

college algebra, when guessing between approximations is mechanized. The procedure suggested in section 

8 for locating a maximum is also essentially a use of (9.1). Authorities on computation are not in complete 

agreement as to the relative advantages of (3.2) and (9.1) as methods of successive approximation; thus one 

noted authority on machine computation is said to think that an iterative process of division, using (3.2), 

would be better than the process actually used in the Divider of the Eniac. Which of these methods is best 

for the Eniac is probably a matter on which experience alone can decide. In order not to prejudge this mat- 

ter, both methods are discussed here. 

9.2 It is first to be remarked that the adoption of (9.1) instead of (3.2) does not require radical changes in 

the programming. So far as the basic scheme is concerned the only stages to be changed, except for some 

matters of detail, are III 3 and III 4.   In order to see how the two methods compare, let us imagine n in the 

discussion of the first paragraph is replaced by n-1, so that we are concerned with a test on F(u ) rather 
1 "^ than F(u    J.   Then III 3 reduces to the mere subtraction of a from f(u ) to form F(u )  .   It is convenient n+1 ^ n ^ n 

to combine this with III 4.   In III 4 we make the single binary test F(u ) < 0; in the positive case we go out 

Here and in the discussion of this section we ignore the fact that the f(u) calculated by III 2 is multiplied 
by 6.  The fact is, however, taken into account on the figures. 
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to a stage III 5, which adds Au to u and then goes to III 1; in the negative case we go to a stage III 6 which 

subtracts Au from u (so as to form u -.) substitutes for Au the next smaller value and then goes to III 5. 

(Note the similarity to the procedure in section 8.) 

9.3 Before going into detail on this program let us note what happens in the case of section 8, viz. where we 

are approaching a maximum. The example of Fig. 40 (which is purposely exaggerated) shows that we may 

read past a maximum in this case also. One method of avoiding this is for the Eniac to remember F(u J 

and make a further discrimination on F(u ) - F(u J. If this is negative it is necessary to subtract 2Au 

from u before changing Au. This will require that the above stage III 6 be split into two stages III 6 and 

in 8, the changing of Au being a separate stage. Further there must be a stage III 9 to take care of the case 

of passing a maximum. 

9.4 There are, however, even further complications. When the new F(u J is calculated we shall have a 

test of F(u J - F(u „); it is therefore necessary to have a value which we can substitute for F(u „) so 

that the test in in 4 will work properly. One possibility is for the Eniac to remember F(u „). On the 

other hand, since we are certain that F'(u „) > 0, it is sufficient to put for F(u „) something, such as 

X,     -a, which will have the effect of by-passing the second part of the test III 4. 

9.5 Again consider the problem of storing Au.   If we call free acumulators those which are not used   for 

storage throughout theround (this excludes no. 17,as well as 1-8,12, 14-16) or for multiplying (9,10,11,13) 
3 

then we have three free accumulators, viz. 18, 19, and 20.   Of these one is used for a test, one holds A x, 

and the other must be used to hold F(u    ..).   Since Au must be held from one approximation to the next, the 

only alternative is to hold it in CT  or a function table and control it by a stepper.   This involves certain 

difficulties which will be waived for the present.   The stepper controlling Au we call E „•   Now since Au 

is needed for different purposes in HI 5, III 6, and III 9, it is expedient to read it out and store it in, say LP, 

during III 4. Changing Au then consists of clearing this Au, stepping H „ and reading out the new one. The 

reading out of Au then has to be a separate stage to which we assign the now vacant number III 3. 

9.6 There still remains the problem of controlling the output of III 5. Aside from the possibility of a maxi- 

mum this has to be to III 1 or IV 1 according as we have or have not exhausted our values of Au. We can- 

not make this distinction through L„, as the output there simply reads Au. To make the distinction let 

there be a two position stepper - LQ whose output in the first position is to III 1.' Then when we signal a 

readout through the last position of Z„, Lo, is stepped. The output of III 5 can then be through £„. Now 

consider the effect of III 9. If this is used we need a further choice between IV 1 and III 7 according to 

whether we have or have not III 9.  This distinction we can make by having an additional stepper, 

9.7 With all these features incorporated the revised schedule for III is as follows: 

in.  Successive Approximations.  Stages 1, 2, and 7 same as in the basic scheme. 

3.  Emission of Au.   Program LP to receive Au.  Go through stepper Er, emit A, u inkth posi- 

tion, in last position do not emit but send direct input to EQ. 

1:   m 4 (04); ni 7 (02) 

No output. 

RESTRICTED 



48 RESTRICTED 

4.   Interapproximation test.   Subtract a from f(u ) to form F(u ); test 

F(u    J< F(u ) < 0 n-1 -       n 

if this is OK replace 

Direct clear to Eg. 

F(u    J by F(u ) and clear. 

i: ml       ■ 

ol: (F(u    -,) < F(u ) < 0)    III 5 n-1 n 

o2: (F(u ) > 0)     III 6 

o3: (F(u ) < 0, F(u ) < F(u    J      in 9 n n n-1 

o4: (all cases)    III 3. 

5, New approximation.   Add Au to u; go through  EQ and  E^. 
o y 

i: III 4 (ol) 

ol: ( ^« normal)   III 1 

o2: (  ^« stepped,    Z„ normal)    IV 1 

o3: ( r„and L^ stepped)     III 7 

6, Overdraft adjustment.  Subtract Au from u. 

i: III 4 (o2) 

ol: III 8 

8. Adjustment of Au.   Direct input to Er,.   Clear F(u), leaving F(u    J unchanged.   Clear Au. 

i: III 6, III 9 

ol: III 5 

o2: III 3 

9. Action at maximum.  Subtract 2 Au from u; replace F(u    J by x,   , -a.  Direct input to  E„ ' n-1     ■'    k-1 _ 9 

i: III 4 (o3) 

ol: III 8 

9,8  The following minor changes are also necessary. Since we start with u   = 0 we need not save u   in VI, 
'-' 3. 

but should clear it.   This effects some simplification there.   In II 1 we must put x,   ^ -a in place of F(u    J, 
k-1 ^ ^ n-1 

and, if we elect to go from II 1 direct to III 4, also x   in place of f(u ).   Provision has to be made for re- K n 
storing II „,  ZI„,  and various other instruments concerned with controlling Au (see below) before a new 

round is begun. 
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9.9 It is evident that the above program simplifies greatly if we do not have to worry about approaching a 

maximum.   In fact we leave out everything involving F(u    -,) or  HQ and we combine III 6 and III 8.   Under 
n-i o 

the same circumstances, however, the program of sec. 3 also simplifies greatly; in fact the discriminations 

(b) and (c) are safeguards which become unnecessary if we are sure of definite limitations on o^ and p . To 

obtain comparable protection in the present case we should need to retain both tests in in 4 even though o3 

were only an error signal. A detailed program of III 4 in such a case is given in Fig. 41. The complexity is 

of the same order of magnitude as in the basic scheme. Inspection of the above schedule shov;s further that 

we need more stages, but that some of the stages are very simple. When the entire schedule is program- 

med in detail, it is probable that it will be of the same order of complexity as that in sec. 3 and 8. At least 

the a-priori difference is not great enough to be decisive. 

9.10 We consider now the difficulty of storing and controlling the various values of Au. The situation is 

the same withrespect to the values of Aa in par. S.lOexcept that we shall presumably needafiner mesh for 

the smallest value of Au, 

9.11 One method of storing these Au's is to put them as separate entities in CT. Since they are apt to be 

one digit numbers, this is possible so far as number of digits is concerned. On the other hand a rather un- 

practical number of shifters and digit inputs is likely to be necessary. 

9.12 Another scheme is to store the values in a function table. In the basic scheme we have deliberately 

avoided using the function table, on the ground that the scheme would be more useful if the function tables 

were free to be set for another problem while the inverse interpolation was going on. If the function tables 

are used, note that we do not have a free accumulator available to store an argument. However five values 

are available from a function table without an attached argument accumulator; in that case the function table 

acts as if it had the argument zero.   The five possible outputs correspond to the five available positions of 

9.13 Since the values of u are most likely to be units in different decimal places, it should be possible to 

generate them by subtract correction pulses and shifters alone. A scheme for doing this is shown in Fig. 

42.   This gives, in fact, a slight generalization, in that with the stepper in the kth position, k=5, the value of 

Au generated is, with the upper row of stepper outputs, 

k-1 
A j^u = 0- ^ p( 0- 2 q) 

where p and q are integers from 1 to 9, and CT^ and <r_ are powers of 10 which are introduced respectively 

by the x input in Aux. 3 and the combination of the (3 input on Aux. 3 with the of input in Aux. 4. Here Aux. 1, 

Aux. 2, Aux. 3, and Aux. 4 are any four "auxiliary" accumulators; we could, for instance, identify Aux. 3 with 

Mike and Aux. 4 with LP. The program uses eight dummies, one transceiver and two receivers in Aux. 3 

and two transceivers and two receivers in Aux. 4. The program could be modified in various ways. The 

dummies do not have to be in specific accumulators Aux. 1 and Aux. 2 but may be placed anywhere in the 

machine where dummies are available. Again if the shifter in the oC input to Aux. 4 is set so as to multiply 

by cTr,/ IT^ the digit inputs oC and ^ of Aiix. 3 can be the same; if further an additonal dummy is used to 

isolate the stepper input lines (1) and (3) can be combined. With reference to the large number of dummies 
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note that four dummies can be made available by the expedient mentioned in the discussion of stage II 2 in 

sec. 6, 

9.14 If a free accumulator is available there are several other possibilities. We can then have a,function 

table with argument; the argument being increased by aunit from III 8. Again we can keep Au in an accumu- 

lator and change it as needed by having 111 8 pulse the program in the dotted rectangle of Fig. 42. In either 

case the stepper is used to discontinue the process when the smallest value of Au is reached. 

9.15 The program in Fig. 42 is useful in another connection. For its essential characteristics are that it 

generates a sequence of quantities in geometric progression. With appropriate modifications it is asuitable 

program for the stage II 4 of par. 8.17. For this purpose we shall omit the subtract correction pulses on the 

input line and put the transfer on line (1) on the input line. The transfer can be repeated p times; in that 

case the input to the stepper should come on a separate line which can be the output of the transfer. This 

can be the new line (1). Since the X's increaseas the stepper is stepped, and since, for reasons of accuracy, 

it is preferable to have cr„q < 1, the outputs from the first five positions of the stepper should be reversed 

as shown on the second line under the stepper. Then cr^p is the largest value of X , ff ^q is an approxima- 

tion to 1/r.   If this scheme should be used it would be expedient to make the test in II 5 a comparison of 

If the program in the dotted rectangle is made a separate stage, say II 6, then the right side of the inequality 

can be formed by putting 1 through II 6.   However this matter will not be gone into further. 

9.16 From the above it is evident that the calculation based on (9.1) is comparable in complexity with that 

based on (3.2) with a stepwise variation in >, . If the latter calculation can be made satisfactorily with a 

single value of X it is probably the simpler of the two. 

9.17 In regard to the question of accuracy, note that the present method is accurate to within the smallest 

value of Au, unless F(u) is so very flat that its values are indistinguishable over an interval greater than 

this limit.   The accuracy of the former method is controlled by the inequalities (3.17)  and (3.19).   If the 

accuracy demanded in u   - u    is not too great, there is likely to be room for a suitable choice of e in the a      n 
method of sec. 3. 

9.18 In regard to the timing requirements, observe that for A  u = 10~ , k = 1, 2, 3, 4, 5, the maximum num- 

ber of approximations for a round on the present method will be 5, the maximum 50 (not counting the calcu- 
_5 

lation at zero).   This is for a final tolerance of 10    ; for greater accuracy the number of approximations 

would be greater.  The number of approximations for the former method was discussed in sec. 3. 

10.   COMPOSITE INTERPOLATION 

10.1 Let us now consider what can be done in case the number of secondary functions exceeds the number 

permissible in the basic scheme. Such cases may arise in connection with firing tables where a large num- 

ber of differential effects have to be considered. 
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10.2 Since there is not room in the Eniac tostore all the quantities needed, one suggestion would be to have 

more of these quantities available on the cards. Differences etc. could be placed on the cards by IBM ma- 

chines while the Eniac is being set up. This would require that the data for any single calculation be dis- 

tributed on several cards; such a collection of cards will be loiown as a set. The different cards of aset can 

be distinguished by a stepper functioning like a digit selector on an IBM machine. It is natural to suppose 

that all the data for a single function are on the same card. In that case the card bearing the information on 

X will be called the primary card, the others secondary cards. 

10.3 The simplest assumption is to suppose that all the differences of each function are given on the appro- 

priate card, so that is unnecessary to calculate differences or to retain the information from more than one 

function. In that case there may be two functions on a card. Even so the system is hardly practical. For, 

under the hypothesis that the content of a set of cards is too great for the Eniac to remember, it is not pos- 

sible to have more than one value of a between two successive x 's. Not only is this an undesirable restric- 

tion, practically cutting out, as it does, any possibility of the adjustment considered in sec, 8, but even in 

cases where it appears to do no harm, it may be difficult to be sure of that fact over anyconsiderablerange. 

If the method is used we should therefore have an error signal in I 4(o3). Where the hypothesis is not ful- 

filled the method competes with the basic scheme. H the number of sets in a run is n, while the number of 

values of a is m, and if we suppose the calculations take approximately one card cycle, then the time for a 

run in the basic scheme is m+n card cycles. (This neglects the effect of delays due to discriminations be- 

tween card readings in 1, Of these 12 and I 4 affect both methods alike,) To do the same job with the new 

method requires 2 cards per set, hence 2n card cycles for reading; in addition, unless we make the above 

restriction on values of a, the secondary card must be held till completion of the interpolation andprincipal 

test before ordering a new primary card, and there will be additional delay if a second round is ordered 

without reading; hence the total time will be somewhere between 2n and M+2n card cycles . The principal 

advantage of the method will be the reduction in storage accumulators; indeed if we impose the above re- 

striction on the a's we can get along without any. Here however the considerations adduced, together with 

the extra card preparation are regarded as decisive objections,  and no attempt is made to program the 

In the basic scheme computing and card reading alternate: in the alternative scheme the primary and 
first secondary interpolations can be simultaneous with the reading of the second card in the set. Since 
the processes V and VI only take roughly 150 add times the lower limit of 2n card cycles might be at- 
tained if m < n. In any event the number of card cycles is at least the larger of the two numbers m+n and 
2n. The upper limit, m+2n, is likewise on the hypothesis that there is no delay due to the last two secondary 
interpolations. Any inaccuracy in these assumptions will make the above comparisons even more unfavor- 
able for the new method. 
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method in detail . That may very well be done later, and then the result of trail will be the answer as to 

practicality. 

10.4 Another possibility is to make a run with the basic scheme first, and then to use the output cards of 

this run as primary cards for a new run. These can be interspersed among the sets of secondary cards, 

according to the value of t, by the collator. This form will be called composite interpolation. For the pri- 

mary cards give us t = t(x), while the secondary cards give y = y(t) for each secondary function y; the out- 

put is y = y(t(x)), i.e. the composite product of the functions y(t) and t(x). This is a problem which may 

well be of some interest in itself, when the cards giving t(x) are a given set of cards, which may or may not 

be the result of aprevious inverse interpolation. We shall therefore pause to examine this composite inter- 

polation. 

10.5 It should first be noticed that composite interpolation is not an efficient process for the Eniac. Indeed, 

since all the Eniac has to do is to perform a small number of direct interpolations per card cycle, it will 

be idle a large proprotion of the time; if there are 5 interpolations, each taking 60 add times, it will be idle 

90% of the time. On the other hand such interpolation is an efficient process for the IBM relay multipliers. 

In that case it is not necessary to collate the primary and secondary cards; the machine has two feeds and 

can do its own collating as it proceeds. One of the feeds of course delivers into the output; if we use this for 

the primary cards there must be room on those cards for receiving the answers. The machine will make a 

third order interpolation in one double card cycle.   If we use m and n as before, and put k functions on one 

secondary card, the time for a run is 2km + n card cycles. There are difficulties in taking k > 1. Note that 
2 

a single card cycle on the relay multipliers is the same as a card cycle on the Eniac . 

^ This could be done by modifying the basic scheme. The principal changes would be to provide for the 
discrimination as to card kinds and to read the differences from the cards on a fixed set of accumulators. 
If we suppose, for simplicity, there is only one function per card (this assumption is in agreement with the 
idea that the principal advantage of the method is to save storage accumulators) we can use the fourth alter- 
native. The following outline of changes may be of interest for the light it sheds on general principles. The 
stages I 3, I 5 would be replaced by other stages: the stages n 1, IV 1, VI1, VI 5, VI 6, would be omitted. 
The emission of differences and their multiplication by numerical coefficients would be combined with III 2, 
thus reducing III 1, IV 2, V 2, VI 2, to dummies: these dummies could be avoided by giving III 2 an output 
through a stepper or by splitting it into parts and using additional controls on the multiplier. The processes 
IV, V and first half of VI are then all just alike except for disposal of the output: accordingly, if this output 
is left in a fixed position,they can be combined into a single process VII. To discriminate the card kinds we 
need three steppers La, ^t, and E^,: of these Lg, is a two position stepper acting as flip flop,which is in 
first position for reading and in second position for interpolating; while 51)-, and H,-. are stepped together to 
indicate the kind of card. The outputs of La are to L^ and LQ respectively. The first output of Lb orders 
the principal test I 4; the others go to I 9. Lb could be a two position stepper. The principal test must 
compute xjj and xy-+i from the differences; the output ol steps La and goes to III 1 or III 2; the output o2 
goes to I 9. As to Lc, output in the kth position (k > 1) should first dispose of the result of the (k-l)st cal- 
culation, then go to VII; in the first position it should close out the whole preceding round, reset L^i and go 
to I 4. The output of III and VII should go to I 1. The reader interlock should be used as in the scheme for 
composite interpolation below. It is evident these changes are extensive enough to justify areprogramming. 

9 
The most recent information on the Eniac card reader requires a modification in this and other statements 

regarding the Eniac card timing. All the rough estimates in this report are based on a card cycle of 0.6 
second, i.e. 100 cycles per minute, which is the length of a single card cycle on the IBM Relay Calculators. 
The most recent Eniac report states the reader will take 120 to 160 cards per minute depending on cir- 
cumstances. 
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10.6 Although the process is relatively inefficient for the Eniac, yet for all that the Eniac can do the job 

faster, although not by a large factor. Furthermore there may be special reasons for using the Eniac. 

There is thus some interest in seeing, in a general way, how composite interpolation can be programmed; 

but there is hardly any point in going into detail. The principal case of interest is where the Eniac is al- 

ready set up to do inverse interpolation by the basic scheme (since it will hardly pay to set up the Eniac 

specially for this problem), and it is desired to make modifications as simply as possible so as to perform 

composite interpolation. 

10.7 Since the Eniac does not have but one card feed it is necessary to collate the cards. There are two 

methods of doing this: either the primary card is inserted so that all the data necessary for the calculation 

are stored in the Eniac from preceding secondary cards, or else the primary card is inserted so that addi- 

tional data from succeeding cards is needed. In the former case we are restricted to three secondary func- 

tions, and a primary card simply gives the signal to compute using the data in the storage accumulators; 

there is no limitation on the number of consecutive primary cards. In the latter case we may increase the 

number of secondary functions to four, but the programming is more difficult and there is trouble if there 

are consecutive primary cards. We assume the former case. We also suppose that the secondary cards 

contain the value of each of three functions, which we call y(t), z(t), w(t), for a given t which plays the role 

of t,„; further that they contain the appropriate t   = t„-2At for use in collating.   The primary cards 

will be supposed to have both u   and t .^ a a 
10.8 The following are the required changes in the basic scheme. The stages I 3,1 4,1 6, II 1, all of ni ex- 

cept III 2, VI 4, VI 6; are omitted; of these VI 4 is simply short circuited, (VI 4 may be retained to transfer 

t ), while I 3 and I 4 are replaced by other stages (see below). The accumulators 1, 2, 3, must now be used 

to store Yy^ p, ^y..p> ^wo'^^-S there are four, rather than three, values of each function to be stored. We 

change I 5 so as to cycle the four values, rather than the three, and in IV 1, V 1, VI 1 we read these values 

from the storage accumulator rather than CT. The item involving a in I 7 can be omitted but is harmless. 

The reader interlock can be used; indeed we can pulse R. at the beginning of I 5 or IV 1, and gotoR from 

the end of I 5 and VI 7.   For the new stages I 3, I 4 we have: 

I   3  Discrimination between primary and secondary cards. 
o 

(This can be done by reading from some card column into the direct input of a stepper.) 

i: I  2   (ol) 

ol: (primary card) I  4 

o2: (secondary card)   I   5 

We have only twelve storage accumulators.   In the first of the two methods all four values of each func- 
tion must be stored, in the second the fourth value might be stored in CT, as in the basic scheme. 

2 
Note that the basic scheme does not provide for printing of u^.   But additional quantities  can be printed 

by transferring the contents of accumulators 14,15, or 16 to Mike or LP before printing, so as to''free these 
accumulators for additional printings and restoring them in I 6. 

3 
In this way we could also distinguish two or more different sorts of secondary cards, 
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I 4 Initiation of Computation.  Replace a in ace. 17 by x from the card; read u from card into Myer, 

store t   for printing. 
3, 

1: I 3  (ol) 

ol: IV  1 

o2: I  1   (i.e. R.) 

A frill whicli can be used if desired is to keep track of a by use of I 6 as in the basic scheme (going to I 6 

from I 4) and make in I 4 an equality discrimination on x ^ a. A program for the revised I 5 is shown in 

Fig. 43. In this figure we have departed from our usual conventions in that we have numbered the program 

lines not consecutively, but so as to correspond with these in the original I 5; the program is the same as 

the original I 5 except for the accumulators 1, 2, 3 and the items marked #. 

10.9 Thus the basic scheme can be converted into a scheme for composite interpolation by making a rela- 

tively small number of changes. The time for a run is m+n card cycles, as opposed to 6m + 3n cycles (as- 

suming k = 1) in the relay multipliers. In case the primary cards come from a previous interpolation the 

time is of the same order of magnitude as that for repeating the basic scheme. Under certain specialized 

conditions the modification may well be useful.   Note that there is no delay between card readings.■*• 

11.  CONCLUDING REMARKS 

11.1 The major part of the task outlined in the Introduction, viz, the programming of the basic scheme, 

was completed in sec. 7,  The program is complete except for details mentioned in par. 11.5 below. 

11.2 As stated in pars. 1.3 and 3.26, this basic scheme was not designed specifically for a particular prob- 

lem, but as a basis from which modifications could be made for various such problems. However with the 

rather slight modification in par. 3.26 (a) it is suitable for the first step in the conversion of a set of tra- 

jectory cards into a firing table for an antiaircraft gun.   This will be gone into further in another report. 

11.3 Of the many modifications which may be applied to thebasic scheme a few have been discussed exten- 

sively in sees. 3, 8, 9, 10. These modifications were also motivated by possible utility in connection with 

firing tables. However it is not feasible to program them in the same detail—with wiring diagrams etc, 

—as the basic scheme. That is left to be done later when the extent of the demand for such changes is 

clearer. 

11.4 Besides these modifications there are various others which have been mentioned only incidentally or 

not at all. For convenience of reference a number of these changes are listed below, together with cross 

references and such comments as it seems appropriate to add to those already made. 

(a) If there are less than three secondary functions process V and possibly also portions of IV and 

VI can be omitted. This leaves room for other modifications. If the number is greater than three see, sec, 

10, 

Cf., however, the footnote to par. 10.3, 
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(b) A change in the interpolation formula was mentioned as a possibility in par. 1.4. This has not 

been pursued farther in this report; however a separate report dealing with one such modification is under 

consideration. 

(c) It was supposed (par. 1.9) that there are two cards before the first value of a and two after the 

last value of a.   This is so that, when the principal test orders a calculation, all four values on which it is 

based may bebona fide. If the cards do not satisfy this condition, extrapolations will have to be made. Nothing 

has been done to provide for having the Eniac take special action in the eventuality that the cards do not 

satisfy the condition.   In the basic scheme, if this eventuality occurs at the beginning of a group, the Eniac 

may print an erroneous result; whereas if it occurs at the end, the value of a will be slcipped. The occurence 

of an error at the beginning may be prevented by talcing the output ol of 12 through a stepper whose first 

position has an output bo 15 and a counter switch set at 3, while the second position has an output to 13 and a 

counter set sufficiently high to allow the passage of all the cards in the group.   This stepper must be reset 

by 18.   (On the difficulties of resetting a stepper with counter see par. 3.28)     If this is done we do not need 

the initial a   in IB; also, if b   =0, we can start with the reader start button, 
o ' '        o       ' 

(d) One or more function tables can be used to store additional constants. For some incidental re- 

marks in regard to this see par. 9.12. 

(e) The modifications C, D, F, of par. 3.26 are not further considered. The case F" > 0 can be 

reduced to F" < 0 by the artifice considered in par. 1,5.   (See also (o) below.) 

(f) As remarked in par. 4.16, the auxiliary test I 3 is included as an example of additional tests 

which might be included in I.   Such tests are likely to be different for each particular application. 

(g) There are two alternative forms of the group test, viz. Figs. 7a and 7b. The second differs from 

the first in that it saves an addition time at the expense of an extra dummy,   (See footnote to par. 4.18) 

(h) Various alternatives are given for the output of I 2,1 4,1 5,1 7,1 8. A choice between these alter- 

natives is required if the modification of sec. 8 is used,   (See pars, 8.2, 8.6, 8,11) 

(i) The a put in I 8 is to prevent malfunctioning of the principal test at the beginning. A more ade- 

quate protection is discussed in (c) above. Likewise b in I 10 is necessary to prevent malfunctioning of the 

group test.   Note the alternatives in regard to starting--mentioned in par. 6.4 under I 9, I 10. 

(i) In the basic scheme we go to some trouble to preserve the final u of one round for use incase we 

have a further round without card reading, as the u of the next round. This is to keep the u's increasing 

throughout the group, (cf. par. 3.20). However that may be an unnecessary refinement, and it is useless if 

we read a new card for every round.   If we start with u  = 0 we can make slight changes in II 1 and VI 4. 

(k) As noted under II 2 in par. 6.4we can give II 2 an output and save four dummies. This saving of 

dummies may be important if the modifications in sec. 8 and sec. 9 are used. (See the discussion of Fig. 42 

in par. 9.13.) 

In this case the difficulty inregard to the stepper counter can be circumvented as follows. Let the connec- 
tion from the regular stepper input to the counter be severed (e,g, by disconnecting tube A-43 on drawing 
PX 8-304), and let a line be taken from the first stepper output, or some properly insulated output connec- 
ted with it, to the digit input, (cf. (u) below.). Then the counter controls the stepping to 2nd position, when 
this happens the counter is cleared and receives no more inputs. To restore the stepper it is only necessary 
to give it a direct clear. 
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(1) In par. 6.4 stages III 5 and III 6 were reserved for increase and decrease of \ . Of these III 6 

would be needed in connection with modifications (C), (D), (F) of par, 3.26. The stage III 6, therefore, has 

not been further considered in this report, (cf. (e) above). As for III 5, the appropriate action would be 

simply to step the X stepper. If the 'X stepper is at the same time a counting stepper, this is done auto- 

matically in III 3, and III 5 is unnecessary. If the > stepper is not also the counting stepper, the stage III 

5 consists simply of a direct input to the X stepper and continuation of the calculation. In that case we have 

the situation of par. 8.17, where the multiplication by X constitutes a separate stage II 4. This stage con- 

sists of separate actions, controlled by the X steppers. A method of doing this is discussed further in par. 

9.15. If the counting stepper is used it should be connected as in par. 8.18 (cf. footnote to par. 8.17). Note 

that the output of the last position of the X stepper must always be an error signal (to prevent cycling back 

to the first position). Further, when a counting stepper is used, the above arrangement allows the calculation 

of one additional u with the old X before making the change, 

(m) The basic scheme uses the same interpolation formula for the secondary interpolation as for 

the primary. With some additional complications a different one could be used. This is not further con- 

sidered here. 

(n) Various changes could be made if the number of significant figures were different. In the basic 

scheme it has been assumed that the places switch on the multiplier are set at 9 (par. 7.5) and that the accu- 

mulators and CT groups holding x, y, z, w are full. 

(o) As explained in par. 1.5 the basic scheme was planned primarily for the case that x > o, x < o. 

If these derivatives have fixed signs consistent with this assumption, it is only necessary to change the 

signs of Aa, At, or both. (See the footnote to par. 1.5.) This entails some changes in the text of I 8, G, 10 

and, if A a < 0, reversal of the inequalities in the principal test. Likewise we can have Ab < 0 if we make 

the proper changes in I 10 and I 2. 

(p) The stage VI 4 was planned for the case that At is a number of only one significant digit. How- 

ever by an additional use of the multiplier--whose controls are relatively little used--we could handle an 

arbitrary At; if this At has not more than 5 digits it can be stored in field G of CT. (cf. Table 7.1 in par. 

7.6). A program- for VI 4 under these conditions is given in Fig. 24b; it is not essentially more complicated 

than Fig. 24a. 

(q)  As was pointed out in par. 7.6, considerable latitude is possible in regard to the arrangements 

of CT.   In the scheme of Table 7.1, a   and b   were set on the switches so as to be available for the initial o o 
entries in I 10 and I 8; the other constants can then be put in by a master card.   But if a   = b   =0, the 

' f j 0 0 

switches J could be used for other constants. 

(r)   Arrangement can be made to print u   as well as t    on the output cards.   See footnote at end of 
3- 3, 

par. 10.7.    Card numbers can be printed on the output cards by means of the emitter on the printer plug- 

board. 

(s) The basic scheme contains no provision for checking whether the input cards are consecutive. 

If one or more input cards were omitted erroneous results would be obtained. Such a check seems to be 

desirable for some firing tables work.   We can obtain it by modifying I 5 so as to read t        into an accu- 
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mulator, preferably one of those in the multiplier; then subtracting this from the t „ of the next card and 

checking for comparison with At as part of the auxiliary test. If the difference is found too large, action 

can be taken to throw an error signal or terminate the group. 

This can be done using the same test apparatus as in I 2. If we wanted action for too small a difference--it 

would be a gross error--we should require other equipment; but if the auxiliary test were omitted the test 

apparatus of I 3 would be free for such a purpose. Of course this procedure requires that At be available, 

say in CT; it is also necessary to make special provision for the initial t. The latter can be entered, per- 

haps by calculation from b, as part of I 8; or we can make arrangements by a stepper to by pass the first 

card. This test, as a safety measure, is of the same nature as (c), and, if a stepper is used it depends, like 

that test, on the possibility of clearing the stepper and its counter at end of every group. If it is desired to 

by pass the first three cards the stepper can be combined with that in (c). Naturally care must be taken to 

see that the t's so entered are properly cleared in every eventuality. 

(t) In the basic scheme it was assumed that a is constant. In firing table work cases occur in 

which it is convenient to have a different a for every group. This can be done,, of course by interpolating 

a calculation of a from b in I 8. An alternative procedure is to have a master card in the front of every 

group; then we can have a whole new set of the constants a , At, Aa, c for each group. Further we can get 

a different initial X for each group by using a column in the master card to control the \ stepper through 

the direct input. 

(u) Another method of controlling values of > without discriminations is of some interest. If the 

connection from the regular stepper input to the stepper counter is severed (say by removing the tube A-43 

on the drawing PX 8-304), the stepping of the stepper can then be controlled by the counters, but the latter 

count the inputs to the direct decade input without regard to the number of regular inputs. Thus if we take 

a program pulse to this decade input from I 7, and if the switch settings are n^, n„, . . ., then we have the 

first value of X for the first n^ groups, the second for the next n„ groups, and so on, regardless of how many 

times a X is called for in each group. If we provide for clearing the stepper and counters at the end of a 

group we can get a similar control by rounds by taking a program pulse from I 6. Furthermore by use of a 

second stepper and direct inputs we can combine these controls in various ways. This method of control may 

be more convenient than those in (t), par 3.26 and sec. 8, in cases where a single value of X is known to suf- 

fice for a whole series of groups or rounds, 

11.5 Although the basic scheme is reasonably complete, there are nevertheless certain details which have 

been left undetermined. There are also certain items in the internal settings of the machine which must be 

taken care of before the scheme is actually set up on the Eniac.  A list of such details is as follows: 

(a)  Wiring of the IBM plug boards.   This must include provisionfor a master card to contain c*, Aa, 

Ab(cf. par. 11,4 (q)). 

The group can be terminated by a pulse to I 7 if the output from I 2(o3) is to I 9, 
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(b) The assignment of steppers to units of the master programmer. These steppers are here simply- 

designated L^, . . ., Lf-. Of these E^, E„, r„, Ep- are without counters. Since the MP has only two 

steppers (A and F) without counters, it will be necessary for the maintenance crew to disconnect two others. 

(c) The settings of the significant figure switches. 

(d) The specification of the various adapters and the locations of decimal points. Places where 

shifters are obviously likely to be needed are indicated on the wiring diagrams, but others may be needed 

if there is any irregularity about the decimal points. Particular care should be exercised in operations in- 

volving accumulator I 7, which plays a double role. Also it is necessary for the successful operation ofIII4 

that the subtract correction pulse in LP go into a decade off by a deleter in the e terminal of accumulator 

19. .    ' 

(e) The settings of k and shifters Fig. 18 and Fig. 24 causing multiplication by X and At respec- 

tively, 

(f) The settings of the printer switches and the provision, if any, for printing card numbers or other 

constant data on the output cards. For the basic scheme only the accumulators 13, 17-20 are used for 

printing; of these 13,18-20 are to print 10-digit numbers, while 17 is to print two separate 5-digit numbers. 

(g) Considerations relative to the loading of the Eniac digit trunks and program lines. 

(h)  Provision for clearing stepper coimters if and as needed (cf. par. 3.28.) 

(i) Verification that the switches are correctly set, and that the data cards satisfy the hypotheses of 

sec. 1.   (See especially par. 11.4 (C).) 

11.6 The process of inverse interpolation here programmed for the Eniac may also be carried out on the 

IBM relay multipliers and the BTL relay machines. Those machines, however, will be much slower (cf. 

par. 10.6). Consequently if the job is tried on those machines more attention must be paid to speed of con- 

vergence. At best, however, they will still be much slower than the Eniac. It is considered advisable that 

the Eniac should be used for firing table calculations where the computations come in large masses to be 

done at one time; whereas the other machines can and should be used for computations coming up repeatedly 

in smaller amounts. 

Haskell B. Curry 

Willa A. Wy#tt 
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