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PREFACE 
This Symposium is the fifth in a series each of which has been concerned 

with various aspects of Naval Hydrodynamics. The first (held in September 
1956) presented critical surveys of Hydrodynamics ‘bat are of significance in 
naval science. Subsequent meetings were to be devoted to one or more topics 
selected on the basis of importance and need for research stimulation, or of 
par ticular current interest. 

In keeping with this objective, the second symposium (August 1958) had for 
its subject the areas of hydrodynamic noise and cavity flow; the third (Sep¬ 
tember 1960) was concerned with the area of high performance ships; and the 
fourth (August 1962) emphasized the topics of propulsion and hydroelasticity. 

Still continuing with the original plan, the present symposium selected for 
its dual theme the areas of ship motions and drag reduction, thus emphasizing, 
among other things, the interest in the current problems and latest accom¬ 
plishments associated with: theoretical and experimental determination of 
the coefficients of the equations governing the motions of ships in a seaway; 
the characteristics and designofmotion stabilizers; the reduction of frictional 
resistance by the introduction of additives; and the design of bulbous bows to 
reduce wave drag. 

The international flavor of these meetings continues to be an outstanding 
feature, and in this case, has been enhanced by virtue of the setting, the par¬ 
ticipation, and most particularly by the joint sponsorship by the Skipsmodell- 
tanken of Trondheim, Norway and the U.S. Office of Naval Research. 

The address of welcome by Dr. Weyl and the speech opening this sym¬ 
posium by H.R.H. Crown Prince Harald more than adequately describe the 
background and objectives of this meeting, thus leaving little more to be said 
other than to express our gratitude to all those who contributed so much to the 
success of this symposium. However, taking the liberty of speaking both for 
the Office of Naval Research as well as the international scientific community 
of hydrodynamicists, I should like once again to express our deepest appre¬ 
ciation to Professor J. K. Lunde, to his associates Dr. H. Aa. Walderhaug 
and Mr. O. Skjetne, and to the Norwegian Ship Model Experiment Tank, Trond¬ 
heim for their outstanding efficiency and care in managing the many varied 
aspects of this symposium. 

RALPH D. COOPER, Head 
Fluid Dynamics Branch 
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ADDRESS OF WELCOME 

F. J. Weyl 
Deputy and Chief Scientist 
Office of Naval Research 

Washington, D.C. 

Your Royal Highness, Professor Lunde, fellow wayfarers on the road to 
Bergen: It is my pleasure in the name of the Norwegian Ship Model Experiment 
Tank and the United States Office of Naval Research to bid you welcome at this 
our goal. We are most appreciative for this opportunity of descending, maybe 
a bit disorganized but full of friendliness, upon your country; and we look for¬ 
ward to discovering more of its social fabric, its forests and fjords. Perhaps 
we are, inadvertently, redressing in these latter days a long term balance by the 
confusion we may cause in your hostelries and shops in return for that caused 
by visits which were made from these parts to very nearly the whole of the here- 
represented world during the centuries of Norway's birth. Most deeply grateful 
we are to the staff of Skipsmodelltanken, its distinguished director, Professor 
Lunde, and his associates, for having taken on the task of being host for the 
Symposium, and thus to look after our well-being, both temporal and spiritual, 
during our days in Bergen. We shall express our thanks in work reported and 
new endeavors initiated, in legends told and traditions started. 

The ocean is a strange and wondrous thing, not only to the historian who 
traces the role which it has played in the fates of men and people, but no less to 
the scientist. Let us first give a look at its geometry. Its characteristic hori¬ 
zontal dimension exceeds its depth by three orders of magnitude. Bounded by 
the atmosphere above, it presents a mightily agitated surface. Massive currents 
and huge eddies characterize the motion of the basins, driven by gravity and the 
rotation of the earth. Unexplored heat transfer phenomena across its bottom 
vitally influence the energy balance. In short, it is all boundary and yet presents 
itself so unbounded. 

To a technology peculiarly matched to life in the atmosphere where the sig¬ 
nal speed is that of light and even the fastest form of locomotion constitutes but 
one thousandth of one percent of this speed, the ocean again presents a radically 
different concert of parameters. Opaque to electromagnetic radiation, the char¬ 
acteristic mode of signal transmission is acoustic. Complicated reflection and 
refraction phenomena are caused by the layer structure, multipath phenomena 
obscure reception, and scattering is a fact of life rather than being encountered 
at the very fringe of usefulness of the information carrier. Moreover, measured 
in terms of signal speed, locomotion is now two orders of magnitude faster than 
in our wonted atmospheric medium. 

Lastly, let me point out the tremendous range of time scales encountered in 
the dynamic behavior of the oceans. The waves and wave patterns on the surface 
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cover a range from minutes to days. The large currents and the eddies which 
they generate show an erratic behavior whose large scale changes are meas¬ 
ured in weeks and months. Seasonal variations characterize the major features 
of stratification; and finally, in the deepest layer of the oceans, memory appears 
to be measured in centuries. 

All of this presents us with engineering challenges and tasks of tremendous 
scope, of which those so ingeniously solved with ever increasing competence by 
the designers and developers of ships are but a small yet highly characteristic 
part. Reaching out towards an ultimate goal, where we can freely traffic and go 
about such business as we may choose throughout the volume of the oceans, an 
exciting spectrum of new problems and opportunities opens up to scientist and 
engineer alike. The integrity of the hull requires that new ground be broken in 
the physics of materials, in the ingenious invention of geometries, and in advanc¬ 
ing processes of fabrication. Propulsion and maneuver control place demands 
on the marine engineer which force him to look to the very boundaries of science 
and in many instances beyond before he will be confidently able to meet them. 
And, finally, there are the pioneering adventures in experimentation and instru¬ 
mentation which alone can secure for us the scientific knowledge and the opera¬ 
tional experiences that are prerequisite for ultimate mastery of the medium. 
Viewed in this light, the preoccupations, past and future, which will constitute 
the substance of our discussions here during the next few days, appear as an 
advanced salient of an onward sweeping front of competence and knowledge which 
we shall surely see broadened with great vigor during our lifetimes. 

In short, to quote with slight adaptation the modern American lyric poet, 
E. E. Cummings: "There's a hell of a nice universe out there, let's go! " 

His Royal Highness, the Crown Prince of Norway, has graciously accepted 
our invitation to come here and to open this the 5th Symposium on Naval Hydro¬ 
dynamics. We are most particularly appreciative of the fact that, even with the 
duties and responsibilities of Head of State on his shoulders now during the 
King's absence, he has consented to be with us this morning, giving added sig¬ 
nificance to the occasion. I have, therefore, the honor at this time to call on 
His Royal Highness to open the proceedings. 



OPENING ADDRESS 

H.R.H. Crown Prince Harald oí Norway 

Mr. Chairman, 
Ladies and Gentlemen, 

May I firstly thank Dr. Weyl for his kind words oí welcome. Perhaps it is 
typical of the universality and internationalism of our times — and indeed a 
promising feature —that an American scientist shouldaddress us herein Bergen, 
Norway, in his capacity as Host. 

My father, His Majesty The King, who addressed a similar symposium — the 
7th International Conference on Ship Hydrodynamics — ten years ago in Oslo,has 
asked me to bring you all his greetings and best wishes for a successful and 
enjoyable stay —both beneficial to science and conducive to pleasure. 

As a user — one of those who benefit, or suffer, as a result of your findings — 
I am particularly happy to be here today. I have no doubts that the great majority 
of ideas tested are found not suitable — perhaps even dangerous — and thereby 
you spare us anxiety and economic losses. On the other hand, we live in a com¬ 
petitive world —in politics, in economics and in sports. When a new idea is 
thought of and found fruitful, we, the users, would like to keep it to ourselves. 
You have the scientific attitude; you like to share your findings, for the better¬ 
ment of mankind, to develop your findings, and indeed to further the science you 
represent. 

The world has come a long way from pieces of wood drifting in rivers and 
on the sea, thereby giving man the idea to try to float himself on the first raft 
or boat. 

Sturdiness and stability, particularly in the serious and often fatal question 
of top-weight, were the first problems to be solved. Then followed a long epoch 
of the shipbuilder as an artist, and now science has more and more taken over. 
The modern shipbuilder is no more a fifth generation artist in his field with a 
saw and axe, but a serious, studious mathematician with drawingboard and slide 
rule. 

Perhaps we have come too far; perhaps we shall have to take one or several 
steps back, searching for something important overlooked in the rapid develop¬ 
ment. That in itself may be one of the findings, here or elsewhere. 

! 

’ï 

I 
I 

I wish you all every success in your endeavours to improve ships and boats 
for the benefit of all. May your discussions be fruitful and not too long. 

. 
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When you leave may you feel that you have benefited technically, and also 
that you have made good contacts and established friendships. 

With every good wish to all of you for a useful, successful and pleasant 
congress and stay, I declare the Fifth Symposium on Naval Hydrodynamics to be 
opened. 

XV 



INTRODUCTORY REMARKS 

G. P. Weinblum 
Institut für Schiffbau der Universität 

Hamburg, Germany 

Ten years ago the International Towing Tank Conference held a meeting in 
Oslo. At that tima, I had the privilege of lecturing on the subject, ship motions, 
before His Royal Highness Crown Prince Olaf now His Majesty the King. It is a 
highlight of my professional career that today in your Royal Highness' presence 
a team of gifted younger scientists will report on the impressive progress 
reached in our field during the recent years. They will prove the well estab¬ 
lished fact that we, in engineering sciences, usually overestimate what can be 
accomplished within one year but fortunately underrate what can be done within 
ten years. 

Now that your Royal Highness has graciously opened the session we shall 
start immediately with our work. 

Our kind hosts have carefully included short curricula of the lecturers in 
the abstracts. Thus the need for introducing the speakers to the auditorium is 
eliminated. There is another reason why it is perhaps not so important to follow 
this well established habit of introduction: although our young speakers have 
already reached a high scientific reputation, their future is still more important 
to our profession than their past. 

Calling now Dr. Ogilvie, the head of the Free Surface Phenomena Branch of 
the David Taylor Model Basin in Washington, D.C., to deliver his lecture. It is 
my pleasant duty to emphasize that during his stay as liaison scientist of the Of¬ 
fice of Naval Research in London he has earned universal esteem and friendship. 
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RECENT PROGRESS TOWARD THE 

UNDERSTANDING AND PREDICTION 

OF SHIP MOTIONS 

T. Francis Ogilvie 
David Taylor Model Basin 

Washington, D.C. 

ABSTRACT 

Since the Symposium on the Behavior of Ships in a Seaway (Wageningen, 
1957), many papers have been published on the theory of ship motions. 
The present paper is a survey, collation, and evaluation of those con¬ 
tributions which have led toward a rational theory for predicting ship 
motions. 

During this period, evidence has accumulated which demonstrates the 
validity of the superposition principle for ship motions in a seaway. 
This concept was stated as hypothesis eleven years ago by St. Denis 
and Pierson (and also sixty years ago by R. E. Froude); its validity 
may now be considered as proven, beyond the fondest hopes of earlier 
investigators. 

With this principle established, attention once again returns to the pre¬ 
diction of motions in small-amplitude regular waves. The best prac¬ 
tical approach to making ship motions predictions is probably still 
through use of strip theory. However, the two-dimensions assumptions 
of strip theory are so pervasive that the validity of the resulting anal¬ 
ysis is always questionable except in the most routine problems. 

In the past decade, the concept of the thin ship has been extensively 
applied to ship motions problems. Many elements in the complete pic¬ 
ture have been developed on this basis, and in addition, thin-ship theory 
has been highly systematized, f^is latter effort, involving the estab¬ 
lishment of a rigorous development of the theory on a set of carefully 
stated assumptions, has pointed up some basic shortcomings in applying 
thin ship ideas to motions problems. 

Very recently, much attention has been devoted to developing a slender 
ship theory for predicting motions. The motivation and basic ideas are 
discussed; more thorough consideration will be found in other papers 
at this symposium. 



Ogilvie 

INTRODUCTION 

Background 

The hydrodynamic theory of ships was born in the last half-decade of the 
nineteenth century, and it was a spectacular beginning, for within three years 
there appeared three papers by Krylov and the famous paper by Michell. Unfor¬ 
tunately, the response to these papers was not what they deserved, and many 
years passed before naval architects again considered their problems as sci¬ 
entific problems. We look back and see a few hardy souls struggling to progress 
against the apathy of their own profession. Not until almost 1950 was there a 
general renaissance of interest in the possibility of finding scientific solutions 
to the naval architect’s hydrodynamics problems. 

Then, in 1953-4, there was another spectacle comparable to the one over 
fifty years earlier. In these two years there appeared the papers by St. Denis 
and Pierson (1953) and Peters and Stoker (1954). The former suggested the 
procedure for relating to reality the highly idealized hydrodynamic theory of 
ship motions (as it then existed). The latter provided a logical foundation for 
this idealized theory and, in particular, it set forth clearly the hypotheses 
involved. 

Neither of these two papers presented the final words on the subject; on the 
contrary, each raised more questions than it answered. But these authors were 
more fortunate than Krylov and Michell, for their papers were followed by an 
explosion of activity. By 1957, it was possible for the Netherlands Ship Model 
Basin to sponsor a symposium on seakeeping at which there were presented 
nearly fifty papers, some on the most basic scientific aspects of seakeeping 
problems. 

Now, seven years later, we have again come together to (1) assess our 
progress, (2) discuss our latest findings, and (3) orient ourselves toward further 
discoveries on "the way of a ship in the midst of the sea." My own purpose is 
concerned primarily with the first of these three, viz., to look back over the 
last few years and attempt to evaluate our progress. I shall be discussing al¬ 
ready published work almost exclusively. Of course, I cannot ignore work that 
is in progress, but a few words on such will suffice, for other speakers here 
are ready and willing to present their latest findings. Neither can I ignore the 
future, and in fact my whole presentation will be somewhat biased towards what 
I consider the most auspicious recent trends in research in our field. 

Scope 

In naval architecture, as in all branches of engineering, the designer is 
faced with immediate demands. During the past decade it has become evident 
that it would be not only desirable but perhaps even feasible to calculate the 
motions of a ship, given only a geometrical description of the ship and adequate 
information about its sea environment. Of course, shipbuilders and shipowners 
want this information now, and so it has been incumbent on the naval architec¬ 
ture profession to produce techniques as good as the state of the art allows. 

mm 
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Some important results have been obtained in this effort. However, my presen¬ 
tation is not very closely related to these efforts, for I shall discuss progress 
toward what 1 call a "scientific solution" of the problems of ship motions. 

Perhaps I should be more specific in defining a "scientific solution." By 
this 1 mean that one starts with a mathematical model of the fluid. It may be — 
and in fact must be — a highly idealized model, but the implications of the ideali¬ 
zation are probably well-understood in a general sense. To this mathematical 
model, one must add a set of boundary conditions and also possibly initial con¬ 
ditions, all of which should be stated as precisely and accurately as possible. 
Even though the fluid is represented by ar idealized model, the resulting prob¬ 
lem is always intractable. Therefore one must put forth a set of additional as¬ 
sumptions which reduces the problem to manageable proportions. When this 
analytical problem has been solved, on 3 makes calculations and compares them 
with experimental data. There will be discrepancies, and so one goes all the 
way back to the beginning and tries to relax one of the restrictive assumptions, 
find a more general solution, etc., etc. 

Two parts of this process qualify it as a "scientific solution" by my defini¬ 
tion, viz., all of the assumptions are stated at the beginning, and improvements 
are made by modifying the assumptions rather than by trying empirically to 
patch up faulty results. 

In practice, the engineer may not have the time to do all of this, or it may 
be simply impossible. Still, he must make predictions. So, if he is a good engi¬ 
neer, he improves his first poor predictions in any way he sees fit. This prog¬ 
ress requires great ingenuity and skill, and its accomplishment is an essential 
element in the working of our technocracy. However, I shall not discuss such 
attempts, important though they may be. Other speakers here are much better 
qualified for this, and I leave it to them. 

Summary of Contents 

Generally speaking, we wish ultimately to supply certain statistical infor¬ 
mation to the ship designer. We may justify such an approach either by reason¬ 
ing that he cannot really use more precise information or by accepting the fact 
that we cannot hope to provide anything better. In either case, we begin with a 
statistical description of the sea, assuming that the water motion can be de¬ 
scribed as the sum of many simple sinusoidal waves, each of which is described 
separately by the classical Airy formulas of linearized water wave theory. It 
was the great contribution of St. Denis and Pierson (1953) to suggest (a) that the 
statistical nature of the sea could be expressed by allowing the phases of these 
components to take on random values and (b) that the response of a ship to the 
sea was the sum of its responses to the various components. They only sug¬ 
gested these hypotheses, and it may be claimed that both had been made earlier, 
but these authors were die first to state them in precise, quantitative terms. 
Their suggestion (a) relates more to the oceanographer's problem, and so I shall 
not consider it here. However, (b) will be discussed in some detail, for it has 
received much attention in recent years and it is at the heart of our problem. 
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Today we may consider that it has been confirmed, for most practical purposes; 
some of the evidence will be presented. 

St. Denis and Pierson used an extremely primitive set of equations of mo¬ 
tion, and we must now conclude that those equations are quite unacceptable. 
They were the best available ten years ago, but we can now do much better. 
The use of second order ordinary differential equations to describe the rigid 
body motions of a ship is quite artificial. Under appropriate conditions and with 
proper interpretation, they provide a valid representation, but such equations 
certainly cannot have constant coefficients in the usual sense. The form of the 
equations of motion can now be stated with considerable confidence, and this 
will be done. 

Actually, the discussion of rigid body equations of motion is somewhat of a 
digression. Basically, having accepted the linear superposition principle, we 
need only to find a means of determining the transfer function (or frequency re¬ 
sponse function) of the ship. This may be done experimentally, in which case 
the whole subject of equations of motion need not be introduced, or it may be 
done by the use of hydrodynamic theory, in which case the information provided 
by the equations of motion comes out automatically. 

Nevertheless there are important reasons for studying the equations of 
motion per se. On the one hand, the direct experimental procedure treats only 
input (the exciting waves) and output (the motions). It provides no insight into 
the particular ship characteristics which cause different ships to respond dif¬ 
ferently in a given seaway. On the other hand, the hydrodynamic theory of ship 
motions is not yet highly enough developed to tell us comprehensively which 
ship characteristics are most important in seakeeping and why they are so 
important. 

Perhaps the largest portion of the literature on ship motions during the past 
decade has been concerned with the calculation of individual elements in the equa¬ 
tions of motion. Some of the methods used have been quite sound scientifically, 
and some of the results have shown quantitative agreement with experiments. 
For example, the damping (due to wave radiation) in heave or pitch can be ana¬ 
lyzed straightforwardly in certain situations, and recently it has been demon¬ 
strated how to calculate the added mass or added moment of inertia through 
knowledge of the damping. 

Although some of these analyses have led to remarkable results, there is 
also a basic difficulty of principle in using them, and this problem was already 
clearly pointed out by Peters and Stoker (1954). Since the free surface prob¬ 
lems involved must all be linearized before any progress can be made, these 
authors set out to perform the linearization in a clearly stated, rational way and 
to investigate the logical consequences of the simplification. They obtained the 
linear mathematical model from a systematic perturbation analysis, ship beam 
being the small parameter. The results were disappointing, for they obviously 
do not correspond to reality: In the lowest order motion solution, there appear 
undamped resonances in heave and pitch. The physical interpretation of this 
result is that the wave damping is of higher order (in powers of the small pa¬ 
rameter) than the exciting force, restoring force, and inertial reaction force. 
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Attempts were subsequently made to correct this situation by reformulating 
the perturbation problem. In particular, the Peters-Stoker assumption that the 
ship beam can be used as the sole characteristic small parameter is open to 
question; the amplitude oí the incident waves is a small quantity which is quite 
independent oí beam. A multiple-parameter perturbation scheme takes care oí 
this problem theoretically, but it does not lead to practicable results. The the¬ 
ory for motions of a thin ship still stands in this unsatisfactory condition. 

There seem to be at least two logical ways out of this predicament. We 
must have at least one small parameter associated with the hull geometry, in 
order that the ship travelling at finite speed may cause only a very small dis¬ 
turbance. (This is necessary for any linearization to be valid.) We could try to 
select this small parameter so that the damping due to vertical motions is in¬ 
creased in size by an order of magnitude. Such a result is realized, for exam¬ 
ple, in a flat-ship theory. But there are at least two objections to this; first, 
the practical solution of the flat-ship approximation is very difficult, involving 
a two-dimensional integral equation, and, second, the original difficulty would 
pop up again in consideration of horizontal modes of motion, namely, in surge, 
yaw, and sway. 

The second logical escape is to use a small parameter which leads to no 
resonance at all in the lowest order non-trivial solution. This is accomplished 
by assuming that the ship is both shallow and narrow, i.e., slender. Then it can 
be shown that the inertia becomes an order of magnitude smaller than in the 
thin-ship theory, whereas the damping order of magnitude is unchanged. But 
slender body theory for ships also has its problems. In particular, a theory for 
ship motions should be part of a general theory which includes steady transla¬ 
tion as a special case. We now know that slender body theory in fact gives poor 
results for the wave resistance of a ship in steady motion. 

Nevertheless, slender body theory appears promising for predictions of 
ship motions. I shall only outline the ideas involved, for, if I presented the de¬ 
tailed modern theory as it stands in the published literature, I would be out-of- 
date before this morning session is over. The following speakers will present 
some of the evidence which suggests the promise of the approach. 

It is obvious that much remains to be done in the theory of ship motions. 
There is still a problem of developing a logical approach which gives answers 
agreeing with experiments. Furthermore, most of my discussion relates only 
to motions in the longitudinal plane of the ship; we have barely begun to attack 
the corresponding problems involving yaw, sway, and roll. 

SHIP MOTIONS IN CONFUSED SEAS 

It has long been recognized that the sea is a complicated thing, but it was 
only with the war-time and post-war development of random noise theory that 
the means became available for providing a realistic description of it. 

The kind of statistical description to be employed in describing the sea de¬ 
pends on the specific aspect of the ship motions problem which happens to be of 
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immediate interest. The engineer who must evaluate the likelihood of fatigue 
failures is obviously concerned with different data and different theoretical for¬ 
mulations from the engineer who must design equipment for helping aircraft to 
land on a carrier. One might say that the ship captain will not be satisfied with 
statistical descriptions at all; he sets an absolute standard: the safety of the 
ship. So we must state carefully what problem concerns us before we choose a 
statistical model. 

Long term phenomena, such as the fatigue problem, must still be treated on 
a strictly phenomenological basis. At present, we cannot hope to specify ship 
motions or any other ship-related variables for the whole variety of conditions 
which a ship encounters in its lifetime. Even if we could suddenly obtain perfect 
oceanographic prediction data, such an enterprise would be out of sight in the 
future — and probably not even desirable. 

Also beyond the scope of this paper is the problem at the other extreme, 
that is, the prediction of the specific short-time motions of a ship, given its 
immediate, detailed history. 

We shall here be concerned with a problem somewhere between these, 
namely, to predict the probability of occurrence of various phenomena when a 
ship is travelling in certain well-defined environments. Since we are limited by 
the available tools of probability theory, we restrict ourselves to the case of a 
stationary random sea. Such an environment is probably highly non-typical, but 
its study does give valuable information and it is in any case the best we can do 
at present. 

Following St. Denis and Pierson (1953) and others, we first describe the 
seaway by the energy spectrum of the wave height. This function specifies the 
fraction of the total energy which is associated with any given band of wave fre¬ 
quencies. The assumption of an energy spectrum description implies nothing 
about the possibility of linearly superposing wave trains on each other. It sim¬ 
ply means that one measures the wave height at a point for an (in principle) in¬ 
finitely long time and then calculates the spectrum by a standard technique which 
is found in many textbooks. 

Next, one generalizes the spectral description at the point so as to obtain a 
description valid over an area of the sea. It is here that the assumption is in¬ 
troduced that the sea can be represented as the linear sum of elementary waves, 
each travelling in the manner described by the classical Airy formulas of line¬ 
arized water wave theory. If one starts with a wave height record at only a sin¬ 
gle point, many possibilities are available for making the generalization. Of all 
these possibilities, two have special meaning for us, because they correspond to 
situations of physical interest: 

1. We may assume that all of the wave components travel in the same di¬ 
rection. Such a thing does not happen in nature, of course, but it is the situa¬ 
tion which many towing tank operators have attempted to produce. 

2. We may assume that the energy in any bandwidth is distributed among 
wave components travelling in a continuous distribution of directions. Insofar 
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Understanding and Prediction of Ship Motions 

as the sea can sometimes be described as a stationary random process, such an 
assumption can lead to a description of a real sea if the angular distribution is 
properly chosen. Without question, such a description can represent the short¬ 
crestedness of the sea. The particular distribution of energy as a function of 
angle will vary greatly with sea conditions, and it is not clear at present if there 
is a standard distribution which will lead to generally useful results in connec¬ 
tion with ship motions predictions. 

Our knowledge of the hydrodynamics of ship motions is such that we are 
well-advised to limit our attention to the first of the two choices above, although 
it is unrealistic. Stated bluntly, the fact is that we have far to go on the simpler 
problem, and we cannot hope to understand ship motions in multi-directional 
seas until we first understand what happens in artificially-produced uni¬ 
directional seas. This statement need not apply if we are content to obtain fre¬ 
quency response functions strictly by experiment. But the principle purpose of 
this paper is to consider the prospects for entirely analytical predictions of ship 
motions. With such a goal in mind, we must accept that we cannot solve all of 
our problems at once. Therefore I shall restrict myself generally to long- 
crested seas, recognizing that a broader outlook is desirable and will ultimately 
be necessary. 

In calculating the energy spectrum from a given wave height record, one 
effectively discards the information which relates to relative phases of the var¬ 
ious component waves. The energy spectrum gives us information only about 
about the amplitude of the components. From the point of view of probability 
theory, all wave height records which yield the same energy spectrum are 
equivalent.* Then, if one wants a general representation of the surface eleva¬ 
tion corresponding to a particular energy spectrum, one must allow complete 
ambiguity in the relative phases of the frequency components. For the long- 
crested sea, St. Denis and Pierson (1953) proposed the representation: 

sfx.t) - cos [Kx-ojt- c( u ) 1 ( Ol 2 "cTI , (1) 

where 

f(x,u = surface elevation at position x, time t, 

U( <)12 = energy spectrum of C(x,t), a function of frequency, a, 

K = acceleration of gravity, and 

t(V) = a random variable, with equal probability of realizing any value 
between 0 and 2--.+ 

♦ That is, they are all members of an ensemble which is characterized by a sin¬ 
gle energy spectrum. We assume not only that the processes are stationary but 
also that an ergodic hypothesis is valid. 

1 A more precise definition is that p[a, < e(a) < = (a - at) '2v. 
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Such a representation yields the same energy spectrum for all values of x and 
all functions ¢ ( .). it is supposed that any particular stationary long-crested 
sea can be represented by such a formula and conversely that any realization of 
this formula (through an arbitrary choice of ¢( -)) can occur. It should be noted 
that the relationship between wave number and frequency is just that which ob¬ 
tains for small-amplitude deep-water waves. 

The "integral" in Eq. (1) has needlessly caused much controversy and con¬ 
fusion. St. Denis and Pierson carefully defined it as the limit of a sequence of 
partial sums, in a manner common in noise theory, in the theory of gust-loading 
on airplanes, etc. The conventional integral sign is always symbolic, denoting a 
limiting operation on a sequence of partial sums. In the present situation, the 
operation is not the usual Riemann integration, but it is quite properly defined 
provided that one is certain of the existence of the limit (or of the convergence) 
of the defining sequence. Proof of this point is a problem in the calculus of 
probability and will not be discussed here. 

In the theory of random noise, there is another standard representation of 
the time history of a random variable with a given spectrum. Instead of using 
a cosine function with random phase (as in (1)), one uses a sum of sine and 
cosine functions of (Kx - t), with random amplitudes which are uncorrelated 
with each other. This stochastic model was applied to sea waves by Cote (1954). 
It is entirely equivalent to the random phase model, the choice between the two 
depending primarily on the relative convenience of deriving various probability 
properties of the sea. 

From these stochastic models, one can derive all kinds of interesting con¬ 
clusions about the sea, some of which will be true. But our interest is primarily 
with the ship. St. Denis and Pierson suggested that, looking at (1) as a sum of 
many sinusoidal waves, we should determine the response of the ship to each 
component, and then the response of the ship to the actual sea would be just the 
sum of the responses to the component waves. The process of finding the re¬ 
sponse to a regular sinusoidal wave is a completely deterministic process, of 
course, but in summing (or integrating) these responses we carry the stochastic 
nature of the seaway over to the ship motions. In particular, if we use the ran¬ 
dom phase model for the sea, the ship response should be expressible by an 
integral like that in (1). 

The remainder of this section will be devoted to an investigation of the evi¬ 
dence for accepting this supposition of St. Denis and Pierson, i.e., that the ship 
response to a random sea is just the sum of its responses to the various fre¬ 
quency components. The accumulation of such evidence during the last few 
years is striking, and, prejudging the case somewhat, I believe that the chapter 
which was opened by St. Denis and Pierson in 1953 is now almost concluded. 

The most straightforward approach to verifying the superposition principle 
for ship responses is to conduct model tests in different sea conditions. In each 
test the wave height and motions spectra are measured, and, from these, the 
amplitude of the frequency response (f.r.) functions of the ship can be calculated. 
If different conditions yield the same f.r. functions, then the ship can be de¬ 
scribed as responding "separately” to each frequency component, the total 
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response being the sum of the responses to the various frequencies. Alternately, 
one may use the f.r. function amplitudes obtained from one test, together with 
the wave height spectrum in a second test, to predict the motion spectra in the 
second test. Comparison of these predictions with measured spectra then pro¬ 
vides an indication of the degree of validity of superposing responses. 

Let us be more specific. Suppose that the energy spectrum of the wave 
height at the center of gravity of the ship* is given bÿ <l>wj o and that the f.r. 
function in heave is given by rh( ). Then the energy spectrum of the heave 
motion will be: 

"W ITV ■> 2 'W ■> • 

If both energy spectra are known, this formula yields the magnitude of Th( - 
In a single test, the quantity Th( . ) can always be found from this equation; 
defining such a ratio of two energy spectra implies nothing about the physical 
processes involved. However, in a second test with a different <t>ww(,), the same 
I,/ , ) will be obtained only if the ship responds "separately" and linearly to 

each frequency component. Thus a simple direct means is provided for check¬ 
ing the principle of superposition and thus for checking the linearity of the whole 
process. 

Only the amplitude of 1,/ , >, that is 1,/ ) , is found by the above proce¬ 
dure. Such a result is to be expected of course, for the calculation of an energy 
spectrum from a given test record washes out all phase information. But for 
some purposes it is necessary to know the actual complex value of 1,/ ). For 
example, if we want to predict bow emergence, the occurrence of slamming, 
deck wetness, etc., we must be able to relate the instantaneous ship position and 
attitude to the simultaneous free surface shape. 

The complete evaluation of 1,/ , ) can be made from random seas tests, 
through measurement of cross-spectra. For example, if <l>hw( ) is the cross¬ 
power spectrum of heave and wave height, then 

(l>, ( ‘ ) T. ( ) ( ) • 

Since <l\vu( ) is a real quantity, this equation states that the cross-spectrum has 
the same argument in the complex plane as the f.r. function. 

A remarkable series of such experiments has been performed at the David¬ 
son Laboratory in recent years, in which the limits of validity of the linearity 
hypothesis have been extended more and more. (See Dalzell (1962a,b).) 
Long-crested random seas were created for a great range of degrees of sever¬ 
ity. Figure 1, taken from Dalzell (1962b), shows the wave height power spectra 

*The spectrum must be properly adjusted so that "frequency" is really "frequency 
of encounter." See St. Denis and Pierson (1953) for the frequency mapping. 

!ln general, the f.r. function will depend on the angle of incidence of the waves, 
as well as on -. 1 am now assuming long-crested waves, moving parallel to the 
ship center plane. 
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which were used. When the 5.82 ft ship model is scaled up to a 392 ft prototype 
length, wave conditions A, B, and C correspond respectively to sea states 5, low 
7, and high 7. The hull form used was that of a DD692 destroyer. Wave condi¬ 
tion C was the most severe that could be produced in the Davidson Laboratory 
tank; from Fig. 1 it may be noted that the significant wave height for wave C was 
9.3% of the model length. 

Figures 2-4 show typical results from Dalzell (1962b). They present the 
pitch f.r. function, both amplitude and phase, for three speeds which correspond 
to F = 0, 0.18, 0.37. The abscissa of these curves is a non-dimensional fre¬ 
quency, obtained by dividing the actual frequency of encounter by the frequency 
of a wave with wavelength equal to model length. The ordinate for f.r. function 
amplitude is Tp^) IL/t; and for phase the ordinate gives the lag of maximum 
bow-up pitch after the wave crest at the longitudinal center of gravity (LCG), in 
degrees. These quantities were calculated from wave and motion records by 
standard spectral techniques, although some manipulating of the wave height 
record was necessary, since the probe was located ahead of the model bow, and 
surface elevation was required at the LCC.',I 

Fig. 2 - Dalzell's pitch frequency response function, 
Model DD 692 Froude number = 0 (from Dalzell (1962b)) 

’¡‘The reference elevation at the LCG was the wave height which would have oc¬ 
curred there in the absence of the model. 
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Fig. 3 - Dalzell's pitch frequency response function, 
Model DD 692 Froude number = 0.18 (from Dalzell (1962b)) 

From Fig. 2, it is seen that the f.r. function for F = 0 is practically the 
same for each wave condition. The statistical design and analysis of the exper¬ 
iment will not be considered here; it will suffice to point out that the confidence 
to be attached to the f.r. function drops at the ends of the curves. No results 
were presented at all for cases in which either spectral density dropped below 
a certain value (10% of its peak). 

Figure 3 shows the same results for F = 0.18 and Fig. 4 for F = 0.37. In 
the latter, it is clear that nonlinearities are making themselves felt. In partic¬ 
ular, the pitch amplification factor decreases as wave conditions become more 
severe; this is the trend which one usually expects when nonlinearities become 
non-negligible. 
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It must be appreciated that Fig. 4 represents an extraordinarily severe con¬ 
dition. In fact, one must really stretch his imagination to conceive of a destroyer 
captain maintaining a speed such that F = 0.37 in a high state 7 sea. The fact 
that our hypothesis about superposition is not so good in this case should not 
cause us too much unhappiness. At moderate speed (f = 0.18) it is still rather 
good for the high-7 sea state, and the breakdown occurs only as speed increases 
beyond this. Five years ago, the most sanguine investigators did not dare to 
hope that the hypothesis could ever be pushed as far as Dalzell has done. 

Similar results can be observed for heave and bending moment f.r. func¬ 
tions. The respective figures of Dalzell will not be reproduced here. For 
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Fig. 4 - Dalzell's pitch frequency response function, Model DD 692 
Froude number = 0.37 (from Dalzell (1962b)) 
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bending moment the hypothesis of superposability proves somewhat poorer than 
for pitch and heave motions. At F = 0.18 there is already considerable discrep¬ 
ancy in bending moment f.r. functions computed from spectra in different sea 
states, and coherency is found to run much lower in general. 

Gerritsma (1960) arrived at similar conclusions in tests with Series 60 
models. His approach was somewhat different from Dalzell's. Gerritsma found 
the f.r. functions in heave and pitch by three different methods: (1) a direct de¬ 
termination from measured ship responses in small amplitude regular waves; 
(2) calculation from the second order ordinary differential equations of motion, 
after an experimental determination of coefficients in the equations; (3) tests in 
irregular waves, in the manner of Dalzell. 

Most of Gerritsma's regular-wave experiments were performed with a 
wave amplitude 1/48 of the model length, L. He also tried larger amplitude 
waves, 1/40L and 1/30 L, for the CB = 0.70 and CB = 0.80 models. There was 
generally excellent agreement among responses to the waves of various ampli¬ 
tudes, but a reduction in response appeared in some cases for the 1/30L wave. 
There was no pattern to the lack of linearity which could be associated sys¬ 
tematically with either speed or wavelength. (Froude number was varied be¬ 
tween 0.15 and 0.30, VL between 0.75 and 1.75.) 

These regular waves were much less steep and much smaller in amplitude 
than the severe irregular waves used by Dalzell. It appears that nonlinearities 
make themselves felt more easily in regular waves than in irregular waves. 
This has also been observed recently by Ochi (1964),* who showed that f.r. func¬ 
tions must be obtained from small amplitude waves, if regular waves are to be 
used at all for their determination. These f.r. functions can then be used in 
confused seas of much greater severity. One is tempted to argue that in a con¬ 
fused sea the amplitude of a wave of any particular frequency is infinitesimally 
small and so the f.r. functions for infinitesimal amplitudes should be used- 
even though the actual wave heights and steepnesses may be very large. Of 
course, such an argument is illogical and explains nothing. For the moment, we 
must simply accept the phenomenological observations described above. 

Gerritsma also performed a series of tests in which he determined the 
coefficients (i.e., added mass, added moment of inertia, damping, buoyancy, and 
couplings) in the differential equations of motion for heave and pitch. This was 
done by forcing the model to oscillate in various ways in calm water. Then the 
model was restrained and towed in regular waves, measurements being made of 
the heave force and pitch moment. With all of these quantities known, he solved 
the equations to obtain the f.r. functions. 

*Ochi has also pointed out that acceleration measurements are much more sen¬ 
sitive to nonlinearities than are displacement measurements. This is simple 
to explain. In regular waves with frequency of encounter w, we could represent 
the effects of nonlinearities by expressing the vertical displacement of a ship 
reference point by a Fourier series, the terms being sinusoidal with frequency 
no;, n - 1, 2.If acceleration can be expressed by differentiating this series 
twice, then the terms in the Fourier series for acceleration will be multiplied 
respectively by n2, so that the higher order terms are relatively larger than in 
the displacement Fourier series. 
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Finally, he conducted a few tests with the CB = 0.70 model in irregular 
waves and obtained the f.r. functions in exactly the way Dalzell did. 

Figure 5 is drawn from data in Gerritsma's paper and shows pitch and 
heave f.r. functions for the Series 60 model (cB = 0.70) at F = 0.20. Heave am¬ 
plitude, z0, has been divided by wave amplitude, r, and pitch amplitude, 0 
has been divided by the maximum wave slope of the sinusoidal wave, a . “ is 
the i elative phase between heave and pitch (positive for heave lagging pitch) 
Five curves appear in each section of Fig. 5: 

1. Response measured in regular waves. 

2. Response calculated from the equations of motion, with coefficients de¬ 
termined experimentally and forcing functions determined from tests of re¬ 
strained models in regular waves. 

3. Response calculated as in (2), but with all coupling coefficients arbi¬ 
trarily set equal to zero. 

4. Response from wave and motions spectra. 

5. Response from wave and motions cross-spectra. 

(Of course, (4) does not apply to the figure for phases, since no information on 
phase is obtainable from ordinary power spectra.) It is seen that the f.r. func¬ 
tions are practically identical except for those of (3). At the moment, the effect 
of couplings is of only incidental interes', and these results (i.e., (3)) are pre¬ 
sented here primarily for later convenience. 

It must be emphasized that Gerritsma's tests do not go so far as Dalzell's 
in proving the validity of the superposition hypothesis. The irregular waves 
used by Gerritsma are very mild by comparison. However, Gerritsma's use of 
three methods of measurement — with his demonstration of their equivalence — 
is10jiar-reaching imP°rtance. In a direct way he has proved the usefulness and 
validity of the old procedures of testing in regular waves. Secondly, since these 
ordinary frequency response investigations are appropriate tools for studying 
ship motions in random seas, other methods of characterizing the system should 
be equally valid if such methods are equivalent to finding the f.r. functions. In 
particular, the measured response of a ship to a single transient wave can yield 
as much information as a long sequence of regular wave tests. Moreover, such 
a test is purely deterministic, and there are none of the special difficulties which 
are so characteristic of tests in random seas (real or artificial). 

I have been consistently restricting myself to consideration of heave and 
pitch motions, but this section would be lacking without some mention of recent 
work on the problem of superposing ship roll responses. One is inclined to be¬ 
lieve intuitively that roll motion will involve stronger nonlinearities than other 
ship motions, and regular wave experiments seem to confirm this intuitive feel¬ 
ing. Nevertheless, at least two papers have appeared which present irregular 
wav‘ ' ■ data indicating that roll responses can indeed be superposed in the 
ö.u if se as heave and pitch responses. 
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Fig. 5 - Gerritsma's pitch and heave frequency re¬ 
sponse functions, Model: Series 60, CB = 0.70 Froude 
number 0.20 (from Gerritsma (I960)) 
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The first of these papers was presented at the Wageningen meeting by Kato, 
Motora, and Ishikawa (1957). They ” 'strained their model to remain in a beam 
seas attitude, with natural confused waves. The model had zero forward speed. 
Its roll amplification factor, Tr( . v , was determined in tank tests with regular 
waves, and this operator was used with the measured wave height energy spec¬ 
tra to predict roll response energy spectra in random waves. The calculations 
were then compared with measured energy spectra for roll, with good agree¬ 
ment being found. The wave and roll amplitudes were rather small, and so the 
results were not conclusive. Also, the paper lacked certain model details, and 
so one does not know, for example, whether the model had bilge keels. Never¬ 
theless, these experiments were among the first to be conducted for checking 
the superposition hypothesis, and the authors' general conclusions have since 
been corroborated. 

Earlier this year, Lalangas (1964) published a report on some Davidson 
Laboratory experiments directed toward the same goal. A Series 60, cB = 0.60, 
model (with bilge keels) was used, and the statistical design of the experiments ’ 
was quite similar to Dalzell's. Only beam seas were studied, but forward speed 
was included, up to a Froude number of 0.156. Essentially the result was the 
same as in the tests of Kato, et al., viz., superposition does work for roll re¬ 
sponses. The irregular waves in Lalangas's tests varied in severity up to a 
low state 7. 

In a certain sense, we are back where we were eleven years ago, that is, we 
now turn our attention again to the behavior of ships in sinusoidal waves. There 
is, of course, one major change: We now know that the study of such idealized 
environments has a real relevance to the physical problem which occurs in na¬ 
ture. Moreover, regular wave problems have not been ignored during this dec¬ 
ade. There has been much progress, although unfortunately it will not be possi¬ 
ble to make such definitive statements in this area as in the area of random sea 
phenomena. 

THE EQUATIONS OF MOTION 

Equations in the Frequency Domain 

A ship in a seaway can be completely characterized (for studies of its mo¬ 
tions) by a set of six frequency response functions depending on ship speed, wave 
encounter, and angle of wave encounter. If these f.r. functions are known, the 
ship can be treated as a "black box." An input wave system is selected which is 
a sum (or integral) of many sinusoidal waves, and the output is calculated by 
multiplying each input wave amplitude by the appropriate value of the f.r. func¬ 
tions and adding all of the responses. The experiments cited in Chapter II have 
demonstrated the validity of these statements at least with respect to heave and 
pitch motions in head seas and roll motions in beam seas. We may perhaps ex¬ 
pect difficulties in following seas (see Grim (1951)) and also with the other 
modes of motion. In the case of following seas, it is well-known that non- 
linearities are important, and for yaw and sway we simply do not have much 
data. We shall proceed on the premise that the same laws of linearity apply in 
these other conditions, but it must be recognized that our conclusions may be 
valid only for those modes which have been extensively studied experimentally. 
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The i.r. functions may be found by a straightforward set of experiments in 
regular waves, by experiments in irregular waves (as by Dalzell (1962a,b) and 
others), or by tests in transient waves (Davis and Zarnick (1964)). 

The regular wave tests are the simplest in principle, but there are objec¬ 
tions against them: (1) A separate test must be run for each frequency of in¬ 
terest, at each speed and at each heading. (2) With most wavemaking installa¬ 
tions there is a question about the regularity of "regular waves." Harmonics 
may be non-negligible, causing large errors if ignored. (3) The amplitudes 
must be kept very small, to avoid nonlinear distortion of the f.r. functions. 

The irregular wave tests are better in each of these three respects. In 
particular, the whole frequency spectrum is covered in a single well-designed 
test. However, here there is another objection: The test run must be long 
enough for the records to be analyzed statistically. In most tanks this is im¬ 
possible, and so several test runs are made and the records are patched to¬ 
gether. 

Tests in transient waves, that is, in wave pulses or wave packets, avoid the 
difficulties of both regular and confused sea tests in that a single record of rea¬ 
sonable length provides all of the information necessary for finding the f.r. func¬ 
tions. The price one pays here is in meeting the stringent requirements on 
measurement accuracy. 

Sometimes it is desirable to characterize the ship in a more detailed man¬ 
ner than is possible with the "black box" methods. A procedure has been de¬ 
veloped for this purpose by several investigators, and, although it requires 
more testing than any of the above mentioned procedures, it also provides more 
information. In mathematical terms it may be described as follows: 

A sinusoidal wave system exerts on the ship a force and moment, which can 
be represented by the expressions FjReV*“4*'' j = 1, 2, ..., 6. There may 
be other external forces and moments as well, such as oscillatory propeher 
thrust, control surface forces, and artificial constraint forces on the model. 
Let these be represented by GjRcfe^ ' t+ ' ^ . Finally, there will be forces 
which are induced by the motions of the ship itself. If the instantaneous dis¬ 
placement in the k-th mode is represented by xkRe{e1("t + ik)} , then we assume 
that the motion-induced forces and moments are proportional to the amplitudes 
Xk, but of course they may have phases which are quite different from the mo¬ 
tion phases, ?ik. This troup of forces includes inertial reactions. 

It must generally be accepted that all modes of motion interact with each 
other and with all of the force and moment components. The simplest possible 
relationship is a linear one, and so we assume that the excitations, external 
constraints, inertial reactions, and hydrodynamic and hydrostatic motion- 
induced forces are linearly related: 

Re Xte 
i(wt + 8k ) 

Re 'i6 I + Re Gje 
i ( a> t ♦ 0 j ) 

j = 1.6. 

where Ajk is a complex matrix of coefficients. 

J * 
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The above set of equations can be solved for the quantities xkeisk, provided 
that the matrix, Ajk, and the forcing functions are known. Such a solution then 
effectively expresses a set of six f.r. functions, and so it is entirely equivalent 
to the previous approaches. Of course, this method requires knowledge of the 
matrix, Ajk, and of the forcing functions. These can be obtained by a straight¬ 
forward but tedious set of experiments, as suggested by Haskind and Riman 
(1946) and as carried out partially or completely with specific models by Golo- 
vato (1957), Gerritsma (1960), and others. Such experiments are in effect set 
up to correspond to special cases of the above equations, as follows: 

1. If the model is completely restrained, then xk = 0 for all k, and so 

G c' * = - F e,fi 
J J 

Such an experiment provides measurements of the wave excitation force and 
moment; the quantities Gje1'J are obtained from dynamometers in the struc¬ 
ture which restrains the model. 

2. If there are no incident waves, then Fi o for all k, and so 

6 

H AjkXke k Gj e‘ J , j l.6. 

The model can be forced to oscillate in selected modes only, so that the A k can 
be determined. For example, if k 3 corresponds to the vertical velocity or 
force component, and if the model is forced to oscillate in heave only, the set of 
equations reduces to 

Aj 3 X, e ' * 3 = Gj e'Hi , j = 1.6. 

which allows the determination of A,..A . 
13 6 3 

3. If the model is completely free to respond to incident wave excitations, 
and if there are no extraneous sinusoidal forces (such as oscillatory propeller 
thrust), then Gk = o for all k, and 

E AjkXkeiSk = F eifi , j = 1.6. 
kM 

This experiment is redundant if performed with (1) and (2) above, and so it can 
be taken as a check on the validity of the whole approach. This was done in the 
experiments of Gerritsma (1960) described in the preceding chapter. 

This method is similar to the method of finding f.r. functions by direct 
measurement in regular waves, in that the ship behavior is determined at dis¬ 
crete frequencies and the data are then smoothed to provide continuous curves 
of the frequency dependence on all variables. In particular, the forcing functions, 
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F cif and the system parameters, Ajk, are all functions of frequency,* so that 
the outputs, XkeiSk, and the f,r. functions are explicitly functions of frequency. 

Such an approach is often described as "working in the frequency domain." 
The basic set of equations above is valid only if all variables depend sinusoidally 
on time, at a fixed, given frequency. The utility of this approach follows from 
two further conditions: (1) The frequency domain analysis can be used for non- 
sinusoidal motions through use of Fourier transform techniques (for transient 
disturbances of limited duration) or generalized harmonic analysis (for station¬ 
ary random disturbances). (2) Some of the coefficients, Ajk, can be interpreted 
physically in such ways that engineering estimates can be made of the importance 
for motions of some ship parameters. The first of these points has been dis¬ 
cussed at some length in the previous chapter. The second will be considered 
further here. 

For simplicity, let us consider the experiment in which the model is forced 
to oscillate sinusoidally in heave only, at angular frequency . We would meas¬ 
ure the amplitude of heave, X3, the six force and moment amplitudes, c.^ and 
the six relative phases, ( - s3). Then we would calculate the six coefficients: 

Each of these would be generally a complex number, the value depending on .. 

In particular, let us look at A33. It is related to the f.r. function describing 
the ship; it equals heave force divided by heave response. We do not know at 
this point the equations of motion of the ship, but it is an elementary problem 
to write down an ordinary first order differential equation with constant coeffi¬ 
cients which would yield the value ( 1 A33) for its f.r. function at a particular 
frequency. In fact, if we set A33 i . b + c, with b and c real, then the equation 

b X, + c x3 f( t) (2) 

yields exactly (1 A33) as its f.r. function. By considering b b( o and c c( ), 
one could use this equation as a description of the pure heave motion of the ship. 
Such an approach is quite objectionable mathematically, for in simply stating the 
differential equation above we have implied that we have described the system 
response for any input, f(t), whereas actually Eq. (2) has no meaning unless 
f(t) is a sinusoidal function of cime. To quote Tick (1959), "Differential equa¬ 
tions with frequency-dependent coefficients are very odd objects." The equation 
has significance only inasmuch as it yields the proper frequency response. In 
other words, it is not a differential equation at all but is simply another way of 
writing down the frequency domain properties of the system. 

The naval architect would generally raise a different objection to the use of 
the above equation: The physical problem involves the dynamics of a rigid body, 
to which Newton's law is applicable, and, since this law relates the forces to the 

♦ They are also functions of relative wave heading, unless we consider only head 
seas. This point will not be repeated every time it comes up. 
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second derivative of displacement, the equation should be of second order. In 
other words, it should contain a term mx3, where m is the mass of the ship. The 
differential equation to be chosen is now not unique, without further considera¬ 
tions, whereas Eq. (2) above was uniquely determined by the value of A (o). 
Now, any equation of the form 

a Xj + h x3 + cx ff t ) (3) 

will suffice, provided only that 

A3 3 i ' l) + ( C - • *’¡1 ) . 

The only a priori restriction on the values of a and c is that the linear combina¬ 
tion ( c - . 2a) should have the proper value. 

It is here that a physical idea is introduced. We know that if a ship is given 
a steady displacement in heave from its equilibrium position, there will be a 
steady restoring force approximately proportional to the amplitude of the dis¬ 
placement. We let the quantity cx denote this steady force component, and we 
note that c is independent of frequency, <*,. Then the parameter a can be uniquely 
determined from A33. 

Quite often the quantity cx is referred to as a buoyancy force, but it must 
be recognized that this is not entirely true. It is easily shown experimentally 
that c varies with speed, and it does in fact include hydrodynamic as well as 
hydrostatic effects. 

The quantity a will usually (but not always!) be found to be larger than the 
ship mass, m. It is then common to define an "added mass" equal to (a - m); 
this is the apparent increase in inertia which the ship experiences because it is 
accelerating the surrounding water. Of course, it is not a quantity which is 
characteristic of the ship, for in fact it depends cn frequency. 

Finally, the quantity b, which is uniquely determined from the value of A 
can be considered as a damping coefficient. This is easily seen from Eq. (3).33 
At least in the case of heave motion, most of the damping will appear physically 
in the form of radiated waves, and this quantity can be more reliably calculated 
than any of the other parameters considered here. 

The major advantage of this approach is that to some extent the dynamics 
of the ship itself can be separated from the hydrodynamic problem. This ap¬ 
pears most clearly when the above ideas are extended to include all six degrees 
of freedom. In the rotational modes, in particular, the moments of inertia can 
be varied easily without changing the hull shape or the hydrodynamic forces or 
moments. If the coefficients Ajk are all known and if they have been broken 
down into hydrodynamic and ship inertial components, the changes in Ajk (and 
thus in the motions) due to variations in mass distribution can be calculated. 

Furthermore, ship motions are often most critical near resonance, for then 
they are largest in amplitude. Near resonance, the amplitude is very largely 
controlled by the amount of damping, and it is the damping which is most readily 
calculated in the above framework. 

23 



Ogilvie 

It is apparent that there can be considerable utility in representing the mo¬ 
tion by a set of second order equations, generalized from (3), 

6 

L {ajiA + hjk¿k + cjkxk} fjit) + j 1.6. (4) 
k " 1 

where the f^t) represent wave-induced excitations and the represent all 
other external forces and constraints. However, it is worth reiterating that 
these are not really equations of motion in a proper sense. They are valid only 
if the right hand sides all vary sinusoidally at a single frequency and if the con¬ 
stant coefficients on the left have the values appropriate to that frequency. As 
stated earlier, these equations describe the frequency-domain characteristics 
of the system, and a non-conventional derivation was presented here to empha¬ 
size this point. 

Golovato (1959) gave direct experimental proof that these second order 
equations cannot be used to describe non-sinusoidal motions. He conducted 
transient tests with a ship model, giving the model an initial pitch inclination 
and allowing it then to undergo a transient motion, returning to its equilibrium 
attitude. He found that the response could not be represented as that of a simple 
damped spring-mass system, which would have been appropriate to a second 
order ordinary differential equation with constant coefficients. An even more 
startling result has recently been produced by Ursell (1954). For a heaving 
body which is released from a position above its equilibrium height and allowed 
to come to rest, he found analytically that there are only a finite number of 
oscillations, after which the body gradually approaches its equilibrium position 
in a non-oscillatory manner. This cannot be explained in terms of equations such 
as (4), but it will be shown presently that the true equations are integro-differen- 
tial equations, and these do allow of such solutions. 

In the full generality of six degrees of freedom, the ordinary differential 
equations are still not simple to work with. There are 108 "constants” on the 
left, each being a function of frequency. Also, all of the parameters in general 
depend on wave heading as well as frequency. 

In order to make the system manageable, several simplifications have been 
tried by various investigators. The most straightforward is to limit considera¬ 
tion to head and following seas. This means that three degrees of freedom can 
be eliminated,* and the number of coefficients is reduced to 27 — these not being 
functions of heading. Of course, there is nothing wrong with this simplification, 
provided one is satisfied with results valid only in head or following waves. 

Frequent attempts have also been made to neglect couplings between modes. 
This was done, for example, by St. Denis and Pierson (1953), and it has appealed 
to many investigators since then. However, Gerritsma (1960) has shown this is 
dangerous. He calculated responses using experimentally obtained frequency- 
dependent coefficients, both with and without couplings. Some of his results were 

*We are neglecting phenomena such as the unstable rolling which occurs in fol¬ 
lowing seas when frequency of encounter equals twice the natural frequency of 
roll. See Grim (195¿), Kerwin (1955), Kinney (1963). 
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already reproduced here in Fig. 5. The effects of couplings between pitch and 
heave modes are clearly not negligible. Couplings of pitch and heave with surge 
may be negligible. 

Much effort has been devoted to calculating some of the coefficients in these 
equations, and in fact the following chapters will be concerned with this problem. 
We defer consideration of such analyses for the moment, until we have discussed 
the nature of the true equations of motion in the time domain. 

Equations in the Time Domain 

We would like to find equations of motion which are valid whatever the na¬ 
ture of the seaway; we want to avoid the difficulty encountered with Eq. (4), viz., 
that the forcing functions had to depend sinusoidally on time. From the nature 
of Eq. (4), in particular from the frequency dependence of the coefficients, Tick 
(1959) suggested that the true equations would involve convolution integrals. In 
fact, this had already been demonstrated many years earlier by Haskind (1946). 
Unfortunately, there were some errors in Haskind's work, but this basic conclu¬ 
sion was correct. 

If we are to obtain the actual equations of motion, we must start by formu¬ 
lating the complete mathematical problem involving the dynamics of the ship (as 
a rigid body), the description of the sea, and the hydrodynamics of the ship-water 
interactions. This general problem will be treated to some extent in later chap¬ 
ters, and other authors at this meeting will devote their papers to it. For pres¬ 
ent purposes, we shall look simply at the form of the equations, and for this we 
follow closely the work of Cummins (1962). The net result will be a set of equa¬ 
tions analogous to (4) in that there will be several undetermined parameters and 
functions. These must be determined either from experiments or from separate 
hydrodynamic analyses. 

Cummins makes one major assumption: linearity of the system. This 
means much more than the linearity of Eq. (4). In that case, linearity implied 
that if the ship were subjected to a sum of two excitations, both sinusoidal at the 
same frequency, the total response would be the sum of the separate responses. 
Now the assumption is extended to cover excitations of any nature. In particular, 
if a ship is giwiBi-an-impulse of some kind, it will have a certain response lasting 
much longer marf the duration of the impulse. If the ship experiences a succes¬ 
sion of impulses, its response at any time is assumed to be the sum of its re¬ 
sponses to the individual impulses, each response being calculated with an appro¬ 
priate time lag from the instant of the corresponding impulse. These impulses 
can be considered as occurring closer and closer together, until finally one in¬ 
tegrates the responses, rather than summing them. 

This is an approach to water wave problems which was very popular in the 
days of Kelvin, but which is generally out of style today. However, modern un¬ 
derstanding of analogous problems in control theory makes this approach more 
useful than ever. In a sense, we find that the existence of the free surface 
causes the physical system to have a "memory": What happens at one instant of 
time affects the system for all later times. This, of course, is very obvious; 
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for example, if we drop a pebble into a pond, waves continue to move about for a 
very long time. If the fluid were not viscous, the waves would appear forever. 
This is in considerable contrast to the common situation in which a body moves 
through an ideal fluid filling all space. In such cases, all motion stops instantly 
if the body stops. Thus it can be seen that the impulse response method exhibits 
very clearly the basic contribution of the free surface to the problem. 

Following Cummins, we consider first the case of a ship with no forward 
speed. Let x denote the position vector of a point on the hull surface, s, meas¬ 
ured in a fixed reference system, and let x' be the position vector of the same 
point on the hall surface, measured in a reference system moving with the hull. 
The two systems of axes are assumed to coincide when the ship is in its equi¬ 
librium position. When the hull is displaced from equilibrium, the deflection of 
any point of the hull can then be expressed: 

X “ X 

k = l 

where 
k 1. 2,3, 

(5) 
a;(0 [lit - a ' x] - k 4,5, 6. 

ak( n is a deflection in surge, sway, or heave, respectively, for k = 1, 2, or 3, 
or a rotation in roll, pitch, or yaw, respectively, for k = 4, 5, or 6. It is as¬ 
sumed that all t ) are small enough that only second order errors are in¬ 
curred in the vector addition of rotations. Also, we can use x' as the first 
argument of ak , causing thereby only second order differences in the results. 

The velocity potential, <ikx, n, must satisfy the following conditions:* 

6 

a) on the hull 

(6) on x, - o , 

c) a radiation condition for x.2 , x 2 -* od 

d) I V4>l - ® as x3 -* -œ 

It is easily seen that only second order errors arise if the body boundary condi 
tion is applied at the mean position of the hull, rather than on its actual moving 
surface;f all of the boundary conditions are then applied on fixed domains. 

*1 am defining t> such that its gradient equals the velocity vector. For athorough 
derivation of the free surface conditions, see Stoker (1957) or Wehausen and 
Laitone (1950). 

'This will not be the case when forward speed is included. 
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Cummins proposed a solution in the following form 

f> 6 ,.- 
-I'fx, t) = 2] v*) x) * Z] 

k=l k 1 - 
X, t - ' ) a. ( 7 ) dr , 

where fk(x) satisfies: 

a) 0,. - 0 

b) 
»Vk Í 11 ■ 'x 

on x3 0 , 

k 1, 2, 3 

•ik-3xx- k 4,5,6. on s0 

with so the mean position of the hull, and where \k(x. t ) satisfies: 

(7) 

(8) 

o V k ,1Vk 

3 

a) — 

b) 

__ + _ g , on X. 0 , 
't 2 f’X , J 

0 

c) 
9vk . _ "dh 

^ Bx , 

<1) Xu 0 

on S„ , 

on x3 0, for t 0 

for al 1 X when t 0 , 

(9) 

There is no particular difficulty in showing that (7), along with conditions 
(8) and (9), does satisfy (6a) and (6b). The verification will not be carried out 
here. In any case, Cummins did not suggest how to find any of the twelve func¬ 
tions, /k and yk , and it is simply assumed that they can be found and that they 
will satisfy the other conditions of the problem, namely, (6c) and (6d). It is 
much more interesting to investigate the meaning of the different parts of the 
solution. 

The functions vk(x) are the velocity potentials fur separate, much simpler 
problems. These functions are originally defined only in the fluid region, that 
is, outside the body and in x3 < o. But condition (8a) implies that yk is anti¬ 
symmetric with respect to the x3 = o plane, and so we can interpret it physi¬ 
cally in a much larger region. For example, consider the case of the heaving 
ship. That is, let a3( t) be the only non-zero motion variable. We can think of 
the body being extended by having its reflection in the free surface added to it, 
the whole space outside of the body now being filled with fluid. If the extended 
body now moves as a unit, the velocity potential for the hydrodynamic problem 
will be just i3(t) 0,( x), with 03(x) satisfying (8a) and (8b). This is a classical 
Neumann problem, and the same picture fits the pitch and roll modes. 

For the other three degrees of freedom, the physical problem to which 
0k(x) pertains is not so clear. For k i (surge), for example, the body must 
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be completed by having its reflection added to it, but the reflected half-body 
must move oppositely to the real body. The same situation obtains for sway 
and yaw. 

The condition (8a) is the appropriate free surface condition for problems of 
oscillations at high frequencies. Flows under such conditions are characterized 
by having no horizontal component of velocity at the undisturbed free surface. 
A more important property of the 0k-flows is the fact that they represent the 
instantaneous fluid response to the motion of the body. If the body is moving and 
then suddenly stops, the entire fluid motion associated with the \ potentials 
stops. 

As was suggested earlier, the integral terms of the proposed form of solu¬ 
tion represent the effects of the free surface. For example, let the ship be at 
rest until, at t o, it moves impulsively with a large velocity in the k-th mode 
for a short time. We may idealize this situation by setting 

ik(t) S(t) , the Dirac function. 

For all t >o, 

<!>(x,t) = 6( t ) 0k( X) + I X'k(X, t-t) 5(r) dr 
- CD 

S(t) 0k(x) + Vk(x, t) 

This result shows that, for t >0, vk(x. t) is just the velocity potential of the 
motion which results from the impulse of body velocity at t =0. Furthermore, 
vk satisfies the ordinary free surface condition, (9a), and a homogeneous Neu¬ 
mann condition on the body, (9b). Thus vk(x, t) represents the dispersion of 
waves caused by the impulse, and this dispersion takes place in the presence of 
the unmoving ship hull. 

The potentials for the instantaneous response, ipk(x), provide initial condi¬ 
tions on the potentials which describe the later motion, Yk(x, t). If we set 
Vt) &(t), the fluid particles which initially made up the free surface, x3 o, 
are given a vertical displacement, 

In the linearized theory of free surface waves, the surface elevation is given by 

and, at t o+, this quantity must equal the surface elevation due to the impulse. 
This, in fact, is the meaning of Eq. (9c). 
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The solution, (7), of the free surface problem is of just the form commonly 
used in control theory. The motion of the body is considered to be made up of a 
sequence of impulsive motions; for each impulse there is an immediate fluid re¬ 
sponse (due to the incompressibility of the fluid) and an extended response, the 
latter lasting much longer than the impulse itself. The quantities àk(t) are the 
inputs and quantities vkfx, t) are the impulse response functions for the veloc¬ 
ity potential. 

If the ship has forward speed, the situation is more complicated in practice, 
but in principle the approach is the same. Let us again use two coordinate sys¬ 
tems, one moving steadily with velocity v, where lv| equals the mean speed of 
the ship, the other system being fixed to the ship. We can then define the vector 
displacement of a hull point by the same expressions as in (5). 

Let the potential be represented generally by: 

<l>(x,n - -Vx, + ri0(x) + cp,( X, t ) , 

where [-Vx, + ;0(x)] is the potential for steady flow past the ship fixed in its 
undisturbed position, that is, -;>0(x) satisfies: 

3 ^ r 

3x 2 * i 
— ^ 0 on X, 0 . rjv J 

where 

0 • Yn 0 on So 

v0(x) X V[-Vx, + ;f0(x)]. 

Again Sn is the surface of the undisturbed hull. Then the free surface condition 
on :p, ( X, t ) is readily found: 

32^. 32 cp, 

3t 3x, 3x 2 k 14 'xj 
0 on x3 : 0 • (10a) 

The body boundary condition on p,(x, t) is not so readily determined, for it 
may be shown that the body condition must be satisfied on the exact, instanta¬ 
neous surface* of the hull. However, Timman and Newman (1962) have proved 
that a consistent first order theory results if the following condition is used: 

n • Vcp, n • 
3'2(X, t ) 

3t 
Vx [a(x, t ) * y0( X)] (10b) 

If we tried to apply the time-dependent boundary condition directly on the mean 
surface of the hull, we would have only the first term in the braces. The second 

*This has not been done properly by such eminent authors as Havelock and 
Haskind, and it has led to some long-standing wrong ideas. For a thorough 
discussion, see Timman and Newman (1962). 
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term may be considered as a correction for two effects: (1) The steady velocity 
potential satisfies a condition on the wrong surface, viz., on the undisplaced hull 
surface. (2) Rotational displacements of the ship interact with the steady flow 
to produce an additional cross-flow. Both of these effects yield contributions of 
the same order of magnitude as the desired perturbation effects. 

Now we state that a solution can be written in the form (cf. Eq. (7)): 

6 6 

~Vx j t <p0(x) 4 *k(f) + 2] Vt) V'3k(x) 
k I k 1 

6 l- ' 6 1 
+ £ yik(x' f-7) dr + £ y2k<*' t-T'> ak(7)d7. ui) 

k = 1 00 k * 1 co 

where the new unknown functions, ^¡k(x), vjk(x,t) satisfy 

^jk 0 ’ 

9^lk f'! 1 ik ■ k 1, 2, 3 , 

!n 10 ' ik - 3 * X , k = 4, 5, 6 , 

T • v* [i * Y0(x)] , k 1,2,3, 

Q • V * [( ik. 3 « X) , v0(x)] , k - 4, 5, 6 , 

on x3 - 0 ; 

on S ; 
O 

on S ; O 

jk 

3t2 
- 2V 

ik 

3t dx , 
+ V 2 

dx,2 

9 Y Jk 

■lx . on x3 0 ; 

B V • b ' jk 

vik 

0 , 

o , 

a y ik 

3t 

90., 
__J_k_ 

dx, 

on S ; o 

for t 0 ; 

for t 0, x3 = 0. 

This solution is quite analogous to the zero-speed solution. In fact, if v o, the 
functions 0lk(x) and Ylk(x,t) reduce to the corresponding functions introduced 
previously and the functions /'2k(î) and v2kfx,t) become identically zero. It has 
been necessary here to introduce an extra double set of functions to take care of 
the Timman-Newman boundary condition correction. It can be checked straight¬ 
forwardly that this solution does satisfy (10a) and (10b). (In addition, there 
should be further conditions at infinity — which the solution is assumed to 
satisfy.) 
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As before, the quantities 

\( t) ^(x) + vlk( X, t-T) dr 

can be interpreted in terms of the instantaneous and subsequent response to a 
sequence of velocity impulses. However, more care is now necessary. If the 
ship is given a unit velocity impulse in the k-th mode, it will afterwards have a 
unit displacement in that mode, and the potential for the fluid motion subsequent 
to the impulse will be 

~Vx i + <P0(x) + vlk(x,t) + 02k(x) + V2k(x, t-r) dr. 

The last two terms clearly represent the disturbance due to the steady dis¬ 
placement. If, on the other hand, we think of an impulse of displacement (which 
is rather difficult to picture), the potential for the later stages of the motion 
will be: 

Bv.k( X, t ) 
-Vx, + <P0(x) + -gf- + V2k(x,t) . 

Thus it would not be proper to consider v2k(x, t) as the response to a unit im¬ 
pulse of displacement. 

So far, we have found only the form of the velocity potential. Before we can 
write the equations of motion, we must know the pressure distribution on the 
ship hull and we must then integrate this appropriately to obtain the six compo¬ 
nents of force and moment. 

The pressure anywhere in the fluid is given by Bernoulli's Equation: 

£ 
p 

d<t> 

IF" RX3 

To first order in the small motion variables, this can be approximated by: 

p 
p 

RX3 + 3x. 2(V(P°' ~dt 

atp, 
+ V —- Vcpo -VCP, 

When we substitute into this equation the expression (11) for the velocity poten¬ 
tial, we obtain, after some reduction, 

31 



Ogilvie 

P 
P 

gx, + 
3(j) O 1 
3^ - -j (V<P0) ' 

£ ¿u(n v!k(x) 

6 

£ ¿k( ‘ ■ V2k( x^ + (-V ^ik( XJ 
I. -1 \ 1 / k = 1 

- £ “k^) f('v + V(po -v) ^2k(x) 

6 

I ^ k = 1 ^ - ce 

6 rl 

k = 1 ^ - ce 

ik(r> 

k(T) 

T- + i“V -r— + V<P- ‘ V 
3t \ 3x, ° 

3 / „ 9 
âT + 'V + Vcpo • v 

V!k(x, t-r) dr 

X'2k(X' 1 T) dT’ 

The first line on the right-hand side represents a steady pressure. The second, 
third, and fourth lines, respectively, depend on the acceleration, velocity, and 
displacement in the six modes of motion. The last two lines are convolution in¬ 
tegrals, involving the whole past history of the velocity and displacement in the 
six modes. 

The computation of force and moment components has been relegated to 
Appendix A, because it is rather tedious and does not add much perspicuity to 
the result. There are two problems which may be mentioned here: 

1. The pressure must be evaluated on the instantaneous position of the ship 
hull and not on the mean position. Similarly, the instantaneous extent of the 
wetted hull surface must be calculated and used as the domain over which the 
pressure is integrated. 

2. Since we wish to use the force and moment results to write down equa¬ 
tions of motion, we must express these quantities in terms of an inertial refer¬ 
ence frame. The geometry of the ship is most easily described in a reference 
frame attached to the ship, but this is accelerating and therefore it is not ac¬ 
ceptable. The procedure adopted in Appendix A is to calculate the force and 
moment components with respect to the moving axes and then to use standard 
transformations to express them in the steadily translating Newtonian system. 

The six components of force and moment are written out in Eqs. (Al) - (A10) 
of the Appendix A. The form of these components is as follows: 
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(12) 

where Xjo is a steady force component, is a constant depending only on 
s ip geometry, bjk and cjk are constants which depend on ship geometry and 
orward speed, and Kjk(t) is a function of time, geometry, and speed. None of 

these quantities depends on the past history of the unsteady motion, x repre¬ 
sents the total hydrodynamic and hydrostatic force and moment on the ship due 
to us own motions, plus the static buoyancy and drag forces on the ship in its 
equilibrium position. In order to obtain the equations of motion, we must add to 

the other forces acting on the ship, viz., the wave-induced forces, body 
(gravity) force, artificial restraints, propulsive force, etc., and set this sum 
equal to the inertial reactions, in accordance with Newton's Law. 

^ We n°te that xjo wil1 be exactly offset by the steady propulsive force 
and by the gravity force on the ship, for we assume that the perturbations occur 
in a system which is otherwise in equilibrium. Therefore we can omit both of 
these external forces if we also set Xjo equal to zero. 

Let us denote by F/t) Uie six components of force and moment due to inci¬ 
dent waves and by t) the six components of all other external forces and 
moments (except the two steady components of force). Then the equations of 
motion are: 

(13) 

where 

x3 > f°r k “ 5, 

= o, otherwise; 

x3 r vertical distance of center of gravity below the origin of the coordi¬ 
nate system in the equilibrium position, 

mjk - seneralized mass such that, if t = kinetic energy of the ship, 

If the ship has lateral symmetry, it is readily found that: 
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m ik 

0 

0 

0 

- mx ' 

0 0 

m 0 

0 m 

mx* 0 

0 0 

0 0 

‘ 4 

0 

^46 

0 

0 

0 

0 

-I 

0 

0 

0 

4 6 

0 

where 

m = mass oî ship, 

ij = moment of inertia in j-th mode, and 

ljk = product oí inertia. 

The only product of inertia which appears, l46, vanishes if the ship has fore- 
and-aft symmetry. The other non-diagonal elements all vanish if the coordi¬ 
nate origin coincides with the center of gravity of the ship. 

The last term in (13) arises because we allow the origin to be taken at a 
point other than the center of gravity of the ship. Such generality is introduced 
only as a convenience in hydrodynamic studies, where it is often simplest to 
take the coordinate origin in the free surface directly above the center of grav¬ 
ity. Specifically, we assume the center of gravity is located at x' = (0, 0, -x*). 

Equation (13), together with the associated definitions, is essentially 
Cummins’ final form of the equations of motion, although the detailed derivation 
here differs somewhat from his. Some aspects are worth further note. Let us 
rewrite (13): 

6 6 6 

12 + +12 bjk v*)+ 12 cik vt) 
k = 1 k = 1 k ^ 1 

6 /• t 

+ 12 \( T) Kjk( t - 7) dr 
k 1 or> 

Fj(t) + Gjt t ) - ßj mg djCt ) . (13) 

It is clear that k has the nature of an added mass. Cummins has pointed 
out that this is a "genuine" added mass, in the sense that it depends only on the 
body; it is neither frequency nor speed dependent. In heave, pitch, and roll (and 
their couplings), it is actually one-half of the infinite-fluid added mass of the 
double body. However, in surge, yaw, and sway (and their couplings), it is the 
added mass that corresponds to the case of the upper half-body moving oppositel 
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to the lower halt-body. In couplings between heave, pitch, or roll, on the one 
hand, and surge, yaw, or sway, on the other hand, it is a hvbrid added mass 
coefficient. The physical situation was described above in the discussion of the 
meaning of the functions x). 

It should be mentioned that bjk is not a damping coefficient and cjk is not 
a buoyancy coefficient. The situation with respect to b k will become clearer 
presently. The statement about cjk is obvious from Eqs. (A5) and (A6) of Ap¬ 
pendix A. 

Relations Between Time- and Frequency-Domain Descriptions 

So long as we had only the ordinary differential equations to describe ship 
motions, it could never be clear how a ship in a confused sea would be able to 
respond to each frequency component as if the wave of that frequency existed 
separately. The experiments described in Chapter ÍI showed that indeed the 
ship did respond in this way. But certainly we had no basis for expecting, in a 
random process, that a different differential equation could validly be used for 
each of the uncountably many frequency components. Such an idea makes non¬ 
sense of the whole concept of differential equations of motion. The difficulty, as 
already pointed out, was that the differential equations were not really differen¬ 
tial equations at all, but simply a frequency-do ma in description. 

Now we have a system of integro-differential equations which purport to 
describe the shin in a seaway, regardless of the nature of the seaway. This 
system of equat ors should, first of all, be capable of representing the ship mo¬ 
tions if everything varies sinusoidally. In fact, it is very easy to show that it 
does. Let us suppose that the exciting forces, whether due to waves [Fj(t)] or 
other external causes [G^t)], are sinusoidal at frequency After a long 
enough time, it is reasonable to expect that all motions will also be sinusoidal 
in time, so that we can write 

akf t) = ak cos (6 t + ek) , 

where <k and ek are constants. We substitute this into (13'), noting that the 
convolution integral can be written 

0 

0 

thus obtaining for the left-hand side of (13'): 
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Kjk( O sin rj dr 

2_, ak sin (a:t + ' Kjk(r) cos 1 * T <1 r 

6 

( Kjk( r) sin wr d7 
k = l 

Kjk(T) cos .7 dr • + ak(l) cjk ■ (14) 
k = 1 

We can identify this expression directly with the left-hand side of (4), and fur¬ 
thermore it is clear that the right-hand side of (13') will be identical with the 
right-hand side of (4).* Thus Eq. (13') reduces to (4) in the special case of 
sinusoidal oscillations. 

We note specifically that the term 

in (14) could just as well have been combined with the term c k as with M k. 
However, as mentioned previously, this ambiguity is usually resolved by includ¬ 
ing in the displacement force (i.e., in the sum over ak( t>) only the zero-fre¬ 
quency contributions. The only part of the coefficient of cos (at + ek) which is 
non-zero when — o is Cjk, and so we let it stand alone. 

Thus we have seen that the time- and frequency-domain descriptions are 
equivalent if all functions depend sinusoidally on time. The same is true for 
non-sinusoidal disturbances. We show this simply by taking Fourier transforms 
of Eq. (13'). Suppose first that the disturbance is a transient such that all mo¬ 
tions die out after a reasonable time and all displacements approach zero (at 
least asymptotically). Then we can take Fourier transforms of (13'), obtaining: 

where 

*The definitions of cjk are slightly different in (4) and (13'), the effect of the 

"pendulum" terms, m« ßj a.(t), being included in in (4). 
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3 {f} = Fourier transform oí f(t) 

e" f( t ) dt . 
-1 

If f(t) = 0 for t < o, then 

3{ f} = - PWf} , 

where 

13 {f > = Fourier cosine transform = f(t) cos a>t dt , 
J ft 

3,{f} = Fourier sine transform = f(t) sin ojt dt . 

— U.J 

j 0 

The functions Kik(o have this property, and so we can rewrite the transform of 
(13’): 

É {[-^2 (mj 
k = 1 k + ^jk 

1 a 
J k Cl) S {Kjk}) + (cjk + sjk>] 

-Kk + -\{Kjk)]} 3 K} = 3{Fj +Gj} ■ 

If we multiply this equation by e‘ * and, in (4), let 

(15) 

Xk(t) 
i Oit 

3K1 

fjft) + gjft) -■ e iwt 33 {F j +GJ , 

then this equation is clearly equivalent to (4). In words, this means that taking 
the Fourier transforms of the equations of motions (that is, of the true equations 
in the time domain) is equivalent to breaking the forcing function into its fre¬ 
quency components and determining the response to each of these components. 
Such a result can hardly be considered as surprising, in view of what is common 
knowledge in control theory about the relationship between time- and frequency- 
domain descriptions of a linear system, but it was, until recently, a missing link 
in our arguments about ship motions in non-sinusoidal waves. 

It was assumed above that the disturbances were transients such that, for 
all k, ak(t) -* o as t % so that all transforms existed in the conventional 
sense. The character of a ship is such that this assumption may well not be 
warranted, and for generality a modification of the results is necessary. In Ap¬ 
pendix B, it is shown that if the ship system is stable, that is, if all ak(t) re¬ 
main bounded for all time, then Eq. (15) is still valid even if the transform of 
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ak( t) does not exist, provided only that we replace ,;{ak} by 'i ik> ia-. There 
will also be a singularity at w o, and so the moaified (15) is not valid for o . 
It is also shown in Appendix B that <k( * ) will generally be zero unless some of 
the cjk’s are zero. This is, of course, quite reasonable, since the cjk’s are 
restoring force coefficients (even though they are not hydrostatic restoring force 
coefficients). 

We have now shown that the two types of equations of motion are equivalent 
for both sinusoidal and transient motions, provided only that the system is sta¬ 
ble. In the third situation of interest to us, viz., a ship moving in a stationary 
random sea, the usual arguments of generalized harmonic analysis can be used 
to show that the two descriptions are again equivalent. Actually, in order to 
carry out the conventional spectral analysis, we need only to be certain that the 
assumption of linearity is valid, and evidence was presented in Chapter II to 
show that it is indeed valid in at least certain modes of motion. The value here 
of having equations of motion is in the capability which they provide for predict¬ 
ing the effects of various parameters on the spectral properties of the ship. 
They also enable us to develop test procedures, which have been called "pulse 
techniques," which are an order of magnitude more efficient than regular wave 
tests in determining the frequency domain characteristics of a ship hull. See 
Cummins and Smith (1964). 

From (14) or (15), it is natural to define the following quantities: 

oo 

^*k(<-j) ^ added mass coefficient = ^jk “ “ sin a,t dt ; 

(16) 
00 

= damping coefficient = b.k + J Kjk(t) cos art dt . 

Of course, following Cummins, we previously defined Mjk as an added mass. 
This situation merely shows how arbitrary the definition of this quantity is. The 
added mass defined in (16) depends on frequency and speed, and so in one sense 
it is not so natural as the previous definition. However, for the special case of 
sinusoidal oscillations, it is as reasonable a definition as the other. 

In the time-domain equatnns, it was not possible to identify any one quan¬ 
tity as a "damping coefficient"; some or all of the damping was included in the 
forces represented by the convolution integral of (13’). In the case of sinusoidal 
motions, we can readily pick out certain quantities which we identify as "damp¬ 
ing coefficients," but we must be careful in interpreting the label thus applied. 
If there is sinusoidal motion in just one mode, say the k -th mode, then the aver¬ 
age rate at which the ship performs work on the water depends only on the com¬ 
ponent of force which is in phase with the velocity in that mode; in other words, 
the dissipation of energy depends only* on b* , which is properly a damping 
coefficient. The force components in phase with acceleration or displacement 

*This is true only in the reference frame in which the water is streaming past 
the ship. Otherwise ship resistance is involved with the work doue. 
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may be called "reactive" forces; they are associated with the local disturbance 
of the water, but they are not related to the average rate of transfer of energy. 

If there are two or more modes of motion occurring simultaneously, then, 
as we have seen, there will be coupling between modes, and we may expect that 
there will be, say, j -component forces in phase with Uft) which result from 
the accelerations and displacements in the k-th mode. This will be demon¬ 
strated explicitly in the next chapter. This means that the damping in the case 
of coupled motions will involve the coefficients and c ^ . It is still conven¬ 
ient to refer to the coefficients b*k, and c;k, for k j j, respectively, as 
added mass, damping, and restoring force coefficients, but it must be remem¬ 
bered that all are involved in the damping. 

In the two expressions appearing in (16), the frequency dependence enters 
only through the integral terms, and it is important to note that these integrals 
are, respectively, the sine and cosine transforms of the same function, Kjk(t'). 
This fact will lead to the establishment in the next chapter of a formula relating 
added mass and damping coefficients. 

In concluding this chapter, I would comment much as I did at the end of the 
previous chapter. We can now continue to use the old second order differential 
equations, as we did years ago. But now we know that we can, when desirable, 
turn to the true equations of motion, for it is these which give broader meaning 
physically to the equations which are valid only for sinusoidal motions. We also 
know that we must allow the "constants" in the differential equations to be func¬ 
tions of frequency. And finally we have obtained from this study of the equations 
of motion some powerful new tools: pulse methods of testing, which are an order 
of magnitude more efficient than the older methods, and an extremely valuable 
relation between added mass and damping (to be proved presently). 

PROPERTIES OF TERMS IN THE EQUATIONS 
OF MOTION 

This chapter will be devoted to some special relationships for the various 
terms and coefficients in the equations of motion. Specifically, the following 
facts will be proven: 

1. The added mass matrix can be determined from the matrix of damping 
coefficients, and vice versa. 

2. The exciting forces at zero speed can be deduced from knowledge of the 
far-field potential for the problem of the ship oscillating in calm water, i.e., the 
diffraction problem can be avoided. 

3. The diagonal elements of the damping coefficient matrix can be calcu¬ 
lated from the same far-field potentials used in (2) above. If the ship has zero 
speed, ajl elements of this matrix can in principle be found in this way. 

In other words, if we can find velocity potentials for the six problems cor¬ 
responding to the sinusoidal oscillations of a ship in calm water, we can evaluate 

39 



Ogilvie 

these potentials far away from the ship (effectively at infinity) and from the re¬ 
sulting simplified functions determine some of the damping coefficients. From 
the same asymptotic forms of the potentials we can also find the forces on a 
ship due to sinusoidal incident waves from any direction, without having to solve 
the problem of determining the diffracted waves around the ship. In both prob¬ 
lems we avoid the necessity of integrating the pressure over the ship hull. It is 
only necessary to integrate over a simplified mathematical surface far away 
from the ship. Finally, in any case for which we know the damping coefficients, 
we can find the corresponding added mass coefficients. 

These relationships all depend on our use of a linear model to describe the 
ship and fluid motions, but they do not depend on a specific mathematical repre¬ 
sentation of the ship. In general, we shall be talking about the frequency-domain 
equations of motion; the concept of "damping coefficient" has no meaning in the 
time-domain equations which were developed in the last chapter. 

In order to use any of the relations proved in this chapter, we must be able 
to find the velocity potentials for the oscillating ship problems, or at least the 
i^r-field asymptotic forms of these potentials. Finding these functions requires 
the assumption of a particular mathematical model for the ship, for the velocity 
potentials cannot be found until we have formulated appropriate boundary condi¬ 
tions for the whole problem, and this obviously requires some statements about 
the flow near the ship. Two general methods of finding the velocity potentials 
will be discussed in the following chapters. 

It may perhaps be argued that all of these relations are academic, for there 
are several important gaps. To fill these gaps requires the integration of the 
pressure over the hull, and thus the complete potential, including the compli¬ 
cated local flow, must be considered. It then follows that perhaps one may as 
well solve the whole problem by evaluating the local potential and integrating 
pressure over the hull to find the forces. This may turn out to be true, but the 
simplicity of using the far-field potentials is so attractive that I have considered 
it desirable to present these partial results, hoping that someone may be able to 
fill the gaps in an equally simple manner. 

Relation Between Added Mass and Damping Coefficients 

It was pointed out previously that the frequency-dependent parts of the added 
mass and damping coefficients, as defined in (16), are proportional to the sine 
and cosine transforms of a single function, Kjk( t). From the theory of Fourier 
transforms, it is well-known that, if Kjk(t) is well-enough behaved, either of 
these transforms uniquely determines the inverse transform. Therefore, if 
either transform is known, the function Kjk(t) can be found, and from this the 
other transform can be determined. 

In the language of the ship motions problem, this means that if we know 
u*k(6 ) for any single frequency and the damping coefficients for all frequencies, 
we can obtain the added mass for any frequency. This result is sufficiently im¬ 
portant that it deserves to be stated explicitly in formulas. 
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IÍ 

CD 

Í Kjk(T> 
Jo 

is absolutely convergent, then the Riemann-Lebesgue lemma* says that 

CD CD 

1 im K :, ( i ) sin ojT dr = 1 im K ; i,(r) cos air dr = 0 . 
w - a, J0 J k a; - cd J0 J k 

Then, from (16), it is evident that 

'>,U ’ ' 

so that we know the constant term bjk if we know b*k(^) for all a> (as assumed). 

The inverse of the cosine transform is given by: 

CD 

Kjk^) ~ If fbjk^) - bjkl cos a:t dw- 

Then the added mass is: 

i'-k^) = ^jk " J «in at J rb*k(a>') - bjkl cos a>'t da/dt . 
o o L J 

The last formula would be rather awkward for purposes of computations, 
and indeed a much simpler formula is possible. For the moment, let the upper 
limit of the outer integral be a large positive number, M, and interchange the 
order of integrations. Then we can use the Riemann-Lebesgue lemma again in 
letting M -> a;, finding: 

^ki r)-Mjk - - ~ Jim da/|b*k(a/)-bjk] £ sin at cos a>'t dt 

— 1 im 
VW M -• CD 

J0 c 

da' 

da' 

+ O) 
d a/ - 

da/ 

(17a) 

*See, for example, Whittaker and Watson (1927), p. 172. 
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'S 

J indicates that a Cauchy principal value is to be used. Similarly, we find: 
0 

b* (u.) 
) k 

b jk 

- 2 d<jj' (17b) 

Equation (17a) is useful if we know : but it is easily shown that 
knowledge of ß*k(u>) for an^ single frequency is sufficient. The same comment 
applies to (17b) with respect to b*k(a). The values at = a, are most likely to 
be amenable to calculation, although in some cases it may be easier to calculate 
the values at o. In either of these two limiting cases, the free surface prob¬ 
lem degenerates into a much simpler problem, and in fact numerical solutions 
for quite complicated geometries are possible by methods such as that of Hess 
and Smith (1962). 

Equations (17a) and (17b) have been proven by Kotik and Mangulis (1962) for 
the special case of heave disturbances at zero forward speed, and these authors 
surmised that a similar result would be valid for all modes, with or without for¬ 
ward speed. Their argument was based on the observation in other fields of sci¬ 
ence* that such formulas are obtainable whenever the system response obeys a 
linear law and there is a clear causality relation between input and output. In 
the ship motions problem, linearity has been demonstrated for certain types of 
motion, as described in Chapter II, and Cummins’ analysis was based on a line¬ 
arity hypothesis. Therefore it is not surprising that the formulas can be derived 
from Cummins’ results and the experiments indicate that we should expect the 
formulas to be valid. Also, there can hardly be any question about the validity 
of the causality assumption, t 

An alternative derivation of these relations is presented in Appendix C, 
wherein we avoid the double transform operations which were used to derive 
(17a) and (17b). It is seen in the Appendix that the formulas are really just 
corollaries of Cauchy's Integral Formula. 

Two points should be made with respect to use of these formulas: 

1. Contrary to statements by Kotik and Mangulis, it does not follow that an 
approximate formula lor, say, a damping coefficient can be used in (17a) to ob¬ 
tain an approximate formula for the corresponding added mass coefficient. The 
reason for this is that an approximate formula for damping coefficient may give 
good results in the range of interest for damping coefficients (especially near 
resonance) but the asymptotically wrong at extreme values of the frequency. 

^Such relations are known as the "Kramers-Kronig relations" in statistical me¬ 
chanics. They may be interpreted as Hilbert transforms. 

'Davis and Zarnick (1964) have questioned this, because in their experiments 
they observed a response before t - o when an impulse occurred at t o. How¬ 
ever, I consider their paradox a result of their choice of time coordinates and 
their definition of an impulse. Certainly there can be no ship disturbance until 
the ship encounters a free surface disturbance, and so a causality hypothesis 
is valid. 
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Since (17a) depends on the value of the damping coefficient over the whole spec¬ 
trum, one may expect that the added mass will be incorrectly predicted unless 

is approximately correct over the entire frequency spectrum. The "Hi- 
Fi" approximation espoused by Kotik and Mangulis has proper asymptotic limits, 
and so this effect does not vitiate their calculations. However, an example to 
the contrary may be found in slender body theory, where added mass and damp¬ 
ing coefficient predictions both break down at high frequency. Equations (17a) 
and (17b) can. sot be used with predictions based on slender body theory. 

2. Throughout this survey, I assume that the amplitude of all disturbances 
is bounded for all time, and this assumption is necessary for taking Fourier 
transforms of (13')- If there is an instability such as static divergence (which 
can occur in yaw with an inadequately controlled ship) or if there is negative 
damping at any frequency (which can in principle occur at high speeds), then 
these formulas are invalid for all modes unless the modes of difficulty are con¬ 
strained to have zero amplitude. 

Exciting Forces 

One of the most difficult parts of using any equations of motion for analyti¬ 
cal predictions of ship motions is calculating the forcing functions, that is, find¬ 
ing the force and moment exerted by the incident waves on a restrained ship. 
Quite often in the past, the practice has been advocated of using the pressure in 
the undisturbed wave and integrating it over the actual surface of the ship. In 
other words, it is assumed that the presence of the ship does not affect the pres¬ 
sure in the water. This assumption, often referred to as the "Froude-Krylov" 
assumption, is obviously not generally correct, although under certain circum¬ 
stances it may not be grossly in error. Properly, one must formulate a bound¬ 
ary value problem in which there are included both the incident waves and the 
diffracted waves. The two systems of waves must be such that the total fluid 
velocity on the ship surface satisfies the correct boundary condition there. 

In addition, there will be waves generated by the motions of the ship. From 
a hydrodynamic point of view, this presents an easier problem than the incident- 
diffracted wave problem, because the normal velocity component on the hull is a 
fairly simple, known function, depending only on the shape of the hull and on the 
six rigid body modes of motion. Therefore Haskind (1957) made a considerable 
contribution to our problem when he showed that the forces due to incident waves 
could be calculated from solutions of the forced oscillation problem. Specifi¬ 
cally, he showed that if we can solve the hydrodynamic problems involved in the 
oscillation of a ship in an otherwise calm sea, then we can also compute the 
force and moment on a ship restrained in incident waves. 

Haskind proved his result only for the case of a ship at zero speed. His 
solution is rederived in a paper by Newman (1962). Recently, Newman has 
shown that an analogous result can be obtained for the case of a ship with for¬ 
ward speed. However, there is a logical difficulty in such case, for it is not 
certain that the diffraction-wave potential should satisfy the ordinary linear 
free surface condition. This problem is discussed in the next chapter in con¬ 
nection with thin ship theory. We shall limit our discussion here to the pub¬ 
lished case of a ship at zero speed. 
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Suppose that the ship oscillates sinusoidally in the j -th mode. Let the po¬ 
tential be the real part oí 

vjcp.(x1.xrx3) elat , 

where vj is a real amplitude. Then ;-j satisfies the usual free surface boundary 
condition, a radiation condition, and a condition on the hull, 

—^ f.(x..x2,x ) on S. (18a) 

where ( ) depends only on the geometry of the hull and on the mode being con¬ 
sidered. We may look on the quantities f i as modal weighting fur .ions. For 
example, f j = cos (n, i,). If the ship surges, the fluid disturbance due to an 
element of the hull surface is proportional to this direction cosine. Haskind's 
formula arises because this same quantity, f,, plays a role in the inverse prob¬ 
lem: If there is an external disturbance to the fluid, the surge-force contribu¬ 
tion of the pressure on this element will again be proportional to f,. (See 
Chertock (1962).) 

To see how this works out, we must consider the potential function for the 
diffraction problem. Let 

<J)0(XI.XJ,X3) e“4 . <Pd(x,,x2,X3) e,ü,t 

be the functions of which the real parts are the potentials, respectively, for the 
incident wave and the diffracted wave. (The ship is fixed in this problem.) The 
functions t>0 and <pd satisfy the same free surface condition as -pj , and <pd satis¬ 
fies the radiations condition as well. <p0 is known everywhere, but it clearly 
does not satisfy Jie radiation condition, since it represents a wave which is in¬ 
cident on the ship. These two potentials yield normal velocity components on the 
hull surface which are equal and opposite, since the hull is not moving; that is, 

Bn on S . (18b) 

The force in the j-th mode on an element of the surface of the hull is just 
proportional to f j, so that we may write for the generalized force 

Xj = - i p f j dS , 

where p is the hydrodynamic pressure: 

■p tt Re {(¢0+ ¢¢0 e* t} = -Re {^(¢¢, + elwt} ■ 
_3 
at 

We substitute this expression into the previous equation, and we also make use 
of (18a): 

Re lO)p e lwt { (¢0 + 

3<Pj 
3n dS 
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Since cpj and -p(1 satisfy the same radiation condition and the same free surface 
condition, Green's theorem yields the fact that 

f 
s Í 

^Pd 
¢. — dS 

J dn 

dS . 

The second equality follows from (18b). With this formula, we can eliminate <j>d 
from the expression for 

(19) 

Green's Theorem can be used again to show that the integral need not be 
evaluated over the actual hull surface, S, but may be evaluated over any control 
surface enclosing the ship. In particular, we may choose a surface arbitrarily 
far away, say a cylindrical surface extending from the free surface far down 
into the water, closed on the bottom by a horizontal surface. (The latter, as its 
depth becomes infinite, will contribute nothing to the value of the integral.) This 
is a particularly valuable result, because we avoid considering all of the local 
disturbance effects in In fact, we need only asymptotic expressions for 
valid far away from the ship, and such expressions will represent simply the 
radiated waves in the forced oscillation problem. These asymptotic forms of 
the potential will be the same functions which are needed to predict the damping 
coefficients, as will be seen in the next section. 

Calculation of Damping Coefficients 

In an oscillating ship problem, the existence of damping implies that the 
ship is performing work on the water, that is, energy is being put into the water. 
Since we consider always a nonviscous fluid, this energy cannot be converted 
into heat but must be radiated in outgoing surface waves. Thus we expect to 
find a relationship between the damping coefficients and the outgoing waves far 
away from the oscillating ship, and this relationship will be based on the law 
that there can be no non-zero average rate of accumulation of energy in any 
region of the fluid. In the derivation which follows, due to Newman (1959), it will 
be shown that there is a simple formula giving the diagonal elements of the 
damping coefficient matrix in terms of the velocity potential at infinity. Also, it 
will be possible to obtain a formula which relates the sum of symmetric pairs 
of the same matrix to the potential at infinity, but it has not yet been found pos¬ 
sible to determine these off-diagonal elements completely separately except in 
the special case of zero forward speed. 

We establish formulas for three energy flow rates. First, we assume that 
the ship is being forced to oscillate sinusoidally in some mode or combination 
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of modes, by means of an artificial external system of forces. From knowledge 
of the force and the ship velocity in each mode, we can calculate the average 
rate at which the external force system performs work on the ship. Since the 
ship cannot absorb energy steadily over a long period of time, this energy is 
then transmitted to the surrounding water, and we calculate the average rate at 
which work is performed on the water. Finally, we visualize a large fixed 
mathematical surface far away from the ship which completely encloses the 
ship. There can be no average rate of accumulation of energy in the fluid region 
between the two surfaces, and so the rate of flow of energy out of this control 
surface must equal the two previous rates of energy flow. 

First, suppose that the forces F¡ cos (a>t + 8 ¡ ) are applied to the ship by some 
external means (there are no incident waves), and let the motions be designated 
by a:(t) = ctj cos (<■* + Cj). (We suppose further that there is a superimposed 
steady flow past the ship at speed v. Of course, there will be a net drag force, 
but there will be no work done by the drag force, since the ship has no forward 
speed in the coordinate system chosen.) Let the equations of motion be: 

6 

L |[mjk + + bjk(O)) ák(t) + cjk ak(t) Fj cos ( a* + 8.). 

The rate at which work is done on the ship by the external forces will then be 

6 

w = Z] 'VFjcos (V‘'t + 
) = 1 

6 6 

= -ClJ Zj Zj aj ak sin (wt + 
j=l k=l 

X i ^-6)2( m j k HMjk) + cjk] cos (ûJt + ek) - ü)b*k sin (at + fk) 

The average value, W, over a whole cycle will be 

z; £ 
i=i i<=i 

^(mjk + ^jk) :jk] sin (€k + o)b cos (ck 
+>} 

We note that mjk = mkj, and so the generalized mass terms cancel each other, 
due to the presence of the antisymmetric factor sin (ek - £.). Thus 

w 
i = i 

♦ 
jk sin ( ek «P + «Jb*k cos (ek 

The rate of increase of energy of the fluid within a closed surface can be 
written: 

HE 
dt dS . 
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(See p. 14 oí Stoker (1957).) Here, n is an outward unit normal vector, and vn is 
the velocity component of the surface normal to itself. The surface may be a" 
physical surface, always containing the same fluid particles, in which case 
4>n vn, it may be a mathematical surface following an arbitrary prescribed 
law, or it may be a combination of real and mathematical boundaries. The same 
formula may be interpreted as the energy flux rate across a non-closed surface. 
However, one must be careful to note that a positive flux rate is to be taken in 
the direction opposite to the standard normal vector. 

On the ship hull, which is a physical surface, we have <i>n vn, and so the 
average rate at which the ship does work on the water is: 

s 

As a control surface far away, we take a vertical right circular cylinder 
extending from the free surface far down into the water, capped on the bottom by 
a flat horizontal surface. This is a fixed (mathematical) surface on which vn = o. 
Furthermore, we assume that all disturbances vanish sufficiently rapidly with 
increasing depth so that there is no contribution at all from the deep hoi izontal 
surface. Then the average rate at which energy passes outward through the con¬ 
trol surface is: 

where >' denotes the cylindrical control surface. (Physically it is clear that no 
energy can pass through the free surface. Mathematically this statement follows 
from the fact that the free surface is both a physical surface, so that <l>n vn, 
and a zero-pressure surface.) 

We now have three expressions for W. Actually, we do not need the second 
one, for the desired result comes from equating the first and third: 

(20) 

We have here one equation relating all of the hydrodynamic coefficients in 
the equations of motion with an integral of the velocity potential far away (at 
"infinity," for talking purposes). The problem still remains of separating as 
far as possible the various coefficients in (20). At the beginning of this deriva¬ 
tion, it was assumed that the ship was forced to oscillate in an arbitrary mode 
or combination of modes by an external force system. Because of this arbi¬ 
trariness we can separate a number of special cases of (20), by selecting the 
amplitudes a. and the phases £ ■ in appropriate ways. 

First, let us assume that only one particular a, is non-zero. If ¢- is the 
velocity potential for such motion, then ! 
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Thus the diagonal damping coefficients can be calculated from the velocity po¬ 
tential at infinity for this mode of oscillation. 

Next, let just two a/s, say aa and ab, be non-zero. We can choose the 
relative phases so that ta - cb = v/2 or 0. In these two cases, then, from the 
respective potentials at infinity we can calculate respectively 

(21) 

(22) 

From the latter, we obtain the sum of any symmetric pair of coupling damping 
coefficients, but it is not generally possible to find them separately. 

If the ship has zero forward speed, then c j k is just the hydrostatic coupling 
coefficient, which is easily calculated from the ship lines. In this case we can 
use such a calculation, together with (21), to find ^*ah - MbB, and from the equa¬ 
tions (previously proved) relating added mass and damping coefficients we can 
in principle calculate the difference between the two damping coefficients: 

(It may be recalled that bab = i>*b(oo) = o for zero forward speed, and also 
Mab = = wba.) In this special case, we now have both the sum and the 
difference of b*^) and bba(w), from which they can be individually calculated. 

These formulas are useful generally only when we have found the appropri¬ 
ate velocity potentials for the oscillatory ship motions. The problem of finding 
these potentials will be taken up in the next two chapters. In the meantime, it 
may again be pointed out that all of the results of the present chapter require 
the knowledge of the potentials only at a great distance from the ship. Further¬ 
more, there are no problems heve in deciding whether the pressure must be 
evaluated on the actual hull position or the mean hull position. This is a great 
simplification in carrying out computations, but, as has been seen, there are 
several gaps in the results. In particular, the coupling damping coefficients 
cannot be found in the case of non-zero forward speed, and therefore the added 
mass coupling coefficients cannot be determined either. These gaps would not 
exist if we could calculate the cjk's, but doing this is a rather formidable 
undertaking; it must be recalled that these coefficients are not just the hydro¬ 
static coupling coefficients, but, rather, they depend strongly on hydrodynamics 
and they involve the complicated local flow around the ship. 

48 



Developments in Theory of Bulbous Ships 

V/2 

RBs ~ J {S,(0) [5,(1) cos (k, sec f3) + S2(l) sin (k, sec (')] 

- S2(0) [s,( 1 ) sin (k , sec '•) - S2( 1 ) cos (k , sec ( '>]} K2 cosJiJ d6 (25) 

K 8 [l-exp(-ko sec2'0] • 

From (23) we can see that the bow wave resistance consists of the sum of 
the wave resistance due to sine elementary waves and that due to cosine elemen¬ 
tary waves. The same is true of the stern wave resistance in (24). The expres¬ 
sion for the interference resistance (25) shows that there is no interference be¬ 
tween the elementary sine waves and the elementary cosine waves starting from 
the same point either at the bow or the stern. The humps and hollows of the 
wave resistance are due to the interference resistance, and this is usually very 
difficult to evaluate. However, if the bow or stern wave resistance is small, the 
interference resistance is also small. The idea of bulbous bows or bulbous 
sterns is therefore to reduce the bow or stern wave resistance. 

MECHANISM OF BULBOUS BOWS 

We consider the bow wave (9), and the bow wave resistance (23) due to a 
sine ship with its source distribution 

mjfx) = cos (77x) in 0<x<l, 0>z>-l (26a) 

which has no cosine elementary waves but only positive sine waves from the 
bow in all direction of propagation. Namely s2(0) = o in (9) and (23) and 
5,(0) >0, or we may write 

.V/2 

£SB = I A(f3) sin io(0) dff (26b) 
-17/ 2 

with A(6>) >o, for \e\ < v/2. Now we observe the regular wave height due to a 
point doublet of strength -M at (o.o.z,), which was calculated by Havelock (1928), 

2 rv/2 
ÇB ~ - 4k0 M exp(-koz, sec2i9) sec40 sin [k sec2(? (x cos 0 + y sin 0)1 d0 

77/ 2 J 

r 
- 77/ 2 

B( 0) sin o)(0) d(9 . (27) 

Inui, Takahei, and Kumano (1960) noticed these doublet waves also consist 
of sine elementary waves and that the amplitude function B(ö) is purely negative 
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for all Q which is in \e\ < v/2. Therefore the superposition of two waves (26) 
and (27) becomes 

77 / 2 

^sB ^ I fA(0) - BfÖ)] sin 0,(0) di) (28) 
- 77/ 2 

and the bow wave resistance is 

R B [A(0) - B(0)] cos3/1 dö . (29) 

By matching B(6>) to k(0) graphically to make IA(0) - B(ö)l as small as possible, 
especially for small 0, Takahei (1960) found the most favorable doublet strength 
M and the position of the doublet in (27). They built cosine ship models ac¬ 
cording to Inui's method, observed the wave patterns by the method of stereo 
photographs, and tested numerous spherical bulbs faired at the cosine ship. 
Finally they obtained the models C-201F2 with the so-called waveless bow. 
Namely, they observed a remarkable reduction in the bow wave heights due to 
the bulb at the design speeu. If we notice in (7) and (11) 

m(n)(0) = n! an (30) 

we can readily see in (9) that the bow waves consist purely of sine waves if the 
source distribution (7) is an even power series and consists purely of cosine 
waves if (7) is an odd power series. If we consider (7) with only an even power 
series and in addition, 

(-1)" a2n > 0 in (7) (31) 

(as in the cosine series) the waves will always be positive sine waves. (However, 
(31) is a necessary but not a sufficient condition.) Yim (1963) showed that these 
positive sine bow waves due to a source distribution of even power series can 
be completely eliminated by a doublet distribution along a semi-infinite line 
X = 0, y = o, -œ > z >0, with the doublet strength in the negative x direction, 

n-f 1 

i) 
V"1 bnZl 

/^Trrr for o $ s $ i 
n - 0 

œ . 
V"1 >n rnti / i\n+ii 

n =0 

for z, > 1 

having the relation 

> (32) 

y 

b n (-1)" 
( 2n) ! 

n! 2nt 1 a2n 

:l 
(33) 
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Namely the amplitude function of the elementary waves from the bow for all 
angle in (28) can be made zero by attaching at the bow a concentrated doublet 
line which extends to infinite depth. Since the deeply submerged part does not 
influence too much the surface waves (Yim, 1963) this clarifies the mechanism 
of the bulb and backs up the approach made by Inui (1962). 

SHIPS WITH ZERO BOW WAVE RESISTANCE 

Krein (1955) proved that there is no finite ship which has zero wave resist¬ 
ance. Therefore it was essential for the latter to have an infinite doublet line. 
Nevertheless, ships of zero resistance is not only of academic interest but also 
gives us a good physical insight and directs us in practical usage. 

Although a doublet is good to cancel positive sine waves, it is not applicable 
to cosine bow waves. Yim (1963) considered one step higher order singularities 
than a doublet, which is called a quadrupole. The wave height due to a point 
quadrupole with the strength '0 (in x direction) at x o, y o, z -z, in the uni¬ 
form flow V generates the wave heights 

\ exp(-koZj sec3éq secstf cos (kjX sec 9) 

sin 6 sec2 ) d (34) * cos (kjY 

where 

^ = V(H3LV) . (35) 

We notice here that (34) consists of cosine elementary waves with the same 
sign, -> in all direction e. It was found that the cosine waves due to the source 
distribution (7) of odd power series can be completely eliminated by a distribu¬ 
tion of quadrupoles along the semi-infinite line x = o, y = o,-<»>z>o with the 
strength 

n + 2 

bn+i Trry in o i s -* < i 
n =0 

> (36) 

n + 2 
in liz,^00 

and 
n* 1 

(-l)ntl ko (2n + 1)! 
n + 1 

(n + 1)! k, 
aim • 

(37) 

A quadrupole itself in a uniform stream does not produce a closed body, but it 
may, when combined with the doublet line. Therefore these quadrupoles could 
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be used to improve the bulb form used to decrease the cosine wave heights as 
well as to cancel the sine waves. 

Another idea to cancel negative cosine waves is to use a source line. In the 
same way as we found the infinite doublet or quadrupole line to cancel sine or 
cosine ship waves, we can find the line source distribution 

with 

on n + 1 
V1 l)nZl 

<zi> = -rrrr for 0 ¿ zi ^ 1 
n = 0 

for z, > 1 

(38) 

b n (-Dn 
(2n+l)! k"*1 

n' k^n<1> 
' 2n* 1 

(39) 

which completely eliminates cosine bow waves due to the source distribution (7), 
of odd power series. Of course, we have to take care to employ a sink distribu¬ 
tion at the ship afterbody in order to have a closed body. 

Bulbs at ship sterns can be dealt with exactly in the same manner as for 
ship bows in an ideal fluid, neglecting the effect of propellers and other attach¬ 
ments. However, the influence of the viscosity and the wake near the stern is 
so important that the stern problem should really be considered separately. 
Therefore we deal here only with bulbous bows and bow waves. Henceforth we 
may omit the word "bow" except to avoid ambiguities. 

In all three kinds of bulbs mentioned above, the strength of concentrated 
singularities along the vertical line increases with the depth, starting with zero 
strength at the free surface. This suggests the shape of a bulb to be used for a 
practical ship. 

PRACTICAL APPLICATION OF THE THEORY OF 
WAVE CANCELLATION 

In understanding the mechanics of cancelling regular ship waves through 
the concept of elementary waves and for the practical application we can note 
here three important characteristics of an elementary wave in each direction of 
propagation between the angles -v 2 and . 2: (1) the point where the wave 
starts, (2) the phase of the wave, (3) the amplitude. In general, regular bow 
waves consist of elementary waves which have different characteristics in each 
direction of propagation, despite the fact that point or line singularities by them¬ 
selves produce negative sine elementary waves (pt. doublet) and cosine elemen¬ 
tary waves (pt. source or quadrupole) in all directions of propagation from the 
point of the singularity's location. Therefore it is impossible to match in all 
directions the aforementioned three characteristics of elementary waves from 
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bulbs with those from a general ship bow so that all waves are cancelled every¬ 
where. Indeed, we have to choose carefully the ship shapes or the source dis¬ 
tributions (7) for ships for which we adopt bulbs: namely ship shapes for which 
the bow waves are either positive sine waves (a2n + 1 o. (-1)" a o) for the 
application of a doublet bulb, negative cosine waves (a^ o, (-i"n a o) 
for a source bulb, or strong positive cosine waves plus weak (positive or nega¬ 
tive) sine waves for a doublet bulb combined with either a source (sink) or a 
quadrupole bulb. 

Since no waves from a finite singularity distribution for the bulb can cancel 
the bow (or stern) waves completely, the best bulb is such a distribution of sin¬ 
gularities which produces waves so as to minimize amplitudes in all directions 
(statistically). This is equivalent to minimizing the bow (stern) wave resistance. 
In fact, it is not very difficult to obtain the optimum distribution of concentrated 
singularities in a power series of z along a finite vertical line at the bow such 
that minimum bow wave resistance is obtained corresponding to a given power 
series for the ship source distribution. 

Indeed, the bow wave resistance (23) can be represented in a quadratic form 
in an of (7) and bn (coefficients in z for the distribution of singularities as in 
(32), (36), or (38)) with coefficients represented in terms of Bessel functions. 
Therefore we have only to solve the simultaneous equations, 

3¡7 f h j. h al,a2,ar ..) = 0 

(40) 
n = 1,2_ 

for bn when an are given. Since the bow resistance due to sine waves and that 
due to cosine waves are additive as shown in (23), the concentrated singularities 
for each case can be dealt with separately. 

The optimum distribution of the concentrated singularities at the finite 
stern line for several given ship source distributions are calculated (Yim 1963) 
and shown in Figs. 3-7. These indicate that the strength of the singularities at 
the deepest point (the same level as the keel) is the largest. Especially for the 
higher Froude numbers, the optimum distributions appear to be almost concen¬ 
trated at the keel. This rather supports Wigley's fourth rule. However the op¬ 
timum size of the bulb is extremely sensitive to the Froude number. We notice 
in Figs. 3-7 almost a linear distribution of the doublet for the low Froude num¬ 
bers. If we were given the volume of the bulb, the optimum distribution would 
be also sensitive to the Froude number and the displacement of the bulb would 
gradually move from the keel closer to the surface as the Froude number in¬ 
creases, since the effect of a bulb is stronger at a smaller depth. This would 
clarify the difference in the opinions of Wigley and Weinblum mentioned before 
in our introduction. However, in actual ships, the wave resistance is not the 
only problem. 
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Fig. 3a - Doublet di stribution for sine ship (l/H = 16 ) 
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Fig. 5a - Doublet distribution for a parabolic 
ship Y - 2B L « (X - X2), (L II Ifi) 

Fig. 5b - Bow wave resistance due to 
the first term in the source distribution 
of a parabolic ship, m i/n B/Lx(l-2X), 

(L H =16) 
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Fig. 6a - Quadrupole distribution for a 
parabolic ship Y - 2B/L*(X-X2), (L/H=16) 
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STATION X/L 

Fig. 7a - Graphical representation of a hollow ship 

NONDIMENSIONAL LINE SOURCE STRENGTH, 

Fig. 7b - Optimum line source distribution 
for the hollow ship 
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Fig. 7c - Bow wave resistance of the hollow ship 

There are many side problems even with the bulbous bow alone, i.e., spray, 
slamming, cavitation, form drag due to separation, etc. In this respect, the 
bulb made of a source line for a hollow ship seems to be more favorable than a 
doublet bulb, especially for lower Froude numbers, since the source bulb will 
not produce any marked swan neck shape. It may be worth noting here again 
that the bulb is not necessarily made of a doublet, but it can be a concentrated 
source at the bow near the keel, or a doublet plus a source or a quadrupole de¬ 
pending upon the original hull shape. 

Of course it is possible to consider the adjustment of the location of bulbs 
instead of considering only the shapes of bulbs with a fixed location. However, 
in this case, it is not easy to find the best location from the theory of wave can¬ 
cellation only, since cancellation of elementary waves in one direction of propa¬ 
gation does not mean that cancellation occurs in the other directions. Yim (1962) 
considered a most simple case of a point source and a doublet in a uniform 
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stream under a free surface as in Fig. 8. As mentioned already, a point source 
produces positive cosine waves while a point doublet produces negative sine 
waves. By using Lagalley's theorem, he obtained forces at the doublet point and 
the source point separately as shown in Fig. 8 corresponding to the optimum 
distance 'V between the two points (shown in Fig. 9), which was calculated so 
as to minimize the total force in the x direction. If we consider only the wave 
phases along the centerline through the two points, the distance "a" should al¬ 
ways be one quarter of the wavelength 0 for cancellation of phases, 

However, it is shown in Fig. 9 that the optimum "a" is always less than a. 4. 
Figure 8 shows the remarkable reduction of the total wave resistance in this 
case. In addition, the negative force at the doublet is rather an interesting phe¬ 
nomena. The shape of bulbs made of these singularities can be produced by 
plotting the body streamlines as Inui does for his double model, or we may use 
an approximate sphere for a point doublet and the head of a Rankine ovoid for a 
point source. 

Fig. 8 - Wave resistance of half body with optimized bulb 
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Fig. 9 - Optimum distance between source and doublet, 
optimum radius of bulb ( n, b, r are non-dimensionalizcd 
with respect to the depth f) 

HIGHER ORDER EFFECT ON THE ELEMENTARY WAVES 

In the case of a sine ship (26a) which has theoretically only positive sine 
waves starting from the bow and the stern, Inui and his colleagues observed in 
their experiment with Inui's model of the sine ship a forward shifting of the 
wave phase. Therefore, they had to stick their bulb quite a bit forward of the 
bow instead of locating the bulb center at the stern. They seem to have had a 
serious concern about this discrepancy between the theory and the experiment. 
It has been speculated in Japan that the explanation may be in the orbital wave 
motion on the ship boundary (Takahei, 1960), or in the non-zero Froude number 
effect (Inui, 1962), since Inui's model is exactly right for his source distribution 
only in the case of zero Froude number. Inui used two correction factors which 
are determined by experiments to correct this observed effect together with the 
influence of viscosity. We will now discuss an explanation for Inui's observa¬ 
tions which are based on higher order wave theory. 

For a long time since Havelock's representation of a ship by a singularity 
distribution, people have been very curious about the exact ship form generated 
by these singularities which satisfy all the conditions including the linearized 
free surface condition for a non-zero Froude number. Havelock (1936) and 
Bescho (1957) considered submerged simple bodies including the free surface 
effect on body representation, and indicated this effect could be large. Sisov 
(1961) formulated a higher order theory of wave resistance on surface ships. 
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However the calculations involved are so complicated that no one seems to have 
succeeded yet in producing a significant result from this higher order theory of 
surface ships. 

Recently, in connection with the theory of wave cancellation in bulbous 
bowed ships, Yim (1964) considered the Froude number effect on the ship rep¬ 
resentation near the free surface, and its influence on the regular wave far be¬ 
hind the ship. 

We consider a uniform source distribution whose strength 

m a 
o (41) 

in O x l, y o, -oj ■ z <- o , in the uniform flow considered in this report. 

The y component of velocity at (x,y,z) is 

' y 

where 

KC ’ 

k - kQ sec2 tí - iß sec 8 
dk d " (42) 

r , [(X - <f)2 + y2 + (Z - o2] 1 2 

r2 1 [(X- <f)2 + y2 + (z+ 02] 1 2 (43) 

tv - ( X - :f) cos Ö + y sin 9 . 

At a point (x,y,o) which is not on the singularity plane, the last quadruple inte¬ 
gral j(X, y,o; :f), say, can be written 

see ^ sin f> eik x"1} cos e + v 
--—----dk dÖ 

k - kn sec 0 - iß sec 6 
Jfx.y.o; 1) - J(x,y,o;0) = — Re 

rr on a 
i 

— — Rn 
77 ^ 

sec gsin6>eik(x cosp ^ y sinf?) 

k - ko sec 20 - ip, sec 8 
dk dd . (44) 

When we consider the limiting case of y-o in J^x.y.o; i), this becomes zero 
for any k0 since the integrand is antisymmetric in e. Now if we change the 
variable k - k k O 

J(x, y,o; 1) Í 77 -® . ikk.( X cos 6» + y sin S ) 
sec 8 sin 8 e 

k - sec 2d - iß sec 6 
dk dd , (45) 
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This is a function of only kox and koy. The case when x - o, y -*0 for a certain 
ko is exactly the same as the case when ko -o for certain fixed values of x and 
y.° For ko- o, or the case of infinite Froude number, 

/y 0 on z 0 . 

Therefore, for any ko 

x 0 0 on z 0 

y - o . 

The above argument can also hold for a point (i^x.y.o) as x~>o, y-o. 

Although we considered points only on z o, we notice from the potential 
theory that physical quantities change continuously into the potential flow field 
from the boundary. This indicates that every surface ship which is represented 
by a centerplane source distribution has as strong an influence of the free sur¬ 
face on the shape of the ship in a certain neighborhood of the free surface as in 
the case of infinite Froude number. 

The influence of the free surface can be explained much more eloquently by 
Green's formula for the velocity potential which satisfies the Laplace equa¬ 
tion (2) with the boundary conditions (3), (4) and 

(47) 

(n is the normal vector at the ship hull surface into the fluid.) On a given ship 
hull, 

1 J*J" T;. ') 0,,(.-:, 71, \x.y. z) - G( , . . x. y. z)] »IS (48) 

where s includes the free surface SF and the ship surface Ss (see Fig. 2). G is 
the well known Green's function (see e.g., Stoker 1957) which is a harmonic 
function for o except at (x.y, z) where it has the singularity 

l/[(f- X)J + ( y>2 + < ' - z}2]' 3 : 

and G satisfies the boundary conditions (3), (4) and 

G 0 on T] ~ 0 . 
V 

The integral on the free surface sF in (48) can be written by using (3) 
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T {JK,- ’n^] 'IS - JJ [iOr G/.jrDdy 

// ~ (.'G,) (1CG) (1 " fi T/ 

i,G) dr; (50) 

2, 

where 1' is the intersection of the ship surface and the z o plane. Since the 
ship beam length ratio B L is considered to be small, in general, (50) is 
omitted in the first order theory. 

Wehausen (1962) considered a systematic, formal, yet thorough estimation 
of the order of magnitude in the Green's formula with the exact boundary condi¬ 
tions of the potential. For a ship with the draft H as small as the beam B, he 
estimated I in (50) is 0(.3) while the main integral around the ship hull in (48) 
is Of 2). In fact it has been known that the effect of the draft behaves like 
exp (-CP) where c is a function of Froude number and even for the case f/B 
the wave heights was comparable to the case h - ® (Wigley, 1931). Therefore 
the above estimation may be true even for the case of an infinite draft ship, and 
the line integral I, in this case will be the most important contribution to the 
higher order terms which have been previously neglected. Indeed, in (50), I is 
the influence of the free surface on the potential. 

However, it is extremely difficult to understand the higher order effect just 
by the formal estimation of the magnitude and without actual evaluation, since 
the property of Green's function is very complicated particularly near the free 
surface. As a simplest case for the evaluation of the line integral, Yim (1964) 
considered a source distribution 

m ao in 0 £ X < a, y 0, 

on the forebody of a semi-infinite wedge shaped strut, 

z ‘ 0 

y X tan a in 0 _ x a 

/ 0 

y tan o in Ox ■ 

z 0 

For ■/ or / ,- inside the line integral (50) he used the first order solution obtained 
by Havelock (1932), 

V f [»„m 1 3Y0m] .it - Í " [n0(o - Y0m] <it 

1089 



Y im 

where II is the Struve function and Y is the Bessel function of the second kind. 
If we use the relation from the pressure condition on the free surface 

and the Green's function represented on the free surface 

k i 

Gx( .0,0, X,0.0 ) 
k - k0 sec3* - i,.* sec 

t k ( X - * ) 

we can evaluate the line integral (50) at large x and y o neglecting higher or 
der terms, 

If we take only the lower limit of the above equation, it can be considered from 
the equation for the surface wave to represent a regular wave starting from the 
bow due to the influence of the free surface. From here Yim (1964) calculated 
the amplitude and the phase of the regular bow wave ', far behind the ship on 
y o due to the line integral, 

It is easy to see from Havelock's result that the regular bow wave , from 
the first order theory is, 

Q 

In Fig. 10 are shown the phase difference and 
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P 

which are functions of only kr)a. The amplitude of the total wave t 

= VQ* + p2 + 2OP cos ß sin (kox + — + ' j 

and the phase difference r, between the total wave rt and the first order wave : 
are shown in Figs. 11 and 12. ß and ç are shown in radian, considering that * 
one wave length (2^ ko) is just 2 % 

Fig. 10 - Phase difference between the 
first and the higher order waves s, and 
the amplitude ratio/half entrance angle, 
f(><oa) 

These show that the total wave phase is indeed advanced considerably com¬ 
pared with the first order wave, while the amplitude of the total wave height 
does not differ too much from that of the first order wave. Namely the second 
order effect is quite large. It is proportional to the slope of the entrance on the 
free surface, for a given run, a. Therefore, the smaller the entrance slope 
near the free surface is, the less the second order effect to be expected. As we 
see in the integrand of the line integral (50), this effect mainly depends on the 
potential and the wave on the free surface waterline where the waterline slope 
is large. Since the local effect is usually big near the bow and the shoulder, the 
influence of the local effect on the second order wave may be quite important. 
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Fig. 11 - Comparison between the first order wave 
and the total wave (a = 0.12 rad) 
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THIN SHIP THEORY 

Historically, the thin ship idealization was introduced by Michell in his 
famous study of ship wave resistance. In order to formulate a consistent linear¬ 
ized free surface problem for a ship moving at finite speed, it is necessary to 
assume that there is some identifiable property of the ship which makes the ship 
produce a very small disturbance, in spite of its moving at an arbitrary finite 
speed. Michell chose to consider "thin ships,” that is, ships with such a small 
beam/length ratio that they may be pictured as knife-like. 

If we were concerned only with ship motions at zero speed of advance, such 
problems would not concern us. However, we certainly do not want to restrict 
ourselves in such a way. Furthermore, a rational theory of ship motions which 
includes forward speed effects should include the special case of steady forward 
motion (without time-dependent perturbations). Therefore we are forced to give 
consideration to the linearization problems which have so disturbed mathemati¬ 
cians working on wave resistance theory. 

Michell assumed that, in addition to linearizing the free surface condition, 
he could replace the boundary condition on the hull by a requirement that there 
be a certain anti-symmetrical component of velocity normal to the ship center 
plane. In recent years it has been demonstrated that the latter simplification 
follows logically from the assumption of small beam, if only we assume that the 
potential flow can be continued analytically into the hull up to the center plane; 
it is not a separate linearization.* See, for example, Wehausen (1957) or Stoker 
(1957). There has been much discussion of this point in recent years, naval 
architects arguing that there ought to be an improvement in predictions if the 
hull boundary condition is satisfied exactly — even though the free surface con¬ 
dition remains linearized. 

At the risk of offending both naval architects and mathematicians, I must 
insist that this remains an open question. Certainly, from the point of view of 
thin ship theory, such a patching-up of procedures is at least inconsistent and 
could give misleading results, but the grounds for accepting the thin ship ideali¬ 
zation are not very secure either. I would hope that some day numerical results 
may be presented which are based on such a hybrid approach. f Then it may be 
possible to compare these results with the predictions of the strict thin ship the¬ 
ory and with experiments, to find out whether the present apparent shortcomings 
of the theory can be laid to the simplification of the hull boundary condition. [ If 
such appears to be the case, then we shall have to presume that the premises of 
thin ship theory are at fault. 

•¡“Newman has claimed that even the assumption of the possibility of analytic con¬ 
tinuation is not needed. See p. 39. Newman (1961). 

tWe had had hopes of obtaining just such results from the work at the Douglas 
Aircraft Co. See Smith, Giesing, and Hess (1963). Apparently the problem is 
still too complicated for present day methods, even with computers such as the 
IBM 7090. 

tBefore this is possible, there will have to be a tremendous improvement in our 
understanding of the experiments as well. 
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Some of this controversy has been stimulated by the observations, largely 
in Japan and Germany, that if a centerplane source distribution for a thin body 
in an infinite fluid is determined by the recipe of thin ship theory, and if the 
streamlines which result from this source distribution are actually traced, it is 
found that the body which is generated is quite different from that which was 
originally prescribed. This observation certainly suggests that one should be 
more careful than heretofore about satisfying the body boundary condition. 

However, I can only assume that the investigators who discovered this fact 
have never tried to trace streamlines in a linearized free surface problem. 
Figure 6 shows the results of tracing streamlines in a very simple linearized 
free surface problem. A dipole is located at (0,0) in the figure, and there is a 
steady superimposed flow from left to right. Of course, a dipole exactly gener¬ 
ates a circle in the flow of an infinite fluid (in two dimensions). For the flow 
depicted, the dipole potential has been modified to satisfy the linearized free 
surface condition on y 2. We would expect that under these conditions, the 
"free surface dipole” might generate a somewhat distorted circle. However, we 
note first of all that it does not even generate a closed body; the forward and 
after stagnation points lie on different streamlines! The streamline containing 
the after stagnation point passes right out of the lower half-space, as if it were 
part of a vertical jet flow. This is immediately followed by a downward jet, as 
the same streamline re-enters the lower half-space. The double-jet pattern 
repeats every cycle of the wave behind the "body." On the other hand, the or¬ 
dinary linearized-theory free surface condition gives the broken line as the free 
surface shape — a not unreasonable looking wave, although its amplitude is 
rather extraordinary. 

This figure was prepared by Dr. E. O. Tuck, to whom I am indebted for al¬ 
lowing its use here. He will be publishing a paper soon which will include a dis¬ 
cussion of the problems pointed up by this calculation. Here it must suffice to 
say that, although the case depicted is so severe that one would be suspicious of 
linearized theory, one would not expect the streamlines to do such ridiculous 

Fig. 6 - Streamlines around a dipole under a free surface 
(linearized problem) (by courtesy of Dr. E. O. Tuck) 
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things. The non-existence of a closed body can be rationalized easily. However, 
the manner in which the streamlines cross the linearized free surface curve ap¬ 
pears to be most unreasonable. At the least, it suggests that much more study 
must be devoted to these streamlines before we jump to far-reaching conclu¬ 
sions about how best to improve satisfaction of the body boundary conditions. 
Perhaps it is more important to satisfy the free surface condition exactly. Tuck 
has made force calculations which suggest that this may be the case. 

It must be emphasized that the strange behavior of the streamlines depicted 
in Fig. 6 has nothing to do with nonlinearities, except inasmuch as we are neg¬ 
lecting them. The streamlines shown are those which result from solution of 
the first order (linearized) problem. We usually accept the idea that solutions 
of linearized free surface problems may be physically invalid just because the 
problems are linearized, that is, because we have omitted and/or simplified 
some terms in the boundary conditions. This example demonstrates that the 
linearized solution can be meaningless because it is internally physically con¬ 
tradictory. 

Regardless of these problems, we can formulate a self-consistent math¬ 
ematical theory for the motions of a thin ship, and the theory will include the 
Michell-Havelock wave resistance theory as a special case. This was first 
done in a general way by Peters and Stoker (1954). Their work is quite well 
known in our field, especially since most of it was reproduced by Stoker (1957) 
in his monograph on wave problems. Only a very brief discussion of it will be 
presented here. 

Peters and Stoker first formulate the exact nonlinear problem of a ship 
performing arbitrary motions in a nonviscous, incompressible fluid with a free 
surface not able to sustain surface tension. They then assume that all variables 
can be expanded in perturbation series in powers of /3, a small parameter which 
may be considered as the beam/length ratio. Some quantities must be allowed 
to have a zero-order term; in particular, ship speed is assumed to have the 
expansion: 

S( t) = s0(t) + /3s,(t) t- /33s2(t) + ... . 

However, most of the variables are assumed to represent small disturbances, 
and so their expansions start with terms linear in /3. For example, the dis¬ 
turbance potential is written: 

4>(x, y, z, t ) = /Scpjfx.y, z, t) + /32 cp2 ( x, y, z, t ) + ... . 

The free surface elevation, the motion variables, the thrust, etc., all have 
similar expansions. 

These expansions are all substituted into the various conditions and equa¬ 
tions, and the terms are all arranged according to powers of /3. Before solving 
any boundary value problems, Peters and Stoker make a number of observa¬ 
tions. For example, ds0/dt = o, which means that s(t) represents a steady 
forward speed with perturbations superposed on it, the perturbations being of 
order /3. The usual conditions for hydrostatic equilibrium are also obtained. 
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The equations of motion in the longitudinal plane are all found to contain only 
second and higher order terms. 

They then restrict their attention to the case of a ship in sinusoidal head 
waves. These incident waves have an amplitude with order of magnitude 3. The 
resulting second order problem is then straightforwardly separated into a time- 
independent problem and a time-dependent problem. The solution of the former 
leads to the Michell-Havelock solution of the resistance problem, unaffected by 
the incident waves or the motions. The solution of the latter, the time-dependent 
problem of lowest order, is carried out without the necessity of treating any 
more boundary value problems. The resulting ordinary differential equations of 
motion represent simply a two-degree-of-freedom coupled spring-mass system, 
without damping. Even the coupling is removed if we assume that the centroid 
of the waterplane is in the same cross section as the center of gravity of the 
ship. In this case, the solution predicts an undamped resonance in heave and in 
pitch. In the heave mode, the spring constant is the hydrostatic restoring force 
per unit deflection, and, in the pitch mode, the spring constant is the hydrostatic 
restoring moment per unit pitch angle (plus a non-hydrodynamic contribution 
which results from the condition that the center of gravity is generally below 
the origin, i.e., below the pitch axis). The resonance frequencies are then ob¬ 
tained as the square roots of spring constants divided by mass and moment of 
inertia, respectively. The disturbing force is just a "Froude-Krylov" force. 
That is, the heave or pitch excitation is obtained simply by integrating the pres¬ 
sure in the incident wave over the hull, with direction cosines and lever arms 
as weighting functions, as appropriate. The presence and motion of the hull do 
not affect the values to be used for the pressure. 

Obviously, some of these results must be rejected on physical arguments, 
especially the prediction of undamped resonances and thus of infinite amplitudes 
of motion. Unfortunately, heave and pitch resonance frequencies quite often oc¬ 
cur within the important range of wave excitation frequencies, and, if this hap¬ 
pens, it is evident that the narrow spectral band around resonance covers the 
frequencies of most interest. Even if this theory is valid for other frequencies, 
it is not of much help in predicting real phenomena. 

In spite of these difficulties, the results come directly out of the hyptheses. 
There can be no arguing with the logic used by Peters and Stoker in deriving 
conclusions from their formulation of the problem, and so the difficulty must be 
sought in the formulation. This situation will be resolved presently, but for the 
moment let us note that the anomalous behavior at resonance can be explained 
non-mathematically. There are three types of quantities which are assumed to 
be of order , and we can start a catalog of orders of magnitude by listing these: 

ship beam, waterplane area, volume, mass ft 
amplitude of incident waves ß 
amplitude of oscillations of the ship ß 

Speaking in terms of orders of magnitude, we can say that: (a) exciting force = 
(amplitude of incident waves) x (waterplane area); (b) restoring force = (ampli¬ 
tude of ship motions) x (waterplane area); (c) ship inertial reactions = (ampli¬ 
tude of ship motions) x (ship mass); (d) amplitude of motion-generated waves = 
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(amplitude of ship motions) x (waterplane area); (e) motion-generated fluid 
force = (amplitude of motion-generated waves) x (waterplane area). We can now 
add to our catalog of orders of magnitude: 

excitation by incident waves ß1 
hydrostatic restoring force ß2 
ship inertial reactions ß1 
added mass and damping force ß3 

At resonance, the restoring force and inertial reaction add up to zero, and there 
are no second order forces to counter the excitation force. Therefore the re¬ 
sponse amplitudes are unbounded to this order of approximation. This violates 
the assumption that motions are of order 3, but it would not be proper in the 
perturbation analysis to try to modify the resonance prediction through use of 
higher forces, simply because they are of higher order and therefore small by 
comparison. 

Peters and Stoker criticized Haskind for assuming a priori the orders of 
magnitude of the various kinds of forces, but it can be seen a fortiori that 
Peters and Stoker have done essentially the same thing, for they also assumed 
the orders of magnitude of certain quantities (not the forces) and arrived at un¬ 
tenable conclusions. 

These authors recognized and noted this anomaly, and they suggested sev¬ 
eral escapes from this predicament. For example, they discussed the "flat 
ship" linearization. However, such an approach simply shifts the same diffi¬ 
culty to the lateral motion modes. They also considered a "yacht-type" ship, 
which would avoid the trouble in all modes except surge. Such a mathematical 
model is quite artificial, but it might produce successful results if it could be 
worked out. 

However, the basic difficulty with thin-ship theory may be looked at in an¬ 
other way which suggests a totally different method. It was assumed that ship 
beam, ship motions, and incident waves were all small, of the same order of 
magnitude. However, it was found that motions near resonance could be very 
large —to an extent that invalidated the assumptions. Newman (1960) proposed 
that there should be more than one small parameter in the statement of the 
problem, and he worked out a development in terms of three parameters. He 
retained , the beam/length ratio, and he added a parameter 7 which indicates 
the order of magnitude of the unsteady motions and another parameter ? which 
indicates the order of magnitude of the incident waves. Such a triple expansion 
allows for consideration of two important points: 1) There is no reason at all to 
assume that ship beam is related in size to the amplitude of the incident waves; 
2) it is not necessary to make any a priori assumptions about the magnitude of 
ship motions relative to the magnitude of ship beam or incident waves. With 
regard to point 1), we note that ship beam and incident wave amplitude remain 
as independent parameters throughout the problem, whereas, with regard to 
point 2), we expect that the solution of the problem will provide us with infor¬ 
mation about the actual amplitudes of motion. 
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Newman expands each of the dependent variables in multiple series expres¬ 
sions. For example, the potential is made to depend on all three small param¬ 
eters: 

(p(x, y, z, t) = /3‘>'iskf-(>ijk(x.y.z.t)- 
¡ . j . k 

whereas the motions are represented by double series, e.g., for heave, 

zo(t'> = E -31 ^ zu(t) • 
» . i 

(The unsteady motions depend on y, by the definition of this parameters, but we 
also expect steady displacements, which will depend on ß. This is the reason 
for including both parameters in the expansion here.) 

Since Newman develops his analysis on the assumption that it will be neces¬ 
sary to include higher than first order effects, he carefully introduces other 
needed expansions, which will not be written out here. For example, he trans¬ 
forms from a body-fixed coordinate system to a steadily translating system, 
both for calculation of the potential functions and for calculation of the pressure 
and forces; this transformation involves the parameters ß and >. Finally he 
obtains a sequence of problems, each homogeneous in each of the small param¬ 
eters, and he solves explicitly for the following potential functions: rpioo> the 
potential for the steady translation problem; <p001, the potential for incident 
waves; tp110, the potential for small motions of the ship in an otherwise undis¬ 
turbed ocean; cp101, the diffraction potential. The first is just the Michell- 
Havelock potential, and the second is the classical potential for sinusoidal 
waves on an infinitely deep ocean. The third and fourth potential functions are 
somewhat more interesting and deserve some further comment. 

If a ship model is forced to perform small oscillations of order of magni¬ 
tude y, perhaps by being driven by a mechanical oscillator, then the appropriate 
potential function is p110 . The one complication of interest here lies in the 
specification of the body boundary condition. In the initial formulation of this 
problem, it is necessary to state the boundary condition on the actual, instan¬ 
taneous position of the body surface. Then, by a systematic procedure, this 
condition can be translated into a (different) condition on the mean position of 
the body. This problem has already been mentioned; see the discussion accom¬ 
panying Eq. (10b). There is an interaction between the ship oscillations and the 
steady flow past the ship which produces effects in the lowest order unsteady 
solution. This interaction is lost if we assume immediately that the body bound¬ 
ary condition can be satisfied on the mean position of the hull. Such an error 
has occurred frequently in work in this field; the first correct treatment is ap¬ 
parently due to Hanaoka (1957). Newman (1961) discusses the problem quite ex¬ 
plicitly and shows that the difference in the potential functions, corresponding 
to the two methods of satisfying the hull condition, is equivalent to the potential 
of a line distribution of oscillating sources located on the mean keel line. It 
must be emphasized that this is not a higher order effect, and the problem is not 
related, for example, to the arguments about how to satisfy the body boundary 
condition in the steady motion (resistance) problem. The elegant formulation of 
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the boundary condition by Timman and Newman (1962) provides the most con¬ 
venient procedure for handling this difficulty. Again, see Eq. (10b). 

The potential <j>,0., as found by Newman (1961), points up an interesting 
difficulty which is still not well understood or appreciated. This potential rep¬ 
resents the diffracted flow around the translating restrained ship. It satisfies 
a straightforward boundary condition on the hull, providing a normal component 
of velocity which just offsets the corresponding velocity component of the inci¬ 
dent wave system. However, its boundary condition on the free surface is 
unique among the potential problems formulated by Newman. When the series 
expansions are substituted into the free surface condition and the resulting con¬ 
ditions are modified so as to apply on the undisturbed free surface, the poten¬ 
tials ï100, <p001, and <pno all satisfy a homogeneous condition: 

Bsp B ^ cp 

R ^ + bT2 
2V 

32(p 

BxBt 
+ V2 

32<p 

Bx2 
0 . 

However, p10I, must satisfy a nonhomogeneous condition; there is a nonzero 
right-hand side in the corresponding equation, and this right side contains 
terms which are essentially products of <p00, and <p100. This situation is some¬ 
what analogous to the problem of satisfying the body boundary condition. There 
is an interaction between the incident wave system and the steady Kelvin wave 
system such that an apparent pressure distribution is applied to the free sur¬ 
face, and this apparent pressure gives rise to an unexpected addition to the dif¬ 
fracted wave. 

This complication with the diffracted wave is an excellent example of the 
value of systematic perturbation analyses. We could have set up the diffraction 
problem much more easily. It would have seemed quite reasonable to assume 
that the usual linearized free surface condition would apply, and so we would 
have found a potential function which satisfied that condition and which also off¬ 
set the normal component of the incident wave system on the ship hull. New¬ 
man's systematic approach shows that this is not proper. We nëfed another con¬ 
tribution to the potential which satisfies a homogeneous condition on the hull and 
a non-homogeneous condition on the mean free surface. This extra part will be 
of the same order of magnitude as the potential which we would obtain by the 
more naive approach. We should note specifically that, since this effect is due 
to interaction of the incident waves with the steady wave system of the translating 
ship, this is a problem only when the ship has non-zero forward speed. 

The effects of this difficulty may be quite pervasive. In particular, the Has- 
kind relations for predicting wave-induced forces (discussed in Chapter IV) 
were derived only for a ship at zero forward speed, and the extension of these 
relations to ships with non-zero forward speed will depend on a further satis¬ 
factory resolution of the problem discussed here. 

For the thin ship moving through sinusoidal waves, Newman's solution is 
complete to first order in /3, and he obtained a set of formulas for the coeffi¬ 
cients in the force expansions, complete to second order in ß. The expressions 
are quite unwieldy, and one can not be very optimistic about being able to use 
them for practical calculations. However, it is of some interest to point out 
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how they resolve the problem left over from the work of Peters and Stoker: How 
do we explain away the predicted infinite amplitudes of motion at resonance? 

In Newman's formulation, the lowest order forces have the following orders 
of magnitude: 

excitation by incident wave, /38; 
hydrostatic restoring force, /3y; 
ship inertial reactions, ßy, 

added mass and damping forces, ß2y. 

Away from resonance, the excitation must be equal to the sum of hydrostatic 
plus ship inertia forces. Under these circumstances, it is clear that we can set: 

y = 8 + smaller terms. 

At resonance, the forces of order ßy total zero, and so the excitation force must 
equal the added mass and damping forces, which are the lowest order non¬ 
vanishing forces. Therefore, at resonance 

> = — + smaller terms. 

Since y must still be a small parameter, we must require that 8 « /3, if the 
perturbation analysis is to remain valid. Such a requirement appears reason¬ 
able. 

As a practical approach, if we were to try to use Newman's formulas for 
the forces, we could now follow the procedure which is usual in perturbation 
analyses, viz., absorb the small parameters into the force and motion variables. 
We would then calculate the forces, including the higher order added mass and 
damping forces, and from these calculate the motions. Away from resonance, 
the higher order contributions should be negligible (if the conditions of the the¬ 
ory are really satisfied), and the results should reduce to those of Peters and 
Stoker. At and near resonance, the higher order forces should dominate the 
lower order forces and control the predicted responses. 

This approach is logical, at least insofar as a ship may really be consid¬ 
ered as thin, but the results are not very useful because of their complexity. 
The damping coefficients are the only elements of the problem which fall out in 
a fairly simple fashion, and it has already been seen that at least some of these 
can be calculated in a much simpler manner, from radiation considerations. In 
order to evaluate the potential usefulness of the thin ship idealization in predict¬ 
ing ship motions, some calculations of damping coefficients have been made for 
Series 60 models and compared with experiments by Gerritsma, Kerwin, and 
Newman (1962). Figure 7 shows some typical results from their paper. The 
heave damping coefficient (b’j) is plotted against frequency for a sequence of 
values of Froude number. The ship concerned is the cB = 0.60 form of the 
Series 60. The agreement is at least qualitatively good. 
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Fig. 7 - Heave damping coefficient for 
series 60, C„ = 0.60, Model at various 
Froude numbers, experiments and cal¬ 
culations (from Gerritsma, Kerwin, and 
Newman ( 1962)) 

SLENDER SHIP THEORY 

A slender body theory, whether for aircraft or for ships, is formulated on 
the assumption that all dimensions in a cross section of the body are small 
compared to the length of the body. Also, the rate of change of transverse di¬ 
mensions (with respect to the lengthwise coordinate) must be small in a simi¬ 
lar sense. Such an approximation appears attractive for ship problems, since 
ships generally fit such a qualitative description. Nevertheless, the application 
of slender body theory to ship problems has been long in coming, in spite of the 
fact that the aerodynamic version of the theory is forty years old. 
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There are probably several reasons for this long delay, and a quick inspec¬ 
tion of these reasons will suggest something about the nature of slender body 
theory. One important problem arises immediately which distinguishes the 
slender body approach from thin ship analysis. If we introduce the slenderness 
parameter into the formulation of the boundary value problem, the effects of the 
free surface are generally lost and we are left with an infinite fluid problem. 
This is clearly quite unsatisfactory, because we seek primarily a description of 
just those phenomena which result from the presence of the free surface. Fur¬ 
thermore, such a formulation turns out to be equivalent to a set of two-dimen¬ 
sional problems, and the effects of interactions between various cross sections 
are apparently quite ambiguous. These problems can be resolved by a refor¬ 
mulation which is altogether different from the thin ship approach, but then the 
final formulas depend on the geometry of the ship in an elementary way —which 
is offensive to the naval architect, for it implies that the complicated geometry 
of a hull is of little importance for ship motions. 

These difficulties all demand that our attempts to apply slender body theory 
in ship problems be done with great care, by a systematic procedure. Using a 
perturbation analysis, we can answer to all of these problems, even the last, 
for, by being systematic, we can (in principle) proceed to higher approximations 
which involve more and more details of the hull geometry. 

Before proceeding to the logical development of slender body theory, we 
should note that Grim (1957, 1960) anticipated much that would later come out of 
the theory. He pointed out that there were apparently two general approaches to 
representing the ship in studies of ship motions: (l) The ship can be represented 
by a set of three-dimensional singularities which clearly predict three-dimen¬ 
sional effects but which are loosely connected to ship geometry. (2) The exact 
shape of the ship in each cross section can be generated as if that cross section 
were part of an infinitely long body of uniform shape, with no account taken of 
three-dimensional effects (either interactions or forward speed effects). In 
order to combine the advantages of both, he proposed to solve the potential prob¬ 
lem corresponding to the second approach, representing the potential as a two- 
dimensional multipole expansion about a line in the centerplane, and then at each 
section to replace the two-dimensional singularities by three-dimensional sin¬ 
gularities of the same strength. The resulting potential would then be used to 
calculate pressure and force. In other words, he proposed to use strip theory 
only to find singularities for representing the ship and then to use truly three- 
dimensional potential functions to represent the flow. Grim (1960) published the 
details of the analysis and some calculations, all for the case of zero forward 
speed. He also stated that the theory had been worked out for forward speed 
cases as well, but apparently he has not yet published that. 

There is considerable similarity between Grim's procedure and the rules 
for calculation which follow from slender body theory. However, the two are 
not identical, and it is obscure as to what meaning should be attributed to the 
differences. It will appear that slender body theory actually gives simpler re¬ 
sults than Grim's, and one may say that the slender body results fall into the 
category which Grim criticized for not providing a realistic representation of 
the ship geometry. But the systematic approach is logical if the assumptions 
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are correct, and, if they are correct, then there is no need to use Grim's more 
complicated formulas. The questions raised here can not yet be answered. 

The first comprehensive attack on ship motions problems by slender body 
theory was by Vossers (1962a), and I shall follow his approach in essence. 
(However, other methods are possible. See, for example, Ursell (1962), Tuck 
(1964).) After formulating the problem exactly, we must introduce the slender¬ 
ness approximation and this proves to be a difficult task. Vossers’s analysis 
and result.' are very complicated and moreover they are somewhat suspect. 
Newman (1964) has had more success in obtaining approximations, at least for 
the case of no forward speed, and his first numerical results are very encour¬ 
aging. However, the calculations are still at a very rudimentary stage, and it is 
too early to predict the quality of the outcome. Whether all of this effort will 
lead to valid and useful formulas is not yet known. I leave the two following 
authors (and their discussers) the opportunity to speculate on the future of 
slender body theory for predicting ship motions. 

In formulating the slender body problem for ships, Vossers assumes that 
the ratio (ship beam)/(ship length) is a very small quantity, which we call e. 
The purpose of his investigation is to find solutions which become more and 
more accurate as £ becomes smaller and smaller. Vossers expands various 
quantities as perturbation series in powers* of e, substitutes these into the 
various mathematical conditions of the problem, and non-dimensionalizes all 
quantities and equations. In the last process, a number of special non-dimen¬ 
sional ratios arise, and the nature of problem and solution depends on the rela¬ 
tive sizes of these quantities. The important non-dimensional quantities are, 
besides £, 

<-L 2V, a reduced frequency, 

2V2 gL, a forward speed parameter, proportional to (wavelength of waves 
travelling at speed v)/(ship length), 

v2L 2g, proportional to (ship length)/(wavelength of waves with frequency £..), 

a)2ß 2g, proportional to (ship beam)/(wavelength of waves with frequency ^), 

<. V g, a parameter for describing the pattern of radiated waves (usually 
called "r" in the American literature), 

where 

L = ship length, 
B = ship beam, 
ai = circular frequency of exciting or motion-generated waves, and 
V = forward speed. 

*This is really not correct, and it shows the danger of loose assumptions. One 
should, as it turns out, use double series containing factors e™ (loge)n. It is 
also possible to avoid this trap altogether by assuming only that the potential 
can be expanded: ¢. = S^n, with tfn+1 r 0(!/>n). By such an approach, one must 
determine in turn the actual order of magnitude of each term. 
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The nature oí the free surface problem depends primarily on the length of 
waves (of frequency ) compared with the ship dimensions. If these waves have 
length comparable with ship length, that is, ■ 2b 2g 0(-), then Vossers shows 
that the free surface condition reduces to the rigid wall (low frequency) condi¬ 
tion. If the waves are short compared with ship beam, the high frequency de¬ 
generate boundary condition applies. Only if the waves are comparable in length 
with ship beam does one obtain an interesting problem, for then the free surface 
condition becomes (in dimensional form): 

+ g — 0 on X, 0 , (23) 
’t 2 r*3 -1 

and Laplace's Equation reduces from 

■V 'V < 
to (24) 

•V + V 

In words, the problem reduces to a set of two-dimensional problems; for each 
cross section, we must find, in two dimensions only, a solution of Laplace's 
Equation satisfying (23), the usual free surface condition, and (as Vossers shows) 
the usual boundary condition on the body. 

This problem should be quite familiar, for it corresponds exactly to "strip 
theory." There is no effect of forward speed and no interaction between cross 
sections. Vossers' formulation shows clearly then that strip theory is a natural 
consequence of assuming that the disturbance waves and ship beam are com¬ 
parable in size, and accordingly it should be valid in problems of ship rolling in 
short beam waves, for example, but not for problems of pitching and heaving in 
waves comparable with ship length. 

It should be noted specifically that solutions which satisfy (23) and (24) are 
functions of x,, since the body boundary condition depends on x,. Moreover we 
can add to such solutions any other function of x, which we desire, without 
violating (23), (24), or the body condition. This arbitrary additive function may 
be interpreted as expressing the interaction between sections. But it is unknown. 
In this formulation of the problem, we can do only as in strip theory, namely, 
assume that there is no interaction. 

If we are interested in pitch and heave problems (and most of this paper is 
concerned with just these problems), then we must consider wavelengths com¬ 
parable with ship length, and it is apparent that we do not obtain a satisfactory 
formulation by the above procedure. Therefore Vossers proposed a different 
tack, viz., that we write down the solution in a general way by using Green's 
theorem and then use the slenderness approximation to simplify the resulting 
integral equation. In other words, we effectively establish an integral equation 
for the solution of the problem involving a general body (not a slender body); we 
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cannot solve this equation, but we simplify it for the special case of tue slender 
body, and the resulting equation can be solved. It turns out that the integral 
equation which must be solved relates to a set of two-dimensional problems 
again, but this time we obtain an additional part of the solution which explicitly 
represents interaction effects between sections. 

It seems to be desirable at this point to restrict ourselves to the case of 
zero forward speed, since it has been worked out in detail and we can be rea¬ 
sonably confident of the results. In detail, the approach which follows is that of 
Newman (1964); the general concept is still Vossers*. 

In order to simplify matters, let us assume immediately that all disturb¬ 
ances are sinusoidal in time. For the potential we write Re (y<x) e * *}, and we 
have similar expressions for all other variables. This is not necessary and 
perhaps not desirable, but it is certainly convenient. We also stipulate that <¿(x) 
represents the potential for motion-induced diffraction waves, but not for inci¬ 
dent waves. 

By Green's theorem, we can write an expression for the potential at any 
point in the interior of the fluid: 

'p(x) 
± Í 4v J G( ?. Í) 

Bif>( £) 3G( 
dn ¢(¢) - 

X, g) I 

dn I 
da (25) 

G(x.g), a Green's function, is any function which satisfies Laplace's Equation (in 
three dimensions) except at x £, where it has the behavior: 

C(X, £) - d/|x - I ) + ... . 

The domain of integration, , must be a closed surface with x in its inte ñor, 
and f is the dummy variable which ranges over I. Under these conditions, (25) 
is a very general equation, and its usefulness for us depends on our selecting 
G(x, .f) in a meaningful way. 

We choose G(x, j) as the potential function of a pulsating source located at 
f, the potential satisfying the linearized free surface condition on x3 o and an 
appropriate radiation condition at infinity. Also, we define the closed surface 
S as So f sf + S^, where so is the wetted surface of the ship, sf is the mean free 
surface, that is, the plane x3 0 outside the ship, and S is a closing surface 
far away from the ship, at "infinity." If now we assume that <t>(x) satisfies the 
linearized free surface condition and a radiation condition, the integrals over Sf 
and s vanish, leaving only the integral over S0 in (25). 

We have left a gap in our logic by assuming that we can use the linearized 
free surface conditions. However, we get away with it in the case of zero for¬ 
ward speed, for we actually have two means of supporting the linearization: If 
there are incident waves, we may assume them small, so that the ship motions 
will also be small (even if it is a "fat ship"), or we can concentrate on the as¬ 
sumption of slenderness of the ship, in which case even finite amplitude mo¬ 
tions will produce small amplitude disturbances. It is evident that the linearized 
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condition will be appropriate and we proceed to use it without further justifica¬ 
tion. However, the forward speed problem would require much more care. 

With : now replaced by S0, Eq. (25) is much simpler, but we still can do 
nothing with it in its present form. We assume that is a known quantity 
on S(>, but 4>(\) is not known, and so this is an integral equation for 4>(x) on S .* 
To reduce it to a simpler integral equation, Newman now introduces the slender¬ 
ness parameter. This is essentially a rather tedious exercise in estimating the 
re ative sizes of various quantities, and I shall be satisfied here to state his re¬ 
sult. He finds that cap be written as the sum of two terms plus an error: 

+ fix')] [l + 0(<£ log e)j (26) 

where <,:2D is the solution of the two-dimensional problem in which the body 
cross section performs its motions in the presence of a rigid wall at x o 
The function f(x,) is obtained explicitly: 3 

where 

F(x , ) 

c is the contour around the hull in the cross section at x,, 

J0 = Bessel function of the first kind, 

Y0 = Bessel function of the second kind, and 

H„ = Struve function. 

*In order to obtain the integral equation on s 
then the factor 1/477 changes to 1/271. 

we must let 5 approach so , and 
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In the formula for fix,) we have two integrals over the length of the hull, 
and we should distinguish between their meanings. The first integral, involving 
the Struve and Bessel functions, represents a free surface effect. It can also be 
looked upon as expressing an interaction between sections —an interaction caused 
by the presence of the free surface. The second integral also represents an in¬ 
teraction, but it would exist even in the absence of the free surface. We could 
combine the latter with <ÿ2D and look on the sum as the slender body approxima¬ 
tion for the three-dimensional body in the presence of a rigid wall, with the first 
integral supplying a correction to account for the free surface effect on the 
three-dimensional body. 

We note that the interaction, due to either term of f(x,), involves the ship 
geometry in a very simple way. In fact, F(x,) depends only on the ship beam at 
section X,, and thus f(x,) depends only on the waterplane shape. However, <¿2D 
depends on the detailed shape of the cross section. (Fortunately, the finding of 
■t2o is n°t t°0 difficult, since it is not really the solution of a free-surface prob¬ 
lem.) Thus, the solution does depend on the hull geometry in a detailed manner, 
but this dependence is shunted off to the mathematically easier field of problems 
with fixed, rigid boundaries. 

We should now refer back to the earlier statements which resulted from 
various assumptions about orders of magnitude. We have assumed here that 
wave length is comparable with ship length. Under these conditions, Vossers 
showed that the three-dimensional boundary value problem would reduce to a 
set of two-dimensional problems in the cross sections, with the free surface 
condition replaced by a rigid wall condition. This is exactly what Newman ob¬ 
tains. However, we now have an explicit formula for the interaction term, f(x,). 

Perhaps it should be emphasized that (26) is valid only very near to the 
ship hull, at distances which are of order of magnitude tL. However, this is 
just where we need to evaluate the potential in order to find the force on the 
ship, and we do not need to be concerned about complications far away. The 
expression for p given by (26) presumably does not even satisfy the three- 
dimensional Laplace's Equation, except in an approximate sense very near to 
the body. Far away from the body, the potential would have quite a different 
form from that given in (26). 

Without finding explicit formulas for the forces, we can immediately reach 
some conclusions of importance. For the transverse oscillations, that is, yaw 
and sway, the flux, F(x,), vanishes and so f(x,) vanishes also. In other words, 
the theory predicts no interaction between cross sections in these modes. If 
this holds for the potential, it must be true for the forces too, and so the lowest- 
order slender body theory for ship motions reduces to strip theory for the 
transverse modes. However, to the same degree of approximation, there will 
be non-negligible interactions between cross sections in the heave, pitch, and 
roll modes. It is interesting to note that many years ago the same conclusions 
were reached by Grim (1957) on the basis of physical arguments. 

In order to calculate the force and moment on the ship, we must add the 
potential for the incident waves to the function represented in (26), and from 
this sum we find the pressure, which we integrate over the submerged part of 
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the hull in the usual way, with direction cosines and lever arms for weighting 
functions, as appropriate. We can distinguish three separate parts of this 
force: (1) the force due to the incident waves, which is a Froude-Krylov force, 
(2) the hydrostatic restoring force due to the disturbed position of the hull, (3) 
the hydrodynamic force due to the ship motions and to the diffraction wave. The 
sum of all these is set equal to the inertial reaction of the ship, in accordance 
with Newton’s Law, to yield the equation of motion. 

These different kinds of forces involve various functions of e. We obtain 
the lowest order theory by considering only those forces which are homogene¬ 
ous in the lowest order of e. The precise form of these expressions is not par¬ 
ticularly interesting except to someone who wants to make quantitative predic¬ 
tions. The details can be found in Newman (1964). The qualitative conclusions 
which can be drawn are, however, worthy of some comment. 

In yaw and sway, there is no hydrostatic restoring force or moment. The 
other three kinds of forces, that is, inertial, excitation (Froude-Krylov), and 
motion-induced forces, are all of order e2, and so all must be included in the 
equations of motion for these modes. It may be noted that there are no free 
surface effects in the motion-induced forces (except inasmuch as the rigid wall 
may be considered as a free surface condition). Also, it has already been 
pointed out that there are no interaction effects between sections in these modes. 
So here the theory becomes exceptionally simple: The excitation is calculated 
from the Froude-Krylov formula, the body inertia comes from the ordinary the¬ 
ory of the dynamics of a rigid body, and the hydrodynamic reaction is obtained 
from the solution of a fairly simple two-dimensional problem. In fact, since 
there can be no radiation of waves in the presence of a rigid wall at x3 o, the 
motion-induced hydrodynamic force is simply the added mass force for the 
simplified two-dimensional problem. Therefore the whole resistance to the yaw 
and sway excitation force has the nature of an inertial reaction. 

In pitch and heave, the Froude-Krylov excitation force and the hydrostatic 
restoring force provide the leading terms in the equations of motion; these 
forces are both of order t, and all other forces are of higher order. The low¬ 
est order theory is accordingly even simpler than for yaw and sway. There is 
no hydrodynamic force (except the excitation) in the first approximation. Also, 
the inertia does not enter into the calculation. The response is entirely con¬ 
trolled by the "spring" term. 

However, in heave and pitch, it is fairly straightforward to derive higher 
order forces, and Eq. (26) leads directly to formulas for the next approxima¬ 
tion. It can be shown that the interaction term in (26) yields a force of order 
e2 ion t in the heave and pitch equations of motion. This force includes added 
mass, damping, and diffraction effects. The inertia of the ship itself is of order 

2 in these modes, and the calculation can be extended to take this into account. 
This is a much more interesting situation, for the system now has the proper¬ 
ties of a damped spring-mass system. However, it must be recognized that the 
occurrence of a resonance is a higher order effect superimposed on the simple 
effects described in the previous paragraph. If the amplitudes of response are 
very large near resonance, or if there are large phase shifts, then we can hardly 
pretend that these are higher order effects, and the theory is of questionable 
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validity. Fortunately, the experiments of Davis and Zarnick (1964) with a pitch¬ 
ing and heaving aircraft carrier at zero speed show good agreement with calcu¬ 
lations based on the very simple, lowest order theory developed by Newman, and 
there is some hope that the higher order theory outlined here will still give good 
results even when resonance phenomena become more important. 

It may be well to recall again (see the Introduction) how the slender body 
approach rectifies the difficulty of the Peters-Stoker thin ship model. In the 
latter, the Froude- Krylov excitation, the hydrostatic restoring force, and the 
ship inertia force were all of the same order of magnitude, and damping and 
added mass forces were of higher order of magnitude. Because of the presence 
of "spring forces" and inertia forces and the absence of damping, the system 
had resonances with unbounded amplitudes of motion. In the slender body the¬ 
ory, the mass and thus the inertial reactions are raised to a higher order in 
terms of the small parameter, while the restoring forces are unchanged in 
order of magnitude. Without the inertia terms, there is no resonance at all in 
the lowest order theory, and when inertia does appear in higher order terms, 
damping also enters in. 

There is one other difference between this slender body approach and the 
Peters-Stoker theory which may be mentioned. In the latter, it was assumed 
that the slope of the incident waves was small, of the same order of magnitude 
as the (small) beam/length ratio. In the slender body theory, wave height (or 
slope) remains an independent parameter, and all of the above results may be 
considered as part of a homogeneous first order theory in terms of such a pa¬ 
rameter. However, this parameter must be small compared with e, the slen¬ 
derness parameter. 
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APPENDIX A 

Calculation of Force and Moment 

It has been remarked several times that, in order to calculate force and 
moment on the ship, the pressure must be evaluated on the actual instantaneous 
position of the ship hull. However, it is quite inconvenient to have a changing 
domain of integration, especially since finding the domain is part of the prob¬ 
lem. (A priori, the location and orientation of the ship at any instant are un¬ 
known, and so one does not know where to evaluate the pressure.) Therefore we 
choose to express the pressure at a point of the hull surface, s, in terms of the 
pressure at the corresponding point of so, the undisturbed position of the hull. 
The resulting expressions will involve the unknown motion variables, but they 
will appear in an explicit manner and not as arguments of functions. 

The pressure at any point in the fluid can be expressed as follows: 

p = -PKX3 ^ ps f Pm , 

where 

p* = ..V^-ipíVO1- 

Pm - "P ~ + PV — - pV(P0 • V<P, - • 

We assume that the steady motion and the unsteady motion problems have both 
been linearized in some way, and so we neglect certain quadratic terms,* re¬ 
taining only the following simplified expressions: 

3cp. 3c(). 
Pm = 'P— 

It would not generally be proper to assume also that we could neglect the term 
-pVrp0 • v<pj in pra, although in practice this quantity may be quite small. The 
reason for this is discussed in detail in Chapter V: The steady motion problem 

♦ This step may not be proper in certain cases, e.g., a deeply submerged body 
or a slender body. 
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and the oscillation problem should generally be linearized in terms of different 
small parameters, say ß and y, and we may neglect terms in ß1 compared with 
terms in ßt or terms in y2 compared with y, but we cannot make any arbitrary 
assumptions about the relative size of ß and y. 

We assume that the pressure is given by a function which can be expressed 
as a Taylor series about a point on S0. Let us describe the motion of the ship 
by the two vectors: 

£(t) = 2 ak(t> Ik ■ 
k = I 

3 

6-(^ = Ü ik • 
k = 1 

f( t) specifies the linear displacement of the ship and ß( t ) the angular displace¬ 
ment (which is assumed to be small enough that a vector representation is ap¬ 
proximately valid). The displacement from equilibrium of a point x on the hull 
is then given by <f + 0 * x. The pressure at a point on S can be expressed in 
terms of the pressure (and its derivatives) at the corresponding point of so: 

pis = Pis + [i + e*xl • Vpls + ... . 
o - o 

In addition to expressing the pressure appropriately, we need to be able to 
write down a set of direction cosines for calculating the effects of the pressure 
on an element of the hull. For calculating the moments, we shall need further¬ 
more a set of appropriate lever arms. 

Let us look first just at the force components, resolved along the steady 
axes: 

Xj = J p(n • i j) dS. 

We could just as well resolve forces along the unsteady (body) axes: 

xj Í P(n dS . 

The two sets of force components are related by: 

X = X' + X' , 

where x (Xj.Xj.Xp, and so the determination of either set is sufficient. We 
note that the factors (n • ij) have the values which we associate with the undis¬ 
turbed ship, whereas the factors (n -ip vary with time. Therefore we find it 
somewhat easier to calculate the components x' directly. 

To the expression for xj we add and subtract a quantity, as follows: 
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, ir r , 
Xj V (n.ij)pdS - (n-i.)d-{ P<ixj 

[•'s 

Ç ' ¢( Xj , Xj , t ) 

+ (n ■ i ■ ) d-{ p dXj . 

where L is the line of intersection of the ship hull at any instant with the undis¬ 
turbed free surface, and Ux^Xj.t) is the free surface elevation. I have as¬ 
sumed that the ship is wall-sided near the free surface. It can now be recog¬ 
nized that the quantity in braces is just an integral over that part of the hull 
surface which is wetted when there are no waves and no ship motions. It has 
the same shape and size as so, but it is displaced from the equilibrium position. 
The direction cosines, ( n • i ' ), in fact have the values appropriate to S0 itself, 
but the pressure must be evaluated on the actual position of S. However, we can 
use the Taylor expansion of the pressure to convert it into a function to be eval¬ 
uated on S0. The quantity in braces is then just: 

J (Q tp { P + + Ö * x) • Vp + . . •} I s 015 ■ 
So 

The correction term, the integral over L, is expressed partly in terms of 
each of the two coordinate systems. It is perhaps easier to retain the quantity 
(n ■ i') as it stands, and so we must express the inner integral in terms of the 
primed coordinates. From the geometry, it is found that this correction term 
can be written: 

( n • i j ) di I dx3{p+(£+0xx)iVp + 
*Lo J0 

where Lo is the intersection of the undistrubed free surface with the hull sur¬ 
face, the latter being in its undisturbed position. The upper limit of x3 is in 
error by a small quantity which does not affect the result. If we now work out 
this integral, systematically keeping only lowest order small quantities, we 
obtain 

o\ Ai(n - ij) 3x, 
I 
R 3t 

V ^ 
R 3x, " ( ’3 

x1el ‘1 2 

The complete result for x| is: 

f dS( n • i j ) 

So 

[,, (í^.x,.v]^}-fvj di,„.ij( i {l il - 

X, - p 
3tp, Bip. 

-RX3 - g(i3 ^ x2»j - Xjf-j) " + V - V'P0-V(P, 
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« 

We can interpret the various terms here readily. The first term of the first 
integrand is just the hydrostatic pressure at equilibrium, and the second term 
yields the hydrostatic disturbance force. The following three terms are un¬ 
steady force contributions, and the last term in the first integral yields the re¬ 
sistance and the unsteady force which results from interaction between the 
steady flow and the displaced position of the hull. The line integral represents 
an interaction force arising from the superposition of steady and unsteady mo¬ 
tions; the factor 3<p0/3x, can be recognized as being proportional to the wave 
height in the steady motion problem, and 

3t ^ 3x j 

is proportional to the unsteady wave height (omitting a term containing both p 
and <p,). ° 

It may be noted that the line integral is zero for j 3. This follows from 
the assumption that the ship is wall-sided near the waterline, which means that 
n lies in the plane of i, and i2 for points on Lo. Furthermore, if we consider 
only motions in the longitudinal plane, then the line integral is also zero for 
j = 2. Finally, if the steady motion problem is linearized in any of the usual 
ways (thin, flat, or slender ship approximations), then ni, is small, of the 
same order as <p0, and the whole integral is of second order in terms of the 
perturbation parameter for the steady motion problem. 

The moments acting on the hull can be calculated in a similar manner, with 
only slight complications appearing. Let us again choose to work directly with 
the moments about the unsteady (body) axes: 

xj*3 J fQ'ij * O P dS . 
s 

Then the moments about the steady axes will be given by: 

M - M’ + M’ + * X' , 

where M (X4,XS,X6) and x (X,,x2,x3), and similarly for the primed quantities. 

We proceed to calculate X't3 in the same manner as we did x' and so the 
details will not be repeated. The factor (n . i! x x') must initially be kept within 
the inner integral in the correction term, since x' depends on x¡, but if we set 
x3 = 0 in this factor, we cause only higher order errors, as is easily verified. 
The result is: 

Xj »3 = i0 HS fn-i .vx) 
*s 

. 3rp, ~dcp. 
-Rx3- g(,Ï33 x/?, - x,tf2) - V f V " VrV^, 

+ V [1 .<{♦<*,> •?] $;} - "V j <1«Q-V5> S; {ï ^ - J ^ * <f, * >• A - X,«,) 
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Since we set x3 = o in the line integral, the vector x now lies in the x, - x2 
plane, as does n also. Therefore the correction term is non-zero only for j = 3. 
That is, it contributes only to the yawing moment. For motions limited to the 
longitudinal plane, the correction term is clearly zero. 

To conclude this appendix, we write down the complete expressions for 
force and moment components in the steady coordinate system, using the poten¬ 
tial function in essentially the form proposed by Cummins, Eq. (11): 

_ 0 
Xjft) = Xjo - £ Mjk äk(t) - 2] bjk àk(t) - 2] cjk ak(t) 

1 k= 1 k = 1 

6 t 

- £ Í Vr) Ljk(t-r)dT - ¿ i ak(r)M (t-T)d1 
k = 1 - a> k=l 

where 

Xjo -- P 

Í 
J 3ÍÍ 

gx, + V 3 3x. dS , 

(Al) 

(A2) 

^¡k = P 

bjk z P 

f ä'/'nfx) 
J ^ s 3n 0 

J 
Bn 

) dS , 

^2k^> - V 
ä'/'jkfx) 

3x, + V(P0 • W>,k(x) dS , 

(A3) 

(A4) 

Cjk = P 
r j(x) 

J 9ÏÏ 302 k(?^ 
-V -.5X _ + Vcp0-W'2k(x) + RÍ3-bk^) 

3(p 
Vhk(x).V^ dS + pV Í 30ij( J 3n 

x) 3<Pr 
(Í3 •bkf*)) di, (A5) 

cjk = cjk + 

0 0 0 0 +x 

0 0 0 -X, 

0 0 0 +x 

0 +X, -X, 

-X, 

+x. 

2o 1 

0 +x 

0 +Xl -x6 

0 +x5 

3o 2, 

0 +X, 
4 c 

0 

6o 5c 

0 +x4 
c 

0 

(A6) 
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LV = 
Îk - k - 1,2,3, 

ik - 3 x - ’ k 4, 5, 6 , 

f S'/'ijC?) /3 9 
'ikfn z p J aïT" ( 17 " v ã^T + V(po • v) ^ik^-t) dS 

pV f 9>P0(x) / 9 a . 

+ TJ “1T~ "177 lai ' v ã^j^ikí?-^ 

(A7) 

(A8) 

ÍBi/í, j( X) / g g 

. ~^r- 17“vâ7 + V(<)o-v)v2k(x,t)ds 

pV J ^ij(x) 3®o(x)/9 __ 3 
3n Sx j yst Sx ^ 1 * 2k^ ’l' ^ d^ (A9) 

It may be noted that the quantities (cjk - c]k) arise from the transformation 
of force and moment components from the unsteady to the steady reference 
frames. 

There is some ambiguity in choosing the best representation of the convolu¬ 
tion integral terms. There would be no basic difficulty in carrying along both 
sums, but it would lead to much extra writing later on, and so we choose to com¬ 
bine the two sums of convolution integrals into a single sum. We can partially 
integrate the sum containing the L .'s: 

J K 

f t t 

J “k(T) Ljk(t-T’)dT = ak('T> Ljk^-^ I +f 17 Ljk^t - T)dT ’ 

and then this sum has the same appearance as the other one, since the integrated 
part vanishes. However, for reasons of convenience later, we choose now to 
handle these integrals in the opposite way: We assume that a partial integration 
can be performed on the sums containing the Mjk's and that the integrated terms 
will vanish, so that we can write the last two sums in Eq. (Al) as follows: 

6 t 6 t 

É Í Ak(r) Ljk(t■ T>dT + ¿ f 
k = 1 •'-a. k = 1 

6 t 

<VT) Mjk(t - T)dr = £ Í Vr) K. (t-T)dr. 
^ 1 ■'"S k= 1 J-œ 

(A10) 

A further discussion of this point appears in Appendix B. 
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appendix b 

Systems Lacking Some Restoring Forces 

the 2 O'^banee, some of 

in the classical sensed 01 “îkd0e8 n0t exlst 
generalized function theory. (Se^ LlghthiU (1958» lit US,"e COnCePtS 01 

“kCt) - [VO - V®) HO)] + (oo) Hfn 

where 

H(t) 
0 for t < 0 , 

1 for t > 0 . 

™easüÿrlhr„™totr:m 01 ^ Ín braCketS eXlStS ^ “sual and 

^ ÍVO - ^fa>) H( t )} = J. [¿k(^ _ , 

where, for brevity, I have introduced the notation 

VO = 3 {âk(t)} • 

We also note that 

CO 

VO) = J V t) dt = ak(oo) . 
- 00 

In the language of generalized functions (see page 43 of Lighthill), 

3 {H( t )} = Hfo>) = I 8(V + — ¿ ico 

Therefore, 

3 {Vt)} = Vat) r \ a.(oo) 8(a;) + 2 k 
ak(") 

fot- Sl?Ce Wf assume that V1 ) remains bounded, there is no difficultv about 
tahmg transforms of the terms containing 5„ or 4, but the coZS morals 
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in the equations of motion, (13), require care. Rather than attempt to transform 
these terms as they appear in Eqs. (13), I find it desirable to retrace steps 
somewhat. Equation (Al) of Appendix A states that the j -th component of the 
motion induced force is: 

xj = xi° - E vt) - E bik - E cjk ak(^ 

The last two sums are compressed into the single sum of convolution integrals 
in (13). However, it is now more perspicuous to consider the two separate kinds 
of integrals. 

In order to study the behavior of the kernels in these integrals, let us as¬ 
sume that there is a velocity impulse in the k-th mode, so that 

= ako ■ 

Then, for t > o 

The term Ljk(t) represents the actual unsteady force due to the velocity impulse 
itself. Physically, this must approach zero for large t, since the impulse mo¬ 
tion generates only a finite-energy wave system, and these waves rapidly radiate 
away. The terms 

represent the force which results from the steady deflection of the translating 
ship after t = o. The integral term of this expression must approach zero 
eventually, because c:k, by definition, is the constant of proportionality be¬ 
tween steady perturbation force and displacement. Obviously, if the integral 
of Mjk approaches zero as t becomes infinite, then Mjk itself approaches zero. 

We can now find the Fourier transforms of the convolutions. For the first, 
involving Ljk and the disturbance velocity, we have from the convolution the¬ 
orem: 
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For the other convolution, we must perform a little manipulation: 

’|| akfT^ Mjk^t'T)dT| = 'jl [ak(T> - ak(cc) h(t)] Mjk(t -r)dr| +ak(co):}||Mjk(T)dT| 

Mjkf") X - ak(a') H(t)} + akfœ) X -4--— 

-.i , , V") - “k(^ , , Mik44 
- Mjk^i '-k:-+ V00* x —rir 

a-Cai) 

= Mix^ -V • 

The two kinds of convolution integrals can now be combined, as in Eq. (A10), 
and their sum will have as its Fourier transform 

a (^) 
M j k 4J) ^ 1 aJ L j k ( 0)) 

The above derivation amounts to a demonstration that the integrals in (13), 

Í Kjkf t ~ 4dT ’ 
- 00 

do indeed exist and have conventional transforms. 

The transform of (Xj - Xjo) can now be written out explicitly: 

6 

;{xi " xjo} = - ^ £ cjk 
k = 1 

â.(œ) 

L {-"2^jk+ ia:bjk+ cjk+ ic" Ljk^)+ Mjk^} ~nr ■ (B2) 
k= 1 

This can be substituted into the transform of (13), and we recover (15) — with 
three changes: 

1. àk( 03)/ ice replaces 

2. Ljk(ci') + Mjk(ai)/iai replaces 

3. There is an extra sum on the left-hand side: 

1 \-. 
•y Si"") 2-1 cjk ak(œ') 

k = 1 
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Item (1) is oí no consequence if exists, for it then equals ¿k(u)/ia’. 
Even if ai) does not exist, our assumptions imply that ãk( , ) does exist, and 
so the applicability of (15) has been extended. 

Item (2) is also of no consequence, for we have just shown that the two ex¬ 
pressions are equivalent. Also, Mjk(^)/iw exists even when ^ - o, because of 
the fact that 

0 

Item (3) is not quite so easily disposed of. We note that, if the external 
forces represented in (15) are well-behaved transients, then 

Also, wS(w) = 0, for all . Therefore, if we multiply Eq. (15) (as now modified) 
by oj and let o> - o, we are left with: 

L cjk - 2]c jk Vx> = 0 • 

k = 1 

This result is hardly unexpected, for it says simply that cik must be zero if 
ak(œ) + o, unless two or more ak(oo) are non-zero in such a way that this sum 
vanishes without the individual terms all vanishing. 

It is now evident that the above sum can be omitted from (B2) and thus from 
the modified (15). However, the equation will not apply when a. 0. With this 
exception, Eq. (15) remains valid even when does not exist, provided only 
that we replace y by ãk(u)/iaj. 

APPENDIX C 

Alternative Derivation of (17a) and (17b) 

Equations (17a) and (17b), relating the added mass and damping coefficients, 
can be derived in a way which avoids inverting one of the transforms and using 
the inversion to find the other transform. Thus it also avoids the double inte¬ 
gration and the interchange of limiting operations (which were not proved valid) 
in the derivation of (17a). The proof which follows is not entirely rigorous 
either, but it shows some of the physical bases on which the final formulas 
stand. 

The kernels Kjk(t) in the convolution integrals all have the property that 
K(t) = 0 for t < 0. (I shall omit the subscripts hereafter.) Furthermore, they 
approach zero as t -* œ. Therefore the Fourier transform of Kío can be 
written: 
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o 

Also 

These relations depend quite explicitly on the condition that K(t) = 0 for t < 0; 
this has frequently been described as an effect of "causality," i.e., the system 
does not respond before t 0 if the disturbance comes at t o. 

If now we consider w as a complex variable, it is clear from the definition 
of the Fourier integral K(co) that the convergence of the integral can only be 
quickened when Im ^ < o. Then K( u>) cannot have any singularities in the lower 
half of the ¿¿-plane. But for an analytic function we can use Cauchy's integral 
formula: 

c 

See the figure. 

If K(u>) vanishes far from the origin in the lower half-plane (no matter how 
slowly), the contribution from the semi-circle vanishes as the radius grows to 
infinity, and so we can replace the integral over the closed contour c by a con¬ 
tour integral along the real axis from -œ to +co. 

Now we let a> approach the real axis (from below), and we indent the contour 
above the real axis, so that for real u> 

K( cc) 
1 

2vi 
1 f” K(c/)da/ 

- 00 

♦ The long bar denotes th'j complex conjugate quantity. 
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Furthermore, 

Kf-a.) 
CO 

k( co' )da/ 
771 J 0.1 ' -f U) 

- m 

K(.) 

Finally, we express the real and imaginary parts of these equations separately 

a 

; + ^J - --k\ 
a''K( o/ )0(01 

'2 _ , ,2 CO — (i.) 

2 T a;'Ks(a>')di<!' 

Í v'2- 2 

Ks(^) = -1 [k( aO - K(a.)] 
a> f K(a)')da)' 

f — J _ ai' 

2u! rw 
f 

From (16), we substitute the definitions: 

Kc(") - b*(a)) - b; Kg(w) = ; 

and this leads immediately to (17). 

* * * 

PROBLEM AREAS IN SHIP MOTION RESEARCH 

Willard J. Pierson, Jr 
New York University 
New York, New York 

INTRODUCTION 

There are a number of subjects that were not covered by the various papers 
on ship motions given at this symposium. Three of the subjects are: (1) Ships 
in short crested waves, (2) coherency and resolvability of spectral and cross 
spectral shapes, and (3) the solutions of specific problems that are nonlinear. 
It is the purpose of these comments to discuss these subjects and their rela¬ 
tionship to the papers that were presented so as to complete the record of this 
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symposium. These comments apply in particular to the papers by Dr. Ogilvie, 
Dr. Ochi, and Drs. Breslin, Savitsky, and Tsakonas. 

The papers by Fuchs and MacCamy (1953) and by St. Denis and Pierson 
(1953) have been cited as initiating the study of the motions of ships in real 
waves, the first from the time domain viewpoint and the second from a spectral 
viewpoint. The first is often thought of as deterministic and as having little to 
do with the Gaussian properties of real waves. The second is thought of as 
highly dependent on the assumption of Gaussian behavior for the waves and on 
the principle of linear superposition. 

The first is nevertheless highly dependent on many of the same assump¬ 
tions of St. Denis and Pierson. Since waves are very nearly Gaussian, it is 
useful to get the spectra and cross spectra that describe the response of a ship 
to long crested waves in order to obtain an accurate time domain operator for 
the application of the procedures of Fuchs and MacCamy. Their model is just 
as linear and just as dependent on a linear hypothesis as that of St. Denis and 
Pierson. 

In actuality the work of Fuchs and MacCamy is much more restrictive than 
the work of St. Denis and Pierson, and much of the work described at this sym¬ 
posium is too restrictive for direct application to real ships in real waves. The 
work of Fuchs and MacCamy is strictly applicable only to ships in long cret .ed 
waves. Long crested waves are an abstraction not met in nature. The work of 
St. Denis and Pierson, and its completion so as to include co- and quadrature 
spectra, by Pierson (1957) is applicable to actual ships in actual waves and pro¬ 
vides valuable guidance in the study of ships and other floating objects in real 
waves. Studies such as those of Canham, Cartwright, Goodrich, and Hogben 
(1962) and O'Brien and Muga (1965) show the value of spectral and cross-spectral 
analysis. More can be done in a full utilization of these results, however. 

The concept of linearity invoked by St. Denis and Pierson is not as essential 
to their theory as it seemed at the time although even for such extreme condi¬ 
tions as slamming, the theory yields useful results as in the work of Tick (1958) 
and in the paper of this symposium by Dr. Ochi. Recent work has extended the 
linear model of the seaway to a number of nonlinear models, and for specific 
problems nonlinear models concerning waves and the effect of waves on ships 
and some other objects have been developed. 

SHIPS IN A SHORT CRESTED SEAWAY 

If t)( X, y, t ) is the sea surface, and if S(co,e) is the variance spectrum of the 
waves, one can write that 

nCx. y. t) ff 
J O J - TT 

(xcosd + ysintf) - at + e(cú ,0)\ \/ 2S( OJ, >,6)da>de. (1) 

Consider a point moving in the negative x direction with the velocity, v. 
The coordinates of this point are given by Eq. (2) as xe,ye. 
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ye = ye- 

Such a coordinate system moving with this velocity would record or see a sea 
surface given by Eq. (3) as a function of position and time with reference to the 
moving origin. 

TtfXe.ye’ O 
/T- V 0 J - 7T 

— ( xe cos + ye sin ^) - veos K \ K f?j t - e \J2S( ai, d) du>d6 . 

(3) 

For region I of St. Denis and Pierson, the spectrum, becomes the 
spectrum of encounter as given by 

1 - \/1 “ 4o>e V cos Öe/g 

2« e V cos Öe/g 
■ co ,6 

e e 
(4) 

\Jl - 4<i> V cos 6 / 

and the seaway of encounter is given by 

vel(xe'ye.t) / / cos ~ y/ß] (xecos«e + ypsinöe)J 
Region I 

* \f2Sel(uie,ee) d . e d"p . (5) 

The above steps can be repeated with appropriate modifications for regions 
II and III with the result that 

Ve(xc,ye,t) = r;pI(xe,ye, t) + VeU( x c, y t) + ^el 11< V ye’1 >' (6) 

If the center of gravity of a ship is located at the point xe ye = o Eq. (5) 
can be written as 

T)eI( t) = 22 cos (a-et + o v/2Se(we,0e) Aa-e Aöe (7) 

where a partial sum is indicated as an approximation to (5). The important 
point to note at this stage of the derivation is that the same frequency of encoun¬ 
ter, , can result from many different waves coming from many directions, 6 , 
and can be associated with many different wavelengths. 

In practice for a given öel and <.el, given the wavelength, the region can be 
determined. One single term in the double partial sum of (7) is thus sensed as 
in Eq. (8) by a wave recorder located at the moving origin. 

r;el(t) = a cos (o)elt + e) . (8) 
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In Eq. (8) the other important parameter for the waves, that is, the direction of 
encounter, /-,,, is no longer in evidence. 

If and ¢-,, and the region of definition for that portion of the spectrum are 
known then a particular wave, 7),,,( t) can be associated with the motion rf a ship 
as caused by this one sinusoidal wave. The concept of a transfer function as 
evaluated at a particular frequency for a particular direction is then valid and 
the response of the ship can be considered as a part in phase with the forcing 
waves or 180 degrees out of phase and a part in quadrature with the forcing 
waves having a phase of either 90° or 270° with the forcing waves. The func¬ 
tions, ' r), dz( ^e,^e), and so on, can be determined either by means of 
experiments or by theories. The response to a single forcing wave is therefore 
given by Eqs. (9), (10), and (11) for heave, pitch, and roll. 

Zjft) aczf ûe! ’ ^ cos (“el1 + e) + acl2( % 1 ’ öel ^ sin(“eit + £) (9) 

0,(1) = ac0(a;e|.öel) cos ('-elt + t) + aq0( “e, ■ <9e , ) sin (o)e,t + e) (10) 

¢,(1:) :- ac/a.e|,É»el) cos (%,t + £) + aq^,, 6>e, ) sin (a^t + e). (11) 

The difference between short crested waves and long crested head seas is 
most striking here. In general, if t-e is changed, cz, qz, c<), and q,. may or 
may not change but they can change even for the same frequency of encounter. 
For example, one wave at +30° into the course of the vessel and another at -30° 
to the course of the vessel will look the same at the center of gravity of the 
vessel, but they will produce rolling motions that are 180° out of phase with 
each other. 

From Eqs. (9), (10), and (11) by means of the definition of the seaway of 
encounter given by Eq. (5), it is possible now to write down the vector Gaussian 
process that describes the time histories that would be recorded for the forcing 
seaway (at the center of gravity of the vessel if it could be observed there) and 
the heaving motion, the pitching motion, and the rolling motion. 

V z ^ cos (uet + e) ^28,/.:^,(^) Aa)el A^e 

7.( t) = II [cos(aet + e) cz(u>e,6e)+ sinfc^t + e) qz(^e.öe)] ^28,/^, 6>e) Aa;e, A 6». 

0( t) .' I': [cos (ay + O C0(aV,(?e) + sin (.'^t + £) /2Sp(%, 6e) Aa,e, A0e 

(12) 

■(t) 
1 [COS ( “et + O cî(‘e-•'•<•> + sin (“et + O q^^e-^e)] ^28^ 6;e, Öe) Aa>e, 

These double summation partial sums are to be evaluated over the same 
net in . ,, and ,, for the same random phases. If there is any "phase relation¬ 
ship’ between the various motions and the forcing seaway these phase relation¬ 
ships will be preserved. However, by virtue of the remarks made above in con¬ 
nection with Eqs. (9), (10), and (11), it is not necessary for a particular phase 
relationship to manifest itself. Indeed, in general, there are cases where no 
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phase relationship exists and there are other cases where a phase relationship 
appears to exist. 

An ensemble of such vector processes as defined by Eqs. (12) can be gen¬ 
erated by choosing different sets of the e's at random in a large number of 
partial sums. One can then compute ten different expected values of various 
time lagged products of different combinations of these motions. 

E [v t ), T)e( t + T)] E [<:( t ) , z( t + T)] E [y* t ), >//( t + t)] E \4 ( t ), ¢( t + r )] 

E [')r( t ), z( t + 7 )j E [r:e( t), v(t + 7)] E [rie( t ), ¢( t + r)] 

E [z( t ), 0( t + 7 )] E [z( t ), ¢( t + 7 )] 

and 
E + T)] . 

One of these expectations as evaluated is Eq. (13): 

E [TJe( t), z(t + T)] = JS(a>e,(9e) cos o.eT + q2(we, öe) sin ^7] dt'e. (13) 

The cospectrum between the forcing waves and heaving motion is thus given 
by Eq. (14) as this is the even part of the Fourier transform of Eq. (13). 

= /S(coe, ^e) cz(£<Je,0e) dl9e . (14) 

The quadrature spectrum is given by Eq. (15). 

= ÍS(o..e,f9e) qz(f,el0e)d0e. (15) 

It is to be noted that the cospectrum and the quadrature spectrum still in¬ 
volve an integration over 6e. The way in which cz(ae,é-e) and q2( .e, 7e) vary 
as a function of 6e for a fixed &.>e can evidently have a marked effect on the 
cross spectra. 

A complete analysis yields four spectra, six co-spectra, and six quadrature 
spectra. The spectrum for the heave, for example, is given by Eq. (16). 

Sz^e) = [(CzK'f>)) * + 2]d<V (16) 

The co-spectrum between heave and the waves and the quadrature spectrum be¬ 
tween heave and the waves are given by Eqs. (17) and (18). 

= /S(<Vöe) d' e (17) 

= JS(£«Je,öe) [q2(c,Je,ee)] d'<e . (18) 

The cross spectra between heave and pitch are given by Eqs. (19) and (20). 
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I ' ,) = fS( ,) [cz( c4>(w J + nz( '«,.'‘e) (19) 

0,,(-P) S( •e) [ cz(£'e,tJP) C0(6e ) - q J o 
p / 1 Zv í J q dd. (20) 

The response amplitude operator defined by St. Denis and Pierson is 
seen to be given by Eq. (21) in terms of the spectrum for the heaving motion and 
the spectrum of the seaway of encounter. This is simply the square of the re¬ 
sponse of the vessel to a unit sine wave at a particular frequency of encounter 
and direction of encounter. 

T^e-'e) = KK-M 2 f KK-M • (21> 

The coherency for short crested waves takes on a new and essentially dif¬ 
ferent feature, however. Consider, for example, the coherency between the 
forcing waves and the heave. It is given by Eq. (22). 

2 f [M'-c’»] 2 (22) 
^z(U>e) Se('e>Sz(-e) 

This can be rewritten in full as Eq. (23), and the top expression can be 
shown to satisfy the relationship given by Eq. (24). 

k T> Z ( 1 p) 

[/Se(^e.0e)C¡!(c.'e,0e)dde]2 + [.ÍSe(a;e,ee) qz(^e.ee) ctëj' 

de. 
.rSe(<*.'e,Í7e>d<?e [(C*(*V 0e>) 2 + *] 

[/Se(^e,Ôe) d9e] 2 < /Se(a)el0e)df?e/Se(a-e,é)e) [cz(^e,ee)]2 d6e. 

(23) 

(24) 

For a particular ship headed in a particular direction through a particular 
forcing seaway it is quite possible for the numerator of the expression for the 
coherency to be zero. The function under the integrand which is integrated over 
direction through 271 radians can change sign in such a way that the integral is 
very small or zero. The denominator of this expression for the coherency is 
composed of terms that are everywhere positive, and it must be large. 

In St. Denis and Pierson (1953), these "phase relationships" were not con¬ 
sidered, and since cross spectra were not considered, the effects just discussed 
did not enter into the problem. The spectra of heave, pitch, and roll were prop¬ 
erly predicted. 

In 1957, the writer wrote the following three paragraphs (with a change of 
notation to conform to these comments) in connection with the interpretation of 
coherency and spectra and cross spectra for ships in short crested waves: 

Consider a ship in head seas such that S(ae,ee) is exactly sym¬ 
metrical, i.e., se(ae, f?e) Se(o)e,-0e). Under these conditions, ve(t), 
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z( t), and '¿(t) will probably have values for their coherency which are 
appreciable, perhaps, 0.6 to 0.8. However, the oncoming apparent waves 
will at one time be high on the port side and at another time be high on 
the starboard side causing the vessel to roll first one way and then the 
other for the same apparent wave form in ve(D- More precisely, 

and qJ^0.t>e) in (11) will be odd as a function of 8e. Hence 
both and we) will be zero. This implies that the coheren¬ 
cies between v(t) arid ¢(1), z( t) and ¢( t), and >/'(t) and <¿(t) will all 
be near zero in a practical case when the motions are observed in head 
seas. 

During storms, when in a hove to condition, ship masters prefer to 
take the seas a few points off the bow instead of from directly ahead. As 
explained to the author by a naval officer, this is because the vessel tends 
to roll in a more favorable way so that less green water is shipped over 
the bow. The side of the vessel toward the oncoming sea as explained 
by the above considerations will roll away from an oncoming crest as the 
bow rises and thus less water will be shipped. Stated another way, the 
coherency between ve(t) md ¢(t) will be increased in a way favorable 
to drier decks. 

A similar analysis can be carried out for a ship underway in beam 
seas. Roll, heave, and ve(t) will have fairly high coherencies. Pitch 
will be nearly incoherent with the other three components of the vector 
process. 

Since these statements in 1957, our knowledge of the directional wave spec¬ 
trum has been improved by the results of Longuet-Higgins, Cartwright and 
Smith (1963), by the results of Cartwright and Smith (1964) and by the results 
that I have described in another paper in this volume. The above conclusions 
have been verified by two papers that have been written since the report was 
prepared. The first paper that verified these conclusions is one by Canham, 
Cartwright, Goodrich, and Hogben (1962). In this paper, the ship was operated 
on an octagonal course. The forcing seaway was measured on this ship, not ex¬ 
actly at the center of gravity but this is irrelevant, and the various motions 
were also measured. It was indeed a fact that the coherency of roll and the 
forcing seaway was very small in head seas and that the coherency of pitch with 
the forcing seaway was very small for beam seas as predicted. 

The important point is that this is to be expected. It is a basic feature of 
the probability model. The result does not mean that there is something wrong 
with the records of roll and pitch under these circumstances, and it does not 
mean that the theory is in error. For short crested waves the situation is more 
complicated than it is for ships in long crested waves. 

In another study, O'Brien and Muga (1965) measured the response of a 
moored aircraft carrier to forcing waves and obtained spectra and co-spectra 
that yielded coherencies consistent with the above conclusions. 

The above results on spectral and co-spectral coherencies can be analyzed 
in such a way as to provide an understanding of many features of ship motions 
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in waves. They can also be compared with the much simpler case of long 
crested head seas in which for heaving motions, for example, 

r¡e(t) = 1 cos (wpt + £) /2S( '‘■g) Aw,, 

(25) 
ze(t) = 2 [cos (a>et + e) cz(o)e) + sin ( c.Je + e) q,(^e)] Afae '. 

The cross spectra are given by 

C2(^e) = S(,,e) cz(o.-e) 

Q2(ü dz(^e) • 
(26) 

It therefore follows that the coherency is one. 

These conclusions about the behavior of ships in both short crested and 
long crested waves bring up one of the main points that needs to be made. The 
method of Fuchs and MacCamy has not yet been extended to the point where it 
can describe the motions of actual ships in actual waves. In fact, the simple 
measurement of the forcing waves at one point as a function of time is insuffi¬ 
cient for the prediction of the complete behavior of a ship in these waves. This 
is true whether or not the ship is underway just as long as the waves are short 
crested. 

The essential reason for this difference between short crested waves and 
long crested waves is that in the above relationships an integration over direc¬ 
tion is still involved in the definition of each function of frequency that is ob¬ 
tained by the analysis of a time history. An extra dimension is added to the 
problem when short crested waves occur. This dimension can conceivably be 
removed by recording the forcing waves along a line as a function of time with 
this line moving with the vessel. Or, a sufficiently dense network of points sur¬ 
rounding the moving ship should provide that kind of data that would make it 
possible to recover functions such as cz(w de). However, the problem is one 
of a double Fourier analysis and not a single Fourier analysis properly gener¬ 
alized in terms of time series and probabilistic concepts. Some suggestions 
were given by Pierson (1957) as to how to do this. 

Nevertheless, the spectral theory is complete for ships in short crested 
waves. It has not been fully exploited. Experimentation with actual ships in 
short crested waves should provide useful design information today in this 
connection. 

COHERENCY AND RESOLVABILITY OF SPECTRAL 
AND CROSS SPECTRAL SHAPES 

Poor resolution of rapidly varying cross spectra is likely to be reflected in 
a computation of low coherency. Such apparent low coherencies are not actually 
low coherencies, and great care must be taken in interpreting experimental re¬ 
sults for long and (especially) short crested waves in this connection. Low 

87 



Ogilvie 

coherencies between ship motions and the forcing waves in long crested waves 
are an indication of poor experimental design and interpretation, and they are 
not an indication of the failure of the linear theory.* For short crested waves 
the coherencies could be low both because of poor experimental design and be¬ 
cause they really ought to be low. 

The rapid variation in the cross spectral estimates that are sometimes ob¬ 
tained is the first indication that something is amiss. Such rapidly varying 
cross spectral estimates suggest that the coherency will be low because of the 
lack of adequate resolution. 

An interesting example of this is given by the study of observations at two 
points in long crested random waves. Let the long crested random waves be 
given by Eq. (27). 

7)(x,t) = j cos + cj ^25(aj)dw . (27) 

By definition the co- and quadrature spectra are given by Eqs. (28) and (29) 
when (27) is observed at x o and x = L. 

C(co) S('O) (28) 

S( w) . (29) 

The coherency is one. 

. [CM]2 + [QM]2 K(oj) = --- 
[S( oj)] 2 

(30) 

Pierson and Dalzell (1960) studied two records that were taken in long 
crested waves. One record was about five feet away from the other record. 
The spectra and cross spectra were computed. Figure 1 shows the estimated 
spectrum as indicated by the histogramic presentation. One number centered at 
the center of each step in the histogram was the number that describe the par¬ 
ticular spectrum. There were two spectra and the circle and the diamond indi¬ 
cate how these two spectral estimates differed over a separation of five feet in 
long crested waves. The co- and quadrature spectra were also computed. 
These spectra are shown in Fig. 2 by the black diamonds. They look fairly rea¬ 
sonable in comparison with Eqs. (28) and (29). 

However, the computation of the coherency led to the results shown by the 
black diamonds in Fig. 3. The coherency is high near a value of h = 7 and it 
falls of steadily to values of 0.5, 0.4, 0.3 for larger values of h. This is quite 
disturbing as certainly the model proposed by Eq. (27) for the free surface and 

*In most c ^ ses. 
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350r 

Fig. 1 - Comparison of original spectra 
and spectra derived therefrom 
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Fig. 3 - Coherencies obtained by various procedures 

the cross spectra given in Eqs. (28) and (29) when substituted in the equation for 
the computation of coherency should yield one. The problem then is why are the 
computed coherencies so much lower than the theoretical coherencies? 

To find out, the spectrum shown in Fig. 1 was smoothed and points were 
read from it at five times the spacing of the h values indicated on the horizontal 
scale of the figure. The smoothed higher resolution curve is shown by the dash- 
dot curve. Total variance was preserved with reference to the area under the 
smoothed curve. It was then possible to take Eqs. (28) and (29) and from them 
compute what the co-spectrum and the quadrature spectrum should have been. 
These values are shown by the small black dots in Fig. 2. By definition they 
would yield the coherency of one. 

Now the window through which the co-spectra are viewed is roughly trian¬ 
gular in shape, and if, for example, it were peaked at the value h - 9 on one of 
these figures, it would fall approximately linearly to zero at the values h = 7 
and h 11. A linear combination of seventeen of the values given by the black 
dots thus represents the value given by a diamond. This operation is called a 
convolution and the results of a seventeen-point centered convolution with a 
linear growth to the middle value and a linear descent from the middle value is 
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shown by the open circles in Fig. 2. More points are available than were avail¬ 
able in the spectral estimates. The black circles are those points that corre¬ 
spond to the diamonds as far as the horizontal axis of the figure is concerned. 
This approximation to the spectral window yields values for the black dots that 
compare favorably with the values of the black diamonds that were obtained di¬ 
rectly from the spectral computations. The results show that both the shapes of 
the cross spectra and the location of the zeros in the cross spectra are lost due 
to poor resolution. The rapid variation in the values indicated by the black dots 
when convolved with a broad triangular weighting function results in a decrease 
of the peaks of the estimates for the cross spectra and shifts the zeros to erro¬ 
neous values. In Fig. 3 the coherencies as computed from the open circles are 
shown in order to compare them with the black diamonds. The loss of coherency 
caused by the shape of the window is confirmed. 

The above computations were based on the assumption that the spectrum as 
smoothed in Fig. 1 was the true spectrum. It is in fact, an estimate of the true 
spectrum that also has been convolved with a window of roughly the same shape. 
The original spectrum cannot be recovered and hence the computations do not 
completely describe the full effect. An attempt was made to determine what the 
effect of the convolution is by convolving the true spectral estimate once more 
and then computing the coherencies that would be obtained by using this new 
spectrum and the spectra and cross spectra obtained from the open circles and 
the filled circles of Fig. 2. The result of the computation is shown by the 
crosses in Fig. 3. Some of the rapid variations in the circles have been re¬ 
moved but the same general trend is evident. 

There are two ways to avoid the low coherencies that were obtained in this 
example. The first requires that a considerably longer record be obtained and 
that the resolution of the analysis be anywhere from five to ten times greater 
than that used in this example. The rule is, of course, that the convolution op¬ 
erator, which spreads over four frequency intervals, must operate on a portion 
of a curve that is slowly varying. The work of Dr. Yamanouchi is important in 
this connection. The computations illustrated by Pierson and Dalzell (1960) 
show that when the resolution is increased in such spectral and cross spectral 
estimates the peaks become much higher and the coherencies improve. A sec¬ 
ond procedure is to require that, for the same resolution, the estimates of the 
cross spectra be less rapidly varying. This can be achieved by a "false" time 
shift of one record with reference to the other. For example, the cross variance 
function obtained by computing all lag products of v(\,t) and r)(x + L, t + t) for 
L fixed yields a function that has a maximum at a certain value of r, say, r,. 
If the covariance function is then considered to be time shifted so that the value 
of r, is zero, one achieves a very nearly even function about this new time 
origin. The co-spectrum and quadrature spectrum computed from this new 
time origin in general have the property that the co-spectrum is quite large and 
the quadrature spectrum is near zero. The coherency between these cross 
spectra and the original spectrum is then quite large. Pierson and Dalzell have 
illustrated these ideas by studying both higher resolution spectra analyzed in the 
same way and by studying time-shifted covariance estimates. Coherencies that 
fell from 0.9 to 0.5 over a range of six or seven ordinate values were raised by 
these techniques to from 0.8 to 0.9 by higher resolution and to values greater 
than 0.9 by a time shift. 
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The high coherencies that should actually occur in an adequately resolved 
properly designed analysis of a vector Gaussian process associated with a long 
crested random seaway are reflected finally in the papers of the symposium in 
which the motion of the ship was predicted from the forcing waves. Accurate 
transfer functions are needed to construct the time domain operators for such 
predictions. These so-called "predictions” are not strictly predictions in that 
they use data from the future to a certain extent in order to compute the mo¬ 
tions of the ship. A true prediction would be one in which the forcing waves 
were known only up to a certain time, t = to and the motions of the vessel in all 
degrees of freedom were known up to this same time. The problem would then 
be to predict the observed value of one of the motions at a time, say, 10 sec¬ 
onds into the future, based on just the amount of data available at t t0. It is 
evident that this true prediction problem can be solved more accurately for 
models in long crested waves. From a discussion in this section and from the 
results on short crested waves it should prove to be more difficult to predict 
the motions of an actual ship in actual waves 10 seconds into the future. Never¬ 
theless, the ability to do this is still needed, and an adequate investigation of 
this problem needs to be made. The past history of the motions of the vessel 
and the past history of the waves as observed at some point near the vessel can 
be combined to provide a prediction of the motion of the vessel at some future 
time. 

THE SOLUTION OF SPECIFIC PROBLEMS 
THAT ARE NOT LINEAR 

From different assumptions, a large number of linear models to describe 
ships in waves have been developed. The more advanced models may even be 
nonlinear in the beam parameter and still linear in the forcing wave systems. 
Nevertheless, roll and certain extreme motions will eventually have to be 
treated by nonlinear equations. 

A number of realistic problems have been formulated in wave theory and in 
ship motion theory that are not linear. These problems have been solved. The 
assumption of linearity by St. Denis and Pierson and by Pierson (1957) is no 
longer a restriction due to the lack of techniques for solving problems that are 
not linear. 

An interesting example of a procedure that does not get too deeply involved 
in the intransigent aspects of the subject is the analysis of the forces due to 
waves on a vertical piling as given by Pierson (1963) and by Pierson and 
Holmes (1965). 

Consider a pile iv water with long crested waves passing it. The velocity 
field due to the waves in the water will exert a force on a small segment of the 
pile given by Eq. (31). 

f(t> = kjumluml + k2ú(t). (31) 

Given the depth of the water, the spectrum of the waves, and the depth of the 
pile segment at which the force is measured, the spectra of U( t ) and il( t ) can 
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be found. Also the variance of U(0 and U( t) can be found and designated as / , 
and *p2‘ 

Then the joint probability density function u and Ú can be given by 

1 P(U.U) 
2v 

-U' '2^X-Vd/2<P2 
(32) 

Given this equation, the probability density function for f can be derived. It is 
given by 

P( ndt 
2v yf 

i_r f 
c V 

/k,a fy /k,n fy 
\ k, + k , / 2''2 \k, k , / 20 . 

J ' da 
2k 2 v,rã 

df 
(33) 

The time histçry of f is not given. The time history could be obtained by 
generating U and Ú as functions of time given the free surface r¡( t ) in a manner 
quite similar to that of some of the other papers in this symposium. The non¬ 
linear operation corresponding to U( t ) |U( t) j could then be carried out in the 
time domain and the time history of the force on the pile could be constructed. 
This has in fact been done by Reid (1958). In this analysis, however, the only 
thing desired is knowledge about the probability density structure of f( t). This 
density structure can be obtained simply by reading off equally spaced values of 
this force and plotting the histogram of the values that are read. 

This probability density function as given by Eq. (33) has been compared 
with values obtained directly from measurements of the forces on an actual 
pile. Though there appear to be a number of parameters involved in Eq. (33) 
there are really only two, the second moment and the fourth moment, since 
P( f) is an even function. 

When these two parameters are determined from the data consisting of a 
twenty-minute long record of the fluctuations in this force, and used to con¬ 
struct Pff ), the resulting probability density function agrees remarkably well 
with the observations. The probability density is not Gaussian; in fact, it pre¬ 
dicts probabilities about ten times those of the normal distribution, three stand¬ 
ard deviations from the origin. 

It is also interesting to comment that the computation of the bi-spectrum 
of f( t) would not have been particularly revealing because the bi-spectrum 
resolves the third moment of a distribution into frequency pairs. The third 
moment of this distribution is essentially zero. 

Work described by Tick (1963) has shown that it is possible to take a linear 
Gaussian model for the long crested seaway and construct the model that would 
satisfy the equations of motion in the Eulerian frame of reference to second 
order. One result is that there is a correction to the frequency spectrum. A 
second result is that the profile of the waves changes as a function of time at 
a fixed point. The crests become higher and sharper and the troughs become 
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shallower. The density function for the waves observed as a function of time at 
a fixed point will then have a certain amount of skewness that could be investi¬ 
gated in terms of bi-spectra. 

Wind waves have been carefully measured by Kinsman (1960) and found to 
be non-Gaussian. His data have been used by Longuet-Higgins (1963) to verify 
a theory for the probability structure of the waves and this probability structure 
has been adequately represented by a modified Gram-Charlier series. The 
mathematical techniques of Longuet-Higgins would be applicable to the study of 
the nonlinear aspects of certain ship motions. 

Another example of great interest to this symposium is the example pro¬ 
vided in the comments of Dr. Yamanouchi. He has solved the very complicated 
problem of the nonlinear damping of the rolling motion of a ship in irregular 
waves in terms of a random process and second order nonlinear correction to 
the motions. Just as the work of Dalzell was cited by Dr. Ogilvie as establishing 
the principle of linear superposition assumed by St. Denis and Pierson, some 
investigator now needs to study the rolling motion of a ship in long crested beam 
seas in order to see if it is possible to verify the nonlinear probabilistic theory 
of roll damping propounded by Dr. Yamanouchi. It is quite likely that this non¬ 
linear theory will verify quite well and that the spectra of the rolling motion as 
predicted by this theory will agree with the observations. Nonlinear roll in short 
crested waves requires very careful control of resolution, sampling variability, 
and coherency calculations in the analysis of the time series that would be re¬ 
corded. Still missing is the probability structure of the rolling motion. Per¬ 
haps the techniques of Longuet-Higgins (1963) could be applied here to obtain it. 

CONCLUDING REMARKS 

The essential feature of the work of St. Denis and Pierson now appears to 
be that of expressing the short crested waves and the resulting ship motions in 
terms of a probabilistic description instead of in terms of a deterministic one. 
The assumption of linearity so convenient in order to obtain results on the 
probability structure of the resulting ship motions is no longer absolutely es¬ 
sential toward the further understanding of the motions of ships at sea. Insofar 
as the actual waves that force the ship satisfy nonlinear differential equations, 
it should be possible to model these waves with these essential non-linear fea¬ 
tures as accurately as desired by means of continued efforts along the path out¬ 
lined by Tick in the work cited above. At the same time whenever it should turn 
out that the differential equations that describe a particular phenomenon are 
nonlinear, a perturbation technique such as the one described by Dr. Yamanouchi 
should make it possible to obtain the spectra of these motions and certain of the 
statistical properties of these motions. Even at times the probability density 
functions that provide considerable information about the phenomenon can be ob¬ 
tained by analogy to the results on the forces of waves on a pile. The strength 
of the techniques that have been developed quite obviously then lies in the as¬ 
sumption of randomness and the use of the very powerful tool of probability for 
the derivation of results and the very powerful tool of statistics in the analysis 
and interpretation of observations. 
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SOME REMARKS ON THE STATISTICAL ESTIMATION 

OF RESPONSE FUNCTIONS OF A SHIP 

Yasufumi Yamanouchi 
Ship Research Institute 

Tokyo, Japan 

INTRODUCTION 

In connection with the papers by Dr. Ogilvie, Prof. Lewis, Mr. Smith and Dr. 
Cummins, Drs. Breslin, Savitsky and Tsakonas, I would like to make several 
comments on three problems concerning the statistical estimation of the re¬ 
sponse functions of ship. The first problem concerns the statistical considera¬ 
tions that occur in estimating the frequency response function, which no paper 
has referred to in this symposium and which still has several difficulties to be 
solved. The second problem is about the impulse response of ship motion which 
has been one of the main topics in this symposium. The third problem is about 
the effect of nonlinearity on the response of motion, on the computation of spec¬ 
trum, and on the estimation of the frequency response itself. 
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1. A PROCESSING SCHEME FOR THE ESTIMATION 
OF FREQUENCY RESPONSE FUNCTIONS 

Beginning with the work of Blackman and Tukey [l], many contributions 
have been made to the problem of the estimation of the statistical characteris¬ 
tics of time series. Most of them, however, treat mainly the estimation of the 
spectrum, and very few have been concerned with the frequency response itself. 
For the sake of establishing a standard procedure for obtaining the frequency 
response, our group did some work [2] that followed the results of Dr. Akaike 
and myself [3j. 

Skipping over the items that are already commonly clear in text books, 
several items closely related to the selection of parameters in the estimation 

of the frequency response function will be 
mentioned and examples for the case of ship 
oscillations will be given. 

r 

Also, the amount of shift, 
choosing m. 

Choice of m 

If m is the maximum number of lags in 
the correlation function used for the compu¬ 
tation of the estimates, then m should be 
chosen so as to satisfy 

mAt > 2v/B , 

where B is the bandwidth of the peak of | H( w) 
of main concern as defined by Fig. 1. 

An excessively large m implies an in¬ 
crease of sample variance, and an exces¬ 
sively small m implies that bias occurs and 
usually gives an underestimate of |. 

mentioned later, should be taken into account in 

For the case of ship rolling where 

(p + 2KU¡é + eu ^ ci = 0} 1 d> , 
^ o * o * w 

under the condition where « « l, the bandwidth of the peak of |h(A) | is calcu¬ 
lated as B = 2* 0 . o 

The Effect of Windows 

Before starting to discuss the choice of the amount of shift, the effect of 
various windows is examined approximately, 
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Assume that the output y(t) and input xf t), as well as the noise n(t) that 
contaminates the output y(t), have the Fourier transform. Then 

Accordingly, the estimate of H(«> at ^ (2v/2T)ß evaluated from the cross 
spectrum is 

IW Y 
Pß- V 

: w X 

X 

X 
M - l- 

¿ W H f 
V ^ 1 ir V, • V, IW H 

V [1 - V 

W X 
u l±- V 

X 

s 

ß-V 

M - I' 

where are the weight factors that describe various windows. The noise and 
the input can be considered as mutually uncorrelated. Thereiore 

E 
^ Wt H {yT: O' - >')} 

IW. X 

. E 13» {it !x,-l2] 

2T \2T 

ç f^L \ 
■^xx V2T 

Here the variation of SX)t(a>) around co = ( 2" 2T)/x is assumed to be smaller than 
that of HO'). Accordingly 

E[H(f »)] 5 E».H{f-(M-o} 

Now let us consider the case where H(aO in the form ¡H(a) | has the 
local approximation 

H »(f") {‘-(f-)^(iH’} 
■ 2t’ b 

where = - da(u)/dco as in Fig. 2. We have assumed that |H(ü) ! varies locally 
as a 2nd order curve, and that the phase a(co) increases linearly with frequency. 
Then, 
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Figure 2 

il 
il 

= h(^m) 
. 2rr . i-ly K 

SW e 2T M 
T • 2tt , 2 j — x>k . 

2T ^ I e 

H(2f^) {w(k^ + 2ki(Kï + 

where 

w(kM) - ^7 w( r) I 
T = k 

w(kp 
dr ‘ 

w( r) 

r = k 

This shows, through the averaging effects of the weights, , that the estimated 
frequency response is much affected by the variation of phase angle áo(io)/âco 
around that particular frequency. This fact was entirely disregarded in the 
paper by Goodman [4], which treated the confidence limit of the frequency re¬ 
sponse. For example, if the has values that are shown in Fig. 3, even if 
a=o, and /3=0 

E [H (iHJ (-)} -«(IH 

and w(ku) is much less than 1. As the result, the estimated frequency response 
becomes much less than the true value. This has been the reason for the low 
coherencies obtained in some experiments as already pointed out by Mr. Dalzell 
and me [5]. As an extreme case, when k > t . 

1 fj. ‘ m* 
♦ 

r 
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r 

Figure 3 

= 0. 

This window also causes bias in phase estimation. Generally, however, ß is 
much larger than a, when |H(^)| has a peak, and then Ao(u)/du> usually has a 
large value. Accordingly the effect of (a/2rr)w(k ) is rather small compared to 
that of w(k^) and [/3/(2w)2lw(k^). This shows that the effect of a window on the 
phase shift, a(a>), is rather small compar¡ d to the effect on the amplitude gain, 

I H( a))|. 

If we shift the data window by and bring the origin of the window to k , 
then w( T) = o and w(r) = o. Moreover if we can choose the shape of the window 
so as to have w(r) o, then, as the result, the bias due to phase shift can be 
eliminated completely. 

As the natural results of the above-mentioned considerations, the following 
results are obtained. In these results sAt is the amount of shift of the data 
window for the computation of the sample cross spectra. 

Choice of sAt 

To compensate for the bias due to the phase shift, sAt should be chosen so 
that we have 

sAt _ f d(a))\ 
l d« J 

W, 

for W 2 

namely if 
'0.15 mAt 

Égí-fl j < ^ 0.30 mAt for W 
da) 

0.40 mAt 
W3’ 
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we do not need to shift the data window or the output, w,, w2 and w3 are the 
windows which are explained later. Otherwise, j H( | will be underestimated 
by more than 5%. sût should also be chosen so as to satisfy 

IsAt I < 0.05 NAt . 

Otherwise, adopt y( t + sAt) as y(t). This is the clear solution for the elimina¬ 
tion of the effect of windows on frequency response function. 

For example for roll, expressed by the equation of motion, 

ó + é + 0) 1 d> 
Or o ^ vo2y(u) Y- C(cv) e 2 

where 

y(") is the effective wave slope coefficient and 

GU J;» 

— 'Á e is the wave slope expressed by the wave height UoS) measured 
at the C.G. of the ship. 

The amount of time shift is computed as follows: 

o)o4 (yaj2/g)2 
|H( co) \ 

cr(w) 

(ü.y - od ) + ( 2kcooco) '• 

f -2kíü(i)\ 
t an" 

C0*-102 o 

da( u)) 
dco 

_d_ 
eta) tan 

■2kcü üj\”1 
1 Í 0 ' ■ -2kuo(u¿ + O)2) 

( % - ) + (2kojoù>)- 

Figure 4 

therefore 

dcr( to) 

dùJ 

Namely if we want a good estimate (with small 
bias) of H(o)), the amount of shift sAt is 

sAt 

This shows that the output of roll y( t + sAt) 
should be taken as yet). When the wave height 
i( to) is measured at the distance, D, as is 
shown in Fig. 4, the phase difference between 
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the measured wave height and the wave slope at the C.G. of ship is 77/2 - (wVg)D, 
and this gives 

«» cr(oj) = tan-1 I- 
\ ÜJ 2 

O 

and therefore, 

0.1 = OJ 0 “ 
0 

When the character of the frequency response, H(cd), is known before we start 
the computation, the above-mentioned value can be estimated. This is, howevei, 
not the case usually. At that time, as is shown in Fig. 5, Tp can be taken as a 
good estimate of sht. This value can be decided after computing the cross 
covariance function. Namely, in the case where the input is considered to be 
fairly white in the range of our concern, we can obtain a fairly good overall 
estimate of H(6j) by shifting the center of the lag window or the origin of the 
time axis of the cross covariance function to that time point ip where the maxi¬ 
mum of the absolute value of the sample cross covariance function occurs. 
Pierson and Dalzell [6] showed very interesting analyse ! for two cases, one for 
wave measurements where the apparent low coherency between two wave meas¬ 
urements was improved and another in which the coherency between the waves 
and the ship response was improved. I have also described [7] the intuitive and 
practical method to find the amount of shift. The above-mentioned theory shows 
more generally the way to find the proper amount of shift. A large bias because 
of the large phase shift which usually occurs at the peak of the amplitude gain, 
induced by the use of windows, is prevented in this way. 
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w, w^: Windows 

Several papers have been written on the design of windows so as to provide 
spectral estimates with various properties. Hamming and the banning windows 
are the most popular ones commonly used. Just a few comments will be made 
here on this subject. 

Putting X as the Fourier transform of x(t) (-T < t <T), the smoothing effect 
of the windows of the trigonometric sum type is expressed as follows (see Fig. 

- 2n .( r) dr 

j_r ■2T,j 277 J e J - T 

2T w(r) R* ( t) dr , 

w(t) = E an 271 r 
2T_ 

n = - k 

= 11 ». 

2rry 2T_ 

T < I. 

T = iT„ 

n = - k 

T > T . m 

Figure 6 

Many windows have been designed [8], and have been checked [3] for the case of 
simple oscillations like linear rolling in waves. The following windows, W,, w2, 
wj; which have been designed, are the optimum as the 1st, 2nd and the 4th order 
type and are free from biases up to the 1st, 2nd and the 4th order respectively. 
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w2 W3 6 Hamming Hanning 

ao 

al 

* 

a3 

0.5132 

0.2434 

0.6398 

0.2401 

-0.0600 

0.7029 

0.2228 

-0.0891 

0.0149 

0.64 

0.24 

-0.06 

0.54 

0.23 

0.50 

0.25 

As an example, these windows can be applied to the estimation of the frequency 
response of a simple oscillation such as linear rolling. 

H(o.) =-2- . 
( 2 - CÜ2) + 2i KOI OJ 

O ' ^ o 

Wj, w2, w3 have been checked to be adequate for use if 

_ _jj_ 1 
^ Kco mAt O 

is kept less than 1. (Usually tliis is satisfied if mAt > 2VB, where 

B = 2kcúq 
7T 1 

KMo mAt 
77 

KCO^ O 

The window Q, which is a modification of w2, is generally recommended for the 
estimation of the power spectra, cross spectra and of the frequency response 
function of a linear time-invariant system. 

If the very careful estimation is necessary, the following is recommended. 
Apply the windows w,, w2 and w3 successively, and if there is a significant dif¬ 
ference, say, of order greater than 10% between the results, it is advisable to 
repeat the whole computing process using 2m in place of m, and, at the same 
time, use a correspondingly increased N, if necessary. w3 tends to produce the 
deepest troughs and highest peaks, w2 the next deepest and highest, and w, the 
shallowest. 

R(a;): RELATIVE ERROR OF H(a0; CONFIDENCE BAND 

The relative error of the estimation of li( o), obtained by the procedure 
mentioned above was evaluated relative to the estimated value of coherency. 
The results are as follows: Assuming that 

Y(^) = X( co) H(«j) + N(a>) 

Syy(aA . SjHC^I2 + Snn(c) . 
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Coherency y2( ") 
I H( <¿) I S (ai) 

XX' ' 

Syy(u>) 

S ( &;) nnK ' 

S ( cu) yyv 1 

Then 

Rfüj) j F[S, 2, 2(n - 1)] 

where n is the integer nearest to 

K 

V 
L 

n = - k 

B 2 . n ’ 

also F[8, 2, 2(n - 1)] is defined as 

Prob. {F^.,, £ F[8, 2, 2(n- 1)]} = S . 

At w = o, and 2Tr/2At,F[8, 2, 2(n- l)J should be replaced by F[S, 1, (n- 1)]. Ac¬ 
cordingly, the confidence band is drawn as 

Prob. {I H( co) - H( co) I < R( w) I H( co) \ 

and 

I Arg [H(o))] - ct(w)I S sin'1 R(ù.')} > 8. 

R(aj) should be put equal to 1.00 to indicate the relative error greater than 100%, 
when the value inside the square root of the definition of rm is greater than 1 
or less than 0. The value 8 = 0.95 is used usually in our group. When R^) had 
the value, 1.00, the estimate of often showed sudden change of magnitude 
Í77, which shows unreliability of the results. 

The following approximation formula for F-values can be conveniently used 
for computer application: 

F( 2, n, 0.95) = 3.00 + 
n- 1.40 

F(l,n, 0.95) = 3.84 + -^-^-. 
n - 1.40 

Figures 7 through 14 are the examples of the results obtained by this pro¬ 
cedure. The cross correlograms of wave-roll and wave-heave in Figs. 7 and 8 
are the ones where the origin was shifted by 9At and 7At respectively. Corre¬ 
lations were computed to very large lag number ±200, however, m, the largest 
lag number was taken as 90 in the analysis. All windows w,, w2 and w3 were 
applied to the calculation of the spectra; however, the results came out so close 
that it is difficult to show on one sheet. Accordingly, in Figs. 7 through 13, only 
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Figure 8 
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Figure 9 
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Power of roll 
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1 

Figure 13 

110 



Understanding and Prediction of Ship Motions 

fttlative error 

the results obtained by using w, are shown here as examples. The amplitude 
gain in roll was calculated as the ratio of the roll angle to the wave slope in 
Fig. 12, from the original results of gain of roll angle to wave height as is 
shown in Fig. 14, where the result obtained by using w2 is shown as an example. 
The relative error is shown in Fig. 14. 

2. ON THE EVALUATION OF THE IMPULSE 
RESPONSE FUNCTION 

The impulse response function is one of the forms by which the character 
of the response of a linear system is expressed completely. This has long been 
used very conveniently in many engineering fields. However, it has been rather 
unfamiliar to naval architects. Fuchs and MacCammy [9] wrote a paper in 1953 
and made it clear that the time history of the heave and pitch can be synthesized 
by the convolution of impulse response and the time history of the waves. They 
computed the impulse response function theoretically for a cylinder, and as the 
Fourier inversion of the frequency response function obtained from tank experi¬ 
ments for a ship form. The present author [10] has already called attention 
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to this function and has also made clear the way to get the impulse function from 
a free damping test. 

Mr. Smith and Dr. Cummins insisted in their paper that the step compulsory 
input is not applicable to get the impulse response function, because the step 
function includes components of very wide range of frequency, theoretically 
from zero to infinitive, and this incurs the noise which comes from the reso¬ 
nance of model itself, guide, restraining frame or others to high frequency 
component of input. However, if we are careful on a few points, this author be¬ 
lieves, we can obtain the impulse response even from the inclining test, espe¬ 
cially if the response has very low natural frequency as that of rolling. This 
author obtained successfully the very complicated frequency response function 
of a ship with Flume type anti-rolling tank as the Fourier inversion of the im¬ 
pulse response obtained by free damping test. The results show that this method 
is a useful way to guess the frequency response just by a simple free oscillation 
test. The impulse response function is also useful in this example, and here 
some topics related to the statistical estimation of the impulse response will be 
described. 

When the system is linear and time invariant, 

oo 

h(r) x( t - t) dr = I h( t - r) x(t) dr = h(t) * x( t) 
- 00 

where * represents the convolution operation. The impulse response function 
h( r) and the frequency response function H( a>) are related to each other by 
Fourier transformation as 

h(r) e*)alTdr, h(r) H(o>) = 

The Fourier transforms of output and input are connected by the frequency re 
sponse H(w) as 

Y(o>) = H( Cd) • X( Ûj) . 

Through manipulation, we will get 

Ryy(T) = h(^) h(v) RXX(T-M+ IV) di'dM 

h(T) *h(T) *Rxx(r) . 

This corresponds to the relation in frequency domain 

Syy(c*j) = H( o>) H(CJ) Sxx(a>) = |H(üj)| Sxx(üj) . 

In the same way 
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Ryx^) f ^ - œ h(M) RXX(T~ m) dM 
J - c 

h(T- n) R.Jm) dM 

- h(r) * Rxx(r) . 

This corresponds to 

SyX(C*j) = H(ÙJ) • SXX(W) . 

Namely Rvx(t) is connected with Rxx(r) by the impulse response function h(r) 
just as y(t) with x(t). As is very clear, the relation between Ryx(r) ar.dRxx(r) 
is much stabler from the statistical point of view than that between y( t ) and 
X(t). 

When the computation is carried out digitally from the sample of data taken 
at interval At, 

Ryx(t) = I h(M) Rxx(t- t) At . 

Putting At as 1 for the purpose of simplification 

Ryx(T) = Rxx(t-m) • 

The impulse response can be obtained discretely as the form of a weight func¬ 
tion, for example as h.n, h.n+1, . . . h0, . . . hn.,, hn, by solving the simulta¬ 
neous equations 

RyX(-n) 

Ryx(-n+ 1) 

Ryx(0) 

Ryx(n - 1) 

Ryx(n) 

Rxx(0) 

Rxx(l) 

Rxx(n) 

Rxx( 1) •••Rxxi11) •••RXxf2nl 

Rx*fO) ...Rxx(n-l)...Rxx(2n-1) 

Rxx(n-1) ...Rxx(0) . .Rxx(n) 

Rxx(2n- 1) Rxx(2n- 2).. Rxx(n- 1).. .Rxx(l) 

Rxx(2n) Rxx(2n - 1).. .Rxx(n) 

n+ 1 

n- 1 

Figure 15 shows the impulse response function obtained by solving a 59th order 
simultaneous equations from Ryx at r = -29 ~ +29 and Rxx at r = 0 ~ 58 of roll 
and wave height correlation, shown in Fig. 7. In the same figure, the impulse 
response function, calculated as the Fourier inversion of H(a>) that was obtained 
through the spectrum analysis as in Fig. 14, is drawn. The latter was calculated 
as h. 90 - h90, and the figure shows the main part of it. The two weight functions 
are not necessarily the same. To our surprise, however, inversely, the frequency 
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response function obtained as the Fourier transform of this impulse response 
function calculated through the simultaneous equation shows just about the same 
values as the frequency response (amplitude gain) obtained from the results of 
spectrum analysis as is demonstrated in Fig. 14. 

The example of synthesis of y(t) from the history of x( t) using this im¬ 
pulse response functions is shown in Fig. 16 which shows pretty good agreement 
with the actual observation of y( t ), whichever impulse response function is used. 

Attention should be paid on the fact, however, that an analysis in the time 
domain by means of Ryx(7) and Rxx(t) is inferior to the analysis in the frequency 
aomain in the following reasons: 

1. The choices of t, m, and N are difficult from the statistical point of 
view. This makes it difficult to decide on the really important part of the cor- 
relogram to be used for analysis as that part must include enough information. 

2. The evaluation of error is not easy as in the frequency response func¬ 
tion. In the frequency domain, the coherency plays a big role, and makes the 
estimation of relative error practicable. 

We have to be very careful because of the above-mentioned defects. After these 
points have been made clear once, however, we can utilize the method to obtain 
the impulse response function from the correlations directly and use that to 
predict the future response. For this purpose, some special type computer 
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such as an analogue computer can be used in addition to the general purpose 
computer. 

3. ON THE EFFECTS OF NON-LINEAR DAMPING 
ON CALCULATION OF THE SPECTRUM [llj 

When the irregular input, for example the sea waves for the ship, can be 
considered as a Gaussian process, the output of a linear system, such as the 
linear oscillation of ship, is also a Gaussian process and can be expressed 
using the spectral expression. 

ym f e*wt dZ( ai) 

E[dZ(a) dZ(ai')] dSyy(ûJ) S(a)-oj') 

Syyfa ) = |H(a)) I 2 Sxx( w) . 

When a non-linear component is included in the response character, the output 
is no longer Gaussian, and cannot be expressed by the spectral form which 
premises the superposition theory. 

Even for that kind of case, the autocorrelation function as 
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Ryy( T) = E[y( t + r) y( t)l y(t + T) y( t) dt 

can be calculated. Accordingly if we adopt the definition of a spectrum in a 
wide sense as the Fourier transform of the correlation function, we can com¬ 
pute the spectrum. Here a trial has been made to show how the non-linear 
element —here non-linear damping as described by velocity square damping has 
been considered — affects the computed spectrum, using an approximation 
method. For example, for rolling, the equation of motion with velocity square 
damping is 

1$ + N,(¿ + Nj^l^l + Kr/ M( .) c*'1 (3.1) 

Now for the purpose of simplicity, all coefficients on the left-hand side of this 
equation are considered to be constant and do not vary with frequency. Then for 
input of a general irregular moment, the equation is 

(3.2) 4' g( t ) • O 

As the zero order approximation the solution of the linear equation 
without velocity square damping is taken as 

(3.3) 

Then 

Í I (3.4) ly t - r) g(t) dr >y 7) g(t - T)dr 

ly )» being the unit impulse response function of this linear system to the 
compulsory moment g. ly 7 ) is decided from Eq. (3.3) and, of course, is con¬ 
nected to the frequency response function Ih - ) by a Fourier transformation and 
its inverse. 

Here Eq. (3.2) is modified and the compulsory force R(t) is assumed to 
change to y t) - ;!/!'. On substitution of <t>0 into this ¢, the 1st order ap¬ 
proximation is taken as the solution of the equation 

R( O - ß40\i0 \ ■ (3.5) 

The left-hand side of this equation is just the same as that of Eq. (3.3). There¬ 
fore using the same response h (o, 

iy * - m) rO) 

(3.6) 
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4\( t ) being the modification term and is 

00 

¢[(1) - ß I hg(t~M) {¿„(m) 1i} '1.. . (3.7) 

Of course the convergence of this approximation should be certified strictly at 
first; however, here the convergence is assumed as far as the linear damping 
a/£»,'o' is rather large and the non-linear damping 8 is pretty small. 

The autocorrelation function of this 1st approximation 4-x( t) is then, 

E[0,(t + T) 

E[<i0(t + T) - + T)] [40(t)-i[(t)} 

E[g!>0(t + T) -i0(t)] - E[p0(t + r) 

- E J( t + t) p0( t )] E[./-J(t+ r) 

= E[<í»0(t + T) 4o(t)] - 2 'E[;0(t ♦ O + E[./■;(t + T) ijcn] . (3.8) 

Accordingly the spectrum S.^ ( ) of the 1st approximation, ¢,( n, is 

* 

2 R E [cp0( t + T) ¢[( t )] dt 

e' E[</¡( t + t) * t)] dr (3.9) 

The substitution of Eq. (3.7) into this equation yields 

X e-i"’T e[70(I] d/idvdr 

(3.10) 
(Cont.) 
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e[i/o( t t r) ¿O(M)-|0O(^|] d, 

hgft + - ¡1) (It £—. 
eJr‘'( t-v) 

X e- j“>(«-v) e[¿oím)-|40(m)|40( ¡] clM 

- 2R [/3ÍO^ -S. . V O] 

+ /52!H.(o;)|2 S. ... . , . ,(6.) . (3.10) 
• I * I I 

Now g( t ) is the compulsory moment that comes from the waves, and, so, if the 
waves are Gaussian, git) is also a Gaussian process. From Eq. (3.4), / (t) is 
also Gaussian, and 

4( t) 
r 
I lig( t - s) R( s) ils . 

OD 
(3.11) 

This shows ¿0( t) is also a Gaussian process. 

Here in order to calculate (3.10), we have to evaluate the,expected value of 
Í;o(a' • <t>0(b) ’ l^0(h)l] and l</'0(^) • l'T00) I • £(j-') ■ l£0( ^)1] concerning two 
Gaussian process /)0( t) and /0(t). ÿ0( t) and t) are correlated to each 
other, of course by the correlation coefficient p. 

Here, two Gaussian variables £ and v, connected by the correlation coef¬ 
ficient f are assumed. Tiie two-variable Gaussian probability distribution 
function is 

p( f. V) 
2T7!7ea /l - p2 

exp 

2 ¢2 2o co £ri + cr 2 T)2 

2oi <r 2 (l-p2) (3.12) 

It is necessary to evaluate E [<f, r, -1(,1] and E(i-k! -7,-17,1 ] by means of this 
distribution function. The absolute values are what make the problem somewhat 
intricate. These evaluations could not be found in any text books and papers, 
and so were calculated by this author. The results are 

E[‘f V • T,l] . cr 2 
V V (r) (3.13) 
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E ; f • ! f I -T, sj\ - P1 X 3, t 2( 1 + 2. 2 ) tan -i 
* P - Jí-P 

vT i/i - p 

2' 2: 2 ^ 3 f ± 5 1 
3 ‘ 30 " 80 ‘ 

where 

4c„«.«..„)•$-Jr«i,«•> * ¡F- rèr"’'»«'». 0.M) 

From these results and the relations 

S( • ( -) = (-)u) s, , ( O 

S. . (a) -- c.'2 S, , ( , 
<h *Jo^o 
* o vo 

the result is 

(3.15) 

(3.16) 

r® 
> .,..(0 E[<í0(t + T).^0(M). ¡0o(d)l] dr 

* ' o '^O ‘ ^ - cc 

^ * r R .(rie'2“*dr 

Accordingly the 2nd term of the Eq. (3.10) is 

2R[/iH(^)] S .,. (a) --2)/1° ^ ( Ca) R {- i ù; H ( CD)} 
LK J *d> \é \ *ovo 

(3.18) 

where 

qg(ai) = 0(Hg(a>)} 
2aaj 

(o; 2 - OJ2) “ + 4a2 w2 (3.19) 
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Also 

= Ier2-R - . (r) + —-R3. .(T) 
3'; *„*„ 

1 R5. . ( r) + . . . 
15" J6. 

¢, 
(3.20) 

The 3rd term of the Eq. (3.10) is the Fourier transform of the functions that is 
the product of Eq. (3.20) and some other function. The following relation is 
used, in this calculation: 

r*/ \ * j R(t) e ‘ S(o;) , R(") I S( co) e ^ ‘4 du) (3.21) 

_Lf 
2v J - C 

R3(t) 
- 1 ÍÚT 

e dr / j" R2( T) I so-.') e,W T df"'d 

Similarly 

1 f" f f® iu"r f® "I 
= 27 e R(r) e 8(0/') d*/' S(w')da)' 

^-00 L j - CD j - CD 

= J" SO.') f S( a>" ) e-j(“-“'-“")TR(r)drjdo,'do)'' 

dr 

- co -œ 

S(oj') 
- CD ^ - C 

S(oj") S( a) - 0./ - oj" ) do/do (3.22) 

¿f Rs(T) e"3®T dr - f 8(0,,) Í" S(ojj) [" 5(^) f 
OD J. CD ^ - CD J - CD J - 

S(oO 8(0.,.) 

X S( OI- o;( - o;2 - a>3 - oj^) do), doj, doij doj . (3.23) 

However, because of the small value of the coefficient of R5(t), Eq. (3.23) was 
omitted in further analysis. Then, the 3rd term of Eq. (3.10) is 
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2 , 2 

’ !»,<“> I — n . S . . ( ) + 
v <t> ¢- i' * o ^ o ' o 

/.œ -on 

3 f J Í 
tf’n 

¿0*0 ‘ ¿0*0 *0*0 

ß2|h?( o'2 r2 ,.2 S. ,, f-) + r V S( ^ ¿n**'”' 3ct2, 

S. : . (V3)S; ; (o'-faj-capd^diaj 

(3.24) 

where 

S( OJ) = S. . ( ai.) ■ S . . (a)S. . (w-U - a)di,, do.' 
*0*0 1 *0*0 *0*0 

(3.25) 

By the substitution of Eqs. (3.19) and (3.24) into Eq. (3.10) and from 

¢( to) 
^ -¿T) 

I<l>( to) 

Ü2 + co.2 + 2yxo M( 
= I ' w) , 

qK(^) 
2ato 

2 ,.2 (coo2 - a;2) + 4a2ci. 
Q{Hr( to)) 

and also from 

2 2 

S^Jto) = I H( 0>) \ 2 Srr(co) = {H0( to) I • <oo2 y( aj)| Su(,.) 

= {hb(") y ^y(^} 

[(a 2 - to2)2 + 4n2^} 

S . . (to) = to2 S, 

T [V->] 1 ■ ■ oo < at < oo 

(to) 

(3.26) 

2 S . . ( a/) dea 
J0 *o*o 

the spectrum of the 1st order approximation <f>,( t) can be calculated. 

As an example, the spectrum of the non-linear rolling of a model with 
£oo = 3.85 and a/a>0 = x = 0.06705, /3 = 0.08 has been calculated. For the waves, 
the Neumann shape spectrum which has its peak around coQ = 3.85 was used. In 
these kinds of computation which include the convolution of a spectrum, the spec¬ 
trum should be defined in the range of - ® ^ + ® of oj, and accordingly the definition 
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- irr k =¾ ï 
S, . s- ; and also the convolution S are shown in Figs. > 

■ o:o> to *o /.hnrartpr of single and double convolutions. In 
From Fig. 19, we can see the character 01 single a. frpnuencv 

again at the frequency of Pea¿ 0 ¿¡cay of ÍH( ) !J at these high frequencies, 

Fig. 17 - Spectra of wave, roll, 
and roll angular velocity 
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— (sh) 

Fig. 18 - Linear response of roll 
to the compulsory moment 
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damping ■■ - v is very large and H( o does not decay so much at 3-0, that a 
small peak will appear around 3-n, when the velocity square damping exists. 

NOMENCLATURE 

circular frequency = 2 f, f = frequency, 

t time, 

t time interval between adjacent data values (sampling time interval), 

x( t ) input to the system, assumed to be a weakly siationai y stochastic 
process, 

yi t ) output of the system, under the input x(t) and usually contaminated 
with noise n(t), 

x(n) x(n At ), 

y(t) y(n't), 

H( - ) frequency response function of the system, when the system is 
linear and time-invariant; otherwise, that of the corresponding 
linearized system, 

H( 0 ! amplitude gain, 

-( o Arg (Hi )}, phase shift defined by H(a) = H(! exp {jcr(co)} (j2 = -l), 

h( r) impulse response function of the system when the system is linear 
and time-invariant, 

m maximum number of lags of correlation computed, Tm = mAt, 

N number of data used, NAt = total length of observation, 

R( r) covariance function, 

S( . ) power spectrum function. 
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RESPONSE TO COMMENTS BY 

WILLARD J. PIERSON, JR. 

T. Francis Ogilvie 
David Taylor Model Basin 

Washington, D.C. 

I appreciate Professor Pierson's comments very much. Since he was co¬ 
author of one of the most important papers ever written on the subject of ship 
motions, any worker in our field should listen carefully when he enters the 
discussion. 

It is rather difficult to reply to his formal discussion, since his comments 
generally refer to what I did not say. My paper was too long as it was, and so 
a large amount of oceanographic data and statistical theory were omitted. In 
fact, Figs. 2-4 of my report, which I took from Dalzell's work, were modified to 
the extent that I cut out Dalzell's reported results on coherencies, since I wished 
to avoid detailed arguments about such matters. Perhaps this was wrong. Nolo 
contendere. 

Furthermore, I have been very close to this whole subject for several 
years, and I have come to accept certain statements as being so obvious that 
one need no longer state them. For example, I would have been quite surprised 
if anyone were to suggest that the coherency between roll and wave height in 
head seas were not extremely small. However, if Professor Pierson considers 
that such facts should still be restated in 1964, I may have again committed a 
sin of omission. 

The comments in the section, "Coherency and Resolvability of Spectral and 
Cross Spectral Shapes," do not seem to be relevant to my paper and so I shall 
not offer any response to them. 

Professor Pierson's comments on nonlinear problems are relevant and I 
welcome them. It is very encouraging and stimulating to observe recent prog¬ 
ress in the probabilistic treatment of nonlinear physical problems. It appears 
that the oceanographers and statisticians have in fact stepped far out ahead of 
the hydrodynamicists. 

Unfortunately, there is much more to the prediction of ship motions than 
the establishment of statistical laws. Eventually, we would hope to be able to 
start with geometric and dynamic descriptions of the ship, add to this an ade¬ 
quate description of the seaway, and then predict any desired motions-related 
quantity. Professor Pierson's comments almost imply that all of this can now 
be done, because the oceanographers have supplied the tools. Actually, we can¬ 
not make very good predictions of heave and pitch in long-crested head seas, 
where the simplest concepts are most nearly valid. We are still lacking in 
basic methods for treating the hydrodynamics of such problems, and under such 
circumstances the statisticians' impressive accomplishments are of limited 
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usefulness. Certainly their value must rest very largely on the use of empirical 
substitutes for hydrodynamic theory. It was for considerations such as this that 
my paper was totally lacking in discussion of short-crested-seas problems. How 
can we hope to solve such problems when we have not been able to solve the long- 
crested-seas problems? 

Nevertheless, it is pleasant to anticipate the prospect that, if and when the 
hydrodynamicists make breakthroughs in the future, the statistical apparatus 
will all be waiting for them — ready to cover not only linear problems of short- 
crested seas but nonlinear ones as well. 
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CURRENT PROGRESS IN THE SLENDER 

BODY THEORY FOR SHIP MOTIONS 

J. N. Newman and E. O. Tuck 
David Taylor Model Basin 

Washington, D.C. 

ABSTRACT 

This paper describes current work towards a complete systematic the¬ 
ory for the motions of a slender ship in a seaway. Part I contains an 
introduction and a general discussion of the results which are obtained, 
and presents calculations of pitch and heave response at zero speed. 
Part II contains a complete derivation of the zero speed theory for har¬ 
monic oscillations in the presence of oblique incident waves. Part III 
contains a derivation of a more general theory with forward speed, for 
arbitrary forced oscillations in calm water. A significant feature of 
this paper is the splitting of the velocity potential and forces into parts 
which are dependent on free surface effects, plus parts which corre¬ 
spond to the motion of the double body in infinite fluid or specifically to 
the case of a rigid free surface. 

I. INTRODUCTION 

A fundamental motivation of the theoretical physicist is his desire to bring 
a sense of order to the physical world, by means of mathematical models which 
are derived from the basic physical principles governing the problem at hand. 
Practical problems in ship hydrodynamics have resisted this ordering process, 
however, not because the basic physical principles were unknown, but because 
their mathematical representation has been comparatively intractable, at least 
by comparison with most other problems in classical mechanics. The predic¬ 
tion of ship motions in waves is typical of this situation, and in spite of con¬ 
certed efforts we are still short of our desired goal of giving engineering pre¬ 
dictions of ship motions from a rational theory. 

It is generally accepted that, for most purposes at least, the desired theory 
can be attained by considering that the water around the ship to be an ideal (in¬ 
compressible, inviscid) fluid, and by linearizing the unsteady motions (wave 
heights and ship motions). Within this framework there have been several dif¬ 
ferent approaches, which can be distinguished according to the assumptions 
made concerning the hull shape and forward velocity (Table 1). At zero speed it 
is possible to proceed without any assumptions as to hull geometry, and we 
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Table 1 
Rational Linear Theories for Oscillatory Surface Ships 

Theory B/L T/L k/l a) vCTg Froude No. 

Fat Ship 

Thin Ship 

Slender Ship 

Flat Ship 

Strip 

0( 1) 

0(0 

0( O 

0(1) 

0(0 

0(1) 

0(1) 

0(0 

0(e) 

0(e) 

0(1) 

0(1) 

0(1) 

0(1) 

0(e) 

0(1' 

0(1) 

0(1) 

0(1) 

0( e-l/3) 

0 

o or 0(1) 

o or 0(i) 

o or 0(1) 

0 

Nomenclature: B = beam, T = draft, \ = wavelength, 
oj = radian frequency. 

indicate this situation by the designation "fat ship theory"; this approach has the 
advantage that no assumptions are made concerning the hull geometry, but 
closed form solutions are not obtainable, and moreover the theory is restricted 
to zero speed by the requirement that the disturbance of the free surface be 
small. 

The thin ship model, which is most familiar in wave resistance theory, has 
been applied to ship motions in longitudinal (head or following) waves and both 
first- and second-order theories have been developed; criticisms are first that 
conventional ships are not thin (B T is usually greater than one), secondly that 
the first order theory contains an unbounded resonance in pitch and heave while 
the second order theory is extremely complex, and thirdly that the use of this 
model for oblique wave motions results in a lifting-surface type of integral 
equation. 

The flat ship was proposed in order to overcome the objections oi the thin 
ship, but its analysis is still incomplete, and one may note that it suffers from 
drawbacks similar to the thin ship, but with the vertical and transverse modes 
reversed. 

The strip theory and slender ship theory are based upon identical geomet¬ 
rical assumptions, namely that the beam and draft are both small compared to 
the ship's length; intuitively this assumption seems reasonable for conventional 
ships. They differ however, in regard to the additional characteristic length of 
the problem, namely the length of the incident waves. The strip theory, which 
assumes two-dimensional flow in transverse planes at each section of the ship, 
is rational only if the wavelength is small compared to the ship length. If this 
is the case, interference between the bow and stern will be negligible, since 
they are many wavelengths apart, and the three-dimensional hydrodynamic 
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problem can be reduced to a sequence of two-dimensional problems.* An addi¬ 
tional drawback of the strip theory is that, by hypothesis, it cannot be rationally 
applied with forward speed. Slender body theory, on the other hand, attempts to 
account for longitudinal changes in the flow, either from interference effects or 
from the effects of forward motion, but at the expense of transverse interference 
phenomena since the beam is assumed small compared to a wavelength. 

Thus it would seem natural to apply the techniques of slender body theory, 
which have been well established in aerodynamics, to the prediction of ship 
motions in waves. However, this seemingly obvious union was not consummated 
until recently. Now progress is being made by several workers and we can 
optimistically hope that a rational and successful theory for predicting ship 
motions in waves will be forthcoming in the near future. 

This paper contains an outline of some recent developments toward the 
above goal. Our results are still incomplete, and to some extent disjoint, but 
they are sufficient to suggest the practical utility of a truly rational approach 
to ship motion predictions. To support this statement we will show numerical 
computations for practical ships which, at least in parts of the domain of inter¬ 
est, are as accurate as available experimental data. Our paper will be divided 
into three parts and these will be presented in the inverse order from that which 
is customary, so that the most important results are exhibited before we become 
engrossed in the details. 

The Essential Features of Slender Ship Motions 

Our theory assumes the ship to be long compared to its beam and draft, to 
be floating on the surface of an ideal incompressible fluid, and to be excited in 
unsteady motion either by external forces or by an incident plane progressive 
wave system. We assume moreover that the unsteady motions are of small 
amplitude compared to all of the other characteristic lengths (i.e., the ship 
dimensions and wavelength) so that linearization is possible. Finally we as¬ 
sume that the wavelength of the incident wave system or the waves radiated 
from the body is of the same order as or greater than the ship's length. The 
last assumption ensures that the transverse dimensions of the body are small 
compared to a wavelength and greatly simplifies the interference effects be¬ 
tween points on the ship's surface. 

It is convenient to introduce a small parameter e, which may be defined as 
the beam-length ratio of the ship. The slender body solution of our problem is 
then developed by formulating a boundary value problem for the appropriate 
velocity potential, whose gradient represents the unsteady fluid velocity vector, 
and then finding an approximate solution of this boundary value problem which 
is asymptotically valid for small values of e. The first order slender body 

♦ However, if incident waves are present from any angle other than abeam, the 
resulting two-dimensional problem is governed by the wave equation rather than 
Laplace's equation. This complication is frequently overlooked in analysing the 
exciting forces from strip theory. 
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theory results from retaining only those contributions to the velocity potential 
and forces acting on the body which are of leading order in t, and higher order 
approximations follow by systematically including the next-higher-order con¬ 
tributions, etc. However, our problem is complicated by the fact that a slender 
ship, oscillating in six degrees of freedom, will produce hydrodynamic disturb¬ 
ances in the various modes and encounter hydrodynamic, hydrostatic, and iner¬ 
tial forces in each mode, which are of different orders in . It is clear, for 
example, that the surging or rolling oscillations of a slender ship will not gen¬ 
erate disturbances of the same order as pitching or heaving modes. Moreover, 
even within one given mode, say heave, certain types of forces will dominate 
others; for example the hydrostatic restoring force will be of the same order as 
the waterplane area, or 0(0, while the inertial force will be of the same order 
as the ship's displaced volume, or 0(e2). Asa result many of the accepted 
components to the total forces and moments acting on the ship are higher order, 
and do not appear in the first order theory for each mode. This situation is 
illustrated in Table 2, which shows the order of magnitude, for each mode of 
oscillation, of various physical quantities. These include the normal fluid ve¬ 
locity Bflig/Bn on the ship's surface induced by its oscillations and by the incident 
wave system, the corresponding body velocity potential ;B representing the dis¬ 
turbance of the fluid by the ship, the hydrodynamic body force FB due to this 
disturbance, the hydrodynamic force due to the pressure field of the undis¬ 
turbed incident wave system (the "Froude-Krylov” force), the hydrostatic re¬ 
storing force Fhs, and the inertial force Fj due to the body's own mass or 
moment of inertia. For each mode the forces of leading order are underlined, 
and the first order equation of motion is written symbolically in the last column. 
Conceptually this table can be derived most easily for uncoupled motions, but in 
fact the inclusion of coupling between modes does not affect the order of magni¬ 
tude in each case (assuming that the origin is taken at the center of gravity). 

Table 2 
Relative Orders of Magnitude for each Degree of Freedom 

To illustrate how the entries of Table 2 are obtained, consider the case of 
surge. The normal velocity on the ship's surface is proportional to the direction 
cosine in the longitudinal direction, which is 0( o for a slender body. The 
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magnitude oí the potential can only be established rigorously by solving the 
problem, but it can be estimated heuristically by considering the corresponding 
two-dimensional problem in the transverse or "cross-flow" plane, where the 
ship's submerged area is pulsating at a rate proportional to the longitudinal 
rate oí change oí sectional area, and it is easily verified that a pulsating cir¬ 
cular cylinder of radius R will have a potential, on its surface, of magnitude 
proportional to R IorR times the normal velocity. The hydrodynamic forces 
follow from Bernoulli's equation and the fact that the longitudinal projected area 
of the ship is 0(c2). (The potential of the incident wave is of course Cpl) since 
it doesn't depend on t.) There is no hydrostatic restoring force in surge and 
the inertial force is proportional to the displaced volume, or 0( c2). The leading 
order forces are the Froude-Krylov exciting force and the inertial restoring 
force. Thus the leading order equation of motion for surge oscillations does not 
depend on the hydrodynamic disturbance generated by the body. We note that a 
similar conclusion holds for heave, roll, and pitch. Thus, at least in these four 
modes, the familiar damping and added mass forces are secondary and the 
Froude-Krylov hypothesis has a rational basis. 

Certain fundamental conclusions follow from Table 1: 

1. In every mode the leading-order equations of motion are homogeneous 
in e. Thus the response in each mode, to incident waves, will be 0( i) in terms 
of e, and of the same order as the wave height. 

2. For surge the dominant forces are inertial and Froude-Krylov, with the 
effects of the ship's own disturbance small by the factor e2 Ior e. 

3. For sway and yaw the ship's hydrodynamic disturbance must be ac¬ 
counted for even in the first-order equations of motion. 

4. For roll the Froude-Krylov exciting moment and hydrostatic restoring 
moment are dominant, with other effects small by the factor e. 

5. For pitch and heave the dominant forces are Froude-Krylov and hydro¬ 
static, with effects from the ship's hydrodynamic disturbance small by a factor 
e Ior £. It follows that the first-order equations of motion for pitch and heave 
will not contain resonance effects, but there will be a bounded resonance in the 
second-order equations. 

At first glance the above conclusions may seem trivial, at variance with 
physical observation, and a step backward in our scientific development. One 
noted critic has even stated that "at least thin-ship theory predicts resonance." 
The best counter-argument is to show some results from the application of the 
first-order theory for pitch and heave (Figs. 1 and 2). These show the pitch and 
heave response of an aircraft carrier at zero speed. The solid curves are the 
results of solving the coupled first-order equations of motion, equating the 
Froude-Krylov exciting force and moment* to the hydrostatic restoring force 

♦Actually we employ the slender body limits of the Froude-Krylov force and 
moment, in which the surface integrals over the hull are replaced by simpler 
line integrals. 
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Fig. 1 - Pitch response calculated from first 
order theory and compared with zero speed 
experimental data 

Fig. 2 - Heave response calculated from first 
order theory and compared with zero speed 
experimental data 
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and moment. The experimental points were obtained both from regular wave 
tests and from transient or "pulse" type tests, as described in the paper by 
Davis and Zarnick at the present Symposium; these experiments were made in 
the Maneuvering and Seakeeping Facility, so that wall effects are minimized. It 
is clear that under these conditions the seemingly crude first order slender 
body theory gives a very good prediction of pitch and heave, in fact much better 
than is usual in this field. 

The above results are less surprising if we recall that they are for zero 
forward speed, and in this condition the resonant frequencies of conventional 
ships in pitch and heave correspond to very short wavelengths, on the order of 
50-75% of the ship length, or much shorter than the range of practical signifi¬ 
cance. In other words, at zero speed with conventional ship forms the practical 
frequency range for heave and pitch is substantially below resonance. Clearly, 
however, the situation will change when forward speed is involved, at least in 
ahead waves, since the frequency of encounter will be increased. This is illus¬ 
trated in Figs. 3 and 4, showing the same theoretical curves compared to ex¬ 
perimental data with forward speed (at a Froude number 0.14). There is now a 
resonant peak within the domain of interest, although the data are essentially 
unchanged away from resonance. This suggests that a second order slender 
body theory, including the mass of the ship and all other effects of equal order, 
might be sufficient to give predictions with forward speed of the same accuracy 
as those shown for zero speed. It is for this reason that we have been examining 
the second order slender body theory for ship motions in waves, which includes 

Fig. 3 - Pitch response calcu¬ 
lated from first order theory and 
compared with experimental data 
at 0.14 Froude number 
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Fig. 4 - Heave response calculated from first 
order theory and compared with experimental 
data at 0.14 Froude number 

all the familiar complications of damping, added mass, and the diffraction of th 
incident wave system by the presence of the ship. 

The complete second order theory at zero speed is presented in Part II 
this work being an extension of the results of Newman (1964). Figures 5 and 6 
show the resulting pitch and heave response for the same conditions as Figs 1 
and 2. The first order theory and experimental data are repeated for compari- 
son. It is apparent that there are only minor differences between the first- and 
second-order results. 

At finite speed neither a complete theory nor calculated responses are as 
yet aval able; the theory is presented in Part III for the case of forced oscilla¬ 
tions only, leaving the exciting forces still to be determined. The. theoretical 
results of Part III (e.g., Eqs. 3.36) are presented in the form of double SegraK 
involving the cross-sectional area curve Sfx) and/or the waterline beam curve 
B(x) multiplied by a complicated kernel function K(x,a,U) where ^ is radian 
tinTÍfnRLacní¡ U H°LWard feet' W U °' K reduces as in Part II to a combina¬ 
tion of Bessel and Struve functions which are tabulated; on the other hand for 
non-zero U, K remains an untabulated function defined at the moment only in the 
form of a Fourier integral. More work is needed on investigation and tabu¬ 
lation of this function before computation of responses at finite speed can be 
carried out. ^ 
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Fig. 5 - Pitch response from second order theory 
compared with first order theory and experiments 

In deriving the second order theory, the fundamental result we use is that 
any velocity potential $ representing a regular disturbance of the fluid by the 
ship can, near the ship, be written in the form 

0(x,y,z) r <£< WALL>(x,y,z) + f(FS,(x) (1.1) 

where <¿( "Au > is the potential for the identical problem but with the free sur¬ 
face replaced by a rigid surface or "wall" (which is, by reflection, the problem 
for a double body consisting of the ship hull plus its image above the free sur¬ 
face in an infinite fluid). The function f(FS)(x) contains all the free surface 

Particular is dependent on the acceleration of gravity whereas 
WALL1 is not), and is defined by an integral transform of the form 
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L 

Fig. 6 - Heave response from second order theory 
compared with first theory and experiments 

f(FS,(x) = Í K(x-i, o) Qff)di 
J\. 

(1.2) 

where 

Q(x) - Í d,i (I-3) 
•'c 

is the flux through the cross section C of the ship at the station x. Since 3<¿/an 
is given from the hull boundary condition, Q is calculable as a function of hull 
geometry and the motion amplitudes. On the other hand the function K is a 
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kernel function independent of hull geometry and of thr motions, the calculation 
of which may be carried out once and for all, this being one of the chief objec¬ 
tives of the present theory. For sinusoidal oscillations K is a function of the 
radian frequency oj; for general motions, however, K may be interpreted in the 
usual sense of control theory as a transfer function. 

Using this splitting up of the potential we may now calculate the hydrody¬ 
namic forces on the ship, which will be split up in a similar manner. In partic¬ 
ular for sinusoidal oscillations we can define in the conventional manner a 
matrix of frequency dependent damping, added mass, and exciting force coef¬ 
ficients, each of which can be decomposed into "wall" and "free surface" por¬ 
tions. In this paper we shall focus attention on the latter half of the problem, 
although in Part II the classical slender body theory is used to find the "wall" 
forces for oscillations at zero speed. 

H. THE ZERO-SPEED THEORY 

Motions in Oblique Waves 

We shall outline the general analysis for zero forward speed, constructing 
the velocity potential from Green's theorem in the manner suggested by Vossers 
(1962). Further details of the present analysis can be found in the recent paper 
by Newman (1964). 

A slender rigid ship is floating with zero mean velocity in the presence of 
plane progressive incident waves, of amplitude A and angle of incidence ß rela¬ 
tive to the longitudinal x-axis. The resulting fluid velocity vector can be rep¬ 
resented by the gradient of a velocity potential 4>(x, y, z) e -iwt, including both 
the known incident wave potential 

<j!>i(x,y, z) = exp [K(z + ix cos/3 + iy sin/3)] (2.1) 

and the unknown disturbance potential due to the presence of the body. Here 
w denotes the circular frequency, g the gravitational acceleration, K = aj2/g is 
the wave number, and the z -axis is positive upwards with z = o the plane of the 
undisturbed free surface. It follows from Green's theorem and the boundary 
conditions of the problem that the disturbance potential satisfies 

<V x-y’ z> x,y.z;£,T), £) 
<^B 

Bn (2.2) 

where the integral is over the submerged surface S of the ship, the direction of 
the normal n is out of the ship, and the Green's function is defined (cf. Wehausen 
and Laitone, 1961) by the expression 

G = G0 + gj • (2.3) 
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G0 = [(X - £)2 + (y-T,)2 + (z - Ç,)2]" ' * + [( X - “) 2 + ( y - r/) 2 + ( z + Ç) 2] ' 2 . (2-4) 

G> = 2K f Âek(í+0 + fy-^2]‘/2) ■ (2.5) 
•'o 

The contour of integration in the integral for G, is indented below the singu¬ 
larity k K, in order to satisfy the radiation condition of outgoing waves at 
infinity. Physically the Green's function G represents the potential of an oscil¬ 
latory source, located beneath the free surface at the point x = <f, y = 17, z = ç; 

the function 0(, is the elementary source function 1 R plus its image above the 
free surface, and the function G, represents the necessary correction to account 
for free-surface effects. 

The above statement of the problem is exact, and Eq. (2.2) can be regarded 
as an integral equation for |B. If the body is slender, however, major reductions 
can be affected. It can be shown that the term aG,/3n) is small compared to 
the remainder of the integrand, by a factor 1 + 0( e log 0, and the surface inte¬ 
gral of the term G,(3<¿B/9n) can, to the same degree of accuracy, be reduced to 
a line integral over the length. The resulting integral equation, for points (x,y,z) 
in the near field (i.e., a distance 0(e) from the ship), is then 

" - ¿7 í G^x.O.O.Í.O.O) 0(í)dí. (2.7) 
JL 

Since Gn is the Green’s function for the rigid free surface problem, it can be 
shown that (2.6) is equivalent to 

4 
( WALL ) 

4 
f(FS, 

(X) • (2.8) 

Thus, as stated in Eq. (1.1), we can express the velocity potential explicitly in 
terms of the solution of the corresponding wall problem plus a function f(FS>(x) 
containing the free surface effects. (The f(FS)(x) of (2.8) is in the form (1.2) 
with - ( 1/4t7)G, for the kernel K.) 

It is now a straightforward matter to find the hydrodynamic forces due to 
the disturbance of the fluid by the body. From Bernoulli's equation the linear¬ 
ized hydrodynamic pressure is 

1' 

4 
« 

* 
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P = ioipÿe'*“* (2.9) 

and thus the six forces and moments are 

F¡ = - Í6jpe JJ(/) cos (n.Xj) dS , (2.10) 

where cos (n x.) denotes the direction cosine for i = 1, 2, 3 and the generalized 
direction cosme 

xi-2 cos (n.X;.,) - Xj,, cos (n,xi2) 

for i = 4, 5, 6. Substituting (2.7) and (2.8) in (2.10) it follows that 

(WALL) ( FK ) 1 
F • = F. F + — 

» I r i 4 77 

•lut I' f 
lùJP e ( cos ^n' xi) 

x Jl 0(4) Gjtx.O.O; ^,0,0) , (2.H) 

where F¡ denotes the "Froude-Krylov" exciting force from the undisturbed 
incident wave potential ¢,. The last term in (2.11) contains all of the free sur 
face effects due to the presence of the body. This can be reduced further bv 
noting that J 

G,(x,0,0:^,0,0) -T7K {H0(K|x-£|) + Y0(K|x-£|) - 2iJ0(K|x - ¿f| )} . (2.12) 

where H0, Y0, and J0 are the Struve function, Bessel function of the second 
kind, and Bessel function of the first kind, respectively. 

One important consequence of (2.11) is that for transverse oscillations 
(sway, roll, and yaw), 

F: 
( WALL) 

Fi + F 
( FK) 

(i= 2, 4. 6) (2.13) 

Of course higher order terms including free surface effects could be re- 
tained. In particular the damping coefficients for sway, roll, and yaw can be 
found fairly easily from the energy flux at infinity (Newman, 1963), in the form 

b22 

B44 > - 

S(x) + m22(x)/p 

S(x) z0(x) + B3(x) - m24(x)//t 

x S(x) + m22(x)/p 

► dx 

2 

(2.14) 

where m22(x) and m24(x) are the two dimensional added mass coefficients of the 
section for the sway force due to sway and the sway force due to roll, 
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respectively, and for the rigid free surface condition, and where S(x) is the 
sectional area, z0(x) is the vertical coordinate of the center of buoyancy at 
each section, and B(x) is the beam of the section at the waterline. We note that 
b22 and b66 are 0(e4) while b44 0(e6), and as indicated in Table 2, all three 
are of higher order compared with other terms in the equations of motion. 

Pitch and Heave in Head Waves 

We shall illustrate the above theory by considering in more detail the im¬ 
portant case of pitch and heave motions in head waves, lí ç3 and î5 denote the 
(complex) amplitudes of heave and pitch, the boundary condition on the ship hull is 

M- —(é,+éu) = - ia>£, cos (n, z) + iwL fx cos (n, z) - z cos(n,x)], (2.15) 
3n 3n 1 B 3 L 

or, for the disturbance potential, 

a^B 
Bn 

- wA exp [K( z + ix)] [cos (n, z) + i cos ( n, x")] 

- ia^3 cos (n. z) + íojÇj [x cos (n, z) - z cos (n,x)] 

= - u> J^Ae 1*<X + if, 3 - ixf,sJ cos (n,z) + 0(e). 

The flux function is thus 

Ja<^n . I" 'Kx , , ., 
—^ d-C = aiB(x) I Ae + lC3 - ixf,5J . 

c 

(2.16) 

(2.17) 

The wall force f\WALL) can be analyzed from classical slender body theory. 
Thus the potential 1í^*Al'L> is given by 

0<WALL>(X.y,z) = ^2D)(y,z;x) + f<WALL)(x) , (2.18) 

where <f>( 2D) is the two-dimensional "strip theory" potential satisfying the 
boundary condition (2.16) on the contour of the hull section and the rigid wall 
condition on the free surface, and the interaction term f(WALL) is 

f("ALI->(x) = - xj log SRO ( x - Q'( Í) d^ . (2.19) 

From (2.10) the wall force is 

( WALL ) Í(2D) -iut fÇ 
dxFi (x) - iccpe JJ ( WALL) 

(x) - iojpe J I f (x) cosin.x^dS 
s 

• iwt r , ■i“* f f r( 
nij i( X) dx - iccp e J I f 

c 

WALL) 
U1 e ‘ ' I m..(x)dx - icupe JJ ^ ^ cos (n'xi) dS, (2.20) 

L Js 
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where mii(x) is the two-dimensional added mass coefficient with a rigid free 
surface condition.* 

We can now write down the heave force F3 and pitch moment Fs from Eqs. 
(2.11), (2.12), (2.17), (2.19) and (2.20), using Eqs. (Al.3-6) of Appendix I to 
evaluate the surface integrals. Thus it follows that 

o)2e lIJt J m3(x) (r,3 - x?>5 - iAe,kx) dx 

2¿wPe J (~)B(X)J loe —L- sgn(x-i) 

x^[B(i) (f.3-Xf,5 - IAeikx)]dlidx 

~PgK2e-iMt f (-) B(x) f B(£) (í3-xí5-iAeikx){H0(K!x-í|) 
\-X / J L 

t Y0(K|x-f|) - 2iJ0(K|x-^|)} d^dx 

— ) [Bf x) - KS(x)] eikxdx + 0( e3) , (2.21) 

where the last term represents the slender body approximation of the Froude- 
Krylov exciting force and moment, to second order in e. 

The total force and moment will include the hydrodynamic components, 
represented by (2.21), plus the conventional hydrostatic restoring force and 
moment (of first order in e) and the inertial force and moment of the ship's own 
mass (of second order in ¢). Setting the sum of these equal to zero yields a 
consistent set of equations of motion, accurate to second order in e. We note 
that the first order contributions include only the hydrostatic terms plus the 
first order Froude-Krylov contributions. The solution of this first order sys¬ 
tem was illustrated in Figs. 1 and 2. There are various second order contribu¬ 
tions in Eq. (2.21), each of which is interesting by itself. The first integral 
gives the "strip theory wall forces" involving the stripwise zero frequency 
added mass times the relative acceleration, including the incident wave height. 
The first double integral gives the corresponding "wall" three-dimensional cor¬ 
rection to the added mass and exciting force. The second double integral con¬ 
tains the free surface effects, including an added mass contribution from the 
real part of the kernel H0 + Y0, and a damping contribution from the imaginary 
term -2ij0. Note that in all cases the relative displacement i3 - x£s - iAeikx 

♦This is nota unique definition by itself. We may say that m^x) is the coefficient 
of the force associated with the pressure ¡upó1-20'* e iat, and c<>l2D) must be of 
the form <¿(2D>-vC ¡og(y2tl2)/L2as y2 + z2-«a>. 
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between the body and the undisturbed incident wave height is of principal im¬ 
portance; in this way the theory accounts for the diffraction effects, or the cor¬ 
rection to the Froude-Krylov exciting force due to the presence of the ship. It 
is important to note that both double integrals contain truly three-dimensional 
effects, with the disturbance at one station of the ship (f) affecting the force at 
another (x). 

TH. FORCED OSCILLATIONS AT FINITE SPEED 
OF ADVANCE 

Introduction 

In this portion of the paper we suppose that the ship is being forced to make 
small oscillations about an equilibrium fixed position, while an otherwise uni¬ 
form stream u flows past in the positive x direction. These forced oscillations, 
which need not in general be sinusoidal or even periodic, will be described by 
given functions of time t), ç2(t), £3(t) for the linear displacements in 
surge, sway and heave, and C4(t), Zs(t), ç6(t) for the roll, pitch, and yaw an¬ 
gles. Similarly we denote the resulting hydrodynamic force component in the 
ith mode by 

Under the usual control theory assumptions of linearity and causality there 
will be a linear relationship between F¡ and all (., j = 1,... 6, which we may 
write symbolically as 

(3.1) 

for some set of linear operators C¡ j. Alternatively (3.1) may be interpreted 
literally as a linear algebraic relationship between the Fourier transforms of 
the variables Fif (., with coefficients Cij = called "transfer functions." 
Here the Fourier transform of (jft) is defined as 

(3.2) 

(the use of the same symbol for a function of time and for its Fourier transform 
is common and convenient, and will not cause confusion). Clearly c¡ (ai) is the 
Fourier transform of the force C¡ ¡(t) in the ith mode due to a unit impulse S(t) 
of displacement in the jth mode, tne actual relationship between (.(t) and F.(t) 
being thus a convolution integral with Cjjd) as kernel. 1 

In the case of sinusoidal motion at a real radian frequency the real and 
imaginary parts of the functions C¡ ¿i i define the frequency response of the 
forces to sinusoidal displacements of unit amplitude. Historically these quan¬ 
tities as used in ship problems have been calculated in the form of "added 
masses" 
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Mj j(w) Re 
C¡j(^ - Cj^O) 

(-i^2 

in phase with the accelerations (-ia)2 and ’’damping coefficients" 

(3.3) 

Bj jíúj) Re (3.4) 

in phase with the velocities (-iu>) (.. 

Thus there are three interpretations of the linearity Eq. (3.1). When (3.1) 
is to be viewed as an operator equation we write C¡ j = CjjO.) but reserve the 
combination W to mean the operator "B/Bt." The second interpretation 
views as a transfer function with w as a (complex) Fourier transform 
variable, while the third views CijM as the frequency response for real oi. 
The following analysis may be given any of the three interpretations although it 
is mainly expressed in the language of the second of them; that is, we seek a set 
of 36 complex valued transfer functions c¡ j( of the complex variable w. How¬ 
ever, in practice one need calculate the c, ¡ only for real a>, so that added 
masses and damping coefficients would be obtained directly, as in the third in¬ 
terpretation. 

Evaluation of the Velocity Potential Near the Ship 

Firstly let us linearize with respect to the amplitudes ç,(t) of motion, 
which are assumed to be small of order a, for some small parameter a which 
measures the general size of the motions. Thus we expand the velocity poten¬ 
tial in the form 

^ = + ¢(1)(x,y,z,t) + 0(2)(x,y,z,t) + ... , (3.5) 

where <¿( 0} is the steady flow due to a uniform stream u past the ship fixed in 
its equilibrium position, while <¿( () = 0(a) is the first approximation to the un¬ 
steady potential for small oscillations of order a about this position. Further 
terms <¿(2) ... describe non-linear effects due to not-so-small oscillations and 
will not be investigated in this paper. 

Now if the ship is slender, each of the potentials <¿(0), ... may be 
further expanded in terms of the slenderness parameter e, in a manner typified 
by the expansion of the steady term ¢( 0, which has been obtained previously 
(Tuck, 1964). Thus near the ship we can write 

0) Ux + 
(WALL) 

¢(0) («.y.*) 
.( FS) 

'(0) 
+ 0(e3log2 e) , (3.6) 

where the term "Ux" represents the free stream and is of zero order in e, 
while the contents of the square brackets are of order e2 log t and represent 
the steady disturbance to the stream due to the presence of a fixed ship. This 
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disturbance potential is of the class described in Part I, and the terms 
and "f(FS)" have the significance discussed after Eq. (1.1). 

( 0 ) 

»» ( WALL ) 

0) 
tt 

The "wall" potential can itself be further decomposed into 

( WALL ) 

¢,0) Z) 
,( 2D) 
¢( o > ( y. z; x) 

( WALL) 

f <0 ) (X) 
(3.7) 

where, for constant x, 0(^D) satisfies the two dimensional Laplace equation 
with respect to y and z.( éoth terms f((0";,-L, and f((0FS) represent interactions 
between sections of the ship and were determined explicitly in Tuck, 1964, in the 
form 

with 

( WALL ) 

f(0) 

(FS) 

‘ (0) 

drf k|**LL'(x- ç') US’(Í) 

d£ Kj^tx-a US'f f) . 

( WALL) 

K(0) 
(X) 

Tv ¿ tsenx 1or 2|x1]’ 

( FS ) 

K(0) (x) 1 il 
4 dx 

(2 + sgn x) Y0 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

The above results are in the form of Eq. (1.2), since "us'(£)" is tee flux through 
the cross section at ‘ due to the steady motion, S( -) being the immersed area 
of the cross section. 

Now a similar analysis holds for the linear unsteady potential <*>(, ) which 
can be written as 

¢( i )(x* y’ z, t ) $ 

( WALL) 

( 1 ) 
(X, y, z, t) + f 

< FS) 

( 1 ) 
(X,t) + 0( e 2 log e) (3.12) 

with the wall potential further decomposed into 

$ 

{WALL ) 

( 1 ) 
( x. y, z, t ) 

( 2D) 

¢(1) (’‘•y. + 
( WALL ) 

f ( 1 > (X, t) (3.13) 

if desired. The interaction terms f[,, and f [,, are not now simply related 
to the area curve as in (3.8) and (3.9) but, since the unsteady flow is produced by 
linear oscillations of the ship, will be linear functions of the magnitude of these 
motions. Thus we can write 
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( FS) 

( 1) Ç (3.14) 

with fj fj(x,o>) as the transfer function between motion in the jth mode and 
the free surface interaction potential at station x. A similar relationship would 
hold for the wall interaction f | *ALL), which is not of interest to us in the pres¬ 
ent work. 

The free surface interaction transfer functions f j are obtained in Ap¬ 
pendices I and II by the use of the hull boundary condition, the result being again 
in the form of Eq. (1.2), i.e., 

j = [ K(1)(x-f) QjfO , (3.15) 
00 

where 

Q,(x) - -(- + U S'(x) 

Q2(x) = 0 

03(x) = - (- jo, + U B( x) 

(3.16) 
04f X) = 0 

05(X) = + (-iüJ + U X Bfx) 

Q6(x) = 0 

are flux transfer functions, and K( 1} is an absolute kernel independent of hull 
geometry and defined by 

K( J^X) dk e 
i k x 

coth )3(k) , (3.17) 

where 

cosh /3(k) 
(-ic<j - ikU)2 

g|k| 

(for the case oj real, see Eq. (A3.6)). 

The kernel K( j (X) depends on the frequency a and speed u as parameters 
as well as the variaole x, and will sometimes be written K( ^(x.ai.U) to emphasize 
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this. In particular for u = o, K(,, reduces to the zero speed kernel of Part II, 
Eq. (2.12), i.e., 

K( , jÍx.oj.O) 1 
4 R 

(3.18) 

On the other hand, for zero frequency, K( l ) reduces (as it must) to the steady 
kernel of Eq. (3.11), i.e., 

K(1)(x,0,U) I A 
4 dx 

(2+ sgnx) Y0^|) (3.19) 

For non-zero values of ™ and u, K( n has not yet been tabulated, and further 
work is needed to investigate the properties of this function. We may note that 
by a suitable non-dimensionaiization K( ^(x.ai.U) may be expressed as a func¬ 
tion of two dimensionless variables only, for instance 

K( ,,( x.üJ.U) 
Ù)2 r . . r /C<J2X 
— , function of -, 
R \ R 

ojU\ 

R / 

It is easy to see that K(,, has the familiar singularity when ^u/g = 1/4, which 
may complicate the task of numerical evaluation of the kernel. 

Pressure Calculation 

From Bernoulli's equation the hydrodynamic portion of the pressure field is 

p = -p -io.0 +1 lw>|2 - ! u2 (3.20) 

(here "-W may best be interpreted simply as the operator "3/3t"), which gives 
on expanding with respect to a that 

p = -p I iV0(O ,(x.y. z) 12 - U2 - iw0(, ) +v¢(0)(x,y,z) 

■ V<£(, )( X, y, z, t) + 0( a2) 

that is, 

p = P( o )( x> y. z) + P( i)(x, y, z, t) + ..., 

where p ( 0, is the steady pressure field 

P(0) ~p 
1 Iv^o !2 - i U2 (3.21) 

while p( ), is the term of first order in a, namely 

’S 
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Pm, ' + V*(0) • V0(1)] . (3.22) 

Equations (3.21) and (3.22) give the steady and linear unsteady pressure fields 
for an arbitrary body. Now if the body is slender, both pressures may be con¬ 
sistently approximated in the form 

p ( 0 ) 
< WALL ) ( FS) 

Pen, (x.y.z) + P(0) (X) (3.23) 

P( ) 
(WALL) (FS) 

P(l) (x.y.r.t) + P,,, (x,t) (3.24) 

as was done for the potentials. We shall not write down the "wall" pressures, 
which are not required for the present analysis; the free surface contributions 
are 

p 
( FS) 

( f> ) 
-pU f 

( FS) 

( 0 ) 
‘(X) (3.25) 

( FS, 

5(1) (-» à) 

..(FS) 
f(1) (X, t) (3.26) 

These formulas give the free surface dependent part of the pressure everywhere 
in the field of flow. In particular from (3.14) we can express the unsteady pres¬ 
sure field as a sum of contributions from each mode of motion, with appropriate 
transfer functions. 

In order to find the forces on the ship we require the pressure on the in¬ 
stantaneous hull surface. This is obtained by evaluating the pressure on the 
equilibrium hull surface and adding a correction term to account for the dis¬ 
placement of the ship in the non-uniform steady flow field. Thus if p , now 
denotes the unsteady pressure evaluated on the equilibrium hull surface, then 
the unsteady pressure on the actual hull is 

P( D + 2 • VP(0) + 0(a2) , 

where a is the vector displacement of the hull at any point. In particular the 
correction to the FS part of the pressure is 

-- -^Ufjj^íx) , (3.27) 

where £,(t) is the surge displacement (note from (A2.1) that the x component 
of a also contains terms involving the pitch and yaw angles £s(t) and ç 6( t), but 
these contributions are negligibly small in e compared with other retained 
terms). Thus the only contribution from this correction is in surge excited mo¬ 
tion, and we can write for the pressure on the actual hull 
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(FS) V r 

Po, = L Pj ^ • 

i=i 

where the pressure transier functions pj p^x,^) are given by 

/ à \ ( F S ) » 

p, = -^(-i£i’ + u fi - ^uf<o) • 

Pj - -p(-Loo U fj . j = 2,3.6, 

and where the f j are those of Eq. (3. 

(3.28) 

(3.29) 

Forces and Moments 

The forces and moments now follow directly by integrations over the hull 
from the formulas 

i F, + ] Fj + kF3 

iF4 + ; Fs + kF6 

-IJ 
-Jf 

p n dS 

p r X n dS . 
(3.30) 

The splitting up of the pressure p into a wall and a free surface part leads to 
a similar splitting of the forces, viz., 

F; 
f,wau.> + ,( FS) (3.31) 

for all i = 1,... 6. But since pj ^ is a function of x (and time) only, the re¬ 
sults of Appendix I, Eqs. (A1.3) and (A1.4), may be used to show that 

_(FS) 
F, J dxS'(x) p'^^x.t) 

_(FS) 

F2 
0 

F 

F 

F 

F 

( FS) 

3 

(FS) 

4 

(FS) 

5 

( FS) 

6 

f . (FS) 
J dxB(x) p( ,} (x, t) 

0 

f (FS) 
dx x B(x) p( j j (x, t ) 

0 . 

(3.32) 
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Now we view the force in each mode as the sum of contributions from displace¬ 
ments in all modes, with transfer functions c¡ ¡ as in Eq. (3.1), putting for the 
free surface portions: 

Thus 

f;fs) = ecv 
¡«i 

pifS) 
'-I j 

,<FS) 
-2 j 

,( FS) 

'3j 

r(FS) 

„(FS) 

'5j 

,(FS) 

'«j 

J dxS'(s) PjCx.oj) 

0 

J dxB(x) Pj(x,ùj) 

0 

dx X B(x) PjC x.o.) 

0 . 

(3.33) 

(3.34) 

In terms of the f j of Eq. (3.15), the non-zero c(JS) are 

C<iiS) = -^/dx S'(x) |-io) + U f, - pujdx S'(x) fjo)5 Vx) 

cnS) = -pjdx S'(x) (-10,+ f3 

C15S> = _pjdx S'(x) (-ÍOJ + u f5 

Cir> = -pjdx B(x) (-io, + u f, - pU fdx B(x) (3.35) 

(Cont.) 

C33S) = -p Jdx B(x) (-ÍOJ + uf3 

C35S> z -pjdx B(x) (-io, + U-^-j f5 

CsiS> z p/dxxB(x) (-io, + U f, + pujdx xB(x) f;07"(x) 
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„(FS) 
C53 = f- 

c> = p itix x0fx^ 

J(ix XB( X) í-iü) + l! j f J 

Jdx xB( x) xu + U f5 

(3.35) 

Finally, using the convolution integral representations (3.9) and (3.15) for f(0 
and f j respectively, we have 

( FS) 

) 

,( FS) 

'1 1 

,( F S ) 

'15 

_( FS ) 

^-3 1 _ P 

IJdxdí S'(x) s’(ç) [K(X-Í.W.U) - K(X-Í.O.U)] 

GjjS> = pJJdxdiS'(x) B(i) K(x-i.^U) 

pjjdxd^ S'(x) ÍB($) K(x-i,£a,U) 

Ijdxdç B(x) S'(<f) [ K(xo),U) - K(x-f,0,l))] 

C<33S) = P fjdxd^ B(x) B(i) K(x-<f,^U) 

C<35S> = -p j*|dxdi B(x) ÍB(0 K(x-i.^U) 

c‘jS) = -p JJdxdí xB(x) S'(í) [K(x-i.^.U) - K(x-i,OtU)] 

-p||dxd<f xB(x) B(K(x U,U) 

p JJdxdi xB(x) ^B(^) Kix-f.a.U) . 

(3.36) 

,( FS ) 

'53 

,( FS ) 

'55 

where 

K(x,ai,U) = + U-|j2 K( jjfx.^.U) . (3.37) 

This K is the kernel for all heave and pitch motions, but for surge induced mo¬ 
tions the kernel is 

K - lim k\ 
o>-0 I 

the additional correction being only of importance for non-zero forward speed 
and arising from the correction (3.27) to the pressure field due to displacement 
of the ship in the steady flow field. But we can easily see that without this cor¬ 
rection the results for (say) c(1P) would be nonsensical, for as c(,^S) must 
represent the restoring force in surge (i.e., change in wave resistance) due to a 
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unit lengthwise displacement of the ship, and this is clearly zero. On the other 
hand, if H1 then cifS) does not in general vanish at zero frequency and yields 
for W-+0 the trim forces and moments on the ship in steady motion. Since in 
evaluating added masses by (3.3) we must in any case subtract off these trim 
forces CjjiO), the kernel 

"K - lim K" 
U) -♦ 0 

( F S ) 
may be used for all C- whenever trim forces are not required. 

At non-zero frequencies a of purely sinusoidal motion we can split the 9 
Eqs. (3.36) into their real and imaginary parts yielding 18 added masses and 
damping coefficients from Eqs. (3.3) and (3.4). In order to compute these 18 
quantities we require just two functions six) and B(x) describing the geometry of 
the ship and one universal kernel function Kix.w.U) which can be computed once 
and for all. Of course the complete added masses and damping coefficients are 
the sum of the "wall'’ values plus the values obtained from Eqs. (3.36), but the 
determination of the former is, as described in Part I, a much less difficult task. 

For the lateral modes of sway, roll, and yaw, where i or j takes the values 
2, 4 or 6, the CÍ jS> vanish, so that the remaining 54 added masses and damping 
coefficients are dominated by the "wall" values. Since the latter are frequency 
independent, this conclusion is equivalent to the conclusion that all lateral and 
damping coefficients are independent of frequency, to leading order in slender¬ 
ness. Any frequency dependence must come from higher approximations in e. 
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APPENDED I 

SOME GEOMETRICAL IDENTITIES 

Gauss’s theorem applied to a closed surface consisting of the immersed 
hull surface s, together with the waterplane, indicates that 

J" J"p n dS = J J J V P dx dy dz - j" j" p k dx dy 
interior 
of hull 

water 
pi a n e 

(Al.l) 

and 

JJprxndS = JJJr xVp dxdydz - Jl'pfyi - X[) dxdy , (A1.2) 

for any sufficiently regular scalar p(x,y, z), n being the outward unit normal 
and r the position vector x j + y[ + z k. The following identities are obtained from 
the above for some simple special choices of the function P( x, y, z >: 

X) 

j'Jp(x)ndS = Jdx p(x)[i(-S'(x)) +k(-B(x))] 

jjpfx) rxndS = Jdx p(x) ji^xB(x)- iljjzdyd: 

J Jp(x) zndS = Jdxp(x) i JJzdydzj + kS( 

JJp(x) zrxndS = Jdxpfx) j (-x S(x) - ¿ JJz^ dy dz) 

JJpfxíyndS = Jdx p(x) [j S(xï] 

JJp(x)y rxndS - Jdx pf x) i J Jz dy dz - ^ B3( x) 

(A1.3) 

(A1.4) 

(A1.5) 

(A1.6) 

(A1.7) 

+ k x S(x) + 
dx JJ y 2 dydzj (A1.8) 

For instance, to prove (A1.3) we note that 
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ÍSÍ 
i n i p r » o 

o f 
huí 1 

Vp(x) dxdydz dx p V x) 

length 
o f 

ship 

dy dz 

cross 
sect ion 

a t X 

i fdx p'(x) 

-i dx p( X) 

S( X) 

S'(x) , 

where S(x) is the area of the cross section at x and is for the last step assumed 
to vanish at both ends of the ship. On the other hand 

-k p( x ) dx dy 

w n t e r - 
pi a n e 

-k J dx p(x) • 

1 e n g t h 
o f 

ship 

/ dy 

width of 
waterpla n e 

a t x 

= -k J dx p(x) B(x) , 

where B(x) is the waterplane beam at station x. The remaining identities (A1.4) 
to (A1.8) may be proved similarly. 

The above identities are exact for a hull of arbitrary shape (providing it is 
symmetrical with respect to y ) and for an arbitrary function p(x). Their prin¬ 
cipal use, of course, is for evaluating the forces and moments on a slender ship, 
in which case p( x), zp(x), yp(x), will be identified as terms in a Taylor series 
for the pressure on the hull. In addition, if the ship is slender, some of the 
terms in (A1.3) to (A1.8) may be dropped to a consistent order of approximation 
in e. For instance, in (A1.4) the term 

is of order e3 whereas xB(x> is of order e; the former will be neglected when 
(A1.4) is used in obtaining (2.21) and (3.32). Equations (A1.7) and (A1.8) are used 
to obtain the sway, roll and yaw damping coefficients (2.14). 

It was not necessary to use explicit representations of the components of 
the unit normal n in the above, but for later reference we now derive these using 
a particular equation 

z = Z(x, y) 

describing the hull. Clearly then 

n = (iZx+ jZy-k) (l + ZxHZy*)-1/2 
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Also since in terras of this hull equation the magnitude of the element of surface 
area is 

(IS dx dy ^1+ Zx2 + Zy2J 

we have for the outward vector element of surface area 

n dS ( i Zv + j Z„ - k ) dx dy . — — x _ y - 

This may be written in a manner not dependent on the choice z Z(x,y) of hull 
equation, viz. 

ndS = dx i — (zdy) + j dz - k dy (A 1.9) 

where dy and dz zydy denote components of arc length along the cross sec¬ 
tion curve. The area of a vertical strip from the free surface to the cross sec¬ 
tion curve is -zdy so that the x component of ndS represents the decrease in the 
area of this strip in passing from station x to station x + dx. The integral iden¬ 
tities (A1.3) to (A 1.8) may also be proved directly using the expression (A1.9) 
for ndS, but appear to be more easily derivable from Gauss's theorem, as indi¬ 
cated above. 

APPENDIX II 

EVALUATION OF FLUX TRANSFER FUNCTIONS Q 
AT FINITE SPEED 

The hull boundary condition for ^(l), on an arbitrary body with unit normal 
n at a point where the hull displacement is 

’ [ i Ç,(t) + j v,2(t) + k i3(t)] + [i i4(t) + j t5(t) + k í6(t)] X r , (A2.1) 

can be written 

(A2.2) 

(Timman and Newman, 1962). The second term inside the square brackets 
gives the induced normal velocity due to non-uniformity of the steady flow 4^0) 
in which the body oscillates. On separating out the contributions due to each 
mode Çj(t), j = 1,... 6, we can write (A2.2) as 

(A2.3) 
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where the hull velocity transfer functions rjí ) are given by 

j Kl + J fi2 f 8 

(A2.4) 
i + I g5 + k g6 = £ * ( j g, + j gj + k g3) - n * V0( 0 } ■ 

No slenderness assumptions have been made up to this point and the boundary 
condition (A2.3) is still valid for an arbitrary rigid body making arbitrary small 
motions in an arbitrary steady field ¢^oy 

Now if the ship is slender n lies nearly in cross-sectional planes (or, more 
accurately, from (A1.9) we see that n, = 0(e) n2 0(e)n3) so that the g: may 
be consistently approximated in the form 

(A2.5) 

g5 = -Xg3 - Un3 

g6 = xgj + Un 

all with error a factor l +0 ( e log e) which is mainly due to the replacement of 
¿(0) by its slender body approximation Ux + d.¡n2D) + + f'H’ from (3.6) 

/O ri\. __ 4._!.. .(2D)_i..*!..., (0) .... and (3.7); of these terms only contributes to the g/. Notice ¿hat in the 
expression for g, we have used the slender body approximation to the boundary 
condition for <i>( 0namely 

(A2.6) 

Notice also that the surge and roll velocity transfer functions g3 and g4 are 
smaller by a factor 0(e) than the other gj, since a slender body is an inefficient 
exciter of motion in these modes. 

♦Recent investigation has shown that Eq. (A2.6) cannot legitimately be used to 
simplify g J. The resulting values for the fluxes Ql Q4 in these modes are un¬ 
changed, although the given derivation for Q, is no longer valid. 
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Now as a consequence of slenderness, j ,/½ as given by (A2.3) with the 
Rj of (A2.5), is the normal velocity across the cross-sectional curve in planes 
normal to the x axis. Hence, the net flux across this curve may be calculated 
in the form 

where 

Q(1)dx - Í ^(1) 
J 3n 

dS I h-5 
i i 

o» £ °.r.' 
i = i 

Qj fix = JgjdS 

(A2.7) 

is the flux transfer function for the jth mode, the integration proceeding around 
the equilibrium hull cross section curve beneath the plane z o, with dS obtained 
from (A1.9). Thus 

Q. -- t U 
Bx 

where S(x) - j zdy is the area of cross section below the equilibrium free 
surface z o. 

■ / 
flz ¢. ( 2D) 

( 0 ) 'VI 
dy $ ( 2D) 

< 0 I ., 

But since satisfies the 2D Laplace equation 

2D) 

J( 0 ) + ¢, 
( 2 D ) 

(0),. 
: 0 

-ia:| z] 
J 

dz < /, ( 2D> 

(«),, 
+ dy </j 

,(20) \ 
(0)yJ 

= + [^(0) - (A2.8) 

where [ ] zt0 indicates that the difference between the values of the enclosed 
quantities at the two points of intersection of the cross section with the free 
surface is to be taken. But ^|02I)) is by definition the 2D double body potential, 
i.e., ^oJ°> . o on z o, so that ’ 
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,( 2D ) 

), 0 , 

and thus, from (A2.8), q2 o. 

Similarly 

Q3 = iüJfylz=o 
^ 2D) 

0 ) 
. y. i = 0 

But now if the waterline of the ship is described by 

y = * I B( X ) , 

then [y] z=0 = B(x). Also it is clear that the boundary condition (A2.6) for 4>\20J) 
reduces to 

J 2D) 

^(0 )y 

at the free surface z = 0; i.e., 

\ UB'(x) 

¢ 
( 2D) 

C0)y 
j =0 

UB'(x) 

Thus 

Now 

Q3 = + i^B(x) - UB'(x) 

= 0 . 

provided the ship (and hence the steady flow 4>(0) ) has transverse symmetry, 
which is the case of interest. 

t 

Finally, by similar reasoning to that for q2, q3, we have that 
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(-iùJ + U ¿) xB( x) 

= 0 

These O ¡ = 1,... 6, are reproduced in Eq. (3.16) of the text. Note that the 
dominant flux transfer functions are those for heave and pitch, for which Q and 
Q are of the order of B(x), i.e., 0(0. The flux in surge is of order s (x), i.e., 
0( e2), while the flux in transverse modes of sway, roll and yaw vanishes. 

APPENDIX III 

EVALUATION OF THE KERNEL FUNCTION K(1) 
AT FINITE SPEED 

Now at any finite distance from the ship (i.e., such that y2 + z ^ large 
compared with the small lateral dimensions of the slender ship) ^effect of 
motions of the ship for vanishing slenderness is that of a hne distribution o ^ 
sources of strength Q(,, per unit length. These sources are wave sources, 
i.e., ordinary sources modified to satisfy the linearized free surface condition 

■M + l-icj + u ^ : 0 0,1 z = 0 
3z V dx / 

(A3.1) 

This potential may be obtained from well-known results on such wave sources 
(e.g., Wehausen and Laitone, 1961). One way of writing the source potential is 
in the form of a Fourier transform with respect to x, putting 

fe(1)(x,y,z,t) = f dk e lltx </>*, j(k; y, z, t) 
* - rr> 

Q(1)(x,t) : Í dk e"ikx Q*i)(k;t) . 
J - CD 

etc., where we have for the Fourier transformed potential ,,, 

i ) 1 77 n 
K0 ( Ik I vV* * 0 

j” ^ - C 

d\ e 
- i X y ♦ z vk^ + X ^ 

+ i (-ico - ik U)2 _ ,_ 
2 '■<* \/k2 + \2 g 7k2 + + (-i^-ikU")2 

(A3.2) 
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Here K0 is a modified Bessel function of the third kind and gives the source be¬ 
havior of <¿( i ), while the integral with respect to >, is the correction required 
to satisfy the free surface condition (A3.1). 

Now the interaction term in the potential near the ship is found by investi¬ 
gating the source potential near the line of sources, i.e., for y2 + z2 small, in 
which case 

( i ) log Jy :2 + log y C;k; 

( -ia>- ikU) f 
«/ - 00 

d>. 

\/k2 + \2 (g y'k2 + k1 + (-iw-ikU)2) 
, (A3.3) 

( log C = r = 0.577 ...). The first term of (A3.3) corresponds to <¿(( in (3.13), 
the second to f["'LL, and the third to f ■ ^). The last is the quantity of interest 
here, and the >. integral involved can be integrated explicitly to give 

(FS)* 

( 1 ) 
= - Q*n /3(k; coth /3(k) , (A3.4) 

where /3( k) is defined by 

cosli /3(k) = 
(-io)- ikU)2 

g|kl 
(A3.5) 

with |lm/3| < Tr. The last condition appears to fail for x real, since then cosh ß 
is real and negative. The correct interpretation is, however, obtained by taking 
— ici to have a small positive real part (corresponding to decaying transients) 
which we may then let tend to zero, giving 

^ i(Tr- a(k ) ) , 

/3( k) - < 

if cos a(k) 

V Í77- a(k) sgn (a) + kll) , if cosh a(k) 

(a;+ kU)2 

g|k| 

(o) + kU)2 

g|kl 
> 1 , 

0 < a(k) <-j , 

(A3.6) 

0 < a(k) < co. 

The inverse Fourier transform of (A3.4) may be taken by use of the convolution 
theorem, giving 

f[i') = d£ K(I)(x-í) Q( ,)(■?) . 

where 
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J rik e ' ‘k x /3( k) cotli /3( k) , 

this being the kernel function of Eq. (3.17). 

DISCUSSION 

H. Maruo 
National University of Yokohama 

Yokohama, Japan 

Dr. Newman and Dr. Tuck have achieved a rigorous and systematic devel¬ 
opment of the slender body theory in the problem of the motion of ships among 
waves. It must be one of the most important achievements in the theory of ship 
motion, because it enables a consistent formulation for the damping force and 
the added mass which cannot be realized by the thin ship theory. According to 
the results, the effect of the free surface by which the frequency dependence ap¬ 
pears, is not important unless the finite speed of advance exists. Therefore the 
results with finite forward velocity seem to be more important. The ultimate 
aim of the formulation is to enable the prediction of the hydrodynamic forces by 
means of the theory. In this respect, the present analysis is not yet conclusive. 
The reason is that the formulas for the forces and moments given by the Eqs. 
(3.36) and (3.37) with the kernel function (3.17) are not convenient for the nu¬ 
merical computation. An important thing is that the final result should be given 
by a convergent form. However, the formulas given here involve divergent 
integrals. In order to obtain a formula which is suitable to the computation, 
another expression is needed. For this purpose, an expression for Green's 
function which was obtained by Hanaoka some ten years ago is recommended. It 
takes the following form: 

G(x, y, z; x', y 1 , z' ) - 

x {cos ( nz + £) cos (nz ' + e) - cos nz cos nz '} dn 

(Cont.) 
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t,xP [( z + z')(ni - ‘:'n >' x - i ly - y' I Kj - im(x x' )] im - œ0)2 ~ 
->o Ki 

2i r... i,. •’Hin 'o )2 x + i |y - y ' I K , - im ( x x ' )] ( m . 0 ): 
dm 

2i 
x r • f exp [( z + z ' )(m + .0)2 x i jy - y ' K2 t im ( x - z')] (m + : 

dm 

where 

v/ f x ^ x ' )2 + ( y - y ' )2 + ( z - z ' )2 

yõí - x ' )2 + ( y - y' )2 + (z t z ’ )2 

p, U ‘ o/V 

sfm2 - (m + <„ )4 x2 

tan t - (m -au)2 xn 

I (x + 2an t 4xüJo) 

= y (x - 2a'0 ± sf-K1 - 4xâ~ j . 

On applying the slender body approximation, the asymptotic expression for 
Green's function along the line y z 0 becomes 

G(x,y,z;x',y',z') % — + —— — 4— 
r, r 2 V dx 

/» QT) 

Í e' 
m( x - x ' ) »(in) 

dm 

- 2i dx 

Í- m J /• m 

m +i - m , ni . 

> i m( x - x ' ) _^0>: 
dm 

m ym 2x 2 - ( m + at. ) 4 

(Cont.) 
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j-'mi r“ 

J + J + - CD -7 - m . . ^ m 

im(x-x') fmfu0): 
dm 

)v/m2 x^" - (m + c<0)4 

where 

<l>( m ) 
(m+f.:0)2 J (m+a,0): 

V'Ç2 m2 - ( m + f4j0 ) 

COS 

4 X 1 m ' 
when x|m| > (m+a0)j 

(m+ -0)2 ( m t a 0 ) 2 
- cosh - 

vdm + '-o ) 4 - V 2 m 2 

when X !m¡ < (m t a.) ‘ 

Making use of the above, the hydrodynamic forces can be expressed by con¬ 
vergent forms. The component of the force in heave for instance, is given by 
the following form: 

„(FS) pU2 

'32 ’ ¿V r |P,r ¢(m) (.r.°) fini 

fr *r 3] |p ; 2 i"1 + '“0 ) 4 flm 

! \Jm2 X2 - (m + co0)‘ 

where 

r-r-n^ 2 ( m + cu. )4 dm 

i2 y/ ( m + w0 )4 - m 2 X 5 

1/ 2 

I 2 

fiPi x ) imx . 
“TbT e dx • 

This formula resembles MichelTs integral for the wave resistance in uniform 
motion. Hanaoka has given a similar formula for the hydrodynamic forces and 
moments of an oscillating thin ship. The discussor wishes to propose that the 
above formula will be called Hanaoka’s integral. There is another type of the 
expression, which is given by repeated integrals of a kernel function and has 
some resemblance to Vosser’s formula for the wave resistance of a slender 
ship. 
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C<fS> pU2 B'(L/2 ) B'(-L/2) K(L) + B’(L/2) 
33 r! J - L/ 2 

B (x) K( x-L/2)dx 

*1/ 2 

■ I- / 2 

- B'(-L/2) B (X) K(X + L/2)dx 

B ( X ) B ( X ) K( X - X ' ) dx dx ' 

where 

K(x) dm 

+ 
( m + a!0 ) 4 ( cos mx - 1 ) 

m4 t/m2 X2 - (m + f<0 ) 4 

dm 

i Í rml fm* rm| (m + a:Q ) 4 ( cos mx - n ^ 

m2 j J m4 y ( m + üjjj ) 4 - m2 X 2 

Since the above expression involves divergent integrals, the finite part of the 
integral should be taken. 

* * * 

COMMENTS ON SLENDER BODY THEORY 

E. V. Laitone 
Professor and Chairman 
University of California 

Berkeley, California 

It should be noted that the singularities noted in the integrals for the source 
distribution can be always evaluated by using Hadamard's concept of the "Finite 
Part" of the integral. This is a generalization of Cauchy's "Principal Value," 
and can usually (but not always) be most simply determined by "Integration by 
Parts." 
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Also the question arises as to how deep must the thin ship be in order to 
avoid the three-dimensional effects that correspond to the differences (k2 - k,) 
in the virtual mass coefficients for a body of revolution (see Lamb: "Hydro¬ 
dynamics," p. 155), or to avoid the fineness ratio effects corresponding to the 
complete elliptic integral (F.) determination of the virtual mass of a thin plate 
(see Lamb, Eq. (16), p. 154). 

* * 

REPLY TO DISCUSSION 

J. N. Newman and E. O. Tuck 
David Taylor ft jdel Basin 

Washington, D.C. 

As Professor Maruo correctly points out, the kernel function K(x) of Eq. 
(3.37) (which is proportional to the 4th derivative of his function KCx)) has a 
high order singularity at x 0, so that if Eqs. (3.36) were to be used as they 
stand to calculate the C¡jS), some juggling (such as integration by parts, as 
suggested by Professor Laitone) would be needed in order to get a finite answer. 
However, in presenting the results in the form (3.36), we did not imply a rec¬ 
ommendation that this particular form of the integrals was suitable for direct 
computation. Just as Michell's integral can be manipulated into many different | » 
forms, so also can the integrals for the transfer functions C(JS), and Professor 
Maruo has shown an alternative form due to Hanoaka which is clearly better for 
numerical computation than that given in (3.36), and which avoids the difficulty 
with the singularity. In fact our initial attempts at numerical computation have 
used precisely this form, which can be derived directly from Appendix III by use 
of the Fourier transform convolution theorem. The form in which we gave the 
results in the paper was chosen for pedagogical reasons, since it illustrates 
most clearly the simplicity of the formulas in their dependence on B(x) and S(x). 

The three-dimensional effects mentioned by Professor Laitone are of 
smaller order of magnitude according to slender body theory than the contribu¬ 
tions we calculate. As far as possible we have indicated by order of magnitude 
statements the size of the error in each equation, but there is probably no way 
other than comparison with experiment to test whether or not the ship is suffi¬ 
ciently slender for all the neglected terms (not only those mentioned by Proies- ; 
sor Laitone) to be small. 
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SLENDER BODY THEORY FOR AN 

OSCILLATING SHIP AT FORWARD SPEED 

W. P. A. Joosen 
Netherlands Ship Model Basin 

Wageningen, Nellierlands 

ABSTRACT 

A linearized theory is developed for an oscillating slender body which 
is moving along a straight line on the free surface of an ideal fluid. 
Green's function is used to formulate the velocity potential. Some as¬ 
sumptions are made about the order of magnitude of the Froude number 
and the frequency with respect to the slenderness parameter. 

The first order term of the potential is derived by asymptotic expansion. 

INTRODUCTION 

During the past few 3/ears several papers have been published on the subject 
of slendei body theory for surface ships. In the slender body theory the beam- 
length ratio t is supposed to be small with respect to unity and of the same 
order as the draft-length ratio. This is in contrast with the thin ship theory, 
where only the beam-length ratio is assumed to be small. The principal task of 
the theory is to provide the expansion of the velocity potential in terms of the 
slenderness parameter e. 

Ursell [1] has solved the problem of an oscillating slender body of revolu¬ 
tion at zero forward speed for the case of small and moderate frequency param¬ 
eter as well as for the case of large frequency. He derived two terms in the 
series expansion. 

Newman [2) followed another approach, suggested by Vossers [3] starting 
from Green s theorem. He treated the problem of an oscillating slender body of 
arbitrary shape at small or moderate frequency in the presence of incoming 
waves. He derived the first order terms of the velocity potential and of the 
forces and moments. 

A difficulty arises in the equation of motion for pitch and heave, because it 
appears that the force due to hydrostatic pressure and the Froude-Krylov force 
is of lower order than the hydrodynamic forces (added mass and damping). A 
similar result was obtained already by Peters and Stoker [4] in the thin ship 
theory. 
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Simultaneously Joosen [5] derived the solution of the same problem without 
waves, also using Green's function for two conditions. More precisely for the 
case where the frequency parameter is of order unity and for the case where 
the frequency parameter is of order e ïn the first case the final formula for 
the velocity potential consists of two terms, one term corresponding to the prob¬ 
lem of a pulsating double body in an infinite fluid and another term representing 
the longitudinal interference effects. 

In the second case the result leads to the conclusion that the flow in each 
cross section is independent of the flow at other sections. 

It is therefore a rigorous justification for the use of the two-dimensional 
strip theory such as is applied by Grim [6 ] and Tasai [7 ], who calculated the 
added mass and damping coefficient for a family of cross section curves. The 
agreement between theoretical values and experimental data is very good, of 
course, especially for the higher frequencies. 

The problem of a slender body moving at a steady speed on the water sur¬ 
face has also drawn attention. Vossers was the first who attacked the problem 
starting from the three-dimensional formulation with Green's theorem. Using 
the method of inner and outer expansions, Tuck [8] solved the problem for a 
body of revolution. Starting from the formulation with Green's function Joosen 
[5] obtained the solution for a body of arbitrary shape under the condition of 
straight vertical lines at bow and stern. It appears that the influence of the end 
point terms is dominant and that the series expansion is not uniformly conver¬ 
gent for arbitrary shape of the bow and stern line. From the numerical value of 
the wave resistance it can be concluded that the results are not in closer agree¬ 
ment with the experiments than the Michell theory. The reason for this seems 
to be the behaviour near the end points and the fact that the Froude number is 
in most practical examples of the same order of magnitude as the slenderness 
parameter. The more satisfactory formulae for this case will be obtained as a 
by-product of the present work. The result contains only integrals along the 
bow and stern line. 

In the following sections the full problem of an oscillating slender body at 
forward speed will be considered. In the usual strip theory forward speed ef¬ 
fects and three-dimensional effects are not present. In the past several authors 
have considered the forward speed effect in damping and cross-coupling co¬ 
efficients; see Grim [6j, Korvin-Kroukovsky [9]. Although this work seems to 
be in good agreement with experimental data (Vassilopoulos [10]), a consistent 
theory, based on a rigorous asymptotic expansion of the three-dimensional for¬ 
mulae is still lacking. 

Recent experimental work of Gerritsma [ll] has shown the relatively small 
effect of forward speed on the total value of damping and added mass coefficient 
for heave and pitch, but an important influence on the distribution of the damp¬ 
ing over the ship length. In order to verify these results an asymptotic theory 
is set up in this paper with the assumptions that the Froude number is of order 
ei/2 and the frequency parameter of order e '. It is expected that the result 
consists of that of the two-dimensional strip theory extended with some terms 
representing the three-dimensional and forward speed effects. 
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The case that both parameters are of order unity is also treated here. Al¬ 
though the same difficulties in the equations of motion can be expected as in the 
corresponding problem with Froude number equal to zero it is nevertheless 
worthwhile to carry out the calculations in order to get some insight in the range 
of validity of the theory. 

FORMULATION OF THE PROBLEM 

In the coordinate system used in the following the x,, y, plane coincides 
with the free surface. The origin moves with the ship speed v in the same di 
rection as the ship and the z, axis is taken positive in upward direction. 

The hull surface in equilibrium position is assumed to be of the form 

(2.1) Vi = f tfXj, z,) sgn y, . 

As an additional condition the bow and the stern have the shape of sharp wedges. 
Between B1 and S1 the bottom of the ship is flat. 

The length of the ship is L, the beam B and the draft T. A cross section 
contour is denoted by C(x,). The bow contour and the stern contour are denoted 
respectively by Pb and rs. Only heaving and pitching motions of the ship are 
considered, which are harmonic in time with angular speed u>. The same pro¬ 
cedure can be followed for swaying and yawing motions. 

In the inviscid fluid a velocity potential exists defined by 

"IhXj.ypZpt) = -Vx, + «¿(Xj.ypZj.t) , (2.2) 

¢( x,, y,, z,, t ) must satisfy the Laplace equation 

= 0 , (2.3) 

the linearized free surface condition for z. = 0 

- 2V</>tx^ + 0 (2.4) 

and the boundary condition on the hull 
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VHX + ¢, H, ^yHy, + 4> H (2.5) 

where H( x, y, z. t) o is the part of the ship under the water surface at the time 
t. 

The following dimensionless quantities are introduced: 

V L a L L , 
x. 2 ^ ’ y> " £ -2 ' zi = 7 ¢. ■ 

sf-ny, : * i ~ , iL - 

The displacements and rotations of the ship 
consequently the problem can be linearized. 

(2.6) 

c<'2L £ __ _v 
2r ’ ’B 2g 1 " _r ' 

are supposed to be small and 

atj, e 
- i 0)t L "v * I OJ t 

zo - '• 7 0 f> 

H can be written in dimensionless form as 

(2.7) 

HCÍ,í),C,t) = ein- f(f, O) - <7(t0 - 0o-f) f , e' 'vt ♦ 0(ecz) . (2.8) 

Because of the linearity of the problem it is possible to split up /( x,, y,, z., t ) 
in a time-dependent term and a term independent of t: 

‘(x,, y,, z ,, t ) = rL 
2ûj 1 ( '5 J. T, I , ) + t : rL , 

2<j ?2^I' T'l’ f'l> e’ (2.9) 

After substitution of (2.8) and (2.9) into (2.3)-(2.5) and omitting higher order 
terms the conditions for ¢, and 'p2 are obtained: 

A*, = 0 , A<p2 0 (2.10) 

for r, o : 

e/5o + 'Pi (, = 0 ■ -^Lrh + + 2U>fíi2í, + 'Pj/, ; (2-11) 

for T), = f( 

l + ff + ¢, (, = >f. 

yi 
^p, 

1 + f,1 : + 

(2.12) 
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Of primary interest is the leading term in the series expansion with respect to 
« of ¢, and v2. Before starting this derivation it is necessary to introduce 
some statements as to the order of magnitude of a, ß0 and <fL with respect to 
< . In this paper two cases will be considered. 

I. ■ 2 ■ ß0 - €/3, 

with /?, on) and om; 

II. are, ß0 - 0(1), 4 : 0(1). 

(2.13) 

(2.14) 

The first case is related to the problem of low Froude number and high fre¬ 
quencies and one may expect that it corresponds with a ship moving in head 
waves with small wave length. 

The second case deals with the problem of high Froude number and low or 
moderate frequencies and it seems to be a good approximation for a ship moving 
in following waves with moderate wave length. 

As far as the magnitude of the frequency parameter is concerned it is of 
course evident that the ratio wave length to ship length is of much importance. 

The potential can be written in the form 

4 - d.f F(i, ï) Gi(çl,vvll; i,r,,()cK 
J- 1 Je( if ) 

where G, is Green's function for the free surface condition and F(£, O is the 
source distribution to be determined from the boundary condition (2.12). 

A further notation is introduced: 

rp. = <p0 + ,p. (2.15) 

with 

P0 = í f F(:f, 
•' l Jc l f ) 

0 

-Í)2 + e2(T), - f)J + £2(C,-i)7 %/(£, -£)2+ €2(^,- f)2 + t 2( 4+ O2 . 
di (2.16) 

and 

q = J di J 
1 •'c ( f ) 

F(i.C) (2.17) 
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The formula for g¡ can be found, e.g., in [4|: 

T),, C,; <f,i?, C) = 

2 f >■ f Ie cos {£(?},- f )q sin 0] dq 

r-i 

j '•»i 

/?0q2 cos2+ 2yq cos ti + ¿fL- q 

E(^i + í)q + i(íi-í)qcos 6 
q e cos {e( 77, - f )q sin ß) dq 

/^0q2 cos20 + 2yq cos 0 + - q 

Tf/ 2 

di 
0 M , 

f (r.,+ f ) q ■ i ( ^ - f ) q co s f? 
q 0_cos f )q sin 0}dq ^ 

/30q2 cos20 - 2yq cos 0 + çL - q 

with 

cos 0 
y 4 , ’ 

= Í,; ^,77. 0]i _o (2.19) 

If the roots in the denominators are denoted by q,, q2, q3, q4, the contours M. 
and m2 are defined by 

i—Ü—i^M»' I—V- 

q, q, 

q2 q2 

1 - 2y COS 0 + i yj^y COS Tj - i 

2/30 cos20 

1 - 2y cos 0 - i yjAy cos 0 - 1 

2/3. cos20 

>■ co $ 6 > 
4y 

1 + 2y cos 6 - J1 + 4y y cos 0 

2/3. cos 20 

1 - 2y cos 9 - \J ï - 4y cos 6 

2/3. cos20 

1 - 27 cos 0 + y/1 - 4y corig 

>■ cos 6 < 

2ßQ cos 20 

4 7 

1 + 2y cos 6 + yl + 4ycos0 

2/30 cos20 
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The first order term in p0 is well known, see [5]: 

'Po 1 n y ( rj, - f ) 2 + ( ( , - r, ) 2 - In 7( ''V f) 2 + ( 0 2 F(i,,0d4. (2.20) 

In the next sections the corresponding term in <Pj and <p2 will be derived 
for the two cases (2.13) and (2.14). 

THE CASE OF LOW FROUDE NUMBER AND HIGH FREQUENCY 

First the potential y2 for this case will be considered. From that result 
the final form for p, can easily be obtained. The Greens' function g2 is trans¬ 
formed into a slightly different form by separating the poles and introducing a 
new variable. 

G2(,:rr/r TJ, l) 

-tL 
2i_ C * de (' (_1 

ve l \/4y cos i - 1 lq- 77£ J0 74 / co s 

Í 
_2_ 
7re 

,77/ 2 

q- q, q- q 

qjCtj+Oq + f q2(f,-f)qcos e 
e 2 1 e cos 

\ 

1 \ q(f:,’0 cos/e . 
qe e 1 cos {q(77j“f) sinôjdq 

{qjf7)!” f)f sinö} 
q3 d& 

yjl - Ay cos d 

q4( (.♦Oq -Fq4(i)"f)qcos 0 
e cos {q4(oi f)q sin 

q^di_ 

\/1 + 4 ) cos 6 

q dq f q^t^Oq+7-q|(f1-‘f)q cosf> f iq1(ri|-f)q sinö -iq^Ti^fjq singl dj df" 

q ^ ^ \fl-Aycos 9 
y 

■'j/ 2 
qdn r qjCt^Oq-Fqjti,-^)qcosö 
ofj {e 

‘q3(7]|-f)q sini 
+ e 

-iq3(T,i-f)q si in q3d(? 

71 +4> cos Ö 

where L, and L2 are defined by 
(3.1) 

1 * 

By one time partial integration with respect to <f after changing the order of 
integration the contribution of the first three integrals to the potential cp2 be¬ 
comes, if e tends to zero: 

Í - í iFCÍ.Odí Í 
• r, 

q( (, + () 7q(f ,-0 cos e 

de 

cos 0 \[Ãy cos 0 ■ 

cos {q(/), - f) sin ö} dq 

i J0 \q-q, q-q2 / 

(3.2) (Cont.) 
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<iq 
q - 1 

2(^uq 4^.-^ coS, cos {q2(î)i„f)q sin,} dö 
cos 6 s/l - 4ycos õ 

rt 2 

X 
q4( 5, + Oq 4q4(i 

e 
- <f )q cos 9 

COS {q4(^i-f)q sinf} 
_d0_ 
cos t) y 1 - 4y cos i" 

(3.2) 

In this derivation the bow region bb1 and the stern region ss are assumed to 
be of order e and therefore f, - £/« is of order unity if £, is in the neighbour¬ 
hood of bow or stern. 

If these regions are of order unity the expression (3.2) becomes zero in the 
limiting case. This fact follows from the application of the method of stationary 
phase, which will be discussed somewhat later in this section. 

From these results it must be concluded that the series expansion is not 
uniformly convergent in the neighbourhood of lij = 1. In the following it is 
assumed that the ship is sharply pointed. 

With this restriction the final results for <p2 is only produced by the last 
two terms of (3.1). These integrals are of the form: 

0 = í dif Í F(£. OdÇ Í ^-ry 
J-1 c(f) L, 

where 

D($,Ö) = q qu {(•?!-tf) cos 0 i £(T7, - f) sin 0} . (3.6) 

For this integral the method of stationary phase can be applied in the ç,e 
plane, e 1 being the large parameter. The general theory of the method of sta¬ 
tionary phase applied on multiple integrals can be found, e.g., in [12]. 

Here only the first order term in e will be derived using the above men¬ 
tioned theory for the case of a double integral with the point of stationary phase 
inside the integration domain. 

n 

1 
T D( Í ,f>) 

B(q, 0) e áO (3.5) 

Let this point be denoted by (i0. 0O); then Df(,fo,0o) = 0, Dö(<fo,0o) = 0 

In the neighbourhood of ( i0. 0O ), D(<.0) can be written as 

174 



Slender Body Theory for an Oscillating Ship 

D( .'o) f 2 ‘ío ■ "o ^ + 2 ^ )2 Dse^o,i?o) 

+ (?" Co^''" öo> Df()( .;0. <'0 ) + ... • 

After a rotation of coordinates this becomes 

D(‘i.ö) -- D(í0,h0) f (.f-í0)2 P( Ç0.00 ) - (----,,)2 Q(£0,ö0) + 

with 

P( f0,('0) = í{Díí 4 D,;y + V(Dif - D„t,)2 + 4D2ö 

and 

Q(ío-^o) Dec + D ee - Dû0)' + 4D (3.7) 

The first order term in (3.5) originates from the neighbourhood of the sta¬ 
tionary point and therefore if (£0,d0) is an interior point, this term becomes: 

3 = I F^.wtl fVf«'-'.»**, Í Kf0,«dcf 
Jet £ - \ J} 

q- 1 I 
I F(í0,Od( Í 

^(i0) •’l, 

B(q,^0) ef D(?0't,o) qdq 

(q- 1) v/PQ 
, if P > 0. Q > 0 (3.8) 

Inserting for D(>f,0) the expression (3.6) the result becomes 

cos |90 = 0(e), = 0(e), Die = q<fB + 0(e2), 

io = + 0(e), Doe = 0(e), D(i0,^) = i q,fB 6(7,,- f) . 

With (3.7), (3.8) and (3.9), for (3.5) the result 

(3.9) 

r í F(.f,,OdÇ f B(q,0o)e 
B •'l 

iMerfJfgq dq 
q - 1 (3.10) 

is obtained. 

From (3.1) and (3.10) the first order term of <p2 follows easily: 
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f 
!St 

= 4 r 
r ! F 

F(.f,,()d( f e 
'C(f,) JL, 

ía( (, + Oq f, , rN , dg 
c°s {^B^i-Oq}■ (3.11) 

By changing the integration contour (3.11) is transformed into: 

• 2( i i ’ ’V 1 1 
> =4 J 

( f , ) 
F(ç,,()d( -Inv/(î7,-f)2 + ((,+ ()2 + ni 

. fí 

J" e 8 In \/(t), -f): + (Ç, + Ç+M2 d\ . (3.12) 

Following the same procedure as discussed before it appears that the first 
three integrals of (3.1) with fn = 0 produce no first order contribution to the 
value of ¢, except for the case that bow and stern region are of order e. The 
last two terms of (3.1) become with fB = 0 

- Í)2 + £2(t), - f)2 + í2((,+ ()2 

After expansion with respect to e and with the condition of sharpness at the end¬ 
points for p, is obtained: 

^(¢,.^,,(,) = “4 J F(^,,() In \/(Vi~ f)2 + ((, + Í)2 d( 
C ( ^ , ) 

.1 

4J sgn (<f, - ¿f) In 2k, - í| df J F^i, O d( (3.13) 
C( Í ) 

The function p0 + tp, can be considered as the potential associated with the 
translatory motion of a body in an unbounded medium. 

The function F(i, () can be determined by the boundary condition (2.12). 

A discussion of the results of this section with a view to experimental re¬ 
sults obtained elsewhere, will be postponed till section 6. 

THE CASE OF HIGH FROUDE NUMBER AND 
MODERATE FREQUENCY 

The velocity potential <p, for this case is already known (see e.g., [5], [8j). 

#11 
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¢, = -2^ FCíp 0 ' in -/(^1 - f)J + (Ç, - Í)2 + in /( r;, - f) 2 + + 0 ' 
c ( í, ) 

di 

2 J df J F(í, Odf, J sgn(i, - ¿f) In 2k, - 

■ 1 c( f) 

+ 4nn ( ~V~') - -J [2 - sgnfij-i)] Y0 ' 
2 "o \ ß0 j 2 

(4.1) 

The Greens function (2.18) associated with the potential <p2 is written in the 
form: 

G r 

v/fi, - i)2 + e2(^, - f)2 + e2( + O2 

+ g3 + g4 , (4.2) 

where 

-2 fer f“ J de\ 0 0 

An(q,(9) e 
¢( £,)q*>qii, -O cos e 

cos {e(7],- f)q sin ö) dq 

ß0q2 cos26 + 2yq cos Ö + iL - q 

-/ 0 M , 
y i 

_ 6 ( £ . + £ )q+i q( f .-f ) cos 0 f „1 
An(q, Ö) e cos {ef-r),-f )q sin 61} dq 

/30q2 cos2^ + 2yq cos Ö + iL - q 

r2 r 

I d<,i. 
Bn(q, 0) e 

f(£, + £)q-iq(f,-O cos e 
cos {¢( ^7, - f )q sin ¢) dq ^ ^ 

0 /30q2 cos2ö - 2yq cos Ö + iL - q 

with Ã3 = b3 = iL 

A4 = /30q2 cos2Ö + 2yq cos 0 , B4 = ß0q2 cos2e - 2>'q cos 0 . (4.4) 

The term containing g4 in cp2 is integrated with respect to i. The first 
order term of <p2 can easily be obtained by putting £ = o in the formulae with Gm 
because all the integrals remain convergent. It is assumed that 

r ia,odi = r 

( 1 ) •*<: ( - 1 ) 
F(-l,i)di = 0 . 

The result becomes: 
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- 4 T FCipO ln Vcr,,- f)2 + (Ç, + Ç)2 dC 
•V' i P \ c ( i, ) 

4 Í sgn(cf1-$') ln 2k',-^|dç f I 

i c(i) 

F(i, OdC 

where 

Í df f F(í,OG3drj- Í d^ Í Ff(^,OG4di, 
1 c(f ) J-1 Jc ff ) 

(4.5) 

„ö m . . ... -iq(f-i, ) cos ö 
-2 ry . r e ci<i 

n -y; i'-/ 0 /30q2 cos2f? + 2> q cos ^ + 

TT/ 2 

Í “"J ^ a »'»i 

. . ü. -iq(f-i,> cos e 
Ar(q,ff)c 1 dq 

^ /30q2 cos2# + 2>q cos 0 + çL~ q 

with A3 b3 ^ -fL 

z2 
77 

TT/ ¿ 

Í doi •'n •'w 

d / rjx ) cos 0 
Bn(q.#)e dq 

/30q2 cos2# - 2yq cos # + <fL - q 

A, -i( 0q cos # + 2>) , B. = i(/50q cos # - 2y) 

(4.6) 

(4.7) 

By changing the integration contour and introducing some new variables (4.6) 
can be transformed into a formula that is more convenient for computation: 

r - r(1> 4. r(2> . r(3) 
Gn - Gn + Gn + Gn 

where 

Gn \^2 J Rn'P)|i\Æ7~+ m22 + ml) 

i sgn m2 ,2 + m22 - 
1/ 2 

- PIí! -íI dp 

v/m,2 + m22 

For ^ < o: 

„( 2) d7 f1 2T-(f-i.)T 
Sih I Hn(r) e ^ - 

o /(hr + 2y)4 - 4h2 r2 
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For i - .f. > o : 

,( 2 > 
Sic f 1 2‘ J Cn(T)e p0 dr 

s/( c T - 2))4 - 4c2 T2 

(T) e 
f” 

- Ln( 
t 

- Sid J Dn(t) e 
1 

_dr_ 

J(lr + 2-/)4 - 4- 2 t: 

dr 

^/(dT - 2/)4 - 4dJ72 

with 

(fL - /30 P2)2 - (4y2 - D P2 . m2 = - 4yp(iL - /30p2) sgn (Ç-^,) 

H3 c3 = l3 = d3 = fL 

/¾ P Sgn (Í- ^j) - 2yi , H4 = - i(-| T + , 

) . C4 = i (-§ t - 2y) , D4 = i (¾ r - 2>) , ñ t + 2y 

c - 1 + 2y - \fl + 4> , d = 1+2^ + \/l + 4y . 

For ) < 1/4: 

h = 1 - 2y - sj\ - 4y , 

-t = 1 - 2 y + n/1 - 4 y 

,(3) 
and 

For ) > 14: 

and 

-—( l-2r)(i-i,) ,.1 
„13) 
G„ = - 4 e 

On"' S 0 

h = -t = 2y 

f.-f 

^ r1 J Nni 

{V? (5 T + 1) ( 1 - T ) + i 8 t sgnCf-f,)} 

( t) e 

dr 

\J( Sr + 2)( Sr + 1)(1- t)t 
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with 

Na = ÍL ■ N4 = -VS(Sr+l)(l-r) SBníí-^j) - ?(St + 27+1) , » = 47-1 (4.9) 

For = 0 these formulae become: 

G3 = 0 , G,, = 77 Hn ) ~ {2 - siínC^ - f)} Y0 ’ 
ßo ß0 

which is in agreement with (4.1). 

For Æ0 = o the result is: 

= 0 , Gj = v^i. + 2i JqC'ÍlI^i“ 

This has been obtained already in the papers [1], [2], [5]. 

THE ADDED MASS AND DAMPING COEFFICIENT 

The varying part of the pressure exerted by the water on the body equals: 

P(x,y, z, t) j$2(f. V' l) i j- CP2Í(Í. V’ l) 
- i Olt 

e (5.1) 

Considering only the heaving motion the vertical force acting on the ship be 
comes: 

F0 = -y rL3 pie'l t J di J f (Í. O 
- 1 C(i) 

y 
PjC'f.T), o - i — ■Í2í(‘Í.T7. i) 

4 3 
. d^ 

(5.2) 

where 

8m2 

Tl3 ——7 lm Í í fi (¢2-3 ~ (5.3) 
kT^L^0 - 1 Jc(í> ' L 

= 7"7^.y" Re Í Í fC (^2-'Pzf') dr- (5.4) pi'2 veL i0 J, Jc(í) \ ÍL ) 

are the coefficients for added mass and damping. 

For the case I these coefficients are already calculated for a family of 
cross section curves, see [6], [7]. 
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In order to obtain the three dimensional and forward speed effects the 
terms originating from (3.2) must be added to (3.12). A comparison of these 
results with Gerritsma's experimental data show a qualitative agreement. The 
influence of forward speed, as expressed in (3.2), involves F(£, t). This func¬ 
tion assumes positive values at the bow, negative values at the stern. The 
deviations from the midship behaviour in Gerritsma's results show the same 
character. 

For the case II the coefficients can be obtained by computation of the re¬ 
sults of section 4. If the forward speed is zero Mz and Nz become: 

F(£,o in 7(7,, - f)j + a, + o2 
<#) + 

~ ^ j* j" t>f(£) sgn (£, - <f) In 2 ¡¿f, ~ ¿f|d£ 

e3¿f, f1 i-1 
+ “Ï6" I I {H0(£LkV«l) + d£ (5.5) 

-1 -1 

e3£L rl rl 
Nz - b(^) . (5.6) 

-1 1 

Here b( ) is the beam at the point <?. 

The damping coefficient and the part of the added mass that depends on the 
frequency is calculated and represented in the graph below. For b( x) is taken 

b(x) = 2 cos -j x and e = 0.2 • 

2£, -V Í d^i i Í 
-0 0(^,) c 
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Up till .f ^ 2.5 the curves have a character that can be expected for three- 
dimensional bodies. It can be compared, e.g., with the curves for a sphere cal¬ 
culated by Havelock [13j. Experimental data are only available for frequency 
parameters higher than 2.5, but there obviously the theory is not valid anymore. 

CONCLUSIONS 

It appears to be very useful, in dealing with the problem of a slender ship 
performing oscillatory motions at different forward speeds, to express the 
Froude number and the frequency parameter in terms of the slenderness pa¬ 
rameter e. For practical purposes the range of low Froude number and high 
frequency parameter is most interesting. 

In this paper the first order term of the velocity potential is derived for the 
case where the Froude number is of order e1 2 and the frequency parameter is 
of order e 1. 

The theory presented here can easily be extended such as to determine the 
motion of a slender body in waves. Then a consistent pair of equations of mo¬ 
tion for heave and pitch will follow. 

The analysis of section 4 is resulting in the two dimensional strip theory if 
the slope of the bow- and stern-line is of order unity or smaller and the only 
problem then is to solve an integral equation for each cross section separately. 
If the slope is larger three dimensional and forward speed effects are present 
as well. The resulting integral equation can be solved by an iteration process, 
but an alternative method is to start the analysis from Greens' theorem instead 
of a source distribution on the hull. 

Apart from the problem of the oscillatory motion of the ship an interesting 
result is obtained for the steady advancing slender ship. 

For the case where the Froude number is of order e17 2 the only first order 
contribution to the velocity potential and the wave resistance originates from 
the source distribution on bow- and stern-line. From this fact it becomes clear 
that it must be possible to affect the wave resistance by adding another singu¬ 
larity in the bow and stern region. 

The strength of the singularity might be determined from a condition of 
minimum wave resistance. By adding a dipole at the bow the concept of a 
bulbous bow could be treated in the frame work of slender body theory.* 

:':See comments by Laicone on paper by Newman and Tuck. 
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APPLYING RESULTS OF 

SEAKEEPING RESEARCH 

Edward V. Lewis 
Webb Institute of Naval Architecture 
Glen Cove, Long island, New York 

ABSTRACT 

Although developments in the theory of seakeeping are still continuing 
rapidly, this paper points out that presently available research results 
can be effectively applied to practical problems of ship design. The 
most useful tool is the method of superposition whereby almost any 
ship response to irregular short-crested seas may be predicted--pro- 
vided the responses to regular waves are known. Pending the develop¬ 
ment of completely satisfactory methods of calculating these responses 
theoretically at all headings to waves, results of systematic model tests 
can be used. 

A calculation procedure to be followed in making such predictions of 
ship behavior in irregular waves is outlined, and typical results of cal¬ 
culations are presented. These include trends of wave bending m oments 
with ship size, speed, and heading. In the same manner, trends if rel¬ 
ative bow motion are presented under the influence of similar factors. 

Some general conclusions are drawn regarding the effects of ship size, 
proportions, speed, and heading on seagoing performance of ships. 
Needs for further oceanographic data, systematic model tests in waves, 
and advances in seakeeping theory are outlined. Future possibilities in 
the use of such research in developing improved naval ships are ex¬ 
plored, with particular emphasis on the optimization of ship designs in 
relation to seagoing performance. 

INTRODUCTION 

Professor B. V. Korvin-Kroukovsky in the introduction to his classic paper 
on the theory of ship motions in regular waves [1] called attention to the need at 
times to apply "vigor" as well as "rigor." The emphasis of this symposium has 
been rightly placed on rigor — on refining and improving our theoretical tools 
for calculating the motions of ships in waves. This paper, along with certain 
other presentations, meanwhile, attempts to demonstrate that the application of 
vigor - even with our presently available tools - can yield valuable conclusions 
for the guidance of ship designers. 
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The bâtie theoretical tool available to us is the principle of superposition 
first applied by St. Denis and Pierson [2] to the study of ship responses to ir¬ 
regular seas. The essential empirical data that make it workable are system¬ 
atic model tests, such as those of Vossers [3,4], and observational data on ocean 
wave spectra, such as those of Pierson and Moskowitz [5]. However, for prac¬ 
tical application of even the best theory it is necessary to have a suitable calcu¬ 
lation procedure. This may or may not be programed for electronic computer 
computation. Furthermore, for practical people to accept the results of such 
calculations it is necessary that they be able to visualize the factors involved 
and understand the trends obtained. It is the purpose of this paper to describe a 
convenient procedure whereby the performance of a ship in realistic irregular 
seas can be predicted and then to show the sort of trends and conclusions that 
can be obtained by the method. 

The work discussed here has been carried out largely in connection with 
research sponsored by the American Bureau of Shipping and Society of Naval 
Architects and Marine Engineers. The paper itself has been prepared under 
ONR Grant Nonr(G)00063-64. 

NON-DIMENSIONAL REPRESENTATION 

It has been previously pointed out [6] that the dimensional characteristics 
of the conventional form of presenting sea spectra and ship response curves 
make it difficult to understand and interpret the results of the calculations, par¬ 
ticularly when comparing geometrically similar ships of different size. Accord¬ 
ingly, a quasi-non-dimensional method of presentation was developed at Webb 
Institute based on a sea spectrum showing component wave slopes as a function 
of the logarithm of wave length [6]. Since the original proposal was made, it 
has been found that a suggestion of Dr. Y. Yamanouchi to use loginstead of 
log(> \ results in a truly non-dimensional representation which appears more 
suitable for general adoption. Here w is circular frequency, 2^/1. T is wave 
period, and ^ is wave length. In this log-slope scheme not only is the sea 
spectrum independent of the units used, but geometrically similar ships will 
havj similar response operators. Hence, it will be shown that the effect of ship 
size and form, sea spectrum shape, etc., can be clearly visualized. It is unnec¬ 
essary to convert to frequency of encounter as originally proposed [2]. 

In order to explain the new form of presentation, reference is made first to 
Fig. 1 showing the transformation of a typical wave amplitude spectrum (a), 
[r(£<;)]2 vs U, to log-slope form (c). The first step is the transformation from 
a; to loge base. This is accomplished by finding the increment on Iogew scale, 
8(log,, co) that corresponds to Sw, thus: 

s (l°ge<¿) JJ 

8 CD 
CO 

Hence, for an incremental area to be the same in both systems, 
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I r( logea.)] 2 - £,j [r(cLi)] 2 . 

It so happens that the range of loge of general interest to us is negative in 
sign. 

62-/(not 

/ Spectrum 

“''C (tí 

«*1), 
j_I-1— -1-L 

0 -.2 -.4 -.6 -.8 -1.0 -1.2 -1.4 

Fig. 1 - Transformations of sea spectrum 

[rOw.ü)]1 

= <J [r(cJ)f 
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Finally, for the present purpose the spectrum must be transformed from 
amplitude (b) to slope (c) form. In general, maximum wave slope is 2vla/X. 
Since \ maximum slope can be expressed in terms of <*>, 

R 

where Ca is wave amplitude. The square of the amplitude of a wave component 
is given by:* 

2 
[r(LoReoj)] S loge oj 

where [r( loRe aj)]2 represents the wave spectral ordinates on the loRe œ base. 
Therefore, the square of the slope is given by: 

---.- [r( ioKe cj)] 2 S loge u>. 
R“' 

Hence, if the spectral ordinate plotted in (c) represents 

-1- [r( log ûj)] , 

R2 

an incremental area will represent the square of a component wave slope. Fur¬ 
thermore, the area under the spectrum (with finite limits) can be interpreted as 
a mean wave slope. 

The most obvious difference between the log-slope form and the conventional 
form of spectrum is the suppression of the spectrum peak which is so prominent 
in the conventional form of presentation. This calls attention to the tact that the 
wave components at the peak of a conventional spectrum are usually less steep 
than at the higher frequencies. It has been found that for many ship motions 
wave amplitude in relation to length, i.e., wave slope, is more important than 
wave amplitude directly, or energy. For such motions, the log-slope form is 
preferable for the study of ship behavior. 

For example, pitch angle is directly related to maximum slope. In fact, as 
wave lengths become very long and the frequency of encounter is far from reso¬ 
nance with the ship's natural frequency, pitch amplitude will approach wave 
slope asymptotically. 

The manner in which the new form of log-slope sea spectrum may be used 
in predicting ship responses is shown in Fig. 2 for the case of pitching motion. 
The figure shows the simple case of a ship heading directly into a long-crested 

!,iThe original concept of [2] is used here, in which the spectrum represents am¬ 
plitude squared. In some systems a factor of 1/2 is introduced in order to 
represent wave energy. 

190 



Applying Results of Seakeeping Research 

Fig. 2 - Non-dimensional representation 
of pitching response to irregular sea 
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irregular sea (a), but it will be shown later that a short-crested sea and differ¬ 
ent headings can also be taken into account. In determining the form of the re¬ 
sponse amplitude operators, it must be recognized that the parameters describ¬ 
ing ship performance should be non-dimensional. Pitch angle is a satisfactory 
measure of angular motion, for it will be the same for ships of different size in 
comparable situations as well as being related to wave slope. Fig. 2(b) shows 
the pitching response amplitude operator in the form 

a _ a 

\ g a 

with öa in radians. It is clear that if the response operator curves are ex¬ 
pressed non-dimensionally — here pitch angle/wave slope-they will be identical 
in shape for geometrically similar ships at the same Froude Number. However, 
they are separated horizontally by an amount equal to logeFurthermore, 
points at corresponding values of VL will have the same ordinates, where L is 
ship length. 

If, as in this case, one ship is twice the length of the other, we have L2 = 2L., 
and at equal values of VL, x2 = 2\,. Hence, cv¡ = /2 '«<2, and the separation of 
corresponding points is log^- log^r loge^,/^= logeV/2 = 1/2 loge2 = 0.3468. 

Finally, we may multiply the wave slope spectrum (Fig. 2a) by the pitch re¬ 
sponse operators (Fig. 2b) to give the non-dimensional response spectra (Fig. 
2c). These non-dimensional response spectra are of direct quantitative signifi¬ 
cance, since they represent (pitch amplitude)2 and the mean pitch amplitudes 
will be a function of the areas under the curves. 

Similarly heaving acceleration — or vertical acceleration at any point along 
the length of the ship - is properly referred to wave slope. For in long waves, 
if we neglect forward speed, the vertical motion of the ship will approach that of 
the surface wave particles, whose vertical acceleration is, when expressed non- 
dimensionally, (c-j2/g) Ca. Maximum wave slope at any particular frequency is 
the same, for 

\ 
2ttC, 

a 277g g 

Hence, if vertical acceleration is referred to wave slope, this is equivalent to 
relating it to the wave particle accelerations at the particular wave frequency. 
The response amplitude operator for heaving acceleration (or vertical acceler¬ 
ation at any point) can therefore be expressed as 

jV£_ 
2Va/\ 

Heaving motion is somewhat different. If one is concerned with the absolute 
value of heaving, then the conventional wave amplitude spectrum is appropriate 
with a response amplitude operator in the form: 
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Heave amplitude 

Wave amplitude . 

But when a non-dimensional relationship is appropriate, one may divide by a 
ship dimension such as length, giving a ratio, Za/L. This means that we con¬ 
sider two ships to have equivalent heaving behavior in comparable conditions if 
the ratios of heave amplitude to ship length are the same. (This is in contrast 
to the conventional procedure to comparing heave amplitudes directly.) The pa¬ 
rameter za L will be the same for geometrically similar ships in similar waves. 
The response amplitude operator may be obtained by dividing by the wave slope, 
which is also non-dimensional, thus: 

~ VL I2 ~Za/L-|2 

- £ L K aJ 

This operator goes to infinity as wave length becomes very long and za ap¬ 
proaches infinity. 

Similarly, vertical velocity, Za = ojeza, can be non-dimensionalized by mul¬ 
tiplying za X by yC/g, giving z^y'iC which is a sort of Froude number. The re 
sponse amplitude operator is then, 

.2^aA 

This operator also goes to infinity as wave lengths become very long, but not so 
rapidly as the above. 

Multiplying the non-dimensional velocity Z^y/gL ..again by wes/\7i gives the 
non-dimensional acceleration previously discussed, za/g. 

Similarly, any other response that is non-dimensional may be related to 
wave slope. For example, relative bow motion, Sa, in relation to length, L, is 
more significant than die absolute value, Sa, and therefore sa/L is an appropri¬ 
ate non-dimensional parameter. Although similar in appearance to the heave 
parameter, it tends toward zero in very long waves. 

The response amplitude operator for relative vertical velocity between bow 
and wave, which is of significance in relation to slamming, can be obtained by 
multiplying sa/L by ^eVC7i, giving 

Za/v6L 

Sa^e = K_ 

\/iL v£L 

which is a non-dimensional relative velocity. The response amplitude operator 
then is, 
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saA/eL Sa/v^L 

Also wave bending moment, if expressed in non-dimensional form, may be di¬ 
vided by wave slope, giving [11 ]: 

-JVM3 
.2^a/\ 

where he is effective wave height and he/L is a non-dimensional bending mo¬ 
ment coefficient, 

cpgL3BCw 

where 

Mw is wave bending moment in irregular sea (such as average or highest 
expected value in 10,000 cycles), 

C is a static bending moment coefficient = static wave bending moment in 
L/20 wave/pRL2B (L/20) cw, 

p is mass density of water, 

R is acceleration of gravity, 

L is ship length, 

B is ship breadth, 

Cw is waterplane coefficient. 

An important step in the application of the superposition principle to ship 
behavior was taken by Gerritsma [7 ] when he showed that the added resistance, 
power, torque, or propeller revolutions in waves could also be handled in this 
way. However, the work of Maruo [8] had indicated that these quantities are 
roughly proportional to the square of wave amplitude and therefore should not 
be squared as are motion amplitude operators. The non-dimensional coefficient 
of power increase, AP, used by Gerritsma was 

AP 

Pg^VBVL 

which is also the response amplitude operator. Swaan has applied the superpo¬ 
sition procedure to predicting trends of power and speed in waves [9], using this 
coefficient and a conventional amplitude or energy spectrum. 
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For use with a slope spectrum it is convenient to adopt the modified coeffi¬ 
cient, 

T (--.1¾2 

Study of Gerritsma's model results [7] shows that the trend with x/L indicated 
by this coefficient is roughly correct for values of VL greater than about 1.0, 
but it reverses for VL < 1.0. Nevertheless, the coefficient appears to be en¬ 
tirely suitable for use with a wave slope spectrum. 

So far mention has been made only of the simple case of ship response to 
long-crested irregular head seas. The method of presenting data can easily be 
extended to the case of short-crested seas and any ship heading — provided, of 
course, that model test results in oblique seas are availaole. The short-crested 
sea is represented by a family of curves showing the magnitude of wave compo¬ 
nents coming from different directions. Response amplitude operator curves 
are also prepared for different wave directions, and each of the directional 
spectrum curves must be multiplied by the appropriate response amplitude op¬ 
erator curve. The resulting fam ly of response spectral components can be in¬ 
tegrated to obtain a single response spectrum on a base of logeaj. This proce¬ 
dure will be illustrated in the section on results. 

The computations required to obtain the curves that have been discussed 
can be conveniently carried out by slide rule or desk computer with the use of a 
suitable computation form. The form and procedure developed at Webb Institute 
of Naval Architecture, mainly in connection with work for the American Bureau 
of Shipping, is described in [10]. It has also been programed for solution on an 
IBM 1620 computer. 

RESULTS-WAVE BENDING MOMENTS 

The application of the procedures discussed above can be illustrated first 
by considering trends of wave-induced bending moments for a series of ships 
for which model results in regular waves were available [3]. This work was 
carried out under the sponsorship of the American Bureau of Shipping. 

Figure 3 has been prepared to show graphically the calculation for the case 
of the 0.80 block ship heading into short-crested irregular seas. The upper 
portion of the figure shows a spectrum based on the average of the 13 worst 
records reported by Pierson [5], with directional components obtained by apply¬ 
ing a "spreading function" of 2/v cos2 mw to approximate the effect of short¬ 
crestedness. The second part of the figure shows the family of curves repre¬ 
senting the response amplitude operators derived from the model test results, 
each curve for the 600-foot ship length defining the response of the model to the 
waves coming from a particular angle. The curves are labeled with the angles 
M indicating the responses to the same angular wave components as those shown 
in the sea spectrum. Each of these component response curves was derived 
from the model tests at a particular angle to the waves by picking off the results 
at the appropriate angles. 
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Also shown in this plot are the head sea response operators expanded to 
ship lengths of 900 and 1,200 feet, and reduced to 300 feet. The other angular 
components for these lengths have been omitted from the figure for clarity. A 
comparison of the operator curves for different ship lengths demonstrates the 
advantage of the form of presentation used in these calculations — the response 
operators for any series of geometrically similar ships plot as a set of identi¬ 
cally shaped curves, shifted on the ioge6j axis according to the absolute sizes 
of the ships. Portions of the curves shown by broken lines are extrapolated be¬ 
yond the measured data. 

The product of a sea spectrum component for a certain angle mw , and the 
response amplitude operator component associated with that wave direction 
gives a response spectrum component curve. The family of curves obtained in 
this way (one curve for each wave component) is then integrated over direction 
(angle) to obtain a single response curve. Four such integrated response curves 
for the four ship lengths are shown in the lower plot of Fig. 3. The angular 
components of the response spectra have not been plotted. 

Finally, the integration of a response spectrum curve over wave frequency 
gives the cumulative energy density, R, for the bending moment coefficient. 
From values of R for each ship size statistical parameters, such as the average 
value of the highest expected wave bending moment coefficient out of a total of N 
oscillations, may be calculated from the expression, hp/L - c/r where the mul¬ 
tiplier c takes different values depending on the number of oscillations consid¬ 
ered. For example, assuming a Rayleigh distribution, 

Average he/L 

Average of 1/10 highest hp/L 

Highest expected he/L in 100 oscillations 

Highest expected !ie/L in 1,000 oscillations 

Highest expected he/L in 10,000 oscillations 

= 0.866 v/R 

= 1.800 v/R 

= 2.280 v/R 

= 2.730/R 

= 3.145 \/r . 

The variation of wave bending moment with ship speed is shown in Fig. 4 
for a ship heading directly into a severe 62-knot spectrum [12]. It is evident 
that increasing the speed of a ship does not in general increase the wave bending 
moments. Decreasing speed can, in fact, increase the wave bending moments 
slightly. No consideration is given here to two other effects of speed, namely 
the increase in the bending moment caused by ship-produced waves as speed in¬ 
creases and the effect of speed on slamming which may increase midship hull 
stresses. The former causes a shift of the mean value; the magnitude of the 
effect of slamming requires fu ther detailed study. 

The vertical wave bending moment is also influenced by the direction of the 
ship’s travel relative to the waves. In a short-crested sea the wave components 
come from various directions simultaneously, so that regardless of its heading 
the ship reacts to waves coming from many angles. The heading of a ship is 
defined here as the angle between the direction of ship's motion and that of the 
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pig 4 - Bending moment for series 60 ships in Pierson 62-knot 
spectrum as a function of speed (highest expected value of h^/L 

in 10.000 cycles) 

A 

dominant waves, i.e., 
suit of superimposing 
each heading. 

of the wind. The calculated bending moments are the re 
the ship's response to all wave components present for 

The effect on wave bending moment of ship heading is shown in Fig. 5 for 
shins of 600-foot llngth in both short and long-crested seas, corresponding to 
thePfi2 knot soectrum fil]. This figure indicates that maximum bending mo- 
“een®ríre reacW ” head seas, as expected, and are Uten less in realist,c 
short-crested than in hypothetical long-crested seas. It also shows tihe reduc 
tion in bending moments in beam seas is comparatively small when the waves 
are short-crested, especially for fine ships. 
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* 

The comparatively high values of bending moment calculated in beam seas 
seems reasonable on the basis of the principle of superposition. However, it 
should be noted that the application of this principle to ship behavior in short- 
crested seas has not yet been confirmed through model tests. It is to be hoped 
that facilities for generating realistic short-crested seas in a model tank will 
be developed by some laboratory in order to check and confirm the superposition 
principle. 
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The results of the calculations for tanker type vessels with C„ = 0.80 in 
the average severe spectrum (Fig. 3) are shown in Fig. 6, which gives effective 
wave height as a function of length fll ]. A low ship speed of Froude number = 
0.10 (8.25 knots for a 600-foot ship) was considered to be a reasonable maximum 
speed in an extremely rough sea. The curve crosses the L 20 line at L = 500 
feet, and coincides with the 0.6Ln 6 wave that has been proposed from about 500 
feet to 650 feet. The matching of the calculated trend with these other criteria 
thus provides a sound basis for the comparison of the larger ships with those of 
500 to 650 feet, even if the absolute significance of the statistical parameter is 
doubtful. The calculated trend indicates that at lengths greater than 600 feet the 
increase in effective wave height with length is less rapid than is shown by the 
other criteria. 

The results for the finer ships are also shown in Fig. 6. A somewhat higher 
speed (Froude number = 0.15; 12.4 knots for a 600 foot ship) was used since the 
finer ships could be expected to make better speed in rough seas. Possible in¬ 
creased stresses caused by slamming were not included. The trend with length 
is similar to that for the fuller ships, and from 15 to 20% lower. Thus the bend¬ 
ing moment coefficient is not quite proportional to block coefficient, since in 
that case the reduction would have been 25%. However, it should be noted that 
fullness is already taken into account in the bending moment coefficient h L 
which includes the waterplane coefficient. 

RESULTS - BOW MOTIONS 

The trends of ship motions in irregular seas have also been investigated, 
with particular reference to relative bow motion. This work has been carried 
out under the sponsorship of the Society of Naval Architects and Marine Engi¬ 
neers, Panel H-7 of the Hydrodynamics Committee. Calculations are based on 
Vosser's Series 60 model tests in regular waves [4|, showing the effect of both 
speed and proportion. 

Figure 7 shows the results for a ship of cB = 0.70 and LU = 17.5 at vari¬ 
ous speeds in short-crested head seas, using one of the severe sea spectra used 
in the bending moment study [12]. It may be seen that the response amplitude 
operator peaks increase steadily with speed. They also move to the right with 
increasing speed, which has a favorable effect —because of the downward slope 
of the wave spectrum. However, the overall effect of speed is unfavorable, as 
shown by the response spectra at the bottom of the figure. 

Figure 8 shows in a similar way the effect of varying the LH ratio when 
heading into the same sea at constant speed. It may be seen that the reduction 
in height of the response amplitude operator peaks with increasing L H results 
in a corresponding reduction in response spectra. 

The trend with ship speed is shown more clearly in the upper part of Fig. 9. 
Also shown in the figure are two points from Fig. 8 for ships of different length/ 
draft ratio at the same speed. 
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Fig. 8 - Relative bow motion of series 60 ships in Pierson 
62-knot spectrum showing effect of L/H 
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Fig. 9 - Relative bow motion for series 60, 
Cg = 0.70 ship in Pierson 62-knot spectrum, 
trends with speed 

Of more direct interest in evaluating a ship's seagoing performance than 
relative bow motion are two derived quantities: 

(a) Foredeck immersion, as an index of shipping water. 

(b) Forefoot emergence, as a rough indicator of possibility of slamming. 

For a particular forward freeboard or draft these quantities can easily be 
worked out statistically from the response spectra. A convenient form of pres¬ 
entation is in terms of percentages of cycles of motion in which the foredeck is 
immersed or the forefoot emerges, as shown in the lower part of Fig. 9. 

It is interesting to see from this figure that increasing speed is even more 
unfavorable to wet decks than was suggested in the upper part of Fig. 9. For 
increasing the speed from 7-1/2 to 20 knots almost doubles the frequency of 
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foredeck immersion. It also shows a big advantage of l/h = 17.5 over l/H = 
11.0. In all cases bow freeboard is 9% of length. 

Considering the question of forefoot emergence, Fig. 9 shows again a dis¬ 
advantage in speed. Conversely, it shows that slowing lown will always amelio¬ 
rate the situation. However, it also shows a distinct disadvantage for a slender 
ship with high L/H value. This is because, although the shorter ships have 
more relative bow motion, their greater draft serves to reduce the frequency of 
bow emergence. Definite conclusions regarding slamming cannot be drawn, 
however, because the form of the more slender ships involves less flat of bot¬ 
tom and therefore less tendency to slam when the bow does emerge. Further 
investigation is clearly needed, but the calculation procedure described does in¬ 
dicate the trends of forefoot emergence. 

Finally, the effect of ship heading can be considered. Figure 10 shows the 
trend of relative bow motion with ship heading for the case of one particular 
ship at one speed. The improvement shown in behavior as the bow falls away 
from the sea is to be expected, but it is perhaps surprising to see such small 
changes for all headings between a beam and a following sea. 

FOLLOWING BEAM HEAD 
SEAS SEAS SEAS 

HEADING (DEGREES) 

Fig. 10 - Relative bow motion effect of 
heading in Pierson 62-knot spectrum 
series 60, Cg = 0.70 ships 
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CONCLUSIONS 

A method of computing the response of a ship to irregular waves is avail¬ 
able which is non-dimensional and convenient for graphical presentation. Use 
of this log-slope form of plotting shows that for most ship responses the wave 
components at the peak of the wave spectrum may be less significant than the 
shorter wave components. It also shows that the cut-off point, or maximum 
wave length present, is of considerable importance. 

Samples of the application of the procedure lead to certain general conclu¬ 
sions: 

Non-dimensional wave bending moment coefficients in very severe seas 
show a distinct downward trend as ship size increases. 

Wave-induced bending moments in severe storm seas are affected relatively 
little by increase of speed, but relative motion between bow and wave is appre¬ 
ciably affected. High values of length/draft ratio show a distinct advantage in 
this respect which leads to less shipping of water forward with a given 
freeboard/length ratio. But possible danger of slamming from greater forefoot 
emergence should be considered. 

Change of heading has a significant effect on wave bending moments, but 
much more so in long-crested than in short-crested seas. Relative bow motion 
is greatly reduced by a change from head to beam seas. 

FUTURE POSSIBILITIES 

It is of interest to consider some of the further possibilities in the applica¬ 
tion of results of seakeeping research. One of the obvious steps being under¬ 
taken at M.I.T. [13] and elsewhere is to make use of calculated response ampli¬ 
tude operators instead of model test values. This requires perhaps some further 
refinement in ship theory along the line of work by Grim [14] and Gerritsma[15]. 
It also requires that the theory be extended to oblique seas in order that short¬ 
crestedness can be properly taken into account. Preliminary investigation of 
this important problem indicates that it may not be too difficult [16]. Lalangas 
[17] has shown that pitching and heaving motions in oblique seas can be predicted 
quite well simply by allowing for the effect of heading on effective wave length, 
frequency of encounter, and ship-wave interaction effects such as "Smith effect." 
In due course it will be possible to evaluate the seagoing performance of any 
number of alternative designs entirely by electronic computer. 

Meanwhile, systematic model tests at all headings to regular waves can 
provide the needed inputs (response amplitude operators) into our calculations. 
For ships of very unusual characteristics, such as semi-submerged types for 
supercritical operation [18], model tests are the only reliable basis for the cal¬ 
culations. The excellent work of Vossers [3] should be extended to cover a 
wider range of ship characteristics and speeds. From the viewpoint of naval 
ship design, the need for systematic model tests is particularly great, for very 
little complete information is now available. For example, many reports on 
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naval ship motions give pitch and heave amplitudes in regular head seas, but no 
information of phase angles that would permit relative motion between bow and 
wave to be computed, or vertical acceleration at any point along the length of 
the ship. Furthermore, motions in oblique seas are unknown. It is to be hoped 
that vigor will be applied here in systematic experimental work. 

A related development of great importance is the application of electronic 
computers to the preliminary "feasibility study" stage of ship design. Pioneer¬ 
ing work in the field of merchant ship design [191 is now being applied to the 
naval design problem. The outstanding result of this work to date is the clear 
demonstration that, insofar as the ship design problem for ideal, calm water 
conditions is concerned, there are many possible technical solutions. Assuming 
certain required characteristics, such as payload, range, and speed, the princi¬ 
pal technical requirements to be met, which can be expressed in equation form, 
are: displacement, volume, stability, and freeboard. But the number of ship 
variables to choose from —as dimensions, fullness, power, etc. — is much 
greater. In short, there are more unknowns than there are equations, a situa¬ 
tion which is disturbing to a mathematician but intriguing to the naval architect 
who discovers he has a wider freedom of choice than he had previously realized. 
Following the traditional trial and error approach, the designer was apt to feel, 
when a satisfactory compromise of all the factors was reached, that this was 
the only possible design solution — or at least that he could not depart far from 
it. But results show [19] that very wide variations in overall dimensions are 
possible with only slight changes in the cost criterion used (capital charges 
plus fuel). 

The significance of all this to the seakeeping problem is that the availability 
of a method of realistically evaluating the seagoing performance of widely dif¬ 
ferent alternative ship designs opens the door to definite improvements in the 
economic efficiency of merchant ships and the military effectiveness of naval 
vessels. The procedure is visualized as follows for the case of a destroyer- 
type ship whose primary mission is patrol duty in the North Atlantic, for exam¬ 
ple, A wide range of possible ships is determined, each of which has the re¬ 
quired speed, payload, and range. The potential performance of each design is 
then predicted on the basis of some criterion such as percentage of time that a 
stated speed or speeds can be attained at sea without shipping water. Cost fac¬ 
tors and operations research techniques must finally be brought into the picture 
to ascertain which design is best from the viewpoint of military effectiveness. 
It is my firm belief that the optimum ship designed in this way will not be the 
same as that designed for minimum displacement, minimum power on trial, or 
other purely technical criteria. In short, vigorous application of techniques now 
at hand should lead to better ships for the Navy. 

These future developments will be greatly enhanced in value if much more 
complete information on ocean wave spectra encountered on various trade routes 
becomes available. The excellent work of Pierson [5] is only a beginning. Fur¬ 
thermore, there is a real need for additional short-crested sea spectra, such as 
those obtained by the National Institute of Oceanography in Britain [20]. Here 
again vigor in obtaining and analyzing ocean wave data is the most urgent need. 
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Finally, progress in applying results of seakeeping research requires much 
more complete information on criteria of seagoing performance for different 
types of ships. What values of acceleration are acceptable? How much water 
can be shipped over the bow before speed must be reduced? How severe can 
slamming be in terms of hull stress or local pressures before remedial action 
must be taken? For being able to predict ship performance at sea is not enough. 
We must be able to determine at what speeds and in what seas any particular 
design is satisfactory or unsatisfactory. 

In conclusion, it is felt that valuable tools are now available to determine 
significant trends of ship behavior in realistic sea conditions. It is urged that 
in planning research in the field of seakeeping vigorous efforts be applied to the 
systematic accumulation of basic data on the sea, model series results in waves, 
and criteria of seagoing performance. Then our future improved theories and 
computation techniques can be verified and applied rather than set to gather dust 
on library shelves. 
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DISCUSSION 

G. Aertssen 
University of Gent 

Gent, Belgium 

This paper is an excellent approach to the trend of the wave-induced mo¬ 
ments in extreme seas and the investigation comes at the right moment. It is 
known that in extreme seas some waves are exceptionally high (heights of 80 ft 
have been recorded in the North Atlantic). But on the other hand strain gages 
applied to the stringer plating of the main deck of usual cargo ships of 500 ft 
showed in these extreme seas bending moments which were not greater than the 
calculated bending moment, the ship being poised on a trochoidal wave of a 
length L and a height Lpp 12, i.e., a height of about 25 ft. It has been argued 
that the reason for this was the ability of the ship to adapt herself to the actual 
shape of the sea, especially when it is considered that in this extreme sea the 
ship of 500 ft is hove to at a speed of about 5 knots. 

Prof. Lewis comes to a better explanation when applying to the bending mo¬ 
ments the superposition principle and accepting a spreading function for the en¬ 
ergy of the assumed short-crested sea. The surprising result is that for the 
500 ft cargo ship having CB = 0.8 the wave induced bending moments are then 
quite the same as the conventional static bending moments. 

A second important result of this work is the deviation from the L/ 20 law 
for long ships. It was known that for these ships a smaller wave height must be 
taken and a wave height 0.6LU 6 was proposed. This again, as Prof. Lewis 
shows in Fig. 6, is a very good approximation for all bulk carriers and tankers 
now under construction and ranging from 500 to 800 ft. 

There is an old rule limiting the bending stresses calculated on a basis L/20 
to 5L + 500 Kg. per sq mm, L is ship length in m. This rule holds good for 
L = 150m where the allowable stress is 1250 Kg. per sq cm and for the largest 
bulk carriers up to L = 200m where the allowable stress is 1500 Kg. per sq cm, 
which means 20 percent more for the longer ship. This allowance of 20 percent 
is exactly — as Prof. Lewis shows in Fig. 6 —the error in excess when applying 
for large bulk carriers the static method on a base L 20. This is a support for 
the static calculation based on l 20, even for ships up to 200m, provided the 
allowable stress is given by the formula 5L + 500 Kg. per sq cm. 

There are other remarkable results emerging from Prof. Lewis' paper. 
Stresses and bow motions in the realistic short-crested sea are reduced in beam 
and in following seas as compared with head seas but less than would be expected 
and this is especially true for the stresses. The relative bow motions are 
roughly the same in beam and in following seas. The writer recently, in a paper 
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to the North East Coast Institution of Engineers and Shipbuilders," gave the re¬ 
sults of observations on two trawlers in rough seas. It is evident from Fig. 8 of 
this paper that in rough seas pitching is the same in beam seas and in following 
seas. Rolling of these trawlers in extreme seas is roughly the same in bow seas 
and in beam seas, as is evident from Fig. 11 of the same paper. Altogether the 
short-crestedness of extreme seas has in a certain way a smoothening effect on 
stresses and on motions. These irregularities — and others — of random seas al¬ 
low in certain circumstances to turn a cargo ship of 12,000 tons even in a sea 
Hi/io = 35 ft of which some waves are as high as 50 ft. 

Finally a question. A speed of 12 knots of the fine 600 ft ship ahead in an 
extreme sea is somewhat surprising. Has Prof. Lewis some information as to 
what extent this 600 ft ship was able to maintain this speed in such a severe 
sea? 

* * * 

DISCUSSION 

G. J. Goodrich 
National Physical Laboratory 

Teddington, England 

Prof. Lewis has, as usual, produced an extremely practical paper. It is 
obvious to us all that research in seakeeping, to be of worth, must ultimately 
produce design data for the improvement of ship performance. 

I would question the practical use of pitch and heave response operators in 
regular waves, for such waves never exist. Uni-directional long-crested seas 
are rare and even one node two dimensional spectra are few and far between. 
The sea in general consists of multi-nodal spectra and predictions should ulti¬ 
mately be made for such conditions. However, full scale sea data on such spec¬ 
tra are almost non-existent and it is probably sufficient for the present time to 
consider the one node two dimensional spectrum. 

There is no doubt that ship operators look to those of us working in the field 
of seakeeping, for help in assessing new designs and we must look extremely 
closely at what we consider to be the important features of a design which should 
influence the choice of such a design. Prof. Lewis has suggested in the closing 
paragraph of his paper some of the important criteria which should be consid¬ 
ered. 

:,:Aertssen, Ferdinande and De Lembre: Service Performance and Sea Keeping 
Trials on Two Conventional Trawlers, Trans. North East Coast Institution of 
Engineers and Shipbuilders, November 1964. 
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I would suggest that for the merchant ship the loss in speed to be expected 
is of prime importance; other factors such as accelerations, bow wetness and 
slamming, are others that will influence the captain in reducing power and hence 
producing a further reduction in ships speed. 

It is not enough however to consider such criteria for single sea states. 
Predictions must be made on a long term basis, for after all, the more severe 
sea states occur at low probability and the consequences of high seas may be 
negligible in relation to the all year round operation of the ship. 

In conclusion I think the method of analysis and presentation in terms of 
log oi used by the author is useful for visualizing what is happening to the re¬ 
sponses of the ship as various parameters are varied. 

* * * 

DISCUSSION 

H. Lackenby 
British Ship Research Association 

London, England 

The subject of Professor Lewis' paper is of particular interest to me, 
namely the application of results of seakeeping research. A considerable 
amount of work has been carried out on this subject over the past few years, but 
it has not always been very clear as to the design applications in many instances. 
A contributory factor in this has doubtless been the apparent complexity of the 
subject. Against this background Professor Lewis' paper is very timely, and I 
would just like to raise a point of principle which was touched on this morning. 

As I understand it, the essence of the theory and analysis is based on the 
principle of superposition and the principle of linearity, that is, relatively small 
angular displacements, wall-sidedness of the model or ship within the range of 
the motions and so on. From the practical point of view, however, I think it is 
the larger angles and the question of whether or not water breaks over the decks 
which are the more important. This state of affairs appears to be well outside 
the linear range, but from the discussion this morning it seems that the princi¬ 
ple of linearity applies beyond the range that one would expect. The instances 
quoted however have referred particularly to model tests on a destroyer form 
and I should be glad if Professor Lewis would care to comment on this aspect, 
more particularly as far as the fuller merchant ship is concerned. In other 
words, to what extent can we use — or perhaps one should say abuse — the linear 
principle and get away with it for practical design purposes? 

* * * 
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DISCUSSION 

W. A. Swaan 
Netherlands Ship Model Basin 

Wageningen, Netherlands 

The paper gives a clear review of the possibilities of applying the results 
of presently available and future seakeeping research. I do agree with the au¬ 
thor in his conclusion about the need for more data on the sea, model series in 
waves and criteria for seagoing performance. Especially the lack of sea data is 
a great obstacle in providing useful behaviour predictions for new ship designs. 

It appears doubtful to use the expression "response amplitude operator" for 
the power coefficients because it is something essentially different from the 
"response amplitude operator" for ship motions. In the case of the power co¬ 
efficient the result of the described procedure is a mean value; the zero fre¬ 
quency component of the power in irregular seas. In the case of ship motions 
and bending moments the results have an oscillatory character with a zero 
mean. Therefore it might be better to indicate the power coefficient as "re¬ 
sponse operator" and leave the expression "response amplitude operator" for 
oscillating phenomena. 

The comparison of the wave bending moment in Fig. 5 for short-crested and 
long-crested seas is very illuminating. It can serve as a warning against using 
long-crested irregular seas in an overconfident way. 

Figure 6 shows the highest expected vertical bending moment in 10,000 
cycles. Because the ships in this diagram have lengths between 300 ft and 1300 
ft and speeds from 6 knots to 18 knots one would expect the time interval cov¬ 
ered by these 10,000 cycles to be a function of ship length. This involves a dif¬ 
ferent risk when small and large ships are compared. Because the author does 
not convert the spectrum to the frequency of encounter it is not quite obvious in 
which way one can reach some definite conclusion about the time covered by 
10,000 cycles. 

There is another difficulty involved in using the highest expected value in 
10,000 cycles. The relation given in the paper between the spectrum area and 
the value of the average highest amplitude is only valid for a narrow band spec¬ 
trum in which no negative maxima and positive minima occur when the zero 
level is taken at the mean position. It seems therefore much easier to discard 
the use of bending moment amplitudes altogether and return to the Gaussian 
distribution of the bending moment values when they are determined at constant 
time intervals. Because the variance of this Gaussian distribution is equal to 
the area of the spectrum it is not difficult to determine the percentage of time in 
which a certain bending moment is exceeded. From this it follows that for a 
narrow spectrum the average highest amplitude in 10,000 oscillations is equiva¬ 
lent to the deviation (absolute value) which will be exceeded during 0.0009% of 
the time or 3/4 seconds per day. The number of times it occurs is left undefined 
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in this way so there is indeed no reason to use a frequency of encounter spec¬ 
trum. For a broad spectrum, containing negative maxima and positive minima, 
only the number of times may be different but not the percentage of time. This 
makes it superfluous to make any assumption on the shape of the spectrum. 
Therefore the interpretation of the results in this manner is more rigorous 
without being less vigorous. 

* * * 

DISCUSSION 

L. Vassilopoulos 
Massachusetts Institute of Technology 

Cambridge, Massachusetts 

I cannot help but basically disagree with the philosophy behind this paper as 
well as the alleged usefulness of the procedures which Professor Lewis pro¬ 
poses. The points of the paper, which bear directly to the profession's real 
needs at present, are unfortunately obscured and are only very briefly treated 
while the author mainly reiterates his recently proposed technique for interpret¬ 
ing results of seakeeping research rather than applying them. 

Despite the fact that we are almost ready to commence an evaluation of the 
importance of seaworthiness considerations in preliminary ship design, there 
still exists a definite need for: (a) a scrutiny of the validity and applicability of 
the basic procedures with which the results of ten years active research have 
been obtained, and (b) the establishment of a generalized philosophy for applying 
our knowledge to the actual design process of all ship types. 

With respect to the first item, one notes that members of the profession on 
occasion fail to adhere to the fundamental notions and implications behind the 
St. Denis - Pierson approach. It is the writer's opinion that the present paper 
introduces unnecessary confusion and complication. The author seems to believe 
that our present procedures rest on such sure principles that we are in a posi¬ 
tion to modify and transform these principles. It is with this belief that I dis¬ 
agree. 

Professor Lewis has actually recast, without any formalism, the basic 
Wiener-Kintchine relation of the theory of random processes to suit what he 
terms the needs of the ship designer. He forcedly transforms the components 
of the equation 

l’ocre) = lH(^e)|2 4>U(^e) (D 

where 

= input function amplitude density spectrum, 
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H(%) = system complex frequency response (system transfer function), 
and 

¢00('>) = output function amplitude density spectrum 

into a so-called non-dimensional form, but in so doing forgets the precise notions 
behind each quantity and assumptions and reasoning behind the derivation of 
Eq. (1). 

Let us examine the problem more carefully by fixing attention on the inde¬ 
pendent variable involved in Eq. (1). The frequency domain analysis of linear 
systems in other engineering fields is precise in the sense that the analysis in¬ 
volves a single, unambiguous "frequency." Unfortunately, in ship work this is 
not the case, for we have two "frequencies" to play with; the absolute wave fre¬ 
quency and the encounter frequency. This adverse fact causes much trouble and 
the ensuing complications, especially in astern seas are, of course, due to the 
fact that sea wave celerity is a function of wavelength. The question which 
arises is which is our fundamental variable and why? Professor Lewis arbi¬ 
trarily employs the logarithm of the absolute wave frequency and states that it 
is "unnecessary to convert to frequency of encounter as originally proposed." 

The writer disagrees with this choice and suggests that the frequency of en¬ 
counter is the basic variable because of the following reasons: 

(a) The frequency of encounter is the frequency which the ship feels and to 
which it responds. 

(b) The ship-system is "non-stationary" and furthermore "directional." 
Hence, ship speed and wave direction are not simply labels to families of graphs 
but must be embedded in the encounter frequency. 

(c) The mathematical model of the ship system involves the frequency of 
encounter and not the absolute wave frequency. 

(d) Equation (1) is strictly applicable only to system functions derived from 
the mathematical model and relates them via the actual input density spectrum 
to the actual response spectrum. 

There is, furthermore, a delicate point in the statistical process which 
merits some attention. First of all there is an ambiguity as to what constitutes 
the actual input function to the ship system. Is it the wave or is it the load 
(force or moment) caused by the wave? The answer depends on the definition of 
the system. The physical system (the ship model), presents no difficulty and 
what we measure in say a unit amplitude wave system is definitely related via 
Eq. (1) to the wave. The mathematical system needs special care however; if 
the Korvin-Kroukovsky type differential equations are used, then strictly speak¬ 
ing, the calculated response must be related to the load, whereas if the Cummins- 
type differential equations are used the calculated response must be related to 
the wave. Whichever the case, however, the important point is that as regards 
"inputs," wave amplitude or wave-induced load amplitudes have a definite physi¬ 
cal meaning whereas "wave slopes" do not. Incidentally, the area under the 
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Lewis log-type spectrum is equal to the mean squared wave slope and not the 
mean slope which presumably must be zero just like the mean wave amplitude 
is considered to be zero. 

There is next, a definite and precise meaning attached to the complex fre¬ 
quency response and I suggest that arbitrary interpretations had better be 
avoided. What the meaning of the now accepted word-response amplitude oper¬ 
ator should be, is simply the square of the response amplitude measured in its 
own units due to a unit amplitude of the excitation, be it wave or wave-induced 
load. In advocating his non-dimensional procedure, Professor Lewis is forced, 
on account of the large number of ship responses, to examine and adopt differ¬ 
ent parameters which will non-dimensionalize each individual response. Hence, 
the cause of such confusing statements like "wave slope is more important for 
pitch motion than wave amplitude." What Professor Lewis means is that if one 
wants to non-dimensionalize an angular displacement he had better divide by a 
(dimensionless) angle such as maximum wave slope. Clearly then, because we 
have many and different "responses" in the ship-system case, non-dimensional- 
ization is of no real use and only adds to undue complication. 

I also fail to see the legitimacy of multiplying two arbitrarily derived func¬ 
tions in order to get a response spectrum, unless these functions indeed repre¬ 
sent quantities which specifically relate themselves to the fundamental notions 
behind the theory of linear systems. The advantage that the author claims is 
that the effects of ship size can be readily shown. But by size, Professor Lewis 
limits himself to length only. What about variations in say breadth or draft or 
water-plane coefficient when the "useful shift" of the curves doesn't take place? 
Do we have to start all over again with new non-dimensionalizing ? 

An important final point is that in the end of our analysis, we should not be 
satisfied with simple families of curves. The trends, once established, are 
only a palliative; the really useful information to the designer is rather numbers 
like the ones Dr. Ochi has discussed in his paper. The author presumably makes 
a plea at the end of his paper that we should avoid masses of dusty information. 
Personally, 1 can think of no better way to fill drawers than by attempting to col¬ 
lect curves for all possible variables. 

The last section of the paper is the most interesting and it is a pity that the 
author did not amplify the basic problem. As I see it, there are now three 
things to be done before we can really say that we are incorporating our knowl¬ 
edge in ship design. 

The first thing is related to the oceanographers and here we must wait for 
their answer to the basic question. In a given year (or even better in a period 
of years) and over a specified ship route what are the sea spectra encountered 
by a ship and what is their individual time occurrence ? 

The second thing is to determine in numerical terms exactly what ship op¬ 
erators mean by unacceptable wetness, untolerable number of slams or unbear¬ 
able acceleration. 
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Third and final, we must attempt to devise an approach which will discrimi¬ 
nate between a family of ships all meeting the owner's requirements, and will 
choose the one that exhibits the best capacity for sustaining a preassigned speed 
in rough water. 

* * * 

REPLY TO THE DISCUSSION 

E. V. Lewis 
Webb Institute of Naval Architecture 
Glen Cove, Long Island, New York 

Mr. Lackenby's comments are appreciated. In reply to his question, I would 
expect to find linearity apply to merchant ships as well as to destroyers. He is 
quite correct in pointing out that the larger angles are most important, when 
water is shipped over the bow or slamming occurs. However, since we are in¬ 
terested mainly in identifying when these non-linear events occur, rather than to 
determine how deep the bow is immersed or how far out of the water it emerges, 
we do not need to push the assumption of linearity too far. 

Mr. Goodrich suggests that uni-directional sea spectra are adequate for the 
present. However, we have found in our calculations at Webb that short¬ 
crestedness has a significant effect, and therefore even an approximate allow¬ 
ance for it is better than none. Mr. Goodrich is quite right in pointing out that 
to draw significant conclusions one must take into effect the combined effect of 
different sea states based on their probabilities, and he has illustrated this fur¬ 
ther step very clearly in his own paper before this Symposium. 

Professor Aertssen has called attention to particular features of the paper 
and indicated their possible implications for ship design. His comments based 
on his own wide experience in making measurements on ships at sea is greatly 
appreciated. As for the speed of 12 knots for the 600 ft ship, this was simply 
the lowest speed for which model test data were available, and I doubt very much 
that it would be maintained in an extremely rough sea. 

Mr. Swaan has made a number of good points, and I concur with all of them. 
It is certainly true that different numbers of cycles should be used for large and 
small ships when comparing them over the same long period of time. However, 
the difference in predicted stress will not be great. Although most ship motion 
spectra seem to be narrow enough to make predictions of the highest expected 
value from a Rayleigh distribution reasonable, working directly with the Gauss¬ 
ian distribution of points in the record is a useful and simple approach. 

I feel that Mr. Vassilopoulos has given a little too much emphasis to follow¬ 
ing strictly the mathematics of linear systems theory without recognizing the 
peculiarities of the ship-wave problem. In particular, we must recognize that 
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frequencies of encounter can vary either with ship speed or wave length, and 
this leads to a great deal of confusion. The procedure outlined in the paper, if 
properly used, gives the same numerical results as the conventional procedure 
and therefore cannot be incorrect. Moreover, the graphs that can be prepared 
in the course of the work are much more meaningful than the numbers alone, as 
one finds with practice. Mathematics should be a tool, not a straitjacket. 

It is correct that the area under the log-slope wave spectrum is equal to 
the mean squared wave slope rather than the mean slope. I agree entirely with 
Mr. Vassilopoulos' closing paragraphs and have been working in the directions 
he suggests for a long time. 

Dr. Yamanouchi has made a valuable contributions|< which can stand on its 
own as an important paper. Therefore, I shall simply thank him for presenting 
it to the Symposium. 

I wish to thank all of the discussers for their interest in my paper and for 
their very valuable comments. 

* * * 

'See remarks by Yamanouchi on paper by Ogilvie. 
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THE DISTRIBUTION OF THE HYDRODYNAMIC 

FORCES ON A HEAVING AND PITCHING 

SHIPMODEL IN STILL WATER 

J. Gerritsma and W. Beukelman 
Technological University 

Delft, Netherlands 

ABSTRACT 

Forced oscillation tests are carried out with a segmented shipmodel to 
investigate the distribution of the hydrodynamic forces along the hull 
for heaving and pitching motions. 

The vertical forces on each of the seven sections of the shipmodel are 
measured as a function of forward speed and frequency. By using the 
in-phase and quadrature components of these forces, an analysis is 
made of their distribution along the length of the shipmodel. 

The experimental results are compared with the results of a simple 
strip theory, tahir.g into account the effect of forward speed. 

The comparison shows a satisfactory agreement between theory and 
experiment. 

INTRODUCTION 

The calculation of shipmotions in regular head waves by using a strip theory, 
has been discussed in a number of papers. Recent contributions were given by 
Korvin-Kroukovsky and Jacobs [1], Fay [2], Watanabe [3] and Fukiida [4]. 

In these papers the influence of forward speed on the hydrodynamic forces 
is considered and dynamic cross-coupling terms are included in the equations 
of motion, which are assumed to describe the heaving and pitching motions. 

In earlier work [5] it was shown that a relatively small influence of speed 
exists on the damping coefficients, the added mass and the exciting forces, at 
least for the case of head waves and for speeds which are of practical interest. 
On the other hand, forward speed has an important effect on some of the dynamic 
cross-coupling coefficients. Although, at a first glance these terms could be 
regarded as second order quantities, it was pointed out by Korvin-Kroukovsky 
[l] and also by Fay [2] that they can be very important for the amplitudes and 
phases of the motions. This has been confirmed in [5] where the coupling terms 
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are neglected in a calculation of the heaving and pitching motions. In this calcu¬ 
lation we used coefficients of the motion equations, which were determined bv 
forced oscillation tests. In comparison with the calculation where the cross- 
coupling terms are included and also in comparison with the measured motions 
an important influence is observed, as shown in Fig. 1, which is taken from 
Kef. 15]. Further analysis showed that the discrepancies between the coupled 
and uncoupled motions were mainly due to the damping cross-coupling terms. 

, Tuhe i1*}“?™® of forward speed has been discussed to some extent in Voss- [6l\JTr, a iirSt order slender body theory it was found that the 
distribution of the hydrodynamic forces along an oscillating slender body is not 
influenced by forward speed. Vossers concluded that the inclusion of speed 
dependent damping cross-coupling terms is not in agreement with the use of a 

Fig. 1 - Influence of cross-coupling 
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strip theory. In view of the above mentioned results such a simplification does 
not hold for actual shipforms. 

For symmetrical shipforms at forward speed, it was shown by Timman and 
Newman [7] that the damping cross-coupling coefficients for heave and pitch are 
equal in magnitude, but opposite in sign. Their conclusion is valid for thin or 
slender submerged or surface ships and also for non-slender bodies. 

Golovato's work [8l and some of our experiments [5] on oscillating ship- 
models confirmed this fact for actual surface ships to a certain extent. 

The effects of forward speed are indeed very important for the calculation 
of shipmotions in waves. The two-dimensional solutions for damping and added 
mass of oscillating cylinders on a free surface, as given by Grim [9] and Tasai 
[10] show a very satisfactory agreement with experimental results. When the 
effects of forward speed can be estimated with sufficient accuracy, such two- 
dimensional values may be used to calculate the total hydrodynamic forces and 
moments on a ship, provided that integration over the shiplength is permissible. 

In order to study the speed effect on an oscillating shipform in more detail, 
a series of forced oscillating experiments wns designed. The main object of 
these experiments was to find the distribution of the hydrodynamic forces along 
the length of the ship as a function of forward speed and frequency of oscillation. 

THE EXPERIMENTS 

The oscillation tests were carried out with a 2.3 meter model of the Sixty 
Series, having a block coefficient CB = 0.70. The main dimensions are given in 
Table 1. The model is made of polyester, reinforced with fibreglass, and con¬ 
sists of seven separate sections of equal length. Each of the sections has two 
end-bulkheads. The width of the gap between two sections is one millimeter. 
The sections are not connected to each other, but they are kept in their position 
by means of stiff strain-gauge dynamometers, which are connected to a longitu¬ 
dinal steel box girder above the model. The dynamometers are sensitive only 
for forces perpendicular to the baseline of the model. 

By means of a Scotch-Yoke mechanism a harmonic heaving or pitching mo¬ 
tion can be given to the combination of the seven sections which form the ship- 
model. The total forces on each section could be measured as a function of fre¬ 
quency and speed. 

A non-segmented model of the same form was also tested in the same con¬ 
ditions of frequency and speed to compare the forces on the whole model with the 
sums of the section results. A possible effect of the gaps between the sections 
could be detected in this way. The arrangement of the tests with the segmented 
model and with the whole model is given in Fig. 2. 

The mechanical oscillator and the measuring system is shown in Fig. 3. In 
principle the measuring system is similar to the one described by Goodman [11]: 
the measured force signal is multiplied by cos ait and sin a* and after 
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Table 1 
Main Particulars of the Shipmodel 

Length between perpendiculars 2.258 m 

Length on the waterline 2.296 m 

Breadth 0.322 m 

Draught 0.129 m 

Volume of displacement 0.0657 m3 

Block coefficient 0.700 

Coefficient of mid-length section 0.986 

Prismatic coefficient 0.710 

Waterplane area 0.572 m2 

Waterplane coefficient 0.785 

Longitudinal moment of inertia of waterplane 0.1685 m4 

L.C.B. forward of Lpp 2 0.011 m 

Centre of effort of waterplane after Lpp/2 0.038 m 

Froude number of service speed 0.20 

integration the first harmonics of the in-phase and quadrature components can 
be found with distortion due to vibration noise. In some details the electronic 
circuit differs somewhat from the description in [11]. In particular synchro re¬ 
solvers are used instead of sine-cosine potentiometers, because they allow 
higher rotational speeds. 

The accuracy of the instrumentation proved to be satisfactory which is im¬ 
portant for the determination of the quadrature components, which are small in 
comparison with the in-phase components of the measured forces. 

Throughout the experiments only first harmonics were determined. It 
should be noted that non-linear effects may be important for the sections at the 
bow and the stern where the ship is not wall-sided. The forced oscillation tests 
were carried out for frequencies up to ^ = 14 rad/sec and four speeds of ad¬ 
vance were considered, namely: Fn = 0.15, 0.20, 0.25 and 0.30. Below a fre¬ 
quency of - = 3 to 4 rad/sec the experimental results are influenced by wall 
effect due to reflected waves generated by the oscillating model. 

The motion amplitudes of the shipmodel covered a sufficiently large range 
to study the linearity of the measured values (heave ~4 cm, pitch ~4.6 degrees). 
An example of the measured forces on section 2, when the combination of the 
seven sections performs a pitching motion, is given in Fig. 4. 
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PRESENTATION OF THE RESULTS 

Whole Model 

It is assumed that the force F and the moment M acting on a forced heaving 
or pitching shipmodel can be described by the following equations: 

Heave 

( a + pV) z0 + bzo + czo = Fz sin (ait + a) 

Dz„ + Ez + Gz„ o o o -Mz sin (cot+ ß) 

Pitch 

(A + kyypv) 6 + BO + Cd = Mg sin (ait + y) 

dt? + eö + gô = -F0 sin (fit + h) 

For a given heaving motion z0 = za sin at, it follows that: 

-M sin ß 
b = 

a = 

F„ sin a 

cz „ - F. cos a 
PV 

gza + Mz cos ß 

(1) 

(2) 

(3) 
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Similar expressions are valid for the pitching motion. The determination 
of the damping coefficients b and B and the damping cross-coupling coefficients 
e and E is straightforward: for a given frequency these coefficients are propor¬ 
tional to the quadrature components of the forces or moments for unit amplitude 
of motion. For the determination of the added mass, the added mass moment of 
inertia, a and A, and the added mass cross-coupling coefficients d and D it is 
necessary to know the restoring force and moment coefficients c and C, and the 
statical cross-coupling coefficients r and g. 

The statical coefficients can be determined by experiments as a function of 
speed at zero frequency. For heave the experimental values show very little 
variation with speed; they were used in the analysis of the test results. 

In the case of pitching there is a considerable speed effect on the restoring 
moment coefficient C. C decreases approximately 12% when the speed increases 
from Fn = 0.15 to 0.30. This reduction is due to a hydrodynamic lift on the hull 
when the shipmodel is towed with a constant pitch angle. Obviously this lift ef¬ 
fect also depends on the frequency of the motion. Consequently, the coefficient 
of the restoring moment, as determined by an experiment at zero frequency, 
may differ from the value at a given frequency. 

As it is not possible to measure the restoring moment and the statical 
cross-coupling as a function of frequency, it was decided to use the calculated 
values at zero speed. This is an arbitrary choice, which affects the coefficients 
of the acceleration terms: ior harmonic motions a decrease of c by AC results 
in an increase of A by AC/oj2 when C is used in the calculation. 

The results for the whole model are given in the Figs. 5 and 6. The results 
for the heaving motion were already published in [13]; they are presented here 
for completeness. 

Results for the Sections 

The components of the forces on each of the seven sections were determined 
in the same way as for the whole model. As only the forces and no moments on 
the sections were measured two equations remain for each section: 

Heave 

Pitch 

(a* + pv*) zo + b*zQ + c*zo = F*z sin (cot + a*) , 

(d + PV x¡) Ö + eö + rö = -Fg sin (cut + S*) , 

(4) 

where pv is the mass-moment of the section i with respect to the pitching 
axis. The star (*) indicates the coefficients of the sections. The section co¬ 
efficients divided by the length of the sections give the mean cross-section co¬ 
efficients, thus: 
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HEAVING MOTION 

_ Fr, ..IS 
_Fn ..20 
_Fn ..25 
_Fn . 30 

Fig. 5 - Experimental results for whole model 
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PITCHING MOTION 

_Fn . 20 
_Fn . 25 
_Fn . 30 

Fig. 6 - Experimental results for whole model 
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and so on. Assuming that the distributions of the cross-sectional values of the 
coefficients a', b', etc., are continuous curves, these distributions can be de¬ 
termined from the seven mean cross-section values. In the Figs. 7, 8, 9 and 10 
the distributions of the added mass a, the damping coefficient b and the cross¬ 
coupling coefficients d and e are given as a function of speed and frequency. 
Numerical values of the section results, a', b*, etc., are summarized in the 
Tables 2, 3, 4 and 5. 

Table 2 
Added Mass for the Sections and the Whole Model 

kg sec 2/m 

Fn = 0.15 

CO 

rad/ 
sec 

* a a 

i 2 3 4 5 6 7 Sum of 
Sections 

Whole 
Model 

4 
6 
8 

10 
12 

-1.21 
0.31 
0.24 
0.20 
0.18 

0.59 
0.66 
0.60 
0.69 
0.78 

1.08 
1.09 
1.29 
1.40 

0.54 
1.38 
1.37 
1.48 
1.60 

0.87 
1.26 
1.28 
1.34 
1.45 

0.41 
0.65 
0.76 
0.85 
0.90 

-0.17 
0.02 
0.10 
0.14 
0.17 

5.36 
5.44 
5.99 
6.48 

1.84 
5.37 
5.26 
5.91 
6.39 

Fn = 0.25 
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In Fig. 8 it is shown that the distribution of the damping coefficient b de¬ 
pends on forward speed and frequency of oscillation. The damping coefficient of 
the forward part of the shipmodel increases when the speed is increasing. At 
the same time a decrease of the damping coefficient of the afterbody is noticed. 
For high frequencies negative values for the cross-sectional damping coeffi¬ 
cients are found. 

Table 3 
Damping Coefficients for the Sections and the Whole Model 

kg sec/m 

Fn = 0.15 

(Ó 

rad/ 
sec 

b* b 

1 2 3 4 5 6 7 Sum of 
Sections 

Whole 
Model 

4 
6 
8 

10 
12 

2.03 
1.82 
1.61 
1.36 
0.95 

9.78 
4.42 
2.31 
1.08 
0.47 

4.55 
2.26 
0.76 
0.44 

5.78 
4.58 
2.75 
1.39 
0.87 

3.80 
4.52 
3.35 
2.36 
1.89 

4.80 
4.78 
3.94 
3.43 
3.09 

2.00 
1.67 
1.53 
1.49 
1.50 

26.34 
17.75 
11.87 
9.21 

35.63 
26.53 
17.49 
11.63 
8.54 

4 
6 
8 

10 
12 

Fn = 0.20 

1.53 
1.95 
1.50 
1.10 
0.74 

4.53 
3.95 
1.91 
0.37 

■0.15 

5.08 
4.32 
2.25 
0.62 
0.21 

5.05 
4.45 
2.81 
1.54 
1.01 

5.73 
4.52 
3.49 
2.70 
2.18 

6.63 
5.07 
4.38 
4.01 
3.84 

2.50 
2.07 
1.94 
1.90 
1.93 

31.05 
26.33 
18.28 
12.24 
9.76 

Fn = 0.25 

31.33 
26.15 
17.78 
12.14 
9.03 

4 
6 
8 

10 
12 

2.13 
1.97 
1.48 
0.95 
0.52 

4.80 
3.43 
1.58 

-0.06 
-0.56 

5.38 
4.17 
2.28 
0.60 

-0.03 

5.20 
4.23 
2.83 
1.68 
1.03 

5.98 
4.62 
3.68 
3.00 
2.63 

7.63 
5.68 
5.21 
4.96 
4.74 

2.85 
2.35 
2.19 
2.20 
2.29 

33.97 
26.45 
19.25 
13.33 
10.62 

35.88 
27.63 
18.75 
12.69 
9.78 

Fn = 0.30 
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The added mass distribution, as shown in Fig. 7, changes very little with 
forward speed but there is a shift forward of the distribution curve for increas¬ 
ing frequencies. 

Negative values for the cross-sectional added mass are found for the bow 
sections at low frequencies. For higher frequencies the influence of frequency 
becomes very small. 

Table 4 
Added Mass Cross-Coupling Coefficients 

for the Sections and the Whole Model 
kg sec2 

Fn = 0.15 

Cx) 

rad/ 
sec 

d* d 

1 2 3 4 5 6 7 Sum of 
Sections 

Whole 
Model 

4 
6 
8 

10 
12 

-0.42 
-0.27 
-0.19 
-0.19 

-0.47 
-0.44 
-0.43 
-0.45 

-0.33 
-0.40 
-0.40 
-0.40 

+0.02 
-0.01 
-0.01 
-0.01 

+0.59 
+0.46 
+0.38 
+0.37 
+0.40 

+0.28 
+0.57 
+0.50 
+0.49 
+0.51 

+0.13 
+0.13 
+0.15 
+0.15 

-0.04 
-0.11 
-0.02 
+0.01 

+0.09 
-0.16 
-0.10 
-0.04 

Fn = 0.20 
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Fig. 9 - Distribution of d' over 
the length of the shipmodel 
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Fig. 10 - Distribution of e over 
the length of the shipmodel 
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Table 5 
Damping Cross-Coupling Coefficients for the 

Sections and the Whole Model 
kg sec 

Fn = 0.15 

CO 

rad/ 
sec 

* e e 

i 2 3 4 5 6 7 Sum of 
Sections 

Whole 
Model 

4 
6 
8 

10 
12 

-1.65 
-1.71 
-1.40 
-1.07 

-2.58 
-2.49 
-2.01 
-1.55 

-2.12 
-2.45 
-2.43 
-2.28 

-1.19 
-1.81 
-2.10 
-2.39 

+1.63 
-0.09 
-0.68 
-1.21 
-1.52 

+1.34 
+1.70 
+1.20 
+0.88 
+0.63 

+1.21 
+1.09 
+1.05 
+1.05 

-4.72 
-6.84 
-7.22 
-7.13 

-2.43 
-5.32 
-6.75 
-7.04 
-6.88 

n = 0.20 

4 
6 
8 

10 
12 

-1.22 
-1.68 
-1.59 
-1.29 
-0.98 

-3.07 
-2.43 
-2.36 
-2.04 
-1.65 

-2.40 
-2.83 
-3.02 
-2.99 

-2.06 
-2.50 
-2.87 
-2.97 

-0.68 
-1.25 
-1.75 
-2.06 

+2.39 
+1.52 
+1.11 
+0.82 
+0.61 

+1.77 
+1.42 
+1.32 
+1.29 
+1.30 

-6.31 
-8.10 
-8.86 
-8.74 

-6.63 
-6.65 
-8.23 
-8.86 
-8.75 

Fn = 0.25 

4 
6 
8 

10 
12 

-1.37 
-1.23 
-1.30 
-1.19 
-0.91 

-2.82 
-1.93 
■1.96 
■2.06 
■1.97 

-3.61 
-3.16 
-3.55 
-3.94 
-4.08 

-3.06 
-3.06 
-3.42 
-3.90 
-4.19 

-1.22 
-1.84 
-2.32 
-2.70 
■2.97 

+2.19 
+1.43 
+1.03 
+0.76 
+0.56 

+1.98 
+1.72 
+1.67 
+1.67 
+1,69 

-7.91 
-8.07 
-9.85 

-11.36 
-11.87 

-7.55 
-7.95 
-9.81 

-11.25 
-11.84 

The distribution of the damping cross-coupling coefficient e varies with 
speed and frequency as shown in Fig. 10. From Fig. 9 it can be seen that the 
added mass cross-coupling coefficient depends very little on speed. For higher 
frequencies the influence of frequency is small. 

As a check on the accuracy of the measurements the sum of the results for 
the sections were compared with the results for the whole model. The following 
relations were analysed: 
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5! a* = a 

lb* = b 

Id* = d 

le* = e 

J 
L 

( 
J 

L 

Í 

d ' X dx = A 

e ' X dx : B 

a ' X dx = D 

b' X dx = E . 

The results are shown in Fig. 11 for a Froude number Fn = 0.20. For the other 
Speeds a similar result was found. A numerical comparison is given in the Ta¬ 
bles 2, 3, 4 and 5. It may be concluded that the section results are in agreement 
with the values for the whole model. No influence of the gaps between the sec¬ 
tions could be found. 

‘_* 
0 5 10 15 

oi —► rad/B»c 

• SUM OF SECTIONS 

o WHOLE MODEL 

Fig. 11 - Comparison of the sums of section results and 
the whole model results for Froude number Fn = 0.20 
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ANALYSIS OF THE RESULTS 

The experimental values for the hydrodynamic forces and moments on the 
oscillating shipmodel will now be analysed by using the strip theory, taking into 
account the effect of forward speed. For a detailed description of the strip the¬ 
ory the reader is referred to [1], [2] and [3]. For convenience a short descrip¬ 
tion of the strip theory is given here. The theoretical estimation of the hydro- 
dynamic forces on a cross-section of unit length is of particular interest with 
regard to the measured distributions of the various coefficients along the length 
of the shipmodel. 

Strip Theory 

A right hand coordinate system x0y0z0 is fixed in space. The z0 -axis is 
vertically upwards, the x0-axis is in the direction of the forward speed of the 
vessel and the origin lies in the undisturbed water surface. A second right hand 
system of axis xyz is fixed to the ship. The origin is in the centre of gravity. 
In the mean position of the ship the body axis have the same directions as the 
fixed axis. 

Consider first a ship performing a pure harmonic heaving motion of small 
amplitude in still water. The ship is piercing a thin sheet of water, normal to 
the forward speed of the ship, at a fixed distance x0 from the origin. 

At the time t a strip of the ship at a distance x from the centre of gravity 
is situated in the sheet of water. From x0 = vt + x it follows that x ^ -v, where 
V is the speed of the ship. 

The vertical velocity of the strip with regard to the water is z0, the heav¬ 
ing velocity. The oscillatory part of the hydromechanical force on the strip of 
unit length will be 

where m' is the added mass and N' is the damping coefficient for a strip of unit 
length and y is the half width of the strip at the waterline. Because 

dm ' dm' 
dt dx 

it follows that 

K = z0 - 2pgyz0 . (5) 

For the whole ship we find, because 

L 
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where Aw is the waterplane area. The moment produced by the force on the 
strip is given by 

mh z ~xFhz f™') ¿'o + (N'x - Vx ¿0 + 2^xyzo • (7) 

Because 

Í X ^ dx 
dx 

-m , 

we find for the whole ship 

MH xm'dxj + N'xdx + Vmj z0 + PgSwz0 (8) 

where sw is the statical moment of the waterplane area. 

For a pitching ship the vertical speed of the strip at x with regard to the 
water will be -x8 + \0, and the acceleration is -x0+ 2V¿. The vertical force on 
the strip will be 

Fp z m'(-xÖ + VÖ) - N'(-x<9 + VÖ) - 2pgyx0 , 

or 

F' = m\0 + (n'x -2Vm' -xV ¿ + (2pgyx + V2 ^ -N'vjö. (9) 

The total hydromechanical force on the pitching ship will be 

Fp = ^ J tn'x dxj ^ + ^ J N'xdx - Vmjö + |p g Sw - V J N'dx j Ö . (10) 

The moment produced by the force on the strip is given by 

Mp - - xFp = -m'x20 - ^N 'X2 - 2Vm'x - x2V j Ò - ^2pgyx2 + V2x - N'Vx j Ö . (11) 

The total moment on the pitching ship will be 

Mp = - /J m'x2dx\ Ö - f J N'x2 dx\è - /pg Iw-V2 m - V j" N'xdx\ö, (12) 
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Î 

because 

Íx2v inrdx = _2V Í m'xdx • 
L x JL 

A summary of the expressions for the various coefficients for the whole ship 
according to the notation in Eqs. (1) and (2) is given in Table 6. 

Table 6 
Coefficients for the Whole Ship 
According to the Strip Theory 

For the cross-sectional values of the coefficients similar expressions can 
be derived from the Eqs. (5) to (12). For the comparison with the experimental 
results two of these expressions are given here, namely: 

b' 

e' = N'x - 2Vm' - xV . 
dx 

(14) 

Also it follows that 

and 

A = 

B = 

f d 'x dx 

j* e 'xdx . 

(15) 
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Comparison of Theory and Experiment 

For a number of cases the experimental results are compared with theory. 
First of all the damping cross-coupling coefficients are considered. From Eqs. 
(13) it follows that: 

E = J N'x dx + Vm 

(16) 
e = f N'xdx-Vm. 

•V 
The first term in both expressions is the cross-coupling coefficient for zero 
forward speed. For a fore and aft symmetrical ship this term is equal to zero. 
For such a ship the resulting expressions are equal in magnitude but have oppo¬ 
site sign, which is in agreement with the result found by Timman and Newman 
[7). The experiments confirm this fact as shown in Fig. 13 where e and E are 
plotted on a base of forward speed as a function of the frequency of oscillation. 
The magnitude of the speed dependent parts of the coefficients is equal within 
very close limits. Extrapolation to zero speed shows that the e and E lines in¬ 
tersect in one point which should represent the zero speed cross-coupling co¬ 
efficient. 

Using Grim's two-dimensional solution for damping and added mass at zero 
speed [9] the coefficients e and E were also calculated according to the Eqs. 
(16). The distribution of added mass and damping coefficient for zero speed is 
given in Fig. 12 and the calculated damping cross-coupling coefficients are 
shown in Fig. 13. 

Fig. 12 - Calculated distribution of a and b for zero speed 
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The calculated values are in line with the experimental results. The natu¬ 
ral frequencies for pitch and heave are respectively ^ = 7.0/6.9 rad/sec and in 
this important region the calculation of the damping cross-coupling coefficients 
is quite satisfactory. The zero speed case will be studied in the near future by 
oscillating experiments in a wide basin to avoid wall influence. 

Another comparison of theory and experiment concerns the distribution 
along the length of the shipmodel of the damping coefficient and of the damping 
cross-coupling coefficient e. From Eq. (14): 

b' = N' - V ^ , 
dx 

e' = N'x - 2Vm' - xV ^ . 

Again using Grim's two-dimensional values for N' and m', these distributions 
could be calculated. An example is given in Fig. 14. Also in this case the 
agreement between the calculation and the experiment is good. For high speeds 
negative values of the cross-sectional damping in the afterbody can be explained 
on the basis of the expression for b', because in that region dm'/dx is a posi¬ 
tive quantity. 

Finally the values for the coefficients A, b, a and b for the whole model, 
as given by the Eqs. (13) were calculated and compared with the experimental 
results. Figure 15 shows that the damping in pitch is over-estimated for low 
frequencies. The other coefficients agree quite well with the experimental re¬ 
sults. 

Fig. 14 - Comparison of the calculated distribution of e 
and b with experimental values for Froude number 0.20 
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-Fu..« 
.. - - Fn,.M 

Fig. 15 - Comparison of calculated and measured values 
for a, b, A and b (whole model) 

a 
A 

LIST OF SYMBOLS 

Q I coefficients of the motion equations (hydromechanical part), 

j * * 'l 

' * l the same for a section of the ship, 

j. the same for a cross-section of the ship, 

a 

A* 

a 

A' 

CB Block coefficient, 

Fn Froude number 

Fz'Fe amplitude of vertical force on a heaving or pitching ship, 
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DU.abution oí Hydrodynamic Forcea on a Shipmodei 

P.“hyipM 0' ,he force o„ a heav,^ or 

acceleration of gravity, 

longitudinal radius of inertia of the ship, 

length between perpendiculars, 

amplitude of moment on a heaving or pitching ship, 

p“¡Xr‘ °f ^ hydr0m“ta"1CaI on a heaving or 

added mass of a cross-section (zero speed), 

damping coefficient of a cross-section (zero speed), 

time, 

forward speed of ship, 

right hand coordinate system, fixed to the ship, 

right hand coordinate system, fixed in space, 

vertical displacement of ship, 

distance of centre of gravity of a section to the pitching axis, 

phase angles, 

pitch angle, 

density of water, 

circular frequency, 

volume of displacement of ship, and 

volume of displacement of section. 
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DISCUSSION 

E. V. Lewis 
Webb Institute of Naval Architecture 
Glen Cove, Long Island, New York 

This is a noteworthy paper in an important series by Professor Gerritsma 
and his colleagues that is of vital importance to ship motion theory. This con¬ 
tinuing work has been characterized by unerring choice of the right research 
subjects and by extraordinary experimental skill. The results have served to 
clarify the so-called "strip theory" of ship motion calculations and to provide 
step by step confirmation of the different elements of the theory. Thus the tre¬ 
mendous power of this comparatively simple approach to the problems of ship 
motions is being reinforced and the value of the pioneering insight of Korvin- 
Kroukovsky and others confirmed. 

It may not be generally realized that this type of experiment, in which 
forces on seven different sections are measured, is of unusual difficulty, not 
only because of the many simultaneous readings to be taken, but in the need for 
accurate determination of in-phase and out-of-phase force components in spite 
of extraneous noise. The authors have mastered this difficult problem. 

The particular value of the resulting research is in showing that when the 
ship velocity terms are included, excellent predictions of the longitudinal dis¬ 
tribution of damping forces are obtained. Furthermore, the nature of the cross¬ 
coupling coefficients, E and e, has been clarified by the demonstration that they 
should be equal at zero speed and differ only by the term ±Vm at forward speeds. 
(Incidentally, m is not defined, but is apparently equal to - a.) 

Incidental features of the paper are simplifications in the coefficients, which 
are not immediately obvious. It is mentioned that 

which makes the B coefficient, Eq. (13), much simpler than given in (1). Also 

and therefore the e coefficient is also simplified [Eq. (13)]. Hence, the simple 
relationship between e and E emerges in Eq. (16) and Fig. 13. 

It is hoped that this important work strengthening the strip theory approach 
will be continued, including oscillation tests at zero speed and restrained tests 
in waves. My congratulations to the authors for a beautiful piece of research. 
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DISCUSSION 

J. N. Newman 
David Taylor Model Basin 

Washington, D.C. 

First of all let me congratulate the authors on yet another in the series of 
excellent papers which we have come to expect from Delft. 

Certainly one of the most valuable results obtained recently is the very 
simple forward speed correction to the strip theory, as outlined in the strip 
theory paragraph, and the correlation of this theory with experiments. It would 
seem that all important speed effects are taken into account simply by replacing 
the time derivative in a fixed coordinate system by that for a moving coordinate 

2 - V -i 
dt dt cbc 

As a result, the added mass coefficient contributes both to the acceleration and 
velocity terms of the equations of motion, since 

However this process seems rather arbitrary; why not repeat it for the second 
time derivative, so that 

dt2 
m z„ 2pgyz0 

N' - 2V 
dm ' \ 
dx / o " ^2pgy + V 2 d2m' 

dx2 

It is clear from the experimental results that too much cross-coupling would 
result, and thus that the last equation is ridiculous both in appearance and in 
practical utility, but I am left wondering why the equation used in the paper is 
so much better. Is it possible to give any rational explanation for this? 

Finally, since Professor Vossers is not here to defend himself, let me 
point out that, in general, forward speed will have an effect on the distribution 
of hydrodynamic forces along an oscillating slender body. Vossers reached the 
opposite conclusion only for the special case of high frequencies of encounter 
and very slow speeds. 

* * * 
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DISCUSSION OF THE PAPERS BY GERRITSMA AND 

BEUKELMAN AND BY VASSILOPOULOS AND MANDEL 

T. R. Dyer 
Technological University 

Delft, Netherlands 

The paper by Vassilopoulos and Mandel rigorously examined seakeeping 
theory, with valuable emphasis on practical ship design. The paper by Gerritsma 
and Beukelman contains significant experimental results and a clear concise 
strip theory, thus relating theory and physical phenomena. However, the paper 
by Vassilopoulos and Mandel agrees only partially with Gerritsma and Beukel¬ 
man, and with Korvin-Kroukovsky. 

The papers were examined by this discusser with the following results: 

1. Complete agreement exists as to (a) which motion derivatives appear in 
each coefficient, and (b) the appearance of velocity dependent terms arising 
purely from the mechanics of a fixed axis system. 

2. Disagreement exists as to the importance of the effect of forward speed 
on strip theory, but this is the only point of disagreement. 

This disagreement led to different evaluations of some motion derivatives. 
Direct comparison of the coefficients in the two papers does not reveal all dis¬ 
agreement, because of the cancellation of terms due to strip theory by terms 
due to the mechanics of a fixed axis system. The disagreement in the strip the¬ 
ory specifically arose in two ways: (1) Gerritsma and Beukelman consider sec¬ 
tional added mass to be a function of time, as suggested by Korvin-Kroukovsky. 
This is a "three-dimensional correction" and is justified experimentally by a 
velocity dependence in the b' term for the three-dimensional end sections of 
Gerritsma and Beukelman's model. (2) Gerritsma and Beukelman consider the 
distance x, between the body axis origin and the hypothetical sheet of water, to 
be a function of time. This is independent of dimensionality. The second differ¬ 
ence is confusing; for Vassilopoulos and Mandel do implicitly take x as function 
of time when converting from movable to fixed axes, but do not when anolvine 
the strip theory. 

The strip theory of Gerritsma and Beukelman was re-derived, eliminating 
these disagreements. The results agreed completely with those of Vassilopoulos 
and Mandel. Application of integrals quoted by Gerritsma and Beukelman showed 
agreement between that paper and Korvin-Kroukovsky. This therefore showed 
no errors in Korvin-Kroukovsky's work, only disagreement with Vassilopoulos 
and Mandel as to the role of forward speed on the strip theory. Conversion of 
Gerritsma and Beukelman results to a movable axis system revealed no diffi¬ 
culties, but clearly showed which speed terms result from mechanics and which 
from strip theory. 
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The differences, therefore, are seen to be completely a result of a different 
assumption of the importance of forward speed on strip theory, independent of 
what axis system is used. The assumption of Gerritsma and Beukelman seems 
to be justified by experiment. The derivation of the equations of motion by 
Vassilopoulos and Mandel, due to Abkowitz, seems the most rigorous and satis¬ 
fying. However, the evaluation of the motion derivatives by Gerritsma and 
Beukelman, due in part to Korvin-Kroukovsky, seems to yield better results. 

This discusser therefore feels it most practical to use the former work to 
study the mathematics of motion and the latter to evaluate the motion derivatives. 

* * * 

REPLY TO THE DISCUSSION BY E. V. LEWIS 

J. Gerritsma and W. Beukelman 
Technological University 

Delft, Netherlands 

The authors are grateful to have Professor Lewis' comments on their paper. 

The definition of m, which is omitted in the paper, is given by 

j" m'dx = m = a . 
L 

It should be noted that 

I X dm' = - m'dx 
L L 

and not 

J* X dm ' = f m 'dx , 
L L 

as suggested by Professor Lewis. 

The work reported in this paper was recently extended for the zero forward 
speed case. 

These tests were carried out in a wide basin to avoid wall influence, due to 
reflected waves. The results support the conclusions of the present paper. 

Within the very near future the restrained tests in waves with the segmented 
model will be carried out in our Laboratory. The results will be compared with 
calculated values. 

* * * 
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Distribution of Hydrodynamic Forces on a Shipmodel 

REPLY TO THE DISCUSSION BY J. N. NEWMAN 

J. Gerritsma and W. Beukelman 
Technological University 

Delft, Netherlands 
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no epart too much from a harmonic motion (see Ref. [2] ). 
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A NEW APPRAISAL OF STRIP THEORY 

Lyssimachos Vassilopoulos and Philip Mandel 
Massachusetts Institute of Technology 

Cambridge, Massachusetts 

ABSTRACT 

After a brief historical review, this paper presents the results of the 
broad comparison between experimentally measured and theoretically 
computed ship motions and phase angles first reported in Ref. [6]. 
Tank data for a wide range of Series 60 models in regular waves were 
extracted from N.S.M.B. publications and correlated with model re¬ 
sponses calculated by a digital computer program which is based on the 
Korvin-Kroukovsky linear theory of ship motions in conjunction with 
Grim's latest results on added mass and damping. Seas from both di¬ 
rectly ahead and astern are considered and emphasis is paid to the ef¬ 
fects of variations in uull form shape and weight distribution. 

Methods which will improve the applicability of strip theory and ad¬ 
vantages to be gained by modifying its analytical description are next 
presented in anticipation of further development of the theory. New 
theoretical data on added mass and damping are also discussed. Al¬ 
though no definite statements are as yet made with regard to some 
apparent inconsistencies in the Korvin-Kroukovsky analysis, there is 
reason to believe that certain modifications and corrections can be 
made which will generally improve the procedure and render it more 
useful. 

INTRODUCTION 

About seventy years ago, Captain Kriloff laid the foundation of what today is 
known to be the strip theory for computing pitching and heaving motions of a 
ship in regular waves [1,2]. Yet, it was only in 1950 when Weinblum and St. 
Denis launched a new era in seakeeping research [3] that Kriloff’s seldom read 
paper received the recognition it deserved. During the last decade, Korvin- 
Kroukovsky addressed himseF to the problem of improving and refining the 
analytical procedure and in this work he was assisted by numerous complemen¬ 
tary studies made by other researchers. The culmination of all this activity led 
to the publication in 1960 of a guide by Jacobs et al. [5] making possible the 
ready application of strip theory as it was understood at that time. 

In a recent report [6], one of the present authors utilized strip theory es¬ 
sentially as it was set forth by Jacobs et al., with a view towards evaluating 
seaworthiness performance in random seas along analytical lines. The present 
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paper rests heavily on the results reported in Part I of Ref. [6] which includes 
an extensive correlation of results of strip theory calculations with model re¬ 
sults for a wide range of hull forms. The present paper also reports on the 
further analysis made and experience gained since the publication of Ref. [6]. 

In contrast to the more rigorous thin-ship, raft and slender body theories, 
strip theory is undoubtedly the crudest and relies on the most limiting assump¬ 
tions. However, in advocating a less rigorous approach, the proponents of strip 
theory were presenting tc the profession a procedure for immediate practical 
application, something which more rigorous approaches to the ship motion prob¬ 
lem have still failed to fulfill adequately. In the words of the quotation selected 
by Korvin-Kroukovsky [9], the advocates of strip theory have had to truly sacri¬ 
fice rigor in favor of vigor. 

Strip theory has reached its present state through a series of distinct stages 
during which significant contributions and corrections were advanced from time 
to time. In fact, a perusal of its evolution indicates that the method was built on 
a series of estimations, adjustments, and tedious accounting. Too many approx¬ 
imations which were neglected for "obvious" reasons in the beginning had to be 
incorporated at a later stage and many "essential" truths had to be finally neg¬ 
lected. 

The fact that the strip theory procedure was not initially developed on a 
rigorous physical and analytical basis caused, and still causes, much doubt as 
to its validity in practical applications. For example, Cummins has referred to 
it [7] as a "shoe that doesn't really fit." On the other hand, at this stage of 
progress in seakeeping research, we cannot yet afford to reject a useful device 
which simulates nature fairly effectively, albeit, by force. 

In support of the previous statement, one of the objectives of the work re¬ 
ported in Ref. [6] was to assess the degree of correlation between strip theory 
and experiment. It is mandatory to note that since both experimental and theo¬ 
retical approaches contain sources of systematic errors, this comparison at¬ 
tempt was characterized by the absence of a distinct norm. Thus, it is only to 
be interpreted as being an attempt to match the products of strip theory and ex¬ 
periment in the hope that further light will be shed. 

After a brief historical review, this paper presents the results of the broad 
comparison between experimentally measured and theoretically computed ship 
motions and phase angles first reported in Ref. [6]. Tank data for a wide range 
of Series 60 models in regular waves were extracted from N.S.M.B. publications 
and correlated with model responses calculated by a digital computer program 
which is based on the Korvin-Kroukovsky linear theory of ship motions in con¬ 
junction with Grim's latest results on added mass and damping. Seas from both 
directly ahead and astern are considered and emphasis is paid to the effects of 
variations in hull form shape and weight distribution. 

Methods which will improve the applicability of strip theory and advantages 
to be gained by modifying its analytical description are next presented in antici¬ 
pation of further development of the theory. New theoretical data on added mass 
and damping are also discussed. Although no definite statements are as yet 
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made with regard to some apparent inconsistencies in the Korvin-Kroukovsky 
analysis, there is reason to believe that certain modifications and corrections 
can be made which will generally improve the procedure and render it more 
useful. 

It is important to note that the prime objective of the authors' research ef¬ 
fort is to ascertain the importance of seaworthiness considerations in prelimi¬ 
nary design. Since, however, strip theory of all suggested theoretical approaches 
had been brought closest to practical application, the decision was made that it 
was the most appropriate building block upon which to erect further structure. 
This report constitutes the authors' thoughts as to the accuracy of the strip 
theory as currently understood and suggestions for improvements. 

HISTORICAL NOTES 

The earliest and least refined version of strip theory was presented in Ref. 
[8], where the authors essentially amplified the studies of Kriloff, Weinblum, St. 
Denis and other pioneers in the field of ship oscillations. The major advance¬ 
ment in Ref. [8] was the inclusion of some of the cross-coupling coefficients in 
the equations of motion. The first complete presentation of the procedure fol¬ 
lowed in 1955 [9] and was subsequently corrected and improved two years later 
[10]. In this effort, various discussers of Ref. [10] and in particular Kaplan [11] 
and Abkowitz [12] were instrumental in pointing out certain mistakes of the 1955 
exposition, while Fay's analysis [13] motivated a more accurate definition of the 
velocity dependent terms in the equations of motion. Finally, Jacobs [14] at the 
suggestion of several discussers of Ref. [9] presented a more precise expres¬ 
sion for the exciting force (and moment) and hence extended the procedure to the 
analytical calculation of ship bending moments, as a result of which a unified 
computational approach was outlined in [5]. The most recent discussion on the 
coefficients of the equations of motion and excitation terms appears in Ref. [15], 
wherea¿ for a complete summary of the whole problem as it was understood by 
Korvin-Kroukovsky the interested reader is referred to Ref. [4]. 

Since the appearance of Ref. [6], the inclusion of hull-shape nonlinearities 
was achieved by Parissis [16]. This latter work represents a further refinement 
of strip theory and provides, with the aid of Kerwin's polynomial hull represen¬ 
tation [17], some interesting answers with regard to the validity of linearity and 
effect of hull-shape non-linearities on ship responses. Although this quasi- 
nonlinear work is valuable in its own right, it is of no direct use in statistical 
analysis which is solidly tied to linear systems. 

STRIP THEORY VERSUS EXPERIMENT 

The first objective of the investigation reported in Ref. [6] was to attempt 
to assess the accuracy of the strip theory in the form it existed at the time of 
writing, Ref. [5]. This was accomplished by correlating theoretical computa¬ 
tions to experimental data published by the Netherlands Ship Model Basin in 
Refs. [18] and [19]. The results reported in the latter publications were chosen 
as the main source for the comparison attempt because they contained the most 
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systematic experimental data in seakeeping obtained to date and also because 
they dealt with the effects of extensive variations of hull form shape and hull 
weight distributions on model motions. The experimental data contained in the 
NSMB reports covered variations in: 

1. block coefficient (cb), 

2. length to beam ratio (l b), 

3. length to draft ratio (L/H), 

4. longitudinal radius of gyration (k(;) 

for motion in regular waves of height (double amplitude) equal to 1/50 the model 
length at four different speeds (Froude number of 0.10, 0.15, 0.20 and 0.25) and 
several heading angles. 

To accomplish the extensive calculations involved in strip theory, a com¬ 
puter program was written, debugged and used on the IBM 7094 digital computer 
of the Computation Center at M.I.T. For a detailed description of the program 
and its use, the interested reader is referred to Ref. [6]. The basic steps in- 
volved in the digital computation are essentially similar to the ones proposed in 
Ref. 15J. Thus, the whole computation is broken down into suitable packages 
which can be easily modified or extended if this is deemed necessary. The ship 
hull, however, and certain of the coefficients of the equations of motion are more 
accurately defined in the M.I.T. computer program than in Ref. [5l. Also, a 
s“brout'ne based on Grim’s theory for calculating damping and added mass co- 
efficients was incorporated, in preference to the graphical data presented in 
nef. 15 

The results of the theoretical computations were compared with only a oart 
of the results reported in Refs. [18] and [19]. In particular, consideration was 
given to non-dimensional pitching and heaving amplitudes together with their 
associated phase angles which correspond approximately to directly ahead and 
nfStpr!1 S<r?oï Tïeri^rd ',aPProximately" is used, since the experimental results 
of Refs. [18] and [19] referred to actual heading angles of 10u and 170°, and 
therefore some corrections had to be made for direct comparison at y = 0° and 
rif. 180u: Jbese corrections were based on a suggestion of the authors of Ref. 
[31 in which the model is considered to move at a modified speed in a fictitious 
train of waves of the same amplitude but different wavelength. This suggestion 
was recently justified by Lewis and Numata [20] for the case of small heading 

The correlation between theory and experiment was considered in two dis¬ 
tinct phases. The first phase dealt solely with the effects of variation of hull 
shape geometry and was accomplished for the range of hull parameters shown 
schematically in Fig. 1. Table 1 indicates the main particulars of the family of 
models chosen for the correlation. Further information required for the com¬ 
putations, such as sectional area coefficients and load waterline shape were ob- 
tained from Tables 4, 6, and 8 of the original paper on the Series 60 models 
121 ]• 

256 



A New Appraisal of Strip Theory 

Fig. 1 - Three-dimensional config¬ 
uration of model hull parameters 
under examination 

Table 1 
Series 60 Model Characteristics 

Model L 
(feet) 

B 
(feet) 

H 
(feet) L/B L H B/H cB Cp cw 

LCB 
(from 
% l) 

A* 
(lbs) 

A 

B 

C 

D 

E 

F 

G 

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

1.429 

1.429 

1.429 

1.429 

1.429 

1.176 

1.818 

0.571 

0.571 

0.571 

0.417 

0.909 

0.571 

0.571 

7.00 

7.00 

7.00 

7.00 

7.00 

8.50 

5.50 

17.50 

17.50 

17.50 

24.00 

11.00 

17.50 

17.50 

2.50 

2.50 

2.50 

3.43 

1.57 

2.06 

3.18 

0.800 

0.700 

0.600 

0.700 

0.700 

0.700 

0.700 

0.805 

0.710 

0.614 

0.710 

0.710 

0.710 

0.710 

0.871 

0.787 

0.706 

0.787 

0.787 

0.787 

0.787 

2.50F 

0.55A 

1.50A 

0.55A 

0.55A 

0.55A 

0.55A 

407.14 

356.25 

305.36 

260.17 

567.13 

293.17 

453.22 

:,!As calculated for fresh water based on above particulars. 

All models have a radius of gyration kâ = 0.24L = 2.4 feet. 
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The results of the first phase of the correlation are reported herein in the 
form of graphs of non-dimensional motion amplitudes versus wave length to ship 
length ratio for constant Froude number (Figs. 2-57). Heave is divided by the 
wave amplitude h0 and is considered positive upwards; pitch in radian measure 
is divided by the maximum wave slope (2VMh0 and is defined positive when the 
bow is up. Amplitudes of motions are considered positive for both ahead and 
astern wavelengths. Phase angles are superimposed on the same graphs and 
are defined as lags when referred to the maximum wave elevation amidships; 
their range is restricted to ±0-180° only. 

The second phase of the correlation was concerned with the effect of longi¬ 
tudinal weight distribution on ship motions. The experimental data required in 
this case were obtained from Figs. 16 and 17 of Ref. [19], In the latter work, 
Model C of Fig. 1 was ballasted in four additional ways so as to yield non- 
dimensional radii of gyration of k0 = 0.21, 0.225, 0.255 and 0.270. The previ¬ 
ous discussion with regard to presentation of data applies also in this phase of 
the investigation with the following exceptions due to insufficient model data: 

a. Only amplitudes of pitch and heave were compared. 

b. Only directly ahead seas (v = 180°) were considered. 

c. The results are given for only three Froude numbers of 0.15, 0.20, and 
0.25. 

Since Figs. 2-57 all pertain to the case of ke = 0.24, Figs. 58-65 deal with the 
remaining four values of k0 only. 

Wherever the wavelengths for resonance came within the range of values 
shown on Figs. 2-65, arrows are drawn to indicate their critical values. 

KEYS TO FIGURES 2-65 

Motion 
Non- Dimensional 

Amplitude 

Motion 
Phase Angle 

(Lag) 

Theoretical Experimental Theoretical Experimental 

0 • 
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Fig. 2 - Model A in directly ahead seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 3 - Model A in directly ahead seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 4 - Model A in directly ahead seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 5 - Model A in directly ahead seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 6 - Model A in directly astern seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 7 - Model A in directly astern seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 8 - Model A in directly astern seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 9 - Model A in directly astern seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 

266 

*
 

(D
E

G
R

E
E

S
) 

e
*
 

(D
E

G
R

E
E

S
) 



A New Appraisal of Strip Theory 

■*•150 

+ 100 

+ 50 

0 

- 50 

-100 

-150 

X/L 

+150 

+ 100 

+ 50 

0 

- 50 

-100 

-150 

Fig. 10 - Model B in directly ahead seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 11 - Model B in directly ahead seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 

X/L 

268 

S
* 

(D
E

G
R

E
E

S
) 

8
*
 

(D
E

G
R

E
E

S
) 



A New Appraisal of Strip Theory 

X/L 

1' ig. 12 - Model B in directly ahead seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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F'ig. 13 - Model B in directly ahead seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 14 - Model B in directly astern seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 15 - Model B in directly astern seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 16 - Model B in directly astern seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 17 - Model B in directly astern seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 18 - Model C in directly ahead seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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X/L 

Fig. 19 - Model C in directly ahead seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 20 - Model C in directly ahead seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 21 - Model C in directly ahead seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 22 - Model C in directly astern seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 23 - Model C in directly astern seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 24 - Model C in directly astern seas; pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 25 - Model C in directly astern seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 26 - Model D in directly ahead seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 27 - Model D in directly ahead seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 28 - Model D in directly ahead seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 29 - Model D in directly ahead seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 30 - Model D in directly astern seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 32 - Model D in directly astern seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 33 - Model D in directly astern seas pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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X/L 

Fig. 34 - Model E in directly ahead seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 35 - Model E in directly ahead seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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X/L 

Fig. 36 - Model E in directly ahead seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 37 - Model E in directly ahead seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 38 - Model E in directly astern seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 39 - Model E in directly astern seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 

296 

S
* 

(D
E

G
R

E
E

S
) 

8
*
 

(D
E

G
R

E
E

S
) 



A New Appraisal of Strip Theory 

X/L 

Fig. 40 - Model E in directly astern seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 41 - Model E in directly astern seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 42 - Model F in directly ahead seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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X/L 

Fig. 44 - Model F in directly ahead seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 45 - Model F in directly ahead seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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X/L 

Fig. 46 - Model F in directly astern seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 47 - Model F in directly astern seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 48 - Model F in directly astern seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 49 - Model F in directly astern seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 

306 

(D
E

G
R

E
E

S
) 

c
*
 

(D
E

G
R

E
E

S
) 



A New Appraisal of Strip Theory 

Fig. 50 - Model G in directly ahead seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 51 - Model G in directly ahead seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 52 - Model G in directly ahead seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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X/L 

Fig. 53 - Model G in directly ahead seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 54 - Model G in directly astern seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 55 - Model G in directly astern seas, heaving 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 56 - Model G in directly astern seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 57 - Model G in directly astern seas, pitching 
non-dimensional amplitude and phase angle vs 
wavelength to shiplength ratio 
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Fig. 58 - Model C (k0 = 0.210) in directly 
ahead seas, heaving non-dimensional am¬ 
plitude vs wavelength to shiplength ratio 
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Fig. 59 - Model C (k0 = 0.225) in directly 
ahead seas, heaving non-dimensional am¬ 
plitude vs wavelength to shiplength ratio 
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Fig. 60 - Model C (ks = 0.255) in directly 
ahead seas, heaving non-dimensional am¬ 
plitude vs wavelength to shiplength ratio 
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Fig. 61 - Model C (ks = 0.270) in directly 
ahead seas, heaving non-dimensional am¬ 
plitude vs wavelength to shiplength ratio 

318 



A New Appraisal of Strip Theory 

Fig. 62 - Model C (k0 = 0.210) in directly 
ahead seas, pitching non-dimensional am¬ 
plitude vs wavelength to shiplength ratio 
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Fig. 63 - Model C (k0 = 0.225) in directly 
ahead seas, pitching non-dimensional am¬ 
plitude vs wavelength to shiplength ratio 

N 320 



A New Appraisal of Strip Theory 

Fig. 64 - Model C (k0 = 0.255) in directly 
ahead seas, pitching non-dimensional am¬ 
plitude vs wavelength to shiplength ratio 
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Fig. 65 - Model C (ke = 0.270) in directly 
ahead seas, pitching non-dimensional am¬ 
plitude vs wavelength to shiplength ratio 
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DISCUSSION OF RESULTS 

Previous correlations between strip theory and experiment shown in Refs. 
[10,14,22,23] were for the case of ahead seas only and the agreement was de¬ 
scribed as very satisfactory. No direct comparison can be made however be¬ 
tween the results reported in the above references and the ones described 
herein, since the earlier correlations were based on more approximate hand 
computations and in some cases different formulations and/or experimental 
data for the coefficients and excitation terms were used. 

The current comparison for models of different hull shapes, shown in Figs. 
2-57 indicates that, in directly ahead seas, reasonably good correlation is 
achieved for heave amplitude. An exception is found in the case of Model E, 
Cb = 0.70, B/H = 1.57 (Figs. 34 and 35), where theory fails to reveal the cor¬ 
rect trends and grossly exceeds measured values. At the time Ref. [6] was pub¬ 
lished, it was suspected that this was due to numerical errors which probably 
arose for low B/H ratios in the subroutine of the computer program which cal¬ 
culates damping and added mass according to Grim's theory. As discussed in a 
later section, this suspicion was confirmed by subsequent analysis. Apart from 
this discrepancy and for all wavelengths, except those corresponding to reso¬ 
nance, agreement can be termed satisfactory. For wavelengths corresponding 
to resonance, theory overestimates experimental heaving amplitudes by 15-20¾. 
The above deviations are due to underestimation of heave damping by the ana¬ 
lytical approach which is in accord with previous findings [10,14,23], 

Agreement in directly ahead seas is much better for pitch than for heave 
although the trends are not the same for different models. For models A, B, C, 
and D (Figs. 2-33) at all speeds, theoretical results are below the experimental 
data and the effect is more pronounced as the wavelength is increased. In the 
case of Model E (Figs. 36-37) large discrepancies are not observable as with 
heaving motions. The best agreement in this case is found in the case of Model 
F (Figs. 44-45). 

With respect to phase angles in directly ahead seas, it will be seen that the 
theoretical predictions are usually higher than experiment and this is true for 
both pitch and heave. Since phase angles are more susceptible to both compu¬ 
tational and experimental errors, agreement should perhaps be interpreted as 
satisfactory whenever deviations are less than about 15-20%. Discrepancies 
usually occur at wavelengths equal to model length. Apparent disagreement is 
also observable at very short wavelengths, but this is mainly due to the manner 
in which experimental data have been presented in Ref. [18]. Pitching phase an¬ 
gles as computed by theory are much closer to the experimental data than heav¬ 
ing phase angles and this is particularly obvious in the case of Models F and G 
(Figs. 44-45 and 52-53). 

In the case of directly astern seas, heaving motion is underestimated by 
theory and the deviations increase with wavelength. For most models, agree¬ 
ment of pitching motion amplitudes in directly astern seas is excellent, although 
in the case of Models A and B (Figs. 8-9 and 16-17) theory is considerably lower 
than experiment. No comparisons have been made of phase angles in astern 
seas, but general indications are that theory reveals the expected trends. 
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The second part of the current correlation which is concerned with the ef¬ 
fect of weight distribution is illustrated in Figs. 58-65. For small radii of gy¬ 
ration, theoretical heaving motion amplitudes are slightly less than the experi¬ 
mental ones, but the situation is reversed and slightly worsened as ke is 
increased. Agreement in pitching motion appears to be similar and the tendency 
here is for the experimental data to be 15-20% higher, particularly at high wave¬ 
lengths. 

All figures for ahead seas indicate that for wavelengths less than about half 
the length of the model, both pitching and heaving motions are negligible while 
for wavelengths higher than about twice the model length, heaving becomes equal 
to the wave amplitude and pitching corresponds to the maximum wave slope. 
The range 0.91. < A < 1.5L excites the models the most. On the contrary, astern 
seas do not induce large responses in heave or pitch and amplitudes tend to in¬ 
crease in a linear fashion with wavelength. These findings are in accord with 
those of earlier investigations [24] which showed that for all wavelengths and 
speeds, conventional ships suffer only small responses in astern seas in con¬ 
trast to the more severe resonant responses that do occur in ahead seas. 

It was noted in the introduction that both experiment and strip theory, as 
they were utilized for the purposes of this paper, are replete with errors. The 
inadequacies of the strip theory as it was employed so far in this paper will be 
discussed in the next section. Some of the shortcomings of the experimental 
approach, particularly as they relate to a comparison with theory (not to a com¬ 
parison with a full scale ship responding to hypothetical regular waves) are as 
follows: 

1. The models used by Vossere et al. [18], were free to move in all six 
degrees of freedom. Theory treats motion in the longitudinal plane of symmetry 
only and furthermore presumes the absence of surge. 

2. All models tested at NSMB were equipped with bilge keels and were 
furthermore self-propelled. Bilge keel damping and propeller thrust fluctua¬ 
tions are ignored by theory. 

3. Errors in measurement of wave heights. 

4. Wall effects especially at low speeds and small wavelengths. 

THE EQUATIONS OF MOTION FOR A SURFACE SHIP 
MOVING IN WAVES 

General Remarks 

A constructive appraisal of a given theory is best accomplished by examin¬ 
ing the issue from different points of view. In this case, many such different 
points of view exist. We will therefore examine the validity of the linearized 
theory of ship motions as developed by Korvin-Kroukovsky by using a different 
approach which is backed by physical reasoning. The approach will involve two 
cardinal steps: 

i 
i 
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1. Develop rigorously the linearized equations of motion. 

2. Use the strip theory technique to compute the values of the coefficients 
of equation of motion as well as the excitation terms from elementary arguments 
based on the results of two-dimensional flow theory. 

In fulfilling the latter step, the reason why strip techniques are employed, 
the assumptions implicit in strip techniques, as well as the upper limit of accu¬ 
racy that can be expected from strip techniques will be considered. 

We will start from the basic concepts of the mechanics of rigid bodies fol¬ 
lowing Abkowitz [12,25,26]. His approach, similar to those used by aerodynami- 
cists, provides a concise statement of the kinematical and kinetic problem and 
readily identifies all of the physical mechanisms involved. After the equations 
of motion have been developed in an accurate manner, all that remains to be 
done is to determine the values of the coefficients of the equations as well as 
the forcing functions. It is here that use will be made of the cross-flow hypoth¬ 
esis and two-dimensional hydrodynamic theory. 

The reader may well at this juncture question the consistency of the paper; 
first an extensive investigation using an existing theory is presented and then 
the very foundation upon which the theory rests is questioned. This is true. 
However, it is only after using a certain procedure that one can really appreci¬ 
ate and question it. Furthermore, it is suspected that the inconsistencies which 
seem to exist in the Korvin-Kroukovsky approach will not radically affect the 
final result. This is probably due to the fortunate cancellation of errors, but 
this remains to be verified. 

A basic difference between the approach formulated by Korvin-Kroukovsky 
and the approach proposed in this paper is that hydrodynamics will be employed 
after dynamics have been utilized. Furthermore no attempt will be made to force 
fit the mathematical model to conform to experimental results, but rather a ra¬ 
tional approach will be developed with the hope that eventually, refined experi¬ 
ment will agree with refined theory. 

Derivation of Equations of Motion 

In this section the mathematical model describing the six-degree of freedom 
motion of a surface ship in regular waves will be developed first and the results 
will then be specialized for the case of pitching and heaving motions. The fol¬ 
lowing assumptions will be made in developing the equations: 

1. The ship will be considered as a rigid body. The high-frequency vibra¬ 
tion modes of the hull excited by the low-frequency wave encounters will not be 
considered here. 

2. The size, geometry, mass and mass distribution of the ship are assumed 
known and invariant in time. 

325 



Vassilopoulos and Mandel 

3. Rudders and other control surfaces and mechanisms are assumed 
"locked" in zero position. 

4. In deriving the equations of motion for pitch and heave the coupling be¬ 
tween the latter two and the other degrees of freedom is totally neglected. For 
seas from directly ahead or astern, this is a reasonably valid assumption. In 
particular, surge effects are ignored which in turn implies that propeller thrust 
fluctuations are negligible. 

5. As a consequence of the last statement in 4., the ship speed is assumed 
to be constant. 

6. Forces and moments due to wind action, tow-lines, etc., are not consid¬ 
ered. The external excitation is to be tliat due to waves only. 

7. Since a linear theory will be developed, the translatory and angular de¬ 
partures of the ship from and about an inertial reference are assumed to be 
very small (first order). 

8. The ship is assumed to be originally on an even keel. 

9. Motion of the ship is assumed to take place in a given, idealized fluid 
which is unbounded in all directions. 

10. The wave excitation is that due to uniform, infinitely long-crested sinus¬ 
oidal waves of small amplitude which come from directly ahead or astern, i.e., 
the direction of ship motion is taken to be normal to the wave crests. 

Two orthogonal, right-handed systems of coordinates will be employed in 
the development of the coupled pitching and heaving equations of motion. Con¬ 
sistent use of right-handed systems is advantageous because it allows a conven¬ 
ient check in the analysis by simply permuting the terms of various expressions. 
The first system of axes will be fixed in space with its origin located at an arbi¬ 
trary point on the still water level. This will be regarded as a Newtonian frame 
of reference with respect to which the wave configuration and body orientation 
in space will be referred. The second system of axes, usually referred to as 
"body" axes, will be fixed in the ship with a convenient point as origin. In rigid 
body dynamics, the origin of the "body" axes is usually chosen to be the center 
of gravity of the body. However, in the ship problem case it is usually advanta¬ 
geous to fix the origin of the "body" axes at the intersection of the midship sec¬ 
tion, the longitudinal vertical plane of symmetry and the waterplane through G. 
This not only simplifies the computation of the hydrostatic and hydrodynamic 
forces but is also convenient because the midsection plane is fixed in a ship, 
whereas the position of the center of gravity is variable. 

It is pertinent to note at this point that, from 1954 [8] onwards, Korvin- 
Kroukovsky assumed for simplicity in all his analyses that the vertical plane of 
the center of gravity and midship section coincided. Whereas, it is true that the 
LCG is usually a small fraction of the ship length, this simplification is some¬ 
times responsible for wrong interpretations of phase angles, leading to errors 
up to 10° for certain ships in short wavelengths. 
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For reasons of consistency and systemization in future analyses, we herein 
suggest the use of and shall adhere to the nomenclature of Bulletin No. 1-5 of 
SNAME [25]. Following the above definitions it is shown in Refs. [12,26,27] that 
in order to obtain separate vector force and moment equations, the principles of 
linear and angular momentum must be used for the center of gravity of the ship, 
but must be measured relative to the "body" axes fixed about the point defined 
previously. If we therefore denote by F the total external force and by G the 
total moment of the external forces about the center of gravity, then, the princi¬ 
ples of linear and angular momentum give, 

F = £ (mUG) (1) 

and 

G = A (Hg), (2) 

where 

F= IX+jY+kZ, (3) 

G- iK+jM+kN. (4) 

Following the principles of dynamics and carrying out the operations indicated 
above, it may be shown [26] that the complete six-degree of freedom motion of 
the ship is characterized by: 

X = m [ii+ qw- rv- xc(q2+ rJ) + yG(pq- r) + zG(pr + q)] (5) 

Y = m [v + ru-pw- yG(r2 + p2) + zG (qr - p) + xG(qp + r)] (6) 

Z = m [w +pv - qu - zG(p2 + q2) + xG (rp - q) + yG( rq + p)] (7) 

K = IxP+(II-Iy)qr + m[yG(w + pv- qu) - zG (v + ru - pw)] (8) 

M = Iy q + (Ix - I j) rp + m [zQ (ii + qw - rv) - xG(w + pv - qu)] (9) 

N = I2f+(ly-Ix)pq + m [xG( v + ru - pw) - yG (u +qw - rv)] (10) 

where the various symbols are defined in Ref. [25]. From this general approach, 
it may be seen that if G, the center of gravity, is identified with the origin of 
the "body" axes, then the above equations reduce to the well known Euler equa¬ 
tions: 

X = m( û + qw - rv ) (ID 
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Y = m( y + ru - pw) 

?■ - m( w + pv - qu ) 

K - !xP + " ïy) d1- 

M = Iyq + ( Ix - Ij) rp 

N z Izr + (Iy - Ix)pq. 

i? ^fSrees 01 freedom except pitch and heave are now ignored from 
EqB. (5)-(10) and if the center of gravity is assumed to be located on the longitu¬ 
dinal body axis at a distance x0 from the origin of the "body" axes, then, the 
problem reduces to the examination of the coupled pitch and heave equations as 
given by: 

m(w- qu - xGq) = Z (17) 

I y q + m Xq w = M . (18) 

By the same token, the equivalent set corresponding to Eqs. (11)-(16) becomes, 

m(w-qu) = Z (19) 

fyd = M. (20) 

where the mqu term in Eq. (19) represents the main distinction between the or¬ 
dinary Newtonian equation with axes fixed in space and the equation of motion 
with axes fixed in the ship. 

Turning now to the examination of the loads, we note that in the most gen¬ 
eral case, the total external force F and moment G about the center of gravitv 
must depend on: 6 y 

1. The characteristics of the body 

2. The properties of the fluid 

. The parameters which describe the relative motion between the body 
and the fluid. J 

These may be listed as follows: 

1. Characteristics of Body 

Characteristic length (size) 
Geometry 
Mass and its distribution 

(12) 

(13) 

(14) 

(15) 

(16) 
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2- Properties of Fluid 

Density 
Viscosity 
Surface tension 
Elasticity 
Vapor pressure 
Pressure 

Also thermal, electric, magnetic properties, etc. 

3. Relative Motion Parameters 

Orientation parameters: x0, y0, zo,0,<p,0,h . 

Dynamic parameters: u,v,w,p,q,r,ii,v,w,p,q, f,h,h . 

For a surface ship of fixed geometry, mass and mass distribution moving 
at constant speed in a sufficiently idealized fluid, the total force and moment 
depend only on the parameters desci ibing the relative motion between the body 
and the fluid. For pitch and heave motions of a surface ship, these are: 

a. Body and fluid orientation parameters: z0,e,h. 

b. Body and fluid dynamic parameters: w,q,h,w, q,h. 

The most convenient way of defining an unknown function is in terms of its 
multivariable Taylor expansion about some convenient equilibrium point. Since 
we will be content with developing a linear theory, only the linear terms in the 
expansion need be retained. A convenient equilibrium point about which to ex¬ 
pand the total force and moment and hence their components z and M is that 
characterized by: (a) constant ahead speed, u = u0, and (b) zero orientation 
and dynamic parameters. The Taylor expansions for the heaving and pitching 
forces then result in: 

z = ze(h,h,h,t) + (§f-)o (z-z0J + (|f)o (0-eo) + (ff)o (W-W0) 

+ (H)0 (q + (f) + (¾) (q-%> • (21) 

Me(h.h,h,t) + (*-z0o) + (H)o (0-0o) + (¾) ("-»o) 

(^1 (f,"qo) + (f)0 + ® (q_qo> • (22) 
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where the zero subscript denotes the dynamic equilibrium condition and, for 
reasons to be subsequently discussed, the wave action forces and moments have 
been lumped conveniently in Ze(h,h,h,t) and Me(h,h,h,t). Such a linearization 
indicates that the forces and moments acting on a pitching and heaving ship may 
be conveniently considered to be of two sorts: 

a. Wave-induced forces and moments acting on a restrained ship, and 

b. Forces and moments brought about by the motion of the ship in calm 
water. 

Noting that z0 = tf0 = w0 = wo ^ qo q0 o and using the notation 
o 

etc., Eqs. (21) and (22) become, 

Z = Z (h, li, h, t ) + Z, z + Z„ ¢9 + z^w + Z a + Z. w + Z. q , (23) 
e zo ° w w ^ w q 

M = Me( h, h, h, t) + Mj, z0 + 0 + Mww + M q + M. w + M. q . (24) 
o ’ w q 

Since it is desirable to express the differential equations in terms of the orien¬ 
tation parameters z0 and e and their first and second time derivatives, an ex¬ 
pression must be found for w and w in terms of zo and 0. From the following 
sketch, 

u sin 8 
O 

it follows that, 

w = zo cos <9 + uQ sin 6 

or since within linearity, cos e = i and sin e ± 8, we get 

(25) 
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w i0 + u0ß , (26) 

w ¿o + % Ò. (27) 

Substituting Eqs. (26) and (27) in Eqs. (23) and (24), calling q = ¿ and q = ö and 
rearranging terms in Eqs. (17) and (18), we finally obtain the coupled pitching 
and heaving equations of motion in the form: 

zo + zw¿0 - Zznzo - (Z.+mxG)¿ - (Zq + uoZ.)¿ 

- (Ze + n0Zw>ö r Ze(h,h,h,t) , (28) 

(Ïy-M.). fMq+uoM;)0 (Me+uoMw)0- + mxG)z0 - Mw zq 

-Mzozo Me(h,h,h,t). (29) 

If the above set were developed on the basis of Eqs. (19) and (20), i.e,, for the 
origin of the "body" axes at the center of gravity, then the resulting equations 
would differ in form from Eqs. (28) and (29) only in that the mxG term would be 
missing in the coefficients of pitch and heave accelerations in Eqs. (28) and (29). 

CALCULATION OF THE COEFFICIENTS 

The solutions to Eqs. (28) and (29) are in principle easily obtained provided 
that the twelve coefficients and the two forcing functions are known. Although, 
rational treatment of the problem does provide a precise identification of each 
term, the present state of art permits only rough approximations on the basis of 
theory and it is to this end that resource will be made to strip techniques. De¬ 
ferring the discussion of the exciting terms until the next section, attention is 
here focused on the forces and moments brought about by the ship's oscillatory 
motion in calm water, and which are identified as the terms on the left hand side 
of Eqs. (28) and (29). 

In order to exhibit the relationship between the new approach and that of 
Korvin-Kroukovsky, we shall, without loss of generality, substitute for each co¬ 
efficient of Eqs. (28) and (29) a letter and thus obtain the set: 

a(^e) z'o + b(aje)io + czo + d(u,e)Û + e(a>e)0 + (0 = Ze(h,h,h, t) (30) 

A(a,e)0 + B(ue)0 + C0 + D(o.e) zo + E(a>e) io + Fz0 = Me(h, h, h, t ) (31) 

where is the frequency of encounter with sinusoidal exciting waves and hence 
the frequency of the forced responses also. 

In the interest of brevity and since the assumptions and steps to be followed 
in the computations by strip theory will be similar for all coefficients, we shall 
next examine in detail the manner in which one of the coefficients of the equation 
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of motion can be computed on the basis of a strip technique. The extension of 
this approach to the other coefficients will be fairly apparent so that the values 
of the other coefficients will be given without derivation. 

Equation (28) indicates that, after linearization, the coefficient of the heave 
acceleration term a(o)e) consists in fact of two additive terms; the mass of the 
ship, m, which is known and is constant with time and the partial derivative of 
the total vertical hydrodynamic force with respect to heave acceleration, z¿. 
This is the force that is exerted on the body when oscillating in smooth water 
and its derivative is computed at the equilibrium condition characterized by a 
constant ship speed u = u0, and byzo-0^w-q=w=ci = o. 

The statement of the problem has been given but the exact solution for the 
complete three-dimensional body is available only for special mathematically 
defined forms. Theoretical results are however available from two-dimensional 
theory; hence, it will be assumed that an arbitrary three-dimensional body can 
be replaced by the sum of a large number of two dimensional segments or strips. 
This is the essence of strip theory. It involves the following simplifications: 

a. The underwater hull geometry is defined by an arbitrary number of typi¬ 
cal sections. 

b. These sections are arbitrarily assumed to be equally spaced. 

c. To date, these sections are defined in terms of two geometrical parame¬ 
ters; the sectional area coefficient, cr(x) and the beam/draft, B(x)/H(x), ratio 
of section or its reciprocal. 

d. Each of the strips is assumed to belong to a specific infinite cylinder 
oscillating at zero forward speed and its behavior is assumed independent and 
isolated from the neighboring strip. 

e. Longitudinal perturbation velocities which exist in the three dimensional 
problem are totally neglected. 

f. Since the available theoretical data to be used are based on an ideal 
fluid, viscosity is ignored. 

Following strip theory, 

(32) 

where the integrand is the partial derivative of the force on the strip, which on 
the basis of extensive theoretical data is defined as 

Z.(u ,x) = k2 k4 c B(x)2 . 
W 

(33) 

The integrand is more commonly known as the added mass of the section or 
strip where the constant c = vp/8. 
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By similar reasoning, zw, the coefficient of the heave velocity term is ap¬ 
proximated by 

-+L/2 

zw = - N(x) dx (34) 
- L/ 2 

where the integrand is the damping coefficient of the section and is calculated 
by the Havelock-Holstein [4] formula 

N(x) , ÍÃ)W (35) 
CO 3 

e 

where Ã = ratio of the amplitude of the wave created by the oscillation of the 
body to the amplitude of the oscillation of the body. 

With the exception of the restoring coefficients c, c, f, F which can be 
evaluated on the basis of elementary hydrostatics, the remaining hydrodynamic 
derivatives of the equations of motion can be computed based on the knowledge 
of added mass and damping coefficients of cylinders of various shapes. The 
proposed expressions are summarized in Table 2 and compared to those devel¬ 
oped by Korvin-Kroukovsky and his associates. Since the equations of Korvin- 
Kroukovsky were developed with the origin of the body axes fixed at the center 
of gravity of the ship, the new coefficients refer to the modified set of equations 
in which xG is set equal to zero. Proper consideration was also given to the 
different definition of the total vertical ir»rce existing between the two approaches. 
Thus the expressions of Korvin-Kroukov oky have been corrected to allow for the 
fact that the total force is to be taken positive downwards. 

Table 2 shows that the expressions for four of the newly proposed coeffi¬ 
cients do not agree with those derived by Korvin-Kroukovsky. The differences 
in the Korvin-Kroukovsky coefficients e(c;e), B(a>e), c and E^) appear to be 
mainly due to an erroneous time differentiation of a fixed body coordinate with 
the result that: (a) a factor of 2 appears in the velocity dependent terms of 
e(ûJe) and B(a>e), and (b) a pseudo-three-dimensional term is introduced in co¬ 
efficients e(ci>e), B(we), c and E(a>e). 

It would also appear that the introduction of terms dependent on the rate of 
change of added mass over the ship length is inconsistent with the use of two- 
dimensional theory. Despite these discrepancies however, it is expected that 
the final values of these coefficients will not be seriously modified since it has 
been shown by Jacobs et al. [5] that most of these terms which appear in the 
Korvin-Kroukovsky approach but not in the new approach are numerically small. 
It is hoped that in the near future these inconsistencies will be examined more 
carefully and their implications assessed on the basis of experimental data. 

Since most of the coefficients of the equations of motion depend on the theo¬ 
retically computed added mass and damping coefficients for two-dimensional 
cylinders, this matter will next be considered in some detail. The first solution 
of the potential problem of an infinite circular cylinder oscillating at zero for¬ 
ward speed in an ideal fluid was given by Ur sell [28] and his results for added 
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mass were assumed by Korvin-Kroukovsky [10] and Jacobs et al. [5] to apply to 
more general cylinders. However, different results were used in Refs. [10] and 
[51 for computing the damping coefficients; the first utilized an approximate ex¬ 
pression for A, whereas the second introduced and employed the graphical data 
computed by Grim in 1953 [29]. Since the publication of Ref. [30] which reviewed 
the state of art up to about 1955, the important problem of the oscillating cylin¬ 
der of arbitrary section has been examined and solved in greater detail, both 
theoretically and experimentally. For example, Grim [29], Tasai [31] and, more 
recently Porter [32] have extended the Ursell problem to more general cylin¬ 
ders, and have provided added mass and damping as a function of the frequency 
of oscillation. Damping coefficients for extreme V sections were also evaluated 
by Kaplan [33] using a Green's function technique, whereas TRG [34] presented 
their approximate method for evaluating these quantities. These theoretical 
studies were supplemented and verified by experimental work carried out by 
Tasai [31], Porter [32], and Paulling and Richardson [36] and Watson [35]. 

These studies were of course concerned with the small oscillatory motion 
of two-dimensional bodies where the effect of frequency on the distribution of 
damping and added mass, the effect of forward speed, and nonlinear effects are 
ignored. These important effects have been discussed on the basis of experi¬ 
ment in part by Golovato [37] and in part by Gerritsma [38], and Gerritsma and 
Beukelman [39] and others. Reference [39] has shown for example that the dis¬ 
tribution of damping along the length of a ship is appreciably affected by fre¬ 
quency and forward speed whereas the added mass distribution appears to be 
less affected by these parameters. Another very important point, which was 
anticipated from Newman's theoretical work [40] was the occurrence of negative 
sectional damping and added mass at certain speeds. Two-dimensional theory 
cannot of course predict such effects. Hence, strip theory fails to compute ex¬ 
actly the responses but more especially the bending moments in regular waves. 

The computer program described and used in Ref. [6] made use of a sub¬ 
routine which was based on more recent work by Grim, as outlined in Ref. [41 ]. 
His numerical results however appeared to be erroneous for certain combina¬ 
tions of sectional area coefficient and beam-to-draft ratio. This issue assumed 
great importance when disagreement was noted in the case of Model E as dis¬ 
cussed earlier in this paper. Furthermore, his results, as well as those of 
Tasai [31], are restricted to Lewis shape sections only. However, as far back 
as 1947, Prohaska [42] indicated that the definition of a ship section in terms of 
two parameters is unsufficient. This inadequacy has since been clearly demon¬ 
strated by Landweber and Macagno [43], in connection with high-frequency added 
mass calculations. 

The above points and the availability of a complete and exact analysis of the 
problem by Porter [32], launched a systematic examination of the problem which 
is currently still under way at M.I.T. by Porter and others. Some preliminary 
results of this work are herein included and discussed. Comparison of k4 and 
A as calculated by two computer programs, one based on Grim [41] and another 
due to Porter [32], are shown in (a) Figs. 66 and 67 for semicircular cylinders 
of varying beam to draft ratio and, (b) Figs. 69 and 70 for the typical ship sec¬ 
tions illustrated in Fig. 68. The latter figure and Table 3 are reproduced from 
Ref. [44]. 
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r 

Fig. 66 - kt versus S 

Table 3 
Particulars of Ship Model Sections 

Model 
No. Type B*/2 

(in.) B*/H CT(x) 

2 

3 

4 

5 

Full-Form 

Wide Vee 

Narrow Vee 

Bulb-Form 

8 

8 

4 

4 

2.00 

0.80 

0.40 

0.40 

0.9405 

0.700 

0.644 

0.695 

t 

Figures 66-70 indicate first of all that the computer algorithm of Porter is 
extremely accurate whereas that of Grim suffers from severe numerical break¬ 
down, especially at high values of the non-dimensional frequency 

* ,., 2 B' u> 
_t 

2g 
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Fig. 68 - Model sections 

It is important to note, however, that in the important ship range of the frequency 
parameter (0-1.5), the disagreement is minimum. Generally speaking, in the 
case of the semicircular cylinders, Figs. 66 and 67, the free-surface correction 
factor, k4, as computed by Grim is less accurate than A, the amplitude ratio. 
Also, for a given s, the discrepancies for both k4 and Ã increase with decreas¬ 
ing beam to draft ratio. This is particularly noticeable for the low beam to 
draft bulb-section (Model 5 of Fig. 68) as plotted in Fig. 70. This, in turn, 
causes underestimations of heave and pitch damping and consequently forces the 
strip theory to overestimate responses, particularly at resonance, as shown for 
example by Model E. However, it has not yet'been possible to examine, in de¬ 
tail, the overall effect these differences will have for a particular ship model in 
a given condition. 

The most important reasons why efforts are now being made to incorporate 
a version of Porter's work in our computer program are as follows: 

a. His solution of the theoretical problem is considered more exact and by 
far the most general to date. 

b. His numerical scheme is much more stable although, at present, more 
time-consuming than that of Grim. 
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c. His program can handle any arbitrary ship section which can be defined 
by either (1) an arbitrary number of parameters or, even better (2) a set of off¬ 
sets for the section [45]. 

d. Extension to the problem of horizontal oscillation can also be made for 
lateral ship motions. 

It follows from c. that Porter's program will discriminate between the 
added mass and damping of two sections of identical section coefficients and 
beam-draft ratio but differing in detailed section shape. Thus it should prove 
more flexible than programs tied to particular section families such as the 
Lewis or Landweber sections. 

CALCULATION OF EXCITATION FORCE AND MOMENT 

The second main category of the loads imposed on the ship hull are those 
due to wave action. As a result of the linearization of the problem, these forces 
and moments can be assumed to act independently on the ship which is moving 
at constant speed but is otherwise restrained from any translatory or angular 
displacements. 

Since there is no distinction, as far as hydrodynamic forces and moments 
are concerned, between a restrained ship in a vertically oscillating fluid and an 
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Fig. 70 - Ã versus 8 

oscillating ship in a stationary fluid, the excitation forces and moments can be 
determined by exactly the same arguments used in the calculation of the coeffi¬ 
cients of the equations. There are, however, two distinct points of difference 
which must be allowed for in the computation of the exciting loads: 

a. Whereas in the calculation of the coefficients of the equations of motion 
the total force and moment are obtained by summing up strip contributions for 
sections in identical flow, in the case of wave excitation loads consideration 
must be given to the distinct flow which each section sees when the wave pattern 
encounters it. In other words, differential exciting forces depend on the ship 
section properties as well as the local static and dynamic state of the wave. 

b. At every section and hence on the whole ship, an extra force and moment 
is brought about on account of the fact that the relative water flow at a given 
section involves a pressure gradient which is typical of gravity waves. This so- 
called "Smith effect" is due to the orbital motion of the water particles and must 
be allowed for since the differential exciting forces at a given section depend on 
whether the section is instantaneously on a wave crest or trough. The best ap¬ 
proximate way of allowing for this effect is to consider in the calculations the 
static and dynamic state of an "effective subsurface" rather than the actual wave 
surface. Havelock has suggested [46] that the effective subsurface is located at 
a mean draught equal to V AW or (CB'CW) h, a result which is accurate for wall¬ 
sided ships. Since we shall compute the loads on the basis of two-dimensional 
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flow theory, the equivalent mean draft at a specific ship station, which belongs 
to an infinite cylinder, becomes a(x) H(x). An overall correction factor such 
as 

2t7 

A. 
ct(x) H(x) 

will therefore be employed in the calculation of the excitation force at a given 
section. It must be noted however that the Smith effect should, strictly speak¬ 
ing, be a single correction to the wave acceleration force only. 

Since the exact calculation of the total exciting force is a formidable hydro- 
dynamic problem, the following usual assumptions will be made in the approxi¬ 
mate computation: 

a. At each point on the submerged hull surface there is a pressure acting 
which is the same as the pressure that would occur at the corresponding point 
in the wave in the absence of the ship. This pressure is computed after the 
centripetal acceleration of the water particles has been accounted for (Smith 
effect). 

b. The wave geometry and dynamic state is not affected by the presence of 
the ship, i.e., any diffraction effects are neglected. 

Assumptions a. and b. constitute the well-known Froude-Kriloff hypothesis. 

c. The effect of the forward speed of the ship is neglected. 

It is surmised that the differential heaving force as felt by the ship section 
depends on the instantaneous elevation, velocity and acceleration of the effective 
subsurface measured relative to the body coordinate system. Thus, 

dze 
— = Z(h, h, h) exp (36) 

where i(x) = a(X) H(x). For small motions, we can expand the function Z(h,h,h) 

in a Taylor series about the condition of no wave, i.e., h0 = ho = ho = o and 
u = u0 and retain only linear terms. Noting that Z(h0,h0,ho) = o, we finally 
get, 

dz, 
dx 

exp ^ o-(x) H(x) (37) 

where the wave elevation is measured positive downwards. The subscript * de¬ 
notes that the derivatives (3Ze/3h)x etc., correspond to the section under con¬ 
sideration only. Since the coefficients of each term are readily computed as 

Ü5 = Z 
9h 

3Z_e 

dli 
w( X) 

9h 
Z. 

w(x) 
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the total exciting force due to sinusoidal waves is simply obtained by summing 
up the individual contributions of each strip, i.e., 

Z (h, h, h, t ) Í 
♦ L 2 

\ dx 
dx 

IW t 

L / 2 

and the total pitching moment is given by 

• •• r+L/ 2 /dz 
Me(h. h, h, t ) , J 

1/ 2 x 

X dx M„e 
1 Ol t 

(38) 

(39) 

It is interesting to compare the above expressions with those of Jacobs [14]. 
Following the same initial steps as Korvin-Kroukovsky [10] but pursuing a 
slightly different approach, Jacobs [14] modified and improved the excitation 
force expression as compared with the one given in Ref. [10]. In our notation, 
the formula as given by Jacobs [5] and as used in the existing computer program, 
reads as follows: 

dx 
PgB(x) h( X, t ) + N(x) - uo 

dx 
h(x,t) + m(x) h(x,t) 

* exp 
2tt 

<7(x) H(x) (40) 

Equation (40) differs from (37) in that the wave velocity term includes an extra 
pseudo-three-dimensional term which is furthermore speed dependent. The 
contribution of the latter term is small in comparison with the other terms and 
predicts a decrease of the exciting force and moment, a finding which, as dis¬ 
cussed by Vossers [47 ], contradicts that of Hanaoka. It is contended that the 
more rationally derived Eq. (37) will give almost similar results as Eq. (40) but 
this remains to be verified. 

As justification of using the cross-flow hypothesis in computing excitation 
loads, Fay [13] provides an intuitive criterion which requires that 

we2 H 
—-— > 1 . g 

The best criteria however of the success with which strip theory predicts the 
forcing function is the degree of correlation with experimental measurements 
and more sophisticated theoretical analyses. As far as the authors are aware, 
the only experimental data obtained with actual ship models is that of Jinnaka ’ 
[48], Schultz [49], and Gerritsma [22], whereas Gersten [50] and Lee [51] meas¬ 
ured excitation forces and moments on mathematically defined bodies. Corre¬ 
lation between experimentally measured and theoretically computed exciting 
forces and moments have been presented by Vossers [47], Gersten [50], and 
Lee [51], but the theoretical expressions used for the exciting loads differed 
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from the one presented in Ref. [5). These studies have shown that in general 
the Froude-Kriloff hypothesis (modified for Smith effect) supplemented by ap¬ 
proximate corrections fur the body-wave interference provide reasonable pre¬ 
dictions of the excitation force and moment. The lack of severe dependence on 
speed has also been noted in these studies. 

To supplement these correlations, the results of a preliminary analysis are 
shown in Figs. 71 and 72. Theoretical forces and moments based on Jacobs' 
formula, Eq. (40), have been compared with the experimental values given by 
Gerritsma in Ref. [22] for an 8-foot, Series 60, CB = 0.60 model. The ampli¬ 
tudes of the heave exciting force compare more favorably than those of the 
pitching moment, although there are some discrepancies at low wavelengths. 
This finding seems to be in accord with Fay's statement [13] that the cross-flow 
hypothesis will be more valid for wavelengths equal to or greater than the ship 
length. Although results computed from Eq. (37) are not shown on Figs. 71 and 

Fig. 71 - Comparison of excitation force 
and moment amplitudes 
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Fig. 72 - Comparison of excitation force 
and moment amplitudes 

72, as previously noted, it is expected that these expressions will not yield an¬ 
swers significantly different from Jacobs' Eq. ,(40). 

The discrepancies which are brought about by assuming that the body and 
wave do not interfere need also to be examined. Grim's [52] theoretical work, 
supplemented by Spens' [53] experimental work point out the considerable de¬ 
crease in wave elevation as the wave passes along the ship length as well as the 
presence of a bow-induced wave. There is no doubt that such interference ef¬ 
fects, especially in astern seas [53], will sensibly modify the theoretical exciting 
force and especially the pitching moment, which, at present, seem to be over¬ 
estimated. It is not yet known whether a convenient correction may be applied 
in Eq. (37) to allow for this discrepancy, but the matter will be considered more 
carefully in the future. 

The diffraction problem has also been investigated more recently by Neu¬ 
mann [54] on the basis of Haskind's theory. He presents a remarkably simple 
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relationship between the wave-induced force on a fixed body and the amplitude 
of the progressive wave caused by the motion of the body in still water. Al¬ 
though his analysis does not provide the phase between force and wave, his ex¬ 
pressions ought to be compared and evaluated on the basis of strip techniques. 
Using our notation, it can be shown that for a ship hull, his final formulations 
reduce to: 

(41) 
1/ 2 

and 

(42) 

Finally, three-dimensional corrections deserve comment. The work of 
Spens [53] and others has suggested that a three-dimensional correction to al¬ 
low for end effects, etc., tends to worsen agreement between theory and experi¬ 
ment. Further analysis on this point is needed, however, because there is re¬ 
cent experimental evidence at M.I.T. to suggest that neglect of three-dimensional 
effects may not be in order for certain ship forms. Provided that the other 
neglected effects are allowed for, it may well be that a three-dimensional cor¬ 
rection will improve agreement between theory and experiment. 

CONCLUSIONS 

1. Following Abkowitz [12,26,27], the more rigorous development of the 
equations of motion shown in this report along with the more systematic and 
symbolic notation of the SNAME Bulletin 1-5 [25] lead more quickly and simply 
to an accurate definition of the various parts of the coefficients of the equations 
of motion than the Korvin-Kroukovsky approach. 

2. The quantitative evaluation of the coefficients of the equations of motion 
using strip theory developed in this report leads to agreement with Korvin- 
Kroukovsky in the case of eight of the coefficients and disagreement in the case 
of four of the coefficients. 

3. Figures 2-65 show that pitching and heaving amplitudes as well as phase 
angles as computed by Korvin-Kroukovsky’s procedure using Grim's section 
damping and added mass [41] correlate reasonably well with existing experimen¬ 
tal data which however also include sources of possible error. 

4. Substitution of the Porter method [32] for computing section damping and 
added mass should improve the discrimination amongst differing section shapes 
compared to Grim [41] and also removes the difficulties associated with oscil¬ 
lating nature of Grim's coefficients shown in Figs. 66, 67 and 69. 

5. While it has been hypothesized that the correlation shown in Figs. 2-65 
may be due to fortunate cancellation of substantial errors, it is not believed that 
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the errors shown to exist in the Korvin-Kroukovsky procedure using Grim's 
section added mass and damping are large. This remains to be further investi¬ 
gated however. 

RECOMMENDATIONS 

While the present report represents a start, much more can be done to as¬ 
sess the reliability and usefulness of an improved strip theory. The following 
list of recommendations cover suggestions for correcting the work already ac¬ 
complished as well as suggestions for future work. 

1. There is a strong need for phase angles to be uniformly and unambigu¬ 
ously defined. There are essentially three different ways for phase angles to be 
presented: 

a. Amplitude positive throughout and phase angles from 0°-360o. 

b. Amplitude positive throughout and phase angles ±0-180°. 

c. Amplitude both positive and negative and phase angles from 0°-180o. 

The last was used by Vossers et al. [18,19] while the second way has been used 
in this report and in Ref. [6]. It is believed that the first way is the least am- 
biguous and that this should be used in the future. In the definition of phase, the 
maxima of response amplitudes should be referred to the maxima of the wave 
amplitude and not to the maxima of the wave slope as was done by Korvin- 
Kroukovsky. Furthermore, the reference point should be the mid-section of the 
ship or model rather than the longitudinal center of gravity since the former 
can be readily and precisely located. 

2. The importance of the neglect of surge in the theory remains to be de¬ 
termined. The current work of Shen Wang at M.I.T. will help with the formula¬ 
tion of a system with the needed three degrees of freedom. 

3. The assumption of wall sidedness as far as damping, added mass, and 
wave excitation is concerned is an important possible source of unrealism in 
the strip theory. The current work of Parissis [16] is important in this regard. 
Unfortunately, while success in coping with this problem should improve corre¬ 
lation between theory and experiment in regular waves, it will not be possible to 
incorporate this refinement in the prediction of statistical responses in random 
seas. The latter is strongly tied to a completely linear system. 

4. Further refinements of strip theory should include the use of Porter [32] 
for computing section damping and added mass. 

5. Correlations between the strip techniques and other theories for predict¬ 
ing ship motions should continue. For example, Fig. 73 shows a comparison 
between the non-dimensional pitch and heave amplitudes for a (M = 0.60, Series 
60 model at zero speed using Grim's three-dimensional theory [55] and those 
predicted for Model D at zero speed by the program of Ref. [6]. It is seen that 
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Fig. 73 - Comparison of motion am¬ 
plitudes of Model D at zero spi -d 

this agreement for heave is better than the agree nent for pitch but that the com¬ 
parisons are reversed for the two motions. No further comment can be made on 
these comparisons at this time. 

6. Because of the absence of a firm basis for assessing the accuracy of any 
method for predicting ship motions, efforts toward refinement of existing theo¬ 
ries and experimental techniques as well as the development of new theories 
and experimental techniques such as will be discussed by Davis and Zarnick at 
this Symposium should continue. 

In the meantime, in order to show more clearly than it has been shown in 
the past, the importance of ship motions to the process of selecting dimensions 
and hull shape for ships, to the earning power of ships and to their economical 
operation, the effort begun in Ref. [6] towards assessing the performance of 
ships in random seas will be continued at M.I.T. This work will perforce have 
to rely on the most workable tool currently available to the profession. In the 
authors' opinion, this is strip theory. 
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operative in typing the manuscript of this paper. To her we extend our deep 
thanks. 

NOMENCLATURE 

English Letters 

a = coefficient of equation of motion 

A = coefficient of equation of motion 

Ã = amplitude ratio 

b = coefficient of equation of motion 

B = breadth of ship or model 

B = coefficient of equation of motion 

B*. B(x) = station breadth of ship or model at designed waterline 

c = a constant = -np/% 

c = coefficient of equation of motion 

C = coefficient of equation of motion 

CB = block coefficient of ship or model 

Cp = prismatic coefficient of ship or model 

cw = waterplane area coefficient 

d = coefficient of equation of motion 

D = coefficient of equation of moMon 

e = coefficient of equation of motion 

E = coefficient of equation of motion 

Fr = Froude number 

F = total external force 
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ho 

H 

«G 
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K 

k 

4 

L 

LC B 

LCG 

M(x) 

M 

M„ 

A New Appraisal of Strip Theory 

gravitational acceleration 

coefficient of equation of motion 

moment vector of external forces 

coefficient of equation of motion 

center of gravity 

instantaneous wave elevation referred to absolute system 

instantaneous wave elevation referred to relative (moving) 
system 

instantaneous wave velocity referred to relative (moving) system 

instantaneous wave acceleration referred to relative (moving) 
system 

amplitude of sinusoidal wave (half wave-height) 

draft of ship or model 

angular momentum vector about g relative to fixed axes 

moments of inertia about x,y, z axes respectively 

rolling moment 

wave number, 2V\ 

non-dimensional longitudinal radius of gyration 

high-frequency added mass coefficient of section (Lewis) 

low-frequency added mass correction factor (Grim-Porter) 

length of ship or model 

longitudinal distance of center of buoyancy from amidships 

longitudinal distance of center of gravity from amidships 

mass of ship or model 
g2/x\ 

sectional added mass = k 2 k 4 rrp — 

pitching moment 

wave exciting pitching moment 
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M0 = amplitude of exciting pitching moment 

N = yawing moment 

Nix) = sectional damping coefficient 

0 = origin of body axes 

p = angular velocity of roll 

p = angular acceleration of roll 

q = angular velocity of pitch 

q = angular acceleration of pitch 

Rtj = position vector of G relative to o 

r = angular acceleration of yaw 

r = angular velocity of yaw 

t = time 

u = longitudinal velocity component of origin of body axes relative 
to fixed axes 

Û = longitudinal acceleration component 

UG = velocity vector of g relative to fixed axes 

V = transverse velocity component of origin of body axes relative lo 
fixed axes 

V = transverse acceleration component of origin of body axes rela¬ 
tive to fixed axes 

V = underwater volume of ship 

w = normal velocity component of origin of body axes relative to 
fixed axes 

w = normal acceleration component of origin of body axes relative 
to fixed axes 

X = longitudinal body axis or coordinate of a point relative to body 
axes 

xo = fixed longitudinal axis or longitudinal coordinate of a point rela¬ 
tive to fixed axes 
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xG = longitudinal coordinate of center of gravity relative to body axes 

X = longitudinal component of hydrodynamic force on body 

Y = lateral component of hydrodynamic force on body 

y0 = transverse body axis or coordinate of a point relative to body 
axes 

yG = transverse coordinate of center of gravity relative to body axes 

y = transverse body axis or coordinate of a point relative to body 
axes 

z = normal body axis or coordinate of a point relative to body axes 

z0 = fixed vertical axis or vertical coordinate of a point relative to 
fixed axes 

zG = vertical coordinate of center of gravity relative to body axes 

z = heaving velocity of ship or model 

z = heaving acceleration of ship or model 

z0 = amplitude of heaving motion (for Figs. 2-65) 

Z = vertical component of hydrodynamic force on body 

Ze = wave exciting heaving force 

zo = amplitude of wave exciting heaving force 

Greek Letters 

s = non-dimensional frequency parameter 

s* = heaving phase angle (lag) after wave 

A = displacement of ship or model 

e * = pitching phase angle (lag) after wave 

0 = pitch angle 

0O = amplitude of pitching motion (for Figs. 2-65) 

\ = wavelength 

P = water density 
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cr(x) = sectional area coefficient 

cp = roll angle 

V = heading angle 

y'-' = yaw angle 

oje = frequency of encounter 
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* * * 

DISCUSSION 

Winnifred R. Jacobs 
Stevens Institute of Technology 

Hoboken, Neiv Jersey 

I am belatedly aware of your criticism of the Korvin-Kroukovsky linear 
theory of ship motions. I wasn't at Bergen and therefore missed your presen¬ 
tation and Dr. Kaplan's defense as well as the counter-attacks. 

Since I am equally responsible for what yoy consider erroneous in the anal¬ 
ysis, I should like to discuss your paper with you, in particular two statements 
which, I believe, epitomize your criticism. (I hope I am correct in not consid¬ 
ering as criticism the paragraph which states the fact that certain added mass 
and damping coefficients were used in one study, while different coefficients 
were used in other studies at Davidson Laboratory. Professor Korvin and, in¬ 
deed everyone involved in this work at Davidson Laboratory have repeatedly 
said that when more suitable hydrodynamic coefficients are available, they will 
be used.) 

In one instance you say "Table 2 shows that the expressions for four of the 
newly proposed coefficients do not agree with those derived by Korvin- 
Kroukovsky. The differences in the Korvin-Kroukovsky coefficients e(ae), 

B(oJe), C and E( a.'e) appear to be mainly due to an erroneous time differentiation 
of a. fixed body coordinate with the result that 
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a. a factor of 2 appears in the velocity dependent terms of e(we) and ), 
and 

b. a pseudo-three-dimensional term is introduced in coefficients e(a> ), 
B( ^), c and E(ûJe). 

"It would also appear that the introduction of term s dependent on the rate of 
change of added mass over the ship length is inconsistent with the use of two- 
dimensional theory. Despite these discrepancies, however, it is expected that 
the final values of these coefficients will not be seriously modified since it has 
been shown by Jacobs et al [5] that most of these terms which appear in the 
Korvin-Kroukovsky approach but not in the new approach are numerically small. 
It is hoped that in the near future these inconsistencies will be examined more 
carefully and their implications assessed on the basis of experimental data." 

Several pages later you say "... In our notation, the formula [for the exci¬ 
tation force] as given by Jacobs [5] and as used in the existing computer pro¬ 
gram [at M.I.T.], reads as follows: 

HZ, 

dx 
or B( x) h(x, t ) + N(x) -u0 

d/if X) 

dx 
h( x, t ) + /i( x ) h( X, t ) 

x exp 
2rr 

O(x) H(x) (40) 

Equation (40) differs from (37) [the new approach] in that the wave velocity term 
includes an extra pseudo-three-dimensional term which is furthermore speed 
dependent. The contribution of the latter term is small in comparison with the 
other terms and predicts a decrease of the exciting force and moment, a finding 
which, as discussed by Vossers [47], contradicts that of Hanaoka. It is contended 
that the more rationally derived Eq. (37) will give almost similar results as 
Eq. (40) but this remains to be verified." 

I should like to take up a few points. 

1. It appears to me that this criticism boils down to one ingredient: we dif¬ 
ferentiated a "fixed" coordinate £ with respect to time and hence inevitably the 
"fixed” radius r of the circular section associated with <?. The latter deriva¬ 
tive 

dr - dr d;f _ dr 
dt d£ dt ~ ” V d£ 

would then give terms, dependent on a rate of change of r (and hence of added 
mass) over the ship length, and also speed-dependent. 

In our approach, the <f-axis fixed in the ship is time-dependent with respect 
to the wave. Our strip method treated each ship section strip as if fixed in a 
frame of an animated cartoon with the strips changing from frame to frame and 
the frames changing from time to time. 
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In support of your contention that our approach is incorrect, you cite the 
work of Professor Fay among others. May I quote Professor Fay's discussion 
of Korvin-Kroukovsky's 1955 SNA paper? In that paper the forces due to body 
motions are developed through the following equations: 

The potential 

and since 
^bm cfiJ)r cos a (37) 

dt 
V tan ß and 

dt 
V , 

the pressure 

p   jkp 
P St 

cos a ( t Vr + f'V2 tan /3 - zr - ¿V tan ß - - Vr - t - OßV tan ß) . (38) 

The vertical force increment per unit length 

becomes 

dF 
dx 

r"'2 2r I p cos a da 
•o 

dF 
dx 

^ - r2 V j t'- + - rV2 tan ßj 6 - -- r2j z 

- (p y rV tan dj ¿ * (a y r " v) " (p y r 2 # ~ (p y rPv /3^ 6 . (39) 

Professor Fay said: "If 1 is positive when measured clockwise, z is posi¬ 
tive in the downward direction, and V positive for motion in the positive 
x-direction then Eq. (37) is correctly stated. However, d-f/dt should equal -v, 
and terms (1) and (5) in (39) do not cancel but add. This term is the most im¬ 
portant coupling term in the equations of motions and exists even for a sym¬ 
metrical vessel." He also commented, with regard to the terms in dr/dt, that, 
since the method is a linear approximation, "the carrying of terms of higher 
order in subsequent equations does not seem justified." 

In the 1957 SNA paper by Koivin-Kroukovsky and myself, we corrected the 
sign of V, and reinstated the velocity-dependent terms, which had been omitted 
in the 1955 paper on the assumption that these terms in the potential theory de¬ 
velopment merely implied damping and could be replaced by damping terms de¬ 
termined on the basis of energy dissipation by waves, as a quid pro quo. A 
study of Haskind (1946) and Havelock (1955) confirmed what Fay had said in his 
discussion about the coupling terms. The Korvin-Kroukovsky approach now 
has values for the coefficients e< aV) and E(^e), as shown in your Table 2, 
which contain the identical dynamic coupling terms derived by Havelocklõr a 
long half-immersed spheroid and by Haskind for a thin "Michell" ship. 
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2. This brings me to the second point I wish to raise. Why is 

f <Wx) 
U° J (ix 

X fix , 

"pseudo-three-dimensional," whereas its equivalent - u0 f ¡4x)dx is not? 

As shown in our 1957 SNA paper, if one integrates by parts 

dpf x ) 

and therefore 

Í ‘Tfx"' xiix I = - Í Kx)dx 
‘1. 

-Jn(x)x(Ix + 2u0J*pfx)dx + uo 

= -J"N(x)xdx + iiofp(x)dx 

which is equivalent to the value of e(a>e) in your "new approach," as well as to 
Havelock's and Haskind's coefficient of b in the heaving force equation. 

In the Korvin-Kroukovsky approach, the coefficient of i in the pitching 
moment equation is 

E(oje) = - Jn( x) x dx + uQ J x dx 

= -jN(x)xdx- u0J*pfx)dx 

the second term of which is missing in your "new approach," but is present in 
Havelock's and in Haskind's developments. Similarly, it can be shown that the 
Korvin-Kroukovsky coefficients B(ae) and c, after integrating by parts, become 

Bfü.e) = J" N( x ) x 2 dx - 2uo J/Ax) x dx - u0 J x2dx 

= Jn(x) x2dx 

C = pg j*B(x) x2 dx - J0 j"N( x) x dx + uo2 j x dx 

- PR j" B( x) x2 dx - u0 J" N( x) x dx - u02J/Ax)dx. 
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These are the three coefficients which are different from yours. The difference 
is negligible in the case of B(^e) and small in the case of c. However, the sec¬ 
ond term of E is of the same order of magnitude as the first term. 

The reason for not substituting 

in our definitions of the coefficients is that the unit force and moment coeffi¬ 
cients are required in the computations of bending moments. 

3. You criticize the Jacobs formula for unit exciting force, given in your 
Eq. (40), because the coefficient of the damping component contains, in addi ion 
to N(x), a term 

a "pseudo-three-dimensional" term which predicts a decrease of the exciting 
force and moment as forward speed u0 increases, whereas Hanaoka's calcula¬ 
tions, as shown in Vossers' articles, predict an increase. This criticism would 
be valid only if the damping coefficient N(x) were invariable with forward speed. 
However, N(x) is a function of speed through its dependence on frequency of en¬ 
counter, and itself contributes to the decrease in exciting force with speed. As 
you say, the contribution of the disputed term is small and your Eq. (37) which 
omits this term "will give almost similar results as Eq. (40) but this remains 
to be verified." 

4. But why not verify it? Since the computer program at M.I.T. follows the 
computational procedure of Davidson Laboratory Report 791, it should be quite 
easy to drop the offending terms and test your new approach. 

If the Korvin-Kroukovsky approach is devoid of vitality, why keep flogging 
a dead horse ? 

* * 

DISCUSSION 

Martin A. Abkowitz 
Massachusetts Institute of Technology 

Cambridge, Massachusetts 

I should like to discuss specifically the nature of the various coefficients in 
the coupled linearized equations of motion for pitch and heave as tabulated in 
Table 2 of the paper. 
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In the column headed "Coefficient" are the coefficients of the linear terms 
of each of the motion variables. On the left side of this column, the coefficients 
are merely expressed arbitrarily as letters in alphabetical sequence. On the 
right-hand side of this column, the coefficients are expressed in the nomencla¬ 
ture of Bulletin 1-5 of The Society of Naval Architects and Marine Engineers, 
which system is developed with reference to axes fixed in the ship, which pro¬ 
vides the advantage of centerline plane symmetry in any hydrodynamic calcula¬ 
tions. The appearance of double terms in the right-hand part of the column, 
arises from the rigorous treatment of transferring from axes oriented in the 
ship to axes (specifically heave) oriented relative to fixed space. The linear 
coefficients in this form are valid independent of any method one wishes to de¬ 
termine them — whether theoretically by strip theory, slender body theory, thin 
ship theory or by model experiments. 

Under the column designated "New Approach" is listed the formulation for 
calculating these coefficients by a "pure strip theory" — i.e., each section 
treated as a cylindrical section and completely independent of the shape of other 
ship sections. Since the terms are calculated by integrals over the various ship 
sections, in a geometry fixed in the ship, the forward speed effect on some of 
the coefficients very neatly falls in place, such as in the terms 

since by strip method 

since by strip method 

In the column headed "Korvin-Kroukovsky Approach" are listed formula¬ 
tions as attributed to the strip theory of Korvin-Krou'.ovsky. Perhaps a great 
deal of difficulty and confusion results from semantics in that what is often re¬ 
ferred to as Korvin-Kroukovsky strip theory is in reality not a pure strip theory, 
but a rather crude slender body theory which takes into account three- 
dimensional effects in a rather rough way. Nevertheless, because of the physi¬ 
cal realities of the situation, any method of calculation of the coefficients should 
be consistent with the terms listed in the right-hand side of the coefficient col¬ 
umn. Hence, the Korvin-Kroukovsky terms given below in the coefficient e(^e) 
should reduce to-u0z. (or u0jM<x)dx) 
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It has been indicated by others, that integrating the expression on the left 
by parts will reduce it to the right-hand expression provided the sectional area 
curve goes to zero (continuously) at the ship ends. Since this is a requirement 
of slender body theory, the left-hand terms can be written in the simpler form 
of the right-hand term. Similarly, it can be shown that the two terms under the 
Korvin Approach for Coefficient "B", and indicated by the dotted block in the at¬ 
tached figure, reduce to the one term, indicated by the dotted block under "New 
Appioach." Some ships, such as those with transom sterns, need not have sec¬ 
tional area curves which are zero at the stern end, hence the possibility of an 
error in Korvin Approach for this hull shape. On the other hand the Korvin Ap¬ 
proach gives a distribution of the effect along the length, which is desirable 
when bending moments are being considered. 

There are only two additional coefficients in the tabulations which take dif¬ 
ferent forms under "New Approach" and "Korvin Approach" - these are coeffi¬ 
cients c and E. For coefficient E, (or -mw), the Korvin approach has the addi¬ 
tional term 

as compared to the "New Approach" and this term reduces to -u0/p<x)dx or 
uo Since the Korvin approach is a slender-body theory involving some pseudo 
three-dimensional effects, it will be shown below that this additional term can 
result from three-dimensional considerations. As introduced by Korvin, coeffi¬ 
cient b (or - Zw) is expressed by f N(x) dx which is purely a frequency depend¬ 
ent effect (surface wave effect) since in potential theory, for a deeply submerged 
body b (or zw), would be zero—i.e., no lift force with angle of attack in the ab¬ 
sence of circulation. Hence, in the attached table the term zero has been added 
to indicate the addition of a three-dimensional potential solution. If we include 
in the pure strip approach or "New Approach" column, the other three- 
dimensional potential solutions in the appropriate terms, the following terms 
are added to the expressions in the "New Approach" column: 

Coefficient Additional Term for Three-Dimensional Solution 

e 

E 

C 

- X. u 
u ° 

%(z- -X.) ° w u 

U02(Z. -X.) 
° W u 

where -X¿ is the added mass for longitudinal acceleration. 

These additional terms appear in the attached table as encircled by a dotted 
line. The Z¿ terms are equivalent to the terms enclosed by dotted rectangles 
under the Korvin approach. However, we now find terms in in the "New Ap¬ 
proach" brought about by the rough three-dimensional correction based on the 
results of potential theory calculation. Since X. can be estimated for a given 
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hull shape, using the "New Approach” with the additional three-dimensional 
terms should be more realistic than the Korvin approach. Physically, the slen¬ 
der body assumption assumes such a large length-beam or length-diameter ra¬ 
tio that forward effects are neglected. The new approach corrected as indicated 
above, would hold better for the fuller ships. As an extreme, the deeply sub¬ 
merged sphere should have a coefficient E (or -Mw) equal to zero; the corrected 
new approach would give zero for this case, whereas the Korvin slender body 
approach gives a relatively large quantity. (Of course a sphere significantly 
violates the slender body assumption.) 

It should be pointed out that the corrected coefficients, listed under "New 
Approach” in the attached figure, have the symmetry required by the Timman- 
Newman analysis, i.e., d = D, e - E. 

* * * 

DISCUSSION 

O. Grim 
University of Hamburg 

Hamburg, Germany 

Coefficients for added mass and damping force for some sections are shown 
in the paper. They are computed using Porter's and my own method. The re¬ 
sults found by both methods are compared and discrepancies have been ascer¬ 
tained. However, these discrepancies appear not disturbing to me. The reason 
is very simple. The computer program used for my method was not designed 
for such a wide range of frequencies but only for the range important for the 
motions in a seaway. In the meantime the program has been supplemented v/hich 
is valid for any arbitrary frequency and consequently the discrepancies have 
vanished. 

* * * 

DISCUSSION 

William R. Porter 
Massachusetts Institute of Technology 

Cambridge, Massachusetts 

These comments will be relative to the calculation of added-mass and 
damping coefficients for two-dimensional cylinders. The numerical results for 
all elliptic cylinders and for Models 2, 3, and 4, obtained by the procedures used 
by the authors and attributed to Grim should agree with my results, because all 
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these forms can be uniquely defined by their beam/draft ratio and area coeffi¬ 
cient. Professoi Grim has privately supplied to the original authors his values 
calculated by a different program, and my work is in much closer agreement 
with these later results. 

Model 5, however, cannot be defined by its beam/draft ratio and section 
area coefficient alone. Therefore, calculations which define the cylinders by 
only these two parameters will not agree with more correct predictions. This 
is illustrated by the following figures. 

Fig. 1 - Three shipform 
cylinders with the same 
beam/draft ratio; Models 
5 and 5G have the same 
area coefficients; Model 
5G is a Lei’ is form simi¬ 
lar to Mode 4 but slightly 
more full 

Figure 1 shows sections of three cylinders with the same beam/draft ratio. 
These are Model 4, Model 5, and a Model 5G which has the same area coefficient 
as Model 5. Model 5G can be described by its beam/draft ratio alone, Model 5 
cannot. 

Figure 2 shows values of the waveheight ratio A for these three cylinders. 
The values attributed to Grim are taken from his values as subsequently re¬ 
ported to the authors. The results of Grim and my results show only small dif¬ 
ferences for Model 4. The results do not agree for Model 5; however, it is 
clear that my results for Model 5G would agree with Grim's Model 5 to small 
differences. The difference between my values for Models 5 and 5G is due to 
the different vertical distribution of area. This difference is not one in theory 
alone as shown by the results of experiments with Models 4 and 5 as reported 
by Faulting and Porter in Ref. [44] or in Ref. [36] of the original paper. The 
conclusion is that two parameters alone are not sufficient to define the cylinder 
geometry. 
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Fig. 2 - Waveheight ratio A 
for Models 4, 5, and 5G 

* * * 

DISCUSSION A 

THE INFLUENCE OF THE ADDED MASS FORMULATION 

UPON THE COMPUTER MOTION PREDICTIONS 

Peter A. Gale 
Bureau of Ships 
Washington, D.C. 

To this discusser’s knowledge, the significant differences between the Bu¬ 
reau of Ships computer program and the author's Massachusetts Institute of 

n™ ^ i -J-* pr°gram aS °f January 1964- are: first> th6 Bureau of Ship 
program is based upon ten station spaces while the M.I.T. program is flexible 
in this respect and it is believed that twenty station spaces are commonly used: 
second, the Bureau of Ships computer program uses the Prohaska added mass 
Totíí1C1*entSnlth ^611 s free surface corrections as presented in Davidson 
Laboratory Report No. 791 while the M.I.T. program uses Grim's 1959 added 
mass coefficients. Both programs use Grim's 1959 damping coefficients. 

In order to assess the influence of the added mass formulation upon the 
predicted ship motions, the motions of the DD 710 (this discusser’s shin "A") 
were computed using both the Bureau of Ships program and the M.I.T. program 
with ten station spaces. The resulting motion predictions are plotted in Fie 1 

fJZve lengt* to suhiP leneth ratio of 1.25. This figure gives an indication of 
the influence of the change in added mass formulation described above for a 
particular set of conditions. For other wave length to ship length ratios the in¬ 
fluence was found to be of the same or a lesser order of magnitude. 
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DISCUSSION B 

THE PITCH AND HEAVE OF TEN SHIPS OF DESTROYER- 

PREDICTIONS COMPARED WITH MODEL TEST RESULTS 

COMPUTER PREDICTIONS COMPARED WITH MODEL TEST RESULTS 

Peter A. Gale 
Bureau of Ships 
Washington, D.C. 

NOTES 

. . L JJu611?11’ wave model test results were collected for ten destroyer-like 
slups The data for five of the ships (F-K) were classified. By coincidence 
model test phase angle results were not available for these same five ships. 
Due to the above, data sources, ship identifications and dimensions, body plans 
and phase angle comparisons are not presented for ships F-K. 

“aSbG “.Srsa TheSe faC,S mate ^ P™“ 

3. The hull dimensions and coefficients presented in the Table of Ship Par- 
ticuiarsâ are those used for the computer motion calculations. In general they 
also apply to the model test hull forms. In a few cases there are minor differ- 

HnCneA e^een f?rmlm0del tested and U1086 «sed for the motion computa¬ 
tions as, for example, when the model tested did not float on an even keel. Mo¬ 
tion computations were always made for the even keel case. 

4 In the graphs, the circles connected by lines represent the computer 
calculations. The model test results are represented by symbols other than 
circles. Ship K was model tested in regular waves of several heights and all of 

“Zed ¿rrÄer pióte8'"'6“ neCe8Si,aHng ““ use ot a “"«nate than 

A-E. 
5. The following reports were the sources of the model test data for ships 

a. For ships A and B: 

"An Experimental Study of the Effect of Extreme Variations in Pro¬ 
portions and Form on Ship Model Behavior in Waves," by Numata am 
Lewis, ETT Report No. 643, December 1957. 
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b. For ships C, D, and E: 

"The Influence of Shipform and Length on the Behavior of Destroyer- 
Type Ships in Head and Beam Seas," by Muntjewerf, International 
Shipbuilding Progress, Vol. 10, No. 102, February 1963. 

6. The computer program used to calculate the ship motions presented here 
was written in the Bureau of Ships and is based upon a theoretical method devel¬ 
oped by Korvin-Kroukovsky for computing the coupled pitch and heave of a sur¬ 
face ship in regular head waves. The step-by-step computational procedure 
followed by the computer is essentially that presented in Davidson Laboratory 
Report No. 791, "Guide to Computational Procedure for Analytical Evaluation of 
Ship Bending Moments in Regular Waves," by Jacobs, Dalzell, and Lalangas 
dated October 1960. The computer program uses the Prohaska added mass co¬ 
efficients with Ursell's free surface corrections and Grim's 1959 damping co¬ 
efficients, all published in D. L. Report No. 791. It is recognized that it would 
be more logical to use Grim's 1959 added mass and damping coefficients or 
perhaps even more recent data; this was not done for several practical reasons. 
The Bureau of Ships computer program divides the hull into ten station spaces 
for the computations. It has been found that the use of a greater number of 
station spaces has a negligible effect on the computed results. 

NOMENCLATURE 

0 maximum single amplitude of pitching motion, 

Z maximum single amplitude of heaving motion of ship's center of 
gravity, 

e phase lead of maximum pitch up measured with respect to the instant 
when the wave node preceding the wave crest is at the ship's longitu¬ 
dinal center of gravity location, 

s phase lead of maximum heave up defined as for pitch phase angle 
above, 

\ regular wave length, 

L waterline length of ship, 

h regular wave amplitude, 

2h regular wave height (twice wave amplitude), 

K0 longitudinal radius of gyration of ship. 

221-249 0 - 66 - 25 369 
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REPLY TO THE DISCUSSION 

L. Vassilopoulos and P. Mandel 
Massachusetts Institute of Technology 

Cambridge, Massachusetts 

Professor Grim has pointed out that the algorithm we have been using was 
originally intended to be valid only for the frequency range of waves which se¬ 
verely excites pitching and heaving. The new information which he has supplied 
to us privately has been used by Professor Porter to make the comparisons 
shown in his discussion, which for normal type ship sections show excellent 
agreement. There are two main reasons for pursuing comparisons between 
Professor Grim's work and that of Professor Porter. First, there is the natu¬ 
ral urge to make a comparison between two well-founded theoretical approaches 
to a question; especially in view of the fact that the first section of the paper 
still showed disagreement between theory and experiment for resonant condi¬ 
tions. In this regard Professor Porter's program does indicate higher damping 
in heave than the 1959 Grim data which was used in the first part of this paper. 
This would tend to reduce the gap between theory and experiment shown there. 
Secondly, Professor Porter's approach allows for the effect of changes in ship 
section shape which is important for sections found at the ends of the ship, 
whose contribution to pitch damping should be significant. Whether this refine¬ 
ment is of importance in the final answer as far as motion amplitudes are con¬ 
cerned we do not yet know. At the moment we would point out that Professor 
Grim's subroutine is very much faster than that of Professor Porter, but the 
latter program has not as yet been optimized with respect to time consumed in 
the machine. 

Mr. Gale's contribution supplements the objectives of the first part of the 
paper. His correlations are related to a family of destroyer forms and hence 
agreement appears better than in our results because of the wallsidedness of 
the ship sections in the vicinity of the designed waterline. In the M.I.T. pro¬ 
gram, a ship can be defined by any number of sections up to and including 20; 
nevertheless, it appears that computations using 10 sections yield approximately 
similar results. With respect to added mass computation, we prefer either the 
Grim or the Porter data to the Ursell-Prohaska data even though the differences 
according to Mr. Gale's calculations do not seem to be large. 

The comments of Professor Abkowitz are particularly welcome because he 
is an acknowledged leader and teacher in the United States in this field. A 
point on semantics was mentioned by Professor Abkowitz. The differences be¬ 
tween the approach of this paper and that of Korvin indicate that the newer ap¬ 
proach may be regarded as a "pure strip" theory, whereas the Korvin approach 
should properly be referred to as a "modified-slender body" theory. The first 
part of the paper demonstrates the practical utility of the Korvin-Kroukovsky 
and Jacobs theory. Indeed, this was our primary objective. The fact that we 

'See comments by Dyer on paper by Gerritsma and Beukelman. 
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attempted to reinterprete the above theory in the second part was solely due to 
the difficulties explained in the previous paragraph. To Dr. Kaplan who has, we 
believe, in the past, offered explanations for the "erroneous time differentiation,” 
the situation is very clear; to an outsider who attempts to trace back and forth 
the use of Galilean and non-Galilean coordinate systems in the derivation of the 
coefficients, the situation is not that clear. With the assistance of Professor 
Abkowitz, we developed the new approach with the hope that it would yield iden¬ 
tical results to the Korvin approach. We did not get identical results, but we 
did clarify several of the coefficients. With the additional corrections and ex¬ 
planations offered by Professor Abkowitz, the situation may be summarized as 
follows: 

If the added mass distribution for a given ship form is zero at the ends, 
then the new and Korvin-Kroukovsky approaches differ in two coefficients only, 
c and E. If the above assumption is not fulfilled, then they differ in four coeffi¬ 
cients, namely, e, B, c, and E. We would point out that for several kinds of 
ships the added mass at the stern is not zero, for example, destroyers, the 
latest aircraft carriers or even trawlers. Hence, added mass end-effects may 
be responsible for discrepancies between theory and experiment for these kinds 
of ships. Furthermore, the new approach as extended by Profes ;or Abkowitz 
always satisfied the equalities indicated by the more sophisticated hydrodynamic 
analyses of Newman-Timman, whereas the Korvin-Kroukovsky approach does 
not. Finally, we believe that the new excitation term will be numerically as 
adequate as the Jacobs one, due to the small speed dependency. 

The authors wish to express their sincere thanks to all discussers. In this 
case it is not a cliché to say that each and every one of them made a significant 
contribution to the content of this paper. 

* * * 
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SOME TOPICS IN THE THEORY OF 

COUPLED SHIP MOTIONS 

J. Kotik and J. Lurye 
TRG Incorporated 

Melville, New York 

1. INTRODUCTION 

In this paper we present several different results in the theory of ship mo¬ 
tions. Some of the results express certain physical quantities in terms of other 
such quantities, while the remaining results are in the direction of computing 
physical quantities by solving boundary value problems. The following of our 
results are of the first type: 

Kramers-Kronig relations with forward speed and cross-coupling. 

Impulse response in terms of force coefficient for simple harmonic motion. 

As work of the second type we present a numerical approach which seeks sim¬ 
plicity by avoiding integrations over curved surfaces and approximations to or 
representations of curved surfaces. These results already obtained are only a 
beginning, since they assume zero forward speed, but they are sufficiently 
promising to encourage us to extend them to include forward speed. 

2. KRAMERS-KRONIG RELATIONS FOR HYDRODYNAMIC 
CROSS-COUPLING COEFFICIENTS AT FORWARD 
SPEED 

In this section we sketch the proof that the real and imaginary parts of the 
complex hydrodynamic cross-coupling coefficients are connected by the Kramers- 
Kronig relations" in the case of a submerged body having forward speed. We 
begin by defining these coefficients. 

Let the aforementioned body at first be at rest in a steady flow which (1) 
satisfies the usual normal velocity condition on the body surface, (2) satisfies 
the linearized free surface condition, and (3) becomes uniform with velocity -cx 
as X -* too, (Here x is a unit vector in the direction of the positive x axis.) This 
flow evidently represents forward motion of the body at speed c in the positive 
x direction. (The x and y axes are horizontal, the z axis is positive upwards, 
and the origin of the x, y, z coordinate system is at the center of gravity of the 

s,‘See footnote after Eq. (2.2). 
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body when at rest.) Now suppose the body executes a small time-harmonic mo¬ 
tion of angular frequency in one of the six modes: surge, sway, heave, roll, 
pitch, or yaw. These modes are denoted respectively by the index i =1,2,...6 
with i =1,2,3 representing translations parallel to the x.y.z axes respectively 
and i = 4, 5, 6 representing rotations about those axes. If Fj, ‘ * is the com¬ 
plex hydrodynamic force or moment exerted by the fluid on the body in the jth 
mode when the body has a complex linear or angular velocity o'1 in the ith 
mode with all other velocities zero, then the complex hydrodynamic cross¬ 
coupling coefficient H( ; is defined by 

H j j (') -Fu(cr) (2.1) 

where the dependence on frequency has been indicated. 

It is a familiar fact that a knowledge of the H¡ j together with the inertial 
and hydrostatic properties of the body suffices to determine the steady state re¬ 
sponse of the body to an arbitrary time-harmonic set of exciting forces or mo¬ 
ments applied simultaneously in all six modes. 

Writing 

H, j( ’) t (2.2) 

we now outline the proof that and satisfy the Kramers-Kronig relations.* 

General Equations for Transient Problem 

Consider the transient disturbance that results when the body, initially at 
rest in the steady flow, is given at t o a small displacement which is an ar¬ 
bitrary function of time in the ith mode. We characterize this displacement by 
a vector function of position and time '¡( x, y, z, t ) defined only on the undis¬ 
placed body surface (call it S0), such that ^(x.y, z, t) is the displacement at 
time t in the ith mode of a body surface point whose coordinates were (x.y.z) 
at t o. Let 'j, ¿3 be unit vectors in the x.y, and z directions respec¬ 
tively, x,(t), x2m, XJ(t) the instantaneous magnitudes of the translational 
displacements in the first three modes, and x4(t), x5(t), x6(t) the instantane¬ 
ous magnitudes of the angular displacements in the last three modes. 

Then 

V1' vn -i 1. 2, 3 

'¡(x.y, *. t) xi(t) fq.3 * f i 4.5,6 

(2.3) 

(2.4) 

"Strictly, only after certain terms have been subtracted from the H,^ do the 
real and imaginary parts of the remainder satisfy the Kramers-Kronig rela¬ 
tions. See Eqs. (2.24) ff. 

408 



Coupled Ship Motions 

where 

r X-, t y;i2 f z"3 . (2.5) 

Note that as indicated, a. is independent of x,y,z for i =1,2,3. Note also 
that Eq. (2.4) is valid only for small Xj (. = 4, 5, 6). 

Now let Vi(x. y, z. t ) be the disturbance potential associated with the small 
displacement Xjit ) in the Uh mode only, where x^t) o for t<0. Then in 
addition to being a solution of Laplace's equation, also satisfies the following 
conditions: b 

1 
ti -t 

d V,. f 1 
dt o (z 0, t > 0) (2.6) 

A/,. ^ i 
in ( ; . ■ V ) V 1 Ci ' ñ ( X, y,z) on S0 , t • 0. (2.7) 

In Eq. (2.7) [l], ñ is the unit normal to S0 pointing into the fluid, is 
differentiation in the direction of n, and V0(x,y,z) is the velocity at (x.y,z) of 
the steady flow generated by the body at rest in the uniform stream. 

The two initial conditions on \pi, applied at t o+ on the undisturbed free 
surface, are 

^i( X, y,0,0O 0 (2.8) 

—/'¡(x.y.O.n,^ : 0 . (2.9) 

In case x¡(0+) o, Eq. (2.8) follows from the fact that ,:. vanishes not 
only on z o at t 0+, but throughout the fluid. Equation (2'.9) is then a con¬ 
sequence of Eq. (2.8) combined with the fact that the free surface elevation due 
to the body motion is zero at t Of. 

In case the body suddenly acquires a finite velocity at t o+, i.e., 
¿¡(OO ) o, then , ; vanishes on z o at t o+, though not in general vanish¬ 
ing throughout the fluid. This follows from the equations of impulsively gener¬ 
ated motion [2 J combined with the fact that the pressure is zero on the free sur¬ 
face. Equation (2.9) then follows as before. 

Now by modifying a procedure used by Cummins [3| we can write the follow¬ 
ing representation for the potential ^(x.y, z, t) : 

( X, y, z, t ) ¿¡(t) 0.(X,y,z) fj ¿¡(T) >/',;( X.y.z, t-Odr . (2.10) 
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Here i^x. y, z} is a time-independent potential function satisfying the free 
surface condition 

; ¡ (X. y.0) 0 (2.11) 

and the boundary condition 

—i on S . i 1,2.3 (2.12a) 
n 1 ° 

~ , * r) ' ñ °n S , i 4, 5, 6. (2.12b) 

i//H( X, y, z, t ) is a potential function that satisfies the free surface condition, 
Eq. (2.6), for t o, and the boundary condition 

- Vxff'i » V0) • n on s0 , i 1,2. 3 (2.13a) 

- V* [(/‘j. 3 * r) xV'o] ' ñ on So i 4, 5. 6 (2.13b) 

for t > o .* 

The initia! conditions on ., ¡ are 

: ti(x,y,0,0O 0 (2.14) 

and 

'f'jif X. y.0, t)t»0+ -R ./¡(x.y. z)^0 • (2.15) 

It can be verified by direct substitution that the function / ¡(x, y. z, t ) defined 
by Eq. (2.10) does indeed satisfy Eqs. (2.6), (2.7), (2.8), and (2.9) when the func¬ 
tions ■ a j ( X, y, z ) and v''i ¡( X, y, z, t ) satisfy Eqs. (2.11) through (2.15). We recall 
that ¡ appearing in Eq. (2.7) is given by Eq. (2.3) or (2.4). 

Duhamel’s Principle 

We now suppose the body, initially at rest in the stream, to be given (at 
t o) a unit displacement in the ith mode. The fact that such a displacement 
is not small is irrelevant. Let the potential corresponding to the unit displace¬ 
ment be jfx.y, z.t). Since in this case x¡(t) S(t), it follows from Eq. (2.10) 
that 

*Note that :, lias the dimensions of potential/velocity when ¡ = l, 2, 3 and poten¬ 
tial X time when i = 4,5,6. ,, has the dimensions potential/length when 
r = 1, 2, 3 and potential/anglc = potential when i = 4, 5, 6. 
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• i(x'-V' z-' I <n /¡fx.y.z) t Hit) .’i ¡Í X, y, z, t ) (2.16) 

where i t > is the Dirac delta function and H( t ) the Heaviside unit function. 
Note that ft) has the dimension i T. 

Denote by Pjfx. y. z. t ) the linearized pressure arising from the unit dis¬ 
placement, the pressure being evaluated on the displaced surface of the body but 
expressed in terms of coordinates on the undisplaced surface s . Then from 
the linearized form of Bernoulli's principle, we have 

p,i X, y. z. t ) Vn( x.y.z) 
• ix'y 

(x.y.z) on S() . (2.17) 

In Eq. (2.17), the last term on the right corrects for the fact that coordi¬ 
nates on the undisplaces surface are used in expressing the pressure on the 
displaced surface. In that term ^ has the forms of Eq. (2.3) or (2.4) with 
Xji t) H( t ), the Heaviside unit function. 

Let r ¡ ,(1) be the hydrodynamic force or moment on the body in the jth 
mode arising from the unit displacement applied at t o to the body in the ith 
mode. Then 

Pj(x.y,z,t) iî • ûj ds i . 1,,..6 

j 1. 2. 3 

f'j(t) ‘ r X n . _3 (IS i ::: 1....6 

j 4. 5, 6 . 

In Laplace's equation and in the Eqs. (2.6) through (2.9) satisfied by , the 
coefficients of , are independent of time. From this it follows that if the unit 
displacement is applied at t r instead of to, the resulting force or mo¬ 
ment will be f ¡ ¡i t - ). Moreover, all the equations are linear. Thus we may 
invoke Duhamel's principle and write that f ¡J( t), the force or moment in the ,th 
mode corresponding to the velocity ip t) in the ith mode, is given by 

(2.18) 

(2.19) 

fijft) ÍÍ 

f’l.) f f; ( t - T ) X . ( r )(1- 

In particular, when ¿¡(t) H(t)e'it7 t, 

(t-r) e',crT dr 

e'1" J f^Cl^-'d-' 

(2.20) 

(2.21) 

411 



Kotik and Lurye 

From Eq. (2.21), we see that if F¡, f 1 ' is the complex steady state hydro- 
dynamic force or moment on the body in the jth mode corresponding to the 
steady state velocity o'* in the ith mode, then 

(2.22) 

where f j ( t ) is given by Eqs. (2.18) and (2.19) and the second equality in (2.22) 
comes from Eq. (2.1). 

Kramers-Kronig Relations 

If the integral in (2.22) converged suitably for all real a, then it would be 
an analytic function of a in the half plane Im ? > o, vanishing as a-®, whence it 
would follow that ■ andfl’j satisfy the Kramers-Kronig relations. Now, con¬ 
struction of f¡ |(t) from Eqs. (2.16) through (2.19) reveals that in fact, is 
the sum of two types of functions of -, such that the real and imaginary parts of 
the first type satisfy the Kramers-Kronig relations, while the functions of the 
second type are too singular either at o or a> for the Kramers-Kronig 
relations to hold. On the other hand, the functions of the second type depend 
only on infinite frequency potentials and on the steady flow in the absence of 
oscillations, and may therefore be regarded as easier to calculate. Thus it is 
the less-known part of H, ¡ that satisfies the Kramers-Kronig relations. 

Specifically, when i, j = 1,2, 3 we find by substituting from Eqs. (2.16), 
(2.17), and (2.18), into Eq. (2.22): 

J S'( r) e‘TT dr JJ ñ • ¿j dS 

Í Vo ' V'/'nf X, y. z, t) e'JT dr (2.23) 

1. 2, 3 . 
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After some manipulation this reduces to 

I ■ I I : ¡ n • i- j (IS Hi,' > H, ,( •) 

4 ' ÍJV"''7/i "•^dS f 
o 

Although details are omitted, we have assumed in deriving Eq. (2.24) that the 

P •,.. j (is 1 J 2 3 (2.24) 
) 1. 2. 3 . 

lim / i ¡( X, y, z, t ) 

exists and is equal to the incremental steady flow associated with the body in its 
displaced position. 

In Eq. (2.24), the potential Ri(x,y,z) is defined as 

lim , , ¡(x, y, z, t ) 
t -* 0 

and is therefore the infinite frequency potential satisfying the boundary condi¬ 
tion in Eq. (2.13) on S0. 

The real and imaginary parts of H¡ j satisfy the Kramers-Kronig relations: 

H^(. ) 
1 1' «,,(■') 
‘i 

d ■' (2.25) 

X 

^ I 
(2.26) 

where the bar on the integral indicates the Cauchy principal value. 

Thus from a knowledge of either or h| ^ the other can be inferred, 
while as already mentioned, the remaining terms in Eq. (2.24) may be regarded 
as comparatively easy to calculate. 

For completeness, we include the expressions for , analogous to Eq. 
(2.24), for the remaining mode pairs. We have 
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Hi ,< ) Hljf •) , .,, ''S - - j j V(). n-r.j (is ,/ J I k¡ n- ' VIS 

TT Í Í (V'] 
s' 

r • V(V/>| n • .j (IS i 4. 5. f, 

j 1. 2, 3 
(2.27) 

»,,(-> H ¡ j ( ’ ) ' • j [:, r-n-^^dS 

Vo ' • rxn dS f ,.- Rj , , dS 
‘'S-' JsJ 

(IS 1 1. 2, 3 

j 4, 5. 6 
(2.28) 

Hij( ' Hij^tT) " ‘ N h 
's“ 

* , (V0-Wi) r * n •,( j , dS + . i Ri rdS 

Js; -s' 

* rrf 
•'c J 

r ■ n • a; . , <15 i 4.5,6 

j 4.5,6. 
(2.29) 

In all of these, the real and imaginary parts of H¡,( ) satisfy Eqs. (2.25) 
and (2.26). ' 

We conclude with the following remarks: 

1. The Kramers-Kronig relations imply that any symmetry property in i 
and j {Xissessed by the element H*, is shared by ft’, and vice-versa. Thus one 
need only establish such a property for the real or imaginary part alone. 

2. It is known [4| that a submerged body oscillating in a stream can for 
certain modes, frequency ranges, and speeds acquire energy from the stream 
as a result of the oscillation (negative damping). The question then naturally 
arises whether the Kramers-Kronig relations can still hold if over some part of 
the frequency range negative damping occurs. Highly tentative considerations 
indicate that there is at least a possibility of deriving a modified form of the 
Kramers-Kronig relations in the case of negative damping; however, no firm 
conclusions have been reached as yet. 
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3. EXPRESSION OF THE IMPULSE RESPONSE IN TERMS 
OF ADDED-MASS AND DAMPING PARAMETERS 

In [51 it was pointed out that F( t ), the hydrodynamic force exerted by the 
body when the body acceleration is it), can be calculated from either the 
damping or added-mass parameter (for simple-harmonic oscillation) via the 
Kramers-Kronig relations followed by a Fourier transformation. We will now 
discuss this point further, including some observations on a later publication [6] 
which also treats transients and their relations to force parameters. 

Let us recall that according to Eq. (A-5) of [5) we have 

J F( T ' ) e,r7T dr' = rpp'(cx) = [p^(.) + ip'(a)l (3.1) 

where 

F( t ) = hydrodynamic heave force exerted by the body on the fluid, per unit 
step heave velocity of the body at t o, F(t) o for t • 0; 

p'(cr) = force parameter = p¿ + ip;,; 

p¿( ) = added-mass parameter; 

= damping parameter; 

c = radian frequency of oscillation; 

t = submerged (or any other) volume of the body for three-dimensional 
problems, and volume/unit length for two-dimensional problems. 

It follows that 

t rm 
F( t) = It. j p'(<7) e'ii7t der 

“J cos <Tt + p;,(p) sin Ot] da 

: — jp/nfœ) vh(t) + J [Ap^(a) cos at + Pr',( T) sin at] daj , (3-2) 

where 

: PmM * P^a ) • 

However, it is sufficient to know either P;( -) or p;,( ), due to the Kramers- 
Kronig relations, and in fact those relations imply the following: 
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F(t) rPP>0 Ht) + ~ 'r \ ?;,(") sin -t (i (3.3) 

F(t 

QD 
2 r 

) '> P„( O M t ) +- /. J [Ap^(o)] cos at d (3.4) 

(S(t) has dimensions T '). Note that the ^-function acceleration of the body 
produces a -function hydrodynamic force having strength proportional to the 
added-mass parameter at infinite frequency. Heave at infinite frequency is uni¬ 
form translation of the double body in an infinite fluid. Note also that the two 
integrals in (3.3) and (3.4) are equal. This implies that 

I Pn' H (3.5) 

a useful fact which does not seem to have been observed previously. 

The relations Eqs. (3.2)-(3.4) are useful for direct calculation, when ■) 
and/or p^a) are known, exactly or approximately, and for finding asymptotic 
expansions as t-o, .. For example, to find F(t) as t-* *, we first write 

cr 

J p<i ( T ) sin -tí 
. , cos at I f cos at à r , 
i- - pd(->—r- |_ + | —r- - [p;/ '>] 

PcV°) 

'n o 

o( 1) . (3.6) 

Now as stated in [5|, for the heaving motion of a cylinder of arbitrary section, 

(3.7) P(',( O) (2a)2 T , 

where 2a - width at the free surface and r is the submerged volume per unit 
length, so that for such a cylinder, we have from Eq. (3.3) 

F(t) 
(2a)' 8a ^ 

77t 
as t (3.8) 

This hydrodynamic force per unit length exerted by the body on the fluid is 
downward if the -function acceleration is downward. 

For an arbitrary heaving three-dimensional body we have, as noted in [5), 

P'f ’) Pf,(Ka) b, Ka + o(Ka) , (3.9) 
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as K;i - 0, with 

,, 2 
a v' Ac ' (3.10) 

where Ar is the area in which the body intersects the free surface. Hence, at 
least formally, 

p'(-> bn 
, 2 

" P(',( ' ) ( 2b, a o ^ ) (3.11) 

. .2 
-!’/,( ’) 2b, n g , 

all as — o. 

After integrating by parts several times, we may write 

P/,(<’) sin t <1 
1 

(2b, a fO 
f COS t f'3 , 

! — ~p- ( ■ ) dc 

o( 1 t 3 ) 

0(1 t 3 ) (3.12) 

as t - ■ . Therefore, from Eq. (3.6) the heave force exerted by an arbitrary 
body is 

F(t) 
2 ^ 

K t3/ Kt3 

(3.13) 

as t . We see that this force exerted by the body on the fluid is upward if the 
-function acceleration is downward. 

We will now find the heave displacement, for large time, of a body released 
at zero velocity from hydrostatic disequilibrium. The equation of motion, for 
an arbitrary surface-piercing body, is 

M ÿ0( t) - < rAc y0( t ) - Í F( t - • ) ÿ0( M d ■ (3.14) 
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where y0( t ) is the heave displacement measured with respect to the position of 
buoyant equilibrium. For three-dimensional bodies, M is the mass of the body, 
and Ac its cross-section area in the free surface, while for two-dimensional 
bodies M is the mass per unit length of the body and At, its width in the free 
surface. 

Taking the Laplace transform of Eq. (3.14), introducing the initial conditions 
that yn( t y0( 0 ) at i 0, ÿo(0) 0, and converting Fourier transforms, we 
find for Yn( ), the Fourier transform of yom, 

- iyo(0) p'( ) t m] 

■kAc - I r, p'( 0 + Mi 
(3.15) 

Separating real and imaginary parts, we can write Eq. (3.15) in the form 

Y0( ■) - iyo(0)[Y;R( -) * iY;‘( ■)] (3.16) 

where the primes mean that -iyo<0) has been factored out as shown. y¿r and 
Y^1 have the following forms: 

y:r( ■) 
p; ‘ M) ['RAc - ’2(',-p;+M)] ,3 7 2 f2 p,)3 

[■ rA(. - 2f '‘P,;, • M)2]2 + a4 '2/2p'2 
(3.17) 

y:’( ■) 
P.'lkA,, 

(3.18) 
[■ sAc ( ' ■ P' * M)' ,4 r2 • » 2 

Ph 

Since pj •) is an even function and p;,( > an odd function of , one sees 
from Eqs. (3.17) and (3.18) that Y¿R is odd and Y¿1 is even in . It follows that 
upon taking tlie inverse Fourier transform of Eq. (3.15) we can write 

y (0) c’ 
yo( t ) —Y^V'T) cos t Y^r( ) sin ’t d ’ . (3.19) 

We now use Eq. (3.19) together with Eqs. (3.17) and (3.18) to infer the as¬ 
ymptotic form of y0( t ) as t > . This form depends on the behaviour of Y('} 1 ( ) 
and y;r( ) in the neighborhood of o. We treat the cases of two- and three- 
dimensional bodies separately. 

Two-Dimensional Bodies 

In this case (51 

o 
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p.yo) (3.21) 

From these equations combined with Eqs. (3.17) and (3.18) we infer that 

Y/-( )- 2 *1 Ion - , . 0 (3.22) 
" h 

Y^c, A; . -* 0 . (3.23) 

Incorporating these results into the integral of Eq. (3.19) we find, through 
integrating by parts, the following leading terms at large t: 

whence 

f y;'( ■) cos 
* 0 

f Y;k( ) sin 

t (I 

-t ,1 
A 

Ut 

Yn( f > 
2 

yt)( 0 ) 

A, 

(3.24) 

(3.25) 

(3.26) 

where a A( 2 is the half-width of the cylindrical body in the free surface. 

Equation (3.26) gives the large time behaviour of the heave displacement of 
a cylindrical body released at zero velocity from a position of hydrostatic dis¬ 
equilibrium. The expression on the far right of this equation agrees with that 
obtained by Ursell [6| for a half-submerged circular cylinder of radius a. How 
ever we now see that this expression is valid for cylinders of arbitrary cross 
section having a width 2a in the free surface. 

Three-Dimensional Bodies 

For three-dimensional bodies, we have [5| 

p>) 1 p„V°) - ~ ~ '2 lofi 
(3.27) 

p>> £ T 2 

2'r 
cj -> 0 ■ 

(3.28) 

Incorporating these results into Eqs. (3.17) through (3.19), we find after a 
number of integrations by parts in (3.19) 
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y d t ' 
(3.29) 

A comparison of this expression with the corresponding one for cylindrical 
bodies, Eq. (3.26), shows that: 

1. the approach to buoyant equilibrium in three dimensions is asymptotically 
faster than in two dimensions by a factor proportional to 1 t2, and 

2. the approach to equilibrium in three dimensions is asymptotically from 
the side of the equilibrium position defined by the initial displacement; in two 
dimensions the approach is from the side opposite the initial displacement. 

It is our intention to present, in a future publication, calculations of tran¬ 
sient forces and displacements using Hi-Fi approximations- to p(',< ). 

4. NUMERICAL DETERMINATION OF HYDRODYNAMIC 
COUPLING COEFFICIENTS FROM VOLUMETRIC 
SINGULARITY DISTRIBUTIONS 

In this section w outline briefly a numerical scheme for calculating the 
hydrodynamic coupling coefficients ■ (already defined in Sectio .s 2, 3, and 4) 
for a fully or partially submerged body engaging in small time harmonic oscil¬ 
lations. Our computer program so far covers only the zero speed case, but its 
extension to forward speed should present no difficulty in principle; the chief 
additional complication would center on the calculation of the time-harmonic 
Green's function for a point source in a steady stream below a free surface. 

The idea of the method is to approximate the velocity potential exterior to 
the oscillating body by the potential of a time-harmonic finite set of singularities 
contained in the interior of the b( Jy surface. These singularities will usually 
be either sources or dipoles although higher order multipoles can also be used. 
The strengths of the singularities are determined by the requirement that the 
normal velocity they induce on the submerged portion of the undisplaced body 
surface, S0, should best approximate the actual normal velocity of so in a cer¬ 
tain mean square sense.t Specifically, let Pm(m 1,... M) be the points where 
the M singularities of complex strength qm are located interior to so, and let 
Pn(n l,... N) be a set of points on So with N M. Let amn be the complex 
normal velocity at Pn due to a singularity of unit strength at Pm, the singularity 
potential satisfying the linearized free surface condition. Finally let vn by the 
actual complex normal velocity of Sn at Pn due to the oscillation. Then we 
seek to determine the qm so as to minimize the mean square expression 

n ~ 1 m l 

(4.1) 

-Examples are given in [5]. 
fHowever, we plan to consider other types of approximation as well. 
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Note that the value of J when the qm have their minimizing values, serves 
as a measure of the closeness with which the exact potential exterior to Sn has 
been approximated. 

It is easily shown that the minimizing qm satisfy the following set of linear 
algebraic equations: 

M 

Z] '’km'ln, 

where 

ljkm 

Ck 

where the asterisk denotes complex conjugate. 

Once the qm are determined by solving Eq. (4.2), several methods are 
available for calculating the hydrodynamic forces and moments on the body and 
thereby the hydrodynamic coupling coefficients. 

c. k 1. . .. M (4.2) 

L aknan 
(4.3) 

L aknVn. (4.4) 
n 1 

Lagally’s Method 

Cummins [7| has derived an extension of Lagally's theorem to time- 
dependent flows, which can be used to obtain the oscillatory hydrodynamic 
forces acting on the body. The calculation is exceedingly simple, requiring (for 
the linearized force in the case of small oscillations) a knowledge of the singu¬ 
larity strengths and locations and nothing else. (A simple summation over the 
singularities must be performed.) However, this method suffers from two limi¬ 
tations. One, it is applicable only to fully submerged bodies since the extension 
of Lagally's theorem to bodies that pierce the free surface does not yet seem to 
have been accomplished. Two, even for fully submerged bodies, Cummins' 
method gives only the forces and not the moments. 

Energy Method 

By considering the rate at which energy is radiated out to infinity, one can 
express the real parts of the complex cross-coupling coefficients for time- 
harmonic motions as a sum over the singularities. The terms in the sum in¬ 
volve the singularity strengths and certain potentials or potential gradients 
evaluated at the singularity locations. With this technique, the real parts of the 
coupling coefficients corresponding to both forces and moments can be obtained. 
Moreover the body need not be fully submerged. Finally, once the real parts of 
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the coupling coefficients are determined as a function of the frequency, the 
imaginary parts can be calculated from the Kramers-Kronig relations. 

We quote the result for a distribution of sources: 

Im I / r \ , . pjk> 
l k I 

(4.5) 

Here the qim(m l. ... are the strengths of the sources at the points Pim, 
these sources generating the approximate motion in the ith mode, while the 
q)k( j l. •. Np have the same significance for the jth mode. Some of the points 
Pim and Pjk may coincide. The function of position < Pjk) is the regular 
part of the Green's function G<pim.Pjk) satisfying the free surface condition. 
Finally, is the fluid density and a the angular frequency of the oscillation. 

Pressure Integrals 

The most obvious way to arrive at the forces and moments on the body is to 
use the singularity strengths to obtain the pressure distribution on the sub¬ 
merged body surface and then form the appropriate pressure integrals over that 
surface. From a computational standpoint, it is extremely important to note 
that the integrations need not be carried out over the actual surface of the body. 
Rather, one can express each component of force or moment as an integral or 
combination of integrals over the plane domains defined by projecting the sub¬ 
merged part of the body surface onto each of the three coordinate planes. Thus 
only ordinary double integrals over plane regions need be computed. 

We conclude with the results of a preliminary numerical test. These re¬ 
sults were obtained by applying our procedure to the case of a prolate spheroid 
in an infinite fluid. The assumed motion of the spheroid was a small time- 
harmonic translation in the direction of its axis (surge). The thickness-to- 
length ratio was 1/8. For the singularity distribution, we chose a set of 45 axi¬ 
ally directed dipoles located on the axis of the spheroid. Having determined the 
dipole strengths in the manner already described, we then calculated the ampli¬ 
tude of the linearized time-harmonic pressure on the surface of the spheroid. 

Our results are shown in Figs. 1 and 2. Figure 1 is a plot of the normal¬ 
ized real amplitude of the time-harmonic dipole moment vs normalized axial 
distance. The normalized real amplitude is defined as >> where u is the 
real amplitude of the unnormalized dipole moment, and m0 is the amplitude of 
the dipole moment at the center of the spheroid. The normalized axial distance 
is X a, where x is the distance from the center of the spheroid measured along 
its axis and a is the half-length of the spheroid. The solid curve represents 
the exact continuous distribution of dipole strength — this is known to be para¬ 
bolic for surge in ar> infinite fluid —while the two broken curves represent ap¬ 
proximations computed by our procedure. In both of the latter, a discrete dis¬ 
tribution of 45 equally spaced axial dipoles was assumed to lie between the foci. 
The two approximations differ in that the mean-square boundary condition in¬ 
volved 48 points on the spheroid surface in the one case and 96 points in the 
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legend 

-— EXACT 

-45 SINGULARITIES, 96 SURFACE POINTS 

-— 45 SINGULARITIES, 48 SURFACE POINTS 

a 

Fig. 1 - Normalized amplitude 
of dipoie moment for surging 
prolate spheroid 

0 

Fig. 2 - Normalized amplitude of time-harmonic 
pressure on surface of surging prolate spheroid 
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other. As one might have expected, the second approximation is somewhat bet¬ 
ter; however both are very close to the exact distribution. 

In Fig. 2 we have plotted the normalized real amplitude of the time-harmonic 
pressure on the surface of the spheroid vs normalized axial distance. (From 
symmetry, the pressure is obviously a function of the axial coordinate only.) 
The normalized real amplitude is defined as r , aV, where P is the real am¬ 
plitude of the unnormalized pressure, and v is the real amplitude of the sphe¬ 
roid velocity. The solid curve represents the exact pressure distribution, which 
in the case of surge in an infinite fluid, is known to be a linear function of the 
axial distance. As can be seen from their labels, two of the broken curves were 
calculated from the approximate dipole distributions of Fig. 1. The third pres¬ 
sure curve was obtained from a discrete distribution of 45 dipoles whose 
strengths were computed by applying the mean square boundary condition to a 
set of 200 points on the spheroid surface. Evidently it is only near the nose that 
the approximate pressures depart sensibly from the exact one, and even there 
the relative error is less than 15%. 

It is worth noting that neither the computation of the dipole strengths nor 
the subsequent pressure calculations exceeded 0.01 hr of IBM 7094 machine 
time for any one case. 
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ATLANTIC OCEAN 
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ABSTRACT 

The two-dimensional wave spectrum has been estimated once by stereo 
photogrammetric techniques, and a number of times by buoys developed 
by the National Institute of Oceanography. The results obtained do not 
contradict each other. Some questions have recently been resolved and 
one remains unresolved. There do not appear to be spectral compo¬ 
nents in a pure wind sea traveling in a direction opposed to the wind. 
The theory relating wave number to frequency from linear considera¬ 
tions can be applied. Whether or net the spectrum is bi-modal as a 
function of direction for certain frequencies is not yet decided. A form 
for the directional spectrum of a fully developed wind sea is proposed. 

Under certain assumptions about the generation of wind seas attempts 
to forecast the two-dimensional spectrum at 519 points cn the North 
Atlantic have been made. Verification of the forecasts against ob¬ 
served two-dimensional spectra are not possible. However, they verify 
fairly well in terms of significant height and against the observed fre¬ 
quency spectra and in terms of swell and wave decay. It appears that 
the forecasting procedure is fairly close to being correct. 

INTRODUCTION 

Nearly all of the papers at this symposium are concerned with the deter¬ 
ministic mathematics applicable to the analysis of the classical hydrodynamic 
problems that are concerns of the naval hydrodynamic ist. However, one of the 
inputs to the problem of understanding the motions of marine craft at sea is 
essentially probabilistic in nature. The actual sequence of waves that will be 
met on a given cruise can never be predicted before the fact. To predict certain 
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features of the behavior of such a craft on a certain cruise for, say, the next 6 
hours or perhaps, even the next 24 hours, one must give up the deterministic 
world and predict the probabilities of certain events and statistics derivable 
from them. 

Such predictions can be quite refined statements, given sufficient knowledge 
and understanding of a number of factors. For example, it may be possible 
some day to make statements of the following kind: 

1. Merchant ship design A is superior to merchant ship design B for 
cruises between New York and the English Channel because (1) if each ship were 
to follow the least time track route on each cruise for five years, merchant ship 
A would average five days two hours per crossing as opposed to six days one 
hour for ship B, (2) the bow of ship A would ship water 560 (±20) times (with a 
probability of 0.99) during the five year period and ship B would ship water 650 
(±3) times (with the same probability) and (3) ship A would slam only 6 (±3) 
times (with a probability of 0.99) whereas B would slam 50 (±5) times. 

2. Of five ships available for a rescue mission at a certain point, this par¬ 
ticular ship should move as quickly as possible to that point. It will arrive two 
hours (±20 minutes) sooner than the earliest of the other four ships. The sec¬ 
ond ship to send is such and such a ship as a safety factor or as a standby re- 

3. All ships in a certain part of the North Pacific will encounter seas in 
excess of the highest measured for the past decade beginning 18 hours from now 
and ending 30 hours from now. All possible safety precautions should be taken 
immediately. Predicted conditions for specific points in this area follow. 

,, statements such as these will be possible when it is possible to describe 
the directional spectrum of the waves at every point on the ocean as a function 
of the winds over the ocean. The first statement can be made on the basis of 
the historical files of weather data. The second and third require the wind field 
to be forecasted a day or so into the future. 

It is therefore necessary to describe this directional spectrum in its infi¬ 
nite variety and to predict its form at future times. Strangely enough, this 
problem is, to a large extent, deterministic. As an analogy, to predict the vari 
anee of a sample to be drawn from a normal population is not the same as to 
predict the actual values that would be drawn at random from a normal popula- 
t.on with a known variance. In this particular problem, to predict the features 
of the directional spectrum that will be estimated from observations of waves 
in a particular area is not the same thing as to predict the exact form of the 
waves that will be observed in a particular area. The predicted spectrum in 
turn permits the determination of many wave and ship motion parameters such 
as the significant wave height, the average pitch motion, the number of slams 
and so on. One then assumes that the predicted parameters are those that will 
be the population parameters at the point of interest for the event of interest. 
These parameters are then estimated directly from observation, if possible 
and compared with the prediction. The attempt is successful if the predicted 
and estimated values agree within the sampling variability of the estimate. 
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The purpose of this paper is to summarize what we now think we know about 
the directional spectrum of waves at sea and to discuss how we are trying to 
predict th's directional spectrum at 519 points in the North Atlantic Ocean. 

FUU.Y DEVELOPED WIND SEAS 

If the wind blows with constant speed and direction for a long enough time 
over an initially calm ocean area, if this ocean area is big enough, if no waves 
propagate into this area from outside it, and if the turbulent features of the wind 
do not change, then a fully developed wind sea should be observed over part of 
this area, and wave observations made in this fully developed wind sea should 
all be samples that have come from the same population. The spectral esti¬ 
mates, S(. ,made from these observations should display sampling variabil¬ 
ity in terms of departures from some unknown population spectrum S(oj, ö). 

There are only a few available estimates of S( There are, however, 
now available in useful form about 500 estimates of S(. ) that were obtained 
from the analysis of waves recorded at a fixed point as a function of time. 
These estimates are given by Moskowitz, Pierson, and Mehr (1962,1963) and by 
Pickett (1962). 

Of these 500 spectral estimates, S( . ), about 40 were found by Moskowitz 
(1964) to correspond to fully developed seas for winds from 20 to 40 knots. All 
of the others could not be simply defined by the wind speed measured at the 
time the wave record was made. As one example for winds near 20 knots, the 
waves are usually higher than those expected for a fully developed sea because 
components left over from previously higher winds and components from swell 
are present. 

Given some form for o to describe the spectra of fully developed wind 
seas, one is therefore a long way from describing the spectrum that will be es¬ 
timated at a particular point at sea because the wind will not have been constant 
in speed and direction and waves from a distance may have propagated into the 
area. The spectrum for a fully developed wind sea is however a fundamental 
building block in attempts to describe the spectra that will occur in more com¬ 
plex situations. 

KNOWN PROPERTIES OF THE SPECTRUM 

Directional Spectra and Frequency Spectra 

The directional spectrum of waves can be thought of as being written in the 
form 

S( w, o) = S( a;) [f(o),e)] (1) 

where f( -. ,60 in turn can be written as 

427 



Pierson 

: ¿7 + 2Z [an( ‘^ cos nt' f l)n(u;) si» <!■']■ (2) 
n - 1 

It then follows that 

I S( .. -),1 S(.) (3) 
- V 

and that 

I f(^)dt> 1. (4) 

An attempt to describe S( .,) correctly therefore implies that S( . ) is correct. 
If spectra estimated from a time history at a point are not correctly described 
then surely directional spectra estimated from more complete data will not be 
correctly described. 

The Frequency Spectrum 

The book, Ocean Wave Spectra, describes a wide variety of proposed forms 
for S( ) as reviewed and summarized at the Easton Conference on Waves held 
in 1961. Based on an application of a theory given by Kitaigorodskii (1961), and 
by means of the results of Moskowitz (1964), Pierson and Moskowitz (1964) hav« 
proposed a new form for S( . ). It is given by Eq. (5). 

S(.) ')4, (5) 
a:5 

where ! = S.lOxlO'3, = 0.74 and 0 =(-0. Here U is the wind speed meas¬ 
ured at 19.5 meters above the sea surface. The anemometer that measured u 
was at this elevation on the ship. 

This spectrum has many features that agree with other proposed spectra 
and an analysis of the effect of the variation of wind with height has reconciled 
many of the apparent discrepancies pointed out so stronglv at the Easton con¬ 
ference. 

fl might add parenthetically that the spectrum proposed by my colleague 
Dr. Neumann, is remarkably close to this one for winds near 30 knots. It is ’ 

however, seriously off for higher winds, and any design considerations based on 
the spectrum due to Neumann for high winds should be re-evaluated (see Pierson, 

As the group to which this paper is addressed does not consist of those 
working on the problem of forecasting ocean waves, it is important to remark 
that the above spectral form represents the writer's opinion as to the best pres¬ 
ently available description of the frequency spectrum of a fully developed wind 
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sea. If one becomes seriously interested in using this spectrum for applications 
in naval hydrodynamics, he should check the opinions of those workers in this 
field who may not agree with this belief. 

Known Properties of S( ., ) 

With a handful of directional spectrum estimates available, it is not sur¬ 
prising that not much is known about S( .,--). The available estimates have been 
given by Cote et al (1960), Longuet-Higgins et al (1963) (and in other publications 
describing the same data), Cartwright (1963), and Cartwright and Smith (1964). 
It was assumed in Cote et al that S( , ) was zero outside of the range 
-77/2 --2 where o is the direction toward which the wind was blowing. 
There were good reasons for this assumption and the data bore them out, but it 
could not be proved that S< . ) was zero outside the above range. 

Analyses by Longuet-Higgins et al (1963) were able to obtain the first five 
values in Eq. (2), that is 12, .V J >, 1^(,.), a2( ), and b2( . ). The results 
suggested that S( . > was not zero for spectral components traveling opposite 
to the wind. However, a new device, called a cloverleaf buoy, developed at the 
National Institute of Oceanography now yields a3(. ) and b3(-- ). Indeed, that 
part of Si , ) outside of - 2 - < 2 is small. The preponderance of the 
available evidence now is that little or no spectral energy in a fully developed 
wind sea will be associated with spectral components traveling opposite to the 
wind. 

All of the available directional spectrum estimates also indicate that Si. , ) 
is more strongly peaked for low frequencies and that it broadens with increas¬ 
ing frequency. One possible explanation for this effect is contained in the theo¬ 
ries of Phillips (1957), which suggest that 5( .,(/) should have two peaks that 
move further apart with increasing frequency. None of the presently available 
directional spectrum estimates have the resolution and the degrees of freedom 
necessary to resolve the question of whether or not this bi-modal form occurs. 
An experiment could be designed to resolve this question by the combined use of 
both stereo-photogrammetric techniques and the latest buoy developed at the 
National Institute of Oceanography. 

For some applications of the power spectrum, it is desirable to be able to 
describe the sea surface as a function of distance instead of as a function of 
time at a point. This involves the transformation from an , representation 
toan -i,- representation where f2 + m2 k2, k 2 R, i = ,2 cos r and 
- 2 sin R. A discussion in Ocean Wave Spectra suggested that k did not 
seem to be given by 2 r, but since then Mr. Cartwright of the National Institute 
of Oceanography has informed me that subsequent analyses all verify this linear 
representation between wave number and frequency to within the present accu¬ 
racy of the available data. This result does not eliminate the problem com¬ 
pletely as nonlinear effects of a more subtle nature are present. It will be a 
long time before these nonlinear effects are completely understood. 

For information purposes, in our attempts to forecast waves for the North 
Atlantic, the form given by Cote et al (1960) has been used. In the notation of 
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this paper the function s< 
otherwise. 

is given by Eq. (6) for 2 2 and by zero 

f( ■. ) 0.50 » 0.82 c eos 2 * 0.032c ( eos 4 
(6) 

One should note that the Fourier series representation of S( , > as in Eq. (2) 
would require many more terms to fulfill the zero otherwise condition that was 
assumed in the above expression. 

FORECASTING DIRECTIONAL WAVE SPECTRA 

At present, my colleagues and I are attempting to predict the directional 
wave spectrum, S( .. ), given the winds over the North Atlantic Ocean. S( ., ) 

is the directional wave spectrum, if one has the directions, 0, 6, 3, 2, 
2 3 5 6, , and so on to 2 with respect to north as zero, and if one has Ver- 
!.ai* ;r0cncluen^c‘s> f .• fj. f Ift> then our forecasting scheme attempts to pre¬ 
dict 180 numbers, one of which would be, for example, 

(7) S( .,)(1 (If . 

Stated another way, the directional spectrum is described by the variance con 
tnbutions to fifteen frequency ranges for each of twelve direction intervals at 
each point. 

ms over frequency, taking the square root of the sum and multiplying it by 4. 
(The spectra discussed above are all in terms of variance, and the total volume 
under S( .-, ) equals the variance of the wave motion.) 

time nistory at a point. 

See, for example, Pierson and Tick (1964). 
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For December 1955 and December 1959 these results were verified by the 
data provided by the British weather ships that are equipped with the Tucker 
shipborne wave recorder. For November 1961 verification is against the wave 
records obtained at Argus Island by the U.S. Naval Oceanographic Office. 

Figure 1 shows the significant wave height predicted at four points sur¬ 
rounding the British weather ship in December 1959 and the significant wave 
height obtained from the records obtained by the British weather ship. Four 
majoi cyclonic storms passed the weather ship during this period. The waves 
reached significant heights of 40 feet and decreased after each storm to signifi¬ 
cant heights near 15 feet. The predictions are quite good and although not shown 
the frequency spectra check quite well most of the time. 

Our other results are equally encouraging. The November forecasts were 
verified in a completely different oceanic area by means of records obtained by 
d difierent wave recording system. The data for the November forecasts were 
not used in developing the procedure, and, although again not shown here, the re¬ 
sults are quite good. 

The 180 numbers that describe the directional spectrum show a wide varia¬ 
tion of odd forms such as one would expect from sea plus swell, crossed seas, 
and swell. Most spectra cover a range of directions in excess of 180 degrees. 
Directional spectra cannot ue verified as no data were taken to estimate them! 
However, the directional spectra cannot be too far off because it would be virtu¬ 
ally impossible to obtain the good results that have been obtained for the signifi¬ 
cant height and the frequency spectra if the directional spectra were wrong. 

,. . ï a fU}1,y.deVel0ped sea should occur at a particular point, the numbers pre¬ 
dicted would be obtained by substituting Eqs. (5) and (6) into (7). 

Presently we are developing ways to process 300,000 ship reports so as to 
produce wind fields for fifteen months of weather data. Forecasts of the direc¬ 
tional spectra for these fifteen months will then be prepared. These results will 
be/»,r u d against frequcncy spectra already tabulated by Moskowitz, Pierson 
and Mehr. At that time, some statements can be made concerning the overall 
accuracy of our procedures. 
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DISCUSSION 

A, Silverleaí 
National Physical Laboratory 

Tcddington, England 

Professor Pierson's application of mathematical technique to sea state 
studies has long been of the greatest value to those of us in Britain concerned 
with the performance of ships in waves. I am sure that most of us will agree 
that the two-dimensional or unidirectional wave spectrum is a "fundamental 
building block" which will aid further developments. However, in Britain we do 
not all agree with Professor Pierson’s suggestion that the formula in (5) is the 
best for naval architecture purposes at the present time. An independent ana1 
ysis by Scott (Ref. A) on behalf of the British Towing Tank Panel suggests that 
it is not the best or even the most appropriate fit to the Moskowitz data. For 
example, Professor Pierson's relation between the frequency of the spectrum 
peak f0 and the average wave period Tv is 

f„ 0.77 Tv 

while that recommended by the B.T.T.P. is 

f0 0.501 Tv + 1.43 Tv2 • 

Consequently, an alternative formula has been proposed for use by the British 
towing tanks which are now carrying out experiments on models in irregular 
waves much more frequently than in the past, so that it has become urgently 
necessary to formulate a standard of sea spectra for such experiments. 

In his introduction Professor Pierson mentions three possible types of pre¬ 
diction of seakeeping performance. I suggest that only the first of these repre¬ 
sents the purpose of seakeeping research from the point of view of the ship de¬ 
signer and operator, who is primarily interested in knowing whether or not ship 
A will perform better than ship B for a particular purpose on a specified route. 
Professor Pierson suggests that the data necessary to make this type of predic¬ 
tion can be obtained from historical records and some current work in Britain 
is being devoted to just this approach. Statistical information about wind and 
wave conditions in the principal areas where ships operate is being analysed 
and processed using data collected from voluntary observing ships and recorded 
on punched cards at the Meteorological Office. At present data from 125 Mars- 
den squares have been grouped into 52 areas defining most of the principal 
shipping routes to give a detailed account of the likely sea conditions during all 
seasons of the year. A first report on this scheme has recently been issued 
(Ref. B) and it is intended to publish a complete compendium on ocean wave 
statistics within the next year or so. 
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REPLY TO THE DISCUSSION 

W. J. Pierson, Jr. 
New York University 
New York, New York 

Mr. Silverleaf states that the formula I gave in my paper may not be the 
best and proposes an alternate on the basis of work by Scott. It would be inter¬ 
esting to see if the subsets obtained by Scott would pass the test applied by Mr. 
Moskowitz to his data. On the other hand, it may be the best. For example, the 
ITTC has adopted a form quit similar to the form we have obtained at N.Y.U. 
It must be emphasized that the formula represents only fully developed wind 
seas as a function of the wind velocity. The documentation for our results is 
substantial and it forms a convincing total picture. Recent work of Kraus (1965) 
provides added support. 

Partially developed seas, dead seas, and swell all have spectra that differ 
from the form I gave. Whether meaningful averages of such spectra can be ob¬ 
tained is questionable, and I have expressed certain doubts in this connection in 
correspondence with Mr. Hogben. 

I believe that all of the examples given in my paper come within the domain 
of the naval architect. It is his responsibility to see that the ships he builds are 
so thoroughly understood that their performance in any given situation can be 
correctly described. Other inputs are needed from meteorology and oceanog¬ 
raphy, but in principle the problems posed differ only in degree and not in kind. 
Although not stated explicitly in my paper, each ship captain who receives such 
a warning should be thoroughly acquainted with the expected behavior of his ves¬ 
sel for the predicted extreme condition. 

Our work on waves would never have reached its present stage without the 
foresight of the National Institute of Oceanography in Great Britain. The routine 
collection of wave data by means of British weather ships and the Tucker ship- 
borne wave recorder has been the cornerstone of our work. 
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W. E. Smith and W. E. Cummins 
David Taylor Model Basin 

Washington, D.C. 

INTRODUCTION 

In a recent paper fl | one of the authors proposed that a useful and revealing 
way of treating oscillatory motions of a ship was to relate them to the transient 
response to an impulse. The response to an arbitrary excitation would be ex¬ 
hibited as a convolution integral over the past history of the excitation. The 
idea was hardly original, as this device is widely used in the discussion of linear 
systems. However, there seemed to be some reluctance by those working in the 
field to treat the ship response in this fashion. Most writers preferred to re¬ 
strict their attention to the frequency response function. 

There have been some exceptions to this trend, notably Fuchs and MacCamy 
in the discussion of the motions of a floating block [2], Dalzell in the treatment 
of destroyer motions in severe sea states f3], and the paper by Davis and Zarnick 
for the present symposium [4|. However, all of these are concerned with re¬ 
sponses to wave pulses or hypothetical wave impulses, and not the response to a 
force or moment impulse. The present paper is concerned with this latter prob¬ 
lem. As a matter of fact, the solutions to the two problems, the response to the 
wave pulse or impulse and the response to a force or moment excitation, com¬ 
plement each other very effectively. The first solution characterizes the total 
wave-ship system, while the second enables us to construct the equations of mo¬ 
tion and thus separate the effects of damping, added mass, coupling, and hydro- 
dynamic memory. When both solutions are known, the wave excitation can be 
determined, and one is then in a position to say not only what the ship does but 
why it does it. The designer then has clues as to how to make changes in the 
design in order to improve seakeeping qualities. 

One can discuss and even use the impulse response function without directly 
measuring it, as it is simply the Fourier transform of the frequency response 
function. If the latter is known for all frequencies, the impulse response func¬ 
tion can be computed. But to directly determine the frequency response function, 
one must measure the response to a set of frequencies at suitably close inter¬ 
vals over the whole frequency range in which there is significant response. The 
alternative approach is most attractive. That is, apply a known impulse or 
equivalent excitation to the model and observe the response. The frequency re¬ 
sponse function can then be computed, and we have replaced a time consuming 
and expensive test program requiring many runs with a single run. This paper 
is concerned with such measurements. 
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In principle, the experiment is beautifully simple. In practice, there are a 
number of difficulties to overcome. First and most obviously, we are dealing 
with a system with six degrees of freedom, and there is strong coupling among 
some of the modes of oscillation. A much more serious and subtle problem 
arises from the fact that we obtain the response of the ship for all frequencies 
from a small set of relatively short records. Thus, the desired information is 
highly compressed in the time scale. The resolution of this information re¬ 
quires records of very high quality and an analysis procedure which degrades 
the data as little as possible. 

Prior to the presentation of Ref. 1, experiments were performed to test 
this procedure as a practical tool. Declining oscillations were used instead of 
impulsive excitation, but most of the troubles encountered would be even more 
characteristic of the latter type of test. The measurement system was some¬ 
what superior to those typical of seakeeping work at that time. In the process 
of analysis it became quite clear that major improvements were necessary in 
order for the technique to be other than a curiosity. 

There were several sources of difficulty, and as the method of overcoming 
these are key factors in the present paper, they will be mentioned here. First 
is the question of accuracy. It is clear that when desired data is superimposed, 
the accuracy to which it can be separated is certainly no higher than the net ac¬ 
curacy of the system. The original system had an accuracy of perhaps 5 per¬ 
cent and this was not good enough. The second major difficulty was noise, as it 
is evident that the real objective is a high signal to noise ratio. By noise we 
mean here all unwanted disturbances such as wall reflections and true electrical 
noise. The input for the declining oscillation experiment is a step function, 
which is completely suitable theoretically, but has undesirable qualities practi¬ 
cally. These arise from the fact that the step function has harmonic content at 
all frequencies, all the way to infinity, and such an excitation not only causes 
the model to oscillate, but in addition it vibrates as a beam at its natural fre¬ 
quency. Further, all instruments, attachments, etc., are excited in their various 
natural frequencies. In consequence, the signal to noise ratio was well below 
that which is necessary. 

As the potential value of the transient experiment is great, much effort has 
been devoted to upgrading our measurement and analysis system since these 
early tests. The present paper is a progress report on the present state of this 
program. The details will be discussed in the subsequent sections, but the most 
significant accomplishments will be mentioned here. 

The first is a technique of towing the model, rather than self propelling it. 
This is contrary to the current trend toward powered models for seakeeping 
work. However, we feel that this technique offers real advantages. Specifically, 
we measure all restraints on the model imposed by the towing, guidance, and 
excitation system. The sum of these is the net input to the model. Thus, towing 
gear inertias and frictions are of no concern, as their effects are included in 
the measured input. 

The second achievement is the use of an excitation pulse of controlled har¬ 
monic content. The technique is an analog of that used by Davis and Zarnick for 
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generating wave pulses. An oscillatory excitation is imposed on the model by 
means of a variable speed drive which sweeps from the highest frequency de¬ 
sired down to the lowest frequencies which can be treated in our basin. Because 
of the method of generation, the very high frequency content of the step ur im¬ 
pulse response is avoided. Because of the shape of the pulse, the separation 
into the various frequencies is achieved with good accuracy. And because of the 
length of the pulse, the intense concentration of the information is eased. 

The third achievement is a system of significantly improved absolute accu¬ 
racy, about two percent. The present limiting factor is the use of magnetic tape 
in the data handling path. It is possible that the use of tape can be avoided, with 
a further significant improvement. 

The last major advance has been the use of a new system for converting 
data from analog to digital form. This system has the capability of converting 
as many as 6,000 data spots per second, distributed among the various channels 
of data. It has been possible to sample the data at a rate of 30 spots per cycle 
of the highest frequency investigated. 

The net result of all these improvements has been a very high signal to 
noise ratio. In the range of greatest interest, the noise is 45 db below the sig¬ 
nal level. As a result, we have been able to characterize the model from fre¬ 
quencies so low that shallow water and wall effects become significant (in a 
basin 240 ft x 360 ft x 20 ft deep!) up to higher frequencies than any previously 
investigated. And this entire range was covered in a pair of runs lasting per¬ 
haps 50 seconds. 

The system has been in use only a short time, and we have much more to 
learn about it. The earlier, unreported tests produced a vast amount of infor¬ 
mation about how not to run the experiment. This time we have been more suc¬ 
cessful, but we have discovered a number of additional refinements which will 
be necessary before we can do all that we wish with the system. These proposed 
changes will be discussed in a later section. 

THE EXPERIMENT 

This initial experiment was primarily designed to provide an evaluation of 
pulse techniques as a method of obtaining the frequency response relationship 
between exciting forces and the motions of a ship. A Series 60 Block 0.60 ship 
form was oscillated in pitch and heave. All forces and responses were meas¬ 
ured and the damping and added mass terms in pitch and heave were computed. 
This permits a direct comparison with the results obtained by Gerritsma [5| for 
a similar form. 

Experimental Details 

As the effect of surge upon heave and pitch is generally considered to be 
small, it was decided to restrict the analysis to these latter two modes only. 
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However, the towing system allowed small oscillations in surge, and it is 
planned to undertake a three-mode analysis at a later date. 

The towing system is as shown in Figs. 1 and 2. Such an arrangement per¬ 
mits the application of tow forces at the model center of gravity while permit¬ 
ting responses in all six degrees of freedom. Restoring forces in the surge and 
sway modes are provided by springs and K2. External forces in the heave, 
surge and sway modes are measured, using variable reluctance force gauges. 
The motions in the six degrees of freedom are measured by film type potenti¬ 
ometers mounted as indicated on the tow strut and excitation forces by force 
gauges mounted in the model. 

Fig. 1 - Pitch and heave experiment 
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Fig. 2 - Heave experiment 

Excitation is provided by an electric motor — variable speed drive arrange¬ 
ment, with the forces transmitted to the model via a spring and cable. (Tests 
were conducted at speeds of Fr. = 0, 0.025, 0.05, 0.075, 0.10, 0.15, 0.20, 0.25, 
0.30, 0.35). Two series of tests were conducted: In one the model was excited 
in the heave mode only, and in the second the model was excited simultaneously 
in pitch and heave. In the heave test the excitor cable was attached to the heave 
staff as shown in Fig. 2. The six motions as well as forces along the heave, 
surge and sway axis were measured. In the pitch heave experiment, as shown in 
Fig. 1, an excitation cable was attached to the bow of the model through a fourth 
(excitation) force gauge. Measurements were the same as in the heave experi¬ 
ment, except for the addition of the excitation force gauge. For each test condi¬ 
tion, the frequency of the excitation force was varied manually, adjusting the 
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speed of the drive system from 0 to 3.5 cycles per second. The amplitude of 
the excitation eccentric was fixed at one inch. The frequency spectrum of the 
excitation signal is shown in Fig. 3. 

The measurement system was as shown in Fig. 4. DTMB block gauges 
were used to measure forces and moments. High resolution film type potenti¬ 
ometers were used to measure the motion. All data was recorded simultane¬ 
ously on Sanborn strip chart recorders and FM analog magnetic tape. The in¬ 
strumentation system, exclusive of recorders, has an accuracy of 0.2 percent, 
a dynamic range of 60 db, and a frequency response which is essentially flat 
from 0 to 100 cycles. Phase shift between any two channels was held to less 
than one part in 10,000. The tape recorder, however, the system's weakest link, 
is accurate to only 1-1/2 to 2 percent, and its dynamic range is limited to 38 to 
42 db. 

Test Procedures 

As previously mentioned, tests were conducted over a range of Froude 
numbers, from 0 to 0.4. For each test condition, the model and carriage were 
accelerated to the appropriate speed with the oscillator turned off. Care was 
taken to ensure that the model had reached a steady state condition and that all 
energy in the model-free surface memory had dissipated. When steady state 
conditions were established, the recorders were turned on and allowed to run 3 
to 5 seconds before the excitation. Excitation was started with an initial fre¬ 
quency setting of 3.5 cycles per second, and was swept from 3.5 cps to 0 in 
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Fig. 4 - Analog measurement system 

about 20 seconds, care being taken to see that the excitor was stopped at zero 
amplitude. Recording continued until any remaining motions had ceased. Typi¬ 
cal recording time ranged from 28 to 48 seconds, depending on carriage speed. 
Test results were as shown in Fig. 5. It should be recognized that the towing 
structure, and thus the towing carriage, was used as a reference for all meas¬ 
urements. 

When the model was excited by a force restricted in bandwidth, with negli¬ 
gible energy above 5 cycles per second, the measured signals were excellent, 
with a dynamic range and accuracy limited only by the 40 db range of the analog 
tape recorder. However, when a relatively broadband signal was used, such as 
an impulse or step function, the model, strut and carriage structure were ex¬ 
cited at their own natural frequencies and produced oscillations which almost 
completely masked the motion responses of the model. 

DATA ANALYSIS 

One of the inherent disadvantages of a digital record is that it provides in¬ 
formation about the corresponding time function at the sampled instants only. 
Discrete samples completely define a continuous function, f( t ), only if the func¬ 
tion is absolutely band-limited, and then only if the sampling frequency is at 
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Fig. 5 - Test record from pitch experiment 

least twice the highest frequency, f, in the signal [6]. Further, the recovery of 
the original signal from the digital data is predicated on the use of an ideal filter. 

When dealing with empirical data and actual filters, this sampling theorem 
is of little use, as there is rarely an absolute limiting frequency, f, and filters 
cannot be built which are capable of cutting off perfectly above any assigned F. 
It is certain that data collected from a vibrating towing-carriage does not meet 
this condition. 

As in a practical case there are many additional considerations, such as 
the effects of filtering on the desired signal, aliasing, interpolation methods 
used for signal recovery, and limited availability of computer time, the selec¬ 
tion of a sampling rate required to provide 1 percent accuracy is anything but 
clear-cut. A more rigorous method of using the sampling theorem has long 
been needed but die mathematics for anything other than the ideal case is quite 
complex. Likewise, the obvious solution of increasing the sampling rate by 
orders of magnitude, while within the capabilities of the analog-digital converter 
quickly becomes impractical from the standpoint of the increasing computer 
time necessary for each analysis. 

In order to select the proper sampling rate, an experiment was run in which 
typical samples of analog data were first digitized at 6,000 samples per channel 
per second. A harmonic analysis was performed and the complex spectra so 
obtained were used as analysis accuracy standards. The same data was then 
sampled and analyzed at successfully lower sampling rates until a difference 
approaching 1 percent was observed in the spectra. The sampling rate finally 
selected was 125 samples per channel per second. This sampling rate, coupled 
with an average run length of 48 seconds, produces approximately 6,000 data 
points per channel per test condition, or approximately 60,000 data points per 
test run. 

In performing the actual Fourier transformation to obtain the complex fre¬ 
quency response function, an additional problem must be considered. When 
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model tests are conducted at forward speeds, quantities such as pitch, heave, 
and surge force are in general not zero, even in a steady state translation. The 
actual records of a transient pulse test, as analyzed, are necessarily truncated, 
and thus have the form of an oscillatory pulse superimposed upon a rectangular 
pulse of length equal to the record. See Fig. 6. The recorded signal can be con¬ 
sidered as part of function, 

f(t) = f0 t f j(t) -CD < t < +00 

where f0 is a constant and f,( t) is the pulse excitation or response. The func¬ 
tion f(t) has no Fourier transform unless f0 is zero, but our only interest is 
the transform of f,(t). The truncated signal, fT(A), which is the one actually 
treated, can be written 

fT(t) = f0 + f,(t) 0 < t < T 

- 0 elsewhere . 

This function does have a Fourier transform. If f,(t) is zero outside the in¬ 
terval (o ,t) the transform of fT(t) will be equal to the transform of f,(t) plus 
the transform of a rectangular pulse of height f0 and length T. However, the 

I 
0 T 

Fig. 6a - The recorded signal f(t) 

0 T 

Fig. 6b - The analyzed signal fT(t) 

Fig. 6c - The analyzed signal imbedded in a periodic function 
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Fourier transform of the rectangular pulse will be zero for the frequencies A^, 
2&.>, 3Aaj,.,. where Aoj = 2n/T. At these frequencies, the transform of fT(t) 
will have the same value as the transform of f,( t ). Therefore, if we restrict 
our calculations to this set of frequencies, we need not concern ourselves with 
estimating f0. 

Another way of treating the same problem is to consider fT(t) to be one 
cycle of a periodic signal. This periodic signal would be the response to a pe¬ 
riodic sequence of pulses with period T. Such an analysis is permissible be¬ 
cause the memory of model is less than t, and the effect of all previous pulses 
will have dissipated before the start of a new pulse in the sequence. This peri¬ 
odic signal can be analyzed in a Fourier series. The effect of f0 will appear in 
the constant term but in none of the others. Thus, the Fourier coefficients cor¬ 
responding to the frequencies Aw, 2Aw, 3Aw, ... completely define the function, 
where Aw has the same meaning as before. But these Fourier series coefficients 
are identical with the values of the Fourier integral transforms of fT(t) and 
f,( t) at the same set of frequencies, and we arrive at the same conclusion as 
in the analysis of a single pulse. 

This periodic type analysis was used for all test data in order to eliminate 
any dc components. The basic assumption, which is inherent in any truncation 
process, is that the transient has completely decayed before the instant of trun¬ 
cation. This assumption will never be strictly correct, and the degree to which 
it is not fulfilled may be an important source of error. 

It should be noted that the phases obtained from this periodic type analysis 
are referred to the arbitrary starting instant and are therefore meaningless in 
terms of the physical test. If, however, only the phase difference between data 
channels are considered, the results immediately become physically meaningful. 

The data analysis sequence is as shown in Fig. 7. Suitable computer pro¬ 
grams were written to analyze the data, to invert the resulting matrix of coeffi¬ 
cients (see following section), and to compute the damping and added mass terms 
for each of the harmonics considered. Also, a computer was programmed to 
plot the resulting a's and b's versus the nondimensional frequency, w^/CT^. 

Equations of Motion 

The relation between the excitations and responses of a ship, under the as¬ 
sumption of linearity, can be written in various ways. In terms of the impulse 
response functions fl] we have 

(1) 
i T l 

where is the response in the jth mode to a unit impulse at t 0 in the 
ith mode. The matrix of functions R, }(t) thus completely characterizes the 
response of a ship to an arbitrary set cf excitations. In the following discussion 
we adopt the convention: 
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Fig. 7 - Digital analysis system 

x1 = surge (positive forward), 

X 2 = sway (positive to port), 

x3 = heave (positive upward), 

x4 = roll (positive deck to starboard), 

x5 = pitch (positive bow downward), 

x6 = yaw (positive bow to port). 

If the excitations are sinusoidal with frequency w, we can write 

f ¿( t) = Fj cos (wt + e . ) 

and Eq. (1) reduces to 

Xj(t) L Fi 
i = 1 1 

1/ 2 

cos (üJt+Ej-e.j) (2) 

221-249 0 - 66 - 30 449 
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where 

tan tjj R* j(w) . 

R¡j(f‘J') = J R, ,( - ) cos an Ai , 

R¡ j(w) = J R* j(T) sin üJT dr . 

We will make use of the complex function 

R*j^) = R¡j(=‘) + iR¡j(“) • 

The frequency dependent functions, R^ and , are the in-phase and out-of¬ 
phase responses in the jth mode to a sinusoidal excitation in the ith mode. 

The conventional manner of writing the system of coupled equations of mo¬ 
tion is 

6 

H fajk¿j + bjkxj + cjkV Fk COS(aJt+£k), k 1,2.6. (3) 
j-1 

Using Eqs. (2) and (3), it is possible to develop a system of equations between 
the coefficients aijf bij and the functions R¡ :, R¡ j. The cjk are assumed to 
be determined from static tests. Thus, from the matrix [R*/ ^)] we can deter¬ 
mine the matrices [ajj] and [hjj. 

Experimentally, enough information can be obtained from a series of six 
tests in which the six sets of excitations are linearly independent to determine 
[R* j ] and subsequently the coefficients. 

As we stated above, we have restricted ourselves to the two modes of heave 
and pitch. The model was free to respond in all six modes, and all restraints 
were measured, but in the analysis it was assumed that the coupling between 
these two modes and the remaining modes was negligible. 

Experiment I 

The model was excited in heave and pitch by imposing a pulse f(t) at the 
bow (see Fig. 1). The excitations were f3(t) = f(t) + B(t) and f5(t) = • f(t), 
where t is the distance of application of f( t ) from the center of gravity and 
r(0 is any constraining force in heave. (There is no constraining moment in 
pitch.) The responses were x3(t) and x5(t). As discussed above, the excita¬ 
tions and responses were resolved into Fourier series: 
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f3(t) ■: Y 

« 1 i 0) t 
f5^> L e " 

n - 1 

(4) 
Y’ * u „ t 

x3(n x3<an) e 
n = 1 

X,( t ) L xs< 'n) 

where f ,, f5 , x3, and x5 are complex valued coefficients. 

For a linear system, the components of the response for a given frequency 
are due only to the excitations at that frequency. Thus, we have 

X3,(a)) = F3I< ■ ) R;3(6,) + F5 i(a;) R*^) 

x5 [( O = Fj j( o.) R * 5 (.. ) + Fjjfw) R * 5 ( ü) 

(5) 

Experiment II 

The model was excited in heave only. The analysis is identical with the 
above, except that the excitations f5II are zero. We have the equations 

X3II = F30 R33 

X5H = ¡j R35 

(6) 

From Eqs. (5) and (6), we obtain 

R33 
*3 11 

'sil 

r! 
35 

5 11 
? 

3 II 

(7) 

R5 3 
31 
5 I 

‘31 A311 

F5. R3I1 

R5 5 

‘51 

' 5 I 

F31 X5 11 

F51 Fs.! 
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Determination of the Coefficients 

As rV is the response in the jth mode to the excitation eiüjt in the ith 
mode, substitution in the equations of motion yields the following relations: 

- 8330)^33 + ib33ajR33 + CjjR’j - a53cu2R35 + ib53aR*5 + c53R35 - 1 

-a3Sa) ^3 3 + ^b35ft)^33 + C35^33 “ ^5^^35 + “^35 + C5S^35 = ® 

"a33Cj2R5 3 + ib33iljRS3 + C33R53 “ a5 3C‘j2R5 5 + Íb5 3 ùjR5 5 + C53R5 5 = 0 

~a35a)2R5 3 + 2b35a,R53 + C35R53 ” aS5ilJ R55 + ^b55<X’RS5 + CS5R55 ' ^ ' 

Separating the real and imaginary parts of the equations, we obtain the eight 
equations: 

(8) 

(C33 - ^333) R;3 - ^^33 + (c53 - U)1 a53) R;5 - a>b53R3S5 

<C33 - ^2a33) R33 + “b33R33 + iC53 “ ^«53) R35 + "b53R3 

fC33- “2a33> R 5 3 - ùjb33 RS 3 + (C53 -"2a53) R55 ' f‘jb53RS 

(C33- ^a33) R* 3 + ^ b3 3 R5 3 + (S3’ ^2aS3) R 5 5 + -b53RS 

iC35 - “2a3s) RL - ^ b35 R3 3 + (C55 ~ &j2aS5) R35 ~ "b55RI5 

(C35- w2a3s) R 3 3 + ^b35R33 + ^55' R35 + ú)bS5R¡S ^ 0 

(9) 

(c35 Ù) a3s) R53 - OJbjjRjj + (CS5 ■ a,2a55^ R55 ” ^55^5 _ 1 

Let 

^C 3 5 - "2 a3S) R5 3 + wh3S R5 3 + fC55 - ^ ass'> + ù,b55 RI5 = 0 

'33 

'33 

'S3 

'33 "35 

33 "35 

5 3 "55 

S3 ”5 5 

'35 

'35 

5 5 

'5 5 

(10) 

452 



Force Pulse Testing of Ship Models 

K 

33 33 *"3 5 35 

Oj b , cob 
35 

C5 3-Üj2a5 3 C55"‘"2a55 

u: b 
5 3 

eu b c 

(ii) 

Then the above system of equations can be written 

R K 
0 

0 

0“ 

0 

1 

Lo oj 

(12) 

By inverting the matrix r, we can directly obtain the matrix by 

i o 

K = R 1 
0 0 

0 1 

0 0 

(13) 

and the coefficients in the two coupled equations of motion may be computed. 

TEST RESULTS 

As previously mentioned testing was done at a range of Froude numbers 
from Fr. = 0 to 0.35. However, due to a time limitation, only the cases for 
Fr. = 0, 0.15, and 0.30 are presented in this progress report. The results at 
Fr. = 0.15 and 0.30 are of course directly comparable with those obtained by 
Gerritsma. 

The responses obtained at zero speed were particularly good. In the non- 
dimensionaJ frequency range l < u> < 6 there was very little scatter and 
the results were similar to those obtained by Gerritsma. Wall effects were 
significant only below toJUi = i.o and then only at clearly defined multiples of 
tank width. Considerable scatter in the data did occur above 6.0 which can be 
traced to the dynamic range limitations inherent in an analog tape recorder. 
The principal damping and added mass terms obtained from this experiment are 
shown in Figs. 8 and 9. 
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Fig. 8a - Added mass 

Fig. 8b - Added mass 
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Fig. 9a - Damping 
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Similarly the forward speed cases were good over the same frequency 
range. There was, however, some evidence that coupling of surge into heave 
and pitch was significant at forward speeds and indicates the desirability of a 
three mode (pitch, heave and surge) analysis. The damping and added mass 
terms are shown along with those reported by Gerritsma. 

CONCLUSIONS 

It is apparent from the preliminary results that good perimental results 
can be obtained even at zero speed in a 240 by 360 ft tank. VVhile wall effects do 
occur, they appear only as one or two sharply defined discontinuities in the re¬ 
sponse data. The results also indicate that, while a two mode pitch and heave 
test can be conducted, a further increase in accuracy should be obtained by an 
extension to the three mode analysis. While there is much to be done, especially 
in such areas as increasing the dynamic range of the instrumentation system 
and an extension to a 3 or 4 mode analysis, it is felt that these preliminary re¬ 
sults demonstrate not only the validity of the pulse testing technique but further 
show that satisfactory results are within the capability of modern instrumenta¬ 
tion and measurement systems. 

MODE I, DETAILS 

Series 60 Parent Form 

L Length between perpendiculars 10.0 ft 

B Beam 1.35 ft 

H Draft 0.53 ft 

A Displacement 239.3 lb 

Cb Block coefficient 0.60 

A Area of waterline plane 9.39 ft2 

Cwl Waterline coefficient 0.71 

l0 Mass moment of inertia for pitch (in air) 557.89 lb in./sec2 

ro Radius of gyration 

mo Mass of model 

0.25L 

7.439 slugs 
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DISCUSSION OF FOUR PAPERS 

Leo Joseph Tick 
New York University 

University Heights, Bronx, New York 

Since the papers by Smith and Cummins; Breslin, Savitsky and Tsakonas; 
and Davis and Zarnick, concern themselves with testing, I will first combine my 
comments to these papers.* These papers and the oral discussion which fol¬ 
lowed devoted some time to the pros and cons of various methods for determin¬ 
ing the defining properties of systems (mostly linear). Unfortunately, the lack 
of a careful description of the logic of test procedures has served to add consid¬ 
erable confusion. With a hope (?) of providing some clarification, I start with 
brief discussions of "test functions." The test situation consists, as I see it, of 
some system, device, etc., whose input-output characteristics one wishes to 
determine. A test procedure is to be used to make the determination as distinct 
from an analytical one. 

To make the discussion simpler, suppose we restrict ourselves to linear 
systems. In this case the system is usually characterized by the transfer 

*pp. 439, 461, 507. 
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function or the impulse response; these being Fourier transforms of each other. 
The testing procedure then consists of driving the system with some function 
and measuring both the input and output and performing relevant calcuiations. 
The minimum r^gnirpment of a good test function is that it should be rich in the 
frequencies of interest. 

It will usually be the case that the calculations will involve some sort of 
division. If the numerator has an error component which is fairiy uniform over 
the entire frequency range, then the ratio will be of lower quality for those val¬ 
ues at which the denominator is smallest. Since the denominator will consist o 
some characteristic of the input function, it is best that the denominator e 
fairlv constant. With these characteristics in mind, let us now look at three 

classes ol input (unctions; (1) sine waves; (2) deterministic fuuct,ons 
like the ramp, or pulse, or step, and (3) stationary random input. The sine wave 
is of course the worst as far as frequency content is concerned since it has only 
one frequency. As a compensatory feature, the transfer function atthis ire" 
quency is estimated by a very simple operation on the output and it ca« ^e est ' 
mated quite accurately since all we have to extract from the continuous record 
is just the amplitude and the phase angle. The effect of noise in the measuring 
system should be quite small. We also have a measure of linearity of the sys 
tern from visual inspection of the output. 

This is a very expensive way to proceed since it requires a very large 
number of sine wave tests to complete the analysis of the entire frequency an 

The pulse test function is a very convenient one because all frequencies are 
present in an equal amount. The calculations to be performed on the output are 
quite simple. To estimate the transfer function, one merely takes tiie Fourier 
transform of the response.’1' The drawback to this test function is that it may be 
difficult to generate as the Davis, etc., paper indicates. 

Now no system is exactly linear, but this observation should bother no one 
since it is sufficient for dealing with problems of nature that the systems are 
enough so for the purposes of its use. Therefore, one should try to test under 
conditions which are representativ e of the conditions of use. One would not test 
in very high waves. Similarly the fast rise time of a good pulse may activate 
nonlinear modes of response. 

Finally the stationary random test function is in some way a mixture of the 
previous two. There is some sort of repetition, albeit, an average one, and a 
"pulsiness." We may make the function broadband in frequencies (in an average 
sense), and its spectrum as flat as our generating methods will allow. As 
pointed out by Davis, the system will have to be brought into a steady state be¬ 
fore the relevant arithmetic may be performed on the output, and in case of 

*If I seem casual about this operation, 1 am just reflecting the speakers Le 
me assure you though that this is a numerical operation fraught with error es¬ 
pecially at the higher frequencies as we will then be taking differences of * 
large number of numbers of approximately equal magnitude. Since expenmen- 
tal data usually has low significance (numerically speaking) this is a real 

problem. 
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model testing this may use up a significant proportion of the available test time. 
The amount of usable test time may give rise to estimates having large sam¬ 
pling variability. The arithmetic processes involved here, though lengthy, are 
well understood and present no difficulty. 

One of the most important contributions of statistics to experimentation is 
the formalization of the notion and the provision of methodologies for having an 
experiment provide its own measure of its errors. This is done by setting the 
problem in a probabilistic framework by either assuming it into existence of 
manufacturing it by so-called ’’randomization’’ operations. 

Those of you who have read books or attended lectures on experimental de¬ 
sign, that branch of statistics concerned with these problems, will recall these 
points. This attribute of an experiment does not come free. The price for put¬ 
ting it into this framework is to blunt the precision of the results. 

All of these attributes and philosophy of statistical experimental design 
have their analogs in random test functions. If one uses a deterministic test 
function, a transfer function can be calculated whether it exists or the calculated 
one has any relationship to the true one. Verification is required from some 
other source, e.g., previous experiments, etc., before one can have confidence 
in the calculations. 

If these verifications are available, the experiment can be economic and 
precise. 

On the other hand, if the test function is embedded in a family of test func¬ 
tions in such a way as to make the statistical manipulation allowable, the ex¬ 
periment itself will provide a measure of its own error; and that will be the 
coherency function. It seems to me that this is worth something and, as men¬ 
tioned above, it does cost. 

What all this comes down to is simply that the choice of a test function is 
not a simple or clear one. 

A point which seems to have been neglected in Dr. Ochi's paper and the 
discussion following is why such a simple procedure works at all. After all, 
slamming is a very complicated process and yet the simplest of models appear 
to be producing excellent answers. Being the original instigator of this ap¬ 
proach, I think I can throw some light on this problem. 

Way back (I guess it is more than 7 years ago by now) when I was wondering 
if some model could not be constructed for slamming predictions, I was looking 
at some destroyer data. I do not quite remember who was with me at the time 
although I think it was Martin Bates, then of the then Bell Aircraft, who com¬ 
mented that if you put the data through a low-pass filter you could hardly tell 
from the resulting record that a slam had occurred. This indicated to me that 
slamming did not change the gross aspects of the motion and that a simple 
model, based on the occurrence of conditions which induce slamming, might 
serve to make an average occurrence prediction. This observation appears to 
have been justified. 

* * * 
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ABSTRACT 

The concepts of linear system analysis are applied to the coupled mo- 
tion of marine craft to illustrate in greater detail than previously pro¬ 
vided the procedures for obtaining their instantaneous response in 
arbitrary irregular long-crested waves. The solutions of the coupled 
equations of motion for heave and pitch in long-crested regular seas 
are examined to show how the ship-sea transfer function can be identi¬ 
fied when the wave is regarded as the input rather than the actual 
forces and moments. The tfieoretical expressions for the response to 
arbitrary forcing functions are next examined and shown to involve the 
inverse Fourier transform of the ship-sea transfer function and this is 
identified as the system impulsive response function. This function is 
convoluted with the given surface wave record to provide the instanta¬ 
neous response. The characteristics of these impulsive response func¬ 
tions are discussed in some detail and means for their determination 
from theory and experiments are outlined. 

Application of the procedures are made to exhibit the high accuracy of 
deterministically calculated motions derived from models of a de- 
stroyer, underwater body, and hydrofoil craft. Results of calculation 
of the bending moment of a surface ship model are also exhibited. It is 
concluded that the method can be applied to all features of marine craft 
responses attending irregular wave motion which satisfy the require¬ 
ments of linear systems. 

INTRODUCTION 

Operation of marine vehicles in irregular seas is a problem of serious 
concern to the naval architect. It is important that reliable analytical methods 
be available to predict the motions, acceleration, degree of deck wetting, etc., 
of these craft before they are constructed and put to sea. 

In 1953, two important papers on ship motions in irregular seas were pub¬ 
lished. St. Denis and Pierson [l] considered the statistical aspects of ship 
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motion and presented methods for determining the probabilistic behavior of a 
ship in a random sea. A second method of analysis, which is complementary to 
that of St. Denis and Pierson, was introduced by Fuchs and MacCamy [2]. This 
later method is not statistical, but deterministic; it is based, therefore, not on 
the knowledge of the statistical properties of the sea, but on that of the actual 
time history record of the sea surface. 

The statistical approach makes use of spectral analysis techniques and the 
characteristics of the ship response to random wave excitation are defined in 
terms of an energy spectrum based on frequency of wave encounter. This is the 
so-called transfer function method whose application has been successfully dem¬ 
onstrated by many researchers over the past years for a variety of marine 
craft, i.e., St. Denis and Pierson [l| and Dalzell [3] in the case of motion of dis¬ 
placement ships; Dalzell [4] for the case of ship bending moment; Savitsky [5j 
for submerged bodies in irregular waves; and Bernicker [6,7] for the case of 
fully wetted and super-ventilated surface piercing hydrofoil systems. 

The deterministic approach employs the concept of the impulsive response 
function, as given in linear analysis, to define the time history of ship motion in 
terms of the actual time history of the surface wave profile of the irregular sea. 
As the name implies, the impulsive response function describes the time history 
of the response of a given system when acted upon by an input consisting of a 
unit impulse at zero time. Superposition of these unit impulses to represent the 
actual wave excitation yields the total response of the system. Fuchs and Mac¬ 
Camy [2,8] first applied this technique for simple bodies in a random head sea. 
In recent years, the Davidson Laboratory, Stevens Institute of Technology, has 
investigated the application of this deterministic technique to predicting the 
random motions of a variety of marine vehicles, including displacement ships, 
hydrofoil craft, and submerged bodies in irregular waves. It is the purpose of 
this paper to present a review of the deterministic technique, to discuss its 
limitations, and to compare the results of the analytical studies conducted at 
Davidson Laboratory with experimental data. Some of these results have al¬ 
ready appeared in the published Davidson Laboratory reports, but will be sum¬ 
marized herein in an attempt to form a unified presentation. 

This work was sponsored by several bureaus of the U.S. Navy, including the 
Bureau of Ships, Bureau of Naval Weapons, and Office of Naval Research. The 
preparation of this paper was sponsored by the Davidson Laboratory, Stevens 
Institute of Technology. 

THEORETICAL FOUNDATIONS 

The linear theory of the motions of bodies in waves has been the subject of 
many papers and presentations in the past. As a result, there are several clear 
analyses of bodies in both regular and irregular waves, the latter case having 
been dealt with by spectral procedures. However, the deterministic or instan¬ 
taneous response of bodies in a given, nonuniform, temporally varying wave has 
not been given an entirely clear analysis beginning with the equations of motion. 
The procedures used thus far have treated the motion as the output of a linear 
system due to a wave input. This involves the identification of (for systems with 
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several degrees of freedom) what might be termed a "lumped" transfer function 
(or response to waves of discrete frequencies) and from this to calculate for¬ 
mally a correspondingly lumped impulsive response function which, when con¬ 
voluted with the given wave record, yields the instantaneous motion. Although 
this procedure has been shown to work exceedingly well (see section on applica¬ 
tions) questions arise as to the character of these impulsive response functions 
primarily because the analysis has not been sufficiently lucid. At the risk of 
appearing pedantic, the elementary theory is reexamined in the following pages 
in the hope of providing a firmer foundation for the more-or-less mechanical 
procedures used in arriving at the instantaneous response of a hull within, or 
upon, the surface of a long-crested sea which is arbitrarily specified.* 

Heaving and Pitching In or Under Regular Waves 

Korvin-Kroukovsky [9] (1955) was quick to realize that the combined heav¬ 
ing and pitching of responses of a ship are the solutions to a coupled pair of or¬ 
dinary second-order, linear differential equations with coefficients which vary 
with imposed frequency. Following his notation, the differential equations of 
motion are, for the case of simple harmonic forcing functions: 

az + bz + cz + d • ö f eö + gö = FoeÍa,t 

Aö + + Cö + D • z + Ez + Gz = M e*“* 
O 

where 

z is the heave displacement from equilibrium, 

e is the pitch displacement from equilibrium, 

a,b,c are the virtual mass, damping and spring coefficients for pure 
heaving, 

d, e, f are corresponding cross coupling coefficients due to pitch, 

A.B.C are the virtual mass moment of inertia, damping and spring 
coefficients for pure pitching, 

D.E.G are corresponding cross coupling coefficients due to heave, 

F0 and M0 are the complex force and moment excitations for a regul r 
wave of amplitude | t?0 | with the understanding that only the 
real parts of the right-hand sides of (1) and (2) are to be ulti¬ 
mately retained. 

(The dot notation is used to represent a total derivative with respect to time.) 

(1) 

(2) 

*The severity of the given wave trace (as a function of time) must be such as to 
permit application of linear system analysis. 
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The solutions of this pair of equations are written (again in Korvjn- 
Kroukovsky's notation) in the compact complex variable form: 

where 

z 

e 

f£o? 
( PS 

'M P O 
V PS 

M] 
QR I 

OR 

i oJt 
e 

e 
i 

P( at) = -2ûj2 + ibai + c 

Q( u>) = -d • tii2 + ieaj + g 

R(a>) = -D • tii2 + iBi + C 

S(a>) = -Aùi2 + iBti» + c . 

(3) 

(4) 

(5) 

Inspection of (3) and (4) shows that the response in heave and pitch are both 
linear combinations of the forces and moments and response or transfer func¬ 
tions of the body. Consider only the response in heave (pitch follows in com¬ 
plete analogy) which may be written 

where 

Z(t) - Zf + (6) 

and 

F0 <I>f(oj) e 
CO t 

= -M„ <!>( co) e o mx ' 
CO t 

(7) 

(8) 

The complex functions <l>f and <t>m are called frequency response or transfer 
functions in heave per unit applied force and moment and are evaluated in terms 
of an amplitude and phase angle in the form: 

where 

<t>f = Af(a>) e-ie(û ) ; <t> = A„( (xj) e m mv ' 
- i 8(û)) 

Af( oj) 
S(-j) 
T( ") Arr/") 

Q( Q’) 

T(CXJ) 

(9) 

(10) 

and, for brevity T(û;) = PS - OR- 

As is well known, these unit response functions depend only on the body co¬ 
efficients themselves and not on the forcing functions. In what follows, it will be 
necessary to consider the forcing functions characteristics in some detail. 
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The forcing functions F0 and mo for the case of bodies in regular waves 
are in general complicated functions of incident wave frequency. Conceptually 
they are secured by considering the in- and out-of-phase pressure distributions 
developed on the body when restrained from moving in the wave system Thus 
in general, they take the form 

Fi W t # > V 
oe = a (új) ^ r) -., S7? 

lb (w)3F + C T) (11) 

M0e i = A'(^) 
3% 

3t2 
C-n (12) 

where r, is the wave or vertical fluid displacement at the body (which may be 
submerged) referenced to some arbitrary point on the body (often to the center 
of mass or amidships as a convention). For any regular progressive wave the 
vertical motion at any point £ is 

i I Cd I if a* l 

= bj e+ B eia,t 

= bj i) e1“’* 

where b01 is the amplitude of the wave at the surface and 

, o 
I U) \ U)\ Ç a> £ 

Í) = e g 8 . 

The complex exciting force and moment (11) and (12) become, after use of (13), 

Fof‘■'-’i C ) = (-a)îa'(ÜJ) + + c') bQ I g(^, £, £) 

(15) 

O = (-a>2A'(a)) + ia)B'(üj) + c') b0lg(^.í, 0 • 

Thus it is seen that the force and moment acting on a body are both proportional 
to the wave amplitude on the surface and are arbitrarily phased to the body 
through the coordinates ¿f, 1.. For sake of brevity let the force and moment per 
unit of wave amplitude be written 

F 
■pr = f'(^> g(^i.O (16) 

I Vq i 

and 

M 
1—r = m'(“) (17) 
bol 

where f ' and m ' are the complex polynomials 

(13) 

(14) 

221-249 0 - 66 - 31 
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f'foj) = -a)2a'(u>) + i^b'(ai) + c' 

m ' ( a)) = - a>2 \ ' (a>) + icoB'(co) + C '. 
(18) 

Equations (15) and (16) now allow one to express the response of the coupled 
system in terms of wave amplitude by inserting them in (7) and (8) and summing 
to yield 

z( t) 
[<l>f(a>) f'(u/) - <l>m(oj) m'(oj)] e1“1 

S(6j) f'(c.-) - 0(ûj) m'(aj) _____ g(aj, e 1 lut (19) 

Thus one may recognize a lumped or effective frequency response function for 
heave (with freedom in pitch) for the ship-sea system per unit of wave amplitude 
as 

S( ûj) f ’ ( - 0(w) ni ' ( ùj) _______ P,( Í. () (20) 

This can be reduced to an amplitude function which depends on and l and a 
phase angle which depends upon a. and £ (or x); thus 

= A(aj, 0 
- I cr( CÜ , £ ) 

(21) 

and this is what is determined from either theory or from recorded responses 
of a model in regular waves. It is important to note that an arbitrariness is in¬ 
troduced into the phase by the reference system used or, what is the same thing, 
by the arbitrary definition of phase. 

Instantaneous Motion in Arbitrary Time-Varying Waves 

The equations for heave and pitch motion are the same as (1) and (2) for 
regular onset waves, but now the right-hand sides are functions of time explic¬ 
itly and are not functions of discrete frequencies. Thus F0eiwt and M0eiwt are 
replaced in Eqs. (1) and (2) by F(t) and M(t>. The common procedure in solv¬ 
ing the equations in this case is to employ Fourier integral transforms which 
may be defined as follows: 

If z is the Fourier time transform of z( t ), then 

z(^) = J z(t)e‘l“tdt (22) 
- CD 

and the inverse transform is 
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z(t) i j îfa) (23) 
- on 

One then multiplies Eqs. (1) and (2) through by e and integrates over all 
time from -°° to +® under the assumption of vanishing z, z, 6 and h at i® and 
the satisfaction of integrability conditions by F( n and M(t). The solution for 
heave is, as an example, given by 

Z - Z f + Zm i m 

„CO 
J_ f SÇx;) 
2 ;' J T( ai) 

- CO ' ' 

F( a)) e doj J_ f' 

2v L 
M( üj) e ‘ a> t da) 

where one next replaces the transforms F and M by 

(24) 

F 

M 
- i 0)1 e dr (25) 

and, upon interchange of the orders of integration, obtains the familiar result 

Z = Z f + zn ¿ f f<'> r is d” - è f »(’» f 1¾ ex-.- 
*< > (26) 

which leads to the definition of the kernel functions 

K.OO = ¿ J 
S(a) ,u< 
- e 
T(u-) d. (27) 

j_ r Q(u!) 
2t' J T( ' ) 

Of0') iua da (28) 

These are defined as the impulsive response function for the body in the fluid. 
It is to be noted that they are dependent only on the body coefficients obtained 
from either the impulsive response in calm water or from the response of the 
body to regular waves. The final expression for the heave is then 

Z = Zf + Zm (29) 

with 

rw 
zf - J Ffr) Kf(t - T) dr (30) 

Z m J Km< 1 ~ T'> dr (31) 
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which simply states that the total heave response is the algebraic sum of two 
convolutions of the force and moment time histories with the appropriate impul¬ 
sive response functions. 

However, one does not have at his disposal the force and moment time his¬ 
tories, but rather only the wave input time history. It is, therefore, necessary 
to eliminate the explicit dependence of the result on f and M and to determine 
how one operates on the known (or given) wave record to determine the motions. 
For simplicity, the following development is applied only to part of the response 
zf to illustrate the procedure. 

It is noted from (16) that the normalized force at any discrete frequency is 
known and hence one can express the force as a function of time and the instan¬ 
taneous surface wave v0(t) by convoluting the wave with the force transfer 
function, or 

m * _ lP 

Fit) p j J fR( ei‘''(,-T'> d.'d-' . (32) 

Upon insertion of this into (30) and through the use of (27), one finds that this 
part of the response takes the form: 

1 
( 2v ) 2 

- CO 

on 
S( ■) 
Tf ) 

e ■ -( t - O d,. <1- . 

Interchanging the order of integration and noting that the r-integral is simply 

J ei("’'">TdT 2- - < - .) 

where s is the Dirac delta function, yields 

r = - cr 

'( ■ • ) d <'d < dr 

and, because of the delta function property the '-integral produces f'(w) K(. ) eiT’ 
to give 

2- 
Vj r .-) 

it 

J f'( y) g(u, :.0 S( .) 

T( <•) 

.( t- ) du dr' (33) 

a completely similar result would be secured for the motion constituent zra so 
the total motion can be written 
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(34) 

The integrand is immediately recognized as the effective or lumped frequency 
response function for the ship-sea system defined by Eq. (20). Hence the 
-integral is the effective impulsive heave response function for the ship-sea 

system: 

Kziifu; :. ’) 1 f " /f'( O S( O - m'( .■) 0( -) 

2” I ïTi , ß( -1 f, ’) e 
u . 

do; 

(35) 

so that for both heave and pitch 

r) 

' (t; f, O 
-: ) 

Kz(i(t - 7 

K7Z( t - T 
(36) 

where K,.z is the impulsive response of the ship-sea system in pitch with free¬ 
dom in heave present. 

It is of interest to note that the same result for the response can be obtained 
by normalizing the forcing functions with respect to the vertical fluid displace¬ 
ment at depth. To illustrate this, consider the forcing function F(t i in this light 
and one can write 

F(t) X 
or 

Í 7,(7' l) 
a 

1 f V') (t-r') (1 ' (37) 

where it is to be noted that e'"2, * has been suppressed and the motion at depth 
7/( t . -, ) is used. Then the component response in heave is 

Zf(t;ç, Î) 

O' 
S(-) 

T ( <-') 
"(t-r) 

d- dr 

o 
- on 

I a>1 I ai * I .f 

e R e ia|,( T- r ' ) d(, 'dr ' 

X Í iw(t-r) 
-L T(-) 

du dr 

469 



Broslin, Savitsky, and Tsakonas 

and again 

)T d ■ 2 < ' 0 

and 

i 

2 2 f ’ ( * ) e K 

Then 

/f(t 
S( .) f't . ) 

T( - ) 
(38) 

Now if one wishes to refer this to the wave at the surface 

1” J 01 I e 

The same integration procedure applies and the previous result is obtained, 
namely, 

I 
V 

Thus it is seen that the response calculated in terms of the subsurface motions 
as given by (38) is the same as that given by (40) when the subsurface motion is 
referred to that on the surface by Eq. (39). 

Evaluation of the Impulsive Response Function for Ships 

It is clear from Eq. (35) that the impulsive response function for coupled 
motion depends upon a knowledge of the response of the system to normalized 
forces and moments at discrete frequencies, i.e., one must know the frequency 
response operators, or what is called the transfer function. One may seek to 
evaluate 4^.,( ) and <l>()z( ) from theory alone or from experimental records of 
model responses in either regular or irregular waves. 

At present one may calculate the transfer functions from theory by using 
Grim’s [10| methods for estimation of the body coefficients, eight of which are 
frequency dependent. Gerntsma’s [111 recently completed work on determina¬ 
tion of the body coefficients has given strong support to the procedures used by 
Korvin-Kroukovsky and Jacobs [121 for ship motion calculations. It is to be 
noted that, in dealing with a "lumped" heave-pitch and pitch-heave response op¬ 
erators, it is also necessary to specify the normalized excitations as functions 
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of incident frequency. Integration required to obtain the impulsive response 
functions would undoubtedly have to be done by computer since the transfer 
functions with frequency-dependent coefficients are very complicated. 

An attractive alternative to theory is the use of experimentally determined 
responses of a model of the vessel to either regular or irregular waves. It is 
now a routine procedure to obtain from towing tank tests the amplitude response 
operators and their respective phases at selected values of frequency. In such 
tests the motions are related to wave measurements made by wave wire or 
other devices placed ahead of the model or abeam in time with amidships. It 
can, therefore, be appreciated that these transfer functions (obtained by graph¬ 
ing amplitude and phase response against incident frequency) are indeed depend¬ 
ent upon the location of the wave wire. It is often found that the impulsive re¬ 
sponse function derived from such data exhibits values other than zero for 
negative values of time t in distinction to completely mechanical or electrical 
systems for which it is known that K( t ) o for t < o . It is intuitively clear 
from physical concepts that the ship (or model) will respond to a wave before 
the crest (say) reaches the bow because of the spatial distribution of both the 
ship and the pressure field of the wave. It will be shown in the following section 
how the extent of the part of K( o for negative t can be reduced by judicious 
positioning of the wave measurement with respect to the model. In any event, it 
will be necessary to have some "future" information of the wave in order to 
compute the present time motion for all cases in which the vessel is of length 
comparable to the exciting waves. 

For those interested in applying this technique, it is appropriate to indicate 
in some detail how the impulsive response function for any mode of motion may 
be obtained from data obtained from a model in (a) regular waves and (b) irreg¬ 
ular waves. 

K(t) from Regular Wave Tests 

If one regards the regular sea motion (in a towing tank experiment) as the 
input 

V0 = b01 sin at 

and one records the output of any mode of the model motion as 

x(t) I vo I A( <:) sin [at - cp( a) j 

where cp( < ) is the phase angle referenced to the wave and A( o is the amplitude 
response of the model in a particular mode, then the transfer function or com¬ 
plex response function per unit amplitude of input is identified as 

«It ■) - A( <) (41) 

Upon completion of a plot of A( , ) and ¢(.) for enough discrete values of so 
that smooth curves may be drawn to define both A{ . ) and p( ), one may then 
find the impulsive response function by applying the operation 
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e 
ia.'t 

d 
i [^t-yCa.)] , 

e d a; 

,7 

Since K(t) must be a real function, the last integral must vanish identically for 
all values of t. This requires that p( ) be an odd function of ^ (and it it is not 
then something is in error in its determination!). Since Afa) must be an even 
function of u>, then calculate K( t ) from 

(42) 

It must be realized that by referencing the force and moment functions to 
the wave, an arbitrary phase angle is introduced or simply that the phase of the 
frequency response function is tied to the location of the wave measurement rel¬ 
ative to the body. To clarify this, suppose that the heave and pitch of a surface 
model is recorded at the center of mass and the wave is measured abreast of 
the center of mass. Then the derived impulsive response function will exhibit 
features peculiar to this reference point. It will, for example, have values dif¬ 
ferent from zero for negative time which then requires that the wave motion 
forward of amidships be known or, in effect, "future waves" are required in 
order to compute the response at the present time. If it is desired to reduce the 
extent of the negative time for which the empirically derived impulsive response 
function has nonzero values by, say, referring the motion to waves measured 
forward of the bow, it is necessary to shift the phase of the transfer function by 
the angle i ( , x r) where x is the amount of the horizontal shift (taking care 
to regard x as positive or negative) so that the modified transfer function be¬ 
comes 

and the modified impulsive response function is 

(44) 

In addition, it will be necessary to convolute this shifted function Kfx, t) 
with the wave record at the new point so that the n and the K are consibtently 
referenced to the same point of measurement. If only the wave record abeam of 
the center of mass is available, this can also be shifted to the same point as is 
discussed in a later section. 
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Kf t ) from Irregular Wave Tests 

One method of obtaining the impulsive response function from motion rec¬ 
ords is to first calculate the frequency response function from the relation 

or 
r¡ ¢( u>) 7( a ) 

f z( t ) e',a,t dt 

•I'CO = 

f ^ ;( t ) e ■1 ' ‘ dt 

(45) 

and then to proceed to K( t ) as indicated above. 

Another procedure is to use spectral analysis techniques which have been 
applied to the statistical analysis of ship motions. The spectrum of the model 
motion is given by the calculation 

IX( J 1 im 7 f xm X( t - o dt 
- op T*+ac Vt 2 

and the wave height spectrum is similarly provided by 

, T 2 
- 1 - ^ T 

e ' dr (46) 

V( o f, ) 

y™ T 2 

F J \}\m ï f ■( t ) r{ t - ■ ) dt 
T -* tt T 2 

" d' . (47) 

The amplitude of the frequency response function is related to the motion 
and wave spectra by 

!<t>( ,■) 

and the phase p is calculated from 

2 |X( -,,) 
2 

:( '• e) tan'1 

where 0 is the cross-spectrum defined by 

Im 0( ,,) 

(48) 

Re ( ■) 
(49) 

¿i 
2 

im y f V( t ) X( t - - ) dt 
- T 2 

1 
T - T 

- 1 Ci} T 

e d7 (50) 
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The Effect of Shift of Wave Measurement on Reference Points 

Suppose that a wave system is moving from left to right in the direction of 
positive X or and one has by measurement a knowledge of the waves as a 
function of time at x o and z o and asks what the fluid motion is at some 
point x and z -T "downwind" so ~ - ;o. The answer can be secured by 
regarding the fluid as one following the linear system concept that at any dis¬ 
crete frequency: 

output = input x unit frequency response function 

and thence to deduce an impulsive response function which is then convoluted 
with the known wave record. 

However, a much more direct approach is to utilize the foregoing formulas 
for heave response by regarding the body to be shrunk to a point and thus indis¬ 
tinguishable from a fluid element. The heave frequency response function of the 
ship-sea system contracts to 

¡.. i, i< - . i ) 
(51) 

and the vertical fluid motion at in terms of the surface motion t\ - ,0) is 

J ('-„.O) Kw(t--: -) <1- 
- r 

where the wave-induced impulsive response function is given by 

i i ■ u j- 

Kw(u; Í-V F J e ? r ‘■‘ “f1 • 
- CP 

This integral can be expressed (as shown in Appendix A) by 

k- 
t’xp ) Erie 

(•- T ñ 

(52) 

(53) 

(54) 

where 

R(. indicates that only the real part is to be retained, 

Z = ’ - f0), 

Er fc is the complementary error function (which is tabulated for complex 
arguments). 

(The plus sign is applied for positive time u and the minus for negative u.) 
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Some reflection on the parametric dependence of on and f imbedded 
in (54) will reveal that the action of the fluid between the two points is to filter 
the wave-induced motion as an inverse function of the complex "distance" 7 
which means that the filtering effect depends on ( ? + '2)' 1 and the "aspect" of 
the point defined by the angle tan 1 f >. 

Evaluation for 0 yields the same result as given by Davis and Zarnick 
[141, viz., 

Kw( t : o,0) 

where 

C( t ) S( >t ) (55) 

Í cos [y d/i ; Sf 7t) I sin— a 2 d, . 

The functions c and s are Fresnel integrals which are tabulated. 

Curves of Kw/a for = 0 and r = 50 feet are shown in Fig. 1. It is seen 
that the amount of future time wave record needed at <f0 ■ 0 to compute the pres¬ 
ent time disturbance at -, l increases as one moves downward into the fluid. 
As is made large with respect to fo, less and less future time record is re¬ 
quired as would be expected. For r o and large » or .f -. f 

Vrrh C( -t 

Kw(u; :--o.0) - ~ ■ cos ^ - y (au)2j 

which, being even in t, shows that both future and past information are equally 
weighted at . 

The function Kw as given by (54) collapses to the known, very simple, re¬ 
sult when one moves the point :,1 under the point fo,0. Then the argument of 
the complementary error function becomes a pure imaginary and its value is 
then unity leaving 

Kw(u;0, ’,) 
KU 

4 v 

\[2 

(56) 

A universal curve of Kw ß is plotted against ,ki (or /it) in Fig. 2. It is seen 
that this function is symmetric, indicating that the motion at depth requires 
equal knowledge oi future and past waves. 

These results allow one to handle the following problem. Suppose one has a 
system -K( t ) for a particular mode of motion which has been derived from data 
in which the wave information was secured at -:,0 and then one wishes to calcu¬ 
late the motions of a ship using wave records secured or assumed at some point 

. One may then do either of two operations: 
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Fig. 1 - The impulsive response function for wave-induced fluid motion as 
a function of horizontal separation ' and for vertical distances r, = 0, 50 ft 

Kw 

ß 

ß\ 

Fig. 2 - Heave impulsive response 
function for destroyer in head seas 
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(a) "Shift” the wave input from f, to so that it may then be convoluted 
with the K( t ) determined for waves measured at -f); or 

(b) "Shift" the Kf t) from fo to-:,. 

Step (a) is accomplished by convoluting the given wave record with Kw given by 
(55) and then convolve that result with the system Kit ) to obtain the response. 
Step (b) is accomplished by modifying the transfer function from which K(t) is 
computed by the factor 

(taking care to apply the correct sign to the exponent!) and thence to compute a 
new K(t) which can be convoluted with the given wave record. 

APPLICATIONS OF IMPULSIVE RESPONSE TECHNIQUE 
TO PREDICT SHIP MOTIONS IN IRREGULAR SEAS 

The previous sections of this paper have discussed the significance of the 
impulsive response function and have described its application in determining 
the time history of ship motions in irregular seas. During the past several 
years, the Davidson Laboratory has employed this technique to evaluate the mo¬ 
tions of a variety of marine craft operating in random seas. The results of these 
applications will be summarized and discussed. 

Displacement Ship in Head Seas 

In 1961, Fancev [131 used the impulsive response technique to determine 
the time history of heave and pitch motion of a destroyer model in irregular 
long-crested head seas. The model used in the experiments was the DD692 
Class Destroyer (long hull). The full-scale ship is 392 ft long, has a beam of 
40.83 ft and has a displacement of 3471 long tons in salt water. The model was 
tested in moderately high, irregular, long-crested head waves that had a broad 
energy spectrum. The average height of the waves was about 1/60 of the model 
length. Measurements were made of the wave elevation (at a constant distance 
forward of the model LCG), pitch angle, heave at the LCG and bending moment 
amidship. Dalzell [3| reported the results of these tests and, by the method of 
cross-spectral analysis, derived the transfer function of the destroyer for a 
wide range of speeds. It will be recalled from Eq. (21) that the transfer function 
¢( i' > is written: 

where 

¢( < ) = A( , ) - P( a ) + iQ( r, ) 

P(f<) = A( u') COS [¢( : )} 

0( - ) = -A(w) sin [^(a;)] 

(57) 
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and where A( ) is the amplitude function relating the wave amplitude to ampli¬ 
tude of ship motion for regular waves of a given frequency . /( ) is the phase 
angle between the crest of a regular surface wave and the peak of the corre¬ 
sponding sinusoidal motion of the ship. Dalzell found that the transfer functions 
obtained in the cross-spectral analysis agreed very well with those obtained 
from tests of the DD692 in regular waves over a range of speed-length ratios 
from 0 to 1.25. The experimental values of the transfer function (A( ) and /( .)) 
for pitch and heave are summarized in Figs. 1 and 2 of Dalzell's paper. 

Fancev used the transfer function obtained by Dalzell to develop the impul¬ 
sive response function K( t) relating the motion of the destroyer at the LCG to 
the instantaneous wave profile recorded by the wave wire located ahead of the 
test model. As developed in a preceding section of this paper (Eq. (42), ex¬ 
panded): 

K( t ) [P( . ) cos .t - Q( . ) sin .t ] <1 . 
n 

Fancev performed this integration by a graphic numerical method and his re¬ 
sults are plotted in Figs. 3 and 4 of this paper showing the heave and pitch im¬ 
pulsive response functions of the destroyer at a Froude number of 0.187. It is 

Fig. 3 - Pitch impulsive response function for destroyer in head s -as 
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Fig. 4 - Pitch and heave motions for destroyer in head seas 
predicted by impulsive response technique 

seen that the response functions are physically realizable, i.e., K(t) o for 
t o. If the surface wave probe were located at the LCG of the model, Fancev 
shows that the resultant response function would have values for t 0 and 
hence be classified as physically nonrealizable. The physical explanation for 
this is that when the ship is long, relative to the wave length, the ship responds 
to the wave crest even before it reaches the bow and before this wave is re¬ 
corded by a wave probe located at the LCG; hence, in this case, the ship motion 
would always precede the arrival of the wave crest at the LCG. 

The heave and pitch time histories were computed on an IBM 1620 by eval¬ 
uating the convolution integrals [Eq. (36)|, 

X(t) j Kz( ■ ) 7 ( t “ t) <1 
-on 

(t> j K,( r) ■ ( t <1 - 

479 



Breslin, Savitsky, and Tsakonas 

where t) is the time history of surface w ’ve profile measured by the wave 
probe forward of the model. Figure 5 sho s the results of the prediction of 
heave and pitch response to irregular seas. The continuous lines are tracings 
of the oscillograph records of heave motion and pitch motion obtained from the 
tests in Ref. 3. The circled points represent the results of convolving the im¬ 
pulsive responses of Figs. 3 and 4 with the surface wave time history. On the 
whole igreement between observed and predicted responses is considered ex¬ 
cellent, hence validating the accuracy of the impulsive response technique in 
obtaining deterministic solutions. 

Submerged Bodies in Beam Seas 

The Davidson Laboratory has conducted an extensive series of model tests 
to determine the motions of a submerged, asymmetrically finned body at zero 
velocity when acted upon by regular and irregular long-crested waves approach¬ 
ing the body from various directions. In these tests, the motions of the sub¬ 
merged body were recorded in terms of the surface wave profile directly above 
the body. Response operators for heave, roll, and pitch motion in beam seas 
and head seas have been developed from these data by Savitsky and Lueders [5]. 
The response operators obtained from irregular wave tests were found to be in 
agreement with those obtained from tests in regular waves. The general con¬ 
clusion of this study was that, in regular beam seas, the heave and sway motions 
are those of a water particle at the center of gravity of the body. Also, in beam 
seas, the hydrodynamic roll moment is proportional to the wave slope at depth, 
(or equivalently to the inertia forces which vary as a2) and the roll motions are 
determined by using this wave slope, the natural roll frequency and damping of 
the body, and the usual dynamical equations of motion of a linear, single degree 
of freedom oscillator. 

Dalzell used the results of Ref. 5 to determine the impulsive response func¬ 
tion of the submerged body and to calculate the time history of heave and roll 
motions in irregular beam seas. Dalzell's results are rederived below following 
the theoretical procedures described in the previous section of this paper. It 
will be recalled that, in the present theoretical development, the kernel function 
of the wave system (due to shift of wave reference points) was separately de¬ 
veloped and then combined with the kernel function of the mechanical system to 
derive a so-called "system" impulsive response function. 

Since the test body was submerged, the wave characteristics at depth of 
submergence (t), will be used as the input to the system. (It has been shown in 
the theoretical section that it is equivalent to referencing the output to the wave 
on the surface.) The relation between the measured regular surface wave pro¬ 
file and the orbital motions at depth exhibits a zero phase shift and an attenua¬ 
tion in amplitude of orbital motion given by the relation e ‘ '2 ’ R. The kernel 
function relating surface wave profile to wave profile at depth is given in Eq. 
(56) which is reproduced below: 

(58) 
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This function (plotted in Fig. 2) is seen to be a symmetrical function of time and 
hence requires some future time knowledge of surface wave profile in order to 
predict the wave profile at depth. Using the above kernel in a convolution inte¬ 
gral will provide a time history of the orbital motions at depth ft) in terms of 
the time history of the irregular surface wave profile, o( t ) immediately above 
the test point. 

•ft) (59) 

Predicted Heave Time Histories 

Considering the heave motion of the neutrally buoyant submerged body, it 
was shown in Ref. 5 that the body behaves in heave and sway like a water parti¬ 
cle at depth, i.e., it has identical amplitude A( . ) = 1 and zero phase p( ) = 0, 
relative to a submerged wave particle. The heave transfer function of the sub¬ 
merged body (relative to water motion at depth) is then 

'K i A(v) c'lf(,) (i) f'° 1 . (60) 

The impulsive response function of this mechanical system is then written 

r i 

Kn>„ p J <■' ‘d. A- J e* (t) (61) 
- or -on 

where is the Dirac delta function. Operating with the delta function on a 
bounded and continuous function f(t), it can be shown that 

J fen (t-10) dt f(t0) . (62) 

Thus, convolving the body heave impulsive response function [Eq. (61 )| with the 
wave motion at depth, Eq. (59), gives the time history of heave motion ?.( t ) of 
the submerged body in terms of the surface wave profile (¾) to be 

so that 

- ce 

(63) 

The above integral was evaluated by Dalzell and resulted in a computed 
heave time history of submerged body. The analytical results are compared 

482 

I 
i 



Evaluation of Motions of Marine Craft in Irregular Seas 

i I I i i i I 

TIME , SECONDS 

TIME (CONTINUED), SECONDS 

KE Y 

OBSERVED TIME HISTORY OF WAVE AND RESPONSES ... 

POINTS PREDICTED FROM SURFACE WAVE TIME HISTORY O 

Fig. 6 - Deterministic prediction of roll and heave response 
for submerged body in irregular beam seas 

with experimental values in Fig. 6. It is seen that there is excellent agreement 
between computed and measured values of heave. Also included in Fig. 6 is the 
time history of the irregular surface wave profile. 

Predicted Roll Time Histories 

As shown in Ref. 5, the roll motions of a submerged body in regular beam 
seas are derivable from the equations of motion of a damped, linear, single de¬ 
gree of freedom oscillating system and are expressed by the following equation 

I 
; 
» 
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where 

o = maximum roll amplitude, 

a,n = natural roll frequency of submerged body, 

ù = wave frequency, 

T'o = surface wave amplitude, 

li = depth to center of vertical fin on submerged body, and 

" = damping ratio in roll. 

Since the wave orbital motion at depth h has an amplitude equal to 

(64) 

T,o e 

then the response amplitude, A( <)h, defined as the ratio of maximum roll am 
plitude to wave amplitude at depth is equal to: 

r 

(65) 

The phase angle, ?, between passage of the wave crest over the submerged bodv 
and maximum roll amplitude of the submerged body can be derived from Ref. 5 

2 7 ' — 

The transfer function for the submerged body in roll is thus known (Fig. 7). 

'lx A(f<)h e1^5 = P( v) t iQf ,) 

where A(a) and -a/A are given by Eqs. (65) and (66) above. 

, Evaluating the real and imaginary parts of the transfer function results in 
the following: 
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Fig. 7 - Roll transfer function for 
submerged body in beam seas 

P( ' ) A( .')n cos [cp(i<)] 

and 

2C — 

cos < tan - i > (67) 
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Ot 0 ~A( ,)n sin [?( O! 

> • (68) 

Hence the impulsive response function for the submerged body in roll relative 
to the wave orbital motions at depth is evaluated by the following equation de¬ 
rived from the Fourier integral 

00 

Kö(t) — I [P( cos ,t + Q( ,) sin ,t] d 
vo 

(69) 

where P( , > and Q(,) are given by Eqs. (67) and (68). It is interesting to note 
that K( t) given in Eq. (69) is independent of submergence. This is to be ex¬ 
pected so long as the submerged body motions are related to wave orbital ve¬ 
locities at body depth. 

Since the desired deterministic solution involves relating the time history 
of the surface wave profile to the time history of the roll motions of the sub¬ 
merged body, it is necessary to first know the wave motion at depth in terms of 
the wave motion at the surface. Equation (59) shows this relation to be: 

V1 ) 
R( t-T)' 

irr- dr 

where 

"of t ) = time history of surface wave profile, 

V t ) = time history of orbital motion at depth h, and 

!> = depth of submergence to center of vertical fin. 

The time history of roll motion in terms of the surface 
obtained by use of the convolution integral: 

wave profile can now be 

('■( t ) 

(XI 

J Ke(r') ;.,h(t - r') dr' 
- 00 

(70) 

where Kr¡( r') is given by Eq. 
surface wave elevation r¡o( t). 

(69) and t ) is given by Eq. (59) in terms of the 
The expression for ( t) can be rewritten as: 
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(71) 

where K .( ) represents the so-called "system" impulsive response function 
which combines the vertical shift in wave axis system |Eq. (59)| with the trans¬ 
fer function of the submerged body in roll [Eq. (69) j. In effect, this system re¬ 
sponse function directly relates the surface wave profile, ,0, with the motion of 
the submerged body. This is the impulsive response function determined ex¬ 
perimentally by Dalzell and reproduced in Fig. 8 of this report. The apparent 
period of oscillation in Fig. 8 was equal to the natural roll frequency of the sub¬ 
merged body which is as it should be. The logarithmic decrement of the oscil¬ 
lation of the roll impulsive response function was calculated and found to agree 
closely with the logarithmic decrement found from experimental roll decay 
curves. The reason for the existence of K( t) for negative time (as shown in 
Fig. 8) is that in the subject experiment the only available input time history 
was that of the surface wave elevation directly over the body. Dalzell indicated 
that the use of either the wave slope at depth or the hydrodynamic rolling mo¬ 
ment as inputs would have led to only phase lags in the system (rather than lead 
and lag angles as given in Eq. (66) and hence result in a so-called physically 
realizable impulsive response function where K( t ) o for t < o. 

Using the convolution integral in Eq. (71), the time history of roll motions 
was computed by Dalzell and the results are reproduced in Fig. 6 of this paper. 
As in the case of heave, it is seen that there is excellent agreement between 
computed and experimental time histories. 

Fig. 8 - Roll impulsive response for submerged body 
(derived from transfer function in Fig. 7) 
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Surface Piercing Hydrofoil Craft in Head Seas 

The impulsive response technique was also applied by Bernicker to compute 
the heave and pitch time histories of a fully wetted surface-piercing dihedral 
hydrofoil craft in irregular waves. The test model was a simulated hydrcfoil 
craft with twin surface-piercing dihedral foils placed symmetrically fore and 
aft of the center of gravity. The surface wave profile was measured by a probe 
located at 82 percent of the foil spacing ahead of the center of gravity. Pitch 
and heave motions were measured about the center of gravity. 

The transfer functions for both heave and pitch were determined by Bernicker 
from cross-spectrum analysis of tests in irregular seas. The complex transfer 
function for heave and pitch, for a particular test speed, are reproduced in Figs. 
9 and 10 respectively. The P( and Qfa.) functions plotted thereon are used to 
calculate the impulsive response function [Eq. (42)]. Since both P( a;) and Q(^) 
are given in graphical form, an IBM 1620 program was used to evaluate this in¬ 
tegral numerically. The results of these integrations are given in Figs. 11 and 
12 which plot the impulsive response function in heave and pitch, respectively. 
It will be noted from these plots that K( t ) does not vanish for negative values of 
time and hence some future time of the surface wave input is required to evalu¬ 
ate the convolution integral. Bernicker attributes the requirement of input for 
negative or future time to the particular longitudinal location of the surface 
wave probe used in these tests. Since the longitudinal position of the wave probe 
affects only the phase component of the transfer function of the hydrofoil craft, 
it is clear that the "system" impulsive response function is dependent upon the 
position of the wave probe and, hence, is not unique to the craft characteristics. 
As can be ascertained from Eq. (52) of this report, there is some optimum 
spacing between the wave probe and test model which will result in an impulsive 
response function that exists only for positive values of time. This optimum 
spacing was not determined in Bernicker's paper. 

Figure 13 shows the results of evaluating the time history of hydrofoil 
heave and pitch motion using the impulsive response functions of Figs. 11 and 12 
in the convolution integral together with the surface wave time history v0(t). 
The solid lines are the original time history as taken in experiment, and°the 
discrete points are from the computer calculation. It is seen that the compari¬ 
son, for the most part, is quite good. 

Bending Moment Time Histories 

In addition to computing motion time histories by the method of the impul¬ 
sive response function, Dalzell also computed time histories of midship bending 
moments on a destroyer in irregular, long-crested head seas. The analytical 
procedure was identical to that previously discussed and the results are given 
in Fig. 14. Once again the agreement between computed and experimental re¬ 
sults is excellent. 
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Fig. 9 - Complex transfer function for 
heave motion of hydrofoil craft in ir¬ 
regular head seas 

'If .11 
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Fig. 11 - Impulsive response function for 
heave motion of hydrofoil craft in head seas 

CONCLUSIONS 

Time histories of the motions of marine vehicles in irregular seas can be 
reliably calculated by employing the technique of the impulsive response function. 

The impulsive response functions of hydrodynamic systems depend on both 
wave input exciting forces, which are frequency dependent, and upon the calm 
water frequency characteristics of the marine craft. In addition, the wave sur¬ 
face profile is commonly used as a representation of the exciting forces and the 
length of the vehicle is usually large relative to discrete wave lengths. Conse¬ 
quently, the impulsive response properties of these hydrodynamic systems are 
distinct from the usual electrical or mechanical systems. 

Theory provides a method for shifting either the system impulsive response 
function or the irregular wave record from one spatial reference point to an¬ 
other. This shifting can lead either to increasing or decreasing the amount of 
wave information required in future time. 
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Fig. 12 - Impulse response function for pitch motion 
of hydrofoil craft in head seas 

I 
4 

* 
A 

I 

I 
* 

492 



revaluation of Motions of Marine Craft in Irregular Seas 

t 

Fig. 13 - Deterministic solution of heave and pitch motions 
of hydrofoil craft in irregular head seas 

The procedures provided in this paper have been shown to be successful in 
predicting the motions and bending moments of surface ship models, and the 
motions of hydrofoil craft and submerged bodies in irregular long-crested 
waves. Hence the technique is also expected to be directly applicable to other 
features attending the operation of marine craft in a seaway, i.e., deck wetting, 
bow slamming, acceleration, etc. 

ACKNOWLEDGMENT 

The authors would like to acknowledge the contributions made to the pres¬ 
ent subject by Mr. John F. Dalzell during his employment at the Davidson Labo¬ 
ratory, Stevens Institute of Technology. Miss W. Jacobs has contributed valu¬ 
able assistance in resolving certain of the details of the mathematical analysis. 

493 



Breslin, Savitsky, and Tsakonas 

494 

F
ig

. 
1
4
 

- 
D

e
te

rm
in

is
ti

c
 
p
re

d
ic

ti
o
n
s
 
o
f 

p
it

c
h

, 
h

e
a
v

e
 
a
n
d
 
b

e
n

d
in

g
 

m
o

m
e
n

t 
ti

m
e
 

h
is

to
ri

e
s
 

fo
r 

d
e
s
tr

o
y

e
r 

in
 
ir

r
e
g

u
la

r
 

h
e
a
d
 
s
e
a
s

 



Evaluation of Motions of Marine Craft in Irregular Seas 

NOMENCLATURE 

A( x) modulus of transfer function 

p( ) phase angle of transfer function 

<t>( ui) complex transfer function 

Pfw) real part of complex transfer function 

Qf . ) imaginary part of complex transfer function 

t real time 

t,t' dummy time variable 

circular frequency of wave, radius/sec 

ûJn natural frequency of physical system, radius/sec 

f distance in horizontal direction 

ç distance in vertical direction 

Í ' damping ratio of oscillating system 

t)0 surface wave amplitude 

V amplitude of wave orbital motion at depth 

h depth to center of vertical fin on submerged body 

8(r) Dirac delta function 

0 amplitude of roll motion, radians 

z(t) time history of vertical motions 

0( t ) time history of angular motions 
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Appendix A 

The wave-induced impulsive response function for a fluid, viz., 

can be reduced to 

w 2 hi 
co\oj\ 
-( - r + i f ) 

e e d' 

X CO 

r 
K.„ —- I e B e luJUdi 

where z i - i f. 

Now let 

\ - 

and then the integral is converted to a Laplace transform type: 

e ‘ A d\ 

and this can be found (see, for example, Tables of Integral Transforms, Vol. 1, 
McGraw Hill, 1954) to be expressed in terms of the complementary error func¬ 
tion Erfc: 

Kw(u; Z) 
KU 

4Z Erfc 

* * * 
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all the modes of motion discussed in the oaner a^d^h^' 0118 almost haPPens in 
gration over less than an infinite interval aie nnf c inCUrred ^ illte- 
a difficult time using the kernel funrtirm fnr Ct serious- 0ne would have quit 
tal separation (Fig. 1) unless the frequency co^ntT/T "induced’' by horizon- 
known in advance (the highest wave fiemi^ 1 ^ f the wave record was 
dictates how many of the oscillations tol^^ 

deterministic calculations^/r-ndo^H^heno^ t0 ^ statistical approach is that 
set of statistics which Trl Ías?er Can °nly ultimately r^ult in a 
main) calculations. This is probably true On XeotShPeC!,rUa (frecluency d°- 
5 years ago who said that the power soectrnm ïer hand' there Were 
but that they did not take account of the occasio^a^mnt WCl1 and g0od 
most samples except for very low sea stetes extremes observed in 
became nonlinear in the mathematical sense ’ d that marine vehicle motions 
reached visible proportions The oresenf t! w? S°0n after wavc heights 
investigation of how far linear systems 1 g mblt was mitiated as an aid in the 
was intended as a comteementinrHe^8 C°nCfPtS COuld apply in «evere seas. It 
linear systems concepts were Figure^H of th" OÍ how.adeclua,e or inadequate 
the 3 similar plots from Ref. 4. Fteure í4 of RefTsV8 ^6^61181 Significailt 
agreement between time domain nredirtinns f a f‘u4 h°WS almost as g°od 
significant height was 4 times great et than thaTs^^t0"8 f°r 3 Wave whose 
result indicated by frequency domain analysis. " ^ lg' 14 0Í the paper, a 

in the paper weí"1-orig’náüy intended af and usedTór tarest '"rth0tlS discusscd 
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DISCUSSION 

M. Fancev 
Institut /ai Brodska llidrodiimmika 

Zagreb, 1 'ago s la via 

In dealing with any real problem of the ship motion stabilization one re¬ 
ceives little help from a statistical treatment of sea and motion properties, but 
rather has to look for a deterministic way of analysis. During my stay at 
Davidson Laboratory in 1961, I tried first the Fourier Series synthesis with 
known transfer functions and wave time history [13]. Although the results were 
good, the impulsive response technique appeared more practical and simple in 
application, and motion predictions (reproduced here in Fig. 4) proved to be re¬ 
liable. Further extensive work at the Davidson Laboratory on this subject, as 
may be seen from the paper, confirmed the validity and practibility of the im¬ 
pulsive response technique. 

The authors are to be congratulated on the pedantic and precise development 
of the theory for the covered modes of oscillations leaving so little to the intui¬ 
tive way of reasoning. 

Wasn't this pedantry a little vague in the section following Eq. (42), as re¬ 
gards the oddness and evenness of phase angle and amplitude of response, re¬ 
spectively? These conclusions follow from a pure mathematical expression, 
but a physical interpretation introducing negative frequencies could be easier 
followed. 

The chapter on the shift of wave measurements cleared entirely the concep¬ 
tion of physical realizability, which has to be understood in this specific applica¬ 
tion of impulsive response technique. 

In the motion stabilization application some "free" future time will have to 
be on disposal for the selection of proper orders for the control system of sta¬ 
bilizers. One way to get this time "fund" is the measurement of waves well off 
the ship, but this could be either impractical or unreliable. Practically, the 
bow, the stern, and the sides of the ship are mostly too remote from C.G. to be 
used for wave measurements. In such a case impulsive response will exhibit 
values other than zero for "future" time, but because of the loss of the precision 
of prediction, one could cut off a piece of the impulsive response to get the re¬ 
quired "future" time. Here again the statistics could enter and make this trun¬ 
cation in a proper way thereby giving the limitations and expectations of such a 
procedure. 

Such a truncation of impulsive response (without any special statistical 
treatment) I did in Ref. 13 and I succeeded in forecasting the pitch and heave 
3.6 seconds in advance (full scale) with quite the same degree of precision as 
without truncation (Figs. 14 and 15 of Ref. 13). It has to be emphasized that ir¬ 
regular waves, in this case, were measured at the wave probe a half model 
length ahead of the model. 
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DISCUSSION 

G. J. Goodrich 
National Physical Laboratory 

Tcddiuyton, England 

The collection of statistical full scale ship motion data is a long tedious job 
taking at least a year for a good sample but it would seem that it is now feasible 
to reduce this to a computer technique. 

Large quantities ol recorded sea data are available from weather ships 
fitted with wave recorders which make regular measurements throughout the 
yeai. These data could be fed as input to the computer and the resulting ship 
motions obtained by the methods suggested by Dr. Breslin. 

The results of the calculations could be sampled statistically in an ex- 
tremely short time and in this way vast quantities of statistical data could be 

* * * 

DISCUSSION 

Samuel M. Y. Lum 
Bar can of Ships 
Washington, D.C. 

Aside from minor typographical errors and inadvertent 
of the equations scattered throughout the text, I would like to 
tions on four issues stimulated by this interesting paper. 

omissions in some 
raise some ques- 

The first involves what appears to be an apparent mathematical oversight 
The question concerns the derivation of the wave-induced impulsive response 

ofnir:mPrCSCnte.d in the\appendix- As U Presently stands, this will affect some 
of the other equations and the final result. This oversight will detract from the 
overall generality and limit the application. I refer in particular to the failure t 
distinguish between , the wave frequency, and ( , the system frequency of en¬ 
counter. The former is strictly a characteristic of the wave as determined by a 
wave probe geographically fixed without bi nging the craft into the picture The 
latter „, is related to the frequency of encounter as seen by a wave probe 
fixed to a moving reference having the same speed of advance as the craft This 
inconsistency or error of omission can readily be detected by going back to the 
equation of a simple harmonic, two-dimensional progressive wave as seen by a 
fixed wave probe, y 
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Let us now make a coordinate transformation to a moving (x. ?) reference 
frame, free to translate with forward speed u of the body but constrained in 
pitch, heave, and surge. 

Ut + X 

' z . 

Suppose we locate a wave probe at some prescribed distance xn with respect to 
an origin corresponding to the midship station of the moving reference. Further¬ 
more, if the particle displacement at some reference depth zn below the calm 
water datum is required, then an attenuation factor p‘<2tt > must be applied 
to the surface wave. The resulting equation for the wave encountered by a point 
on the body at depth zo can be obtained as 

The real part notation has been left out temporarily without obscuring the issue. 
Making use of two well-known wave relations 

• fi -F 

and 

2 2-- ,1 
% -T~ — (c - U cos \) t - U 

ro A K 

where v is the heading angle. Then restricting this to head (+) and following 
(-) seas in the ± designation, the wave number may be expressed as 

2" ■ c 

g c * U 

Substituting this back in the equation for , 

When compared to the above equation, the authors' corresponding version 
of the wave as denoted by their Eq. (13), lacks the subscript e in the driving 
frequency for the general case. Hence, the results can only be valid for the 
special case of beam seas or for zero speed-of-advance. This omission was 
evident in many of the ensuing equations. The error can be easily remedied by 
inserting the subscript e for all frequencies identified with the system 
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frequency-of-encounter. On the other hand, the without subscript e will be 
retained for those equations involving the function 

i 

as given in Eq. (14). 

Without this correction, the wave-height information as seen by the body is 
implied to be the same as that picked up by the stationary probe. This is tanta¬ 
mount to a wave excitation on a body essentially hove-to or a body running in 
cross-seas. If we assume the latter to be the case, then the significance of this 
error implies the loss of a cross-product term ibwx in the linearized pressure 
integral. This can be shown by examining the Bernoulli equation. For the case 
of a body advancing with forward speed u, the pressure terms after lineariza¬ 
tion can be written 

U( 1 X R 

Subscripts i and 2 are used here to denote quantities related to calm-water 
and wave respectively. Then ?lx is the longitudinal perturbation velocity in 
calm water, p2x (or pwx) is the corresponding contribution in waves. ,lt and 
'p2t are the unsteady contributions to the pressure in calm-water and waves 
respectively. 

On the other hand, the linearized pressure due to the body running with 
forward speed u in calm water conditions is 

Adding this to the contribution due '0 the seaway but with the body held fixed, 

Pp 

gives 

Pi + ap2 
--- l':lx + K’ + "P|t + :2t . 

Comparing the above pressure equation to that of the previous case where 
the total pressure was obtained with body translating with speed in waves shows 
a loss of the Up2x contribution. 

The second issue is the age-old question of the extent of the validity of the 
somewhat heuristic development of the mathematical model adopted. These re¬ 
fer to the forcing functions employed in Eqs. (11) and (12). Basically, it as¬ 
sumes a lumped mass, dashpot, spring system. It utilizes the wave information 
at the wave probe station and transfers the fluid particle effects to the center of 
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mass by means of proper geometric phase shift. The total excitation force in¬ 
duced by the wave was then obtained by computing the kinematic acceleration, 
velocity and displacement of the fluid particle at the mass center of the body 
and then multiplying by suitable coefficients determined post-priori. Is it cor¬ 
rect for us to assume that the crux of the whole approach lies in the adjustment 
of the coefficients a', l>', o' and A', n', C' appearing in the forcing functions 
specified so as to be compatible with the measured response data? 

It is observed that the wave height information or fluid particle displace¬ 
ment is strictly a point function at a given instant of time as measured by the 
wave probe. Its subseque^ introduction into the forcing functions specified by 
Eqs. (11) and (12) leaves one with some apprehension as to how the total flow 
field and hence total force over the entire body is generated. What is needed is 
some spatial integration of the total field effects of each individual particle ac¬ 
tion over the entire body surface. It is only for very long-crested waves in 
comparison to body length or beam seas encounter that the approximation will 
meet with success. 

The third issue is perhaps more philosophical in nature. While the surge 
degree-of-freedom in the system equations has generally been neglected in 
practice, there are evidence that indicate that such a neglect may not be justi¬ 
fied. This happens especially in certain following-seas condition where the 
craft may be running in a "surfboarding" condition. In severe instances, this 
can lead to broaching. With the modern computers available today, computa¬ 
tional drudgery should pose no problem. Has there been any attempts to try a 
similar thr^e degree-of-freedom (with and without coupling) response problem 
to justify the neglect of surge or to define the bounds for its neglect because of 
second-order effects? 

Finally, I would like to state a dream for the future to come in the ship mo¬ 
tion studies. While the major brunt of the work so far has been concentrated in 
the realm of analysis, i.e., to predict the motion given the ship and the seaway, 
the naval architect in the design office is still looking for a rational approach to 
design his ships for seaworthiness and minimum motion. It is opportune for 
someone to undertake the problem of synthesis and the ultimate optimization 
problem. This undertaking implies an understanding of pole-zero synthesis, 
defining a meaningful criterion for optimization, plus an identification of the 
parameters of ship form, loading, hydrodynamic characterization, and seastate 
environment so as to tie in the relation to the poles and zeroes of the transfer 
function. Such poles and zeroes, if properly characterized, serve to define the 
behavior of the ship. At this stage, it is not important to get unnecessarily in¬ 
volved into fine details and accuracy but to look at the broad approach and to 
arrive at definitive concepts and trends. Such an approach is still awaiting as 
the eventual goal of ship motion studies to tie in with a rational design practice. 
This is useful even if only to improve our present go, no-go methods. 

* * * 
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REPLY TO THE DISCUSSION 

J. P. Breslin, D. Savitsky, and S. Tsakonas 
Stevens Institute of Technology 

Hoboken, New Jersey 

It is a rather difficult task to try to answer all the discussers of our paper 
due to tile variety of aspects tackled by the discussers and due to the extent to 
which some of them went. Some of the facts brought up by Dr. Yamanouchi and 
Dr. Pierson should be considered as complete and independent studies and de¬ 
serve better classification than being characterized as discussions." 

The estimation of impulse response function by statistical methods as sug¬ 
gested by Dr. Yamanouchi is interesting and useful since it incorporates better 
the statistical properties of the medium. But the evaluation of the impulse func¬ 
tion through a large number of algebraic equations makes the method somehow 
cumbersome and of questionable stability. His comments on the effect of non¬ 
linear damping on the calculation are very interesting but not directly related to 
the linear problem which is under consideration. 

Dr. Pierson's remarks on the subjects (a) ship in short-crested waves and 
(b) coherency and resolvability of spectral and cross-spectral shapes and (c) the 
solution of specific problems which are nonlinear, are interesting and applicable 
to the problem of ship motion in short-crested waves, where the nonlinear char¬ 
acteristics are dominant. 

As for Mr. Bum’s remark about some "mathematical oversight" by the au¬ 
thors, we would like to emphasize the fact that the primary objective of this 
present paper is to demonstrate the method of evaluating the impulse response 
function of a marine craft running in arbitrary irregular long-crested waves, 
and bring up the most pertinent characteristic of the approach. Thus an ideal¬ 
ized situation was selected such as to exhibit the main feature of the approach. 
Equations (11) and (12) do not imply the corresponding system to be one of 
"lumped parameters” since the coefficients are frequency dependent. We should 
further keep in mind that this study is based on a linearized version of the cou¬ 
pling ship motion in heave and pitch and the results are applicable only for long- 
crested waves. His burning desire to reach the stage of issuing criteria and 
formulae useful for the design of a ship for seaworthiness and minimum motion 
can only be achieved after a rigorous and more realistic study of the hydro- 
dynamic aspects of the problem. The fulfillment of this long range objective 
should wait until this part of the problem is clarified and, in the meantime, the 
fragmentary information should be properly utilized. 

See discussions by Pierson and Yamanouchi on the paper by Ogilvie and discus¬ 
sion by Tick on the paper by Cummins and Smith. 
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Mr. M. Fancev's kind words are appreciated and we would like to take this 
opportunity to thank him and Mr. J. Dalzell for their pioneering work which has 
been useful and inspiring to the authors. 

We do share the same opinion with Mr. G. Goodrich about the usefulness of 
this method to classify existing data and utilized their statistical properties to 
examine the long-time exposure to rough seas by relatively short-time computer 
runs. 

We would like to thank all discussers for their stimulating contributions. 

* * * 
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TESTING SHIP MODELS IN 
TRANSIENT WAVES 

Lt. Cdr. M. C. Davis, USN and Ernest E. Zarnick 
David Taylor Model Basin 

Washington, D.C. 

ABSTRACT 

The seaworthiness characteristics of a ship design are often deter¬ 
mined by a series of model tests in regular waves. This report de¬ 
scribes a new model test procedure which makes use of a transient 
wave disturbance having energy distributed over all wave lengths of in- 
erest. With the use of this transient wave technique, the testing time 

required to characterize a model is reduced by an order of magnitude. 
In this report, the basic behavior of a unidirectional transient wave is 
discussed, and a simple Fourier transformation is developed in order 
to link wave height records measured at any two separated points along 
the path of such a wave. A particular form of transient wave, which is 
approximately sinusoidal with linearly varying frequency, has been 
used to test successfully a number of shipmodels. The results of these 
tests are presented and the practical problems in generating, measur¬ 
ing, and analyzing transient wave tests are discussed. 

INTRODUCTION 

The linear theory of ship motion in a random seaway has become generally 
accepted as a useful approximation to the actual nonlinear phenomena involved 
in ship-wave interaction. As outlined in the pioneering work of St. Denis and 
Pierson |1| the random sea surface can be visualized as a superposition of two- 
dimensional sinusoidal waves continuously distributed in amplitude, wave length, 
and direction. The total ship response in any degree of freedom is found from a 
summation of the responses to each individual wave component. 

The primary role of a ship model testing facility, in providing information 
for quantitative full-scale motion prediction using this theory, is to measure the 
response of a model to sinusoidal waves of unit amplitude over the entire range 
of ship speed, wave length, and direction of encounter. The Harold E. Saunders 
Maneuvering and Seakeeping Facility, located at the David Taylor Model Basin, 
is admirably suited to conduct such an investigation in head and oblique waves.' 

The scope of a complete model measurement program is without parallel in 
other engineering fields which perform frequency response testing of dynamic 
systems. A numerical example will illustrate the large number of tests which 
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are required to characterize a model in regular waves. Assuming that the func¬ 
tions involved can be suitably approximated by tests at 10 wave lengths, 30- 
degree increments in direction from ahead to astern, and 5 speeds, 350 separate 
model tests are required, with measurement and analysis of a number of dy¬ 
namic variables on each test. A program such as this requires a major invest¬ 
ment of time and mcney, and any techniques which can be developed to abbrevi¬ 
ate the test time without technical compromise will reap high dividends. 

It is clear that relative wave direction and model speed must remain fixed 
for any one test. However, under these constant conditions, a series of experi¬ 
ments in varying wave lengths is nothing more than a frequency response de¬ 
termination of a linear dynamic system, a common experiment in systems in¬ 
vestigations for many engineering disciplines. 

The frequency response characteristics of linear systems may be measured 
in three fundamental ways, that is, using sinusoidal, random, or transient exci¬ 
tations. The first two techniques are commonly employed in testing ship mod¬ 
els. The latter technique, using a transient water wave, is the subject of this 
report. 

A transient wave will contain energy which, in general, is distributed over 
a range of wave lengths. Thus, a single motion test can yield information about 
the response of the ship at all wave lengths of interest. In the representative 
example just quoted, the number of tests required to characterize a ship design 
can be reduced from 350 to 35. 

In the following sections, the theoretical and practical aspects of transient 
wave testing are presented. First, the basic mathematics of linear systems 
analysis are outlined. Then, the analytic peculiarities of the ship-wave system 
are discussed, stressing the fact that a wave is not properly an "input" as the 
term is usually understood. Next, the complex subject of unidirectional water- 
wave transients is treated in a simplified fashion by developing an expression 
which relates various wave height time histories that might be recorded at var¬ 
ious points along the path of the wave. 

A particular wave which arises quite naturally from this analysis is the one 
which would, in theory, produce an impulse of infinite height and zero duration 
at some measurement point. An approximation to this theoretical waveform is 
quite easy to generate in a seakeeping facility; it has been extensively used at 
DTMB for model testing because of its several attractive analytical properties. 

Three sets of model tests are reported herein to support the theory and to 
illustrate some of the practical problems, especially associated with the meas¬ 
urement of wave height, that can be anticipated in using transient waves to ex¬ 
cite ship motion. 

PRELIMINARY THEORY 

Mathematics of Transient Testing 

Suppose that a linear dynamic system (such as shown in Fig. 1) is under 
investigation, with an "input" \( t ) as the independent excitation, and an "output" 
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y( t ) as the dependent or forced variable. If 
x( t ) isa sinusoidal signal at a particular 
frequency, then, in general, y( t ) will as¬ 
ymptotically approach a steady-state sinus¬ 
oidal response at the frequency. The ratio 
of the output amplitude to the input amplitude 
and the phase difference between output and 
input for all frequencies define the frequency 
response of this system, represented by the complex transfer function G( j ), 
where is the frequency in radians per second. 

When the system G( j . ) is at rest and a sudden transient x(t) is applied at 
t o, then some response y(t) will be measured, usually involving decaying 
transients. It is well known that a transient signal can be decomposed into a 
continuous distribution of infinitesimal sinusoidal components with the aid of the 
Fourier transform. For example, the Fourier transform x< j o of a particular 
input signal x( t ) is given by the complex quantity 

X(j o J at x(t) e'J t (1) 
- on 

which represents the amplitude and phase of the incremental components at fre¬ 
quency . Considering the output to be a summation of the response to each of 
the input frequencies, the well-known relation 

Y( j ) X( j . ) G( j O (2) 

gives a proper amplification and phase change to each of these components. 

To summarize, the frequency response of a system G< j o can be found 
from a single transient experiment with input and output transforms X( j o and 
Y( j 0 , respectively, with the relation 

* (t) 

INPUT 

G ( j u) y (») 

OUTPUT 

Fig. 1 - General linear 

system representation 

G( j 0 
Y(j Q 
X( j O ' 

(3) 

In the transient testing of ship models, the input x(t) is arbitrarily defined 
as the instantaneous amplitude of the undisturbed two-dimensional wave surface 
which would pass through the center of gravity of the model; see Fig. 2. The 
output y( t) is the time history of any one of the pertinent response variables, 
such as roll, pitch, or heave. 

The use of a water wave input is the key distinction between transient tests 
of ship models and those conducted, for example, in control systems analysis 
where often a voltage is available for easy introduction of input transients. 

Visualization of the Ship-Wave Svstem 

The fact that the wave height referenced to the center of gravity of the 
model is defined as the input can lead to great mathematical difficulties. For 
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LC G Undisturbed 

Free Surface 

example, in defining a linear system in the time domain it is conventional to use 
a unit impulse as a standard input, which causes an "impulse response" whose 
Fourier transform is identical to the frequency response function. This is seen 
from Eq. (2), where 

Y( j ‘ ) C(j6 ) (4) 

because the transform X< j. ) of a unit impulse is unity. 

Since it is impossible for a physical system to look into the future, to "laugh 
before it's tickled," the impulse response must be zero prior to t o (when 
the impulse arrives). However, in the ship motion problem there is no reason 
to believe that the inverse transform of an experimental frequency response will 
exist only in positive time. In fact, as will be shown later in this report, an 
' impulse” of wave height observed at t o at the center of gravity of the model 
would be caused by the contraction of a wave train, which had previously passed 
along the forward part of the ship, producing force on the hull and resultant mo¬ 
tion in negative time. Thus, a more accurate description of the phenomena in¬ 
volved would be the very general configuration pictured in Fig. 3, where uni¬ 
directional wave height and ship motion are both viewed as responses to some 
undefined initial excitation, the mechanism which produces the waves. However, 
since wave height and ship motion are completely related in the sense that they 
respond to the single cause, it is proper to consider that ship motion can be re¬ 
lated to wave height by the frequency relation 

ULTIMATE 

CAUSE ~ 

WAVE HEIGHT 
x(t) 

SHIP MOTION 
y(t) 

Fig. 3 - Representation of wave height and ship mo¬ 
tion as "effects" rather than "cause" and "effect" 
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Y( J - ) Xf j •) 
H2(j - ) 

H,( jo.) j ■ ) (5) 

where G( y. ) is not properly the response of a physical system but the ratio of 
the frequency response of two physical systems. 

With this philosophical restriction in mind, we will continue to call wave 
height an input and ship motion an output, but at no time will the intervening 
system be required to have the characteristics of a real physical system. 

Wave Transients 

The study of transient waves on a free surface is an advanced top in hydro- 
dynamic theory, but it is amenable to the "systems" approach if linear wave be¬ 
havior is assumed. Consider first that all waves are traveling in the same di¬ 
rection on a surface of infinite extent and in a fluid of infinite depth. Suppose 
further that a wave disturbance of finite energy per unit crest length has been 
traveling for all time and is observed at a single stationary point x,. The wave 
height p(x,,t) may be expressed in terms of its Fourier transform by the re¬ 
lation: 

f œ 
^I't) = ¿ j dev N( x 1, a.) ej 1,1 . (6) 

- CE 

Following the technique of Stoker [2], the complex quantity NCx,. ) is vis¬ 
ualized as the infinitesimal wave component with frequency + ¢.:. This wave at 
any instant of time extends over the entire plane and at any one point persists 
for all time. At another point x2, which is a distance x along the direction of 
wave travel from x,, this same infinitesimal wave is observed but with a phase 
lag of w2x/g radians, according to linearized wave theory. That is, the time 
history at x2 is given by 

V(x2,t) = ^ j dai N( x ,, a:) e" j^1 “1 x/E eJa‘ (7) 
- 00 

where the absolute value of oj is used in the phase operator to ensure that the 
quantity 

N( x 2, a)) = N( x j, ûp g 'j "1 w 1 x ' b (g) 

is conjugate with N(x2, - w). This property is necessary in order that a Fourier 
transform represent a real function of time. 

The operator e',a,u’lx R can thus be viewed as the "transfer function" of 
water, or the frequency response function which relates wave heights measured 
at two points separated by a distance x in the direction of travel. 
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To illustrate this result, suppose that 

X , , t ) COS Ci 01 . (9) 

The Fourier transform of this wave height is given by 

N(xr,) 4.0( - .0) + + „)] (1°) 

where un( ■ ) represents the unit impulse. The transform of tm x2, t) is given by 

N(x2,<•■) : ‘o') + M„( ■+ ■„)] e K- (H) 

We have for 7](x2,t), then, the relation 

rr 

cos (-0t - -02x g) (12) 

which is a well-known result from linear wave theory. 

The remarks of the previous section apply to wave height pairs in the sense 
that the latter are both "effects” rather than "cause" and "effect." However, 
with knowledge of wave height at one point, the corresponding time history at 
another point can be determined by convolving the first wave height with the in¬ 
verse transform of e'1 1 "J1 x R as is well known from linear systems analysis. 
This inverse transform is computed in the Appendix and yields the "weighting 
function" or "impulse response" of water 

77 9 9 
w( r) = a cos aJ r* 

\ + 4-C(!ir) ¿ T 

77 9 2 + asm — 

where 

and 

« = ^ 

4 + — S( 37 ) 
¿ i T 

(13) 

(14) 

r C(ar) = I dm cos-j m2 , S( ar) r dm sin — m3 . (15) 

This weighting function is shown in Fig. 4, where 

/ 
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w( r ) % yi? /K ' 2 _ 
^ 4x 4 / 

(16) 

as ;ir becomes large. This function can be heuristically interpreted as a linear 
frequency sweep which looks back into the past of the wave height signal being 
processed and detects those frequency components that have gone by at a past 
time which would influence present wave height at u distance x in the direction 
of the wave. This is motivated by the convolution integral 

OP 

■’■/(x.j.t) - J dr w(t) r;(x,, t-r) 

which is the time domain equivalent of 

N(x2, . ) N(x,. < 1 - j ÜJ I ÜJ I X g 

(17) 

(18) 

Fig. 4 - Weighting function of unidirectional waves in water 

Suppose we ask the physically ridiculous but mathematically interesting 
question: "What signal would be observed at x, if a unit "impulse" of wave 
height were recorded at x2?" A unit impulse is described as a signal which is 
zero except at an instant in time where it has infinite amplitude, such that the 
integral over this point has a value of unity. The Fourier transform of a unit 
impulse is 1.0. 

Solving Eq. (18), we find that 

N( X ,, (.:) 
j a» I o> I X / g e (19) 

This can be readily shown to have an inverse transform which is equivalent to 
that shown in Fig. 4 except for a reversal of the time variable. 
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Thus, if we observe a transient wave in the water which initially has a very 
high frequency (associated with slow velocity) and if this frequency linearly de¬ 
creases toward zero with constant amplitude and tapers off as in Fig. 4 with 
time reversed, then at some point in space and time a very large wave would be 
created for a brief instant, assuming that linear wave theory holds. This phe¬ 
nomenon can be viewed as the simultaneous meeting of a large number of wave 
components whose individual speeds and starting times were properly adjusted 
so that the faster traveling waves were behind but catching up with the slower 
ones. 

For the purposes of wave generation in a model-testing facility, it is mani¬ 
festly impossible to provide a sinusoidal wave at infinite frequency. However, 
it is certainly possible to generate a wave train which has a frequency varying 
linearly from the highest desired value toward zero. Such waves have been the 
backbone of the Model Basin transient studies and will be described more fully 

, along with experimental results in the following sections. Briefly, the linear 
theory appears to hold quite well, and in the early exploratory studies very large 
peaked waves — approximating the impulse-were formed, although they were 
limited by cresting and other nonlinear mechanisms. 

An important property associated with a transient water wave is that the 
magnitude of the Fourier transform remain constant regardless of where it is 
observed and when the origin in time is fixed; i.e., the water transfer function 
is solely a phase operator. For a pair of moving probes separated by a fixed 
distance x, the same fr quency response relation is applicable. However, 
transforms of wave height measured at nonzero speed are computed using the 
frequency-of-encounter time scale, where each wave length component corre¬ 
sponding to a stationary frequency œ is measured at the frequency 

(D = Ol + cc'1 — (20) 
e K 

where v is the speed of the wave probes against the direction of wave travel. If 
a Fourier transform of a transient is computed for one wave height measure¬ 
ment, the companion wave measurement in the direction of wave travel will have 
the same magnitude at each frequency but the phase will be shifted by e'j"1“1*7« 
where w is the stationary frequency of the wave component concerned. For 
waves traveling in the same direction as the wave probes, ambiguities exist, 
and special techniques, which are beyond the scope of this report, must be em¬ 
ployed. 

The preceding treatment of transient water waves does not follow a conven¬ 
tional path in that spatial effects are suppressed and initial conditions or excit¬ 
ing forces on the water are not considered. If an instrument measures unidirec¬ 
tional wave height at some point for all time, then the time history at any other 
point is readily estimated through transform techniques. Even though a wave- 
maker may be generating the transient wave in the testing basin, the height¬ 
measuring probe and the ship model considered the wave to be one that has been 
traveling forever on an infinite surface. 
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TEST TECHNIQUES 

Outline of Model Testing Technique Using Transient Waves 

Transient testing with a model in ahead waves is accomplished quite easily. 
As currently conducted, the first waves to be generated are slowly progressing 
high-frequency waves. When these first waves have traversed a portion of the 
test basin, the model is brought up to speed in calm water and measurement of 
all dynamic variables is commenced. The wave train passes, induces motion, 
and then the water and model return to the quiescent condition where recording 
is stopped. 

Each time-record is used to compute a Fourier transform from a common 
time base. The wave height transform must be corrected to the location of the 
model center of gravity by the transfer function e'i“1“1’' R, where x is the dis¬ 
tance to the ahead wave probe and is the wave frequency. The ratio of motion 
transform to corrected wave height transform defines the transfer function, 
amplitude and phase for that motion. 

Programming for Transient Wave Generation 

The wavemaking system in the Harold E. Saunders Maneuvering and Sea¬ 
keeping Facility, described recently by Brownell [3], is quite well suited for the 
generation of transient waves. Eight electrohydraulic servo systems can be 
used to control the flow of air to and from domes along the shorter side of the 
basin, thus imparting energy to the water which travels away in the form of 
waves. These servo systems can be driven in unison by an electrical signal 
from either a low-frequency sine wave generator or a tape recorder. 

The actuator servo system has proved to be a considerable improvement 
over the previous electromechanical arrangement for wave generation, which 
provided a constant-amplitude variable-frequency, sinusoidal excitation to the 
water. The actuator system can allow independent control of both amplitude 
and frequency, or it can introduce transient or random disturbances of more 
general form. Random wave generation has been described recently in Ref. 4. 

The transient waveform which has been used to date is characterized by a 
linearly decreasing frequency, starting at the highest frequency of interest for 
model testing — nominally 1.0 cps. The electrical signal that produces these 
waves is recorded on magnetic tape by the crude but effective procedure of 
linearly decreasing the frequency of a low-frequency sinusoidal source. 

The frequency response characteristics of the basin, relating wave height 
to actuator motion, are such that frequency components near 0.4 to 0.5 cps are 
greatly amplified. Two modes of transient waves have been used — one has the 
program amplitudes weighted so as to counteract this frequency behavior; the 
other has a constant amplitude with varying frequency. 
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i ■P' 

Fourier Analysis of Recorded Transients 

The Fourier transform of a transient record is defined by the mathematical 
relation 

a? » 

F(j^) - J dt f(t) cos ut - j j dt f(t) sin wt (^1) 
- O) * CO 

and is readily accomplished by digital computation or by special-purpose de¬ 
vices designed for this application. 

For this exploratory investigation, it was decided to use a particular analog 
computer configuration which has interesting properties. A single channel is 
shown in Fig. 5 where conventional analog computer symbols are used. As de¬ 
scribed in Ref. 5, this undamped resonant circuit is driven by a transient input 
and oscillates as t -»œ at an amplitude corresponding to the magnitude of the 
transform of the input transient at the particular frequency and with a phase 
corresponding to the phase of the transform. A number of similar computer 
configurations all adjusted to the same frequency, were driven simultaneously 
by the tape-recorded transients resulting from a particular experiment in order 
to maintain a common time base for phase measurements. 

TRANSIENT pr¡Í>--i>-“0X 

-(UN¬ 

STEADY STATE 
OSCILLATION 

AMPLITUDE * I F{jw)| 

PHASE *ZF(jw) 

Fig. 5 - Transient analyzer configuration 
on analog computer 

The use of this scheme for transient analysis was motivated by considera¬ 
tions of accessibility and operator control of the computations. However, for 
mass handling of transient records on an assembly-line basis, other techniques 
will be employed. 

TEST RESULTS 

Tests of three different models are described in this report. Emphasis is 
placed on a correlation of transient wave results with regular wave results 
rather than on a complete description of the characteristics of any particular 
hull form. A chronological description is used to indicate the problems encoun 
tered and the progress obtained to date. 

f 
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Test Series 1 

The first transient tests were conducted in December 1962 using Model 
4941, a 13-ft model of a C4-S-A3 Mariner hull which had been previously tested 
in regular waves. Pitch and heave in ahead waves were measured as well as 
wave height with a sonic wave probe mounted approximately 12 ft abeam of the 
center of gravity of the model. 

The philosophy of wave generation during this series of tests was to create 
a wave which would contract and "peak," as described in an earlier section, at 
a point somewhere near the model. Figure 6 shows the records taken during a 

Fig. 6 - Measured transients for Model 
4949 and typical analog computer fre¬ 
quency response measurement 
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typical test where the wave transient reached a peak height at the location of the 
stationary model. Along with these signals, the outputs of the analog computer 
circuitry (described in the previous section) are displayed for a particular fre¬ 
quency of analysis. 

These sinusoidal outputs have magnitudes which are essentially equal to the 
magnitudes of the Fourier transforms of the respective signals up to that point. 
Although the variation of these amplitudes at the end of the transient has been a 
vexing problem with this method of transient analysis, sources of test error 
have been uncovered such as waves reflected from the sloping beach. 

Another practical difficulty encountered is also seen in the transient wave 
height record where the energy in the water does not decay rapidly after pas¬ 
sage of the main signal. Fortunately, much of this disturbance is above the fre¬ 
quency range of interest. 

A zero-speed transient test was analyzed at many different frequencies 
using the relative lull at the end of the passage of the main wave as the defined 
end of the transient. Figures 7 and 8 display the resulting heave and pitch fre¬ 
quency responses; they show good agreement with those of the regular wave 

Fig. 7 - Heave response for Model 
4941 at zero speed in head waves; 
transient test compared with regu¬ 
lar wave test results 
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Fig. 8 - Pitch response for Model 4941 
at zero speed in head waves; transient 
test compared with regular wave test 
results 

tests. The only severe deviation is a sharp peak near 0.35 cps in both responses; 
it was caused by an unexplained sharp null in the measured wave height trans¬ 
form. 

In Fig. 9 the heave/pitch ratio is plotted for the zero-speed case. Although 
heave/pitch ratio plays no part in prediction of motion, it is a ratio which has 
as much significance as any other in the isolated transient experiment, since all 
three dynamic quantities are "effects," as previously discussed. This ratio has 
the virtue of being independent of errors in wave height measurement, and has 
provided a useful index of the accuracy of the motion measurements throughout 
the series of transient tests. 

A forward speed transient test was conducted at a speed corresponding to a 
Froude number of 0.09. Unfortunately, heave calibration was lost and only pitch 
results are valid, as given in Fig. 10. These results show a moderate agree¬ 
ment with the regular wave pitch response. 

In analyzing the results of these initial tests, it was felt that the transient 
technique had demonstrated considerable promise but that there were many pos¬ 
sibilities for improvement in testing techniques. 
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Fig. 9 - Heave/pitch ratio for Model 4941 at zero 
speed in head waves; transient test compared with 
regular wave test results 

I 
Fig. 10 - Pitch response for Model 4941 
in heave waves at a Froude number of 
0.09; transient test compared with regu¬ 
lar wave test results 
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First of all, it was recognized that there is no particular virtue in having a 
model at the point of contraction of the wave transient, since the amplitude of an 
ideal wave transform is invariant with position. In fact, there is a strong pos¬ 
sibility that nonlinear water or model behavior would be accentuated near the 
point of highest wave amplitude and that surge modulation effects would be sig¬ 
nificant. In addition, passing through a longer program before it coalesced 
would mean that more controlled energy could be imparted to the wave excita¬ 
tion, which, other things being equal, would lessen the effects of extraneous 
noise. And finally, the practical virtue of not having to conduct a precisely 
timed meeting of model and wave is still another motivation for altering and ex¬ 
tending the duration of the wave transient. 

A second major source of error was believed to be in the wave height meas¬ 
urement. Besides the previously mentioned wave reflections from the beach, 
there was a considerable possibility that waves generated by the model were 
being picked up by the side wave probe. Although there are some advantages in 
measuring a wave signal at its geometric reference point, they seem to be out¬ 
weighed by the readily demonstrated fact that waves are generated much more 
efficiently by the model in the abeam direction rather than in the ahead direction. 

Test Series 2 

A second series of transient tests was conducted during January 1963; in 
these tests an attempt was made to profit from the lessons learned in the initial 
tests. The model selected was a Series 60, Block 0.60 hull form, Model 4606. 
Heave and pitch were measured in ahead waves. Attention was focused on the 
zero-speed case in order to minimize the number of factors affecting the ex¬ 
periment. 

During these tests, wave height was measured with two sonic probes. One 
was placed in the same location as in the previous tests, approximately 12 ft 
abeam of the model center of gravity, and the other was located 19 ft 2 in. ahead 
of the center of gravity. 

The wave program employed was considerably longer than that used in the 
previous test series. The excitation signals from both Series 1 and 2 are dis¬ 
played for comparison in Fig. 11, which shows that the duration of the control 
voltage for the second test was doubled, that is, raised from 40 to 80 seconds. 

A typical transient test recording of this series is shown in Fig. 12. The 
wave height and motions are seen to be of a form considerably different from 
that observed during the first tests; they resemble the varying frequency and 
amplitude characteristics that would be predicted by theory. One immediately 
obvious result is that the side wave measurement contains a peculiar null in its 
envelope which is not present in the ahead wave measurement, an anomaly which 
is most likely due to model-created waves generated to the side. 

In Figs. 13 and 14, respectively, frequency response operators obtained 
from four transient tests in heave and pitch are compared with regular wave 
measurements made during the same series of tests. Agreement seems to be 
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10 Sec. -►) — 

Excitation for First Series of Tests 

10 S«c.->| f«— 

Excitation for Second Serles of Tests 

Fig. 11 - Transient voltage excitation to wavemaking 
system during first and second series of model tests 

Fig. 12 - Typical transient recording taken during 
second series of model tests 
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Fig. 13 - Heave response for 
Model 4606 at zero speed in 
head waves; transient test com¬ 
pared with regular wave test 
re suits 
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quite good over most of the frequency range. The solid curves, which are also 
shown on these plots, were computed on the basis of slender-body hydrodynamic 
theory by Newman [6) for a roughly similar hull, Series 60, Block 0.70. 

The Newman computation neglects everything but buoyancy. For many 
models tested at the David Taylor Model Basin, the resonant frequencies of 
heave and pitch are sufficiently high so that in a zero speed test, the wave length 
components that produce significant pitch and heave motions act at frequencies 
which are considerably below resonance. The resulting motions are essentially 
a wave force measurement or the response of the ship without ship dynamics. 
The comparison between computed and measured zero speed response is very 
impressive. 

A detailed frequency analysis was conducted for one test shown in Figs. 13 
and 14, and wave height transform amplitudes were computed for the same wave 
program measured without the model in the water. This was done in order to 
remove the hypothesized effect of model generated waves. A comparison of 
analyzed wave heights measured under these various conditions is presented in 
Fig. 15 which shows a large percentage variation in the high frequency range. 

The heave/pitch ratio for these tests is shown in Fig. 16. The ratio demon¬ 
strates a considerable consistency except for some of the regular wave values. 
These deviations, together with Fig. 13, lead to a strong suspicion that the heave 
measurements during the regular wave tests at 0.4 and 0.55 cps were low. 

The results of this second series of transient tests added further experi¬ 
mental support for the utility of transient waves in ship model testing. In most 
cases, frequency response functions could be estimated with about 10 percent 
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Fig. 14 - Pitch response for Model 4606 
at zero speed in head waves; transient 
test compared with regular wave test 
results 

accuracy. By far the major source of error concerned the measurement of 
wave height, either through the corruption of the incoming wave with model¬ 
generated waves or through some nonlinear mechanism associated with water 
dynamics or wave measurement. 

Several further improvements in test technique appeared feasible as a re¬ 
sult of this second series. First, the use of an excitation voltage with varying 
frequency and constant amplitude resulted in a water wave having essentially 
the same frequency but an amplitude which reflected the sensitivity of the wave¬ 
making system to certain frequencies. This type of excitation influences the 
magnitude of the wave height transform; see Fig. 15 which shows these large 
variations over the frequency range. It was felt that preliminary amplitude 
weighting of the control voltage would counteract the known frequency character¬ 
istics of the basin and produce a wave with more uniform distribution of energy 
over the frequency interval used in testing. The result would be that (1) extra¬ 
neous "noise" in wave measurement would be overridden by significant amplitude 
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Fig. 15 - Comparison of wave height measurements 
made with two probes with and without model in water 
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Fig. 16 - Heave/pitch ratio for Model 4606 at zero 
speed in head waves; transient test compared with 
regular wave test results 
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of the exciting wave and (2) transfer function computation would not involve the 
ratio of two rapidly varying transform amplitudes. 

Another desirable feature of an adequate comparison between transient and 
regular wave testing was highlighted by the variations in heave transfer function 
measurement using regular waves (as observed in Fig. 13). To minimize ques¬ 
tions as to the accuracy of tests in regular waves, a large number of tests should 
be conducted throughout the frequency range — many more than are usually 
called for in routine testing. 

Test Series 3 

The third and final series of transient tests to be presented in this report 
was conducted in April 1963, using Model 4889. Heave and pitch were again 
measured in ahead waves, and wave height was provided by two sonic probes 
mounted 12 and 20 ft ahead of the model center of gravity. 

The program used in this series is shown in Fig. 17. Based on the observed 
frequency behavior of previous transient tests, both amplitude and frequency 
sweep rate were varied so as to yield the proper cancellation of basin frequency 
response. 

Fig. 17 - Excitation voltage program 
for third series of transient tests 

Regular and transient tests were conducted at zero speed and at a model 
speed corresponding to a Froude number of 0.14. The transfer function plots — 
heave, pitch, and heave/pitch — are presented in Figs. 18, 19, and 20, respec¬ 
tively, for zero speed. The corresponding phase data are presented in Fig. 21. 
The agreement between the regular wave tests and the transient tests is impres 
sive. Of special interest is the heave/pitch ratio, which, of course, is independ¬ 
ent of wave-height measurement error. The agreement between regular and 
transient wave tests shown in these figures presents the strongest indication of 
the potential accuracy of the transient technique, and incidentally, of the linear¬ 
ity of motion response of a ship in waves. Note also that the pitch transfer 
function in Fig. 19 demonstrates, convincingly through a close-spaced series of 
regular wave tests, the lack of smoothness of pitch response when examined 
in detail. 
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Testing Ship Models in Transient Waves 

Fig. 18 - Heave response for Model 4889 
at zero speed in head waves; transient 
test compared with regular wave test 
results 

Fig. 19 - Pitch response for Model 4889 
at zero speed in head waves; transient 
test compared with regular wave test 
results 
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Fig. 20 - Heave/pitch ratio for 
Model 4889 at zero speed in 
head waves; transient test com¬ 
pared with regular wave test 
results 

The ahead speed results are presented in Figs. 22, 23, 24, and 25 where 
again good correlation is noted. 

The appearance of transient wave records taken during this series is some¬ 
what different from that of earlier test records. Figure 26 shows the zero- 
speed test with a wave height record which appears to be distorted in contrast 
with the smooth quasi-sinusoidal wave behavior presented earlier in Fig. 12. 
This is a result of one of the techniques which was used to vary the transform 
amplitude of the input voltage to the wavemakers, a varying frequency sweep 
rate which caused a nonuniform deformation of the wave shape. 

The progressive transformation of this wave shape is shown in Fig. 27, 
which presents measurements taken on the program at three locations. For 
contrast, similar measurements for the transient of the second series of tests 
are given in Fig. 28, where the contraction of the shape is much more orderly. 
In both figures, waves were measured without a model in the water. 

Another interesting test performed during this series employed a human 
transient generator. To investigate the degree of corruption of wave height re¬ 
cording by model-generated waves, the model was made to oscillate in pitch by 
manually forcing the bow over a range of frequencies. Generated waves were 
measured by the two forward wave probes and analyzed for their Fourier con¬ 
tent, along with the motion record. The transfer functions, wave height/pitch 
motion, are given in Fig. 29, where for the nearer probe an average wave height 
of 1 in. results for a pitch motion of 5 deg over the high-frequency band. The 
effect of heave is neglected. 
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Fig. 21 - Phase angle be¬ 
tween pitch-wave height, 
heave-wave height, and 
pitch-heave at zero speed; 
transient test compared 
with regular wave test 
results 
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Fig. 22 - Heave response for 
Model 4889 in head waves at 
a Froude number of 0.14; 
transient test compared with 
regular wave test results 
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Fig. 24 - Heave/pitch ratio for 
Model 4889 in head waves at a 
Froude number of 0.14; tran¬ 
sient test compared with regu¬ 
lar wave test results 

M 

2 
U 
c 

< T“1 
LEGEND 

„ û RE 
0 o TR 

0 
0 

GULAS 
ANSIEN 

WAVE! 
r TES r 

< 
*5 

0 

% 
** * A 

& 

? 

1 .2 .4 ( .1 u 
»cy in eye Its pfr stcond 

530 



Testing Ship Models in Transient Waves 

40 

« 
o> 
c 

01 

-40 

140 

100 

200 

0 

á 

H» ov« - Wo 

°° ; 

V« M«igh 

O 

' A 

L\ 

LEGE 

W o" 

NO 

< cP 0< 

_ÛL 

o £ 

o 
û REGULAR WAVES 

& 

<3 

O
 

J#, 
o8< 

0°^ ! " 
~

 O
 t>
 

O
 >
 

ù * ùJZ- 

V * 
A PltC h- Wov« Holghf 

160 

120 

80 

O 

0° 

A** 

■ST- 
» ** 

A 

4 
qA 

°gA2 

1 A 

” ° O 
A 

ûo 

A0 ®0' 
AA & 

P i te -Hoovo 

.2 .4 6 .8 1.0 

Frequency in cyclat p«r second 

Fig. 25 - Phase angle between pitch-wave 
height, heave-wave height and pitch-heave 
at a Fronde number of 0.14; transient test 
compared with regular wave test results 

The results of this final series of tests show clearly that the transient tech¬ 
nique is a usable tool for the investigation of ship response to waves; however, 
further improvement is possible. When considering (1) the very close agree¬ 
ment between transient and regular heave/pitch ratios observed in Figs. 20 and 
24 and (2) the variation in the other frequency response estimates that is due 
solely to choice of forward or after wave height probe, an unwavering finger of 
suspicion points to the measurement of the dynamic wave disturbance. 

Figure 30 compares the wave height transform of the zero-speed transient, 
with that of the forward speed run properly transferred to the frequency scale 
of the stationary measurement. The general agreement is quite good, but the 
difference resulting from measurements made only 8 ft apart on the same 
wave — with forward and after probes — is puzzling. 

To weigh the possibility of this difference being associated with model¬ 
generated waves, Fig. 31 displays the same wave height transform at zero speed 
compared with that of a similar measurement made under identical conditions 
except that the model was not in the water. The agreement is not impressive, 
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Fig. 26 - Record of transient test conducted 
with Model 4889 at zero speed in head waves 

Fig. 27 - Transient waveform measured at various locations 
in basin; program used in third series of test 
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Fig. 28 - Transient waveform measured 
at various locations in basin; program 
used in second series of test 

Fig. 29 - Model generated wave height/forced ratio; 
effect of motion generated waves on forward wave 
height measurement 
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Fig. 30 - Comparison of transient wave height spectra 
measured during zero and forward speed runs with 
Model 4889 

and the wave transforms of the latter measurement do not correlate well, for¬ 
ward probe with after probe. The remaining sources of error in the wave height 
transform estimate have obviously not been isolated by these tests. 

AREAS OF CONTINUING DEVELOPMENT EFFORT 

General 

The understanding and counteracting of the various factors leading to an in¬ 
accurate wave height measurement will be undertaken as the major effort in de¬ 
veloping further the capability of the transient wave test. A series of tests in 
waves, with and without a model, is planned in order to investigate the error 
contributions from (1) nonlinear water dynamics, (2) nonlinear measurement by 
the wave height probe, (3) spatial variations in basin waves, (4) side or end re¬ 
flections, (5) residual waves after passage of the main wave, (6) faulty Fourier 
analysis, (7) electronic interaction between adjacent wave probes, and (8) model 
generated waves. 

A second major goal will be the development of a program for a transient 
wave with linear sweep rate, constant amplitude over the frequency range of in¬ 
terest, and smooth starting and ending, so as to minimize initial and terminal 
transients and the extraneous "noise" at the end of the wave train. 
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Fig. 31 - Comparison of transient wave height 
spectra measured with and without model in 
water at zero speed 

To assist in these investigations and to speed up data analysis, digital com¬ 
puter programs are being written for Fourier transform computations. An im¬ 
portant part of these programs will be the "smoothing" of the transient records 
prior to transformation, or the multiplication of all time histories by a quantity 
which is unity over the duration of the test and eases to zero at the beginning 
and end of the test. This smoothing, standard in spectral analysis, will consid¬ 
erably reduce the effect of residual noise in the water near the end of a run. 

After more experience has been gained in forward speed runs, a critical 
analysis must be made to determine the effect of surge variations in transient 
analysis. This very knotty theoretical problem might require conducting wave 
transient tests at reduced wave height levels in order to avoid the time distor¬ 
tion of motion records. 

The particular problems associated with tests in astern waves must be re¬ 
solved. Unfortunately, a given frequency measured in the water with respect to 
the moving model can originate from astern waves at three different wave 
lengths. This ambiguity may force the use of transient waves with energy in 
more limited frequency bands, the use of multiple wave probes to make use of 
phase information, or both. 

Special Use of the Transient Testing Technique 

In one interesting use of a transient test, the variance of all motions in a 
given unidirectional random seaway can be found directly without need for 
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frequency analysis. To showjpw this can be done, consider the equation which 
relates mean square motion m2 to the wave power spectral density at the fre¬ 
quency of encounter <t>< ,) and to the applicable transfer function G( . 

m2 ~ J dû <l>( ,) |G( Ol 2 • (22) 

In a transient test, the integral square motion is given by 

oc œ i dt m2(t) JT- J d:v IN(ûj) !2 |G(a:)|2 (23) 
- œ - CP 

where N( ■) is the Fourier transform of the measured wave height, using a well- 
known relation from linear systems theory. Thus, if N( )2 is programmed to 
be equal to the wave height spectrui i iv « ), we have 

Random Transient 
00 

m: J dt m2( t ). 
- œ 

(24) 

Simple analog data processing, conducted during the model test,, would 
square and integrate the motions of interest and yield, at the end of the run, 
voltages proportional to motion variances in the defined random seaway. 

Although such a simplified scheme of data processing would not extract 
much of the significant information available from a transient test, it is con¬ 
ceivable that there might be occasions when a very fast answer to the seaworthi 
ness characteristics of a ship form in a given seaway would be required. One 
example would be a search for the worst combination of speed and heading. 

GENERAL APPLICATIONS OF THE TRANSIENT 
TECHNIQUE 

The method for producing a transient water wave described in this report 
was developed in order to take account of the behavior of waves on a free sur¬ 
face. The form of this wave, however, would appear to have considerable prom¬ 
ise for applications in many linear systems investigations. 

Conventionally, a pulse-like transient is used for system excitation. The 
frequency range of the excitation is determined primarily by the concentration 
of the transient about a single point in time, and the amount of signal needed to 
produce measurable response is a function of the amplitude levels of the pulse. 
As a consequence, to faithfully reproduce a rapidly changing signal, measure¬ 
ment requirements are severe and the probability of nonlinear behavior of the 
system under test is high because of the large inputs often required to override 
the effects of measurement noise in the recorded output signal. 
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The use of a signal with linearly varying frequency and constant amplitude 
as an input signal removes these strong drawbacks to the pulse technique, how¬ 
ever. Since it has constant amplitude, the input can be constrained to lie within 
the linear range. With proper choice of sweep rate and starting frequency, the 
controlled signals can have any desired energy level in each frequency band and 
thus defeat to a great extent the effects of random measurement noise. 

Another strong advantage in the use of transients with a linear sweep rate 
is that in many cases the entire transfer function of a system can be obtained by 
cursory analysis of the transient records alone. If the rate of change of fre¬ 
quency and amplitude is slow enough, the signals involved behave very much like 
sinusoidal waves. From the integration method of stationary phase [2], it can 
be shown that the amplitude of the transform at frequency of such a signal Js 
equal to one-half of the single amplitude of the signal at the apparent local fre¬ 
quency '• divided by the square root of the rate of frequency change (in cps/sec). 
Such a computation was performed for the transient test shown in Fig. 13 for 
the heave measurement. The results of this computation for the heave transfer 
function are shown in Fig. 32. This figure compares the measurement and cal¬ 
culation techniques and shows that there is good agreement among them. 
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SUMMARY AND CONCLUSIONS 

The complete determination of the response of a ship in regular waves in¬ 
volves a large and expensive testing program. When the transient wave tech¬ 
nique is used properly, the total testing time can be reduced by an order of 
magnitude. 

In a theoretical discussion of ship dynamics, it has been stated that the 
usual systems representation of ship motion as an "output" and wave height as 
an "input" is a misconception; both dynamic quantities are "output." Water 
wave transients traveling in a single direction can be readily analyzed with the 
use of Fourier transforms; the transforms of two measurements on a single 
wave transient are related by the so-called "transfer function" of water, 
e'i"' w'* *, where x is the distance separating the measurement points in the 
direction of wave travel. 

The wave used at the Model Basin for transient testing has a contijiuously 
increasing wave length which results in an intense concentration of wave energy 
for a short period of its travel. Model transient tests are commenced in calm 
water, then passed through a wave having energy in all frequencies of interest, 
and eventually returned to the smooth water condition. The transfer function 
for a particular motion variable is found for all frequencies by dividing the Fou¬ 
rier transform of the motion transient by that of the wave height record, refer¬ 
enced to the model center of gravity. With a suitably tailored wave transient, 
mean square motion levels in a particular random seaway can be found immedi¬ 
ately by squaring and integrating the motions during a transient test. 

Transient tests conducted on three models in ahead waves have verified the 
theory presented. Close agreement between transient and regular wave tests 
has been obtained for heave and pitch motions at zero and forward speed. The 
major difficulty encountered has been in the generation and measurement of 
waves, where further refinements and research are proposed. Digital programs 
are being written for the bulk processing of transient records. 

Finally, the technique of using a transient excitation which is a linear fre¬ 
quency sweep is an original contribution to general linear systems analysis; it 
has virtues of linearity and noise-immunity, the capability of determining fre¬ 
quency response of a system by visual inspection of the transient records. 

Appendix 

WEIGHTING FUNCTION OR IMPULSE RESPONSE OF WATER 

It has been shown in this report that the operator e‘ i“’'“1 x R is the fre¬ 
quency response function that relates wave height measured at two points sepa¬ 
rated by a distance x in the direction of travel. The weighting function w(r) 

can be determined by taking the inverse Fourier transform of the frequency re 
sponse function: 

'•. 

I 

1 '1 

"Jr 

iliilil 
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w( 7 ) 
Í J 

(A-l) 

Expanding into trigonometric terms and noting the symmetrical properties 
of the function, we have after simplification 

w( T ) 

at 

—■ I cos (- -1 X g t un ) (h< --- I COS ( o 2 X g - un ) du 

*0 

Employing the technique used by Lamb [7| we let 

^ (u> - i:) 
g1'2 l 2x) 

and 

R *T 

2x 1 2 

These terms are substituted into Eq. (A-2), yielding 

(A-2) 

1 R 
12 00 
Y~J J" COS ( (2 - cr2) df, 

1 R 
1 2 

i cos (Ç2-a2)dÇ+ J cos (Ç2-o2)d^ 

1 R1 
COS CT* 

f° r I cos Ç2df, + cos '2 d ’ 

+ sine* 

0 CO 

J sin . f sin edi (A-3) 

We can make the following identification: 

0 rr 

f cos Ç2dÇ = f cos i2d(v, = -—\/n/2 
J „ Jn k 

C(/i) 

r° r" 
I sin Ç2 d £ = I sin Í 2 dS = — C(..<) 
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f J CO s ?,2iVr. ■ sfñ "2 

where 

C(í ¡) J* eos ,.2^ d/x ; S(m) ^ í sin íy 
‘o ' ' Jo ' ' 

Substituting the above into Eq. (A-3), yields 

2" X 

1 2 
C [\p27ri * a) + [sin a 2 ] 1 + il $[JT7,«o) 

I a 

For simplification, let 

Then 

and 

w( a • ) a J co s — a 2 i2 

2-x 

v^T2 X ar 

C(ar) — + — S( ar ) 
2 U-1 

For large values of a or , going back to Eq. (A-3), we find that 

w( ar ) % a 
77 j o • 77 7 t 

cos .v“ t* X sin •— a '' 

vTT a cos a 1 ’ ’ - 7) 

(A-4) 

far2 y 
X COS 1 4x ~ 4 

T » 0 
(A-5) 
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DISCUSSION 

E. V. Laitone 
University of California 

Berkeley, California 

Since the linearized equations of motion for either the pitch or the roll of a 
ship in regular waves can be written as 

6 + b¿ + ki1 = A0 Im eU t ; (1) 

therefore there is a distinct advantage in running a series of model tests in 
regular waves. This advantage over the pulse or transient-type wave test oc¬ 
curs because Eq. (1) represents a circle in the velocity amplitude and phase 
plane as shown in Fig. 1 

|d| = —2 cos . (2) 
b o 

Consequently the departure of the experimental points from a perfect circle 
for varying values of the regular wave frequency (-) directly indicates either 
the nonlinear effects, or the dependence of b or k upon - , for constant values 
of A0. Similarly varying A0 and repeating the tests for different values of a 
illustrates the nonlinear dependence of b or k upon the amplitude (A0) of the 
regular wave. A transient wave test could not so easily pin-point the wave fre¬ 
quencies or amplitudes that correspond to a breakdown of the assumed linearity 
which results in Eq. (1). 
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In addition various other simple relations can be derived for determining b 
or k quickly. For example when the phase angle of the response is exactly 
90° with respect to the regular wave at frequency , then 

a) = ^/TT \e\ 
bü! I) /k ’ 

Similarly if the phase angle of d is exactly 45u then 

/I(k-,’2) s[2 

* * * 

(3) 

(4) 

REPLY TO THE DISCUSSION 

M. C. Davis and E. E. Zar nick 
David Taylor Model Basin 

Washington, D.C. 

Mr. E. V. Laitone is apparently unaware of some of the more recent devel¬ 
opments in the area of ship motions. It has been known for some time that 
second-order differential equations do not properly describe ship motions, par¬ 
ticularly in the pitch and heave modes which we have concerned ourselves with 
in our paper. This problem has been glossed over in the past by the use of fre¬ 
quency dependent coefficients. The tests in waves are further complicated by 
the fact that the wave height (referenced at the center of gravity) is defined as 
the input to the system which results in a particular amplitude phase relation¬ 
ship exclusive of any dynamics effects. Consequently, these data would not be 
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expected to describe a circle if plotted in the velocity phase plane as suggested 
by Mr. Laitone, and furthermore, the departure from such a circle would shed 
no light as to the nature of the problem. A better understanding of the problem 
can be obtained by senarating the effects of added mass, damping, cross cou¬ 
pling and hydrodynanac memory by use of the integro-differential equations of 
motion developed by Dr. Cummins. This information, along with knowledge of 
the wave excitation, should provide us with information as to why a ship per¬ 
forms the way it does as well as possible changes in design to improve her sea¬ 
keeping qualities. 

We would like to apologize to Dr. Leo Tick* if we have in any way contrib¬ 
uted to his confusion. We are also very grateful for his pedagogical dissertation 
on the basic philosophy of testing. Of special note is his recollection of pro¬ 
found personal convei sations (with someone whose name he can't quite remem¬ 
ber). Apparently the choice of a suitable test function is not clear to him. This 
is understandable. The choice of a test function or procedure depends upon 
many factors. We may be less philosophical and more pragmatic; this choice in 
the final analysis depends upon whether or not it serves the purpose intended, 
i.e., to provide an efficient and economical means of obtaining a reliable meas¬ 
urement of the transfer functions. We believe that the transient test technique 
meets these objectives. We have provided both theoretical and experimental 
evidence to support our claims. It is anyone's prerogative to accept or reject 
them. 

* * * 

*See discussion by Tick (p. 457) on paper by Smith and Cummins. 
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PREDICTION OF OCCURRENCE AND 
SEVERITY OF SHIP SLAMMING AT SEA 

Michel K. Ochi 
David Taylor Model Basin 

Washington, D.C. 

ABSTRACT 

Basic properties which govern ship slamming in rough seas are dis¬ 
cussed from theoretical consideration. Specifically, the probability of 
occurrence of slamming, magnitude of impact pressure associated with 
slamming, and time interval between successive slams are studied 
from a statistical approach, and formulae are derived for the predic¬ 
tion of these events. The prediction method is also applied to the prob¬ 
lem of deck wetness caused by shipping of green water at sea. Theo¬ 
retical results are compared with those obtained in experiments 
conducted on a MARINER model in rough seas. 

INTRODUCTION 

When a ship navigates at certain speeds in rough seas she frequently expe¬ 
riences slamming at which time the forward bottom sustains large forces re¬ 
sulting from the impact. 

Slamming occurs at random at sea. The severity of slamming and time in¬ 
terval between two successive slams are also at random. Sometimes a ship 
may slam successively with varying intensity; while again no slamming may 
occur for a relatively long period of time and then suddenly a severe slam oc¬ 
curs. In statistical terms slamming is a random phenomenon, and the severity 
and time interval between successive slams are random variables. For this 
random phenomenon, only one study has appeared in the literature as of this 
date. This study made by Tick concerns the prediction of the rate of occurrence 
of slamming at sea fl]. 

Ihe purpose of the present paper is to develop a method for predicting the 
probability of occurrence and severity of slamming, and the time interval be¬ 
tween successive slams in rough seas. Specifically, it is the intent of this paper 
to predict the following: 

(a) Probability of occurrence of slamming for given conditions, such as for 
a given sea state, course angle, loading condition, etc. 
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(b) Probability distribution of impact pressure associated with slamming, 
and magnitudes of the average one-third and one-tenth highest impact pressures. 

(c) Probability distribution of the time interval between successive slams 
and between two severe slams. Probability that a time, t (or more), elapses 
between severe slams. 

(d) Probability of occurrence and severity of deck wetness caused by ship¬ 
ping of green water, i.e., application of the theory to the deck wetness problem. 

The above subjects are evaluated theoretically, and the results are com¬ 
pared with statistically analyzed experimental results obtained in tesis con¬ 
ducted on a 13-ft MARINER nodel. 

PREDICTION OF OCCURRENCE OF SLAMMING 

Basic Concept 

Prediction of the occurrence of slamming is made from two viewpoints: 
one being the prediction of slamming occurrence per cycle of wave encounter, 
the other being that per unit time. The question pertaining to how many times a 
ship will slam during a certain period of time belongs to the latter prediction. 
The basic concepts used for development of the theory for these two predictions 
are, however, essentially the same. 

First, the conditions leading to slamming will be discussed. Szebehely has 
shown that three conditions should exist for slamming to occur [2], They are: 
(a) bow (forefoot) emergence, (b) certain magnitude of vertical relative velocity 
between ship bow and wave, and (c) unfavorable phase between bow motion and 
wave motion. The present author has also arrived at the same conclusion 
through his tests [3|. Tick considered three conditions in the development of 
his theory for predicting the number of slams per unit time. These are: (a) 
bow emergence, (b) relative velocity, and (c) angle between keel line and wave 
surface at the instant of impact [l]. 

All of the above conditions were inferred from results of model experiments 
conducted in regular waves. The question then arises as to whether or not these 
are necessary and sufficient conditions leading to slamming in rough seas also. 
To answer this question, data obtained from slamming tests conducted in irreg¬ 
ular waves were carefully analyzed, and two conditions leading to slamming in 
rough seas were obtained. They are: (a) bow (forefoot) emergence, and (b) a 
certain magnitude of relative velocity between wave and ship bow. In other 
words, the probability of occurrence of slamming is the joint probability that 
the bow emerges and that the relative velocity exceeds a certain magnitude at 
the instant of reentry. 

Bow emergence is prerequisite for slamming. Results of the tests revealed 
that slamming never occurred without bow emergence. This was found to be 
true irrespective of sea state, ship speed, course angle or loading condition [4]. 
However, bow emergence is not a sufficient condition for slamming. There 

546 

Prediction of Ship Slamming at Sea 

were many cases during the tests in which no appreciable impact pressure was 
imparted to the ship bottom even though the foreloot emerged from the water 
surface. It was found that a certain magnitude of relative velocity between wave 
and ship bow (hereafter referred to as the threshold velocity) was required to 
induce slamming. 

The threshold velocity is a critical relative velocity between ship bow and 
waves below which slamming does not occur. Although little information is 
available concerning the magnitude of the threshold velocity associated with 
slamming, the magnitude was evaluated from various available sources [3-5], 
and the results are tabulated in Table 1. For convenience, the values have been 
converted to those for a 520-ft ship for comparison with the MARINER. As can 
be seen in the table, the values have been obtained for various test conditions. 
Nevertheless, the magnitudes of the threshold velocity are nearly constant with 
an average of 12 ft/sec. To determine the threshold velocity for the cargo ves¬ 
sels (U- and V-Form) listed in Table 1, ship speed was increased until the ship 
started to slam in the given regular waves ( L = 1, h = 1/30). The speeds 
for which slamming first appeared were 10.4 and 11.0 knots for the U- and 
V-Form, respectively. The relative velocities evaluated for these speeds were 
taken as the threshold velocities. For higher ship speeds slamming was severe, 
and hence the relative velocities between wave and the ship bow for these speeds 
could not be considered as the threshold velocity. Note that the threshold ve¬ 
locity is the minimum velocity which causes slamming. 

In regular wave tests conducted on a high speed craft listed in the table, an 
immersion sensing element was fixed to the model at Station 2. Hence, the rel¬ 
ative motion between wave and the bow was directly measured, and the relative 
velocity was obtained by differentiation. 

It is of great interest to mention that the magnitude of the threshold velocity 
evaluated from the MARINER tests in irregular waves is very close to that 
evaluated for other types of vessels tested in regular waves. For evaluation of 
the threshold velocity for the MARINER the data obtained in a severe Sea State 7 
at a ship speed of 10 knots were analyzed |4]. Since the wave measuring device 
was located 9.83 feet (410 feet full scale) ahead of the model in tiiese tests, one 
assumption was introduced in the analysis. That is, waves measured at the lo¬ 
cation of the wave probe would maintain their form until they reached the ship 
bow. With this assumption, the magnitude of relative velocity at the instant the 
ship slammed was evaluated from simultaneous records of pressure, ship mo¬ 
tion, bow vertical acceleration and wave. Figure 1 shows the relationship be¬ 
tween relative velocity and impact pressure measured at 0.10 L aft of the for¬ 
ward perpendicular. As can be seen in the figure, no impact pressure is 
observed for a relative velocity less than 12 ft/sec. On the basis of the above 
finding, it is considered appropriate to take 12 ft/sec as the threshold velocity 
associated with slamming for a 520-ft ship. The reader's attention is called to 
the fact that this magnitude of threshold velocity cannot be used universally. 
For a ship of different length, the above given value should be modified accord¬ 
ing to the Froude scaling law. 
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Table 1 
Threshold Velocity for Various Types of Ships 
(Values are Converted to Those for a 520-ft Vessel) 

Type of Ship Cargo 
(U-Form) 

Cargo 
(V- Form) LIBERTY MARINER 

High Speed 
Craft 

(V- Form) 

Block coefficient 

Draft 

Waves 

' L 

h/\ 

Ship speed 
(knots) 

Location where 
the threshold 
velocity is 
evaluated 

Threshold 
velocity (ft/sec) 

Reference 

0.741 

Light 

Regular 

1.00 

1/30 

10.4 

0.053 L 
aft of FP 

14.0 

Í3| 

0.741 

Light 

Regular 

1.00 

1/30 

11.9 

0.093 L 
aft of FP 

11.9 

[3] 

0.733 

Light 

Regular 

0.91 

1/16.7 

10 
(Estimated) 

FP 

10 to 14.3 

0.624 

Light 

Irregular 

Severe Sea 
State 7 

10.0 

0.10 L 
aft of FP 

[5 I 

12.0 

[41 

0.479 

Design 

Regular 

1.50 

1/34 

18.4 

0.1 L aft 
of FP 

11.8 

Unpublished 

In connection with other proposed conditions leading to slamming (such as 
unfavorable phase between bow and wave motion and angle between keel and 
wave), it is mentioned that these are included in the two required conditions 
found from the present tests. For example, the phase changes from time to 
time in irregular waves, and it is apparent that the largest relative velocities 
are associated with the out of phase motions. Thus, it may be concluded that 
bow emergence and threshold velocity are the only conditions prerequisite to 
ship slamming. 

It is noted here that the occurrence of impact pressure at Station 2 (0.1 L 
aft of the forward perpendicular) was used as a criterion for slamming. The 
justification of this statement is given in Ref. 4. 

Probability of Occurrence of Slamming per Cycle of 
Wave Encounter 

Let w be the wave displacement and b the bow (forefoot) displacement from 
their respective at rest (zero) nositions (see Fig. 2). Upward displacement is 
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Fig. 1 - Pressure on the keel 
plate as a function of impact 
velocity (MARINER, Station 2, 
light draft, ship speed 10 knots, 
moderate Sea State 7) 

Fig. 2 - Explanatory sketch of bow emergence 

taken as positive. The distance between these two zero-lines is equal to the 
ship draft, H, at a specific location, x (in this example, Station 2), for which 
the probability of slamming is evaluated. Note that this draft is not necessarily 
the design draft. Next, let r l>- w; then the relative motion, r, must always 
be positive and greater than H when bow emergence occurs. 
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Fcr a better understanding of the relationship between slamming and rela¬ 
tive motion, Fig. 3 was prepared. Figure 3(a) is an explanatory figure showing 
time history of relative motion. At the instant of a slam as the bow re-enters 
the water, the relative motion r(t) must be positive and equal to n. The rela¬ 
tive velocity f(U at this instant is negative and its absolute value must be 
greater than the threshold velocity, f* The above condition is given on the 
phase-plane diagram shown in Fig. 3(b). 

RELATIVE 

RELATIVE 

J MOTION («fl 

Fig. 3 - Explanatory sketch of time 
history of relative motion and phase- 
plane diagram 
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The relative motion is considered as a random variable having a narrow- 
band normal distribution with zero mean, since the relative motion is a combi¬ 
nation of pitch, heave, and wave motions, all of which have narrow-band normal 
distribution with zero mean. The relative motion is expressed by the following 
formula 

r(t) - ro(t) cos { .0t + eo(t)} (1) 

where 

ro( t ) = amplitude of the envelope of the relative motion, 

0 = expected frequency = ./ , 
r r 

< 0 = slowly varying phase angle, 

r2 = variance of relative motion, 

o} - variance of relative velocity. 

It is noted tliat the relation 0 a. - r holds since a narrow-band normal 
process with zero mean is considered.' Assuming that to and ê0 are small for 
a narrow-band normal process, the following equation is ’derived from Eq. (1). 

' o 

Now, the probability density function of ro(t) is a Rayleigh distribution. 
Since slamming occurs only when the relative motion is positive, the probability 
density function of the positive r0(t) can be written by 

f<ro> r: 

(3) 
> 0 

Note that Eq. (3) represents the probability density function of the cross 
points on the OA-line in Fig. 3(b), and that the parameter, r;, involved in the 
equation is not eight times but is twice the variance of the relative motion. 
Hence R' is equal to the cumulative energy density, i.e., the area under the en¬ 
ergy spectrum, E, using the St. Denis-Pierson definition of the spectrum. From 
Eqs. (2) and (3), 

(4) 

As was mentioned earlier, slamming occurs when the relative velocity ex 
ceeds the threshold velocity at the instant of reentry, i.e., r H, and f > ft. 
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In the phase-plane diagram shown in Fig. 3(b), slamming occurs whenever the 
circle crosses the line DC. Thus, the probability of occurrence of slamming is 
given by 

Prob {SIami Prob (r-H, f > i„} 

(5) 

where 

H = draft at the ship bow, 

f, = threshold relative velocity, 

R' = twice the variance of relative motion, 

R! = twice the variance of relative velocity = r' o2. 

As can be seen in Eq. (5), it is necessary to evaluate the variances of rela¬ 
tive motion and velocity for estimation of the probability. The application of the 
superposition principle by using the response amplitude operators may be valid 
to evaluate the variances even for conditions severe enough to induce slamming. 
The justification of this statement will be given in the next section in which a 
comparison between the predicted and measured probability of occurrence of 
slamming are shown. 

The variances of relative motion and velocity at an arbitrary point along 
the ship length can be approximately estimated from irregular wave tests also. 
The method for evaluating the variances for this case is discussed in Appendix 1. 

Number of Slams per Unit Time 

The number of slamming occurrences per unit time is essentially an appli¬ 
cation of the problem of the expected number of zero crossings per unit time. 
The theory on the zero-crossing problem was first developed by Rice [6], and 
later applied to ship slamming by Tick [1). Therefore, the development of the 
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theory will not be described here, but the formula which meets our require¬ 
ments (r H, |f|>r,) is given instead. 

The number of slams per unit time, Ns is given by 

(6) 

The definitions of r;, R'f, H, and Í, are the same as those used in Eq. (5). 
It is noted that Eqs. (5) and (6) are related by the formula for the expected pe¬ 
riod, T0, for a narrow-band random variable having a normal distribution with 
zero mean. 

(7) 

Table 2 shows the predicted probability of occurrence of slamming per cy¬ 
cle of wave encounter and the number of slams in a 30-minute operation of the 
MARINER for various conditions. Included also in the table are the experimen¬ 
tal values observed in tests conducted on a 13-ft model [4]. To evaluate the 
predicted values, the response amplitude operators of the relative motion at 
Station 2 were obtained for various course angles and ship drafts by conducting 
tests in regular waves, and the superposition technique was used for estimating 
the variance of the relative motion. The variances of relative velocity were 
obtained from the energy spectra of the relative motion [7]. Examples of the 
response amplitude operators of the relative motion and the computed energy 
spectra of relative motion and velocity are shown in Fig. 4. 

As can be seen in Table 2, the predicted values show satisfactory agree¬ 
ment with the observed values; there being approximately a 10 to 15 percent 
discrepancy, except for m iderate and full draft conditions. For the deep draft 
condition, however, the discrepancy of 25 percent is not surprising since the 
probability is small. Thus, the application of superposition principle for evalu¬ 
ation of relative motion and velocity appears to be adequate to obtain realistic 
engineering estimates of the probability of occurrence of ship slamming at sea. 

It is of interest to discuss the effects of course angle and loading condition 
on the probability of occurrence of slamming. It was found experimentally that 
the probability decreases with increase of course angle and with increase of 
loading. In other words, the probability of slamming is highest when a ship 
navigates in head seas at light draft condition [4|. The occurrence of slamming 
becomes less with increasing course angle because both the relative motion and 
velocity between wave and ship bow significantly decrease as can be seen in 
Table 2. For example, the computed r; and r! (twice the variances of relative 
motion and velocity, respectively) for a 45 degree course angle both decrease to 
60 percent of their values in head seas. On the other hand, the occurrence of 
slamming becomes less with increase of loading primarily because ship draft 
deepens and thereby bow emergence is less frequent. As can be seen in Table 2, 
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Prediction of Ship Slamming at Sea 

Fig. 4 - Energy spectra of relative motion and 
relative ve locity by applying the superposition 
technique (MARINER, light draft, severe Sea 
State 7, head seas) 
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the computed r; decreases only slightly with increase of loading. However, the 
probability of bow emergence is an exponential function of the square of the 
draft at the bow [Eq. (5)|, and thereby the probability decreases drastically with 
increase of the draft. 

For a better understanding of the above statement, Fig. 5 was prepared to 
show the computed probability of slamming as well as the probability of bow 
emergence and the probability that the relative velocity exceeds the threshold 
velocity for the MARINER in head seas of a moderate Sea State 7 at a ship speed 
of 10 knots. The probability of occurrence of slamming, is, of course, the prod¬ 
uct of the other two probabilities. It is clear in the figure that the probability of 
bow emergence, Prob r ■ H ■, is responsible for the rapid decrease in the prob¬ 
ability of slamming. 

Fig. 5 - Probabilities of occurrence 
of slamming and bow emergence, and 
probability that the relative velocity 
exceeds the threshold velocity 

PREDICTION OF SEVERITY OF SLAMMING 

Ship slamming is always accompanied by an impact pressure on the flat 
bottom, and the magnitude of the pressure is indicative of the severity of slam¬ 
ming. The impact pressure is approximately proportional to the square of the 
magnitude of relative velocity at the instant of impact as was shown in Fig. 1. 
The same conclusion was obtained from results of tests conducted in regular 
waves [3]. Hence, this basic relation of the impact pressure and relative veloc¬ 
ity will be considered in the development of the theory. Prior to a discussion 
on the prediction of slamming severity, a statistical consideration of the magni¬ 
tude of relative velocity will be given. 
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Prediction of Ship Slamming at Sea 

Prediction of the Magnitude of Relative Velocity Between 
Wave and Ship Bow 

In order to predict the magnitude of relative velocity between wave and the 
Fhip bow, the probability density function of the relative velocity associated with 
slamming must be established. In other words, the probability density function 
of the cross points on the DC-line shown in Fig. 3(b) should be obtained. Al¬ 
though the relative velocity associated with slamming was defined as negative, 
the sign will be changed hereafter for convenience. 

Since slamming occurs when the relative motion is equal to H, let r H in 
Eq. (2). Then, 

r 2 
o (8) 

Consider the probability density function of ro when r0 is greater than h; 
namely, consider the probability density function of the cross points on the BA- 
line shown in Fig. 3(b). The result is 

KO 

From Eqs. («) and (9), 

H . 
(9) 

r 

(10) 

Thus, the probability density function of the cross points on the BC-line in 
Fig. 3(b), neglecting the sign of the relative velocity, is the Rayleigh distribution. 

Next consider the probability density function of the cross points on the 
DC-line in the figure, since it is necessary to consider the threshold velocity, 
r„, for slamming. Then, the probability density function of the relative velocity 
for slamming is given by 

r 

where 

R! = twice the variance of relative velocity, 
r 

r, = threshold velocity. 
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Thus, the probability density function of the relative velocity associated 
with slamming is a truncated Rayleigh distribution. The truncation should be 
made at the threshold velocity, f,, which is a function of a ship length as was 
mentioned earlier. 

From the probability density function given in Eq. (11), the average of one- 
third highest (significant), f, 3, and one-tenth highest, r, 10, values of the 
relative velocity can be obtained as follows: 

where 

I J R- lOR J 

'•'(u) Í e 2 (It 
/F J. 

The derivation of these formulae is given in Appendix 2. 

A comparison between theoretical probability density function and the his¬ 
togram of the relative velocity obtained from tests conducted on a MARINER 
model is shown in Fig. 6 (values are converted to those for full scale). The ex¬ 
ample shown in the figure is for tests conducted in a severe Sea State 7 at a 
10-knot ship speed, the same condition as was shown in Fig. 1. As can be seen 
in Fig. 6, the prediction curve agrees well with the observed histogram. Also, 
the average of the one-third and one-tenth highest values calculated by Eqs. (12) 
and (13), respectively, agree well with the measured values. 

r, 

r! 

10 

Xirlw. »■» 

Prediction of the Magnitude of Impact Pressure Associated 
with Slamming 

It was shown earlier that the impact pressure associated with slamming is 
approximately proportional to the square of the relative velocity and that the 
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Thr*shold Velocity 
t*l2 0 Ft/See 

Fig. 6 - Comparison between sample 
histogram and the truncated Rayleigh 
distribution for relative velocity (se¬ 
vere Sea State 7, ship speed 10 knots, 
light draft) 

probability distribution of the relative velocity follows a truncated Rayleigh dis¬ 
tribution. From these two conditions, the probability density function of the im¬ 
pact pressure can be derived. 

Let the impact pressure associated with slamming, p, be expressed by 

P 2Ci2 (14) 

where 

C = constant dependent upon the ship section shape, 

f = relative velocity. 

From Eqs. (11) and (14) and with the aid of the transformation theorem on 
random variables, the following truncated exponential probability density func¬ 
tion can be derived for the impact pressure associated with slamming 
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, "¡raT"’"-' 
«P» rcJ!' ’ . P P. 

r 

where 

P = impact pressure = 2Cf 

P, = threshold pressure = 2Cf;\ 

(15) 

The probability that an impact pressure exceeds a certain magnitude, po, 
per cycle of wave encounter can be obtained 

i’rob {p >po} J f( p) dp 

^ o 

It is of importance to note here that Eq. (16) is a conditional probability; 
namely, it represents the probability that an impact pressure exceeds a certain 
magnitude given that a slam occurred. Hence, the probability that an impact 
pressure exceeds a certain magnitude in a given sea state and at a given ship 
speed is the product of the two probabilities given by Eqs. (5) and (16). Also, 
the problem concerning how many times an impact pressure exceeds a certain 
magnitude in a prescribed ship operation time can be obtained by multiplying 
the operation time by the product of Eqs. (6) and (16). 

The averages of one-third highest, p, 3 and one-tenth highest, p, 10 pres¬ 
sures are given by the following formulae: 

P, 3 ^2C rt2 > 2. 10 R!j (17) 

P, ,o C K2 + 3.30 R 

Derivation of Eqs. (17) and (18) are given in Appendix 2. 

Figure 7 shows a comparison between the theoretical probability density 
function and the histogram of impact pressure obtained at 0.1 L aft of the for¬ 
ward perpendicular of the MARINER in a severe Sea State 7 at a 10-knot ship 
speed. The value 2C = 0.086, determined from Fig. 1, was used in the calcula¬ 
tion. Included in the figure are the predicted average of the one-third and one- 
tenth highest pressures calculated by Eqs. (17) and (18) as well as the observed 
values. As can be seen in the figure, the theoretical density function is trun¬ 
cated at 12.4 psi due to the threshold relative velocity. Although pressures 
lower than 12.4 psi were actually observed a few times during the tests, reason¬ 
able agreement between theoretical and experimental results can be seen in the 
figure. The discrepancy is of the order of 10 percent for the average of the 
one-third highest, and 20 percent for the average of the one-tenth highest values. 

JCR. 
7( P„-P.) 

(16) 
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PrMSura, P. 
12 4 PSI 

Fig. 7 - Comparison between experimentally 
obtained histogram of slamming pressure 
and predicted probability density function 
(severe Sea State 7. ship speed 10 knots, 
light draft) 

Comparison between theory and experiment were made for two additional 
cases- namely for moderate and mild Sea State 7, at a 10-knot ship speed. The 
results are shown in Figs. 8 and 9, respectively. Two histograms are shown in 
Fig. 9; one obtained from a 30-minute observation in a mild Sea State 7, while 
the other was obtained from a 70-minute observation in the same sea state. Al¬ 
though some discrepancy between the experimental histogram and the theoretical 
probability density function can be seen in Figs. 8 and 9, good agreement was 
obtained between the predicted and observed averages of one-third and one-tenth 
highest values in these two cases. 

It is noted here that a discrepancy between the experimental histograrnand 
the theoretical probability density function is noticeable in the neighborhood of 
the threshold pressure. The discrepancy for these marginal conditions might 
be attributed to the actual angle between wave and keel. For higher relative ve¬ 
locity, however, the angle would not be expected to have a strong influence upon 
the magnitude of impact pressure. 

It is of interest to mention that the probability density function of the im¬ 
pact pressure given by Eq. (15) can also be applied for any course angle or 
loading condition. Figure 10 shows a comparison between the experimental 

221-249 O - 66 - 37 
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Fig. 8 - Comparison between experimentally 
obtained histogram of slamming pressure 
and predicted probability density function 
(moderate Sea State 7, ship speed 10 knots, 
light draft) 

histograms and the predicted probability density functions for various course 
angles in a moderate Sea State 7, at a 10-knot ship speed. Figure 11 shows a 
similar comparison for various loading conditions. The prediction curves were 
established by using the values listed in Table 2, and a threshold velocity of 
12 ft/sec. Satisfactory agreement between the prediction curve and the experi¬ 
mental histogram can be seen in these figures. Based on these results, it is 
concluded that the impact pressure associated with slamming follows a trun¬ 
cated exponential probability law. 

PREDICTION OF THE TIME INTERVAL BETWEEN SLAMS 

Prediction of the Time Interval Between Successive Slams 

For prediction of the time interval between successive slams, the following 
question must first be answered: is the slamming phenomenon a sequence of 
events occurring in time according to the Poisson process? If the occurrence 
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Fig. 9 - Comparison between experimentally 
obtained histogram of slamming pressure 
and predicted probability density function 
(mild Sea State 7, ship speed 10 knots, 
light draft) 

of slamming is considered as a Poisson process, then the time interval between 
successive slams is a random variable which must follow an exponential proba¬ 
bility law theoretically [8l. 

In order to obtain an answer to the above question and thereby to determine 
the probability density function for the time interval between successive slams, 
a sample of the time history of slamming obtained in tests conducted on a MAR¬ 
INER model will be shown. 

Figure 12 shows the time history of slamming pressure (converted to full 
scale) measured at 0.1 L aft of the forward perpendicular in a severe Sea State 7 
at a 10-knot ship speed [4]. The ship was in light draft condition; specifically, 
40 percent of cargo loading. A total of 84 slams were observed du ing 203 cy¬ 
cles of wave encounter in a 31 min-7 sec observation. It is noted that the sam¬ 
ple shown in the figure is the composite of four records taken in the tests. 
Hence, there exists three points of discontinuity as marked in the figure. Al¬ 
though the tests were carefully conducted, there is a possibility that several 
wave encounters and a small amount of time were lost at these discontinuities. 
The vertical line marked in the figure indicates a slam whose pressure magni¬ 
tude is proportional to the height of the line. The black circles indicate wave 
encounters without slamming. 
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Fig. 10 - Sample histograms and the 
predicted probability density functions 
for impact pressure observed at 0.10 L 
aft of FP for various course angles 
(moderate Sea State 7, ship speed 10 
knots, light draft) 
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Prediction of Ship Slamming at Sea 

Fig. 11 - Sample histograms and the 
predicted probability density functions 
of impact pressure observed at 0.10 L 
aft of FP for various loading conditions 
(moderate Sea State 7, ship speed 10 
knots, head seas) 
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Prediction of Ship Slamming at Sea 

As can be seen in the figure, the shortest time interval between two succes¬ 
sive slams is 7.7 sec, a value very close to the natural pitching period of 7.6 
sec. Although periods shorter than the natural pitching period were observed 
between two wave encounters, no slamming was observed for these cases. 
Hence, it may safely be assumed that the natural pitching period is the minimum 
time interval between two successive slams. 

Figure 13 was prepared to verify that slamming is a sequence of events oc¬ 
curring in time following a Poisson process. In preparation of this figure, the 
number of slams occurring dv .ng 20 sec intervals was counted from the time 
history (Fig. 12), and the experimental frequency for each number was obtained. 
To determine the Poisson distribution curve, the expected value (mean) of slams 
for every 20 sec was computed from the frequency. By using this value (0 891. 
the Poisson distribution was obtained by the following formula: 

'1 

P(X r ) —- e* 
r: 

(19) 

where 

\ = expected value, 

r = integer. 

The result is included in Fig. 13. From evidence shown in the figure, 
slamming may be considered as a sequence of events occurring in time following 
a Poisson process for at least a size of sample (93 observations) shown in the 
figure. 

Fig. 13 - Comparison between the 
probability density for number of 
slams in 20 sec observation and 
Poisson distribution 
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On the basis of the above discussion, it is expected theoretically that the 
time interval between two successive slams follows an exponential probability 
law. However, one condition must be considered for the present problem. That 
is, the shortest time interval be tween successive slams is very close to the 
natural pitching period as was mentioned earlier. With this modification, a 
truncated probability density function is derived for the time interval between 
successive slams as follows: 

- N ( t - t, ) 
f(t) Ns e * . t > t, (20) 

where 

Ns = number of slams per unit time, 

t* = minimum time interval between two successive slams (natural pitch¬ 
ing period). 

Results of numerical calculations using Eq. (20) are shown in Fig. 14 along 
with the histogram obtained in tlie experiment. 

A further comparison between theory and experiment was made for the time 
interval between successive slams in bi-directional waves. The bi-directional 

Fig. 14 - Sample histogram and the 
predicted probability density function 
for time interval between successive 
slams (severe Sea State 7, ship speed 
10 knots, light draft, head seas) 

If, >■ 

1'. 
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waves were composed of two wave systems corresponding to a moderate Sea 
State 7 and Sea State 5 coming from directions at 90 degree- to each other. In 
this case, the frequency of occurrence of slamming is higher than that in the 
long-crested waves (moderate Sea State 7 alone); however, the severity of the 
slams for the former is considerably less than that for the latter |4|. A total of 
164 slams were observed in a 57.7 minute observation, hence Ns in Eq. (20) is 
equal to 0.0475 per sec. By using this value, the predicted curves shown in 
Fig. 15 were obtained. The actually observed minimum time interval between 
successive slams was 6.2 sec in this case, a value somewhat lower than the 
natural pitching period. Nevertheless, good agreement can be seen between the 
predicted probability density function and the experimental histogram. Thus, it 
may be concluded that the time interval between successive slams follows a 
truncated exponential probability law. 

Fig. 15 - Sample histogram and the 
predicted probability density function 
for time interval between successive 
slams (bi-directional waves, ship 
speed 10 knots, light draft) 

Truocottd 0» 
76 S«C 

Prediction of the Time Interval Between Two Severe Slams 

In the foregoing discussion, the severity of slamming was not introduced. 
Her ¿, the discussion will be expanded to include the probability problem of time 
interval between two severe slams. In other words, the time interval between 
two slams, both of which cause an impact pressure of magnitude greater than a 
certain value will be considered. The method of approach is as follows: Eq. (20) 
is the probability density function of the time interval between two successive 
slams. We may now evaluate the time interval between m slams considering 
that every mth time the slam is severe, and that the magnitudes of impact pres¬ 
sure for these slams exceed a certain value. Here, m can be determined by 
taking the inverse value of the probability given by Eq. (16) since that equation 
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gives the probability that an impact pressure exceeds a certain magnitude per 
cycle of wave encounter. That is 

1 
m- 

f( p) dp 

It is known in general that the waiting time to observe the mth occurrence of 
an ( vent when a sequence of events is occurring in time following the Poisson 
process obeys the gamma probability law given by the following equation [8| 

. 

¡CRT (P P. 1 

(21) 

¡í( n 
N" 

[ (m) 
-N t 

t 0 . (22) 

For the present problem, however, the probability density function must be 
truncated at mt, (where, t, is the natural pitching period). Then, by using the 
condition that the probability between mt » and C£ for the truncated probability 
function must be equal to one, the following truncated gamma probability density 
function is derived: 

R(t) 

-N t 

X m) 
Nsm 

I '( m) 

-N t 
s 

t > mt, . (23) 

The constant m in the above equation was given in Eq. (21), and m is not 
always an integer. Hence, the denominator in Eq. (23) cannot be expressed by a 
practically usable formula. However, the integration can be evaluated as fol¬ 
lows. Let Nst z 2, and obtain the probability density function of a random 
variable z. Then, the denominator of Eq. (23) is equivalent to 

/•ro 

i 1 
['(m) 

z 
r-'e^dZ . Z > m Zt (24) 

where mZ, 2m Nst,. 

The above integral is the probability integral of the incomplete gamma 
function and a table is available for this integration [9]. The integral values for 
various m, ns, and t , appropriate for full scale ships were taken from Ref 9 
and are shown in Fig. 16(a). 

The probability that a time T, or more, elapses before the next severe 
slam occurs can readily be obtained from Eq. (23). That is, 
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Fig. 16-The probability integral of the incomplete gamma function, Ref. 9 

(25) 

The integral value of the numerator in the above equation for various m, Ns, 
and T, appropriate for full scale ships are given in Fig. 16(b). 

A numerical example of Eq. (23) will be given as follows: Consider the 
MARINER to be operating at light draft condition (40 percent of cargo loading) 
at a 10-knot speed in a severe Sea State 7. We will evaluate the probability 
density of the time interval between two severe slams for which an impact pres¬ 
sure of 50 psi or greater will be applied at the location 0.10 L aft of the forward 
perpendicular. In this case, we have 

X = 0.086 psi-sec 2/ft2, 

P0 = 50 psi, 

P, = 2Cf^ = 12.4 psi, 

R' = 605 ft2 (see Table 2), 

R! = 305 ft2/sec2 (see Table 2). 
r 

Ns = 0.0435 1/sec [by Eq. (6)], 

t, = 7.6 sec, 

m = 4.19 [by Eq. (21)|. 

ï 

i 

) 

Prob {t > 1} 
I ’( mi 

, m - 1 
■N t 

dt 

f 
"m t * 

Ns -Ns‘ . 
. t e d ( m) 
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By using these values and Eq. (23) the time interval between two severe 
slams was evaluated, and the results are shown in Fig. 17. Included also in the 
figure is the experimentally obtained histogram. On the basis of the agreement 
between experimental and theoretical results, it is concluded that the time in¬ 
terval between two severe slams follows a truncated gamma probability law. 

Fig. 17 - Sample histogram and the 
predicted probability density function 
for time interval between two severe 
slams (severe Sea State 7, ship speed 
10 knots, light draft) 

APPLICATION OF THE PREDICTION METHOD TO THE 
DECK WETNESS PROBLEM 

Prediction of Probability of Occurt ence of Deck Wetness 

The problem of probability o. currence of deck wetness due to shipping of 
green water can be treated in a ma er similar to that for slamming. However, 
two differences in the treatment of these phenomena must be considered. These 
are: (1) The bow emergence and threshold velocity are the required conditions 
leading to slamming, while the bow submergence is the condition leading to deck 
wetness. (2) The reference location along the ship length for which the proba¬ 
bility should be considered is 0.1 L aft of the forward perpendicular for slam¬ 
ming, and the forward perpendicular for deck wetness. Since deck wetness is 
caused by the green water flowing over the deck from the top of the stem, it is 
proper to consider the forward perpendicular as a reference point. Justification 
for selection of the reference point of 0.1 L aft of the forward perpendicular for 
slamming is given in Ref. 4. With the above two considerations, the probability 
of occurrence of deck wetness can be obtained from Eq. (5), by substituting D 

(freeboard at the forward perpendicular) for i (draft at Station 2), and by letting 
rt o. That is, 

572 



Prediction of Ship Slamming at Sea 

Pi 
R' 

(26) 
Prol) Deck Wetness Prob r D o 

where 

D = freeboard at FP, 

R' = twice the variance of relative motion at FP. 

It is noted that R' in the above equation has a different value from that in 
Eq. (5), since the relative motion between wave and ship bow at the forward 
perpendicular is considered h *■ this case. 

The number of occurrences of deck wetness per unit time, nw, is given by 

(27) 

Table 3 shows comparisons between predicted and observed probability of 
occurrence of deck wetness per cycle of wave encounter and number of deck 
wetnesses in a 30-minute operation of the MARINER in a moderate Sea State 7 
at a 10-knot speed. Variance of the relative motion at the forward perpendicular 
used in the computation of the probability was evaluated by the method given in 
Appendix 1. Although satisfactory agreement between the predicted and observed 
values can be seen in Table 3 for full loading condition, agreement for moderate 
and light loading conditions is poor. However, this is not surprising since only 
12 occurrences were observed for the moderate and 4 occurrences for the light 
load condition as compared to 34 occurrences for full draft condition. It is 
noted that a comparison of the predicted value with the observed value which 
was obtained from a small number of samples is not statistically proper. How¬ 
ever, the comparison is included in the table to provide some indication of how 
significantly the probability decreases with decrease of loading condition. 

It is of interest to discuss the effect of freeboard forward on the probability 
of occurrence of deck wetness. Newton, based on his experimental study on a 
destroyer-type vessel, concluded that the freeboard forward had a most impor¬ 
tant influence on the degree of wetness [10|. Newton's conclusion derived from 
tests in regular waves is valid in irregular waves also since the probability of 
occurrence of deck wetness decreases significantly with increase of freeboard 
forward [see Eq. (26) | and since the severity of wetness also decreases as will 
be seen later in Eq. (30). 

As a practical example of the effect of freeboard forward on the probability 
of occurrence of deck wetness per cycle of wave encounter, Fig. 18 was pre¬ 
pared. The figure shows the probability of deck wetness of the MARINER for 
various heights of freeboard forward. The probability was computed for a 10- 
knot speed in a moderate Sea State 7 for full load condition. The actual height 
of the freeboard forward on the MARINER is 36.7 feet. As can be seen in 
Fig. 18, if the freeboard were increased by 10 percent, the probability of deck 
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wetness would decrease by 32 percent. Conversely, if the freeboard were de¬ 
creased by 10 percent, the probability would increase by 42 percent. 

Table 3 
Comparison of Predicted and Observed Probability 

and Number of Deck Wetnesses (MARINER) 

Sea state - Moderate 7- 

Wind velocity 
(knots) 

- 39 - 

Wind duration 
(hours) 

-,- 27.5 - 

Significant wave 
height (ft) 

-*-31.2 - 

Course angle -,-o - 

Ship speed (knots) -,- 10 - 

Loading condition Full Moderate Light 

Freeboard forward 
(at FP) (ft) 

36.7 43.1 50.2 

r; at FP (ft2) 733 778 799 

R! at FP (ftVsec2) 298 329 364 

Probability of deck wetness per cycle of wave encounter 

Predicted 0.159 0.092 0.043 

Observed 0.175 0.060 0.020 

Number of deck wetnesses in a 30-minute operation 

Predicted 29 17 8 

Observed 34 12 4 

Prediction of Severity of Deck Wetness 

As was mentioned earlier, the pressure associated with slamming is of the 
impact type and is proportional to the square of the relative velocity between 
wave and ship bow at the instant of impact. The pressure associated with deck 
wetness, on the other hand, is not an impact type and approximately corresponds 
to a static pressure due to the head of water flowing over the deck. Thus in the 
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Fig. 18 - Effect of freeboard forward 
on the probability of occurrence of 
deck wetness (moderate Sea State 7, 
ship speed 10 knots, full draft) 

derivation of the probability density function for the pressure due to green water, 
the following conditions will be considered. These are: (1) magnitude of relative 
motion is greater than the freeboard forward (bow submergence condition) and 
(2) magnitude of peak pressure during one cycle of deck wetness is equal to the 
static water-head corresponding to the difference between the maximum value 
of relative motion and the freeboard forward. 

Now, the double amplitude distribution of the relative motion follows the 
Rayleigh probability law. Since deck wetness occurs only when the bow is sub¬ 
merging, the relative motion in one direction is taken instead of the peak-to- 
peak value. Then, analogous to Eq. (9), the probability density function of the 
amplitude of the relative motion r0, when r0 is greater than the freeboard for¬ 
ward, D, is given by 

f(0 ro ? D- 

(28) 

It is convenient to express the above formula in terms of pressure units 
(psi). For this, let q0 - r0/a and q. D a. Here, a = 2.32 ft/psi if r0 and D 

are expressed in the foot-unit. Then, the probability density function given in 
Eq. (28) becomes 
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(29) 

Since q0 in the above equation is the pressure corresponding to the peak of 
the relative motion, and q, is that corresponding to the freeboard forward, the 
pressure due to the green water on the deck q, is the difference between them. 
Thus, the probability density function of the pressure due to green water can be 
derived from Eq. (29): 

(30) 
f( q) - -ITT f{l + cu) e 

K r 
q > 0 

where 

q = pressure due to green water on the deck (psi), 

R' = twice the variance of relative motion between wave and ship bow (ft2), 

q, = Da (psi), 

D = freeboard at the ship bow (ft), 

a = constant = 2.32 (ft/psi). 

Equation (30) is essentially a truncated Rayleigh distribution. However the 
base line is shifted, so it may be considered as a modified Rayleigh distribution. 

The average of the one-third highest (significant), q, 3, and one-tenth high¬ 
est q, in pressures are given by the following formulae respectively: 

q, 3 3 q 

(31) 

where 

¢(11) 
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The derivation of the above formulae is the same as that for the average of 
the one-third highest and one-tenth highest slamming pressures. 

Figure 19 shows a comparison of the theoretical probability density function 
of pressure experienced on deck due to green water with an experimental histo¬ 
gram. The experimental histogram was obtained from tests on the MARINER 
operating at a 10-knot speed in a moderate Sea State 7. Included also in the fig¬ 
ure are the averages of the one-third and one-tenth highest pressures. 

Another comparison between theory and experiment was made for a high 
speed research ship form and the result is shown in Fig. 20. '"his form is one 
of the Series 64 family having a block coefficient of 0.45. The freeboard at the 

Fig. 19 - Histogram of pressure ex¬ 
perienced on the deck due to green 
water (MARINER, moderate Sea State 7, 
ship speed 10 knots, full draft) 
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Fig. 20 - Histogram of pressure ex¬ 
perienced on deck due to green water 
(high speed research ship, Sea State 6, 
ship speed 20 knots, design draft) 

forward perpendicular is 23.7 ft. Tests were made in a head Sea State 6, at 20- 
knot ship speed [11]. (All values have been converted to those for a 400-ft ship.) 
In these tests, 36 deck wetnesses were observed in 236 wave encounters, hence 
the probability of deck wetness per cycle of wave encounter was 0.153. For 
computing the pressures by Eqs. (30) through (32), the variance of the relative 
motion was estimated from Eq. (26) by using the above probability. 

On the basis of the reasonable agreement between theory and experiment 
shown in Figs. 19 and 20, it may be concluded that the pressure associated with 
green water on the deck follows a modified Rayleigh probability law. 

CONCLUSIONS 

A theoretical study was made to predict the probability of occurrence and 
severity of ship slamming, and the time interval between successive slams in 
rough seas The theory was also applied to the deck wetness problem. The 
theoretical results were compared with experimental results obtained from 
tests conducted on a 13-ft MARINER model. On the basis of the results of this 
study, the following conclusions are drawn: 

1. The linear theory of superposition of ship motion in waves may be used 
to obtain realistic engineering estimates of frequency and intensity of slamming 
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and green water. For the MARINER, the predictions are valid at least up to a 
severe Sea State 7, ship speed 10 knots. 

2. The conditions leading to ship slamming in rough seas are bow emer¬ 
gence and a certain magnitude of relative velocity between wave and ship bow 
(threshold velocity). It is considered appropriate to take 12 ft/sec as the 
threshold velocity for a 520-ft ship. For a ship of different length, the above 
given value should be modified according to the Froude scaling law. 

3. Probability of occurrence of slamming decreases with increase of 
course angle from head seas because both the relative motion and relative ve¬ 
locity decrease with increasing course angle. The probability of occurrence of 
slamming decreases with increase of loading condition primarily because the 
probability of bow emergence significantly decreases with increasing draft. 

4. Relative velocity between wave and ship bow at the instant of slamming 
follows a truncated Rayleigh probability law. Truncation should be made at the 
threshold velocity. 

5. Impact pressure applied to a ship's forward bottom when slamming oc¬ 
curs follows a truncated exponential probability law. Truncation should be made 
for the pressure induced by the threshold velocity. The law appears to be valid 
for any course angle and loading condition. 

6. Time interval between successive slams follows a truncated exponential 
probability law. Truncation should be made at the natural pitching period of the 
ship. 

7. The time interval between two severe slams follows a truncated gamma 
probability law. 

8. The probability of occurrence of deck wetness is simply the probability 
of bow submergence. It is an exponential function of relative motion between 
wave and ship bow and the freeboard forward. The probability decreases sig¬ 
nificantly with increase of freeboard forward. 

9. Pressure associated with deck wetness follows a modified Rayleigh 
probability law. 
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Appendix 1 

METHOD OF EVALUATION OF VARIANCES OF RELATIVE 
MOTION AND VELOCITY BETWEEN WAVE AND SHIP BOW 

The relative motion and velocity between wave and ship bow at a specific 
location along the ship length can be obtained from model experiments if an im¬ 
mersion sensing element is fixed to the model at the longitudinal position of in¬ 
terest. By this method, tests in regular waves provide the response amplitude 
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tperator of relative motion at this location. Then, by applying the superposition 
principle, the energy spectra of the relative motion and the velocity and thereby 
the variances for a g.ven sea state can be obtained. That is 

T ïfV'e^e 

8 / ' e '1’r! ' ^ d'<‘ 

(A 1) 

where 

r2 = variance of relative motion, 

a.2 = variance of relative velocity, 
r 

Er = cumulative energy density of relative motion, i.e., the area under 
the relative motion spectrum, 

<l»r( . e) = energy density of relative motion, 

oe = frequency. 

For a constant speed test it is possible to obtain the response amplitude 
operator of the relative motion by installation of an accelerometer in the model 
at the location of interest, and a wave-height probe on the carriage so that it is 
in line v/ith the accelerometer. The above two methods are the direct methods 
for obtaining the relative motion and velocity at a specific location. 

It is necessary in practice, however, to evaluate the variances of relative 
motion and velocity at arbitrary points along the ship length for a given sea. 
For this, the response amplitude operators of relative motion at the points of 
interest may be evaluated from the pitch, heave, and wave motions including 
their respective phases. Another approximate method to estimate the variances 
of relative motion and velocity at arbitrary points is to use the correlation co¬ 
efficients if the variances of vertical motion and/or acceleration are known at 
two points along the ship length. The method is as follows: 

The variance of the relative motion at an arbitrary point along the ship 
length is given by 

a 2 
r + crj - 2p cr er 

X ^ WX W X 
(A.2) 

where 

crr2 = variance of relative motion between wave and ship bow at point x, 

aw2 = variance of wave motion, 

ox2 = variance of vertical motion at point x, 

, wx = correlation coefficient between wave and vertical motion at point x. 
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The variance of wave motion, ow2, is simply determined from the energy 
spectrum for a given sea state. Variance of vertical motion at an arbitrary 
point, X, can be evaluated by the following formulae if the variances of motion 
at two different points along the ship length, a2 and a,2 are known. 

(A.3) 

v/here 

x.a.b = distances between points X, A, and B from the aft perpendicular 
(see Fig. 21), 

£Ta2 = variance of vertical motion at point A, 

£Tb2 = variance of vertical motion at point B. 

Pab - correlation coefficient of vertical motion at two different points, A 
and B. 

Thus, the relative motion at arbitrary point along ship length can be ob¬ 
tained from Eqs. (A.2) and (A.3). However, two correlation coefficients, / nb 
and pwx, involved in these equations must be determined experimentally. 

The correlation coefficient, pab, can be obtained by the following formula 
with the aid of auto and cross-spectral analysis of the vertical motions at points 
A and B. 

Cov ah 
h ah ~ cr 

j ‘f’aa^' e) d"> ÍXh^e' d ' e 

(A.4) 

where 

cah("'e) = energy density of cospectrum, i.e., energy density of the real 
part of the cross-spectrum of vertical motions at points A and B, 

= energy density of quadrature spectrum, i.e., energy density of 
the imaginary part of the cross-spectrum of vertical motions at 
points A and B, 

<l>aa(uv) = energy density of the auto-spectrum of vertical motion at point A, 

‘■W 'e) = energy density of the auto-spectrum of vertical motion at point B. 

In the above formula, the definition of the variance and covariance given by 
St. Denis and Pierson was used. If the acceleration is measured instead of the 
vertical motion at one point (say, point A), Eq. (A.3) is still valid, since the ac¬ 
celeration spectrum can easily be converted to the motion spectrum. The fol¬ 
lowing relations are used in Eq. (A.4) in this case. 

■es 
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cab(%) 

v> 

T * ab 

i „ 
— Q-f'e) 
Ü ¿ a b 

e 

<I> ( (jj ) a av e ' 

(A.5) 

The value of the correlation coefficient, pah, depends on the relative posi¬ 
tion of the two points A and B. As will be shown later in Table 4, if point A is 
located near the ship bow and point B is located near the midship, the correla¬ 
tion coefficient is very small for conditions severe for slamming. This means 
that the motions at these points (ship bow and midship) are statistically almost 
uncorrelated, and thereby the second term of Eq. (A.3) can be neglected prac¬ 
tically. 

The correlation coefficient, pwx, can be obtained by a formula similar to 
that for the coefficient pnb. That is, 

Cov„ /<fCwx( 2 + (j Owx( -e)dce)2 

"’wwi 'eH', dù 

(A.6) 

where 

cwx(<-e) = energy density of cospectrum, i.e., energy density of the real 
part of the cross-spectrum of wave and vertical ship motion, 

0wxf = energy density of quadrature spectrum, i.e., energy density of 
the imaginary part of the cross-spectrum of wave and vertical 
ship motion, 

(1'ww( ' e) = energy density of the auto-spectrum of wave, 

*xx(f'’e) = energy density of the auto-spectrum of motion. 

If the wave is measured not at the same location at which the bow motion is 
measured but at a certain distance ahead of the model (as is illustrated in Fig. 
21), then the following phase correction due to the distance between wave probe 
and point X is required in the evaluation of the cross-spectrum 

'’’wx/'r) <i>_ e 
wx 

U.2s 
K 

(A.7) 

where 

'l'wx(oe) = cross spectrum between wave and vertical ship motion at 
point X, 
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Fig. 21 - Explanatory sketch of 
distances a, Ij, x, etc. 

¢.. ( -p ) = cross spectrum between wave and vertical ship motion measured 
at two different points, w and x, respectively, 

s = distance between points w and x. 

If this correction is included, the correlation coefficient between wave and 
ship motion at points x becomes: 

(IL ( ■ „I cos ( --P) d . ] + ( Í (|> ( O sin ( ’ - ) d (A.8) 
'I’ ( - ) d . f <l> (,) d , t*7 e xxv v ' v 

where 

lit. ( 
wx ¢,..( 

2 

C (, e) = energy density of cospectrum between wave and vertical ship 
motion measured at two different points, w and x, 

Q . ( e) = energy density of quadrature spectrum between wave and vertical 
^ ship motion measured at two different points w and x, 

■■( e) = tan-1 (o. ^e)/c_ (^)1 , 
[ wx / wx 

o ) = energy density of auto-spectrum of wave measured at point w, 
ww 

<l'xx('< e) = energy density of auto-spectrum of vertical ship motion meas¬ 
ured at point X, 

0 = < 2S R, 

oJp = encounter period with wave = a, + (V/g) , 2, 

a = wave period, 

v = ship speed. 
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Table 4 
Values of Correlation Coefficients (MARINER, Light Draft) 

Sea state Mild 7 Moderate 7 Severe 7 — 

Ship speed (knots) 10 10 10 15 

Correlation coefficient of vertical motion, . ab 

Between 0.034 L 
aft of FP and CG 

0.04 0.06 0.06 0.05 

Between 0.1 L aft 
of FP and CG 

— 0.12 — — 

Correlation coefficient of vertical velocity, p. • 
a b 

Between 0.034 L 
aft of FP and CG 

0.03 0.05 0.02 0.04 

Between 0.1 L aft 
of FP and CG 

— 0.08 — — 

Correlation coefficient of relative motion between wave and ship, , wx 

At 0.034 L aft of FP 0.48 0.40 0.41 0.33 

At 0.10 L aft of FP (0.53) 0.45 
(0.46) 

(0.46) (0.39) 

At CG 0.84 0.86 0.83 0.77 

Correlation coefficient of relative velocity between wave and ship, p.. 

WX 

At 0.034 L aft of FP 0.36 0.30 0.34 0.31 

At 0.1 L aft of FP (0.42) 0.36 
(0.37) 

(0.40) (0.37) 

At CG 0.80 0.83 0.79 0.74 

Note: Values in parentheses are those estimated by the interpolation. 

In the case when acceleration is measured instead of vertical ship motion, 
a modification similar to that given in Eq. (A.5) is required. That is, 

wx 
(A.9) 

585 



Ochi 

where 

¢) (a,e) = energy density of cross-spectrum between wave and vertical 

wx e ship motion, 

<1, (a:e) = energy density of cross-spectrum between wave and vertical 
** acceleration. 

The variance of relative velocity between wave and ship buw can be obtained 
by the same procedure as that for the relative motion. 

Numerical examples of the evaluated correlation coefficients, / flb, ''wx (^or 
relative motion) and /--, p.. (for relative velocity) are tabulated in Table 4. 
These were evaluated from 'experimental results obtained on MARINER in Sea 
State 7. As can be seen in Table 4, the correlation coefficients pab and / are 
very small in this case, since point A is located near the forward perpendicular 
and point B is located at the center of gravity. 

From this table, the coefficients required for evaluating the relative ni°" 
tion and velocity at an arbitrary point along the ship length can be estimated by 
either interpolation or extrapolation. 

Appendix 2 

DERIVATION OF THE AVERAGE OF THE HIGHEST ONE-THIRD 
AND HIGHEST ONE-TENTH VALUES FOR THE TRUNCATED RAY¬ 

LEIGH AND EXPONENTIAL PROBABILITY DENSITY FUNCTIONS 

(A) TRUNCATED RAYLEIGH PROBABILITY DENSITY 
FUNCTION 

It was mentioned in the text that the probability of the relative velocity be¬ 
tween wave and ship bow follows a truncated Rayleigh probability law. The 
probability density function in this case is given by Eq. (11) in the text. That is 

The average of the one-third highest values for this probability density 
function is evaluated as follows: Let f1/3 be the lower limit of the one-third 
highest values of relative velocity. Then 

Prob {i > f,/3} = J f(r) df 

r i 3 

1 
I ' 

(A.11) 
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From Eqs. (A.10) and (A.ll) 

3 /"p2 - R: (A. 12) 

Next, let the average of the one-third highest values be f , and consider 
their moment about the origin of the probability density function. Then 

1 r 
3 r 1 '3 r 

■ ..i 
f fcf)df 

where 

Thus 

where 

<I>(U) dt. 

r 

is given in Eq. (A.12). 

(A. 13) 

(A. 14) 

(A. 15) 

The above equation gives the average of the one-third highest values of the 
relative velocity for the truncated Rayleigh distribution. 

Similarly, the average of the one-tenth highest of the relative velocity for 
the truncated Rayleigh distribution is given by 

1/10 

where 

(A.16) 

ri/io = j/r,2 - r: (log (A. 17) 
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Suppose that the distribution is not truncated and that the double amplitude 
is considered instead of the single amplitude; then, r, 0 and r| 4E. (where 
E. = area under the spectrum for the relative velocity). In this case, we have 
from Eqs. (A. 15) and (A. 16) 

f j , = 2. 83 x/lT 

(A. 18) 

r 1/io * 3. 60 /Ë7 ■ 
r 

These are well known formulae for the averages of the one-third highest 
and one-tenth highest double amplitudes of the ordinary Rayleigh distribution. 

(B) TRUNCATED EXPONENTIAL PROBABILITY DENSITY 
FUNCTION 

As was given by Eq. (15) in the text, the truncated exponential probability 
density function may be expressed as 

f(pl 
2cr: 7 ( P-P, ") 

2cr: 
p ? p* 

(A. 19) 

where 

P = pressure = 2Cr2, 

P* = truncated pressure = 2Cf/, 

r: = 2<7.2, 
r r 

C = constant. 

Then, the lower limit of the one-third highest values, P!/3, can be obtained 
from the following relation: 

r 
Prob p > p,^, J f(p) (Ip -i- . (A.20) 

P 1 / 3 

Hence 

P¡ 3 Pt - 2CR: (log -|j . (A.21) 

Next, let the average of the one-third highest pressures be p, 3, and take 
the moment about the origin of the density function. That is, 

! 
il 
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From Eqs. (A.19), (A.21) and (A.22) 
values becomes 

P f(P) dp . 

3 

the average of the 

(A. 22) 

highest one-third 

P./3 P, + 2CR: (l - loR i) 

: 2C (i* + 2.10 r:J . (A.23) 
10 

Similarly, the average of the highest one-tenth values is 

P, ,0 P, + 2CR: (l - 1 or 

2C f 3.30 Ri) . (A.24) 

* * * 

DISCUSSION 

G. Aertssen 
University of Gent 

Gent, Belgium 

The first look at this paper gives the impression that it is a remarkable 
example of the truncated exponential probability law applied to the study of 
slamming and deck wetness from model results. Were it not that there is much 
more in it for the naval architect it would not have deserved much attention. 

There is a difficulty in carrying out slamming experiments on models be¬ 
cause the rigidity of the model cannot be easily scaled up to the rigidity of the 
ship. Giving the relation impact pressure, relative velocity, the author however 
gives — I think for the first time - the means to correlate his model results with 
full scale. His threshold velocity is 12 ft/sec and if I modify this value, ac¬ 
cording to the Froude scaling law, to a cargo ship of 480 ft I obtain a threshold 
velocity of 11.5 ft/sec which according to the author's relation transforms to 
our impact pressure of 11 psi. I am interested in this cargo ship of 480 ft be¬ 
cause last winter I made a westbound crossing of the North Atlantic in very se¬ 
vere weather on board such a ship which was instrumented by the Centre Beige 
de Recherches Navales. There were on board a shipborne wave recorder, 
strain gages, ship motion recorders, 2 pressure transducers in the keelplate, 
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etc. When weather was worsening, shocks were felt but the impacts on the fore¬ 
body did not induce any reaction among ship's officers until at a certain moment 
they mentioned in the log book: "le navire travaille et fatigue," the ship works 
and there is fatigue. At this moment the whipping stresses in the main deck 
stringerplate amidships were 0.5 t per sq in. and the impact pressure on the 
pressure transducer located at 0.15 Lpp from FP was about 10 psi. The ship 
was in nearly full-loaded condition and the location of the pressure transducer 
was not exactly the same as the location 0.1 Lpp indicated by Dr. Ochi. Unfortu¬ 
nately I have no impact data of this ship in light-loaded condition hitherto, but 
the nice agreement between the threshold of whipping stresses and impact pres¬ 
sure established on our cargo ship in nearly full-loaded condition and the 
threshold of velocity established by Dr. Ochi is certainly an encouragement to 
believe in his prediction of slamming from model results. 

This prediction of slamming is very well presented in Table 2 for a Mariner 
ship. Looking at the number of slams in a 30 minute operation there are in a 
moderate Sea State 7 only 12 slams in full-loaded against 60 in light-loaded 
condition in head waves and they are again reduced when the captain changes 
course 45 degrees. This might indeed give the picture of what happens on the 
bottom at the forebody and the danger of damage there. But modern cargo liners 
are longitudinally framed and often reinforced in the forebody beyond classifica¬ 
tion requirements, so today bottom damage is more seldom stated after a cross¬ 
ing in severe weather condition. Whipping stresses however are excited in the 
main girder and they might increase to a certain extent the longitudinal bending 
stresses and be a source of fatigue. Therefore I think that perhaps more than 
the number of slams these whipping stresses ought to be considered. At each 
slam there is a vibration in the ship main girder and an initial whipping stress. 
Summing up these initial whipping stresses for let us say again a 30 minute op¬ 
eration and dividing by the number of low cycle stress oscillations a slam num¬ 
ber is obtained which might as well give the intensity of the effect of slamming 
on the hull girder. Establishing this slam number, whipping stresses less than 
0.4 t per sq in. were ignored. I had these whipping stresses measured in a sea 
state about the mild 7 Beaufort of Dr. Ochi's paper, once in light-loaded condi¬ 
tion on a cargo ship of 446 ft in waves H, 10 = 27 ft at 12.5 knots, on another 
occasion in nearly full-loaded condition on a cargo ship of 480 ft in waves 
Hj, 10 = 33 ft at 9 knots, and in this nearly full-loaded condition the whipping 
stresses and the slam number representing their intensity were larger than in 
light-loaded condition. In light-loaded condition the severe slams are heard 
like a gun shot whereas in full-loaded condition they are more like far-off thun¬ 
der. In light-loaded condition the slams are more conspicuous and captains are 
keen to reduce speed. That is perhaps one of the reasons why the slam number 
is not larger in light-loaded than in full-loaded condition. As long as not too 
much green water is shipped the captain of a full-loaded cargo ship goes ahead 
in high waves and modern cargo ships with a long forecastle and a fair fore 
freeboard maintain a good speed in these high waves. 

And here I should like to ask Dr. Ochi why he has taken the same speed of 
10 knots for his comparison light-loaded and full-loaded ’ Has he any informa¬ 
tion as to what extent captains of Mariners accept 60 slams, i.e., 2 slams every 
minute, in light-loaded condition in waves of 31 ft significant height? As a rule 
captains of cargo ships of 10,000 tons deadweight and 16 knots service speed do 
not accept these waves at a speed of 10 knots, when in light-loaded condition. 
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DISCUSSION 

E. V. Lewis 
Webb Institute of Naval Architecture 
Glen Cove, Long Island, New York 

This paper is of particular significance because it attempts to establish 
criteria for the occurrence of slamming. Such criteria have been badly needed 
in connection with the calculation of ship performance in irregular seas by the 
method of superposition. The criteria will make possible, for example, the de¬ 
termination of the speed at which slamming would become serious — or the pre¬ 
diction of comparative slamming characteristics of alternative ship designs. 

It is hoped that for completeness the work will be continued to allow for the 
effect of section shape on the critical vertical velocity for slamming - and also 
to allow for the effect of form and fullness on the fore and aft location of the 
critical section. 

The equations for various probabilities in evaluating performance in irreg¬ 
ular seas will be very useful. It should be pointed out that the probabilities are 
based on assumed stationary conditions - constant ship speed and heading, as 
well as steady sea conditions. Hence, the equations must be used with caution. 
For in the case of the full-scale ship at sea, the shipmaster is certain to change 
course or speed if slamming becomes serious, so that conditions would not re¬ 
main stationary. 

Another point is in regard to the assumption in the paper that the pressure 
of water on deck is purely static. It would be expected that there would be con¬ 
siderable dynamic effect associated with the aftward velocity of the water. 

* * * 

DISCUSSION 

W. A. Swaan 
Netherlands Ship Model Basin 

Wageningen, Netherlands 

In the course of the last 10 years the possibilities of applying the super¬ 
position theory or the problem of ship motions in irregular seas have covered 
an increasing range of phenomena. At first only ship motions were considered, 
subsequently the superposition methods for resistance and power were evalu¬ 
ated and checked by experiments. The results presented in this paper here 
cover the final gap, that is the relative motions at the bow with the associated 
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problems of slamming and wetness. The test results leave no doubt about the 
possibility to apply these methods to ship predictions from now on with full con¬ 
fidence. 

In his explanation about the basic concept the author distinguished two 
problems; that is the prediction of the probability of slamming per cycle and 
the prediction of the number of cycles per unit time. I would like to make a 
minor remark on both points. 

In Appendix 1 it is mentioned that it is possible to determine the relative 
motion at the bow using an accelerometer on the model and a wave probe in 
front of it. This seems to be a method containing some uncertainties. In the 
first place it will be necessary to know the smooth water level at the station 
which is considered critical for slamming. 

In Eq. (5) of the paper this is assumed to be equivalent to the draft. This 
may be true for a vessel like the "Mariner" at a speed of only 10 knots but at 
higher Froude numbers a significant difference may be found because of the 
smooth water bow wave system of the ship. The bow wave of a ship usually de¬ 
creases the probability of slamming and increases the wetness. The second 
objection against the use of a wave height transducer in front of the model is 
that the bow of a pitching and heaving ship creates an oscillating bow wave 
which will affect the variance of the relative motions. This will be somewhat 
less important for fine ships than for full ships. It is therefore concluded that 
the only reliable way to measure the relative motion is to do so at the critical 
station which is used for the determination of the probability of slamming per 
cycle. 

The second remark concerns the use of the second moment of the spectrum 
in order to obtain the expected number of zero uperossings. Our experience 
indicates that the quotient of the spectrum area and the first moment gives a 
better approximation to the number of zero uperossings. This is only of impor¬ 
tance when the spectrum is not narrow because otherwise the two methods yield 
the same result. The sea spectrum, however, is not always narrow, for instance 
when it is desired to simulate a Neumann spectrum which has a width of E = 
0.815. Using the first moment of the spectrum will result in the prediction of 
less slams per unit time as is shown in the Table 1 where results are shown 
from some relative bow motion and wave height measurements. 

The width of the spectrum was estimated with the quotient of the number of 
maxima and the number of zero uperossings. According to the results in Table 1, 
Eq. (7) from the paper is more accurate in predicting the number of maxima 
than in predicting the number of zero uperossings. 
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Table 1 

Test 
No. 

Zero Up- 
Crossings 

per Unit Time 
(%) 

Maxima 
per 

Unit Time 
(%) 

i/5 
2" f Mn 

(%) (%) 

€ 

Waves 

1 

2 

3 

4 

100 

100 

100 

100 

111 

110 

112 

113 

104 

104 

105 

105 

110 

110 

111 

111 

0.43 

0.42 

0.45 

0.47 

Relative Motion 

1 

2 

3 

4 

92 

94 

91 

92 

103 

105 

102 

101 

95 

97 

94 

93 

100 

102 

100 

99 

0.45 

0.45 

0.45 

0.43 

♦ * * 

DISCUSSION 

L. Vassilopoulos 
Massachusetts Institute of Technology 

Cambridge, Massachusetts 

For those involved in seakeeping research the present paper is a very wel¬ 
come contribution for it deals with the two most important phenomena that dic¬ 
tate the speed which a high-powered fine ship can sustain in rough water opera¬ 
tion, namely slamming and wetness occurrence. At the same time the 
probabilistic methods presented and verified in Dr. Ochi's paper provide further 
useful tools for a realistic evaluation of the importance of seaworthiness in 
ship design. 

Although the author's analysis and verification was performed only for a 
Mariner model at moderate speeds, there is no reason to believe that a similar 
approach would be invalid for other conventional ship forms and at slightly more 
severe conditions. Of particular interest are the conclusions with regard to the 
actual mechanisms of slamming and wetness phenomena and the necessary and 
sufficient conditions which must prevail for their occurrence. It is particularly 
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encouraging that in the case of slamming the number of critical factors has been 
reduced from three in regular seas to two in irregular seas. This favorable 
result overcomes otherwise unsurmountable calculation difficulties. 

The formula that Dr. Ochi has developed for the probability of slamming 
rests on the assumption that the relative motion of an arbitrary ship point is a 
narrow-band Gaussian process. Although the satisfactory correlation of meas¬ 
ured and predicted results which Dr. Ochi shows suggests that this appears to 
be the case, it must be stressed that one cannot a priori assume that the relative 
motion will indeed be a narrow-band process because the wave motion is not 
always a narrow -band process, except perhaps for severe sea conditions. Fur¬ 
ther, the sum of two narrow-band processes need not necessarily be a narrow- 
band process itself. Any absolute ship response, however, such as bow motion 
for example, can safely be regarded as a narrow-band process since the wave 
motion is mostly wide-band and the ship-system is strongly resonant. 

The next step in Dr. Ochi's analysis follows the approach employed in other 
engineering fields in that attention is focused on the envelope of the time function 
rather than its amplitude. In this connection I would like to point out that Eq. (2) 
can indeed be regarded as the definition of the envelope and which, stated other¬ 
wise, essentially regards ¡ r0( t) I as the instantaneous radius of the image point 
on the phase plane diagram of Fig. 3(b). Dealing with the envelope rather than 
with the actual amplitude turns out to be very convenient for we can immediately 
obtain a closed form expression for the probability of slamming, such as Eq. (5). 
I cannot precisely follow the steps leading to (5), but I assume that Dr. Ochi 
multiplies the integrated Rayleigh probability density functions for the relative 
motion and the relative velocity. This is, of course, permissible since both 
processes are Gaussian and hence linearly as well as statistically independent. 

The author employs the nomenclature "probability of slamming per cycle of 
wave encounter." For a narrow-band process one may perhaps speak of cycles 
in an extended sense and even then the precise meaning of cycle is not very 
clear. But for a wide-band process, like the wave motion record, is it really 
possible to identify a cycle of wave encounter ? Also, Fig. 3 seems to indicate 
that slamming only occurs when r H and f > r*. Is it not more correct to 
say that slamming can occur as long as r > H and provided that the relative ve¬ 
locity has assumed at least its threshold value? 

The paper deals with the wetness problem in a similar and more simplified 
way and thus provides prediction methods for the propeller emergence problem 
also. The author has obtained a fascinating result with regard to the distribu¬ 
tion of slamming occurrences. It seems to me that utilization of the exponential 
distribution of the time intervals between slams together with the expected num¬ 
ber of slams per unit time as developed by Tick can be used to provide an an¬ 
swer in a statistical sense of the average sustained speed for a given ship. Has 
the author perhaps examined whether the wetness phenomenon is also a sequence 
of events which are Poisson distributed? 

In conclusion, I would like to raise one further point which was so strongly 
mentioned by Professor Weinblum in his paper presented during the First 
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Symposium on Naval Hydrodynamics ten years ago: Is it not true that the time 
has come for a scientific evaluation of the freeboard problem of a ship on the 
basis of wetness considerations? It would seem that Dr. Ochi's paper as well 
as that of Mr. Goodrich in this Symposium both provide essential evidence that 
we are properly equipped to undertake such an investigation. 

* * * 

REPLY TO THE DÎSCUSSION 

Michel K. Ochi 
David Taylor Model Basin 

Washington, D.C. 

Professor Lewis mentioned that the probabilities presented in this paper 
are based on assumed stationary conditions, i.e., ship speed, heading as well as 
sea conditions are constant. The assumption of stationary conditions, however, 
is considered to be a proper approach in the analysis. Since voluntary reduc¬ 
tion of speed or change of course angle are entirely dependent on the personal 
judgment of ship operators, it is appropriate not to include human elements in 
establishing the statistical rules. 

He also discussed that the aftward velocity of the green water would have a 
considerable dynamic effect on the pressure on the deck. The pressure on the 
deck reported in this paper is the vertical component of green water flowing 
over the d ck from the top of the stem. Pressure records obtained in the ex¬ 
periments have shown that pressure normal to the deck is not an impact type 
and that the pressure magnitude approximately corresponds to the static water 
head experienced at the stem. Judging from these results there is no reason to 
believe that consideration of the dynamic effect of the aftward velocity is neces¬ 
sary for the vertical pressure on the deck. This consideration is of course 
necessary for the horizontal component (aftward direction) of pressure on the 
deck, since the green water would crash at the front face of the deck super¬ 
structure with considerable velocity. 

Mr. Swaan remarked that the bow wave of a ship usually decreases the 
probability of slamming and increases the wetness. For this reason, he said 
most reliable way to obtain the relative motion is to measure it at the location 
considered. Consideration will be given to his remarks in future experiments 
by the author. 

Professor Aertssen asked why the same speed of 10 knots was used for 
comparison of frequency of occurrence of slamming for light and full draft 

See discussion by Pierson to paper by Ogilvie and discussion by Tick to paper 
by Cummins and Smith. 
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conditions. This is due to the following reason: that is, if different speeds are 
used for comparison, two factors (speed and loading condition) both of which 
significantly affect the frequency of occurrence of slamming are involved in the 
results, and hence we cannot identify which factor had the greatest effect on the 
frequency. For example, the result of full scale trials introduced by Professor 
Aertssen shows that the slam number for full loading condition is higher than 
that for light loading condition. However, we cannot conclude from this result 
that full loading is more severe than the light loading, since the speed was 
higher for the full load than for the light load condition. It is also noted that the 
slam number as defined by Professor Aertssen is expressed in terms of whip¬ 
ping stress. This automatically includes the ship mass effect. In other words, 
even if the ship motions are the same for two different drafts, whipping stresses 
are quite different since the dynamic characteristics are entirely different. 
Thus, we cannot identify which factor increased the slam number for full load¬ 
ing. Thus, in order to obtain the effect of loading condition the same speed was 
used for evaluating the frequency of occurrence of slamming for light and full 
draft so that the difference in slamming rate could be attributed to the differ¬ 
ence of ship motion characteristics. 

Mr. Vassilopoulos questioned whether or not the relative motion between 
wave and ship bow is a narrow-band Gaussian process. It cannot be said, of 
course, that the relative motion is a sharp narrow-band Gaussian process as is 
frequently observed in strongly resonant vibratory systems. However, the fol¬ 
lowing table may provide some information on this subject. 

Sea 
State 

Expected Frequency for 
Narrow-Band Gaussian 

Process, 

Domain of Significant 
Energy in the Ob¬ 

served Spectrum of 
Relative Motion 

Severe 7 

Moderate 7 

Mild 7 

0.71 

0.69 

0.72 

0.68 to 0.78 

0.65 to 0.75 

0.68 to 0.75 

The above table pertains to a ship speed of 10 knots and light draft condi¬ 
tion. Since the expected frequencies lie in the domains of significant energy in 
the observed spectra, it may be said that the relative motion can be treated as 
a narrow-band Gaussian process. 

Mr. Vassilopoulos pointed out that the condition r ; H be used instead of 
r H in Eq. (5) of the paper. Although the final result is the same for both 
conditions, r í H is the correct expression. 

The author agrees with Mr. Vassilopoulos' opinion that the deck wetness 
condition should be considered in the freeboard requirement. The author would 
like to continue further studies of the effect of section shape on the magnitude of 
threshold velocity as was suggested by Professor Lewis, although the values 
obtained on five different ships have shown fairly consistent values. 
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THE INFLUENCE OF FREEBOARD 

ON WETNESS 

G. J. Goodrich 
National Physical Laboratory 

Teddington, England 

ABSTRACT 

Model experiments in regular waves and probability theory have been 
used to predict the probability of occurrence of wetness at the fore¬ 
end of a ship of given type. Calculations made for ships of different 
fullness have suggested that the frequency of occurrence of wetness 
varies with block coefficient as well as with length for a given free¬ 
board ratio. 

INTRODUCTION 

The prediction of the probability of occurrence of wetness from model ex¬ 
periments in regular waves has been attempted by Newton [1] using statistical 
sea data to represent full scale conditions. Newton's work suggested that for a 
given freeboard ratio a 200 ft ship would be drier than say a 400 ft ship under 
North Atlantic conditions. This general conclusion seemed contrary to what 
would be expected and consideration was given to the possibility of using model 
data and probability theory to predict the probability of occurrence of wetness 
for ships of different fullness and length. 

The intention of the present paper is not to provide detailed design informa- 
tion but to indicate a method of analysis which could be used for specific design 
studies and to show the trend of the variation of wetness with ship length and 
block coefficient. 

WETNESS DEFINITION 

When considering the prediction of the probability of occurrence of wetness 
it is sufficient to say that if the motion of the bow relative to the water surface 
is such that the water rises above the deck level at the fore end, then the prob¬ 
ability of wetness exists. No attempt is made to say how wet the deck will be 
nor to what height the water will rise above the deck. 
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‘Ü 

Fig. 1b - Response curves for constant 
speed 0.70 CR 

MODEL DATA 

Jhe most systematic model data available at present are those of Vossers 
and Swaan [2] and these have been need in the present analysis Measurements 
were made of the relative bow motions of a series of models and the response 

nf hieSbPreS«nted aS the rati° 0i the relative bow motion to wave height on a base 
o ^Ck ía0feííÍCHent an?.f0r a range °f Speeds- Cross curves have been derived 
hLî f i f b°W T n t0 wave height rati0 for constant wave lengths to a 

unv1 Froude Nurober. Some account has been taken of the loss in speed due 

have then^èen ^bta^ned1!rom the^ross mirves" fo/t^spee^ corre^onding^hr ^he 

SSo^Trm^- Tyl,1Cal reïp<)"se —snad‘Äe 
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Fig. 2 - Significant wave height vs 
wind speed 

REPRESENTATION OF THE SEA 

Sea spectra are needed in the analysis in order to obtain motion response 
spectra and a modified form of the Darbyshire formulation has been used. The 
curve of significant wave height against wind speed shown in Fig. 2 was used and 
the three Darbyshire spectra are shown in Fig. 3. 

The equation of the Darbyshire spectrum is 

where 

23.9 exp - 
(f- fpV 

1/ 2 

0.00847 [(f fo) + 0.0421 
df 

H2 = SHf2, 

Hf2 = spectral ordinate, 

f = frequency, 

f0 = frequency of the peak value of the spectrum, 

H1/3 = 1.65H. 

This latter value of H, 3 is that derived by Darbyshire from his analysis. 
The spectrum in this form cannot be combined directly with response operators 
which are expressed in terms of wave length to ship length ratios, nor in fre¬ 
quencies of encounter. If the response curves for one ship speed and for varying 
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Fig. 3 - Sea spectra used in the analysis 

wave length are used they can be combined with a spectrum transformed from the 
frequency base to a wave length base. The transformation is: 

[r(\)]2 
Hi 
4 

1 
2 

diflA 
df \ h; 

df 

and includes the change from the energy expressed in terms of wave height, to 
the energy in terms of wave amplitude. 

It must be appreciated that although a unique curve of significant wave height 
versus wind speed has been used, wide variations of wave height exist in practice 
for a given wind speed. It is assumed that using this "mean curve" and deriving 
the resulting response spectra results in mean values of the root mean square 
response for a given wind speed or Beaufort Number. 
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METHOD OF ANALYSIS 

A number of gross assumptions have been made in the analysis as follows: 

(a) It has been assumed that for the extreme motions the conditions remain 
linear. The model experiments were carried out for a constant height-ship length 
ratio of 1/50. 

(b) It has been assumed that the motion is regular about the mean still 
water draught of the ship. 

(c) The head sea case only has been considered with no spreading of the 
wave spectra. 

(d) For comparative purposes it has been assumed that the ships are in the 
head sea condition 100% of the time. 

Other assumptions made in the analysis will be stated later. 

By combining the response curves such as in Fig. 1 with the sea spectra 
given in Fig. 3, the response spectra are obtained and by integration of these 
spectra, the mean square response is derived 

The derived curves of root mean square response amplitude Sm for a range 
of Beaufort numbers are shown in Fig. 4 for 0.70 CB ships of 200, 400 and 600 ft 
lengths. 

so 

10 
BEAUFORT NUMBER 

Fig. 4 - Root mean square response for 
constant ship lengths 0.70 CB 
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It has been assumed that the short term distribution of the variation of rela 
tive vertical motion of *he bow will have a Rayleigh distribution. With this dis¬ 
tribution the probability of exceeding a specific value of relative bow motion Sj 
is 

e 

In order to obtain the long-term distribution of s, a weighting factor for weather 
distribution must be included. As was stated earlier no weighting factor has been 
included in this analysis to take account of variations in the sea direction. The 
probability of exceeding a specific value of s¡ is therefore: 

Ee- <s¡ v 

where P ■ is the weighting factor for the general weather probability distribution. 
The weather distribution used is given below over the range of weather groups 
1 to 5. 

Group Beaufort Number Distribution % 

1 0-3 52.0 
2 4-5 29.0 
3 6-7 15.0 
4 8-9 3.5 
5 10-11 0.5 

The mean value of Sm for each group has been used in the calculation of Qi, 
with values of Sj of 10, 20 and 30 ft for all lengths of ships. From the calculated 
values of Q¡ for specific values of si probability curves can be drawn such as in 
Fig. 5. If freeboard at the fore perpendicular is substituted for s¡ then these 
curves show the probability of the water rising above the freeboard. A non- 
dimensional freeboard ratio can be used, (defined as the ratio of the freeboard 
at the fore perpendicular to the ship length) rather than absolute freeboard and 
the results for the 0.60, 0.70 and 0.80 CD ships are given in terms of this ratio 
in Figs. 6, 7 and 8. The curves for the 0.80 CB ships include lengths of up to 
1000 ft since there is a growing interest in the behaviour of bulk cargo carriers 
of such lengths. 

Figures 9, 10 and 11 show the freeboard ratio required for various ship 
lengths for equal probability of wetness. 

DISCUSSION OF RESULTS 

The results show that for equal probability of occurrence the freeboard ratio 
decreases with increasing ship length. The results for the 0.60 and 0.80 cB ships 
are similar but the analysis shows that the 0.70 cB ships require a greater free¬ 
board. This result is a direct consequence of the higher responses obtained for 
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The Influt'nce of Freeboard on Wetness 

Fig- 5 - Freeboard vs probability of wetness for 
constant ship lengths 0.70 cn 

Fig. 6 - Freeboard ratio vs probability of wetness for 
constant ship lengths 0.60 CH 
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Fig. 7 - Freeboard ratio vs probability of wetness for 
constant ship lengths 0.70 CR 

Fig. 8 - Freeboard ratio vs probability of wetness for 
constant ship lengths 0.80 Cn 
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Fig. 9 - Curves of freeboard 
ratio for constant probability 
of wetness 0.60 Cn 

Fig. 10-Curves of freeboard 
ratio for constant probability 
of wetness 0.70 C„ 

the 0.70 rB model tests. In Fig. 11, the slope of the lines of freeboard ratio for 
constant probability of occurrence of wetness indicate that for ship lengths in 
excess of 600 ft a constant freeboard gives equal probability. 

The question arises as to what is an acceptable level of probability of wet¬ 
ness. At this stage it is difficult to say what is acceptable but ships which are 
known to be good sea ships could be plotted in the diagrams in order to see what 
level of probability would be expected for them. 

It is the intention to run models of the 0.60, 0.70 and 0.80 block cofúíicient 
in irregular wave systems to check the number of times wetness occurs in a 
given train of waves. The system of generating irregular waves in the Ship 
Division's No. 3 Tank is such that the scale of the spectrum is easily modified. 
A constant length model can therefore be used with varying scale of spectrum to 
simulate different ship lengths. 
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Fig. 11 - Curves of freeboard ratio for 
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DISCUSSION 

E. V. Lewis 
Webb InstUidc of Naval Architecture 
Glen Cove, Long Island, New York 

This paper shows how available techniques for predicting ship behavior in 
anY pm ticular sea condition—as described in my own paper—can be significantly 
extended by considering representative sea spectra of different levels of severity. 
Then, with the help of probability theory, long-term predictions can be made of 
quantities such as frequency of deck immersion forward. This approach provides 
a rational basis for establishing standards of bow freeboard. I 
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One question arises regarding ship speeds in the calculations. It would be 
of interest to know what speeds were assumed for each ship and each sea spec¬ 
trum, since the wetness certainly depends on speed. 

* * * 

DISCUSSION 

R. F. Lofft 
Admiralty Experimental Works 

Gasport, England 

As one who was concerned with Newton’s original paper on wetness, I am 
pleased to see this work being developed and extended in Goodrich's paper. 
Both papers point to the need for more wave data, and the need for caution in 
interpreting results based on present sparse data. 

In Newton's paper, the wave information was taken from Darbyshire's 
tables of frequency of occurrence of waves of given length and height, published 
in 1955. These were the dominant waves, and shorter or longer waves which 
were present simultaneously were ignored. This may account for some empha¬ 
sis on waves around 500-700 ft long, and so to an underestimate of wetness of 
smaller ships, in particular. 

On the other hand, the Darbyshire spectra on which Goodrich's work is 
based, relates specifically to local wind-generated seas, and excludes swell 
waves, which may affect larger ships. This paper therefore may give a some¬ 
what optimistic picture of the wetness of the longer ships, as in Fig. 11. Clearly 
we cannot obtain reliable estimates of wetness until more complete and reliable 
data are available on sea spectra and their frequency of occurrence. 

It should be pointed out that the "wetness" derived by Goodrich corresponds 
approximately to the very wet condition as defined by Newton. It is not uncom¬ 
mon for ships to be under spray, i.e., Newton’s wet condition, without the bow 
becoming immersed. 

Finally, plottings of the form of Figs. 9-11 are purely comparative. It 
means nothing to the mariner, or to the designer, to be told that a particular 
ship has a probability of wetness of 0.01%. Studies of this nature must be asso¬ 
ciated closely with sea experience to be meaningful. If plottings of this type 
were prepared for existing ships of known good or bad reputations for wetness, 
as advocated by Newton, then perhaps an equivalence could be established be¬ 
tween the estimated probability of wetness and a degree of wetness which could 
be regarded as acceptable in practice. 

* * * 
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HYDROFOIL MOTIONS IN A 
RANDOM SEAWAY 

B. V. Davis and G. L. Oates 
l)v llavilland Aircraft of Canuda, Limited 

Dounsüiew, Ontario, Canada 

INTRODUCTION 

This paper outlines the analog simulations and the complementary model 
test programmes conducted by De Havilland (Canada) during the design of the 
200 ton FHE-400 Hydrofoil Ship for the Royal Canadian Navy. 

The equations of motion required to describe the motions of the hydrofoil 
are discussed in detail, together with the simulation of the equations and the 
seaway forcing functions. The model trials are also discussed and it is demon¬ 
strated that good correlation has been achieved between predicted and actual 
behaviour of a 1/4 scale model of the FHE-400 and between simulated and actual 
seaways. 

The achievement of satisfactory dynamic stability requires an iterative 
design procedure similar to that followed in aircraft design, first to establish 
steady-state requirements and then to examine the dynamic behaviour. When 
examining the hydrofoil system in a seaway, it is necessary to consider hydro- 
dynamic and structural requirements in order to develop a balanced and practi¬ 
cal design. This is illustrated in Fig. 1. 

Initial studies can be carried out using simplified equations with calculated 
derivatives, as only "broad" outlines are required. Subsequent studies have to 
be performed in greater detail as more accurate information becomes available 
from calculations and model trials data. The initial studies should show up any 
major shortcomings in the design. Some modifications are likely to result from 
the initial simulations. Once a reasonable foil configuration has been derived, 
then extensive model trials should be conducted and the results used for further 
and more accurate dynamic stability studies. Sophisticated equations are then 
required to take account of all significant nonlinearities. 

Because of the complex nature of both the ship and random seaway simula¬ 
tion, model trials are necessary to verify theoretical predictions. While towing 
tank trials of foil units are necessary to measure resistance and to provide foil 
derivatives, it is even more important to evaluate "seagoing" models, prefer¬ 
ably manned, in order to measure response in a scale seaway. By comparing 
measured response with the mathematical model, the validity of the simulation 
can be established. 

611 



Davis and Oates 

HISTORICAL NOTE 

■ r> Thu defStudy and stilbility analysis reviewed in this paper commenced 
in October 1960 and has led to the current contract to design and build a 200 ton 
development prototype ship known as the FHE-400, for the Royal Canadian Navy. 

The initiative came from the Canadian Defence Research Board, following 
many years of surface piercing foil system development at the Naval Research 
Establishment, Halifax, Nova Scotia. 

In 1959 N.R.E. published a report which considered the feasibility of a 200 
ton ship based upon a canard arrangement, of fixed surface piercing foils. 
N.R.E. recognized the advantages of a canard arrangement in reducing head sea 
accelerations and improving stability in following seas. In addition, they fore¬ 
saw the need to develop a foil design method to provide optimum foil angle of 
attack range in high sea states. Further, N.R.E. emphasized the value of de¬ 
signing a foil system to provide maximum damping in the hullborne mode of op¬ 
eration which is particularly important in a military search mode. 

Encouraged by the technical interest of other NATO navies, the Canadian 
Government agreed with N.R.E.'s contention that a thorough design study should 
be made and awarded a contract to De Havilland (Canada) in 1960. 

with Th*errkMStf:?!nt d?,Wn UP by the Defence Research Board in consultation 
with the R.C.N. laid down the parameters to be considered. These included the 
development of design methods for foils, response characteristics in random 
fhe*S and {Je Performance to be achieved. N.R.E. supported the programme with 
their 3-1/2 ton experimental test craft and an experienced trials team to con¬ 
duct sea tria s of the foil system developed by De Havilland. The trials con- 

1959Cd ir0m ^61 t0 date haVe substantiated the predictions made by N.R.E. in 

M d ïhlS PaPer discusses the design and stability studies and the supporting 
N.R.E. trials of the RX craft fitted with a representative foil system, 1/4 scale 
lull size. 

DESIGN METHOD 

?auy iactors t0 be considered in relation to the dynamic sta- 
bility it is helpful to have a clear picture of the relation of this studv to the 
other design parameters. 

Once the basic role has been decided upon, the required performance, 
range, load carrying capacity and approximate craft size can be determined; the 
iatter of course, will be dictated to some extent by the sea state in which the 
craft will have to operate, as the hull will have to clear all but the larger waves 
Parametric studies have to be carried out to determine the optimum configura- 
tion and size to meet the design requirements. These parameters then dictate 
the toil areas that are necessary to support the craft throughout the required 
foilborne speed range. Foil section thicknesses and section types are dictated 
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by the maximum design speed and by structural stiffness. In this respect there 
is some conflict between hydrodynamic requirements for the thinnest possible 
foil section, to avoid cavitation, and structural requirements for the thickest 
possible section to avoid divergence and flutter. In some instances the maxi¬ 
mum speed may well be decided by stiffness of the foil elements, as sections 
below a certain thickness may suffer from hydroelastic problems. This mini¬ 
mum thickness may not be sufficiently low to allow cavitation free operation at 
the maximum design speed and a physical limit will be placed on the maximum 
attainable speed. Stability is also adversely affected by cavitation. Foil loads, 
however, are effectively limited by cavitation, which is beneficial in this respect. 

When the hydrodynamics, hydrostatics, hydroelastics, structural integrity, 
power and machinery requirement, operational roles, accommodation spaces, 
etc., have been considered then the initial stages in the design of a practical 
hydrofoil craft will have been completed. At this stage the dynamic stability 
and the operational environment of the craft have to be considered in some de¬ 
tail. Foilborne seakeeping in rough water is of paramount importance since the 
craft must be stable under all sea conditions and must have acceptable response 
characteristics from the standpoint of human tolerance to motion. Some factors 
influencing craft motions are foil taper ratios (for surface piercing foils), rate 
of change of lift with angle of attack and rate of change of lift with immersion 
depth. The foil system should be insensitive to angle of attack changes (i.e., 
low CLi ) to reduce the effect of wave orbital velocities but should be relatively 
sensitive to changes in immersion depth (cL|i) to control foil broaching and hull 
slamming. The ideal response would be with the craft platforming all waves 
below those which would cause broaching or slamming and contouring all larger 
waves. In practice this ideal is not attainable and the craft motions are between 
platforming and contouring for all significant waves. 

To obtain the above characteristics some compromise is necessary. A low 
cL, usually implies a low aspect ratio (Fig. 2) and this yields a low lift-drag 
ratio which is detrimental to performance. For maximum performance the foil 
system should have the highest possible L/D ratio. A good compromise in ihis 
respect can be achieved with a canard system, in which 80-90% of the total lift 
is provided by the main foil. The bow foil supplies only 10-20% of the total lift; 
therefore its L/D ratio can be relatively low without contributing an unaccept¬ 
ably high drag to the total. Thus the bow foil can be optimised to produce mini¬ 
mum motions resulting in relatively small angle of attack excursions at the 
main foil. The main foil can then be designed to have a high aspect ratio (low 
drag) without incurring unacceptably high accelerations at the craft c.g. In 
practice the main foil <cL, ^ and 3CL/aii lift-curve slopes have to be optimised 
to produce satisfactory performance in both head and following seas. However, 
the values so obtained do not differ greatly from those desirable for best per¬ 
formance. The bow foil unit is optimised to produce minimum motions in a 
seaway and to a large extent, controls the natural frequency of the craft in pitch 
and gives adequate separation between the craft natural frequency and the domi¬ 
nant frequencies of encounter in head seas which produce significant inputs of 
energy to the craft (Figs. 3, 4, 19 and 20). It is considered that fully cavitating 
bow foil sections are necessary to provide the required characteristics in a 
surface piercing system. These sections give low-lift curve slopes and are not 
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subject to large lift changes due to changing from fully wetted to fully or partially 
cavitating flow. The bow foil system can be designed to provide a low c,/m 
and the optimum cL h. 

Some of the interrelated problems to be examined and solved are listed 
below: 

1. Hydrodynamics — (Foil section design, cavitation suppression, ventilation 
effects, hydrodynamic loads, performance predictions, etc.) 

2. Hydrostatics 

3. Hydroelastics — (To date there is no accurate and proven method for 
predicting flutter speeds of surface piercing or cavitating foils and much re¬ 
search still needs to be done.) 

4. Dynamic Stability — (The stability equations had to be developed together 
with a method for simulating the random seaway.) 

Structural Integrity - (Lightweight structures of adequate stiffness are 
difficult to design and required sophisticated analysis.) 

6. Materials - (High strength materials had to be found for the foils and 
random fatigue studies conducted. Coatings had to be developed to help guard 
against corrosion and erosion.) 

7. Transmission Design — (As with many other hydrofoil problems this is 
practically at the current limit oi the ’’state of the art" in gear technology be¬ 
cause of the high torque and low weight requirement.) 

THEORETICAL EQUATIONS OF MOTION 

Hydrofoil Ship Simulation 

Two methods of simulating the motions of a surface piercing hydrofoil in a 
random seaway have been derived and both methods were used in the design of 
the hydrofoil under consideration. 

The first method is based on the normal aircraft equations, in which sets of 
partial derivatives representing the sum of various force or moment contribu¬ 
tions are used to simulate the craft dynamics. The second method differs from 
ihe first in that the various forces at the craft centre of gravity are obtained by 
summing the forces developed by each foil element. Moments at the c.g. are 
the product of these elemental forces and their respective moment arms about 
the c.g. 

The first series of studies to broadly define the hydrofoil was carried out 
in calm water using linear equations of the aircraft type suitably modified to 
account for free surface effects. Small perturbations were assumed and a se¬ 
ries of partial derivatives was calculated for the complete hydrofoil. These 
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equations were sufficiently accurate for the initial studies, but proved to be in¬ 
adequate when more detailed information became available and a more accurate 
simulation was required. Varying coefficients had to be introduced. All of the 
derivatives are functions of immersion depth and second order derivatives had 
to be introduced to account for some of the more nonlinear functions. This re¬ 
sults in a set of complicated equations. In fact, each variable has to be written 
in the form of a Taylor series and linearisation of even the second order terms 
can lead to significant errors, particularly in the roll derivatives. 

These equations became very cumbersome, difficult to mechanize on the 
computer and still had significant inaccuracies in the roll terms. Because of 
the complex analog computer set-up required and the inaccuracies that were 
still present in the nonlinear "Taylor Series" equations, the so-called "explicit 
variable" method of simulation was developed, in order to simplify the compu¬ 
tation and to achieve greater coherence in the derivation of the longitudinal and 
lateral equations for the surface piercing hydrofoil. Each derivative is a func¬ 
tion of immersion depth, which in turn is a function of heave, pitch and wave ef¬ 
fects, all of which are derived from the longitudinal equations. In the explicit 
variable simulation, this coherence can be achieved because all forces are de¬ 
rived from two parameters; the lift-curve slope for a given foil element, and 
the total angle of attack on that element due to all motions about the craft centre 
of gravity. 

The development of these equations from Euler's basic equations of motion 
is outlined below for the axis convention of Fig. (i). 

Assume a rigid body with Oxy as a plane of symmetry. 

Figure (i) 

Assume a rigid body with Oxz as a plane of symmetry. Euler's equations 
are: 

Linear Motions and Forces 

m(U + QW - RV) X - mg sin 0 (1) 
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m(V > RU - PW) Y * mu cos H sin '[> (2) 

m(W + PV - QU) Z t mu cos (-) cos <|i (3) 

Angular Motions and Moments 

AP - PR * QR( C - B) - EPQ L (4) 

BQ ‘ RP( A - C) + r2 - R2 M (5) 

EP + CR + PQ( B - A) + EOR N (6) 

Velocities Along Space Axes 

U cos (-) cos 1' + V( sin '1' sin (-) cos 'I' - cos <1' sin '1') 

+ W(cos <l> sin (-) sin '1' - sin 't> cos (7) 

Vs U cos (-) sin 'I1 + V(sin 'I' sin (-) sin 'I' + cos <t> cos 'I1) 

t W(cos '!> sin (-) sin 'I' + sin «I» cos '1’) (8) 

zs -U sin (-) + V sin <l> cos (-) f W cos '1> cos 0 

Relations between Angular Velocities 

(9) 

P <t> - 'i' sin (-) (10) 

0 0 cos <t> t '1' cos 0 sin '1' (ID 
R '1' cos 0 cos '!> - 0 sin <l> 

0 Q cos <l> - R sin <t> 

'1' P + Q sin 4> tan 0 + R cos <1' tan 0 

si' (Q sin <l> + R cos '!>) sec 0. 

(12) 

(13) 

(14) 

(15) 

All of the dynamic relationships that are necessary to investigate the mo¬ 
tions of a body in response to impressed forces and moments are given in the 
above equations. These equations are genera l and are accurate for motions of 
any magnitude. The hydrofoil motions, however, are relatively limited, in which 
case small angle approximations can be made for this craft without any signifi¬ 
cant loss of accuracy, thus the equation can be simplified. This simplification 
can be accomplished by writing all of the equations in terms of their deviations 
from a fixed or reference condition with the exception of the craft forward speed 
(u) and heading angle (f), which are subject to large changes. Small approxi¬ 
mations cannot be applied to them. The parameters in the deviation equations 
will be denoted by lower case letters. Reference values will be denoted by the 
suffix zero. Thus (u.v.w) (p.q.r) (0.4-,'P) are redefined as 

I'psfPf 
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U (u0 + u) 

1’ (P0 * P) 

« ( 0- ) , 

etc. The hydrofoil reference condition will be with the axes of the craft hori¬ 
zontal and with the craft travelling symmetrically in the Ox direction. Thus 

V' w par / „ 0 . o oro Jo o o o 

Ttj is usually put equal to 0. However, any arbitrary value may be assigned 
without affecting the equations of motion. 

Making small angle approximations and substituting the perturbation varia 
bles in the foregoing equations we have Euler's equations for small perturba¬ 
tions. 

Linear Motions and Forces 

mû X - mg 

m [v + ( uo t u ) r ] Y -i- ihr 

m w - ( u0t u)q] Z + mg 

Angular Motions and Moments 

Ap - Ef L (19) 

Bq M (20) 

Cf - Ep N (21) 

Velocities Along Space Axes 

xs ( U0 + ll) COS <p - V sill l/l (22) 

ys = ( uq * u) sin <p + v cos ip (23) 

zs - (uo+ u)0 + w (24) 

Relations between Angular Velocities 

p .i ¢, 

q = (< 

(16) 

(17) 

(18) 

r 
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The above equations could be simplified further if the reference forces and 
moments were to be subtracted from the basic equation. However, hydrodynamic 
forces and moments are more readily derived in terms of their full values rather 
than in changes from the reference condition. It is more convenient, therefore, 
to leave the equations in this form. 

Since the full values for the forces and moments have been left in the equa¬ 
tions the craft probably will not be in a trimmed condition at the reference con¬ 
dition but will stabilize out at some other attitude. 

Some caution is necessary when considering craft centre of gravity height 
above the sea surface. It is necessary to translate velocities into space axes 
before integrating to derive position. For example w may be integrated directly 
to give w the velocity of the craft along the instantaneous, or current direction 
of the craft o¿ axis, but to find the c.g. height, velocities must be converted to 
space axes. is is the parameter that is to be integrated in this case. 

Consider the craft to be moving in the xBzD plane with a constant velocity v 
directed along o^g away from a set of space fixed axes osxsy z which was co¬ 
incident with the moving axis system at time t 0? At time t, let 
oBXg make an angle 0 with osxs [Fig. (ii)| 

Figure (ii) 

The components of oB relative to os are 

X s V cos 

¿ s - V s in " . 

The acceleration in the zs direction is obtained by differentiating 

*s - V sin (■ - V cos (> 0 ; 

however, v o as v is stated to be constant. Therefore 

(28) 

(29) 

thus 

(30) 
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z„ - V cos (31) 

Consider now a point where the velocity of oB is parallel to 0sxs then o 
and zs v". Thus the body possesses an acceleration in the 0szs direction 
(centrifugal force) due to an impressed force, however, no acceleration is evi¬ 
dent in the body axis component zB. In the moving axis system (by definition) 
there is never any component of velocity (v) along onzB that is zB o, hence 

Note that no definition of displacement of oB is given with respect to its 
own axis. Distances quoted in body axes merely serve to locate parts of the 
body with respect to oB, To obtain displacements, velocity components in space 
fixed axes must be integrated. 

Euler's equations take all of the above effects into account, but to ensure 
that the results are interpreted correctly, it is recommended that the results be 
transformed into components with respect to space fixed axes. The reverse 
also applies and care must be taken when applying external forces to the craft. 
These have to be correctly resolved into craft axes before substitution into the 
equation of motion. 

The Normalised Equations 

In order to compare craft of various sizes it is convenient to normalise the 
various parameters in the equations of motion. If this is not done, then for two 
craft which were similar in design but different in scale size, a different trans¬ 
formation law would exist between most of the sets of equivalent parameters re¬ 
lating to the two craft. This comparison of results obtained for the two craft 
would require recognition of how each variable should scale in relation to changes 
in craft scale size. Scaling for the analog computer is also complicated if the 
equations are not normalised. Computers operate within rather a limited volt¬ 
age range so that changing the scale size of the simulated craft would involve 
changing the voltage scaling levels within the computer for most of the problem 
parameters. It is convenient, therefore, to make the parameters more or less 
independent of scale size. 

Satisfactory normalising can be accomplished by dividing each parameter 
by a reference value of that parameter to produce a set of nondimensional vari¬ 
ables, the reference values being selected according to the scale size or per¬ 
formance of the craft. Because differentiation in the equations is with respect 
to time, it is necessary also to scale the time variable. 

Four reference parameters are required for the hydrofoil equations repre¬ 
senting combinations of length, mass and time. They are: 

. = fluid mass density (slugs/cu ft), 

s = reference length (usually semi-span of selected foil in feet), 
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So = reference area (usually the area of the selected foil in sq ft), 

vo = reference velocity (ft/sec). 

The specific parameters required representing mass, time, and force are 
obtained from products or divisions of the four standard parameters. 

All inertias 

^ XX a 

Development of the Normalised Equations 

As stated earlier the forces and moments impressed on the craft are non¬ 
linear functions of craft position and motion. Expressions for these forces and 
moments in terms of hydrodynamic derivatives are subject to significant errors 
unless high order derivatives are used. Therefore all forces are derived for 
each foil element as functions of angle of attack and immersion depth. These 
are the simplest functions which can describe adequately the forces developed 
by each foil Thus for example, the foil lift c, at a depth h is c, ., h) , where 
1 18 the total angle of attack on the foil element due to all motions. That is 

' t°t íil ( !0 * i,]) r.-idi nns 

where 

n the reference angle of attack for a given foil in calm water, 

,i - the dynamic contribution to angle of attack and represents the angle 
between the longitudinal axis and the free stream direction, and 

h = the foil element normalised immersion depth. 

h and are derived as follows. Consider a foil element at a longitudinal dis¬ 
tance X and lateral distance ÿ from the craft c.g. Then it can be shown that 

'V. K. - X - l\v COS 

ho * 'hc.K. - x * .V. - iv (42) 

(assuming t os ,- i.o ), where 

hfoi I = the reference immersion depth of the foil [Fig. No. (iii)|, 

h, = the perturbation about the reference height due to heave of the com¬ 
plete craft, 
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li, J [w ~ ( 1 ■ n)] dt . (43) 

hw = the change in water height from datum at the foil (Note: h„ is given 
in space coordinates and has to be resolved into craft coordinates), 

= pitch angle of the boat, and 

. = roll angle of the boat. 

Note: for small angles the following assumptions can be made 

Sin radians 

Cos ^ * to 

Figure (iii) 

The expression for angle of attack is basically the differential of the above 
equation. 

>n * ~ * * ÿ'/ ■ cos '/) 

>0 + (W - Xf + y/ - 

for fixed forward velocity. 

(44) 
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For a varying forward velocity 

' V1 f '\,(l + û-ûw) (45) 

this expression is derived as follows. Consider the instantaneous velocity 

where 

n0 = reference or steady-state velocity, 

u = the perturbation of craft velocity, and 

i'w = the horizontal component of wave orbital velocity. 

Now 

Vi 
- (1..,-,,.) 

where 

- II 
II - 

II 
o 

uw 
u* - 

(the normalised velocity perturbation). 

Thus 

+ ^ 
V, 

+ y; - wj 

7 
o 

(w y; - wu,) 

aci 
( 1 + u - Uw) 

(46) 

Now steady lift L i 2 . UoJ So » f( .,h) and unsteady lift i 2 i<Uo * u)2s - f( .,h). 

Normalising is based on uo the steady-state reference velocity thus cL is 
normalised with respect to i 2 , Un2s and . w (U„ + m,. Therefore we have to 
consider the variation in the product V¡2 -: 
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Vf > lY’n-û -YY 
(1*U- U ) 

'o o< 1 ■ ' Y ’,1(1 * ÔJ • (47) 

For small perturbations in Û and ûu the u2 terms can be neglected thus 

1 -2(0 - iiw): t u0- .,, ( 1 * û - ûw) (48) 
2 2 V • • U 1 » o o 

Thus 

'0H + 2(û- ûw) + ',i(l + ô-ûw). (49) 

In the drag terms there is the expression V, Y This becomes 

V.2 .2 u 2 o n ’r' - >'J2 ho 4 
rl 

( 1 + U - uw)_ 

u„ Í '„( 1 + Û - ûu ) t .-,,1 2 

Sideslip angles are obtained in a similar manner to give 

- a (50) 

for fixed speed and 

t o t a 1 1 ' u " llu ) 

for varying speed. 

Only the expression for thrust remains to be derived before the final equa¬ 
tions can be written. Two effects need to be considered: (1) the effect of 
changes in throttle setting and (2) the effect of changes in water velocity at the 
propeller. 

Let k be the increment of thrust horsepower available for a given change 
in throttle setting, then the effect of a change in throttle setting can be expressed 
as 

T T0( 1 + k ) . (51) 

If thrust is assumed to be a function of local water velocity at the propeller 
when the throttle setting is constant, then an expression of the following form is 
derived. 

* 
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T 
( 1 + U - Uw)n 

Combining the above effects we have 

(1 4 lO 
a + u - uw)n 

( 1 4 k) 

1(1 4 II - 11)'1 J 

(52) 

(53) 

If we assume small perturbations (the above expressions will not hold for large 
speed fluctuations) expand the R.H.S. of the equation and neglect all but the first 
term in the binomial expansion 

( 1 I Û )n ( 1 4 nii ) 
n( n - In'2 
-(■ 

2! 

We have 

and 

T T0( 1 4 k ) [1 - n(u - ûw)] 

CT( 1 4 k ) [ 1 - - ûw)] 

(54) 

(55) 

The complete set of equations may now be written in the following normal¬ 
ised form: 

Normalised Euler Equations for Small Perturbations 

Linear Motions and Forces 

2 ¿ _ 

4 ■ V'2 so L" 2 o o 

„ r- ' , , - Side force „ [v 4 i, 1 4 u) . -4 c, ■/ 
1 V 2 S L" 2 o 

„ -., - ■] Lift force „ 
2.. [w - ( 1 + u) I---c. . 

1 v 2 e L„ 
2' Vo So 

(56) 

(57) 

(58) 

Angular Motions and Moments 

i 
Roll in K moment 

— V 2 S s 2 vo sos 
(59) 
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' Pi telling moment 
yy" i TTTZ 

2 Vo SoS 

Yawing moment 

\ Vo2 SoS 

Velocities Along Space Axes 

Xs ( 1 t u) eos . - V sin 

y s (1 ■ u ) sin . t V cos 

zs - ( 1 + up + w . 

(60) 

(61) 

(62) 

(63) 

(64) 

Equations (56) to (61) are required for the six degrees of freedom of the 
craft. Equations (62) to (64) are the relations between craft and space axes and 
are required for relating sea motion to craft motion. 

Hydrofoil Equations 

Basic Equations 

Heave 

Surge 

Pitch 

Sideforce 

Roll 

Yaw 

2h iw - ( 1 + u)] ~ CL - CL 

2 u + CL CT - [CD + CD j 
o o *■ n J 

2/iIv + V'( 1 + û i ] 

lxx' ^ r 'XI• ( yy ~ 1z z' 

^ n * 1X z ‘ *vv^' 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 
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ip" MW«!: 

Expanded Equations 

The expanded equations, including the expressions for the basic forces and 
variations due to speed perturbations are as follows: 

Heave 

2 .. Í w - ( 1 t ù ) ; 
K ) ’f) ' 'C') ’ " CLr(r)(l''(c))'(c 

'(L)] cos 1 (L) R (hR).(R)]cos : (R)- cL . (71) 

Surge 

Ct ( 1 + k )[l - n( u - uw)J 

Cd,f,(1ifi[i • ¡cl -r,„{F1)j-kDi *r,-, ,„(P)]J 

Cd< - >"'.■>[>' * ■' - c ,>] - kd, (Se)[ c)n..-, - r,„ 

Cdi(.><''L't1 • »=-.(., u, i] kDi , l,( r,(L,,L)(1, . ,-,w(L,,, ,,1|(, J * 

w(R), f d( K)] 
Cn, L> ».KMC'K'fl '2(Û-Ûw(R))] ^Cj(R)(h(R))[,lo(R)(1 

(72) 

Pitch 

1VV x( F ) I '-L ., p , ' "F ' ( F 

" XC-' [CL,(1 , * !lL ) ! ( L ) ] 1 os ' ( L ) + x(R) [c¿ 

■ CTJ 1 , k) [l- n( û ûMc)] /, Ti -c 

. ( R /hR) '(R)] l'os (R) 

ag ) 

D( R ) ( ( o , „I ,1f)^( F)( .Irag ) + Cm,/Il) ' Cn,/^(,))1 ' ( “ i xx ) / . . (73) 
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Sideslip 

2u\v + v(ltll)] Cy . F?niF) (F) ' cy,(. r Z11,' (c, 

LCL. , U ] sit' ‘(L) [CLl(R|fhR) '(Ri] sn (R) 

( CL ; . (74) 

Roll 

‘xx1’ v “ z( F) [Cy,(K ( F i ] z(c) [Cy.^/'V.-)) -(c)] 

V(L) [CLrl(L/hL>a(L)] ' V(R) [Cl-,( K)(h(R)>'(R)] 

[Ct’,(L)(llLü.r.) n ( L ) ( D ■ P • )] * [Cf'a(R)ih(R)(D-P- >)a(R)(DP->] 

+• i \¡¡ ^ ( \ - i ’i O X z ' 1 y y z z ' ■ (75) 

Yaw 

lzz'>! x( F) [Cyf,(F)(llF^(F)] + X(C) [Cy?(c)(llc^,(c)] 

‘(L) [CLmL)(IiI>(L)] sin ' (L) + X(R) [CLn(R)(lVa(R) ]sln 1 (R) 

+ c, 
( L)( tot al /(D + C 

D( R ) ( t o t n i ) ^ f R 1 
( i. i ) Js(> 

yy ' 
(76) 

Care must be exercised when applying these equations to a particular hydro¬ 
foil as it is possible to overestimate some effects such as damping in roll. If 
side forces, for example, are assumed to be derived from equivalent vertical 
struts which in fact have an appreciable dihedral angle then the roll damping 
may be overestimated. In some instances due to foil geometry the local velocity 
vector <}> z may be along the foil element and not normal to the foil as is implied 
in the above equations. 
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Forces and Moments 

In the case of the hydrofoil craft, if the foil system is considered as a 
whole, then the foil derivatives are usually functions of more than two dependent 
variables. However, if the foil system is divided into a number of elements, 
then for a particular foil element the lift, drag and side forces are a function of 
two variables only, the immersion depth and the angle of attack. These varia- 
™es™n be ol)tained at any instant, for a given foil element, and the forces along 
the three body axes continuously computed. The moments about the craft c.g. 
are then given by the product ot these forces and their moment arms about the 
e.g., the net forces and moments at the craft c.g. being obtained by a summation 
of the forces acting on the individual foil elements. These net forces and mo¬ 
ments when divided by the appropriate inertia coefficients then produce the lin¬ 
ear and angular accelerations that are required in the basic Euler equations of 
motion. M 

Derivation of Forces 

The basis for computation of the forces acting on a given foil or strut ele¬ 
ment is the lift-curve slope (cL,) together with the angle of attack on that ele- 
ment. The lift coefficient (cL) developed being a product of CL r and >. The 
lift-curve slope is a function of immersion depth (h) and aspect ratio (a) which 
also is a function of immersion depth when the foil element is surface piercine 
and is readily obtainable from Refs. 12, 17, 18, 19, 20 and 21. The angle of at¬ 
tack experienced by a foil is due to pitch and roll, yaw and heave rates together 
with wave orbital velocities, the actual angle of attack at any instant being de¬ 
pendent upon the free stream velocity and the respective distances from the 
craft c.g. in the x, y and z directions. 

Figure (iv) 
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For example consider a point on a surface piercing foil element as shown 
in Fig. (iv). The velocity normal to the foil element is 

Vt • [- (V • X, - z7 - Vw eos : - w sin ; ) sin 
ï I 

+ ( w - X • - V sin ; - w eos :) eos 1 (ft sec) . 
I 'l ■* 

(77) 

The angle of attack is 

V , 

IT 1 
The sideslip angle is 

V' 

afoil ’d 

( V 1 X / - z / - V, ( w - X + y / SIM :/.) - w cos / ) cosf 
(78) 

for small perturbations sin 0 an.J cos 7 1.0, u¡ U0. Therefore 

V X • z • vw\ . , /w X • y ■ Ww\ 

U f ur • " * ' l! ) Sln 1 Mu " U ■' + U p - (J-jfos 1 , 
OO O 0/ \o O 0 0 / 

V 

and 

but Un V, therefore 

Therefore 

'foil : '»o i [- (V + x/ - Z:/ - Vw) sin P + w - XI1 + yj, - ww) cos F ]. (79) 

Thus for left- and right-hand foil elements 
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I« 

m 

(L) ’d.»+ (v + Ñt)'- c'w(L)) ^nr',L)-(w-J(L/ty(L)1;-;W(i ) cos I . 
(I-)' <'.) 

(80) 

R ) 
(R) lo(R) (V ' X(R»- " Z(R)/" _ Vw(J Sln 1 (R) + (" - X(R) ■ + y,R) / - ) cos! . 

(81) 

11 will be seen from the foregoing that it is convenient to produce the net 
angle of attack normal to the foil element. cL, can be obtained for vertical 
forces or for forces normal to the foil. It is logical therefore to derive the lift 
normal to an element and to then resolve this into vertical and horizontal com- 
¡ídrnlV“ Pr(!dre lift and s;de ‘orces respectively. In this manner any di- 

of forces"616 and r011 angle * Can be int° account in 016 computation 

Derivation of Moments 

The moments about the craft centre of gravity are dependent upon the foil 

theT^ Fn?1*6 dlstribution and thus toe centre of pressure location relative to 
înH fhp'r f surface piercing foil the loading varies with immersion depth 

dent? tnf TrPanWlSe C'?-' haS t0 be derived as a function of the foil immersiot 
depth (h). A linear variation with h is usually sufficiently accurate. Chordwis! 
c p. movement is usually a negligible percentage of the distance from the foil 

ciorïposiSom ^ Can be aSSUmed fixed at th^ *>“ q-rter 

REGULAR AND RANDOM SEAWAY CALCULATIONS 

Regular Seas 

Simulated regular seas are an important aid to hydrofoil craft design. Thev 
are easy to produce and much useful data can be obtained. For example mar- 
m icahon factors can be determined for a realistic range of amplitude for each 
significant frequency as shown in Figs. 3 to 6. * h 

The regular seas to be simulated are usually decided by the frequency of 
encounter range which gives a significant energy input to the craft (Figs. 9 and 
11). Once the frequency of encounter is known then it is a simple process to 

üonlVtThe n thrr pa.rameters that are ^cessary for the sinusoidal wave simula¬ 
tion. The pertinent expressions for gravity waves are as given below. 

Frequency of Encounter 

2"f ' ( rad sec) (1) 

(rad sec). (2) 
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Wave Frequency 

Wave Length 

2"f (rad sec). 

A. lia 
2 

(ft). 

Wave Orbital Velocity 

(3) 

(4) 

2 'Z f 
O 

Z0w (ft sec). (5) 

Sinusoidal waves can be simulated by a second order system 

-z„ - + a2 z_ o o 

such that 

where t = time in seconds. 

Z. -+ Z„ cos ut 

(6) 

(7) 

The horizontal and vertical components of the orbital velocities with these 
waves are given by the following expressions: 

Vertical Component 

Horizontal Component 

sin < t 

Z cos û t . 

(8) 

(9) 
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The vertical component ww has a phase angle = 90 relative to the wave 
amplitude; the horizontal component uw has a phase angle 'l>u = 0 and is in 
phase with the waves. 

When there is more than one foil then there will be a phase lag between the 
forward and rear foil units. If we denote the forward and rear foils by the sub¬ 
scripts (f) and (r) respectively and the phase lag is •!> then we have the general 
expression based on 

2 L 
r adians 

where L = distance between front and rear foils (feet), 

cos ( t - i|>) cos .t cos <t> + sin t sin '1' (10) 

. sin ( - <t>) ■ sin . t cos '!> - ■ cos t sin <t> . (11) 

The equations for the wave and the orbital velocity components at the front 
and rear foils can now be written, viz: 

Wave Amplitude 

Z, R) Zn cos < 1 ''''(R)’ Zo COS 1 COS "’(R) 4 Zo sin » Sin "’(R) 

Vertical Component of Orbital Velocity 

(22) 

(23) 

w , - . Z„s i n t w, .. , o 
(24) 

Zo sm ( t-'i>(R)) -+.(Z0 sin t cos - z0 cos . t sin «F(R)). (25) 

Horizontal Component of Orbital Velocity 

11 « L. " Zn COS t (26) 

IIw R Z0 cos ( .’t-<t>(R;) . (Zo cos vt cos <1>(R) t Z0 sin t sin <I»(R)) . (27) 

The computer block diagram for simulating the above seaway is given in 
Fig. 7 for a front foil and a main foil, with the main foil split into three ele¬ 
ments, left foil, centre foil, and right foil, denoted by the subscripts (l), (c), 
and (r) respectively. 
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Random Seas 

At the beginning of the hydrofoil stability study, it was recognized that ex¬ 
clusive use of regular sinusoidal seas as forcing functions might be misleading, 
since they are hardly representative of actual seaway conditions. It was de¬ 
cided, therefore, to simulate a random seaway based on a mathematical model 
which is used successfully for wave forecasting purposes. 

The following subsections are contributed by E. R. Case (De Havilland Staff 
Engineer) who was responsible for the original analysis and si nutation of the 
random seaway for the hydrofoil study, and the subsequent spectral and statis¬ 
tical analysis of the computer and trials results. 

The random seaway 

The most obvious feature of a seaway is the almost complete lack of any 
consistent order or pattern to the wave motion, an observation which led to con¬ 
sideration of the seaway as a random process. By assuming further that the 
process was Gaussian, Pierson [23,241 derived a mathematical model based on 
a Fourier representation of random noise due to Rice [261, and the propagation 
properties of deep-water gravity waves. About the same time, Longuet-Higgins 
[221, using the Gaussian assumption, and the results of Rice's paper, derived 
the statistical distribution of wave heights for wave forecasting purposes. The 
remaining quantity required to complete the description of the seaway as a ran¬ 
dom process was the power spectrum, which was supplied by Neumann [271 on 
the assumption that the wave energy varied as the fifth power of the generating 
wind velocity. These results were successfully incorporated in a book published 
by the United States Navy [23] on practical methods of wave forecasting. 

On the basis of the above, the Pierson representation and the Neumann 
spectrum were assumed to characterize a seaway with sufficient accuracy for 
the purposes of the stability study. It was assumed further that a Neumann wind 
speed of 22 knots corresponds to a Sea State Five. 

A typical estimate of a seaway surface elevation probability distribution 
function is shown in Fig. 8. The linearity indicates normality out to over four 
standard deviations, which validates the Gaussian assumption for engineering 
purposes. 

Attention was restricted to the consideration of "sea" waves, which, as dis¬ 
tinct from "swell" waves, exist within a storm generating area due to the action 
of the local winds. Attention was further restricted to a seaway which had 
reached the fully-developed state, where a state of equilibrium exists in the in¬ 
terchange of energy between the waves and the wind. The fully-developed sea 
state is reached only when the generating wind has blown over a sufficient fetch 
and time duration [23l, and can be considered a stationary, ergodic random 
process. 

The Neumann spectrum applies only to the fully-developed seaway [28], and 
takes the form in the one-dimensional case, for f > o 
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(28) 

where f is the wave frequency in cycles per second, v is the generating wind 
speed in knots, and c, and c2 are constants. A typical wave elevation spectrum 
is shown in Fig. 9. 

Implicit in the description of the seaway as a stationary Gaussian random 
process is the assumption that the instantaneous surface elevation at any point 
results from the superposition of an infinite number of small sinusoidal compo¬ 
nents of different frequency, phase and direction of propagation. Analytically, 
the wave elevation can be expressed as a stochastic integral of the form 

(29) 
0 

where w f and <t>(. ) is a randomly chosen phase angle uniformly distributed 
in the range (o, 2: ). While this is not integrable in the ordinary sense, it can be 
expressed in the form of a Fourier sum (see St. Denis and Pierson). 

This representation can be extended to include the effects of distance by 
using the wave equation for transverse wave motion for each sinusoidal compo¬ 
nent. 

Thus, if X is the distance measured in the direction of the wind from a 
fixed point on the earth, the wave elevation can be expressed by 

(30) 

where 

n = wavenumber = oj/c - 2-rr/K, 

1 = wavelength in feet, and 

c = crest speed (wave celerity) in knots. 

If each of the small sinusoidal components is assumed to propagate as a 
gravity wave, then, in addition, 

The validity of this assumption has been confirmed by the general success of 
the wave forecasting methods based on Pierson's theory. The wave elevation 
can then be expressed by 
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Z(t X) - t ) y2-iyn df (31) 

Equation (31) can be differentiated to give what can be assumed to represent the 
vertical component of the water particle orbital velocity. Thus, 

(32) 
0 

where the spectral density for the vertical velocity is given by 

<iyh c 2?'f )2 't»z( f ) 

The hydrofoil ship in the random seaway 

The random seaway can be considered as a disturbance input to the hydro¬ 
foil craft. These inputs induce motions, which are not present in calm water, 
and which result from a combination of wave elevation, orbital velocities and 
the forward velocity of the craft. If the reference coordinate system is chosen 
fixed to the hydrofoil ship, then the effects of the seaway and craft velocities 
can be combined together to produce wave elevation and orbital velocity forcing 
functions which are functions of craft speed. This is accomplished by trans¬ 
forming the original seaway spectra by a change of variable to produce new 
spectra which are functions of frequency of encounter. 

To illustrate briefly, consider the coordinate systems as illustrated in Fig. 
10. The moving coordinate system is designated by primes. The coordinate 
transformation is then given by 

X x' + Vt anti Z Z' (33) 

where v, the ship speed, is defined to be negative in head seas. 

Substituting Eq. (33) in Eq. (31) gives 

Z( t, x ' ) = j cos ^ \/2<t>*( f '■) df ' 

where the frequency of encounter &>' is given by 

(34) 

(35) 

and the "transformed" wave elevation spectrum by 

(36) 
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an expression which is easily derived from the fact that the mean square wave 
elevation is unchanged by the coordinate transformation. The orbital velocity 
expressions are transformed in a similar fashion, and, along with Eq. (34), 
formed the basis for the simulation. An example of the effect of the transfor¬ 
mation on wave elevation spectra is given in Fig. 11. 

Simulation of the random seaway 

The basic method used for simulating the random seaway is common in 
analogue computer practice, and involves the use of suitable linear filters to 
shape the output of a random noise generator to obtain signals with the desired 
power spectra. The simulation was done entirely in moving coordinates, and 
thus all spectra were functions of frequency of encounter. In addition, the sim¬ 
ulation was done for constant craft velocity only, since varying velocity would 
require filters with changing characteristic frequencies and consequent extrav¬ 
agant use of analogue computer components. Head, following and beam seas 
were simulated for both the quarter and full scale hydrofoil craft for speeds of 
25 and 50 knots, respectively. 

The starting point for the simulation was the vertical velocity spectrum 
since, in sea coordinates at least, wave elevation is obtained therefrom by an 
integration rather than a differentiation. In moving coordinates, wavi elevation 
is obtained from vertical velocity by a "transformed" integration, the charac¬ 
teristics of which can be derived by considering the frequency response function 
of an integrator as a function of frequency of encounter. The frequency re¬ 
sponse of an integrator in sea or fixed coordinates is 

Dj) (37) 

where is the sea frequency. Using (35), the frequency transformation given 
in terms of frequency of encounter is 

1 i i/i '_K 
2 V ' g 

(38) 

Substituting (38) in (37) will give the frequency response of a "transformed" in¬ 
tegrator, thus 

2V g 

JT [l Í /1 - (4V/R) a.'] ' 
(39) 

It can be seen that I '( J ■ ’) has the same 90 phase lag for all frequencies as the 
ordinary integrator, but that the magnitude is quite complicated. While (39) is 
obviously non-realizable in the strict sense, it can be approximated over a 
range of frequencies by a combination of minimum arjd non-minimum phase net¬ 
works. The procedure was to first approximate the magnitude without regard to 
phase with a combination of first and second order filters, and then correct the 
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overall phase to approximate 90u over the frequency range by all-pass networks. 
Typical head and following sea transformed integrator frequency response char¬ 
acteristics are shown in Fig. 12. 

A block diagram of the head sea simulation is shown in Fig. 13. Notice that 
the transformed integration involved two all-pass filters, the difference in phase 
between them being such that the phase angle between w' and z' is 90u. 

Figure 14 shows the filter arrangement for following seas. Following seas 
present special problems since the transformed wave elevation spectrum can 
contain both following and head components for certain craft velocities; and in¬ 
deed also a steady value for that component whose crest velocity is equal to the 
craft velocity. Simulation for such a condition is clearly impossible, since the 
transformed integrator and foil separation filters would have to be approximated 
over an infinite number of decades in frequency. When the craft velocity is high 
enough, however, all significant frequencies become head components and a 
simulation is feasible. The simulation is similar to that of the head sea except 
for the all-pass filters which are required to supply the constant component of 
foil separation phase shift required. 

It should be noted that simulation of the effect of the separation between the 
foils cannot be accomplished by a Fade approximation to a pure delay. The de¬ 
lay is distributed, and nas a phase characteristic proportional to the square of 
the frequency. The foil separation filter required two second order all-pass 
filters to approximate the transformed phase shift over the significant frequency 
range of the vertical velocity spectrum. 

A second method of simulation, using a number of superimposed sinusoids 
of appropriate amplitude and frequency, was used for simulating following seas 
at the lower ship speed. The method was unsuitable for the other cases, how¬ 
ever, because of excessive demands on computing equipment to give a sufficient 
number of components to approximate a normal distribution. 

ANALOG COMPUTER SIMULATION TECHNIQUES 

Analog Simulation of the Equations of Motion 

As mentioned previously the lift-curve slope is the basis for computation of 
all lift forces active on the foils. This is simulated on a function generator in 
the analog computer. The diode function generator creates a sequence of 
straight lines that are connected together to form the desired function. Obvi¬ 
ously if a large number of segments are used then the function will be generated 
more accurately than if just a few points are selected. In practice about 8 or 9 
"break points” will simulate most lift curves with sufficient accuracy. For ex¬ 
ample consider the following lift curve fFig. (vi)]: 
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An arbitrary voltage scaling of 80 volts/per unit h and 10 volts per unit Cl , 
is assumed. The input to the function generator will be 80 h volts which gives 
an output of 10 Cl, volts. This voltage is then fed into one channel of an elec¬ 
tronic multiplier and multiplied by ( ?0+ ^,) to give C, as a voltage. CL is then 
subsequently summed with other voltage variables in the dynamic equations. If 
cL is equal to the weight of the craft (ClJ then the heave equation for example 
will be in balance and the output of the vertical acceleration integrator will be 
zero. This is of course an oversimplified example, but it does illustrate the 
basic procedure on the computer. A simplified circuit for the heave equation is 
shown in Fig. 15. 

Cavitation 

Cavitation and its effect on the craft dynamics is very important and must 
be jimuiated if a realistic representation of the hydrofoil motions is to be ob¬ 
tained from the computer. Cavitation gives rise to nonlinearities in the lift- 
curve for a given foil element. A typical example is shown in Fig. (vii). The 
angles of attack at which partial cavitation and eventually full cavitation occurs 
are a function of cavitation number and thus speed. The step in the curve and 
the CL at which the slope changes are a function of the lift-curve slope (cLa) 
which in turn is a function of immersion depth. The lift on a cavitating hydro¬ 
foil is obviously a complicated function to simulate. However, a reasonable ap¬ 
proximation can be made by simulating the lift as shown in Fig. 16 to produce 
the curve of Fig. (vii) b. 
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Ventilation 

Cavitation is unlikely to occur on foil elements at the slower foilborne 
speeds unless the foil angle of attack is very large (>10°). However, ventilation, 
which has a similar effect, can occur at any speed when a foil is surface pierc¬ 
ing or is close to the surface. 

The effects of ventilation have been simulated on the analog computer, but 
this proved to be an extremely complex problem requiring a large number of 
computing elements. 

The criterion for ventilation of a given foil element may be either the angle 
of attack (a) or the lift coefficient (cL). a was used in our simulation. In 
terms of a, at a given speed it was assumed that there exists a fixed value of 
a, (av, say) for which ventilation must occur if > av. Similarly, there exists 
an a stop (as), for which ventilation, if occurring, will stop when a < as. It was 
also assumed that if ventilation does occur, it will occur down to the first fully 
submerged fence, also, if is < a < <xv and if ventilation is occurring, it will 
cease if a fence goes through the water surface, either coming in or going out. 
The amount of lift (or rolling moment) lost due to ventilation is a fixed, but con¬ 
trollable fraction of the lift due to the affected portion of the foil which would 
have been calculated if no ventilation were assumed. 

a is continuously available in the simulation, therefore, it is possible to 
produce a circuit to subtract the correct amount of lift from the total for the 
given foil element. This, however, is not straightforward, as a function of the 
following form is required [Fig. (viii)]: 
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This function cannot be Produced ^efoTe^an "X-Y’^variplotter has to be 
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it is quite adequate to consider a fixed mean aspect ratio with the changes in 
circulation being considered as being subject to the same delay whatevf r the 
cause of change in circulation delay. 

Circulation delay effects become more marked at the higher aspect ratios, 
therefore, an aspect ratio value biased toward the high side was chosen so that 
the simulated effects would be more severe than in practice. An aspect ratio of 
6 was assumed using the data from Ref. 16. 

The results of response studies on a hydrofoil craft using the exponentials 
of Fig. 17 are given in Fig. 18. It can be seen that the effect of lift delay has a 
minor effect on the overall hydrofoil craft motions. 

Virtual Inertia (Added Mass Effects) 

Virtual inertia ’s usually considered as the inertia of the body of water that 
can be thought of as moving with the foils and which adds to the craft inertia 
when the foils are imparting an acceleration to the surrounding water. r”here 
are some instances, however, when the fluid mass opposes the craft inertia such 
as in a seaway when the body of water surrounding the foils may be imparting a 
disturbing acceleration to the craft. 

Some studies of this effect were carried out but the indications were that 
the effect on the craft motions was small, producing only minor changes in peak 
accelerations for the shortest and steepest seas (Fig. 18). 

As a result of these studies virtual inertia effects were neglected in all 
subsequent simulations. 

MODEL TRIALS 

General 

Predicted hydrofoil ship characteristics require verification by model tri¬ 
als, in a similar manner to the experiments usually conducted on conventional 
ship and aircraft models. 

For the hydrofoil ship, stability in a seaway is the major consideration, the 
measurement of model resistance and lift characteristics being important sec¬ 
ondary problems. 

For a new vehicle concept, it is essential to verify scaling laws and provide 
experimental proof of theoretical performance and stability predictions. 

The hydrodynamic design of the FHE-400 is supported by the results of a 
series of model trials, mainly carried out at the National Physical Laboratory 
and the Admiralty Research Laboratory in London, and at the Canadian Naval 
Research Establishment, Halifax, and the National Research Council in Ottawa. 
Initial trials to determine resistance and seakeeping were conducted by the 
Davidson Laboratory, S.I.T. in Hoboken, New Jersey. The model programme 
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consisted of a series of fourteen models of eight different sizes, ranging from 
1/25 scale to 1/4 scale. The model trials are listed in Table 1 together with a 
brief description of each model, its size and purpose, trials dates, and test 
facilities used. 

The model trials which have provided a direct input to the stability and 
control study are described below in greater detail. 

Table 1 
List of FHE-400 Model Trials 

Froude Scale 
Model Description 

Trials 
Dates 

Measurements and 
Observations Facility 

1/25 Scale Hydrofoil 
Ship 

Oct. 61 Displacement Performance 
Displacement and Foilborne 
Seakeeping. Hove-To Sea¬ 
keeping. 

S.I.T. 
New 
Jersey 

1/25 Scale Hydrofoil Sept. 62 
Ship Free Powered May 63 
Model 

Foilborne Seakeeping on all 
headings 

D.H. 
Ontario 

1/16 Scale Hydrofoil Apr. 63 
Ship Aug. 63 

Displacement Performance 
Displacement and Foilborne 
Seakeeping. Hove-To Sea¬ 
keeping. 

N.P.L. 
N.P. L. 
N.P. L. 
London 

Dec. 63 
Jan. 64 

Displacement Performance N.R.C. 
in Calm Water only Ottawa 

1/8 Scale Main Foil Nov. 62 
May 63 
Mar. 64 
Aug. 64 

Foil and Pod Pressure 
Distribution. 
Resistance, Lift, Yawing, 
Rolling and Pitching 
Moments. 

N.P.L. 

1/8 Scale Bow Foils 
Subcavitating and 
Superventilating 
Models 

1/8 Scale Coupled 
Model. 
Hull beam carrying 
main foil and bow 
foil 

Nov. 62 

Nov. 62 

Resistance, Lift, Yawing, 
Rolling and Pitching 
Moments. 

Foilborne Stability in Calm 
and Rough Water. 

N.P.L. 

N.P.L. 
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Table 1 (Continued) 
List of FHE-400 Model Trials 

Froude Scale 
Model Description 

Trials 
Dates 

Measurements and 
Observations 

Facility 

1/4 Scale RX Craft Oct.-Nov. 61 
Dec. 61 to 
Apr. 62 
May-June 62 
Aug.-Oct. 62 
Dec. 62 
Jan. 63 
Mar.-Oct. 63 
May-Aug. 64 

Foilborne Stability, Control 
and Seakeeping in Calm and 
Rough Water 

N.R.E. 

1/4 Scale Bow Foil 
for RX Craft 

Mar. 63 Resistance, Lift, Yawing, 
Rolling and Pitching 
Moments 

N.P.L. & 
N.R.E. 
Halifax 

1/12 Scale Main Foil 
2D Cavitation Model 

Dec. 63 
Projected 
Sept. 64 

Lift, Resistance and Pitching A.R.L. 
Moment for attached and Lorn.'an 
separated flow. 

1/12 Scale Bow Foil 
2D Cavitation Model 

Dec. 63 
Projected 
Sept. 64 

1/6 Scale Bow Foil 
Flutter Model 

Projected 
Sept. 64 

A.R.L. 

Hydroelastic Characteristics N.P.L. 

1/2 Scale 2D Main 
Foil Model 

Apr. 64 
Projected 
Oct. 64 

Wind Tunnel check of foil 
hydrodynamic character¬ 
istics 

N.R.C. 

1/16 Scale Power 
Pod Model 

Sept. 63 Pod Pressure Distribution N.R.C. 

1/16 Scale Hydrofoil Ship Model 

The model was tested at N.P.L. to establish resistance at hullborne speeds 
through the takeoff regime, in calm water and head and following seas. In addi¬ 
tion hove-to behaviour was investigated and measurements made at various 
speeds of heave acceleration and pitching rates, in various seas and gross 
weight conditions. 
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1/8 Scale Foil Models 

Bow and main foil models have been tested in the N.P.L. towing tanks at 
Feltham. Using special dynamometers provided by N.P.L., trials data included 
foil unit lift, drag, sideforce, pitching moment, yawing moment, and rolling mo¬ 
ment over a range oi Froude speeds and depths of immersion. Both subcavi- 
tating and supercavitating bow foil models were evaluated. The effect of bow 
foil downwash on the main foil was measured and found to be small. The main 
foil model was fitted with pressure taps at the centre section and power pod to 
obtain foil and foil to pod interference pressure distributions to verify theoret¬ 
ical predictions. N.P.L. developed a scanning valve to read up to 90 taps. 

Finally, the bow and main foil model were coupled to a beam representing 
the hull, free to heave and trim. The results of towing trials in calm and rough 
water were scaled up to 1/4 size and are shown in Figs. 5 and 6 in comparison 
with the predicted response of the 1/4 scale RX craft in sinusoidal seas. 

1/4 Scale Fully Cavitating Bow Foil Model 

The 1/4 scale bow foil was built for the RX manned model. The size of the 
N.P.L. towing tank and dynamometer provided the opportunity to compare the 
data from tank trials with the simulation and with the measured response of the 
RX test craft. 

1/4 Scale RX Craft 

The craft is owned and operated by the Naval Research Establishment of 
the Canadian Defence Research Board. The RX equipped with the 1/4 scale foil 
system designed and built by De Havilland weighs about 3-1/2 tons. The hull 
and forward boom are not representative of the FHE-400; neither is the propul¬ 
sion system, consisting oi a gasoline engine 'Vee' drive and single propeller. 
Because of the 'Vee' drive the hull clearance is only 2/3 of the FHE-400 design 
clearance. 

In addition to providing the craft and test crew, N.R.E. have fitted instru¬ 
mentation to record the following data: 

(a) Linear acceleration angles and angular rates at the C.G., vertical accel¬ 
eration at the bow foil. 

(b) Main foil lift, drag and sideforce and bow foil lift. 

(c) Main and bow foil element stresses through strain gauges. 

(d) Bow foil steering loads and helm angles. 

(e) Velocity, engine RPM and propeller thrust. 
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A 14 channel oscillograph paper recorder is used except when acquiring 
data for spectral analysis of response in a random seaway. This work requires 
a 7 channel FM tape recorder for craft motions and seaway characteristics, the 
latter measured separately at a moored wave pole. 

1/12 Scale Cavitation Models 

Two dimensional models of the main foil subcavitating section and the fully 
cavitating bow foil sections were tested at speeds up to 50 knots in the A.R.L. 
whirling arm facility. The lift, drag, and pitching moment data was obtained 
which verified the predicted cavitation limits for the subcavitating foil and the 
nonlinear characteristics of the supercavitating section. 

POWER SPECTRAL ANALYSIS 

It is necessary to use statistical methods in order to compare predicted 
and measured hydrofoil response in a random seaway. 

One suitable method is to compare the power spectral densities of the pre¬ 
dicted and measured data. This approach gives R.M.S. values and a measure of 
how closely the random motions approach a Rayleigh distribution. 

If Rayleigh statistics are assumed, then all the statistical characteristics 
are defined as shown in Table 2. 

Table 2 
Rayleigh Probability Distribution 

Peak amplitudes may be obtained using the following constants: 

The most frequent amplitude = 1.41 x R.M.S. value 
The average amplitude = 1.77 x R.M.S. value 
Average of highest 1/3 = 2.83 x R.M.S. value 
Average of highest 1/10 = 3.60 x R.M.S. value 

Strictly speaking, the Rayleigh probability distribution only ap¬ 
plies when the spectrum is narrow. 

Results from simulated and measured hydrofoil ship response in a random 
seaway indicate that most of the response variables have sufficiently narrow 
spectra so that their peak distributions are predominantly Rayleigh. For design 
purposes, such as defining the foil system fatigue environment, the assumption 
of Rayleigh statistics is considered adequate. 

Power spectral analysis has been used extensively in the FHE-400 design, 
for stress and fatigue life predictions, habitability requirements and equipment 
installation design. 
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The predicted and measured response of the 1/4 scale manned RX craft 
was used to verify the FHE-400 foil system design method. The motions of the 
RX craft in a 1/4 scale random seaway were recorded on magnetic tape which 
was then processed at the National Research Council Statistical Analysis Facil¬ 
ity in Ottawa. Power spectral densities of vertical acceleration at the centre of 
gravity, pitch angle, main foil lift and the seaway amplitude were obtained, the 
last measured at a separate moored wave pole. 

The theoretical dynamic stability simulation results were recorded on mag¬ 
netic tape and similarly processed at N.R.C. to obtain predicted power spectral 
densities. The correlation between predictions and measurement is presented 
in Figs. 19 to 25. 

Only head seas data is presented since following and beam sea motions are 
of lesser magnitude and low frequency, making them less suitable for statistical 
analysis and easier to compare visually. It has been found that sinusoidal anal¬ 
ysis is adequate for the study of motions in beam and following seas. 

HYDROFOIL SHIP STABILITY CHARACTERISTICS 

This paper summarizes the methods developed for the design of the 200 ton 
FHE-400 hydrofoil ship for the R.C.N. Since surface piercing hydrofoils are 
usually required to be inherently stable, some comments on particular problems 
are given. Longitudinal stability in pitch and heave is relatively easy to achieve, 
provided that lift discontinuities due to ventilation or cavitation can be avoided 
or minimised. Foil unit lift slope and heave stiffness can be optimized for head 
and following sea response. Following sea "takeoff” is not a problem with the 
canard arrangement discussed. Greater heave stiffness is required in following 
seas and some compromise between pitch and heave motions and accelerations 
is necessary. 

Open ocean operation requires a high ships' centre of gravity which com¬ 
pounds the problem of achieving inherent lateral stability. The six degree of 
freedom simulation revealed the need for roll stability augmentation of the 
FHE-400 at low foilborne speeds. This is achieved by rotating the main foil 
anhedral tips as "ailerons." At intermediate and high foilborne speeds, the an- 
hedral tips are fixed since they provide adequate restoring forces without 
change of incidence. The steerable bow foil gives positive directional control at 
all operational speeds, both hullborne and foilborne. While the ship can be 
steered "manually" at high speeds the simulation showed the need for a yaw 
damper to prevent heading drift. 

The relationship between full size FHE-400 motions and the motions of the 
1/4 scale RX craft are given in Table 3. 

Analog computer predictions of FHE-400 response in a random seaway are 
given in Figs. 26 to 33. 

Figure 34 shows the plan and profile views of the FHE-400 prototype ship; 
the bow foil and main foil units are illustrated in Figs. 35 and 36. 
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Table 3 
Relationship Between Model and Full Scale Response 

II Rs is the ratio between the craft reference lengths and Rv is the ratio 
between the reference velocities, then Rs Rv2 (Froude scaling). Thus 
when model response is shown in a particular seaway then the full scale 
motions relative to the model, in an equivalent seaway, are as follows: 

1. FHE-400 will experience linear motions Rs times those of the model. 

2. FHE-400 linear velocities will be ^ times those of the model. 

3. FHE-400 linear accelerations will be identical with those of the model. 

4. FHE-400 angular excursions will be identical with those of the model. 

5. FHE-400 angular velocities will be l/y§7 times those of the model. 

6. FHE-400 angular accelerations will be 1 Rs times those of the model. 

7. Events will happen l times as fast for FHE-400 than for the model. 

Further studies are continuing on detail stability and control characteris¬ 
tics, including hydroelastic effects, stability augmentation system response, and 
towed body effects. A control console has been installed with the analog com¬ 
puter equipment and allows anual" operation of steering, roll and throttle 
controls for realistic simulation of rough water operation, takeoff and landing 
and turning maneuvers. 

While it is hoped that the depth of the programme described will have en¬ 
compassed most of the problem areas, final proof will rest with sea trials of 
the prototype ship. 

SYMBOLS 

A = rolling inertia (slugs, ft2) 

B = pitch inertia (slugs, ft2) 

b = foil immersed span (ft) 

c = foil chord (ft) 

C = yaw inertia (slugs, ft ) 

D = operator d dt 

D = product of inertia (slugs, ft2) 

E = product of inertia (slugs, ft2) 

F = product of inertia (slugs, ft2) 
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f = wave frequency (cycles/sec) 

f ' = frequency of encounter (cycles/sec) 

R = acceleration due to gravity (ft/sec2) 

h = immersion depth (ft) 

I = integral operator 

in-) = frequency response of integrator 

lxx = rolling inertia (slugs, ft2) 

lyy = pitching inertia (slugs, ft2) 

I zz = yawing inertia (slugs, ft2) 

lxz = product of inertia (slugs, ft2) 

ixx = normalized moment of inertia (Ixx/>Ss3) 

iyy = normalized moment of inertia (lyy / Ss3) 

izz = normalized moment of inertia (lzz VSs3) 

izx = normalized product of inertia (Izx/pSs3) 

j = 

k = fractional increment of thrust horsepower 

Kd = induced drag curve slope dcD/da2 

L = rolling moment (Ib-ft) 

M = pitching moment (Ib-ft) 

m = mass = (W/fO (slugs) 

N = yawing moment (Ib-ft) 

0 = origin 

P = rate of rotation about x axis (rads/sec) 

p = rolling velocity (rads/sec) 

Q = rate of rotation about y axis (rads/sec) 

q = pitching velocity (rads/sec) 

648 

.WW.7 



Hydrofoil Motions in a Random Seaway 

q = dynamic pressure = 1/2 / v2 (Ib/sq ft) 

R = rate of rotation about z axis (rads/sec) 

r = yawing velocity (rads/sec) 

S = foil immersed area (sq ft) 

So = reference area (sq ft) 

s = semi-span = (b/2) (ft) 

t = time (sec) 

t* = b 2V = s V = ratio of ref. distance to ref. velocity 

t = t/t* = normalized time 

U = velocity along x axis (ft/sec) 

u0 = steady-state or reference velocity (ft/sec) 

h = perturbation in velocity along x axis (ft/sec) 

nw = horizontal component of wave orbital velocity (ft/sec) 

u( t.x) = horizontal component of wave orbital velocity (ft/sec) 

V = free stream velocity (ft/sec) 

vo = reference velocity (ft/sec) 

V = velocity along y axis (ft/sec) 

vw = horizontal component of wave orbital velocity (ft/sec) 

w = weight (lb) 

w = velocity along z axis (ft/sec) 

ww = vertical component of wave orbital velocity (ft/sec) 

w,'t, x) = vertical component of wave orbital velocity (ft/sec) 

X = longitudinal forces (along x axis) (lb) 

x = horizontal distance in sea coordinates (random seaway) 

x = longitudinal axis 

V = sideforce (along y axis) (lb) 
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y = lateral axis 

Z = vertical forces (along z axis) (lb) 

z = vertical axis 

z(t,z) = instantaneous sea surface elevation 

zw, zL, zR, zF = wave amplitudes (ft) 

> = angle of attack 

ao = steady-state angle of attack 

!(1 = dynamic angle of attack 

ß = sideslip angle 

[’ = dihedral angle (degrees) 

1> = roll angle in Euler equation 

<l> = phase angle (regular seas) (radians) 

«K f, X ) = spectral density of wave surface elevation (ft2/cycle/sec) 

<iy f) = Neumann power spectral density function (random seas) 
(ft2/cycle/sec) 

,/. = randomly chosen phase angle (random seas) (radians) 

; = roll angle (radians) 

/ = rolling velocity (d/. rft) (radians/sec) 

ï = rolling acceleration (d2/ dt2) (radians/sec) 

\ = wave length (ft) 

,. = nondimensional relative density parameter m/p sos 

, = fluid mass density (slugs/cu ft) 

T = integrator time constant 

4' = yaw angle (radians) 

a = angular rate (rads/sec) 

, = wave frequency (rads/sec) 

= frequency of encounter (rads/sec) 
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Coefficients 

cD = drag coefficient = Drag/qS0 

CL = lift coefficient = Lift qS 

CL = lift-curve slope = de,/da 

CL[ = lift-curve slope = dcL/dh 

Cp = rolling moment coefficient = L/qSb 

Cm = pitching moment coefficient = M/qSb 

Cn = yawing moment coefficient = N/qSb 

Subscripts 

( )o = steady-state or reference condition 

( ) F denotes front foil 

( )M denotes main foil 

( )L denotes left-hand side of main foil 

( )R denotes right-hand side of main foil 

( ) w denotes wave 
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Fig. 1 - Hydrofoil dynamic stability study 
simplified iterative design procedure 
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Fig. 2 - Variation of lift curve 
slope with aspect ratio 
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1 

ORIGINAL BOW FOIL 
NEW BOW FOIL 

1 

Fig. 3 - Pitch response 
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Fig. 4 - Heave response 
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Fig. 5 - Pitch response 
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Fig. 6 - Heave response 
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Fig. 7 - Typical sine wave generator circuit 
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PROBABILITY OF HAYE EXCEEDING A GIVEN VALUE - t 
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FREQUENCY ■ (cp.) 

Fig. 9 - Wave elevation spectrum 
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Z 

Fig. 10 - Coordinate transformation 
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Fig. 11 - Transformed wave elevation spectra 
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F • Fr*nt F»ll 

M • Main Foil 

Primo» • In moving coordinate» 

Fig. 13 - Head sea simulation 

Primo» • In moving coordinate» 

Fig. 14 - Following sea simulation 
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All of the equations are built up in this manner with 
the various inputs feeding into the summing amplifiers 
and integrators etc.. 

Fig. 15 - Simplified block diagram of heave equation 
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Fig. 17 - Exponential approximation to indiciai function 
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RESPONSE TO VARIOUS 

DELAY FUNCTIONS AND TO 

«TYPE VIRTUAL INERTIA 

IOC 

PAVE LENGTH 

Fig. 18 - RX craft — longitudinal heave/pitch only 
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Fig. 19 - RX sea trial No. 1 
wave elevation spectra 
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f ■ MA FREQUENCY 0« . FREQUENCY OF ENCOUNTER 

Fig. 20 - RX sea trial No. 1 vertical velocity 
spectra as derived from measured wave ele¬ 
vation spectrum 
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f 

0 •< •« t.J 1.4 2.0 

FREOUENC» OF ENCOUNTER f . CPS 

Fig. 21 - Comparison of transformed 
wave elevation spectra 
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0 .4 B 1.2 1.6 2.0 2.4 2.8 

FREQUENCY OF ENCOUNTER ■ 1'CPS 

Fig. 22 - Comparison of transformed 
vertical velocity spectra 
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frequency of encounter r cps 

Fig. 23 - Comparison of pitch angle spectra 
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FREQUENCY OF ENCOUNTER - f-CPS 

Fig. 24 - Comparison of center of gravity 
vertical acceleration spectra 
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Fig. 25 - Comparison of main 
foil lift coefficient spectra 
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Fig. 26 - Sample computer traces: 
sea wave traces —State 5 random 
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Fig. 2\ - Sample computer traces: RZOO at 50 knots following 
sea wave traces — State 5 random sea forcing functions 
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Fig. 28 - Sample computer traces: R200 at 50 knots beam 
sea wave traces—State 5 random sea forcing functions 
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Fig. 29 - Sample computer traces: head sea -R200 response 
at 50 knots to a State 5 random sea 

yn 
i % 

. 

ill 

680 



Hydrofoil Motions in a Random Seaway 

Hl AVI 
HOTIOH 
AT CC. 
F». 

TOTAL 
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ACCILN 
AT CC. 
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DISCUSSION 

H. D. Raiuenhofer 
Grumman Aircraft Engineering Corporation 

Bethpagc, Long Island, New York 

Generally, the paper is excellent, in that it presents a full and detailed pic¬ 
ture of De Havilland's work on the FHE-400 hydrofoil ship, in terms of the ap¬ 
proaches used and the results obtained. The thoroughness of the work is attested 
to, in part, by the extensive use of both fixed and free models in the development. 

The analysis in some respects, parallels that used at the Grumman Aircraft 
Engineering Corporation in our work in the hydrofoil field. 

It is interesting to note that the authors' conclusions as to the complexity of 
the craft equations of motion when using the method of small perturbations are 
identical to ours. 

Another item of significance is the use of the surge degree of freedom in 
the analog computer program. From the results obtained, it may be inferred 
that, for the foilborne cruising conditions, craft forward velocity can be assumed 
constant, thus eliminating the surge equation. For our work in the design and 
development of hydrofoil autopilots, this assumption was made. However, the 
surge equation is useful in studying takeoff a nd landing performance if hull lift 
and drag terms are included. A possible limiting factor here is the amount of 
analog equipment available; it was found in our work that the addition of the 
surge equation and associated terms required a 50% increase in a five degree 
of freedom analog program. 

A point of criticism is the omission of the lift and drag equations from the 
discussion of the approach using forces and moments. These forces comprise 
the major portions of the total force and moment terms, x, Y, Z, L, M, and N in 
Eqs. (1) through (6) and in our opinion would be of interest to others in this area. 

The frequency response charts form a valuable basis for performance com¬ 
parisons with other hydrofoil craft, but only if identical wave length-to-height 
ratios are used for ail craft, or if wave lengths are normalized to foil base or 
another suitable craft parameter. 

* * * 
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DISCUSSION 

A. Silverleaf 
National Physics Laboratory 

T editing ton, England 

This paper is probably the most thorough account yet available of the over¬ 
all development of the design of a seagoing hydrofoil ship of unorthodox and ad¬ 
vanced foil configuration. Among the many significant points which it r ises is 
the clear indication that fixed surface-piercing foils may yet have an important 
and useful role to play in such craft in spite of many recent statements to the 
contrary The authors have naturally emphasised the value of analogue computer 
studies in investigating the motions in a seaway of a craft of this kind. It is, of 
course, important to simulate correctly the performance characteristics of 
ventilated foils in such analogue calculations, particularly if the motions of the 
craft may cause ventilation to be intermittent, alternating with short periods 
during which the foils are either fully or partly wetted, in which case their force 
characteristics will be very different. 

Some of the early experiments at N.P.L. with a 1/8 scale skeleton model of 
the complete craft, free to heave and pitch, showed that intermittent ventilation 
of the bow foil unit could occur in certain sea conditions. In these circumstances 
there were disturbing differences between the analogue computer calculations of 
the craft motions and those measured on the large model in the high speed tow¬ 
ing tank at Feltham. However, when steps were taken by the authors to ensure 
that ventilation was continuous, the motions of the model were very considerably 
improved and there was then good agreement with the calculated values. This 
episode well illustrates the need to simulate the correct physical conditions in 
any computer calculations; if the hydrodynamics are incorrectly reproduced it 
is unlikely that useful conclusions will be obtained. 

The authors have pointed out that many of the model experiments have been 
carried out at N.P.L.; as mentioned in Table 1 these include not only measure¬ 
ments to determine hydrodynamic performance but some very unusual experi¬ 
ments to investigate hydroelastic characteristics. All these experiments have 
been and are being made as one aspect of a most interesting three-part approach; 
analogue computer studies in Toronto, trials with a manned craft in Halifax, and 
model experiments at Feltham have proceeded simultaneously and in parallel. 
It is I think fair to say that, particularly during the early development stages, 
each of these three approaches identified and resolved problems which at first 
sight appeared more than daunting. This comprehensive and thorough attack 
emphasises the need for such procedures if advanced high speed marine craft 
are to be successfully developed. 

* * * 
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THE BEHAVIOUR OF A 
GROUND EFFECT MACHINE OVER 

SMOOTH WATER AND OVER WAVES 

W. A. Swaan and R. Wahab 
Netherlands Ship Model Basin 

Wageningen, Netherlands 

ABSTRACT 

The results of tests on the over water behaviour of a flying model of a 
Ground Effect Machine are given and discussed. Over smooth water 
the effect of a variation in water depth was investigated. Over waves 
the variables were the wave length, height and direction, and the rise 
height. The effect of side wind was also considered. 

INTRODUCTION 

The information presently available on the behaviour of ground effect ma¬ 
chines over water is rather limited. See Refs. [1] through [8]. It is based on 
the experience gained with a few man-carrying prototypes and a number of 
model tests. The model experiments were in general conducted with a fixed 
model with the object to determine the static forces and the effect of the air 
cushion on the water surface. 

Additional information has been obtained now with a dynamically scaled free 
model of the SKMR-I "Hydroskimmer" in a model basin where various wave 
patterns were simulated. In order to avoid telemetering problems and energy 
storage in the model a towing carriage was used. The maximum carriage speed 
in the seakeeping basin of the N.S.M.B. is about 15 ft sec1. The service speed 
and size of the SKMR-I is such that a very small model would be required to use 
this carriage for the whole prototype speed range. In view of these problems it 
was decided to construct a 5 ft long model of the SKMR-I with a weight of about 
22 lbs. Equivalent speeds up to 35 knots could be attained with a model of this 
size. 

The N.S.M.B. was only concerned with the model tests, which have been re¬ 
ported in Refs. [9] and [10], and not with the design of SKMR-I itself. In this 
paper some of the most characteristic data are discussed. 
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GENERAL CONSIDERATIONS 

The model of the G.E.M. was tested in the Seakeeping Laboratory and in the 
Shallow Water Laboratory of the N.S.M.B. 

It would have been desirable to use a model with six degrees of freedom but 
that requires an autopilot in order to keep the model in its track. Because of 
weight considerations it was decided to be content with only three degrees of 
freedom for the model. In terms normally used in naval architecture they are: 
heave, pitch and roll. This restriction is only of importance for the behaviour 
of the model in oblique seas. 

In order to compensate for the lack of information caused by restricting 
some of the motions the exciting forces were measured for surge and sway to¬ 
gether with the yawing moment. 

The vehicle considered here proceeds over a free water surface, therefore 
the Froude number (vz/gE) must be the same for model and prototype in order 
to equalize the scale factors for inertia forces and gravity forces. The same 
rule must be applied in order to simulate the dynamic properties of the air 
cushion as shown by Tulin [4]. 

The Reynolds number is of importance in order to take into account the 
effect of viscosity. This has some effect on the flow around the vehicle in for¬ 
ward flight and for the behaviour of the jets. 

The fact that this Reynolds number is different for model and prototype will 
not be of importance for the frictional resistance because this will be small in 
comparison with the total drag. 

The jet flow will be highly turbulent in the actual vehicle. Because the 
Reynolds number of the model jets exceeds the theoretical critical value of 5500 
it is justified to assume the model jets to be turbulent as well. It is therefore 
expected that the flow around the model will be to a large extent similar to that 
around the prototype. 

Another aspect which had to be considered is the effect of surface tension 
which was clearly visible in the amount of spray generated by the jets. The 
surface tension will be primarily of importance for the energy needed for main¬ 
taining height. This aspect was not included in the program and therefore it is 
considered to be of minor importance that the Weber number necessary to en¬ 
sure similarity with respect to surface tension, is not the same for model and 
prototype. 

DESCRIPTION OF THE MODEL 

The 1/14 scale model of the SKMR-I "Hydroskimmer" was made of plywood, 
aluminum and plastic foam in order to provide for sufficient stiffness and 
strength combined with light weight. A general arrangement plan of the model 
is given in Fig. 1. 
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J 
-i 

WITH RIGID JET EXITS WITH FLEXIBLE TRUNKS 

SECTION C-C SECTION C-C 

Fig. 1 - General arrangement 

Table I gives some oí the principal characteristics of the "SKMR-I." It was 
equipped with four independently controlled cushion fans, driven by synchronous 
electric motors. The number of revolutions of the cushion fans could be adjusted 
by changing the frequency of the alternating current supplied to the motors. 

The cushion fans of the model were designed independently of the fans in the 
actual G.E.M. Therefore there is no relation at all between the numbers of rev¬ 
olution per unit time mentioned in this paper and the valuer for the actual vehicle. 
They should be considered as a parameter representing the power absorption. 

The model was tested with two different bottom configurations. The first 
one had rigid jet exits, in the second one the jet exits consisted of flexible 
trunks. Both are illustrated in Fig. 1. The flexible trunks were manufactured 
of a plastic covered fabric. The shape was maintained by means of air pressure 
provided by the jets. Propulsion screws, nozzles and control devices were not 
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Table 1 

Model with Rigid 
Jet Exits 

Model with Flex¬ 
ible Trunks 

Length, over all 65.3 ft 65.3 ft 

Length, air cushion 57.15 ft 57.15 ft 

Beam 26.8 ft 26.8 ft 

Air cushion area 108.7 ft 108.7 ft 

Total weight 58490 lbs 62500 lbs 

Centre of gravity 

above flat bottom 

forward of centre 
nozzle intersection 

5.08 ft 

0.53 ft 

5.50 ft 

0.53 ft 

Longitudinal radius of 
gyration 

16.19 ft 17.11 ft 

Longitudinal mass moment 
of inertia 

476400 659300 ft lbs sec2 

Transverse radius of 
gyration 

876 ft 8.92 ft 

Transverse mass moment 
of inertia 

139500 ft lbs sec2 154600 ft lbs sec2 

simulated. The forward speed of the model was provided by the towing carriage, 
r.'ll?,«0nhneChtTnbetween tl}e model and the towing carriage consisted of an appa- 

^ i * Tdel free to heave’ pitch and ro11- 11 enabled the measure¬ 
ment of these motions by means of potentiometers. The resistance, lateral 
MnH!iaandHyfaWlng moment were determined by means of strain gauge balances. 
Model and towing apparatus are shown in Figs. 2 and 3. 

in« ¡;he.testsithe weight distribution corresponded with the conditions of 
the actual which is shown in Table 1. 

THE TEST PROGRAM 

nnri ^ purpose °f the investigations was to get an insight into the behaviour 
and the torces working on the vehicle when proceeding over smooth water of 

foUowin^categoriesThe teSlS C0"dUCted may be divldcd ‘"to 

i 
» 
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Fig. 2 - Model and towing apparatus 

In the first instance the static and dynamic properties were investigated on 
the model hovering over smooth water and over land. For this purpose the 
static stability, the reactions of the model to an impulse and the relation between 
the rise height and the number of revolutions of the cushion fans were deter¬ 
mined. These tests were performed both on the model with flexible trunks and 
with rigid jet exits. Over the water the model appeared to be liable to self- 
induced roll pitch and heave oscillations when fitted with rigid jet exits. 

It was felt that the tendency to self-induced rolling would be inconvenient in 
an operational GEM. 

Moreover this phenomenon could obscure the effect of oblique waves on the 
motions. Therefore it was tried to improve the over water hovering behaviour 
of the model with rigid jet exits by minor structural changes in the bottom con¬ 
figuration by modifying the central jet effectiveness and the directions of the 
side jets. The model was tested also with varied radii of gyration. None of 
these modifications improved the roll behaviour very much. The increment of 
the radius of gyration, needed for a substantial reduction of the roll amplitude, 
was beyond the possibilities of practical application. 
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Fig. 3 - Model flying over shallow water 

The tests with the model flying over smooth water were conducted with the 
rigid jet exits of original shape. 

The model fitted with flexible trunks was liable to self-induced roll oscilla¬ 
tions only and the amplitudes were smaller compared with the model fitted with 
rigid jet exits. For this reason the tests in waves were executed with flexible 
trunks only. 

Flying over smooth water the resistance and the motions of the model were 
investigated as a function of the water depth. 

The behaviour of the vehicle proceeding over waves was investigated on the 
model flying in several directions over regular deep water waves of various 
lengths and one height. The effect of variations in the wave height, rise height 
and trim was investigated for wave directions and wave lengths which appeared 
to be the worst for the model. 

Most of the tests were conducted on the model having zero trim at zero 
speed, with the four cushion fans adjusted as to keep the differences between the 
numbers of revolutions of the fans as small as possible. In the trimmed condi¬ 
tion the numbers of revolutions of the fore and aft cushion fans differed in order 
to give 1 ft difference in height between the bow and stern. The numbers of 
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revolutions given in the diagrams are average values of the four motors, scaled 
up for the actual vehicle. 

Finally the model was tested flying over beam seas with a 15 knots wind 
coming from the same direction as the waves. This wind was generated by some 
fans mounted on the towing carriage. The number of revolutions and the direc¬ 
tion of these fans were adjusted in such a way that at 28 knots the resultant wind 
speed and direction had the correct values. 

The speed range in which the vehicle was investigated was limited by the 
maximum speed of the towing carriages of the Seakeeping Laboratory and of the 
Shallow Water Laboratory. They enabled measurements up to speeds corre¬ 
sponding to 35 and 22 knots respectively. Unfortunately these are considerably 
lower than the maximum speed of the actual vehicle. 

THE RECORDED DATA 

The Figs. 4 through 14 are graphical representations of the most charac¬ 
teristic data recorded. The given values apply to the actual vehicle. 

Motions, forces and moments are in general characterized by a mean value 
and a periodic oscillation round that mean. The periodic oscillations are shown 
as double amplitudes. The mean values are given as the difference with respect 
to the stationary condition with the cushion fans off. 

In Fig. 5 the number of points determined during the hovering tests did not 
justify the fairing of curves. Therefore the actual test results are indicated. 
The curves in the other figures are the result of fairing or cross fairing. The 
number of points available for fairing depended on the investigated speed range. 
Over a speed range from 0 to 35 knots generally about 12 runs at various speeds 
were made. For a speed range from 20 to 35 knots about 6 points were con¬ 
sidered to be sufficient. 

In general the test results appeared to be reproducible in a satisfactory 
manner. However, the lateral force and yawing moment showed a rather large 
scatter. This was caused by torsional vibration in the towing apparatus. The 
natural frequencies of this instrument combined with the model were in effect 
not high enough for the wave experiments, especially at higher speeds. 

The vertical motion of the centre of gravity is designated as heave. The 
mean value (rise height) over land is the distance between the ground and the 
flat bottom. Over water it is just the difference in height with respect to the 
floating condition in still water. 

The mean pitch angle (trim) is considered positive with the bow down. Roll 
is positive when starboard side is down. 

The wave direction was defined as the angle between the velocity vectors of 
the vehicle and the waves, positive when counterclockwise. 

The motions are shown in degrees and inches. The forces are given in 
metric tons (2205 lbs) which are about equal to long tons (2240 lbs). 
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Fig. 4. Motion extinction and transverse stability curves, 
2580 fan revolutions per minute 
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Accelerations are given with the acceleration due to gravity (32.18 ft/sec2) 
as unit. They were measured at the bow and stern of the model, in the longitu¬ 
dinal plane of symmetry. 

The resistance over waves was only determined as an average value. 

HOVERING PERFORMANCE 

When hovering over land the model provided with flexible trunks or rigid 
jet exits was stable in pitch, roll and heave. The motion extinction curves are 
given in Fig. 4. Because of the rapid extinction it is difficult to draw definite 
conclusions. However, the results indicate that the heave and pitch motions 
were well damped. The roll damping may be qualified as fair. 

Over water, the hovering behaviour of the model provided with rigid jet 
exits was characterized by a sustained roll and heave oscillation, apparently 
caused by a dynamic unstability. The rolling developed fairly slowly. It took 
about two cycles to double the amplitude. The model appeared also to be dy¬ 
namically unstable in pitch, but to a less degree than in roll. 

The most remarkable phenomenon found during the tests was that the model 
with rigid jet exits had two modes of motion, one of which always prevailed. 
Which of the two dominated during a test depended partly on the initial disturb¬ 
ances to which the model was subjected. The model might roll considerably 
while pitching slightly or it might pitch considerably while rolling was only 
moderate. At the lower hovering heights the model showed a preference for the 
mode of motion in which rolling was dominant. The Figures refer to this con¬ 
dition. The behaviour described here is illustrated in Fig. 5. 

It was found that if the centre of gravity of the model was fixed at the same 
mean rise height which the model had when it was free to heave, the roll motion 
remained. This gave rise to the supposition that the origin of the roll motion 
could be explained by considering the uncoupled equation of motion. When the 
roll angle is indicated by p, this equation is: 

M’p + N<¡> + B'p - 0 . 

Because the roll damping was not too large, the roll period may be approximated 
by 2 •• v'M B. 

The coefficient B is a measure for the static stability. The measurements 
indicate that the value of B is larger for the vehicle hovering over water than 
over land. This is in contradiction with the experiences of Kuhn, Carter and 
Schade [5]. The natural roll periods over land and over water were almost equal. 
This leads to the conclusion that the virtual moment of inertia if the model hov¬ 
ering over water was larger than hovering over land, which is acceptable. 

The origin of the roll motion could possibly be explained by a non-linearity 
in the damping coefficient N, caused by the presence of the free water surface 
under the air cushion. A complete investigation into the cause of the dynamical I 
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unstability would require the execution of forced roll and heave experiments 
over a range of frequencies and using various base pressures. Such an investi¬ 
gation was not included in the present research. 

When fitted with flexible trunks the model in the over water hovering condi¬ 
tion only suffered from self-induced roll oscillations, with amplitudes smaller 
than when the jet exits were rigid. The heave and pitch damping seem to have 
increased also, in spite of the enlargement of the air cushion by means of flexi¬ 
ble trunks. 

Comparison of the extinction curves over land and over water learns that 
the heave and pitch damping is larger over land than over water. The natural 
periods of these motions were smaller over land. 

FLYING BEHAVIOUR OVER SMOOTH WATER 
AND OVER LAND 

The behaviour of the model with both rigid jet exits and flexible trunks was 
quite satisfactory over land. It was dynamically stable in roll, pitch and heave. 
It skimmed smoothly over the ground with no appreciable change of trim at 
speeds up to 20 knots. 

Flying over smooth deep water, rolling decayed with increasing speed. The 
motion returned above the hump speed and it decayed again with further increase 
of the forward speed. In shallow water the picture was the same. This behav¬ 
iour is shown in the Figs. 6 through 9. 

The resistance curves had their highest hump at speeds between 10 and 12 
knots, corresponding with Froude numbers between 0.40 and 0.45. These are 
speeds for which also the highest specific wave resistances of ship hulls are 
found. Apparently the water depth did not largely affect the speed where the re¬ 
sistance showed the highest hump. It affected primarily only the height of the 
hump. 

BEHAVIOUR OF THE MODEL PROCEEDING 
OVER REGULAR WAVES 

The natural periods of the pitch, heave and roll motions at zero speed lie 
between 1.8 and 2.5 seconds. It is reasonable to assume that these quantities do 
not change much with increasing speed. So the speed range and simulated wave¬ 
lengths assure that in many cases the period of encounter was equal to the natu¬ 
ral period. 

Figure 10 shows only slight humps in the curves of the pitch and heave am¬ 
plitudes. This indicates that these motions were well damped. The curves of 
the roll amplitude have a hump at the speed for which the period of encounter is 
expected to be about equal to the natural period. This picture of the dynamic 
properties is in accordance with that obtained from the motion extinction curves 
of the model hovering over smooth water. In these conditions the motions are 
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Fig. 6 - Flying behaviour in smooth deep water, 
2580 fan revolutions per minute 
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Fig. 7 - Flying behaviour in smooth deep water, 
2580 fan revolutions per minute 
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— SPLEL' 'N KNOTS 

Fig. 8 - Flying behaviour over land and in smooth shallow water, 
2580 fan revolutions per minute 
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Fig. 9 - Flying behaviour over land and in smooth shallow water, 
2580 fan revolutions per minute 
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to a large extent proportional to the exciting force and moment for heave and 
pitch respectively. So the largest pitch amplitudes were expected in waves of 
about the air cushion length. The experiments showed that the largest ampli¬ 
tudes occurred when the waves were slightly longer. 

With regard to the wave direction, it was found that pitch, resistance and 
accelerations were the largest in head seas as appears from Fig. 11. Conceiv¬ 
ably, the roll motion, lateral force and yawing moment were maximum in beam 
seas. The worst condition for the model appeared therefore to be a bow sea 

Fig. 11 - Effect of wave direction at 30 knots, wave height 2 feet, 
2580 fan revolutions per minute 
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because the resistance and vertical motions were still considerable while com¬ 
bined with the lateral force and yawing moment occurring in oblique seas. 

The effect of a variation in wave height is shown in Fig. 12. It indicates 
that an increment of the wave height increased the motion amplitudes and re¬ 
sistance about proportionally. At higher speeds, however, the amplitudes of the 
lateral force, yawing moment and accelerations forward increased more than 
proportionally. The accelerations aft were hardly affected by the wave height. 
The effect of the wave height on the mean values of the lateral force and yawing 
moment was small in comparison with that on the amplitudes. For small differ¬ 
ences the rise height increased with increasing wave height. If the increments 
exceeded a certain value the rise height remained constant. 

Fig. 12 - Effect of wave height and side wind, wave direction 90° 
(beam sea), 2580 fan revolutions per minute 

708 



5
M

E
N

T
 
O

f 
'N
 

F
T
 ’

O
N

S
 

- 
—

—
 f

 ^
C

M
 
A

N
G

L
E
 

'N
 
D

E
G

R
E

E
S
 

-
 

»
 

H
E

A
V

E
 

IN
 

IN
C

H
E

S
 

Behaviour of a Ground Effect Machine 

Figure 13 learns that the resistance, the pitch and heave amplitudes de¬ 
creased when the rise height was increased by means of higher fan revolutions. 
The accelerations were therefore expected to be lower at larger flying heights. 
This appeared to be true except for the accelerations forward in bow seas. 

When the cushion fans were adjusted in such a way that at zero speed the 
vehicle was trimmed by head or by stern, the character of the behaviour did not 
change very much. 

Comparison of Fig. 14 with Fig. 10 shows that heave and pitch amplitudes 
are lower in both trimmed conditions than at even keel. At speeds over 30 knots 
the resistance increased with trim by the head and decreased when the vehicle 
was trimmed by the stern. At lower speeds this was reversed. 
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Fig. 13 - Effect of rise height. Wave direction 135“ (bow sea), 
wave height Z feet. 
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The effect of a beam sea combined with a side wind was investigated for a 
speed of 28 knots only. The measured data are given in Fig. 13. It shows that 
the effect of a side wind was very small. 

CONCLUSION 

With regard to the behaviour of the vehicle the following general conclusions 
may be drawn. 

The design with rigid jet exits proved to be dynamically unstable over water 
especially in regard to rolling. Minor changes in the jet exit arrangement could 
not remove this difficulty. The installation of flexible trunks, however, improved 
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the behaviour considerably. Although it is expected that the dynamical unstabil¬ 
ity is caused by non-linear damping this could not be established with certainty. 
The weight of the model was such that the base pressure during the experiments 
was higher than in the actual design condition. 

The resistance over smooth water showed a maximum in the speed range 
between 9 and 14 knots depending on the water depth. The highest resistance 
hump in shallow water was about 50% higher than on deep water. 

The pitch and heave motions of the model proceeding in regular waves 
showed the character of well damped systems. The behaviour was apparently 
worst in bow seas of about vehicle length or somewhat longer. 

With increased cushion power and resulting larger rise heights the motions 
and resistance showed a tendency to decrease. 

At high speeds the resistance could be reduced considerably by trimming 
the vehicle by stern. In this condition the motions decreased as well. A side 
wind seemed to have only a minor effect on the behaviour of the vehicle. 

The measured data did not show many unexplainable trends and in general 
the results could be reproduced within reasonable limits. An exception must be 
made for the yawing moment and sway amplitudes which records were rather 
blurred by high frequency noise. 
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DISCUSSION 

W. A. Cragc 
Saunders-Roe Division of Westland Aircraft Limited 

Wight, England 

For reasons of commercial security it is relatively rare for practical data 
obtained on models of full scale hovercraft to be published and I personally 
would like to say that I was, therefore, very pleased to see this excellent paper 
by Mr. W. A. Swaan and Mr. R. Wahab. 

This is all the more interesting to me because in the Saunders-Roe Tanks 
we spend a fair proportion of our time testing hovercraft. 

We now have full scale area model test results for the Nl, N2, N3 and 5 full 
scale variants of the N5 (these are craft ranging in weight from 7 to 37 tons) and, 
with this background, I can confirm that the type of test reported in Mr. Swaan's 
paper, using dynamically scaled free models, can give results which correlate 
acceptably well with data obtained in the full scale regime, although as a result 
of our experience we would prefer not to use a model quite so small as the 
N.S.M.B. Hydroskimmer because of scale effects in the jets. 

The N.S.M.B. model test philosophy, in which the propulsion oropellers are 
not represented is, I feel, acceptable except in cases where the propellers can 
affect the flow into the fan intakes. The way in which the fan intake flow is rep¬ 
resented is important because the intake flow geometry determines the moment 
arm at which the momentum drag acts. This moment affects the crafts running 
trim and this in turn affects the drag. Correct representation of the intake flow 
is thus essential. 
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fnn ,Mtr- Swaan’s Paper presents results obtained in regular seas. We have 
nrneîi S 10 ^ environment of only limited usefulness and it is now our 
“T hovercraft tests whether for ourselves or customers in ir- 

tn f mg euergy SpeCtra based on a Darbyshire formulation modified 
in Tr full scaíeetr"als ^ COnditions with which we have to deal 

\Ve have found good agreement between the derived amplitude response 
seaTeÏtÏuD^Vse acce¡.erations obtained from irregular sea tests and regular 
vond th s r fPPMhJ0 Î18 associated with a wind of Beaufort force 5 but be- 
y d this, 1 feel that irregular sea testing is essential because of the non¬ 
linearity of response. 

A further point which is perhaps worth mentioning is that we have used mo- 
then<SlnCth0n CU.rVes similar to those given in Mr. Swaan's paper, together with 
Intin hC charactenf1CS and a fairly simple wave impact theory as inputs to an 
mntin^16 <\omputer’ this work we have found that we can predict the model 
Zl fTu accelerations and the effect of pitch control systems, steering sys- 

UaeS’ etCV t0 a Very accePtable degree of accuracy at least in regular 
waves and irregular waves up to a Beaufort force 5 wind. ^ 

(This work has been published by my colleague, Mr. J. Stafford as a paper 

™ ,rei‘^LSthlo„Ty °f In“ TC“ JU"e> 1963 a"d ^ 

tng aetlaS. 'ST' 
does this agrees precisely with our own findings and the way in which the cor¬ 
responding resistance varies is also generally similar. 

in connection with the presentation of the data, I would like to see values 

wUhnother datrmentUm ^ ThÍS W°Uld facilitate analysis and comparison 

In closing I would like to make a further small cr iticism. It is a pity the 
test points have not been shown in Figs. 6 to 9. I feel the curves have been 
fu6u~Sm00thed and that there should be almost a discontinuity for example in 
depth 6 CUrVeS at Froude numbers between 0.3 and 0.6 depending on water 

* * * 
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DISCUSSION 

R. F. Lofft 
Admiralty Experimental Works 

Gasport, England 

This paper represents a useful addition to the published literature on the 
behaviour of hovercraft over water. It illustrates the difficulty of testing 
models of such light, high-speed craft in normal ship model tanks. It is gener¬ 
ally impossible to fit equipment in the model to measure all the motions of in¬ 
terest, and the arrangement adopted by the authors to permit heave, pitch and 
roll, and to restrain the model in yaw, sway and surge seems a reasonable 
compromise. 

Turning now to several points of detail: 

(1) The two diagrams at the bottom of Fig. 4 show that, with rigid jets, the 
righting arm is much greater over water than over land, while with flexible jets, 
the difference is much less. No reason can be seen for this and it would be in¬ 
teresting to have the authors' comments. 

(2) The results of the shallow water tests in Fig. 8 show a marked peak in 
the resistance curve at 12 ft depth. It is interesting to note that this occurs at 
the critical speed for this depth, viz. 11.7 knots. The same does not appear to 
be true for the other two depths tested, at which the critical speeds are 4.7 
knots for 2 ft depth and 19 knots for 32 ft. 

(3) Figure 10 gives the results of tests in waves with flexible trunks, in 
which the mean rise height is given as 25-30 inches. This is nearly 10 inches 
less than the corresponding figures for still water, from Fig. 6. This is some¬ 
what surprising, since the wave tests show the mean rise height to be independ¬ 
ent of wave length, and one would therefore expect it to be about the same as in 
still water. 

(4) The authors suggest that the maximum pitch amplitude would be ex¬ 
pected to occur in waves of about air cushion length. This is true of normal 
ship speeds; but at higher speeds, e.g., in model tests of fast planing craft, it 
has been found that maximum pitching generally occurs in waves of 2 - 2-1/2 
times model length. This is consistent with the results in Figures 10 and 11 in 
which the greatest pitch occurred in waves 105 ft long - nearly twice the air 
cushion length. 

* * * 
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REPLY TO THE DISCUSSION 

W. A. Swaan and R. Wahab 
Netherlands Ship Model Basin 

Wageningen, Netherlands 

It is gratifying to have Mr. Crago's comment on the test results berau<îP nf 
is experience both with models and actual hovercrafts. The small size of the 

model was necessary because of the maximum available carriaae sDeed o“" 
w,se n would certainly have been desirable to use a bigger 3 The of' 
regular waves was selected in order to obtain an imprllsion about the transfer 

Moreover the wave generator in the Seakeeping Laboratory is not 
suitable for the generation of irregular long crested oblique waves It is true 
however that the use of irregular waves is to be preferred m many respects 

srarnnHit"'10"5 ^ t0 be made ior the PerIormance in a given area where the 
sea conditions are known. Because the air flow for the jet system was not 
measured the momentum drag can not be determined from the experiments 
However Fig. 8 gives the total resistance when flying over concrete Because 
of the negligible trim, resistance must be mainly momentum Sag. 

ih* ¡° Mr' Loíít's ostión about the effect of the flexible trunks on 
the difference between the stability over land and over water it must be re¬ 
marked that the cause of this phenomenon can only be found when measurements 

em íoss ciu^d hrtShS“mn"?hWal,er surf?cc “nder the '"hiele. The en- 
the resis Jnce nf S» r r5T? iUrtaCe *aves is not “"‘V compensated by 
fo!f ft l 1 H f th GEM but also by the air cushion. This can be shown bv the 
fact that no wave resistance” will be found notwithstanding the visibility of 

constant ^Therefore of kept h0rl20"tal- prOT‘dad that?he kept constant. Therefore it is the opinion of the authors that coincidence of maxi- 
mum resistance with the critical speed is not physically nec“y 

In the conclusions it is mentioned that pitch angles are the largest with 
waves of about vehicle length or somewhat larger while Mr.“m Ses that 
he diagrams show a maximum at about double the air cushion length. However 

íLnetThïtTs had n° maximurn Pitch angles would occur at reso- ’ 
nance, that is a wave length of 175 ft at the speed of 30 knots in bow seas. 

if ?! maximum under these conditions occurs in much shorter waves 
it is clear that damping is rather large. Therefore the pitch angles are much 

re mar k^baut the effe^ 7™ m(;me^than by the frequency of encounter. The 
remärk about the effect of wave length or pitch must be considered in this lieht 
although it is admitted that the expression "about air cushion length' was g ’ 
stretched somewhat too far. ë 

* * * 
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BEHAVIOR OF UNUSUAL 
SHIP FORMS 

E. M. Uram and E. Numata 
Stevens Institute of Technology 

Hoboken, Neiv Jersey 

INTRODUCTION 

Four years ago, almost to the exact date, the Third Naval Hydrodynamics 
Symposium, constituted and attended by many of the gentlemen participating in 
this symposium was held at Scheveningen in the Netherlands; a short skip, gur¬ 
gle, or flight from here, depending upon which unusual high performance ship 
one chose to use. Almost the entire symposium was devoted to discussions on 
the nature and problems associated with high performance ships. The papers 
of Mr. Owen Oakley [1] of the United States Navy Bureau of Ships, Dr. Van 
Manen [1] of the Netherlands Ship Model B sin, and Dr. Breslin and Professor 
Lewis [1] of our own laboratory, at that time pointed out many of the design and 
operational problems attendent with the unusual ships shown in Fig. 1. Their 
relative power and seakeeping behavior were discussed based upon reasonable 
analytical estimates, or very limited experiments. A substantial number of the 
other papers presented at that symposium and at other subsequent meetings of¬ 
fered information concerning the performance and limitations of hydrofoil craft, 
planing craft, and OEM's, We will not reiterate these arguments at this time, 
but just point out that the prime objective is the attainment of high speeds in 
rough seas while maintaining reasonable horsepower requirements and reducing 
the well known severity of motions in seas at high speeds. 

We will be concerned in this discussion primarily with unusual surface or 
sub-surface vessels in the 3,000 ton displacement class at speeds in the vicinity 
of 40 to 50 knots, although we will discuss the behavior of these ships over the 
entire speed range. The design philosophy of unusual form surface ships such 
as the Large Bulb Ship (Escort Research Vessel) and the Semi-Submerged Ship 
(Decks Awash Ship) is such as to change the pitching and heaving periods so that 
the ship will operate in sub-critical or super-critical zones of operation as de¬ 
fined by Professors Lewis [2] and Mandel [3]; operation conditions in which the 
ship is not in resonance with the encountered wave system. The shallow running 
submersibles like the Shark Form and Semi-Submarine take advantage of the at¬ 
tenuation with depth of wave system effects. However, the single surface pierc¬ 
ing strut of these ships makes them unacceptable from a stability and control 
point of view. The Hydrofoil Semi-Submarine, Fig. 2, is a design conceived by 
the senior author [4] affording inherent stability in this ship type. The stability 
referred to is defined as the ability of the vessel with controls fixed to seek and 
return to its initial trim, depth, and c irse after being disturbed from these 
conditions. 
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2 

fL*BGE-BUL> 8HII»> 

1 SEMI-SUBMERGED SHlF» 

^ 1 1-1 
1 SHARK FORM > ^ > 

I SEMI-SUBMARINE > 

Fig. 1 - Ship forms for high speed at sea 

The Third Symposium was a major impetus which propagated substantial 
investigative work into the performance of these unusual ship forms. The Bu¬ 
reau of Ships and the Office of Naval Research supported an extensive program 
to obtain information concerning the performancs of these unusual ship forms. 
A substantial investigation of the characteristics of the Shark Form was con¬ 
ducted at the Massachusetts Institute of Technology by Professor Mandel [5] and 
his associates in a relatively low speed range. It gives us pleasure to say that 
a substantial amount of work was done at our own Davidson Laboratory on the 
Semi-Submerged Ship [6], the Large Bulb Ship [7] and the Hydrofoil Semi- 
Submarine [8]. Professor Mandel [9], acting as a consultant and member of the 
Panel on Naval Vehicles of the National Academy of Sciences' Committee on 
Undersea Warfare, published a primarily analytical, exhaustive comparative 
study of novel ship types from which we will draw from time to time. It is of 
general interest to note at this point that Professor Mandel's study of endurance 
and pay load indicates that the pay loads for all of the ship types that we will 
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Fig. 2 - Hydrofoil semi 
submarine 

discuss today in the 3,000 ton class are very much competitive in the 2,000 mile 
endurance range at a cruise speed of 20 knots. 

It is mainly our purpose in this paper to present comparisons of the several 
unusual form ships based upon experimental information accumulated to date. 
First we will take up the powering characteristics of these ships in both calm 
and regular sea conditions and then go on to the motion characteristics under 
these same conditions. It is of interest to point out that most of the results we 
will present on the Hydrofoil Semi-Submarine and Large Bulb Ship are relatively 
new and have not been discussed widely. Therefore, we will dwell in some de¬ 
tail on some of the characteristics of these two particular ships. 

SPEED AND POWER BEHAVIOR 

The resistance characteristics of the Large Bulb Ship with the forward bulb 
in various positions was investigated in the course of the study. As shown in 
Fig. 3, the results for residual resistance are given for the various bulb posi¬ 
tions, as well as for the bare hull, and it is seen that the most forward bulb 
position results in substantial residual resistance reductions from the bare 
hull as well as the other bulb positions over the speed range. It was this for¬ 
ward bulb position that was used during the remainder of the study on ship mo¬ 
tions. 

In order to establish the existence of an optimum form for the semi¬ 
submarine hull, a study was made of streamlined body of revolution character¬ 
istics in which it was discovered that in the high speed range, Froude number 
in the vicinity of unity, the residual resistance coefficient of such bodies run¬ 
ning near the surface can be considered to be approximately 25% of the deeply 
submerged frictional resistance coefficient. Therefore, it was necessary only 

i 
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Fig. 3 - Residual resistance comparison for various 
large bulb ship configurations 
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to study the deep submergence frictional characteristics in order to determine 
whether there indeed exists an optimum form in the design Froude number 
range. Figure 4 indicates for such bodies the specific horsepower (EHP per 
ton of displacement) as a function of speed, fineness ratio and body length. 
Since for each set of fineness ratio curves the velocity is constant and the 
abcissa used is body length, it is possible to associate a Froude number with 
that velocity and body length. Therefore, a Froude number scale is superim¬ 
posed on the abcissa of the figure. We see from Fig. 4 that there does indeed 
exist for, say, a 3,000 ton vessel an optimum fineness ratio of 5. This was used 
in the design of the Hydrofoil Semi-Submarine. 

We will dwell a little further on the Hydrofoil Semi-Submarine in order to 
acquire a proper interpretation of the information to be presented subsequently 
for comparison with the other ships. A substantial part of the tests performed 

Fig. 4 - Specific horsepower (streamline bodies of 
revolution at deep submergence) 
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on the Hydrofoil Semi-Submarine were such that the ship was free to surge, pitch 
and heave; the variable ballast, hydrofoil flap and stem plane angles being set 
for an equilibrium ship trim attitude at the design depth and run speed. During 
the runs the model exhibited excellent stability and sought its own running 
equilibrium trim condition for the speed of the run. Therefore, the ship depth 
and trim attitude, in many cases was different from design conditions or from 
those used in the tests conducted under restrained motion conditions. Figure 5 
shows the pitch and heave equilibrium attitudes of the Hydrofoil Semi-Submarine 
in calm water and we see that the assumed trim angle of the vessel varied 
around the design equilibrium trim angle of zero degrees. We see, also, that 
the submergence depth of the vessel varied around the design depth of approxi¬ 
mately 1.5 diameters below the surface. Figure 6 shows the corresponding 
calm water total resistance coefficient as a function of Froude number. Also 
shown for comparison are results obtained from the restricted motion tests at 
the design depth for various trim angles. The calm water resistance coeffi¬ 
cient plot is, therefore, quite realistic; representing what might actually be en¬ 
countered under operational conditions while the other curves give much lower 
resistance coefficients under absolutely ideal conditions. The calm water re¬ 
sistance coefficient was used in the calculations of horsepower requirements. 

Figure 7 depicts the mean equilibrium attitudes of the Hydrofoil Semi- 
Submarine in regular waves. Not all of the data are presented here, but enough 
are presented to give an idea of the range of conditions encountered. Figure 8 
and Fig. 9 show the total resistance coefficient as a function of Froud number 
for this ship under regular following waves. We see that there apparently is no 
discernible difference in the drag coefficient with respect to the height of the 
wave system in 1.0 L waves, whereas in wave lengths twice the ship length a sub¬ 
stantial difference exists between the resistance coefficients for different wave 
heights. Further, spotted onto these figures is the calm water resistance curve. 
In both figures we see that the resistance coefficient in regular following waves 
is higher than the calm water resistance, particularly for the wave height to ship 
length ratio of 1/22.5. 

These resistance coefficients and resistance coefficients taken from Van- 
Mater's [7] data for the Large Bulb Ship, Lewis’ and Odenbrett's [6] for the 
Semi-Submerged Ship and Davidson Laboratory data for a conventional destroyer 
were used to calculate the horsepower requirements for the calm water and vari¬ 
ous regular sea conditions. The standard calculation method for EHP was em¬ 
ployed with the exception that a 30% increase in the Schoenherr skin friction co¬ 
efficient was applied to the Hydrofoil Semi-Submarine to account for the skin 
friction contribution of the main hydrofoil system and stern planes. This is 
reasonable and in keeping with knowledge of the additional frictional resistance 
experienced in normal submarines due to the sail, fair water, and stern planes. 
Figure 10 gives an EHP comparison of the various unusual form ships and the 
conventional destroyer in calm water. We see that up to 30 knots the power of 
the Hydrofoil Semi-Submarine is substantially higher than the other three ships, 
whose powers are comparable, because the Semi-Submarine experiences its 
maximum wavemaking resistance in this speed range. Between 30 and 40 knots 
all three unusual ship forms are better than the conventional destroyer. At 40 
knots and above the Hydrofoil Semi-Submarine is substantially better than the 
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Fig. 5 - Pitch and heave equilibrium attitudes calm water 
(hydrofoil semi-submarine) 
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Fig. 6 - Cr vs Froude number motion tests in calm water 
(hydrofoil semi-submarine) 
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Fig. 8 - CD vs Fronde number regular 1.0 L waves 
(hydrofoil semi-submarine) 
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Fig. 9 - CD vs Froude number regular 2.0 L waves 
(hydrofoil semi-submarine) 
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Fig. 10 - Effective horsepower comparison calm water 

other ships; the conventional destroyer is next best, followed by the Semi- 
Submerged Ship and the Large Bulb Ship, in that order. The Shark Form would 
be higher than all of the ships over the entire speed range. 

Figures 11 and 12 present an EHP comparison in regular waves. As in 
calm water, the Hydrofoil Semi-Submarine shows to best advantage at speeds 
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0 10 20 30 40 30 

SHIP SPEED, KNOTS 

Fig. 11 - Effective horsepower comparison 
regular 1.0 L waves 
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Fig. 1¿ - Effective horsepower comparison regular 
2.0 L waves 

above 35 knots, while the Large Bulb Ship generally has an advantage at speeds 
up to 35 knots. 

MOTIONS BEHAVIOR 

Professor Mandel's calculations [9] on the critical speed zones of operation 
for various sea states having a Neumann spectra are reproduced, in part, in 
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Figure 13, critical speed zones correspond to severe motions, wet decks, and 
slamming while sub and supercritical zones correspond to very moderate mo¬ 
tions and intermediate zones to motions intermediate between the two extreme 
conditions. A complete analysis of this figure is given in Mandel's paper. It is 
of interest for our purposes to examine the major differences in zone extent pre¬ 
dicted for these unusual ships and, further, to remark that these results of an 
idealized analysis are supported to a large extent by the available regular sea 
data. The destroyer is seen to be sub or supercritical in all following seas 
while the Semi-Submarine enjoys these conditions for all ahead seas and following 

í; 
à 
5 

? 
7 

125 

250 

500 

1000 

2000 

£ EMI- SUBMERGE 

“T.. 

) SHIP-DEEP DRAFT 

i— 

i 
T. 

1 
1 

L_ L ±J 

Fig. 13 - Operation zones in rough seas for several unusual ships 
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seas up to about 15 knots. It is interesting that the analysis correctly infers 
increased heave activity for the Large Bulb Ship. The figure indicates that re¬ 
duced motions at high speed can be expected from all the unusual ship forms. 

For particular speed ranges, Mandel investigated the extent of each zone 
area relative to the entire plot area for a given speed range. Figure 14 was so 
constructed and gives a more direct comparison of the various ships although 
the probability of a sea state occurrence is not included. It is seen that the 
Semi-Submarine is superior in the narrow, low and high speed ranges of 0-20 
knots and 40 to 50 knots as well as over the entire speed range, 0-50 knots. 

Motions data, mostly in regular seas, for these ships, the pertinent dimen¬ 
sions of which are given in Tables 1, 2 and 3, have been obtained at the Davidson 
Laboratory. Figure 15 shows results for regular 1.0 L head waves. Substantial 
pitch reductions are realized with both the Large Bulb and Semi-Submerged 
ships above 10 knots and heave reductions realized above 20 knots. The detun¬ 
ing transfers the severe motions to the low speeds, as predicted. Figure 16 
shows that in 2.0 L waves pitch reductions are obtained above 20 knots but both 
surface type unusual ship forms encounter more severe heave motions over the 
speed range than does the destroyer. Results in irregular seas for the Large 
Bulb Ship, Figure 17, show pitch reductions at high speed but substantial heave 
increases are incurred. 

40- 50 KNOTS 

SLENDER SHIP 

LARGE BULB 

SHIP 

SEMI SUBMERGED 

SHIP 

SEMI SUBMARINE 

Lauta 
critical zone □ PERCENT 

INTERMEDIATE ZONE □ PERCENT 

sue OR SUPER CRITICAL eone 

Fig. 14 - Extent of operation zones relative to entire operation range, op¬ 
eration range: State Z to 7 head and following seas, 0 to 50 knots 
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Table 1 
Hydrofoil Semi-Submarine Principal Data 

Length 
Maximum Diameter, ft. 
Displacement 
L.C.B. (fwd of midship), ft. 
V.C.B. (above body axis), in. 
V.C.G. (above body axis), in. 
G.B., in. 
Radius of Gyration (Long.) 
Surface Area, sq. ft. 

Ship *- ( A = 45)—* 

168.75 
33.75 

2,720 tons 
7.8 
9.45 
3.6 
5.85 
0.22 L 

13,000 

Model 

3.75 
0.75 

65.3 lbs. 
0.1733 in. 
0.21 
0.08 
0.13 
0.22 L 
6.55 

Hydrofoil (NACA 16-009) 
Chord, ft. 
Span (wetted @d/D = 1.5), ft. 
Aspect Ratio (planform) 
Dihedral Angle, degrees 
Area (wetted), sq. ft. 

15 
79.0 
5.26 

35 
-2,760 

Horizontal Stern Plane (NACA 
16-009) 

Chord Ft. 
Span, ft. 
Aspect Ratio 
Area (wetted), sq. ft. 

15 
33.75 
2.25 

22.5 

(20% flap) 0.33 
1.755 
5.26 

35 
-1.38 

0.333 
0.75 
2.25 
0.50 

Vertical Stern Planes (NACA 
16-009) 

Chord, ft. Top 
Bottom 

Midspan, ft. Top 
Bottom 

Area (wetted), Top 
Bottom 

Aspect Ratio Top 
Bottom 

10.75 
15.0 
11.25 
10.60 

120 
157 

1.045 
0.707 

0.239 
0.333 
0.25 
0.236 
O.ObO 
0.0785 
1.045 
0.707 
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Behavior of Unusual Ship Forms 

Table 3 
Shark Form Principal Data 

Ship Model 

Length, ft. 
Maximum Diameter, ft. 
Displacement (Total) 
Radius of Gyration (Long.) 
Wetted Surface (Total) sq. ft. 
Pitch Period, sec. 
Heave Period, sec. 
Strut Length, ft. 
Strut Maximum Beam, ft. 
Hull Prismatic Coefficient 
Strut Prismatic Coefficient 
Hull and Strut Offsets 

235 
32 

3,000 tons 
0.17 L 

26,000 
21.3 
13.4 
14.05 

1.405 
0.60 
0.6C 

see refere 

4.0 
0.571 

56.6 lbs. 
0.17 L 
8.21 
2.5 
2.0 
2.5 
0.25 
0.60 
0.60 

nee 5 

l° 15 20 25 50 55 40 45 50 

SHIP SPEED.KNOTS 

Fig. 15 - Pitching and heaving motions in regular 1.0 L waves 
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Fig. 16 - Pitching and heaving motions in regular 2.0 L waves 
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Uram and Numata 

iptr 

i k 

I 
Shark Form motion behavior with varying wave length in following regular 

seas, obtained at Massachusetts Institute of Technology, over a very limited 
speed range, 0 to about 10 knots (F = 0.30) is given in Fig. 18. Although, as 
Mandel points out, the behavior for F = 0.1 is suspect, the behavior at the other 
Froude numbers gives insight as to influence of wave length on the motions for a 
given operating speed. 

The pitch response of the Hydrofoil Semi-Submarine in 1.0 L and 2.0 L regu¬ 
lar waves is presented in Figs. 19 and 20, while the heave response is given in 
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Behavior of Unusual Ship Forms 

Fig. 19 - Pitching motion in regular 1.0 L waves 

Fig. 20 - Pitching motion in regular 2.0 L waves 

Figs. 21 and 22 for 1.0 L and 2.0 L waves, respectively. An interesting comment 
is in order here concerning the nature of the response. As will be noted, the re¬ 
sponse data in ahead seas of the other three ships also shown on the figures for 
comparison, have similar characteristics in that the response reaches a peak 
under critical conditions and then falls off. However, the response of the Hydro¬ 
foil Semi-Submarine contains two peaks instead of one. It was found that for the 
condition where the ship speed exactly equalled the wave celerity in overtaking 
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Fig. 21 - Heaving motion in regular 1.0 L waves 

seas, the ship locked in" with the wave pattern and experienced no pitch or heat 
ing motions. It is unfortunate, or fortunate, depending upon how one views the 
situation, that the model natural frequency and wave-exciting frequency, as well 
as the model speed and wave celerity correspondence occurred roughly at the 
same operating condition. In irregular seas, this condition can be expected to 
occur but would be of importance only if the wave with celerity correspondence 
is that wave having a major contribution to the ship excitation. 

Figures 19 and 20 indicate that the pitch response of the Hydrofoil Semi- 
Submarine is indeed critical, as theory predicts, in following seas in the veloc- 
i y range between 10 and 25 knots. The pitch amplitude response is somewhat 
larger thrni the destroyer, but only slightly larger than the Large Bulb Ship and 
the Semi-Submerged Ship in their respective critical ranges. In 2.0 L waves 
the Hydrofoil Semi-Submarine in its critical region has a substantially higher 
pitch response to the wave system than any of the other three ships. However 
it must be pointed out that, whereas in surface vessels very little can be done ’ 
to control or alleviate the situation because of their inherent very large longi¬ 
tudinal metacentric height and large wave exciting moments, such is not the 
case for the Hydrofoil Semi-Submarine. The very small longitudinal metacentric 
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height and exciting moments of this type ship afford a great advantage. It would 
be no problem, with a relatively simple control system, to activate the main foil 
flaps or the stern plane to counter these motions. Quite possibly, control by 
manual adjustments of the control surfaces may only be required as the motion 
picture records indicate the pitch frequency to be quite low. 

Figures 21 and 22 present the heave response for 1.0 L and 2.0 L regular 
waves. Beyond doubt, it is seen that the heave characteristics of the Hydrofoil 
Semi-Submarine are far superior to any of the ships with which it is compared. 
Since this ship has an extremely small water plane area, its natural frequency 
in heave relative to the excitation from the wave system would be very near 
zero (practically that of a submarine). The heave characteristics, therefore, 
are more dictated by the hydrodynamic forces resulting from the pitch variations 
of the ship, its change in proximity to the free surface and the effect of the wave 
system on vertical force and pitching moment induced upon the ship due to its 
proximity to the surface, as forcing functions. As indicated, through prudent 
design this ship concept can be made quite stable relative to the hydrodynamic 
forces and moments on the ship and large heave motions can be avoided. 

Fig. 22 - Heaving motion in regular 2.0 L waves 
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Fig. 23 - Heave double amplitude/ship diameter in 1.0 L waves 
(hydrofoil semi-submarine) 

Fig. 24 - Heave double amplitude/ship diameter in 2.0 L waves 
(hydrofoil semi-submarine) 
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Behavior of Unusual Ship Forms 

Fig. 25 - Comparison of heave (C.G.) accelerations in regular waves 

Finally, in Figs. 23 and 24, it is of interest to show the heave amplitude re¬ 
lationship to the ship diameter for the Hydrofoil Semi-Submarine since it is of 
importance that this ship traverse a limited corridor in the vertical plane. 
These figures show that for either wave condition and for various wave heights 
the ship rarely can be expected to traverse, above or below its equilibrium run¬ 
ning depth, distances greater than 3% of the ship's diameter. 
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Part of the acceleration data obtained by VanMater [7] is shown in Fig. 25. 
It is seen that in 1.0 L regular waves the unusual surface ship forms are supe¬ 
rior to the destroyer, while in 2.0 L regular waves they offer greater acceler¬ 
ations. No acceleration data was obtained for the Hydrofoil Semi-Submarine, 
but, as we will see, a study of the motion picture records indicates the pitching 
motions are of low frequency, resulting in relatively low pitch accelerations. 

It has been our pleasant task to attempt to collect and summarize the work 
done on unusual ship forms and realizing the inadequacy imposed by space and 
time limitations, we hope we have furnished an up-to-date balance sheet to aid 
those interested in possible application of the unusual ship form concepts. 
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DISCUSSION 

E. V. Lewis 
Webb Institute of Naval Architecture 
Glen Cove, Long Island, New York 

This paper presents results oí an interesting and important investigation 
into a possible means of obtaining higher speed in an air-breathing near-surface 
ship. This ship shows superior resistance characteristics in comparison 
with other ships at speeds above 35 knots, in both smooth and rough water. The 
ingenious hydrofoil strut design provides an excellent solution to the problem of 
stability in a vertical plane, enabling the craft to maintain constant depth below 
the surface. 

An interesting feature of this hydrofoil semi-submarine is its motions in 
waves. Its long natural periods of heaving and pitching result in "supercritical" 
conditions of operation for all head seas. It is only in astern seas that large 
motions are experienced, and since the periods of encounter are very long, ac¬ 
celerations must be low. It thus appears clear that such a craft would be an 
excellent complement to a more conventional type of surface craft: the former 
would be able to make high speed in head seas and the latter in astern seas. 
Operational studies should be made to evaluate the effectiveness of pairs of 
such ships working together in A.S.W. and other naval missions. 
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A SURVEY OF SHIP MOTION STABILIZATION 

Alfred J. Giddings 
Bureau of Ships 
Washington, D.C. 

and 
Raymond Wermter 

David Taylor Model Basin 
Washington, D.C. 

ABSTRACT 

A brief historical review of significant developments in stabilization is 
presented. Some recent investigations in roll are discussed followed 
by a survey of the progress and potentialities of pitch stabilization. 
The important differences between pitch and roll stabilization are ex¬ 
amined, and the reasons for the greater difficulty of the former are 
discussed. Since pitching, relative to rolling is not a sharply tuned 
resonant phenomenon, large magnitude moments are needed to develop 
appreciable effects. Model test results are presented to indicate the 
degree of stabilization possible and the vibration problem associated 
with bow fin installations is examined. The effects of configuration, 
platform area and aspect ratio are also mentioned. 

INTRODUCTION 

Stabilization of ship motions can be considered in a very broad sense, or in 
a narrow sense. In the broadest sense, consideration should be given to static 
stability, motion amplitude and controllability in each of the six degrees of free¬ 
dom of rigid body ship motions. A more narrow view might consider only the 
limiting or prevention of one of the motions. It is the aim of this paper to strike 
a middle ground, recognizing that there are significant and undesirable motions 
in all six degrees of freedom, but expanding only on those of particular interest. 

It is advisable to define what is meant by "stabilization" in this paper. Py 
this is meant the deliberate limiting of a ship motion caused by waves, which 
motion is otherwise stable. With this definition, automatic steering of a direc¬ 
tionally unstable ship, or of a stable ship in calm waters are only of passing in¬ 
terest while the more obvious cases of pitch and roll "stabilization" in a seaway 
are of definite interest. 

A cursory examination of the literature on ship motions and stabilization 
reveals some interesting trends. The principal interest of those writing on 
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prediction of ship motions has been in the longitudinal plane, while in contrast, 
the writers on motion stabilization have been more interested in the lateral mo¬ 
tions. This may well be due to the almost linear and seemingly manageable na¬ 
ture of pitch and heave motions which attracts theorists away from nonlinear 
rolling and turning problems, while the highly commercial nature of roll and 
course stabilization has attracted inventors and engineers. 

The paper will provide a brief survey of the state of the art in stabilizing 
the motions of translation, course keeping, roll stabilization and pitch stabiliza¬ 
tion. The latter of these is to be the subject of a more elaborate discussion. 

SURVEY OF THE ART 

Translatory Motion Stabilization 

The deliberate stabilization of translatory motions of conventional ships has 
very little technology or theory to survey. While it could be said that mooring 
problems are problems of stabilization and control of lateral translation, the 
process of mooring is more an art in the classical sense than in the scientific 
sense. 

Shipboard devices which affect lateral motion directly include bow thrusters, 
vertical axis propellers and right angle drives. The application of these devices 
to conventional ships has been for purposes other than "stabilization," as de¬ 
fined in this paper. 

In the case of submarines, hydrofoils, and ground effect machines, the con¬ 
trol of vertical translation has received a great deal of attention, but this subject 
would warrant an extensive survey of itself, beyond the scope of the paper. 

It should be recognized that the physics of ships is such that pitch and 
heave, yaw and sway, and roll and sway are so strongly coupled that control or 
stabilization of the angular partner of each couple inevitably affects the other. 
The effect on translatory motion is a by-product of the angular stabilization, 
rather than a deliberately sought objective. 

Translatory accelerations on the order of one-tenth of gravity are not unu¬ 
sual. In order to have significant direct effects on such motions, control forces 
on the order of 5 to 10 percent of the ship weight would be needed. Generation 
of such forces by direct means is impracticable. 

Yaw Stabilization 

Stabilization or control of yaw is the most ancient of stabilization problems. 
It is actually not vital that a ship be stable in yaw, but it is vital that it be con¬ 
trollable. Provision of adequate stability and controllability for ships is such 
an obvious necessity, that years of tradition and experience provide useful de¬ 
sign rules. References 1 and 2 provide useful information on the selection and 
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design of rudders. The many Naval Architecture text books also offer practical 
methods leading to design of directionally stable and controllable ships. 

There have been analyses of the forces and moments in yaw exerted by a 
seaway, especially Refs. 3, 4, 5, and 6. The inherent stability on course of 
ships is discussed in Ref. 7, and the automatic control of directionally unstable 
ships is treated in Ref. 8. The general subject of automatic steering control is 
treated in Refs. 9 and 10. Additional references on the subject are [11] and [12]. 

In general, yaw stabilization or course-keeping has been in the province of 
commercial developments. The devices and methods used are largely proprie¬ 
tary, and their success is evident from their widespread use. Even without 
automatic systems, the control of a well designed ship in a seaway is well within 
the capabilities of skilled men. 

Roll Stabilization 

General Discussion 

All ships are stable in roll in that a properly loaded intact ship will not 
capsize, so that roll stabilization is really roll angle limitation. In contrast to 
the yaw case, as long as rolling is a stable motion, it need not be "controllable." 
There is an extensive background of experience on the control of roll in a sea¬ 
way. The subject has fascinated inventors since steamships were invented, and 
the general subject is dominated by inventions. A glance through the patent 
office files on roll stabilization reveals not only the bad drafting favored by pat¬ 
ent attorneys, but evidence of the highly imaginative approaches generated by 
the problem. 

The roll stabilizers can be divided into two major groups, internal to the 
ship and external. Each of these can be further divided into active and passive 
types. Table 1 categorizes stabilizers from a mechanical point of view. Chad¬ 
wick [13] offered a more elegant and complete categorization based on the dy¬ 
namics involved. 

Bilge Keels 

The earliest deliberate roll damping devices were bilge keels, fitted to 
steamships to make up for the roll damping lost when the sails were removed. 
References 1 and 14 present curves of bilge keel size as a function of ship size, 
based upon experience with ships in the past. References 15 and 16 present ex¬ 
perimental results on the forces acting on bilge-keel-like plates oscillating in 
water. It is rare that an occasion requiring more than rule of thumb design of 
bilge keels will arise, but when such a case is at hand, analysis of bilge keel 
forces can be carried out using simple concepts and data such as that cited. 

Bilge keels can be counted on to increase hull damping in roll by 50 to 100 
percent. This will result in 25 to 50 percent reduction in roll. It must be re¬ 
membered however, that the principal advantage of bilge keels is found at low 
speeds. As ship speed is increased the hull damping increases proportionately 
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Table 1 
Classification of Anti-Roll Devices 

Internal Percent of 
Ship Weight External Percent of 

Ship Weight 

Active, 
up to 85 
percent 
average 
stabili¬ 
zation 

Active Tanks 

"Sperry" Gyroscopes 

Moving Weights 

1/2 to 1 

2 to 3 

1 to 2 

Fins, Flapped 
and Plain 1/4 to 1 

Passive, 
about 50 
percent 
average 
stabili¬ 
zation 

Frahm Tanks 

Free Surface Tanks 

"Schlick" Gyroscopes 

1/2 to 1-1/2 

1/2 to 1-1/2 

5 

Bilge Keels 

"Fishermans" 
Keels 

Fin Keels 

1/2 to 1 

1 

1 

Staysails 1/2 to 1 

more than the bilge keel damping. There is a small increase in hull inertia due 
to bilge keels, but the principal effect is increased hull damping. Historically, 
bilge keels have been discussed in the literature by White [17] and Spear [13], 
followed by many individual model test reports on specific designs, too numer¬ 
ous to mention. 

Certain fishing craft are reported to use a technique for roll reduction while 
adrift. Booms are rigged out over each side, and lines carrying weighted 
drogues are lowered into the water. As the boat is rolled, it tends to pull up 
one of the drogues which provides damping, while the other drogue sinks. The 
ubiquitous staysail is also used for roll damping by boats throughout the world. 
There may well be other unique and homely devices used on boats in specific 
instances. 

Anti-Rolling Fins 

Anti-rolling fins have had a relatively long history. References 59 and 60 
are among the earliest references to this form of roll stabilization. Chadwick 
[13] gives a good historical view of fin stabilization, and Bell [21] discusses the 
history of fin controls. In general, progress in fin stabilization has been char¬ 
acterized by a series of inventions, each limited more by the state of the art in 
automatic controls rather than in hydrodynamics or mechanical engineering. 
Only within the past fifteen to twenty years has it been possible to design and 
analyze fully automatic controllers through straightforward engineering, rather 
than through inventive inspiration and insight. 

The current state of the art in fin stabilizers is shown by Chadwick [13], 
DuCane [22] and Flipse [23]. The latter commendably frank reference, along 
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with Ref. 24 discuss actual performance at sea of specific installations, while 
Chadwick, Bell, and DuCane deal with control theory and design. 

Various types of fins are used by the different manufacturers. There are 
articulated-flap fins and simple fins, both tapered and untapered. The range of 
aspect ratios selected depends on the method of retraction, or lack of retraction. 
The hydrodynamic design of fins [25 ] is influenced strongly by maximum lift co¬ 
efficient as limited by cavitation and the free surface, while lift curve slope and 
low drag considerations are not very important. Unsteady effects on lift slope 
are not significant, even considering the high tilt rates required. There is evi¬ 
dence [26] that the maximum lift coefficient is augmented by unsteady effects, 
but use oí this phenomenon in design is not widespread. Unsteady effects must 
be included in the computation of tilting torque. The torque loads proportional 
to acceleration and velocity are significant, and if not allowed for, the slow re¬ 
sponse of the fins to control system orders could be embarrassing. 

In those cases where flapped fins have been specified by designers, cavita¬ 
tion must have been a principal consideration. For merchant ships, wherein 
cruising speed and full speed are nearly the same, the design speed for the fins 
is relatively high. To economize on fin size, the desired stabilization capacity 
is provided with the fins producing nearly their maximum lift coefficient. Under 
these conditions, the more uniform pressure distribution on flapped fins is bene¬ 
ficial. For warships, or ships having a cruising speed much less than maximum, 
the design condition for the fins is not as severe. Large lift coefficients are re¬ 
quired only at cruising speed, and the fin angle is limited at higher speeds to 
maintain the stress level in the stock. At speeds where cavitation would be a 
concern, only small lift coefficients are required. For this reason, plain fins 
may be used. The elimination of the flap actuator and flap hinge structure may 
in turn save enough weight to compensate for the increased area of a plain fin. 

Stabilizer fins are usually located in pairs, port and starboard. If more 
than one pair is to be installed, the downwash effects of the forward fins upon 
the flow to the after fins must be considered. 

Most modorn roll control systems use combinations of roll angle, roll ve¬ 
locity and roll acceleration to generate ordered fin angles. The "Denny Brown" 
types order fin angle [21] while the Sperry type orders fin lift [13,23] using a 
deflection gage within the fin to feedback the lift. Earlier control systems used 
much simpler concepts, having been analyzed and designed to deal with regular 
waves. As experience with real seas and the ability to analyze random seas has 
accumulated, more sophisticated controls have been adopted [21]. 

It is possible to design control systems to minimize any of several parame¬ 
ters of the motion. The most common index of performance is roll angle reduc¬ 
tion, although roll velocity or acceleration could be the factor of most interest. 
References 27 and 28 are two of many papers in the control system literature 
which discuss designing to minimize various energy criteria. Minimum energy 
demand on the stabilizer, or minimum energy of residual motions are but two of 
the possibilities. How much benefit such refined techniques might give to ship 
motion reduction remains to be seen. 
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Model tests of anti-rolling fins, either alone or on ship models, have not 
been reported in the open literature. As more and more model tanks develop 
the ability to generate random model seas, perhaps greater use of ship model 
testing to prove out design concepts will result. Factors such as the interaction 
of bilge keels and stabilizer fins, yaw-heel, and the interaction of a passive tank 
stabilizer with active fin stabilizers could lie examined on model scale. Even 
without wavemakers, model tests using rotating eccentric weights or other roll 
moment devices can be of use in examining the hydrodynamics of stabilizers. 

Stabilizing Tanks 

Anti-rolling tanks have had a checkered history. Since Froude's first spec¬ 
ulations [29] a great variety of tank installations have been tried, with different 
degrees of success. Until recent times, the most successful of these were 
Frahm tanks [30] either cross-connected within the ship, or with port and star¬ 
board tanks open to the sea. More recently, passive tanks with free-surfaced 
cross connections have been successful [31]. Active tank stabilizers have not 
had a successful past, but the future looks brighter. 

A series of reports by Chadwick [20,32] analyze the dynamics of both active 
and passive anti-roll tanks. This analysis for passive tanks was extended 
slightly in Ref. 31. Blagoveschensky [33] presents a simplified analysis for 
passive tanks open to the sea. Hydronautics, Inc. under the sponsorship of the 
Bureau of Ships is currently conducting a theoretical study of active anti-roll 
tanks. This study will once again reanalyze the equations of roll motion as pre¬ 
sented by Chadwick to insure that all significant nonlinear terms are properly 
included. Pumping rate specifications and tank design criteria will be estab¬ 
lished and it is hoped that sufficient information will be generated to permit a 
successful design. 

The recent success of the free surface type passive tanks compared to the 
narrow acceptance of Frahm tanks is due to several factors. The h gh internal 
damping due to wavemaking in free surface tanks makes precision of design less 
demanding than for Frahm tanks. The tank response curves are flatter, and 
highly nonlinear in a fashion kind to the designer. The recent trend for ship de¬ 
sign to be controlled more by volume than weight has also made it easier for 
the owner to accept the weight of tank stabilizers. 

Application of theory to describe the action of Frahm tanks was shown to be 
fairly successful (Chadwick [20]) in that assumption of linear damping within the 
tank gave fair approximations to the model test results. Little agreement has 
been found for free surface tanks. The theory developed in Ref. 31 included a 
provision for equivalent nonlinear tank damping evident from model test results. 
In addition, the U-tube analogy for computation of the natural frequency of free 
surface tanks has been shown to be somewhat inaccurate. Reference 58 presents 
some corrections, based upon basic shallow water wave theory compared with 
experimental results. 

An additional comparison is presented here. As derived in Refs. 30 and 31, 
the natural frequency of oscillation of the fluid in a U-tube can be found from 
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U 
(1) 

where 

a. u = tank frequency, by U-tube analogy, and 

S = effective length of the U-tube. 

(2) 

where 

A0 is the area (constant) of free surface in one "wing tank" of the U-tube, 

A is the cross section area of the U-tube normal to the U-tube centei line, 

S is the girth-like coordinate along the centerline, and 

L is the total "girth length" of the centerline. 

In the case of a free surface tank, the U-tube analogy is applied by assuming 
that the U-tube centerline is as shown in Fig. la. 

Reference 34 presents an approximate solution for the natural frequency of 
a tank of the configuration shown in Fig. lb, 

where 

ojl = tank frequency, by "exact" theory, 

S' = "effective beam of tank," and 

h = fluid depth. 

The effective beam of the given tank configuration is shown by Lamb to be 

(4) 

Relating the two methods of calculating frequency; 

2(1 + S) coth 
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m 

(a) 

i r\ 
(b) 

Fig. 1 - Typical tank configuration 

where 

£ _ 2TTrJ 

a = h/B 

T = S/B . 

Applying Eq. (2) to the computation of r for the configuration shown yields: 

Table 2 indicates that the U-tube analogy can be used, with appropriate 
care, as an approximation to a more precise theory, at least for this particular 
family of tank geometries. 
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Table 2 
Comparison of a U-Tube Analogy with Theory 

r/B 0 .04 .06 

v(U-tube) 
(Lamb) 

.90 .916 .916 

.08 

.861 

.09 

.762 

1.0 

Active Internal Systems 

This paper will not elaborate on moving weight or gyroscope systems. It 
can be said that moving weights have an attraction due to the possible high den¬ 
sity of such an installation. It may be that the effective density of a moving 
weight system, after including the volume needed for the operating machinery, 
necessary to move the weights and safety devices, would be about the same as 
that for a tank system. The additional property of a solid weight system that 
there is no loss in hydrostatic stability when at rest is also attractive. How¬ 
ever, there is no active research or development known to the authors in this 
field. Reference 35, besides being interesting reading, contains a good discus¬ 
sion of the first successful moving weight installation. 

Gyroscopes, both passive and active have been installed in many ships in 
the past. References 36 and 37 discuss early installations. The dynamics of 
both types of gyroscopes are analyzed by Diemel[38]. Their great weight and 
the engineering difficulties of highly loaded bearings have limited their accept¬ 
ance. The most recent installations of gyrostabilizers was in POLARIS subma¬ 
rines, where they performed well enough, but changes in operational concepts 
caused their removal. 

Recent Applications 

A limited number of naval installations have been completed or studied 
since the recent paper by Vasta, et al. [31 ). These have usually all been in an 
area requiring stabilized gun, launching, or search platforms. Oceanographic 
research ships have all been considered for the installation of passive tank sys¬ 
tems in recent years. 

The recent studies conducted on passive anti-roll tanks and active anti-roll 
fins will be discussed. The results of full scale trials and/or model tests will 
be presented. 

Interpretation of full scale tests requires care. To quote Pierson [39], 
"The surface of the sea is a mess." This complicates the roll records. It is 
rare that the statistical properties of the sea remain static long enough to com¬ 
plete the schedule of trials necessary for a good evaluation. The trial analysis 
therefore demands a good deal of judgment on the part of both the analyzers and 
the readers, especially without good measurements of sea conditions. 

USNS ELTANIN- Passive Tanks. The USNS ELTANIN (TAK 270) was con¬ 
verted from a cargo ship to a scientific research ship of 3330 tons displacement. 
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Anti-roll tanks were installed in late 1961 and full scale sea trials were con¬ 
ducted by the David Taylor Model Basin in December 1961 [40]. Figure 2 shows 
a photograph of die ship and indicates the general tank location while Fig. 3 pre- 
sents a schematic sketch of the tanks. These tanks displace 75 tons when filled 
with 6.5 feet of water. The trials were conducted over a three-day period and 
Figs. 4 and 5 show the measured sea spectra. 

(a) External view of tanks from starboard side 

(b) External view of tanks looking forward from bridge 

Fig. 2 - Location of tanks on the ship 
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FORWARD 

1 

(a) Top view 

DESIGN WATER DEPTH (5 *6 ) 

TANK BOTTOM AT 01 LEVEL 

10' 

18' - 2" ( TRIAL VALUE ) 

SHIP CG 

(b) Side view 

Fig. 3 - Sketch of principal dimensions of tank system 

Tank tuning experiments were conducted over the three-day period in the 
several seas encountered and while the results of these experiments as plotted 
in Fig. 6 indicate that an optimum water depth had not been achieved, it would 
appear that 6.5 feet of water yields a reasonable operating condition. Figure 7 
presents the effect of sea angle encounter. The sea spectra curves presented in 
Fig. 5 indicate extreme variations in sea conditions and consequently, the test 
results presented by Fig. 7 cannot be interpreted as indicative of representative 
trends without extensive interpolation between sea spectra. 
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Fig. 4 - Sea spectra as measured ( ing trials of first and third days 

I 

Fig. 5 Sea spectra as measured during trials of second day 
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Fig. 6 - Effect of various water levels on tank effectiveness 
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Fig. 7 - Effect of sea encounter angle on tank effectiveness 

•s, 
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Finally, Fig. 8 indicates the effect of speed on roll stabilization. An inter¬ 
esting and contrary effect is the increased roll amplitude with increase in per¬ 
centage roll stabilization with increased speed. One would expect the natural 
hull damping to increase in the unstabilized condition and the percentage of roll 
stabilization to decrease vith increased speed. The changing sea environment 

Fig. 8 - Effect of ship speed on tank effectiveness 
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must again be suspected. Foster [40] continues to explain that a considerable 
directional spectra must have existed in the confused beam sea and as speed in¬ 
creased the frequency of encounter with these directional components approached 
the natural roll period, resulting in increased roll response. 

USNS GILLISS - Passive Tanks. The USNS GILLISS is a 209-foot, 1200-ton 
oceanographic research ship and is one of a large class of such ships. The de¬ 
sign specifications of the ship limited the displacement to the stated value. 
Maximum length was maintained consistent with the displacement to provide as 
much work space as possible. The ship was fitted with anti-roll tanks consist¬ 
ing of two wing tanks with an open channel crossover and fixed entrance nozzles. 

Full scale sea trials were conducted by the David Taylor Model Basin in 
December 1963. Figure 9 presents the results of the tank tuning experiments. 
These tests were conducted on two separate days in both beam and quartering 
seas. These curves indicate a very well defined trend toward an optimum water 
depth of 3.5 feet. It should be noted that the tank effectiveness can be decreased 
by the addition of too much water. Whether this is due to poor tuning or the 
limiting of tank fluid transfer due to overhead clearance is not clear. 

Fig. 9 - Effect of various water levels 
on passive anti-roll tank effectiveness 
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Figure 10 shows the effect over various angles of encounter with the sea¬ 
way, in both the stabilized and unstabilized condition. While these curves again 
indicate the general effectiveness of the tanks, they also indicate that the chang¬ 
ing environment makes it impossible to draw definitive design conclusions. 

Fig. 10 - Effect of sea direction on 
passive anti-roll tank effectiveness 

Bench tank tests and model tests conducted in irregular seas at the David¬ 
son Laboratory [41 ] showed that significant stabilization was possible, as much 
as 90 percent at resonance. Figure 11 shows the roll amplitude operator indi¬ 
cating this result. It is further concluded that once tanks are tuned to damp out 
the narrow frequency band of roll response, rolling at resonance is limited to 
amplitudes approximately equal to the maximum surface wave slope. Finally, 
as might be expected, bilge keels had small effect in further reducing the roll of 
a ship already stabilized by a passive tank system. 
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I-1-1_I_L_ 
0 0 5 10 1.5 2.0 

TUNING FACTOR, 

Fig. 11 - Effectiveness of 
passive anti-rolling tanks 

In continuing the model study on the AGOR class of ship, the Davidson Lab¬ 
oratory conducted experiments in regular waves to determine speed and wave 
height effects [42]. This study concluded that an increase in the height of regu¬ 
lar beam waves decreases the effectiveness of the tank system and the peak of 
the unstabilized roll response moves to a slightly lower frequency. Figure 12 
shows a comparison of the various roll responses derived from experiments 
conducted by Refs. 41 and 42. 

The speed study indicated the obvious result of an increase in roll damping 
with increased speed for the unstabilized ship condition and an increase in the 
stabilized roll amplitudes (decreasing tank effectiveness with increased speed). 

ARIS-3 Passive Tanks. The ARIS-3 is a design for a 496-foot Advanced 
Range Instrumentation Ship of 13,600 tons displacement. Bench tests were con¬ 
ducted at the David Taylor Model Basin on a 1/20-scale model passive tank. In 
addition to determining the depth of water required for properly tuned operation, 
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SHIP FREQ OF ENCOUNTER, uc , RAD/SEC 

Fig. 12 - Roll response of AGOR in 
irregular and regular beam seas with 
different types of stabilization 

3 different nozzle shapes were investigated to determine damping effects. Fig¬ 
ure 13 indicates the general tank arrangement while Fig. 14 shows the various 
nozzle configurations. 

The results of these experiments, Fig. 15, indicated that nozzle configura¬ 
tion "A"gave the most favorable dynamic characteristics based on the more de¬ 
sirable moment produced. Figure 16 shows the variation of phase angle be¬ 
tween moment and roll angle with roll frequency and indicates no appreciable 
advantage between nozzles. 

The effect of water depth is shown in Figs. 17 and 18. Generally speaking, 
low water depth would be more advantageous at low frequencies, higher water 
levels at the midfrequency range with no appreciable effect for either water 
depth at high frequencies. 
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Fig. 14 - Various nozzle configurations 
tested with ARIS-3 anti-roll tank 
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13.33 

10.67 

8.00 

5.33 

2.67 
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0.100 0.200 0.300 0.400 0.500 0.600 
Model ¡toll Frequency In cycle* per second 

0.0224 0.0447 0.0671 0.0895 0.1119 0.1342 
Ship Roll Frequency In cycle* per second 

Fig. 15 - Variation of tank moment with 
roll frequency for three different nozzles 
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0 0.100 0.200 0.300 0.400 0.500 0.600 
Model Roll Frequency In cycles per second 

0 0.0224 0.0447 0.0671 0.0895 0.1119 0.1342 
Ship Roll Frequency In cyclee per second 

Fig. 16 - Variation of phase angle between moment and 
roll angle with roll frequency for three different nozzles 
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0 

0 

0.100 0.200 0.300 0.400 0.500 0.600 
Model toll Frequency In cycles per second 

0.0224 0.0447 0.0671 0.0895 0.1119 0.1342 
Ship toll Frequency In cycles per second 

Fig. 17 - Variation of tank moment with roll 
frequency for three different water depths 
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0 0.100 0.200 0.300 0.400 0.500 0.600 
Model Roll Frequency In cycle* per second 

0 0.0224 0.0447 0.0671 0.0895 0.1119 0.1342 
Ship Roll Frequency In cycles per second 

Fig. 18 - Variation of phase angle between moment and roll 
angle with roll frequency for three different water depths 
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This study further attempted to compute damping assuming that the tank- 
ship system could be described by a second order differ' tial equation with 
either linear or quadratic damping terms. It was indicated that while the quad¬ 
ratic damping might be a reasonable representation in the vicinity of tank reso¬ 
nance, damping was shown to be a much more complicated phenomenon that can 
be treated with present knowledge. 

The results of the above as yet unpublished work of Finkel led to the design 
of a tank system which was installed in a 1/38.15-scale model. Tests were con¬ 
ducted in regular waves and indicated that roll would be reduced by as much as 
55 percent in a beam sea at a speed of 7 knots, Fig. 19. These predictions could 
not be extended to the irregular sea condition because of the nonlinearities in¬ 
volved in the roll phenomenon. 

AVT-7 — Passive Tank. The AVT-7 is a planned conversion from the CVL 
48 and is a 683 foot hull of 18,760 tons. Model tests were again conducted on a 
1/19 scale model tank. This tank was installed below the roll axis of the ship. 
The tank was again oscillated over the frequency range with various water depths; 
the tank configuration is shown in Fig. 20. Tank moment versus frequency is 

Fig. 19 - Variation of maximum roll angle 
with ship heading for a wave steepness of 1/50 
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Fig. 20 - Symmetrical plan 
view of 1/19 scale model tank 
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shown in Fig. 21 while the variation of phase angle between moment and roll is 
shown in Fig. 22. The general conclusions arrived at from these experiments 
are in agreement with those reached in previous tests. There appears to be no 
unexpected adverse effect from putting the tanks below the roll axis. 

.0229 .0459 .0686 0918 .1147 .1376 

Fig. 21 - Tank moment as a function of 
roll frequency 3, 4, and 5 foot water 
levels at 2 degrees roll amplitude 

USS BRONSTEIN- Active Fins. The USS BRONSTEIN (DE 1037) is a 350- 
foot ASW vessel of 2500 tons displacement. This ship is fitted with active anti¬ 
rolling fins that are fixed in the out-rigged position. In other respects this in¬ 
stallation is similar to that of the USS GYATT [43]. 

Forced roll experiments were performed on this ship during the sea trials 
conducted early in 1964. Figure 23 shows the comparison of the stabilized and 
unstabilized roll quenching capability. Figure 24 compares the roll angle enve¬ 
lopes for the stabilized and unstabilized conditions and it may be seen that the 
damping of the stabilized curve is approximately 3 times that of the unstabilized 
curve. 
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Fig. 22 - Phase lag of tank 
moment relative to roll for 
3, 4, and 5 foot water levels 
at 2 degrees roll amplitude 

0 0229 .0459 .0688 0918 .1147 1376 
SHIP ROLL FREO IN CPS 

Fig. 23 - Comparison of stabilized and unstabilized roll 
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Fig. 24 - Comparison of roll angle envelopes 

The application of stabilizer fins to this class of ship is the first since 
those previously reported on GYATT, COMPASS ISLAND and OBSERVATION 
ISLAND [31]. The apparent success of all installations would seem to indicate 
that more attention should be given to this area of stabilization. It should be 
mentioned that the tests presently under discussion were conducted at a ship 
speed of above 20 knots. There appears to be an obvious advantage to using ac¬ 
tive fin roll stabilizers on high speed ships. 

Current Studies. Under sponsorship of the David Taylor Model Basin, the 
Southwest Research Institute is conducting a continuing study of ship roll stabi¬ 
lization tanks [44,45]. This program provides for four related studies: (a) The¬ 
oretical tank damping characteristics; (b) experimental tank damping character¬ 
istics; (c) extended theory of ship-tank systems; and (d) application to design. 

After progressing in phase (a) and (b) for a period of time it became appar¬ 
ent that the study was hampered by a lack of a physical understanding of the 
tank fluid behavior. Finkel also discovered this in his work on ARIS-3 as did 
Motora and Lalangas [41]. To illustrate the point, Fig. 25 shows comparisons 
of several experimental approaches. The lack of agreement is startling. Addi¬ 
tional experimentation is indicated and a nonlinear model must be discovered. 

Pitch Stabilization 

Pitch stabilization has received a moderate degree of attention in recent 
years in both theoretical and experimental studies but as yet these studies have 
not resulted in a successful full scale installation. The problems of reducing 
pitch are quite different from those of roll stabilization. Pitch is already con¬ 
siderably dampened by the ship's hull. This of course means that large forces 
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Fig. 25 - Comparison of various mathematical 
models with experiment 

must be involved in any further magnification of this damping. It is quite im¬ 
practical to generate these large forces by means of internal devices generally 
associated with roll stabilization, i.e., tanks, gyros, moving weights. To further 
complicate the problem, the pitch phenomenon is not resonance dominated as is 
roll, that is to say, the roll spectrum is sharply tuned while pitch responds to a 
broad range of frequencies. 

Thus, all attempts at pitch stabilization have been through the use of exter- 
nal devices, capable of sustaining the large forces involved. These devices have 
been fixed bow fins, moveable stern fins and to a lesser degree moveable bow 
fins and fixed stern fins. Only the fixed bow fins have been installed on ships, 
these installations being made on the RYNDAM of the Holland-American Line’ 
and the American ship COMPASS ISLAND. While considerable pitch reduction 
was achieved in both cases, a severe horizontal bow vibration associated with 
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the fin installation caused their removal. This vibration problem has been the 
subject of much of the investigation conducted on bow fins in recent years; it has 
also caused the virtual sbandonment of these devices as pitch stabilizers. 

The highlights of the work conducted in this area will be the subject of this 
section. Mention will also be made of some recent experiments not as yet re¬ 
ported in the literature. 

Fixed Bow Fins 

In 1956, Pournaras [46] fitted a set of fins to a Series 60, Block 60 model. 
The fins were flat plates with a planform area 2.5 percent of the load waterplane 
area. The leading edge was swept back to reduce tip load and thereby decrease 
the root-bending moment. The fins were also fitted with tip fences. From the 
limited tests conducted it was observed that pitching motion was considerably 
reduced, the speed range was extended, much less green water was shipped over 
the bow, and forefoot emergence was eliminated. Of most significance, however, 
Pournaras noted that on the downward stroke, sheets of water were forced 
around the leading and trailing edge of the fins, closed in over the upper surface 
and formed a whirl near the water surface as the two sheets met. Removal of 
the tip fence caused the formation of a third sheet and added to the problem. 

In a subsequent study, Pournaras [47] tested four different fin configurations 
on a model of a MARINER class ship. In addition to varying planform, some of 
the fins were slotted and others had through holes in an attempt to destroy the 
sheet vorteces. Figure 26 shows these various fin arrangements. All configu¬ 
rations were fitted with fences with the exception of fin 3. 

Figure 27 shows a summary of test results obtained and indicates that while 
substantial pitch reductions were obtained, configurr.+ion variation had very little 
effect. The major conclusions of this study are summarized as follows: 

1. Fins operate most effectively near the synchronous range and have little 
effect at higher or lower frequencies. 

2. Fins have little effect on the phase lag of heave and pitch but it should be 
remembered that a slight change in phase could have a marked effect on relative 
motions. 

3. Area of fin planform has little effect on motions. 

4. The loadings caused by the vorticity effect can be lessened by deeper 
submergence, greater fin span, tip fences and relief mechanisms such as slots 
and holes. 

Next, Abkowitz [48] conducted a comprehensive study on the effect of bow 
anti-pitching fins on ship motions. This study included a discussion on the na¬ 
ture of pitch damping in addition to presenting some experimental results of 
tests conducted on a Series 60 Block 60 model, an aircraft carrier model and a 
destroyer model. All indicated good pitch reduction trends and good agreement 
with theoretical calculations. It was again concluded that the major effect was 
produced at resonance. 
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Fin Numbtr I 

Fin Numbr 2» - Obtain««! from Fin Numb«r 2, by cutting 5ft. off «ach tip, PÔS. 

Tips off C*nt«rlln« : 14 ft. 
Fin Area : 400 sq.ft. 

Fin Numbr 2h - Obtain««! from Fin Numbor 2s, by drilling two 1½ ft. diam«t«r 
hol«s 2 ft. aft of Isading «dg« of fwd fin and two l'/feft. diam«t«r twlss 2 ft. fwd of 
trailing «dg« of aft fin. Arta and span of fins not changad. 

Fig. 26a - Plan views of anti-pitching fins 1 and 2 

Fin Aito 
Wattrplan« Arta *00 4 
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Fin Number 4 

r 
¡4' 

1 ♦ ♦ 
♦ 

+ ♦ 
♦ 

4- 4 

♦ 
4 

— 38'— 
h*- 

Fine separated by 1 ft. 

Upper surface of fin tangent to baseline. 

Fin Area: 640 sq ft. 

Fin Area 

Waterplane Area 
= 0.023 

Fin Number 4h 

Obtained from Fin Number 4, by drilling five 1-ft 

diameter holes on eoch fin as indicated in sketch. 

Fin 3 - Same as Fin Number 1 with 30 dihedral angle, 

Fig. 26b - Views of anti-pitching fin 4 
and description of anti-pitching fin 3 
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Fig. 27a - Dimensionless pitch amplitudes 
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Fig. 27b - Dimensionless heave amplitudes 
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Abkowitz concluded that the horizontal vibration at the bow was due to the 
large angle of attack on the fin during the downward motion giving rise to a low 
pressure on the upper-fin surface. Just before the downward stroke begins (fin 
near surface) the fin is near the surface and the low pressure area causes a 
suction and possible ventilation. As the fin goes deeper, the bubble collapses 
causing a large pressure impact. He further concludes that since port and star¬ 
board fins do not ventilate uniformly, a differential pressure impact situation is 
created. He is at variance with the conclusions of Pournaras in that tip fences 
will be harmful rather than beneficial since they increase aspect ratio which in 
turn will increase the low pressure on the upper surface and lower the angle of 
attack at which the breakdown occurs. 

Abkowitz further conducted some comparative experiments between trumpet 
shaped fins and hydrofoil fins located at the keel and concluded that hydrofoil 
fins would produce less horizontal vibration and when separation did occur, only 
small horizontal vibrations were produced. 

In 1959, Becker and Duffy [49] presented the results of full scale sea trials 
conducted on the COMPASS ISLAND. It was concluded in this study that pitch 
was reduced but the magnitude of reduction could not be properly established 
because of lack of an exact "without fin" correlation condition. Vertical and 
transverse vibrations were excited in the ship, very seriously in heavy seas. 
While it was possible to calculate the fundamental mode of the vertical hull 
stresses (±11,000 psi) the transverse vibration was not measured. This was 
unfortunate since it was apparent that the transverse mode was excited at a 
more moderate sea state than the vertical, and all previous studies have indi¬ 
cated the transverse mode to be the probable problem area. 

Stefun [50] continued the effort by conducting an interesting experimental 
study investigating the effect of planform area and aspect ratio. Table 3 pre¬ 
sents a summary of the various fin configurations. This study again reaches 
the general conclusion that fins are effective mostly at near synchronous condi¬ 
tion and again significant pitch reductions were achieved. Aspect ratio is indi¬ 
cated to be a significant parameter. Pitch reduction is 30 percent less for a fin 
with an aspect ratio of 0.5 compared to a fin with an aspect ratio of 2.0. It was 
further indicated that while an increase in planform area was helpful in achiev¬ 
ing increased pitch reduction this increase was not in direct proportion to the 
increase in this area. The fins decreased ship resistance in waves of between 
75 and 120 percent of the ship length. Heave was increased in long waves while 
in intermediate waves, heave was increased at low speed and decreased at high 
speed. 

Finally, this study indicated that the use of tip fences reduced pitch by an 
additional 5 percent. This is the result of apparent increased aspect ratio due 
to the addition of tip fences. It should be noted that this particular study used 
tip fences for the reasons stated by Pournaras [10,11]. 
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Table 3 
Fin Particulars 

Fin No. Plan Area 
(Aw = waterplane area) 

Aspect 
Ratio 

Tip Fences 
(length, width) 

1 

2 

3 

4 

4(a) 

5 

0.02 Aw 

0.02 Aw 

0.01 Aw 

0.02 Aw 

0.02 Aw 

0.04 Aw 

2.0 

0.5 

1.5 

1.5 

1.5 

1.5 

None 

None 

2.1, 0.6 

3.0, 1.25 

None 

4.25, 1.5 

In 1962, Stefun and Schwartz [511 presented the results of a study conducted 
to determine the effects of various bow fin configurations on hull vibrations. 
These tests were conducted on an aircraft carrier model using 16 different fin 
configurations as shown in Fig. 28. All tests were conducted at one wavelength 
( h = 40, 30, and 24). The results of this study are presented in Fig. 29 as a 
figure of merit. This figure is defined to mean that for any fin, N 

Pitch Reduction (Fin N)/Pitch Reduction (Fin 1) 
Vibration Level (Fin N)/Vibration Level (Fin 1) ~ Figure of Merit- 

While none of the fins completely eliminated transverse hull vibrations, 
considerable improvement was indicated by several configurations. Aspect ra¬ 
tio, tip fences or increased depth of submergence showed improvements. Holes, 
dihedral angle and swept edges showed less improvement and while annular fins 
indicated promise, the test results showed much more research would be re¬ 
quired before their entire nature would be understood. 

In 1961, Ochi [52) conducted a very complete hydroelastic study on a ship 
equipped with an anti-pitching fin. In addition to forwarding an explanation as to 
the mechanism of the induced vibration the study also discussed the effect of the 
fin location, size and configuration. 

While there is general agreement that the induced vibration is caused by a 
cavity collapse (or cavity collapse plus fin slam in the case of shallow draft), 
the study differs as to the cause of the mechanism inducing the vibration. The 
premise forwarded here is that rather than the vibration being purely horizontal 
in nature, it is initially a torsional vibration. If the natural frequencies of both 
the torsional and horizontal modes correspond, the vibration is severe. 
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Many other investigators have also made the point that the time differential 
of port and starboard collapse also add to the severity of the vibration. Ochi 
goes further and states that if this time differential is the same as the loading 
time, the vibration will be magnified It is further stated that if the fins remain 
below the water surface within some limit (8 feet for the MARINER), the cavity 
will not form and thus vibration will not occur. 

Some other general conclusions are as follows: 

1. Maximum pitch reduction is achieved by fins located in the forward 10 
percent of the ship. 

2. More severe vibration is induced by fins in these forward locations. 

3. Planform area and pitch reduction are linearly proportional for the 
MARINER hull. 

4. Vibration increases with fin area and with violence of pitching. 

5. Fins with properly designed holes can be as effective as solid fins in re¬ 
ducing pitch and are superior in reducing vibration. 

In selecting an optimum fin location, Ochi presents an interesting compari¬ 
son of parameters which is reproduced here as Table 4. The values underlined 
with the double line are considered to be acceptable design values and of course 
only the location with all parameters underlined will be optimum. 

Table 4 
Optimum Fin Location for Various Parameters at a 15-Knot Ship Speed 

Location of Fin Aft of FP 

FP 0.05 L 0.10 L 0.15 L 0.20 L 

Increase (%) 

0 1.9 9.2 16.0 

Reduction (c l) 

22.8 21.9 18.5 21.4 

8.0 

11.8 

67.7 

31.5 20.7 12.9 

24.5 19.0 15.5 

85.0 85.0 81.8 

Intensity 

1 0.66 0.35 0.10 0.02 

Resistance 

Pitching 

Heave 

Bow Vertical 
Acceleration 

Slamming 

Induced 
Vibration 

221-249 0 - 66 - 51 785 
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Fixed Fins — Partially Activated 

Brief mention will be made here of various suggestions and/or studies that 
have been forwarded to retard flow separation over a fixed bow fin. They are 
termed partially activated because some means of flap or flow control would 
have to be provided for their proper operation. 

In his paper, Abkowitz [48] mentions a study conducted at MIT wherein 
boundary layer suction was used to control the pressure on the suction side of 
the fin. While the angle at which breakdown occurred was increased it was not 
prevented at large pitch angles. 

Stefun and Schwartz [51] recommend further study in the use of moveable 
trailing edge flaps as devices to retard the onset of stale. Along this same gen¬ 
eral line, Goodman and Kaplan [53] have recently proposed the use of a jet- 
flapped hydrofoil as an anti-pitching fin. This device would take advantage of 
the existence of two pressure peaks (leading and trailing edge) causing the for¬ 
ward peak to be smaller than for a conventional foil for the same loading. This 
initial theoretical study indicated the foil did not separate. It was concluded 
therefore that the jet-flapped foil would be cavitation limited and for reasons of 
the lower initial pressure peak considerably more lift would be produced before 
cavitation occurred. The authors of this preliminary work plan additional ef¬ 
forts in this area. 

Activated Bow Fins 

The authors were unable to find any experimental work dealing with acti¬ 
vated bow fins. Abkowitz [48] discusses this type of fin from the point of view 
of automatic control. With pitching motions as the control the fin angle would be 
additionally increased over an already large angle caused by the large amplitude 
of pitch. This method of control would therefore hasten the onset of ventilation. 
This leads to the concept of negative control, that is when the pressure on the 
foil reached a certain point, the foil angle would be decreased and thereby re¬ 
tard the onset of ventilation. The results of a computer study at MIT comparing 
this type of activated bow fin with a fixed fin indicated no difference in either 
method. Abkowitz concludes that there is little to recommend the use of an ac¬ 
tive bow fin. 

Fixed Stern Fins 

Abkowitz [48] makes mention of the use of fixed stern fins and concludes 
that they would be much less effective than bow fins. In addition to the obvious 
disadvantages of operating in the ship's boundary layer, the stern fin would 
probably increase the excitation due to waves and the pitch damping effect would 
also be reduced. The force applied to a stern fin would also produce less mo¬ 
ment than a bow fin since the apparent pitch axis is generally aft of amidships. 

In his experiments, Ochi [52] fitted a stern fin of equal area to the bow fin 
to the MARINER model. It was also found that the stern fin was much less ef¬ 
fective than the bow fin in reducing pitch. Vibration was not a problem although 
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maximum vibration still occurred at the bow. A combination of fixed stern fin 
and bow fin was also much less effective than a properly designed bow fin. 

Activated Stern Fins 

Spens [54,55] conducted model experiments on a MARINER class ship fitted 
with activated stern fins and tested these fins operating singly and in combina¬ 
tion with fixed bow fins. The stern fins were NACA 0012 airfoil section of 22 
foot span and 14.75 foot chord. These fins were fitted forward of the propeller 
as shown in Fig. 30. The fixed bow fins vere similar to those fitted to the 
COMPASS ISLAND and are shown in Fig. 31. 

After first conducting forced oscillation tests in calm water to determine 
basic fin characteristics, controlled tests were conducted in both regular and 
irregular waves. Table 5 presents the results of the regular wave tests while 
Table 6 shows those test results obtained in irregular seas (fully developed 
Newmann spectrum for 26 knot wind). These results indicate that the oscillating 
stern fins alone perform as effectively as fixed bow fins alone. There further 
appeared to be an additive benefit to using both sets of fins. It can also be seen 

(a) Model as towed 

Fig. 30 - Stern fins (Continued) 
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(b) Model equipped for self-propulsion 

Fig. 30 - Stern fins 

that while the bow fins increase in effectiveness with increased wave height (or 
increased angle of attack before the breakdown), stern fins produce a rather 
constant result irrespective of wave height. 

Table 5 
Effect of Oscillating Stern Fins With and 
Without Fixed Bow Fins in Regular Waves 

Wavelength 

Wave height 

Pitch without fins, deg 
(double amplitude) 

Pitch reduction by stern 
fins oscillating ± 25° 

Pitch reduction by oscil¬ 
lating stern fins together 
with fixed bow fins, deg 

1.0 L 

L/80 

2.8 

1.45 

1.8 

1.3 L 

L/80 

4.0 

1.7 

2.2 

L/40 

7.6 

1.5 

2.8 

1.5 L 

L/80 

3.24 

1.1 

1.4 

f 

Î 
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Fig. 31 - Bow fins 
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Table 6 
Effect of Fins in Irregular Waves 

No 
Fins 

Stern 
Fins 

Oscil¬ 
lating 
125° 

Fixed 
Bow 
Fins 

Bow and 
Stern Fins 
Together 

Average of 1/3 largest 
pitches = P, 3, deg 
(double amplitude) 

Reduction in P. , i/ 3 

Average pitch = Pav, deg 
(double amplitude]! 

Reduction in Pav 

6.2 

3.9 

4.9 

1.3 

3.2 

0.7 

4.9 

1.3 

3.1 

0.8 

3.9 

2.3 

2.4 

1.5 

Gersten and Cox performed additional work with activated stern fins at the 
David Taylor Model Basin. The results of these experiments are as yet unpub¬ 
lished. The tests were conducted on a model of the DE 1040 fitted with a pump- 
jet. The aft end of the pumpjet was further fitted with an oscillating flap in ad¬ 
dition to an upper and lower flap in the shroud. An automatic control loop using 
pitch and pitch rate as control parameters was incorporated in these tests. 

Experiments were conducted in calm water to determine which of several 
flap configurations could produce the largest pitching moment. Comparative 
tests with and without a flap fitted to the pumpjet were further conducted in ir¬ 
regular seas. As might be expected the flap arrangement with the largest total 
area produced the greatest calm water pitching (41.2 sq ft of flaps in pumpjet 
shioud plus 95.6 sq ft of flap C fitted to stern of pumpjet). Table 7 shows the 
preliminary results of the tests conducted in irregular waves. The table indi¬ 
cates that some pitch reduction was achieved in each case. These test data are 
undergoing complete analysis and a report should be issued soon. The decrease 
in fin effectiveness for increased wave height is an unexpected result. 

Miscellaneous 

One other area appears worthy of mention although it does not fall within 
any of the above categories. This is a technique of effectively reducing water- 
plane area by the use of open tanks. Linearized equations of motion for such a 
system are given in the Appendix. Results of such tests will be reported by 
Gersten in a forthcoming Taylor Model Basin Report. The work was performed 
on an oddly formed special purpose type naval vessel. A stern tank with sides 
open to the sea was fitted to this ship which had unusually bad pitching charac¬ 
teristics. Results of these tests indicated that while maximum motions were 
not reduced through the use of the tank, these maximums were transferred to 
much lower speeds. This would permit the ship to operate effectively in the 
design speed range. 
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Table 7 
Preliminary Results of Activated Stern Fin Tests 

Sea State 
Ship 

Speed 
(knots) 

Flap 
Oscil¬ 
lating 

Percent Pitch 
Reduction Based 
on Pitch (rms) 

Middle 5 

Middle 5 

Middle 5 

Middle 5 

Middle 6 

Middle 6 

Middle 6 

Middle 6 

16.3 

16.3 

22.1 

22.1 

16.3 

16.3 

22.1 

22.1 

No 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 

18.4 

22.5 

9.0 

17.2 

CONCLUSIONS AND RECOMMENDATIONS 

It should be stated that a design capability exists to produce successful in¬ 
stallations of roll stabilization devices in ships. In the case of passive tanks, 
however, much remains to be learned of the nonlinear behavior of the tank-ship 
system. It has been indicated that many experimenters have concluded that the 
basic lack of a physical understanding of the behavior of the tank fluid will pre¬ 
vent further progress in this field. The knowledge required will probably only 
be gained through the proper simulation of a nonlinear model. Southwest Re¬ 
search will continue their efforts in this area and additional work is planned at 
the Taylor Model Basin. 

Model and full-scale experiments will continue to be important design tools 
in this area until more theory is understood, even though both methods also have 
limitations. The continually changing nature of a seaway makes the collection of 
definitive design information during full-scale sea trials an extremely difficult 
task. While the capability for measuring sea spectra is increasing, proper ac¬ 
count cannot be taken of the directional components of their effects on frequen¬ 
cies of encounter. Since the roll phenomenon may be nonlinear it is additionally 
difficult to properly normalize test data collected in this changing environment. 
Extreme care must be exercised when design information is extracted from full 
scale experiments. 

While the various forcing functions can be controlled to a high degree during 
model experiments, scale effects and nonlinearities continue to complicate this 
approach. However, there are a large number of projects currently in progress 
aimed at providirg an understanding of these scale effects and an insight into 
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the basic nature of ship roll. It is felt that as nonlinear model tank simulations 
are achieved and the model problem areas cited above are rationalized, the 
model experiment will provide the most definitive design information. 

Model experiments should also be conducted to provide design information 
for active fins and to evaluate the performance of existing designs. The Taylor 
Model Basin is currently designing such an experiment to evaluate the fin per¬ 
formance on a new class of destroyer escort. The same control device previ¬ 
ously used during the activated stern fin experiments will be adapted to these 
tests. Suitable control parameters of roll angle, roll velocity and/or roll accel¬ 
eration will be selected. 

Additional experiments should be conducted on pitch stabilizing devices. In 
at least two areas cited there is discrepancy as to the effect of aspect ratio. 
These discrepancies might more fully be understood if the nature of varying 
aspect ratio were more closely examined. Stefun [50] and Stefun and Schwartz 
[51 ] vary aspect ratio independent of area. In both cases, the fin with larger 
span (increased aspect ratio) perform more reasonably in reduction of both 
pitch and vibration. Abkowitz [48] contends, however, that increased aspect 
ratio will have the effect of increasing low pressure on the upper surface and 
enhances the onset of breakdown. Laminar separation on the model may be the 
cause of varying test results in this area. 

It would appear that for many naval applications, the use of pitch stabiliza¬ 
tion devices would definitely be in order. In addition to the common arguments 
in favor of stabilizing pitch for reasons such as stable radar sonar, or fire con¬ 
trol platforms, Spens [55] makes one other valid point. He relates a pitch re¬ 
duction to a possible decrease in freeboard and/or forefoot depth. When one 
considers the design difficulty associated with increasing freeboard or uraft of 
smaller vessels such as destroyers any freeboard decrease would be a decided 
design advantage. 

Increased depth and proper configuration design are the most important 
parameters to consider in bow fin design. Since the maximum depth of fin is a 
parameter not easily changed, lift control devices would have important design 
application. Additional model tests should be conducted to find proper design 
criteria and to clarify the hydrodynamics of the phenomena. In this respect, the 
following areas should be investigated: 

1. Moveable flaps and jet flaps. 

2. Activated bow fins using the pressure on the suction face as a control 
parameter. 

3. Additional boundary layer control studies. 

4. Additional investigation on parameters effecting relative bow motions 
and the subsequent effect on performance of bow anti-pitching fins. 

5. Additional investigation of activated stern fins. In addition to conven¬ 
tional devices already described, items such as ring control surfaces around 
the propeller might be investigated applicably. 

6. Investigation of scale effect on model results such as Reynolds number, 
near surface effects, etc. 
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Appendix 

EQUATIONS OF MOTION FOR ANTI-PITCHING TANK 

With the recent interest in passive anti-roll tanks, it is of interest to spec¬ 
ulate on anti-pitching tanks. If, for instance, the forepeak tank of a ship were 
somewhat enlarged and fitted with large openings at the bottom, the surging of 
water in and out as the ship and waves interact might reduce pitching. Refer¬ 
ence 56 reports on one special case in this regard. The tank involved was in 
Lie stern of a slender double-ended ship form. Not enough data is presented to 
compare with and without tanks, but the influence of the size of the tank openings 
on the pitch period is presented. 

Figure 32 shows, in schematic form, the geometry of a bow tank open to the 
sea at the bottom. The equations of motion, assuming uncoupled pitch and heave 
for the "unstabilized" ship, have been derived using the Lagrangian formulation. 
Linearizing assumptions include all the usual ones in regard to small motions 
and linear damping. The tank geometry is assumed to be such that the area of 
the tank free surface does not change as the tank water level changes. It is also 
assumed that added mass terms and other coefficients of the ship are constants. 

Fig. 32 - Sketch of coordinate system 
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The equations are: 

W + + + + IlihH + k , hh e 

+ kíh‘ífc + + kttz + îth'1 + Bth + kth Khkt T'oe 

where 

l = pitch amplitude radians, positive bow up 

z = heave amplitude feet, positive up 

1’ = change in tank water level from equilibrium, feet, positive up 

1 .i,* = pitch inertia of ship, tank mass and "added mass" 

= heave inertia of ship, tank mass and "added mass" 

11 = tank mass = pA0S 

A0 = area of tank free surface 

H = draft to bottom of tank 

A = cross section (waterplane) area of tank at any vertical 
location 

p = mass density of seawater 

= linear damping coefficients in pitch, heave and of tank water 
motion 

~ Pitch and heave "stiffnesses" excluding the tank free surface 
effect 

kt = p^0> "tank" stiffness 

U = 

V = tank volume 

l = distance of tank center of gravity from ship center of 
gravity, positive forward 
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ïzh = PV 

kih Pß ^A0 

K, = wave "effectiveness term" in pitch [57], the result of integrating 
the static wave profile over the hull length to determine pitching 
moment 

K2 = wave "effectiveness" term in heave [57] 

Kh = e‘ 27,h/a j attenuation of wave height to keel 

v0 = wave amplitude 

fo = wave frequency. 

The equations are symmetrical, and made somewhat more manageable in that 
several of the cross coupling terms are equal. 

The equations can be rewritten by defining several natural frequencies and 
coupling coefficients. Dividing all equations by 

where 

z a = 
4 ’ 

CÜ 
2 

z 
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b <t> 
4>4> 

\ t 

i\. 
' Z<i> 

4><t> 

When the tank parameters are set equal to zero, the equations reduce to the fa¬ 
miliar simple equations for uncoupled pitch and heave. 

To find a solution, assume that 

, , i <*> t 
= <¿’0 e 

Z Z eia,t , 
O 

a 

Then, 

CÚ 
2 
za 

' z,Zo 

In principle, given all the coefficients, these equations could be solved for 
pitch as a function of wave amplitude, and a response operator derived. 
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DISCUSSION 

Peter DuCane 
Vospcr Limited 

Portsmouth, England 

The authors of this interesting paper mention that model tests of anti¬ 
rolling fins either alone or on ship models have not been reported. However, 
we at Vosper have, in fact, carried out quite a number with what we consider to 
be a useful degree of success so far as the actual results are concerned. 

We claim that in the case of the nonretracting low aspect ratio fin we can 
produce a fin section which can be equally, or more, effective than the flapped 
fin for the same area. 

Without entering unduly into details it could be mentioned that in many cases 
it is clear that the greatest percentage of roll reduction does not of necessity in¬ 
dicate the most comfortable condition so far as roll amplitude is concerned. 

Quite small rolling amplitudes in certain complex wave patterns can give a 
most disappointing result on the basis of roll reduction with fins on against fins 
off. However, these cases do not really matter to the passenger and there is 
probably still quite a possibility of saving power in the operation of these fins 
by area reduction. 

The fin sizes can be substantially reduced without much loss of effective 
performance in their true capacity as roll dampers if, instead of 3°-4" being 
aimed for, say 60-7° double amplitude is aimed for under the same conditions - 
no passenger could reasonably complain at this. 

At the same time I believe it is a short sighted policy to ignore the possi¬ 
bility of, and in fact reported occurrence of, quite large rolls in "stabilised" 
ships under certain circumstances. 

The situation is, of course, that the activated fin is not in truth a stabiliser, 
or if it is ordered to act as one by an amplitude signal in the control system it 
is a very poor stabiliser. By far the most important function of an anti-rolling 
activated fin is to act as a damper controlled from a velocity signal. 

As the fins are usually designed on an empirical basis to cause a heel of 
5°-70 when at full incidence and full cruising speed it can well be understood 
that this means little in restoring effect when considering a roll induced by yaw 
at practically no frequency when leading up to conditions of broaching such as 
are met by even the largest liners in a quartering sea. 

While acting as a damper a sluggish fin movement can cause an important 
phase lag leading towards the case where the fin is helping the roll. I do not say 
for one minute this is a normal state of affairs but in nearly all installations 
this can happen despite the fact that most of the time the fitting of anti-rolling 
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fins is highly effective and universally popular. This is where the acceleration 
term can help by incorporating an element of phase advance and getting things 
moving in plenty of time. 

Incidentally we as a firm always point out that good as they may be fins do 
not, of necessity, reduce the incidence of sea sickness and it is a somewhat 
dangerous policy to say they do because it is probably more the pitching accel¬ 
erations which cause the trouble. 

It is probably time that "stabilising" devices were offered subject to per¬ 
formance specifications as the present method of advertising the optimum re¬ 
duction percentage under ideal conditions, or at least specially selected condi¬ 
tions is meaningless and misleading. 

The difficulty here, of course, is in specifying, in a meaningful way, the 
seaway in which the performance specified should be achieved and furthermore 
in recording the nature of the actual sea in which the performance is achieved. 

Though without first hand experience it must surely be a somewhat sobering 
thought that at the very low frequencies experienced in quartering seas in the 
Western Ocean there is quite a likelihood, if not certainty, that the water in any 
passive tank will provide an unstabilising moment just at the wrong time. 

Again I thank the authors. 

* * * 

DISCUSSION 

John F. Dalzell 
Southwest Research Institute 

San Antonio, Texas 

The discussor would, in all sincerity, like to compliment the authors on one 
of the most straightforward and informative papers on the subject to come his 
way in some time. The authors' summary of the work on passive anti-roll tanks 
at Southwest Research Institute is adequate and exactly to the point. We have 
recently submitted a draft Technical Report* summarizing our efforts in this 
field which concludes, as did the authors, that a nonlinear model must be dis¬ 
covered before any significant gain over present design methods can be fore¬ 
seen, and that experiments will continue to play a large part in passive anti-roll 

Studies of Ship Roll Stabilization Tanks, Technical Report No. 1, Contract NONR 
3926(00), by John F. Dalzeli, Wen-Hwa Chu, J. Everett Modisette, Southwest 
Research Institute, August 1964. 
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tank investigations. We feel that the tank scale effect problem must be further 
explored if passive anti-rolling tanks are to continue to be installed in seakeep¬ 
ing basin ship models. We h'.ve attained better agreement than that shown in 
Fig. 25 of the paper between our current weakly nonlinear theory and other ex¬ 
perimental data. This better agreement is, however, not sufficiently good for 
practical use. One further remark is perhaps justified and that is that detailed 
space-time mappings of the free surface in a tank indicate that the fluid seldom 
behaves in a fashion similar to either that in a U-tube or to a first mode stand¬ 
ing wave. Evidently, considerable additional effort on the fluid dynamics of the 
free-surface passive anti-rolling tank will be necessary. 

* * * 

DISCUSSION 

S. Motora 
University of Tokyo 

Tokyo, Japan 

I would like to make some short comments on the anti-pitching tank. As 
Mr. Giddings has mentioned, the idea is to put openings at the bottom of fore or 
aft peak tanks to let sea water come in and out in a 90 degree phase lag behind 
the pitching motion resulting in a reduction of pitching motion. 

This problem was initiated by the Technical Research Laboratory of Hitachi 
Shipbuilding Co. and was published in the fall, last year. In that paper, move¬ 
ment of the water level in open tanks, installed at the bow and the stern, is ana¬ 
lysed theoretically, and the pitching angle of a ship in regular waves, affected 
by such tanks, is calculated. A model experiment with a model of a passenger 
ship was conducted to check the calculation. Two tanks were installed; one at 
the bow and one at the stern. The total water plane area of the tanks was 25 
percent of the ship's water plane area. 

Results are as shown in Fig. 1, where a is the area of the openings at the 
bottom of the tanks and A is the waterplane area of the tanks. About 45 percent 
reduction at the maximum was attained. 

I treated the same problem and dealt mainly with the fundamental charac¬ 
teristics of tanks with openings under the waterline. 

At first, let us consider a tank with a vertical wall. In Fig. 2, suppose a 
tank has openings of area a . Free surface area of the tank is A, the depth of 
the openings is h0, heaving of the tank is z, and elevation of tank water is z. 
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without tanks 

I 

Figure 1 

Then the equation of motion will be written as Eq. 1 in Fig. 1. It is noted that 
the excitation is modulated by a function which becomes zero when w = v'rTÏT-. 
It means that tank water does not move at all at this frequency regardless of 
amount of heave. Therefore, this frequency will be called as zero response fre¬ 
quency. 

From this it can be seen that li0 should be chosen so that w0 does not coin¬ 
cide with the natural frequency of pitching. Considering the average pitching 
period, it can be easily seen that !i0 should not be too large. 

_On the other hand, the resonant frequency of the tank water level is also 
vK K which is the same as the zero-response frequency. Therefore, in this 
case of wall sided tanks, the response of tank water is very small and will not 
be effective. 
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ZERO RESPONSE FREQUENCE 

UJ, -/ NATURAL FREQUENCY OF TANK WATER LEVEL 

Figure 2 

In Fig. 3, the magnification factor of the response of the tank water level is 
plotted against the frequency. Two solid lines show the solution of the Eq. 1 for 
A a = 4.17 and 6.52. It can be seen that the smaller the openings, the less re¬ 
sponse. Plots are made of the experimental values. There are some disagree¬ 
ments with the theory, but, if the damping coefficient is doubled, i.e., the effec¬ 
tive area of the openings is reduced to 7/10, the theoretical values agree very 
well with the experimental data. 

AMPLITUDE OF THE TANK WATER 

Figure 3 
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To avoid the defect that zero-response frequency coincides to the resonant 
frequency of the tank water, a flared tank was studied. In this case, as shown in 
Fig. 4, the inertia term changes somewhat and h0 becomes h' in this case. 
Since hp > h0 for normal flare, resonant frequency does not coincide with the 
zero frequency and becomes nearer to the ship's natural pitching frequency. 
Therefore the effectiveness of the tank will be improved. 

TANK WITH FLARED WALLS 

* i'( O-f <>,+ U.U>-9)2ei“t -(2) 

U). = , ¿4 = \/-fi 

Figure 4 

However, the amount of the flare will not be chosen arbitrarily. If ducts of 
certain length are attached to the openings, the equation of motion will be 
written as Eq. 3 in Fig. 5. 

In general 

is called hydraulic length. The longer and narrower the duct, the longer the 
hydraulic length and the smaller the resonant frequency. 

Therefore it will be possible to bring the resonant frequency of tank water 
to equality with the pitching frequency, and to make it quite different from the 
zero-response frequency. 

A 2m model of a catamaran was provided with fore open tank and tested in 
waves. The waterplane area of the tank is 5 percent of the total waterplane 
area. 

806 



A Survey of Ship Motion Stabilization 
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In Fig. 6, solid lines show the pitching magnification factor when the tank 
was blocked. Broken lines show the results with a flared tank and with simple 
holes. 

Chain lines show the results with a flared tank and with ducted openings. 
About a 20 percent reduction at the maximum was attained with a ducted tank. 

I 
* * * 
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DISCUSSION 

E. Numata 
Stevens Institute of Technology 

Hoboken, New Jersey 

Davidson Laboratory is pleased to have been associated with the USN Bu¬ 
reau of Ships and DTMB in experimental model research on anti-pitching fins 
and passive anti-rolling tanks since 1956. One of the earliest, although subsid¬ 
iary, investigations conducted at DL concerned the magnitude of the influence of 
fixed bow anti-pitching fins on the longitudinal midship bending moment of the 
COMPASS ISLAND. It was found that the fins had no adverse effect on hull bend¬ 
ing moment. 

In connection with stern anti-pitching fins, an analytical study for DTMB at 
Davidson Laboratory showed that in head seas at wave and ship speed conditions 
bracketing synchronous pitching motion, the hydrodynamic angle of attack of 
fixed stern fins is very small. Thus stern fins must be activated to be effective, 
producing a stabilizing moment and decrease in pitch angle which are propor¬ 
tional primarily to their amplitude of oscillation and relatively independent of 
the pitching amplitude. We found this to be true also in the case of oscillating 
fins astern of a pump jet propeller on a destroyer escort model tested for East¬ 
ern Research Group several years ago. This characteristic of a fixed number 
of degrees reduction may explain why in the author's Table 7 the percentage 
pitch reduction decreases as sea state and pitch angle increase. 

In connection with full scale evaluation trials of passive anti-rolling tanks, 
it seems to me that instead of vainly hoping for ideal wave conditions of unvary¬ 
ing severity and direction, it might be better to conduct trials in the calm seas 
one usually finds when searching for rough water. Rolling excitation could be 
provided by some form of portable oscillating weight device. Since most naval 
and oceanographic vessels fitted with passive tanks are of modest size with 
reasonable metacentric heights, it should not be too great an engineering prob¬ 
lem to design and assemble a device whose oscillation frequency can be varied 
while providing sufficient roll exciting moment to give a static heel of about 2°. 
Thus a frequency response could be obtained for the ship with and without the 
passive tanks operating. The omission of sway excitation would be a necessary 
but not totally undesirable condition. 

* * * 
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DISCUSSION 

K. C. Ripley 
John J. McMullen Associates, Inc. 

Washington, D.C. 

I desire to comment on the figure of 90 percent as the reduction of roll at 
ships resonance, that was mentioned by Mr. Giddings in connection with one of 
the slides of his talk, namely, the slide showing Fig. 11 of the paper. 

The design of passive tanks of the particular ship to which Fig. 11 refers is 
one with which I am familiar. Up until late 1960, I had been employed for 25 
years with the U.S. Bureau of Ships, and during this time designed a number of 
passive anti-rolling tanks, one of which was for the Oceanographic Research 
Vessel, AGOR. This is the vessel that by model test in an irregular, bow sea 
showed the reduction of roll at ships resonance of the 90 percent. 

It is my opinion that the foregoing, reported roll reduction is real, and can 
be accepted as representative of what would have been obtained by the same or 
similar test performed full-scale at sea. This opinion just expressed is based 
on personal experience obtained at sea with a merchant ship. This ship tested 
at sea was fitted with bilge keels, and was tested for the stabilizer tanks opera¬ 
tive, and inoperative. The sea was a quartering sea. The reduction of roll at 
ships resonance was found to be 85 percent. 

How is it possible for the reduction of roll at ships resonance to be as large 
as 85 to 90 percent when the test is conducted in an irregular sea, whether the 
sea be model-scale, or full-scale? When the reduction of roll is found for an¬ 
other condition of test, namely, for a bench model type of test, the reduction of 
roll is not as great. In this latter type of test, the roll response is that for pure, 
steady-state, forced roll. In the former type of test, nothing closely resembling 
steady roll is ever obtained, and what might appear to be forced roll is in real¬ 
ity an interaction between the instant to instant values of stored energy of roll 
of the ship, and the instant to instant values of input of energy of roll from the 
sea. 

It is well known that ships at sea tend to roll at or near ships resonance 
almost irrespective of the frequencies of excitation existing in the sea. We all 
know that this is what actually happens in roll at sea, but then we are all prone 
to forget what the actual situation at sea is, in order that we may treat the in¬ 
stant to instant roll as representing steady-state forced roll. It is true that after 
a ship has been well stabilized against roll, the ship will behave more like one 
the roll of which is pure forced roll. Before the ship has been well stabilized 
against roll, however, the ship will be rolling more often at ships resonance 
than otherwise would be the case. It is clear that a roll reduction at ships res¬ 
onance as great as 85 to 90 percent when the determination is by test at sea is 
both reasonable, and comprehensible. A part of the roll reduction is from hav¬ 
ing a less amount of energy tending to roll the ship at the ships natural frequency, 
and a part of the roll reduction is from allowing less forced roll of the ship when 
the roll can be treated as more nearly resembling pure, forced roll. 
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I want to compliment the authors for an interesting and informative paper. 
The paper by being a survey is a mine of information on a wide range of topics, 
having to do with ship motion stabilization. 

* * * 

DISCUSSION 

A. Silverleaf 
National Physical Laboratory 

Teddington, England 

This interesting survey is almost as surprising for its omissions as for the 
topics which it discusses at some length. For instance, it is more than surpris¬ 
ing to find no reference to the paper by the late J. F. Allan, "The Stabilisation 
of Ships by Activated Fins," Transactions of the Institution of Naval Architects, 
1945, Vol. 87. which was the first published account of the modern development 
of the type of roll stabiliser still that most commonly used and adopted. 
The authors' suggestion that the design of activated fin stabilisers has developed 
in an unscientific manner is completely contrary to the facts. Activated fin sta¬ 
bilisers of the type now known as the Denny-Brown-A.E.G. have been continu¬ 
ously developed for the past 25 years by a skillful and systematic combination of 
theory, model experiment and full scale practice. This applies not only to the 
activating and control mechanisms but also to the basic hydrodynamic design of 
the fins themselves, for which in 1942 I developed an inverse Theodersen pro¬ 
cedure for designing foil shapes with delayed cavitation characteristics. Similar 
methods were being independently and simultaneously developed for aerofoil 
sections and have produced among other things the well known "flat top" sections. 
The authors doubts about the value of roll stabilisers of this type were certainly 
not endorsed by the crews of the ships of the Royal Navy fitted with such stabi¬ 
lisers during the Second World War; in many cases they were the only ships able 
to offer any effective defence against air attack because they provided a reason¬ 
ably stable firing platform. 

The authors' discussion of roll stabilisers of the passive tank type is of 
great interest to us at N.P.L., where such stabilisers have been designed for 
some time. It is our growing opinion that a wide variety of shapes and configu¬ 
rations can be effectively used for this purpose, and indeed it is almost true to 
say that only a very good man can design a really bad system. Dr. Kaplan's 
reference to activated pitch stabilisers revives interesting memories for me. 
Almost seven years ago Mr. Goodrich and I took out a provisional patent for just 
such a stabiliser, incorporating a jet flap, but allowed it to lapse because we 
found great difficulty in producing a system of reasonable overall mechanical 
and hydrodynamic efficiency. Naturally we shall be most interested in this new 
attempt to exploit this attractive idea. However, I might venture a word of 
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caution. While many devices, including bulbous bows and fins, show a reduction 
in pitch in regular waves, this improvement is often not shown in terms of sig¬ 
nificant motions in irregular waves. General experiments in regular waves are 
not carried out in long enough wave lengths in which these devices can show un¬ 
desirable response characteristics; experiments in irregular wave systems in¬ 
clude the responses to such wave lengths. 

* * * 

REPLY TO THE DISCUSSION 

Alfred J. Giddings 
Bureau of Ships 
Washington, D.C. 

and 

Raymond Wermter 
David Taylor Model Basin 

Washington, D.C. 

The authors' are pleased with the response to the paper. Mr. Ripley's re¬ 
marks are appreciated, as coming from one who re-initiated the interest in 
passive tank stabilization. 

The additional information on anti-pitching tanks presented by S. Motora is 
especially interesting. Continued work on this line may well lead to much im¬ 
proved seakeeping, at least for special ships. 

Mr. Dalzell's recent work on the details of anti-roll tank dynamics is 
somewhat discouraging in that the nonlinearities inherent in the phenomenon 
are confirmed. The simplified analyses that have sufficed for design in the 
past, must be replaced by more elegant processes to realize the full potential of 
passive tanks. 

The state of the art in fin stabilization as discussed by Commander DuCane 
continues to advance. The reduction of design fin capacity as advocated by the 
Commander, is not endorsed by the authors. There may be cases, for ships 
with very long roll periods, wherein the fin capacity is not so readily taxed, but 
for most ships, saturation would defeat the value of the fins. It is agreed that 
tlie circumstance associated with the occasional very large roll should be clari¬ 
fied. 

Fin effectiveness in a following sea is reduced by the orbital velocity of the 
water, and by the difficulty of designing a control system to cope with low fre¬ 
quency disturbances as well as the more usual frequencies. 
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The literature having to do with seasickness substantiates Commander Du- 
Cane's statement as to the motion that is the principal cause. In addition to the 
literature, personal experience leads to this conclusion. 

In regard to the specification of performance for fin stabilizers, it might 
be possible to test the performance of the control system by pre-programming 
the fins on one side of the ship to a certain time history of fin angle, and having 
the control system and the fins on the other side stabilize. 

The authors' must apologize to Mr. Silverleaf for the apparent omission of 
reference to Mr. Allan's work. This reference was inadvertently omitted in the 
typing of the manuscript. An errata sheet was issued correcting this oversight 
prior to the meeting but was not available in time for distribution. 

The authors' conclusions on the inventive approach to design of active anti¬ 
roll fins was based on published literature. It is apparent from Mr. Silverleaf's 
remarks that a great deal of unpublished scientific work has been performed in 
this area. The reference to additional model work in this design area was made 
specifically with respect to activating ship model fins, that is to say model in¬ 
vestigations of the entire control loop. To the authors' knowledge, little work 
has been done in this area. 

The authors agree with Mr. Silverleaf's views on the design of passive 
tanks. 

The authors are grateful for Mr. Numata's interesting observations and 
supplemental comments. His proposal for inducing roll by a moveable weight 
system is an interesting one and is quite parallel to the present scheme of forc¬ 
ing roll with active fins and determining roll quenching ability. We would have 
to determine the amount of weight required for such a system and the required 
frequency responses of the control system before we could evaluate the practi¬ 
cality of applying such a scheme to practice. 

* * * 

813 



A VORTEX THEORY FOR THE 

MANEUVERING SHIP 

Roger Brard 
Bassin cl'Essais des Carenes de la Marine 

Paris, France 

FOREWORD 

The present text differs on many points from the draft which was prepared 
for the 5th Symposium on Naval Hydrodynamics held at Bergen (10-12 September 
1964). Firstly it appeared necessary to correct many misprints and also omis¬ 
sions which made the reading difficult. Moreover it was useful to explain with 
more details the theoretical views which lead to the introduction of a delayed 
circulation around a maneuvering submerged body. 

The line of thought is unchanged, but some results are presented with a 
greater precision. 

The new paragraph on some experimental results (par. 16) shows that some 
"apparent coefficients" may be found increasing and not decreasing when the re¬ 
duced frequency increases. That seems to mean that the effects of the terms in 
B/3t in the equations of the motion may be higher than in the case of a wing of 
infinite aspect ratio. The effects of the wake on the stern planes are confirmed 
to be very high. 

INTRODUCTION 

The work to be done in the naval hydrodynamic field in order to solve the 
problems related to the unsteady motion of the ship is often a very difficult one. 
A mathematical model of the physical phenomena has to be found. That requires 
various compromises. For, if the equations, which the mathematical model 
leads to, were too complicated in regard to the possibilities of an effective treat¬ 
ment, no real improvement would have been obtained. 

That is undoubtedly why the equations of the classical ship hydrodynamics 
are differential and of the second order. Nevertheless, in some cases, such 
equations are not suitable at all, and the modern ship hydrodynamics must often 
consider other classes of equations, ft is, for instance, admitted that the equa¬ 
tions which govern the rolling, heaving and pitching motions of a surface ship on 
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irregular waves are integro-differential equations of the Volterra’s type [1]. 
That is already true even on regular seas, because the waves generated by the 
ship have to be added to the incident waves. 

The problem which the present paper is devoted to is that of the maneu¬ 
vering ship. 

For this problem, a "classical" theory already exists. That is, the quasi¬ 
steady motion theory. It is admitted that, with the exception of the effects of the 
so-called "added masses," the hydrodynamic forces exerted on the maneuvering 
ship are identical to those found for a steady motion with the same angles of 
attack and the same linear and angular velocities. 

That leads to a set of differential equations of the second order. 

This set is rather complicated in the case of a submerged body in an infinite 
fluid because the number of the degrees of freedom is high. Moreover, the lin¬ 
ear approximation is most often insufficient. Consequently, the equations con¬ 
tain many, many terms. As the theory is unable to yield them, it is necessary 
to resort to an empirical determination of their numerical values. When the 
equations are written, it is necessary to solve them by using analog computers. 
And the work is not finished by this time. The empirical determination of the 
coefficients of the equations would have been practically impossible if the mo¬ 
tion had not been split in its components; then the results so obtained must be 
gathered. That is not so easy since the equations are not linear. Consequently 
a comparison between the calculated motion and the real motion of the model or 
of the full scale ship must be undertaken. 

Finally, the precise study of the maneuvering qualities of a ship, especially 
of a submarine, requires a great deal of work. 

Therefore, the idea that the quasi-steady motion theory might be too simple 
is attractive to very few. That is, however, the question about which the author 
of this paper has tried to make up his mind. 

The starting point of the present investigation is that the hydrodynamic set 
of forces exerted on a maneuvering ship is partly due to some circulation around 
the ship. If so, this circulation around the body generates a vortex wake since 
the circulation along a closed fluid circuit is null. And the vortex wake is what 
prevents the equations to be purely differential. As in the Karman-Sears theory 
of the unsteady motion on an airfoil of infinite aspect ratio [2], we shall expect 
to deal with Volterra's integro-differential equations. Consequently the forces 
in the real motion and those calculated by using the quasi-steady motion theory 
must differ from one another, no circulating being able to take instantaneously 
the value relating to the steady motion. This starting point needs some comments. 

For the quasi-steady motion theory does not preclude some circulation. In¬ 
deed, this circulation cannot come from the set of forces deduced by Lagrange's 
method from the kinetic energy of the absolute motion of the fluid surrounding 
the body: it is assumed that this motion depends upon a velocity potential reg¬ 
ular at the infinity. But, if some circulation exists in the steady motion, we 
shall find it in the equations expressing the quasi-steady motion theory. 
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That is the case, because the lift is not null. For instance, when the lift 
component on the z-axis is opposite to the direction of this axis, the mean 
pressure on the upperside of the body is smaller than on the lowerside; on the 
contrary, the mean velocity is greater on the upperside. And the circulation 
around the body along closed circuits parallel to the (x,y)-plane is necessarily 
non-null. 

The same reasoning holds in the case of a maneuvering surface ship, the 
lift being now in a horizontal plane. In 1950, one of our assistants has calcu¬ 
lated a distribution of free and bound vortices for a thin surface ship in a 
steady turning motion and obtained by this way some results which help under¬ 
standing several phenomena unexplained to this time (see [3] and also [4]). 

Some authors [5-7] probably have ideas quite similar to the one expressed 
above. But they are principally interested in the configuration of the vortex 
wake and in the mechanism of the transport into the wake of the vorticity which 
originates in the boundary layer. Such a line of thought is the best from a sci¬ 
entific point of view. Unfortunately, such a study is very difficult and will not 
lead rapidly to results that the naval architects may easily use. That is why 
we have chosen here another way. 

A mathematical model of the vortex shedding has to be defined. Preferably 
it has to be flexible enough to be adaptable to the various hull forms we encoun¬ 
tered in the practice. Consequently, this model is not made for giving all the 
means necessary for a complete calculation, in each case, of the hydrodynamic 
set of forces in steady and unsteady motions. In return, it has to yield the gen¬ 
eral form of the expression of this set, and also, to supply a criterion which 
permit to decide whether, according to the experimental results, the differences 
between the quasi-steady forces and the real forces are negligible or not. 

The present paper gives a first answer to this problem. 

Section I defines a mathematical model of the wake vortex and leads to the 
Volterra's integro-differential equations which govern, in an unsteady motion, 
the circulation and the forces exerted on the body. Attention is drawn — as in 
[8] —to the pressure distribution on the hull, and also to the effects on the stern 
planes and rudders of the wake generated by the submerged body itself. 

Section II shows that in a harmonic forced motion, the forces differ from 
those given by the quasi-steady motion theory. Some experimental results show 
that there is a possibility to estimate the magnitude of the errors involved m the 
quasi-steady theory. Some of them are small. Others are significant. 

Section III is devoted to possible further developments of our present views. 
It is shown that tests in various steady and harmonic forced motions are able to 
yield all the unknown coefficients and functions found in the so-called "true" 
equations of the free quasi-rectilinear motions. Unfortunately, other motions 
are of great interest too, those which require non-linear equations. In these 
cases, the technique of the steady and harmonic forced motions is unable, in its 
present state, to supply all the necessary information. Moreover, the "true" 
equations are more complicated than those of the quasi-steady theory and lead, 
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not in principle, but in fact, to non-negligible difficulties even in the field where 
the equations are linear. 

The first answer given here is therefore faulty. The conclusions of this 
paper will probably not satisfy fully the naval architects. It is hoped, however, 
that the ideas developed here may be of some practical interest. 

I. THE FORCES EXERTED ON A SUBMERGED BODY 
MOVING IN AN INFINITE FLUID 

1. Notations 

Let 0'(x\y',z') be a dextrorsum set of fixed axis. The z'-axis is vertical 
and positive downwards. 

We consider also a dextrorsum set of axis 0(x,y, z) attached to the sub¬ 
merged body. 

When the body is in a normal position (that is, when the heel and trim are 
null), the z axis is vertical and positive downwards. 

The X axis is going from the stern to the bow. o is in the middle trans¬ 
verse section. Generally, the body is symmetrical with respect to the (z,x) 
plane. 

The coordinates of o referred to the fixed axis are f. r;, ?.. 

In order to define the position of the body we introduce firstly a set of axis 
0( X,, y j, z j ) having its origin at o, but with the axis Ox,, Oy,, Oz, parallel to the 
axis o'x'.o'y'.o'z' respectively. We consider three non-Eulerian angles /,( ./ 
(Fig. 1). 

is the head angle. By a ;-rotation about the z,-axis, the x,-axis comes 
in the ( z, x) plane on an axis 0x2; by this rotation, the y ,-axis comes on an axis 
Oy,. The z2-axis coincides with the z,-axis. 

is the trim angle. By a -rotation around the y2-axis, the x2-axis comes 
on the x 3-axis; by the same rotation, the y 2-axis and the z2-axis come, respec¬ 
tively on axis Oy3 and OZ3. The x3-axis coincides with the x-axis. 

i is the heel angle. By a ¿-rotation about the x-axis, the y ^-axis and the 
z,-axis come, respectively, on the y-axis and on the z-axis. 

The absolute velocity of 0 is VE, of components v, Í on the fixed axis. 
The components of VE on the x.y. z-axis are respectively u.v.w. 

’ is the heaving velocity; the derivatives v,’ . / are, respectively, the head¬ 
ing velocity, the pitching velocity and the rolling velocity. 

818 



A Vortex Theory for the Maneuvering Ship 

Between the unit vectors ix,,iy,,i2, and the unit vectors ix.iy.»j we have 
the relations deduced from the following table: 

*=< iv 

V cos 0 cos t! -sin 0COS 0+ cos 0 sin 6 sin 0 sin 0 sin 0+cos 0 sin r'cos 0 

V sin 0 cos i4 cos 0 cos 0+ sin 0 sin 0 sin 0 -cos 0 sin 0 + sin 0 sin ■ cos 0 

»z' - sin 0 cos tJ sin 0 cos t1 COS 0 
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m 

10 

Moreover, the components p. q, r of the angular velocity of the body on the 
moving axis are 

P - <*>-</'sin q cos; t 0cos'• sin ,/., r = v'. cos cos ¿ sin ^ . (2) 

Let G be the center of gravity of the body. Let ’m be the mass of a small 
volume which coordinates with respect to axis parallel to the x,y,z-axis, but 
having their origin at G, are x ,y ,z When the body is symmetrical with re¬ 
spect to the (z, X)-plane, the moments of inertia of the body are 

I, = 1( y'2 + z2)-m , I2 = l(z"2+ x"2)'m , 13 = l(x 2 + y'2)Sm , 

11 j - 1( z’'x")8m . 
(3) 

Let p be the specific mass of the fluid, and p the mean density of the body 
with respect to the fluid. We introduce dimensionless coefficients by the 
formulae: 

I, pWL2p X j , Ij - pWL2px2 , I a - pWL2px3 , Iu = pWlVxu . (4) 

where L is the length of the body along the x-axis. 

When g is not at 0, its coordinates are Li0,o,uG. We assume that fG. 
have negligible squares and products. Otherwise, the moments of inertia of the 
body about the ( x, y, z) -axis would be 

i; p WL2 ¡4 x J + fG2) , I ' = , WL2 pXj . 

I j 2 2 (5) 
I3 = pWL pfx3 + CG ) , I¡3 = pWL M ( x j 3 + £0í;g) . 

The set of the absolute forces has a general resultant J and a resultant 
moment I referred about the origin 0 of the axis attached to the body. One has: 

? Xix i Yiy + Ziz , I = ?ix + Jlliy + liiz . (6) 

In this paper, we don’t consider the relative forces, that is the forces in the 
set of axis attached to the body. 

2. Some Particular Motions 

. MPtions Parallel to the ( z, x ) - Plane - The y-component v+ rx-pz of the 
absolute velocity of any point attached to the body is null. Consequently 

v = 0, r O, p = 0. 

Therefore 

¢-^ sin Ö = 0 Lg tg Ö , q = —-_ 
COS ¢) 
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When ; o, one has ! tu , cos o, ' = constant. The motion is also 
parallel to a vertical plane. 

Motions Parallel to the f x, y ) - Plane — The z-component w * py - qx of the 
absolute velocity of any point attached to the body is null. Consequently 

w 0 , p 0 , q 0 . 

Therefore 

} = 'p sin , 0 - P cos <• tg 4. , r <P . (3) 

This motion is parallel to the horizontal plane when 4 and 0 are simultaneously 
equal to zero. 

Quasi-Rectilinear Motions Parallel to the x-Axis —In the case, we substi¬ 
tute U + u for u. 

One considers that 

U V w 

ÏÏ ' Ü ’ ÏÏ 

are small. B being the breadth of the body, 

Bp B Lp Lq Lr 
U L ' U ’ U ’ U 

are small too. The square and products of ratios (4) and (5) are negligible. 

(4) 

(5) 

3. Vortices Attached to a Body on Steady Motion 
in its (z.x)-Plane 

It is well known that a submerged body may be considered as equivalent to 
a distribution of bound vortices when no wake exists and to a distribution of free 
and bound vortices when a wake is shed. On the other hand, it is well known, 
too, that a closed filament vortex is equivalent to a distribution of doublets. To 
write the expressions of the forces generated by such a distribution of vortices 
or doublets, it is helpful to bear in mind the main aspects of the theory. 

3.1. Bound Vortices are Equivalent to a Submerged 
Body in a Perfect Fluid 

As a matter of fact, when the fluid is quite perfect, the absolute motion of 
the fluid may be considered as generated by a distribution of vortices located 
on the hull when the angular velocity 0 is equal to zero, on the hull and inside 
the body, when Q | 0. 
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This possibility comes from the property of the vector W(M), having its 
origin in M, and defined by the formula 

W(M) Ki^-’ 
where V( n), which has its origin in n, is continuous with respect to the point , 
which describes the volume 0; its first derivatives also are assumed to be con¬ 
tinuous; moreover 

div V( u) 0 . 

Taking for 0 the space fi exterior to the body, and for Voo the absolute 
velocity V0 - grad <i>0 of the fluid, then us;ng the equation 

where 

curl curl W grad div W - VW , 

V = -¿i + Üli + _li 
3x2 3y2 dz2 

(1) 

we obtain 

4rr curl if JJC ."'M 
m) , 
— dS(a)?- - ^ Brad 

ff "V0(m) 
JJ. “jr • 

ISf l < 
V0CM), when M is in 

ne, 
0, when M is in fi. , 

¡ being the volume inside the body. 

Taking now for fi the volume fifi , and for VO) the absolute velocity of 
considered as at rest with respect to the body, we have Vo) VF(/0 with 

VE0') 1+QA0m. curl VE 2Q, 

and 

¿ ™rl {" If * II curl V 
, dfijO^) 
E : M 

^ If ~^r dS('j) 
0 when M is in fi , 

VE when M is in fi. . 

By addition, we find, with Vr V0 - VF = the relative velocity of the fluid, 
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Vp(M) when M is in H. , 

(2) 

since VEn V0r on S. 

Let us consider now the surface of the hull as covered by a very thin bound¬ 
ary layer (of thickness > ); we see that a vortex equal to (1/&) n AVr on the mean 
surface S(m) between the internal face and the external face S,. of the bound¬ 
ary layer, and to 2() in Q., generates an absolute fluid motion which has the fol¬ 
lowing properties: outside the body, the motion is identical to that of the fluid; 
inside the body, the fluid is at rest with respect to the body. 

3.2. A Distribution of Doublets is Equivalent to a Distribution 
of Bound Vortices When the Angular Velocity is Equal to Zero 

When 0 0, we have a velocity potential in fit, and in 0., which may be re¬ 
garded as due to doublets normal to the hull: 

"o - ¿ II V™') * dif à * (!S^ ■ V Krad ^ 
S( m) m 

i vo in ne 

11! in Q. 

n being the unit vector normal to the hull and positive outwards. 

Therefore, m¡ and me being on the normal n(m) to S(m), m¡ on S¡, mc on Sc, 

we have 

■yjm) - 
4?7 ÍÍ (m' ) 

d 
dn_ 

dS(m') f(m) (4) 

with 

f ( m) - b[ixx(m.) + iy yfrrij ) + + constant. (5) 

Equation (5) is Fredholm's equation of the 2nd kind relative to an interior 
Dirichlet’s Problem. For any value C of the constant in the right member of (5), 
the solution of (4) is unique. One has 

'l>0(me) - <l>n(ni.) = -yo(m) 

Therefore when another constant c' is substituted for c, 't>0(me) is changed in 
(i>o(me) + c - C. Hence the motion of the fluid outside the body does not depend 
upon the value of the constant c. 

Let us assume this constant chosen in such a way that y0(m) o on the 
forebody. Let C0(m) be the rings normal to Vro(m), ao the arc of this ring, o ' 
the arc of their orthogonal trajectories c’0 (cr'o o at the forebody, >0 behind), 
i , i ' the unit vectors tangent to c„ and to respectively, the directions of 
these vectors being those of d o 

being chosen in such a way that 
-o, der ' >o, and these directions themselves 7 O 7 

*o Aîo- 
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The flux of the vortex T0 (l 8) „AVr0 inside the small area via' normal 
to CD is equal to d>0 and is constant between two rings c ,c' of abscissae a' 
< + do; on eo (see Fig. 2). 00 0’ 

The rings c0(m) are the curves >o(m) = constant. Moreover, on s ,, 
vr„^o d>0. When i) 0, » = 0 , that is when we have a motion parallel to the 
(z,x)-plane with no angular velocity, it is convenient for what follows to write 

Definition of , S , 

n 

fñm'a Xj d<r' 
9 0 

■n <1} dc¿(m) 
Iff 

Definition of the bound vortex const, along C0 ). 

and of the density (m) of doublets normal to the hull 

when : 

1*) there is no wake, 

2*) the angular velocity is null. 

Figure 2 

824 



A Vortex Theory for the Maneuvering Ship 

VM> 't-no(M) * IWM) Jj + %i(M) J , 

with 

(6) 

1 

<W“> - r |f T„<in) i «") . 

"W"1 - - ¿ If .-srsi''»”»- 
s m 

(7) 

Functions 'yon(m) and y0 /m) are solut ons of the same Fredholm's equation 
of the 2nd kind, with a right member equal to Ux(m . ) + c„ for ynn, and to 
Uzfm^tc, for r01. 10 

The potentials *OO,0O I may be regarded as generated by bound vortices t00 
and t01. The rings on which the vortices t00 are lying are the curves >oo = 
constant. If dcr0'0 is the distance between two rings >00 = constant, d-0 being 
positive downstream, i'0 the unit vector tangent to S and normal to the ring, i00 
the unit vector tangent to the ring, with i00 » Ai',,, one has 

d>oc 
•-oo1'' “ n Aioo . > 

vlC #. 00 
(8) 

A similar formula gives the vortex t0,. 

3.3. Case When the Angular Velocity is not Equal to Zero (Fig. 3) 

Let us assume now that u/u = 0 , w/U = o, Lq 'U f o. 

The absolute velocity potential is 

<i»0(M) = 4>oo(M) + ^0 2 ’ when M is in ' (9) 
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There is no velocity potential in n¡ since q i o, and curl vo 2qi • But we may 
write: 

-grad m in ne . (10) 

We have to define t02(m) (Fig. 3). 

In order to do that, let us consider on s the rings c 2 and c 2 located in the 
planes of abscissae x and x + dx, (dx <0). Let m',m( be two points on c2, m' 

being on the starboard side, m| on the portside, with z(m¡) z(m'). A, origin of 
the arc a2 on c2, is chosen on the upper arc of the contour C along which the 
planes tangent to s are parallel to iy. A' being on c2 and on the lower arc of 
C, we consider a point m on the arc m'A'm;. Let da'(m'), d<r'(m) be the distances 
measured on s, at m' and at m, respectively, between c2 and c2. These dis¬ 
tances are considered as positive. Moreover, i2(m) is the unit vector tangent 
to c2; i2(m) is positive with respect to the x-axis. The arc dap > 0 has a di¬ 
rection identical to this of i2. 

Now we define at m an element of bound vortex dt' (m) i,(m)dt ’(m) by the 
condition that 

dt '("Of Sda' ) 
4 m 

2U 
(n da2 da' ) 

Consequently, the filament vortex which intensity is equal to 

- — iydxdz(m') 

on the segment mjm1 and to dt(J2(m)(Sda')m on the arc m'A'mJ, is closed and this 
intensity is constant along the filament vortex. It is the flux of the vortex 
(2U L) iy through the small area (da2da')m, on s. 

The total vortex at m has an intensity given by 

i y(m' ) n(m') da2(m') do2(m') . 

This vortex is equal to zero at A. 

(11) 

It constitutes with the vortices (2U/L)iy located in n., a family of closed 
filament vortices having a constant intensity along their length. Consequently, 
the vector ’ 

V'2(M) _1_ 
4rr cu r 1 

Stg 2(m) 

mM dS( m) 
2U . dni^j) 1 
L ‘v MiM J 

(12) 
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satisfies the condition 

curl 
n. . 

i 

Consequently, V^fM) depends in ne upon a velocity potential. Let <l>ÿ2(M) be 
this potential. One has 

Vñj(M) = -(çrad <l>ó 2(M) in í¡e . 

ïn n., V(;2 does not depend on a velocity potential; but 

Vq j(M) - ^ iyAOM 

depends on a velocity potential ¢: 

-grad <t>(M) + VójfM) = ^ iyAOM in Q¡ . 

Let us now consider the velocity potential <t>0 2(M) defined in fij and in ne by the 
distribution of doublets y'(m) on s so that 

"oVM> If T'(m) ■ (13) 
s m 

with 

1 
2 y if y’(m') 

dn 
—7- d S( m ' ) 
m m 

-c/jimj ) ^ constant . 

One has 

<I>q2(M) - t/.(M) + constant in fi. . 

Hence, one has 

-grad <I>;’2(M) = -gradqffM) = -V¿2(M) + ^ iyAOM in fl. . 

Therefore 

-grad 'iJÖjfm;) + V^fnij) = ^-iyAOnij on S¡ . 

When M passes through the boundary layer, from m; to me, the normal com¬ 
ponent of grad <l>¿2 is continuous. The normal component of V0'2 is continuous, 
too. Consequently 
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--«rad [<l’ö2(me) + 1>(52(nie)] n(mr) [-«rad <t>0'2(mo) + Vó2(mc)] n(mp) 

U r 
: L [1y AOmc-] nfmo^ • (14) 

Therefore <t>" 2 + i>,;2 fulfils on Se the same condition as the wanted potential 
(D0 2. Because these two potentials are regular in 0P and at the infinity, one has 

1>02(M) = «1>ö2(M) + <t>g2(M) + constant in 0-p . (15) 

This equation defines t02(m); one has 

= I {-Krad nip) - iy AOmr} A n(mp) . (16) 

This solution does not depend upon the choice of the rings c2 since the potential 
<l\)2 is perfectly defined (with the exception of an additive constant), by the con¬ 
dition on Sp. 

3.4. The Vortex Distribution When the Fluid 
is not Quite Perfect 

In this case a vortex wake exists. Let us assume firstly that 

U = 0 , q = 0 . J M • 

The total velocity potential may be written: 

W 

'A) - A>o + A» i ü ’ (17) 

where 

w w w 
A 0 - ¢., 0 f 0 ’ 'A 1 y ¢() 1 y + '*'() 1 ÏJ ' 

In these expressions it>00, and <l»0,(w/U) are the solutions obtained in par. 
3.2. The potential ,l'on has to be added to <l>00 when a wake already exists for 
w U - (); the potential ,l,01(w/U) has to be added to 'l'0,(w U) when a wake exists 
for w/u I o. 

Figure 4 suggests that the wake is made of free filament vortices shed 
along a not necessarily closed line (f0,. C(0, is approximately in the (x,y)- 
plane. 

For reasons of generality, we consider a closed line (¾ , which contains the 
arc d01. On the arc (t’ó, - (f0, no vortex is shed. 

It is possible to consider u* Y00 + 'i»0,(w U) as generated by two families 
f,;, of free and bound vortices (Fig. 5). 
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m’ 

A vortex of the fó-family is lying on a closed contour made itself of two 
arcs; one is PVP starting from P' on the port side of lf0,, and going to P, on 
the starboard side of tf01. m' is on the upper side s' of s, the other arc is 
made of the streamline of the relative motion starting from P and going to the 
infinity downstream, and of the similar streamline starting from P', but de¬ 
scribed in the opposite direction. The intensity of the filament vortex above is 

A vortex of the f0'-family is similar to the previous one; but the arc Pm P' 
has to be substituted for P'm'P, m" being on the lower side s of s; moreover 
the streamlines starting from P and P' are described from P' to the infinity 
downstream, and from the infinity downstream to P. The intensity of the fila¬ 
ment vortex is dy'0. 

The intensity of the free vortex resulting from the addition ( + f f0) is 

clip - dy-Q -dy" along P œ P' . (18) 

The arcs P'm'P and Pm’P' are orthogonal to the contribution of ¥0 in the 
total relative velocity on Sp. 
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It is possible also to consider a free vortex of the f(;-family as made of 
three vortices of intensity d>¿: vortex (i) on the arc P'm'P and the segment PP'; 
vortex (ii) on the arc PKP' of (i01 (K in the (z,x)-plane), and on the segment 
P'P; and vortex (iii) on the arc P'KP of if0,, and on the stream lines of the rela¬ 
tive motion starting from P and P' and leading to the infinite downstream. 

Vortex (i) is equivalent to a distribution of normal doublets on the part 
s'(P) of S' behind the arc P'm’P and on the part .s ,(P) of the surface >,(P) 
generated by the segment pp' when P and P' describe tfn, ; 

Vortex (ii) is equivalent to a distribution of normal doublets on the surface 
VP); 

Vortex (iii) is equivalent to a distribution of doublets on the part £(P) of the 
wake which edges are the arc P'KP, and the streamlines starting from P and 
from P'. 

Because the distributions of doublets on S,(P) are equal and opposite, the 
contribution in Y0 of the vortices (i), (ii), (iii) is due only to the doublets dis¬ 
tributed on S'(P) and on S(P). 

A similar reasoning may be repeated for a vortex of the f "-family. 

Finally, the contribution in Y0 of the vortices just considered is 

'PI'o - dv0 t civ' . (19) 

with 

civ 

civ' . o 4 

t-fí air 3¡dJ<'‘>"dr.<p> • 
-:( P ) u 

s if.,,, ¿ JI,. 

^ (191) 

chr: x (|>o' ■ - " m M 

In these formulae, the unit vector n is normal to and therefore, approx¬ 
imately identical to iz; the unit vectors are positive outwards. 

The total potential \0 is therefore given by 

V0fM) 
4” I : (](P)‘iyi 

40 1 
I 

ai y,, ) 
cl 

dn df( ) (20) 

where P describes the arc P,'K • P,, P¡ and P, being the extremities of ti,,,, and 
xfvp) the abscissa of P on (f01. The coordinates of ;J on ? are f,yp. 

On the other hand, the total potential \ '(M), generated by doublets on s, may 
be written 
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~ 47: JJ it: dS(m). 
s ' + s " mM (21) 

Of course 

xo(M) V00 + X01 

xoq being due to F nn and v01(w/U) to 10 ,fw/U), and, similarly: 

X0(M) ^ v0Q + v01 ^ 

When u/u, Lq U | 0, we have: 

i>0(M) - x00 + >on X'0] - + Y tS 
U U ’ 

with 

i .,,v , / u . w , Lq 
V0(M) - •'‘oo + ^no + ^’o 1 ■[( + xo 2 “(J 

VM> = 'l'óo + Voo '»'o, J + ^02 

“ ^0 i + x0 i ’ ( i - 0, 1, 2) . 

(22) 

(23) 

Now let us assume that v00 is known. Since 1'00 must satisfy the condition 
YoofMj) = constant, when is in nif the density >00(m) on S is given by the 
Fredholm's equation of the 2nd kind: 

■j Too^ ~ 477 Jj yooim ^ 7)1^7 777 dS(m ) = “Voofm^ - -X'00(m) , ^4) 

nij and m being on the same normal to S and infinitely close to one another. 

The solution of Eq. (24) is: 

700(m) = -2Y00(m) + JJ Afm.m,) V00(m,) dS(m,) , 

where Afm.m,) is the "solving nucleus" of the Fredholm's equation. 

(25) 

We observe that Y00(m) is discontinuous when M is crossing through I; the 
discontinuity is: 

Voo(M') - Y00(M") = r0(^i) , with M'M' = £nM , (e >0) . 
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But, when M is in the vicinity of p, as p is on an edge of : , the discontinuity 
is the half of the previous one. Consequently, Eq. (25) gives 

- }00(m ) !00(P) , (m'.m" infinitely close to P) , (26) 

which was easy to foresee. 

We have yet to determine ! 00(P). 

In order to do that, we need to know a condition which must be satisfied on 
do j. Let us assume, as a first approximation, that ? may be regarded as nearly 
parallel to the (x.y)-plane even in the vicinity of tf01. In this case, the condition 

dïT [voo^) + *oo(^] : - HÍT = x(P)-o , (27) 

may be expressed rather easily. It is a singular Fredholm's equation of the 
first kind which yields the unknown function roo(P). 

Similar reasonings may be repeated for ro, and 102, and finally, the prob¬ 
lem consisting in the determination of the wake is, in principle, solved, at least, 
under the condition that the d0 ,-line is known. The latter problem, of course, 
depends upon the mechanism which governs the transport into the wake of the 
vorticity which originates in the boundary layer. For the present moment, if a 
complete, explicit solution had to be given, it would be necessary to consider 
the (f0, -line as supplied by the experiment. 

In the considerations above, we don't take into account the tendency of the 
free vortices to wind around themselves and to form two vortices only at some 
distance from the body. This question would be of importance. But, on this 
paper, we mainly need to have an idea on the structure of the Various potentials 
which sum gives the motions of the fluid outside the body. 

We note finally that 

w = -[■W*.) * WV W".) ÍJ+ ?02(m> %]■ (28) 

4. Case of an Unsteady Quasi-Rectilinear Motion 
Parallel to the ( z, x ) - Plane 

Let t ' ut L be the reduced time (L = length of the body). 

We assume that the components of the absolute velocity of the origin of the 
axis attached to the body and the absolute angular velocity (of components p.q, r 
on these axis) satisfy the following conditions: 
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V 

u 

P r 0 , for -Of, < t ' < + I , 

(U + U)i x + Vi y + wiz , 

constant , (^-j 0 for t ' 0 , f00(t') for t' >0 , 

0 for t ' ' 0 , = f0 ,( t ') for t ' > 0 , 

0 for t ' < 0 , f0 2( t ' ) for t ' > 0 ; 

(1) 

foo» foi> fo2 are given functions of the reduced time ttheir squares and 
products are negligible. 

The velocity potential of the absolute motion is: 

f< (M, t ' ) "wM>+ E 'W^ fok^')+ 
k =0 

(2) 

In order to study the structure of the wake, we assume firstly that 

f00(t') = 0 , f02(t') 0 for t' > 0 . 

Let us consider the bound and free vortices which generate ^(M, t 

At time t ' >0, a vortex generated in a small interval (t\ t' + dr '>, with 
0 < r' < r' + dr' < t ', is for instance, made of two filament vortices: one of them 
is of intensity riPdT, r¡(P,r'), and lies on a closed contour made of an arc P'm|,P 
on s', and on a U-shaped arc PPT,P;,,P', where Pt,p;, is deduced from the 
segment PP' by a translation nearly equal to -i^ft ' - r'); the other one is of 
intensity dpdT, r;'(P,r'), and lies on the arc Pm;,?’ on S" and on the arc P'P;,PT,P 
defined above. 

Consequently, the total intensity on the arc PPT,P;,P' is equal to 

dpdT,ri(P,T') = dpdT, [rjfP.r') - r'j'fP.r')] . 

As explained on Fig. 6, the first filament vortex is equivalent to a set of 
three vortices (a), (b), (c) of the same intensity dpdT,r ¡(P.t'). Vortex (a) is 
lying on P V <P and on the segment PP'; vortex (b) is lying on the arc PKP' and 
on the segment P'P; vortex (c) is lying on the arc P'KP and on the arc PP, ,p; ,P'. 

Vortex (a) is equivalent to a distribution of normal doublets on the part 
S'(P.t') of s' behind the arc P'm;,P, and on the part £,(P) behind the segment 
PP' of the surface 2, generated by PP' when P and P' describe the tt01-line. 
Vortex (b) is equivalent to a distribution of normal doublets on £,(?). Vortex 
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Figure 6 

(c) is equivalent to a distribution of normal doublets on the part ZfP, t ' - r') of 
the wake surface so') between the arc P'KP of (i0,, and the arc ppt,p;,p'. 

Obviously the two distributions on £,(?) are equal and opposite. Hence the 
vortex dpdT,r;(P,T') lying at the time t' on the arc P'm;,P and on the contour 
PPT<P',P' is equivalent to the sum of the distributions of normal doublets on 
s'(P,r') and on 2/P, t ' --r'). 

An identical reasoning applied to vortex dpdT, r^p.r') lying, at the time 
t ’, on the arc Pm;,P' and on the arc P'P;,Pr,P shows finally that, we have to 
deal with two distributions of doublets, say on S'(P,r') and S"(P,r') and on 
IfP.t'-r'): 

(3) 

with 

Now, let us consider at time t ' the potential 

(4) 
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Let be the absolute abscissa and ordinate of n on £(t '). The density 
on the area d^'clV is the effect of the free vortices shed during the interval 
(o,T') along the arcs PP, and P'PJ, with y¿ = v' (or yp- = V when r,' <y(K)) and 

x'(p) being the absolute abscissa of P (or P'). Consequently 

and we may write 

oro-o = t') 

= - 4n 

y ' (P . ) 

f 
Jy'(p ; ) 

dr,' rx'(V> 
■Vln'i-Lt 

X'(M)-g"\ _d ± 

L / dn u mM (m! . (4a) 

where X'(v') is the absolute abscissa at t ' of P (or P'), and X(V) - Lt ' its 
absolute abscissa at t' = 0 (see Fig. 7). 

Figure 7 

An equivalent for this expression is: 

y^M, t ') r,(yp. t') 
d 

dn M 

X { [x(M) - x(P) - L( t ' - t') |2 + (y(M) - y(P)]2 

t [z(M‘) - z(P)] 2} dr'. (4b) 

At time t ', the potential y¡(M, t ' ) due to the distribution of normal doublets 
on s' and s is: 
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s 
(5) 

and we have 

^,(M, t') = V,(M, t ' ) + V¡(M. t ' ) . (6) 

The density -yjfm.t') is due to the sum of doublets ! ¡(P,t') on the part 
S'(P,t') behind the arc P'm;,p which passes through m'; >; depends upon t' 
because, firstly, rj(P,t') depends also on the time, and secondly, because the 
arc P'mJ.p just menuoned above depends not only on m', but also upon t' when 
m' is given. Consequently one has: 

y ¡ ( m ', t ' ) - r;iP(ro',t').t'l. '/”,(11)'', t') = r"[P(m",t'),t'] , 

where in the right members, p is a function of m' and of t'. 

The potentials y^m, t') andv;(M,t') satisfy the condition 

+ Y^nij.t') = constant 

(with respect to Therefore, we have: 

and 

1 (m ’, t ’ ) - 7 j ( m ", t 1 ) = 1 1(yp.t') (9) 

(m ', m infinitely close to P). 

Moreover, we have 

_d! 
dn ß 

(10) 

Lastly, we observe that 

: -7,(11,t') + constant. (ID 

Let pp be the point on sr infinitely close to p. Putting 
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-'l'01(Pr) GfP) , (12) 

Eq. (10) gives: 

'I1,;Pp, t1 ) GfP) (13) 

/ W \ 
lu/t, 

constant 1 0 for t1 >0 . 

In the case "ap" one has: 

y,(m,t') - >*( m, t ' ) (J) , ¡vy.t') = r*(T,'.t') 

and so on. Equation (13) yields 

_yp 2 .yi> r' r, r -4 
Í ’d . f 1 .. G(y,)dy ^ J dv‘j ~7T~. •G( !p^d':'- (14) 

Jv , J-*, 1 0 1^7^ àr> JyF, 

where [’*( •/, r ' ) 0 when i ' < X( t?' ) - Lt ', while 

G( Pp)d‘f ' 
Af'Br;' ' 'P 

is the contribution in G(P) of the area d22 df'dr)' when the motion is steady, 
say when 

t' = tco, nfV.tcc) , r01(T)'). 

Equation (14) takes into account the fact that y, and consequently Vl are linear 
and homogeneous with respect to r,. 

Putting 

r*(r)',t') r0 ,( V1) F*( t)' , t ' ) , [F*( p', t1 ) : 0 for t' <0. F*(T)',+œ) = 1] . (15) 

Eq. (14) becomes 

yp -.2 (.yr, ç 

f 'dp' f F*(t),.r') ■— G(T^)di' = G( T]p) = dp' 
4, JX(V)-t.' a= ^ Jyr< 

X(t)') 32 —— G(pp)di' 
30p' P 
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or putting 

—7—7 G( >)<! :' r,,', t'-T')d7 

rv"' , , r' Jyp, F t'-T')dr' Of rjp) 

>'ri t ' 
f ‘ ¿V' f J(^,V, t'-T')dT‘ 

Using the Laplace transforms, and putting 

00 

: J e-st- J(77-,Vit-)dt. 

CO 

f*fV.s) :: J e-St' F*(-r)‘ , t ' )dt ' , 

and so on, we obtain 

J, ’ = Ff’'' i(^,',o,dV 
pi Jy„' (16) 

j( oí L*U''ÜlÜ "',be the SChmidt'S functions of the „uclcus 

rVr' 
J , ) Urf7),)d7?' = °' "ben riq, 1 when 

V n' * ' 

r"1 
J vt/'' ) vr(-/ )d-)' = 0 , when r ^ q, = 1 when r f q. 

Therefore, we may write: 

Ji'/P’v,0) E apup(V¿)v (v') , 
p 

-V"'- ç V.» ç v„ £h„p VV) 

rfT/,’S) ^ frCs) Vr(T7') . 
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Substituting in Eq. (16), we get: 

v'( [?'"'■>{? hnp "p( 

1 fV r I 
•f J [Ç vP(Ti')] &ri' 

Putting 

yi> 

v»' ) d V ' 

we obtain 

L "¿Op) [E Vs) bnPl 0 s) = jL 
p L n -J p 

or 

f*(s) = cr 

bnp 

Therefore 

F * ( rj1 , t ' ) = E vptri') Fptt') 
p 

is known. 

Of course, for t ' = +co, the motion is steady, and consequently 

i = f*(V,+oo) E vP(-n') ■ 

P 

This equation must hold for any value of V in the range < V < r/jy 

Obviously there is a contradiction unless F’fV.t') is independent of v'. 
That leads to 

r*(Tj', t ' ) = r0 ,(7/) f*(t ' ). 

Then, Eq. (16) gives 
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J ^ F*(T'> t'~T')dT' :. G( 77p) 

where 

C^T 
7 J'(7}p' t'-r') ■ - —— J'( r/p, tr') 

dr 1 

yp J J( Tp, T)', tr')d7?', with J '( -r/p, 0 ) 0 

yp; 

Using again the Laplace transform, we obtain: 

sf*(s) j'(r.p,s) i G( Up) = 3'(Vp.*m) 

Consequently, we may introduce a function h(S) and write: 

l'( ' p, s) G( rip) h(s ) . 

Expression 

HM ' - ' G( r,' ) 

is the contribution in G( ' when the motion is steady, of the area d:- between 
the two arcs deduced from tfn, by the translations -ixL{ t ' - ' > and 
aná^' ' *d ' and t,K‘ lwo streamlines of the relative motion coming from P 

kind 
Function f ( t ’) is the solution of a singular Volterra’s equation of the first 

i ' 
I F*( ' ') K(V - < ' )<|r ' 1 . 
'0 

Putting t' - At ', t ' - - ' (1 - 1 it this equation becomes: 

.i 
t' ! F* 't\! II[{1- Mt'JdA 1 . 

Jo 

what implies 

F* [At ' ] H [( 1 - A)t '] -: o{t'-*} 

for t ' very small. 

(21) 
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So Eq. (20) is quite analogous to the equation which yields the circulation 
around an airfoil of infinite span in case "a,." 

Equation (20) is not convenient for numerical calculations. But, if the 
nucleus H< t ' ) was really known, as in the case of the airfoil of infinite aspect 
ratio, it would be possible to solve it after some transformations. Equation (20) 
is equivalent to 

r1' r0 . » ' 
A( t ' - ö)dÖ I F*(r') H(Ö-r')dT' = A( t ' - 6)dÛ - I Afr'idr', 

J0 J0 -'o '0 

or to 

F'(r') 

The nucleus in the brackets is 

Í 1' A(tr - Ö) H( 0 - r' )d6 dr1 
t 

f A( T 1 )dr 1 

A[( 1 - X)( t ' - t ' )] H[\( t ' - r')]d\ = K(t'-r') (22) 

If we choose A( t ' ) in such a way that K(0) = 1, what implies only 

Aft') - o{F*ft')} (23) 

for t ' small, we obtain, deriving with respect to t ' : 

F*( t ') + J fVt': r') K( t ' - T')dr' = A(t') , (24) 

what is the wanted form of (20). 

Since 
Now consider the density ') of the distribution of doublets on the hull. 

3 «V ó , ) - — <l»0,(ni) , 
3z 

when t' is small, and m close to 001, one has 

>*(m,0t) = 0(1). (25) 

This result is compatible with the conditions 

841 



Brard 

[”¡(yP. t '■) y\(m' ,t') - ') . 

f Í(yp,0+) 0 , 

(m', m infinitely close to P), which lead to 

v*( m'. 0+ ) - >*(m",0+ ) 0 . 

We set 

>*(m,0+) t Syjim.t1) (26) 

with 

8>*( m,0+ ) 0, ~7 S->*(m,0O = 0(1). (27) 

The variation of s .*(m, t') between (O.t') is partly due to the fact that 
Í(m. t ') depends upon the distribution of the arcs P'm",P on the hull, 

distribution which is variable with t For t ' 0+, these arcs are concentrated 
in the vicinity of cf01. 

Now, consider the case "h,,” when (w U) t, is, for t ' > o, an arbitrarily 
given function. 

For (20), we have to substitute: 

I Fj( t1 - t ' ) H(t'-r')dr' = _ , (28) 

the general solution of which is: 

(29) 

when (w U)t, is continuous for t ' > 0. One has 

rvv.t') = r01(T;') F,(t') . (30) 

Because of (8) the density >,(m. t ') of the distribution of doublets on the 
hull is: 

,( m. t ' ) I F,( t ' ) H0,(m, t ' - t ' )dr ' . 
*o 

That gives, in the case "a,," the expression already written above: 

(31) 
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(jj 

t 

^)o J F^f T ' ) HP ,(111, t: -r ' )d 

and, in the case "b,": 

>i(m, t ' ) 

(ij) [/{fm.O) * • *(m, t ‘ ) j 

n) + î’i^m.t')] 

J ^7- (ïï)t, + '>>' t'" '')] (lr' 

(32) 

(ïï)t, + (ïï)0t 

+ { TP (ïï)t, t''T')d7' 

when (w U)t, is continuous for t' >0. 

(33) 

H (w/U)t. has discontinuities of the first kind for t ' > 0, one has the general 
formulae: 

i Í / w \ 3 
■(t } - J V F*( t ' - t ' )c| r ' , 

and 

Tl(m.t') - (-g-] t >'*(m,0+ ) (-jj) ( —^7 S>*(m, t'-T')dr' . 

In the case of the quasi-steady motion, we would have a circulation 

(u)t, roi(r>') F*(+œ> :: 1.o.fV) (J)(( 

and a density of doublets 

(ij)t, W") (^) , [>*(m'0+) + S>T(m.+oo)] . 

(29’) 

(33’) 

That leads in the case "a,," to the deficiencies 
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*(m, t ') ! 0 ,( V) 11-F*( t ')] 
'u '0 * 

íLr"'<v,í iv' 
) [H( t r') - 1] d; 

and 

in) At *( m, t ' ) - Sy*(m,t')] 
' 0 + \u /o + 

When ( w U),. is arbitrarily given, the differences are: 

Ar',( V, t ' ) = r01(V) (u),-'I (u)t. F 
(t' - t ' )dr' 

Í (Í), 
Sy*(m, t t ' )d7 

y (34) 

In the cases "b0," when (w'U)t. ■- o, (Lq/U)t. - o, (u/U)t. = f00(t') for t' >o, 
and in the case "b2," when (u/U)t. - o, (w/U),< o and (Lq/U)t. = f(12(t'),we 
have similar formulae. 

In the general case, f00(t'), f01(t'), f02(t') being arbitrarily given for 
t ' > o, we get: 

T( T) '.t') L r0i^') Í foi(T') — F*( t ' - r' )dr ' , 
i = 0 

> (35) 

y( m 
2 f r’ ’ 

■ t ') = ifoif1') y¡(m-0+) + t'-T')dT' . 
i =0 ( '0 ft 

5. Hydrodynamic Forces Due to the Velocity Potential 
(case of par. 4) 

5.1. Definition of the Hydrodynamic Forces 

When w/u and Lq/U are small, there are no strong eddies due to separation. 
Therefore the set of forces acting on the body is purely the sum of the follow¬ 
ing sets: 

(i) (?s) due to gravity (weight of the body, hydrostatic pressures), 

(ii) (?c) due to the inertia of the body, 
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(iii) (T ) due to viscosity (friction or, more exactly, viscous drag), 

(iv) (if , ) due to the velocity potential of the absolute motion, 

(v) (ifT) due to the propeller, and 

(vi) forces due to the system — if any — which reduces the freedom of the 
body or generates its forced motion. 

The set of hydrodynamic forces is if ,. We assume here that the body is not 
fitted with planes and fins (see par. 6). 

For what follows, it is helpful to separate the set of forces (if ,) into two 
additive parts, if; and if', (if;) existing alone when there is no wake, while (if') 
is the contribution of the wake. 

It is possible to obtain rigorously this result by starting from the contribu¬ 
tion in the absolute momentum of the fluid of each part of / (see par. 5.3). 
However, we will firstly proceed using an approximate expression of the hydro- 
dynamic pressure ptm,,, t ' ) on S(,. 

The velocity potential ¿(M, t ' ) is, at time t ' + dt ', when M is at rest with 
respect to the fixed axis: 

T(M, t ' + dt ' ) - T‘( X ', y ', z ', t ' + dt ' ) - ¢( x - uE dt ', y -vEdt z- w£dt t ' + dt ' ) , (1) 

where uE, vE, wE are the components of the absolute velocity ve(M, t ') of the 
point attached to the body which, at t ', coincides with M. Consequently: 

__ (M.t') — (M, t') - VF(M,t') grad <¿(M,t') . (2) 
ot ot ** 

The hydrodynamic pressure is given by: 

7 [p(M, t ' ) - pœ] = ^ (M.t') - iv2(M,t') , (3) 

where V(M. t ' ) is the absolute velocity of the fluid at M. Vr being its relative 
velocity at the same point, one has 

7 [p(M. t ' ) - P(r] - ^(M.t') + (VEV)M t, - i V2(M,t') (4) 

7 [p(M.t')-pJ = If(M.t') + ! VE2(M,t') - Ivr2(M,t'). (4-) 

Since V vE| is generally small, we could neglect the *ast term in the right 
member of (4) and write 

t') V A 

ar■ vE'r,d*j. .,. 
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This expression being linear with respect to 4>, we would obtain 

P( mP ■ t ' ) = -pw + Ip.(mc,t') + ^p'(me,t') (5) 

with 

“ Pi(IV 4 'i 

7P'(me,t') 

öt 

3t 

VE grad 

VE Rrid 

't>0 0(me) + E WM f0k(t''> 
k =0 

2 

> (6) 

k =0 

PifVf ) generates the set of forces (ï; ) when the fluid is quite perfect, 
say when there is no wake; p'(me, t ') gives the contribution of the wake in the 
hydrodynamic forces. 

In order to use the density of the distribution of normal doublets un S and 
the equation 

'f'k(mc. t 1 ) - >k( m, t ' ) , 

it is, however, easier to consider the streamlines (f of the relative motion on 
Se. These streamlines are the orthogonal trajectories of the curves y = con¬ 
stant, where > is the total density of the normal doublets on S. Because all the 
components of are small with respect to y00, that is, with respect to the 
density of normal doublets which generate <i>00, we may consider that the unit 
vector î ; tangent at me to the streamline c1 passing through me at t' is practi¬ 
cally independent of t '. We choose it' positive downstream and also the ele¬ 
ment of arc da' on c1. Consequently, the relative velocity Vr(me,t') is approxi¬ 
mately given by 

Vr(me, t ') VrC m0, t ' ) i¿(m ,) 

%0(m^ + Ë ^ok* W1') 
k =0 

[v;] m , t # 

da 

Hence, 

1 
2 Vr (V t'-) 

is the sum of the three following terms: 
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1 y2 
2 Vr¡ 

ft) 

1 _1 
2 1 ,,- 

1 — 2 IAt' 

+ E tWV fnkf1') + [V-]ra t, 

’l'ooi'V + É 

> (7) 

^ Ê fok(t') X l,'oo(mr.) + E W4') 
k =0 

1 2 
4 vr, oa 7 "’oo^e) + VeU 

3 

Since (b) is negligible, we obtain 

P ¿( Wp. t ') 

- p'fm', t ' ) 

Ë “’ok^e) f0k^') 5 VE2(me,t') - \ V2 (me,t'), 

3t 
— '•WV + VE(me,t ') • mp) 

3 
der1 

'W-V + Ë VH’e't') 

y (8) 

In par. 5.4, we give the expression of the set of forces (ifj ) due to pi. Now 
we consider the set of forces ï' due to p'(nic,t'). 

5.2. The Set of Absolute Forces Due to the Wake 

Let us assume, for instance, that we are in the case "b," of par?4, when 
(u U)t /, (Lq U)t. are identically null, while (w U)t, is, for t' > o, an arbitrarily 
given function of t '. 

According to a result of par. 4, the density of the normal doublets on S due 
to •yvt') is: 

. ,(m, t '■) ( >*(m.0+ ) (9) 

when (w U), > is continuous for t'>0. 

The pressure p;(me, t ' ) due to M'^rv t ' ) = -y^m, t ') is given by 
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1 , U 3 P i(<np. t ' / - — — > jfm, t ' ) + i'r(me) + ; 'i'oo^o') da 

or by 

-r| 'î(m-0+> dP (ï)t, + (ïï)ni ip 
w \ 3 

o + 

i" 
d / w \ 

<17' lüj , ât" 
7 .x>*(m, t T ' )d r ' 

v;+ — ^oo (ü)t, >>.°7 + (^ot7>,t') 

h Í üf' (ïï) ,7>.t'-7')dT' 
O T 

(10) 

Let us consider firstly the particular case "a,," when 

u/t, \u,0 + i 0 

for t' o. Let 

be the expression of p|(mr, t ' ) in this case. Equation (10) gives: 

1 “ - P, ( mp, t ) L — ;v>Í(m't'’> + VE® cr * — -1-0 0 Sc " [ > i(m,04 ) + S> j(m, t ' )] 

Therefore, one has 

1 1,. 
- P,, ,("'7 ~ P| (me’+7 

C 
8>*(m,+f<)] . (H) 

Now consider the difference in the case "b,," when (W U)t, is an arbi¬ 
trarily given function, between the pressure p01(me)fw i!)t, in‘the quasi-steady 
motion and the pressure p¡(mp, t ') in the real motion. Assuming that (wU)t, 
is continuous for t' o, we have: ? 

where 

1 poiOV(ij)ti - .i p;(me,t') -- ■— Ap ¡( mp, t ' ) , 

-- 7 PÍ(Í) ( mc11 * ) + — A 'p¡(mp, t ' ) I a,_,. 

(12) 

(12’) 
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with 

Ov*') = u ^fm'0+) df' (ïï)., 

and 

i A'p¡(me,t ') Vpi ' + — ¢, 
E a- 3(j1 

5 
da' 

Syjfm.+cc) S-y*(m,t') 

(13) 

-1" df' (iï) , 87*(m' 

U [/w\ 3 4 
+ L tfc)0+ 3T' } + -0 r df (ïï) , s^(m- (14) 

Integrating by parts the integrals in the right member of (14), we get: 

¿'Piovt') = (ïï),, veC + av 
3 . u 3 , 1 

—, »r,fm,+œ) + -jj gp 87,(01,0+)1 

- Í (it ve¡: * 3? 
3 U 3 

3a' L 3t ' 
-f; 87,(01, t '- T ' )dr ' . 

3t (14’) 

This equation holds when (w/U)t, has jumps for t'>0. 

Let us introduce now the difference 

A'Sy*(oi,t') = 87^(01,+00) - 87*(oi,t') 

We set 

We obtain 

R(oi, t ' ) = (»Ei; * ¿7 »..) 37' 3_ U _3 
3a' ' L 3t'J 

A'8yJ(oi, t ') . 

R(01,0) = (vEi; + 4>00) jîp 87,(01, +00) + £- 87‘(oi,0) , 

R(oi,+oo) = 0 . 

So Eqs. (14’) and (14) give respectively: 

P 

221-249 0 - 66 - 55 849 

(15) 

(16) 

r*# ?) 
A'P;(oie,t') = (jy) ( R(oi,0) + i (u) , 3t7 R(m’ t''T'^dT' ’ (I7') 

t ' r> 

mm^mmmmmÊÊÊÊÊÊÊÊÊKÊÊm 
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t 
AP i^me' * ' ^ (J)n R(m.t') + J -JfP (jr) : R(m, t'-T')clr' (17) 

We note that the first term in R(m,0) comes from the fact that the circula¬ 
tion around the body is null at t ' 0+, It leads to a deficiency of the pressure. 
But the second term acts in the opposite direction. 

In the quasi-steady motion, the resultant force and the resultant moment 
referred about the origin of the moving axis are respectively 

? 0 1 

I 0 1 

- (ïï) , JJ Po.OM -OV dS(me) , 
* s 

(SL JJ Pniime) OmeAn(me) dS(me) 
1 s 

(18) 

(19) 

In the real motion, the resultant force and the resultant moment are, re¬ 
spectively, 

?la') - ?01 (g)t( + , 

i01 + - A'ijct'), 

with, for instance: 

,,<(>), U d / w \ f f 
f1 > = P I JJ >i(m-0+) n(me) dS(me) , 

(20) 

(21) 

A'y[(t') = - p Jj* dS( m) n(m) R( 
s 1' * ' 

f ni, 0 ) 

j (ïï) , bP Rim’t'-T^dT' 

(22) 

The force iFj ( t ) and the moment Ij* Vt ') act in order to increase the ap¬ 
parent inertia of the body and will be included in the final formulae in the set of 
forces (see par. 5.4). They do not exist in the theory of the thin airfoil of 
infinite aspect ratio. On the contrary, the force A'yjft') and the moment 
A'Iïï t ' ) are quite analogous with those found in this theory. 

Similar formulae can be obtained when (u/U),, ) o, (w/U) , = o, (Lq/U) . = o 
for t' >o (case "b0") or when u/U(t') =o, (w/U)t, = o, (Lq/U)t, | o (case "b,"). 
The total set of forces due to the wake in the most general case is the sum of 
those found in the three cases ”b0>" "b," and "b2." 
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5.3. Another Expression of the Set of Forces Due to 
the Velocity Potential 'l' 

The absolute momentum due to the distribution oí normal doublets 

1,. <11 
4 ‘ <!n ,,M 

on a small surface d' (,.) is 

<i: (,. ) n(.. ) , 

it acts through point ,.. 

Consequently, the total set oí hydrodynamic forces exerted on the body may 
be obtained by starting from the variations during the interval (tt ' + dt') of 
the absolute momentum due to the distributions of normal doublets on s and on 
the wake surface. These momentums are additive. Consequently, the set of 
forces (if;) comes from the velocity potential: 

IW™,) * I] •W'V ■ 
k -0 

while the set of forces (?') comes from the velocity potential: 

I’oof'V + E 'W"1-’1"» • 
k "0 

Here, we deal only with the set of forces (‘J’ ). The set (Tj) will be ob¬ 
tained in par. 5.4 by another way using the absolute kinetic energy due to «t». 

Let us consider the case "b,." 

At time t ‘ the absolute momentum of the fluid is 

0,(0 01(0 + 0,(0 • 

U¡( O is due to the doublets distributed on the wake and 0,( O to those dis¬ 
tributed on s. 

The general resultant of the hydrodynamic forces due to >1', is 

‘flit') - (Ql^- 

One has 
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x'U'.«') 
y;«4') : ^ "u / ^.(Tí'ídT,1 Í F,(M)di' 

^0 1 X ' ( T) ' , t ' ) - L t 

- oizL í ‘ oi(17')dTí' i Fjír'ídr' 
Jöo, “nt 

with 

F.(t') (¾ F*( t ' ) + f F*( t ' - r ' )dr ' , 
WU. Jo dr' \U/T’ 0 + 

when (w U)t, is continuous for t'>o. 

Similarly, 

0)( t ' ) = ^ JJ n(m) dS(m) 
s 

with 

= y*(m,0+ ) + {^)0t + J d^7 (ü) , t'-T')d^' 

Hence: 

yj(t') = (^) , JJ yî(m.0+) n(m) dS(m) 
^ c 

-piIuJ r0 jCTj'idr/' F ( t ' ) + 
r 

d /w\ 
dr' \U/ i F (t' - T')dr' 

(ïï)0+ Up If *?>•*') "(m> dS(mï 

u r '> /w\ ,, 
P lJo dr' iu)T. dT JJsdt If P S^m' t' r') n(m) dS(m) . 

In the case "a” when (w/U)t. = (w/U)0+ o for t ' >o, one has, at t ' >o, 
a general resultant 
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(ij) z (u) i"pizU Í r0](T7')d7]' xF’(t') 
^01 

£ JJ “7 Sy’(m, t 1 ) n(m) dS(m) 1 . 

Consequently, in the quasi-steady motion, we have a general resultant: 

ïô.ft') = u/t, -p i 
“1 

o ,(V)dV 
■*0 i 

(23) 

The difference between this resultant and the resultant in the real motion is 

AJ¡( t '■) = (^) - . 
'u't ' 

One has 

where 

A?¡(t') = -ÍF;(n(t') + A'íf [( t ' ) 

= -p L d7- (u)t, JJ nfm) dS(m) . 

Moreover: 

A'JI(t') = , izU Í rol(Tj')dT7' w\ /W\ 

U/t, \U/ot 

/ d l»\ 
dr' WJ 

F*( t ' - t ' )Ar' 

U 
+ p L (ïï) JJ âp n(m') dS(m) 

t ' 

J d7' (ü) , A7' JJ St7 S^(m' t ''T,) "f"1) dS(m) 

Let ZJ( t ' ), Z'0 j(w/U) t, be the c omponents on the z-axis of the forces above. We 
put: 

7' . 

°» \u/t, 2 pAl,2n> (u)t, (24) 
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where A is the projected area oí the body on the (x,y) -plane. 

The first bracket in the expression of t ') is 

A d 
dr ' 

Í1 - F'(t' - 7')] dr' 

F*( 0) [1 - F*( t ' - r')] dr' . 

The second bracket is 

u)t, 1Í t7 ■•i''"'01 n(m) <is(m) + / (u)T,dT' // m, t ' - r')dr' . 

The new expressions hold even when (w U)t. is not continuous for t' > 0. 

Hence, putting 

*( ‘ > ' ALUa . J/ '-t ' n( nl) ' /dSi m ' > ’ 1 c 

we have 

with 

y ( t ' ) 1 - F 

z', (J)t( - z;(f , -z;(i\t') + A'z;(t'). 

u d / w \ rr . z, (i ) ^ ^ JJ .jfm.O*) n(m) iz dS(m) 
1 * s 

and 

Z,it ] ~ 2 ' AU 2 a 1 {(u)t, ;f0) * J (u)T, ,t' 

In the last formula 

/(0) 1 - 
ALUa, —p ' Jfni.O) n(m) iz dS(m) • 1 

( • 1 ) n • 

(25) 

(26) 

(27) 

(28) 

(25') 

In the quasi-steady motion, the component on the x-axis of the resultant 
force is null, but not in the real motion. One has 
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(29) 

with 

( 1 ’ ) : L ,777 (u) , J[| ■’i(m’0+) nfm) ix <IS(m) 
^ c 

(30) 

and 

A'Xjft') U 
v L (u)0t JJ it1 n(m) 

d 
dr' 

S>í(m, t'-r'i n(m) ix(m) dS(m) 

This expression may be written: 

A ' X ; ( t ' ) |pAU2a, 0( t ' - t')d’ 

with 

Ht') 
2 

ALUa, t ' ) n(m) i x dS(m) 

(31) 

(32) 

The first formula (25’) shows that, at t' ^ o + , the deficiency is, in case 
"a,," less than 1, 

We have, moreover, components z¡(1)(t'), X¡(,)(t') and-A'zj( t ' ), 
A'Xjft'). 

Although y*(m,o+) 0( 1 ), the component Zjl '(0+) is small, because firstly, 
yj(m,o+) has significant values only when m is close to S0,, and secondly, in this 
case, n(m) is nearly normal to iz. The components x¡(i)(t') and-A'x;(t') are 
small too, for the first of the previous reasons, and also because the projected 
area of the body on the (y, z)-plane is small with respect to A. 

Now, let us consider the moment of the momentum. It is 

w,(t') = w;(t') f wi(t'), 

with 
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t ' 
z ~t iyL I r0 ,(7/)(]-/ I* .f '(,.) F,( -')(!? 

W¡'( t ' ) 5),. * (5),, »■'.<”’>') 

1 
d / w \ . , <, , - 

I, ,- lïï),, ■ - r W' 0'm \n(m) dS(ni) 

The resulting moment is 

'[(t') iy ^M') .- ~ [w;(t') + W,(t')] . 

Because .f'o) is independent of t', we have 

U d 

. F f r n ,( 7]') X x(7)') * dr; 
J/j) 

‘0 1 
(uL F*(t,) + lot d^ (ü)T. FVt'"T')dT’ 

_P C (It^ (ij) , JJ [z(m) n(m)ix - x(m) n(m)iz] dS(m) 
1 s 

”p Ü (ö)0 JÍ ~ S-y’, (m, t ' ) [z( m) n(m)ix-x(m) n(m)ij dS(m) 

, - 

"PC Í dT7 (ö) (dT'JJ t'-7') [z(m) ’‘f'1') n(mi'z] 

+ / u JJ (ïï)t, y>(m'0+) + (ïï)ot 

/ d 
dr' 

S'/¡(m, t r‘ )dr ' i ,n(m) dS( m) . 

It is assumed here that the moving axis coincide at time t ' with the fixed 
axis, and the moment is referred about the latter. The last term comes from 
the derivative 

d , 
dt “ ■ A n(m) ' 

In the quasi-steady motion, the moment is 
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IR ( —] 
01 \vlt, . U f I if ' ' ) * X( ' ' ) 

‘0 1 

JJ [.;(rn,0t) + ■ izn(m) dS(m)l (gj _ . (33) 

The difference between the two moments is 

Mft') (ü)t, - + A'JliJft') 

with 

(34) 

;( '5 ( t ' ) U d 
b fit ï (g)t, JJ >i(m.0t) [z(m) n(m) iz - X(m) n(m) ij dS(m) . 

In order to get ' '5i¡¡( t '), we will reason as above. 

The contributions of the first terms in Ti¡(t') and in %,(w U)t, lead to 

u/ ' xfr,') xd^'jijjJ^U-F’ft')] + J g) ([1-F*(t'-T')] dr'l . 
' d0, 0 + Jo* 1 7 T‘ J 

The second term in H¡01(w U)t,, and the last term in give: 

H (frrl ['.î(m,+œ) - Syîfm, t ' )] 

t ' 
/ fê)T< [A/jCm.+oo) - Sy;(m, t '- r ' )]d7 n( m) dS( m) . 

Lastly, the terms in the 3rd and 4th lines in the expression of Vt t ' i give 
the contribution: 1 

U |T |/w 
' L I Mb, 0 ♦ 't 

Í-- i(m, t ') + 
Jo df (b)T- t'-T'^lTj 

» {z(m) n(m) ix - Xfm) n(m) i z } dSfm) . 

Integrating by parts, we obtain 
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- - U j Ï01(V) x( |(^)(( [1 - F’(0)] 
i 

ç' I w\ 3 , ., + Jo (i>)T. ãT [1"F (t "T )]d7 
t U JJn(m)iz dS(m) j(|j) ^ [Sy^m.+œ) - SyJCm.O)] 

t ' 

+ f (n) ——; [8/^(111.+00) - t'-T')]dr' 
J UWT< dt 

fJJ^m) n(m)»x-x(m) n(m')iz]S(m) |(g) — >*(m,0') 

J (ü)T, — 8'>,t'-T'y]T'[. 

Let 

’ll !-) - ALI)2 i ' 
0 1 \U /1 , 2 U MU/ , (36) 

be the moment in the quasi-steady motion. We have 

1 ALU 
tf„ ‘0 i 

Then, putting 

0 ) x( 7/' )dT)' + JJ [-y*(m,0+) + S'y*(m,+œ)] ¡zn(m') dS(m)| . ,1 

'7'(t,) - ÃCU7' iJ ^(v')dv'il-F‘(t')l 
‘ ’ 1 «o , 

JJ [8>'j(ni, t t>) - S-yjCm.t')] n(m) ¡z dS(m) 
s 

JJ ~7 [z(m) n(m)ix-x(m) n(m)iz] dSf ni) l . 

we have 
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't'(O) ' J J M v')dr]' + |T S'y’fm,+«) n(m)i2 dS(m) 

* ‘ l uo i « 

f Jj ~ [z(m> n(m)i x - x(m) n(m) i z ] dSfm) 

y (38') 

-/-(+-) - 0, 

and 

-^1-,( t') i . ALU2 a; 
te)t, ^(0) 4 J (ü)T, — /'ft'_T,)dr' (39) 

This last formulae holds even when (w U),, is discontinuous for t ' >0. 

The expression of the deficiency û'Jiî'ft ' ) and the expression of TO'/1 )(t ' ) 
could be subject to comments similar to those made above about L'zUt '), 
A'xJ(t ' ) and z/'^t ' ). x¡(i)(t'). 

In the following paragraphs, the effects of z/* Vt ' ), x/1 /1 ' ) and 
TO’i( 1 ^ t ) will be included in the contributions of the accelerations in the set of 
forces due to the pressure p¡. 

In the first draft of this paper, we gave an affirmative answer to the follow¬ 
ing question: is the deficiency A'lf¡ fixed with respect to the body? But in fact 
the proof given was not valid. 

In the case of an airfoil of infinite aspect ratio, it is possible to show start¬ 
ing either from the momentum of the fluid Q or from the pressure p'(me, t 
that the deficiency of the lift and its moment are actually proportional to one 
another, the ratio being independent of the time* We think that it is true also 
in the present case. But the proof would require a finer analysis that the one 
given above, although the latter is sufficient in order to yield the structure of 
the main formulae. 

In return, however, we have, in cases "b0" and "b2," 

>0(m't') = 9{r0o(V) F'u'ilm} , y*(m,t') {ro 2( rj') F*( t ' ) |m} , (40) 

being the linear and homogeneous functional defined by 

,>î(m, t ') : ÇJ {[ 0 ,( y ) F* ( t ' ) lm} . 

For this reason, it seems that the three functions </,/,-/' introduced here are 
suitable also in the cases "b0” and "b2" as in the case "b,." We will admit this 
fact, at least for the sake of simplifying the writing. For instance, we will have: 

♦ See, respectively, (2) and (8). 
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and so on. 

In par. 8, the notations used here will be slightly modified. We will use a,a' 

instead of a,,a¡ and b,i>' instead of n2.nj. 

5.4. Set of Hydrodynamic Forces Due to p¡ and p'(i> 

When the body is symmetrical with respect to the (z.x^-plane, the kinetic 
energy of the fluid in the absolute motion due to the potential 

'1‘nn f <l>„ + <l>, 0 2 

is 

2T ■ W jCU + u)2 + /¿jV2 + [i3w^ + 2fi13(U t u)w 

- 2L [i 35wq + i'j5(U t u)q + ^24vp + ^26vr] 

+ l2 [XiP2 + ^2^2 + A3r2 " 2\13pr]} . 

where w is the volume of the body. 

The components of the set of forces Y¡, Zif fb , Db , n¡ are given by 
the Lagrangian expressions: 

ii 
<lt ^11+u) 

d T ( J T\ ( ST 
~ dt ~p ^ iv ~ " w ~ j “ (q “ 

Writing before the accelerations ß[ , ... for /.,, ..., in order to take into 
account the forces due to the pressures p'( ' and assuming that u/U, w/u, 
Lq r are of negligible squares and products, we get, in the case of a motion 
parallel to the (z.x)-plane: (with 

2 

k =0 

and so on): 
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zi ' z; Õ Al!2 Ir’ ' Mi n1 kH + k!n 2 AL U ^1)2 * ^ i r 2 3 5 ,,9 

x¡ + x: i.AU2-2" 
AL I ÍJn U " ^ 

k3 _ i kk , Lii , L2q 
13 u2 _ ^13 u2 + 1/15 u2 > (42) 

n i On 11.+ /,- \ W 4 i Lw , LÛ J L 2q 1 
'.3 2^,3 u+ 13 M.) g 3 ,35^23 lTs gr'A -grj' 

As is well known, the force is null in a steady motion, when Lq u o, but 
not the moment if the body is not symmetrical with respect to the (x, y)-plane 
(/+,3 í 0). When q I o, the force and the moment are not null, even when the 
motion is steady. 

6. Sets of Ft os on the Diving Planes and Fins, 
Effect of the Wake 

The diving planes and fins contribute to the forces (par. 5.4) and y 
(par. 7). We assume here that the expressions of these forces take into ac¬ 
count the effect of the diving planes and fins. 

But we have yet to introduce the effects of the lift, moment and drag due to 
the diving planes and fins. We neglect here the history of their motion because 
the length of their chord is small with respect to the length of the body itself. 

Let L;b,o, L b the coordinates of the axis oB of a diving plane b, L r the 
ordinate of the center of the lifting surface, and oB its area. In and “n, the 
fin associated with the plane is assumed to be included. 

When the motion is steady and parallel to the x-axis (w= o, q o), the wake 
may induce on the plane a velocity which component on the z-axis is w „ a i 
The components of the relative incident velocity are 0B 

-u. 0, floBu. 

Let be the angle of the plane. /5 = 0 when the lift due to the previous inci¬ 
dent velocity is null; /3 >0, when the lift generated by the plane has a negative 
component on the z-axis. 

In the most general quasi-steady motion, the relative incident velocity is 
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The four last terms in the /-component are due to the velocities induced by the 
wake on the plane; alB and n2B are oositive dimensionless coefficients. Conse¬ 
quently, in such a quasi-steady motion; the effective angle of attack is 

Lq 

tor ■ t < *r'; ; 

' + (ll)t, ‘ ( Ij'jj, G " :,f'B (u),- - n‘B (u)t, ^ "-’G \ U/t, 

Let us assume that we are in the case 

(Ö), »' (t),, »' 

lïï)t, 0f">' M for ‘'>0. 

At t ' o*, the velocity induced by the wake is null; at t ' + >, it is alB(w U)0t. 
At t ' > o, it is 

'IB (¡1 ■ 

+ ■ -f . where . lB is an increasing function equal to zero at t ' 0+, and to 1 at t ' 
In the general case, when (w/U)t. is a given function f01ft'i, the velocity in¬ 
duced by the wake generated by f0,( t ' ) is 

(ü)n t * *G^ 4 ' ^ J d^7 (ti)T, " J fniiT') - '-'idr' 

t 

1 foi(T') )dr' . 

Finally, when 

iû)t, f00(t 1 ' (ü)t, f01ft } ■ (if),, f02(t ) ' 

the effective angle of attack becomes 

■' + (tj)t, " (l?),. ~ J akB f0k^T'^ ^ ‘^B^ ’ " T'^dT' ’ 
k = 0 

The square of the incident velocity is 

»’i1* > (0),,^(1¾.¾ 
(2) 
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l'x„> cl anc* em the characteristic coefficients of the plane fitted 
to the body. " " 

The absolute set of forces due to the plane, referred to the axis attached to 
the body, is 

7. n 
1 
2 p ’ 

i 
n 

1 
2 ‘ jLU J 

BlLr 

1 
2 nLU2 B 1 Lj, 

,LU2 

But a set of diving plane is generally made of two parts, symmetrical with 
respect to the (z.x)-plane. Consequently, VD ana \ are null. The non-null 
components of the set of forces are 

1 B^*c* 

■ 2 (si,, *2 (tt) «I,■ “ 

li) - itH'i ^ ]_ y 
\u/., 

1 1 J if =n 

aok 1 i r ■ 

'bLUJ VBcxB + ("bclb ■ cmn) '-] I1 + 2 (JJ)t( t 2 V1F/t( n 
y (3) 

bC^“C-b] 

- [f; B^L,, nB-l 

^Lq\ 
U/t. \u/t, B 

2 

Zj a0k ^Okt1 ^ Air 
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with 

r 2 

u 2 ' B'U Lp 2_ a0k(f0kft')- Í fotfT') ^kB^'“7'1»^' 
k " U 

A® B 2 A0-BLU2 ( :bcLb - cmH) ^ (4) 

r 2 

L a0k '^0k^ 1 ' 
- k *0 

I fok^r'^ 1 ' - T') dT' ' • 
o J J J 

Obviously, the delayed circulation around the body gives -AZ*(0+ ) <o, 
-AZ*B(0t ) < o, -AinjB(Ot ) o, -a)H2B(0+ ) o, and leads to an increase of the effi¬ 
ciency of the plane. Because cLn is great with respect to a, (see par. 5), the 
effect of a diving plane located near the stern of the body may be very important 
and shall not be neglected. 

7. Other Sets of Forces Exerted on the îody 
(case of Par. 4) 

The constituents of the total set of forces were encountered at the beginning 
of par. 5. In par. 5 and 6, we studied the forces due to the velocity potential of 
the absolute motion. Let us now consider the other constituents. 

7.1. Forces Due to Gravity 

Let L B,o,L’n be the coordinates of the center of gravity of the body, 
L-c.0, L’c, those of the center of the volume, m the density of the body with re¬ 
spect to the fluid. 

We assume that the square of the angle of trim c is negligible. 

The components on the axis attached to the body of the forces and moment 
due to gravity are 

- Pg W^- 1) 19 , Yk 0, ZK - pg WOl- 1) , 

i'c o, V pgWL[-(^G-Cc)A + A.Act f,.)] . 

7.2. Forces of Inertia for the Body 

Let , WL2pv,, f wl2pv2, , wlV\3 be the moments of inertia of the body with 
respect to axis acting through G and parallel to the axis 0(x,y. z). Let pWLVv13 
be the rectangular moment of inertia due to the product zx. 

864 



A Vortex Theory for the Maneuvering Ship 

Assuming that u u, v u, w L, Lp u, Lq t), Lr u have negligible squares and 
products and the same tor ~;G, G, the general expression of the set of forces of 
inertia is: 

Xc 

V, 

Zc 

Hi c 

11 c 

2' AU ÃL- 

2 AL 

2 AL 

1 ai„2 2W 
2'AU1 ÃL " 

Lii _ L 2q . L 2r . 

U2 tJ2 ° U2 G 

Lr Lv L2f . L2p , 

IT " Ü2 ’ Ij7 g ' U7 G. ' 

L(| ^ Lw L 2q . 

T ” Ü7 " Ti7 G. ' 

Lr ^ Lv , L2p L2f 

u G 1 u2 0 N| h2 * v 13 U2 

Lii , Lw > L2q 

ïï7 G + Ü7 :g X 2 "Ü7" 

Lp r Lv' . L2f + L2p 

u G u2 G X3 u2 + x‘3 U2 

y (2) 

In the present case, the motion is parallel to the f z,x)-plane. Then, taking 
into account the formulae (42), par. 5.4, we have: 

Z. + Z; 

Xc(Xi 

Air 
2W 
AL 

1 , 2W 
— , AU2 j7- 
2 AL 

Lq , Lw , Lii , „ L2q 
— (,2+ u3) — - ^,3 — + ( ' 35 3MwG1 -^7 

Lq , Lw , LÚ , L2 q 
' 1.) “Ü* “ 1.1 ^JJ ~ ( l' 3 1 i 3 ( ^ i 5 " ^ f’G ' 'y2 

„ u , ^ w , < . . Lw 
'13 3 2r 1 iVT3 (/'3 - Ml) .. 3 ( 1 35 + ‘ g) .,2 

, Lii , L2q 
3 (!T5-/'"g) ^7- ^23^v2^ TjT 

> (3) 

7.3. Viscous Drag and Propeller 

We assume, for simplification, that the viscous drag may be expressed by a 
c and a c -coefficient. On the other hand, we assume that the thrust of the x m 7 
propeller is T, the suction coefficient t, we neglect the torque due to the 
propeller. 
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Finally, when the motion is parallel to the < 2, x)-plane, we have a set of 
forces 

on Oz 

on Ox: > AU2 

The moment about the y-axis is 

> (4a) 

- \ ALU2 (4b) 

In these formulae, symbol indicates that we may have to deal with several 
sets of planes. 

8. Final Formulae (case of par. 4: quasi-rectilinear motion 
parallel to the ( z, x)-plane) 

Nat h ri h 1 

t hr For. . X r/il *■ ' .1/(5 «1 l/(5 sr-') 

Crnv11 y 

Qn 

2* «L 

AL 1 •’ 1 

si St. ids Motion . Cl ass 11 al For.es of fne 

gL 

«: ii; 1 11 

rt ia 

^ k' “ 0 ■ 0 -,. i 

Prop,!1er 

friction l.v 

"‘K Planes 
mr fed) 

1 "] k- n] !-• i 

:f£, • if, • T ‘ 

idiving pianes 

included) 

2» 1.1. t.»\ 

Al. 1 1 , ' (-.. 

_ /L2.,' 1 

2* J Lf, L* 

ai. ; 1 ' r 1 • 

,.-.., L:, ,. ,r,C3l 
CJ ,s 0 l'2 j 

”i "-2,.(,5),. 

" "• kH),.- ,- kí;"), 

X,/L3\ 1 

‘ x'’ ( u'/,.) 

Circulat ion 

around the body 

(diving planes 

included) 

*•(?),. "(r),. 0 

<(c),; * (?),. •» fé),. 

Diving planes 

(effect of the 

•like generated 

by the body not 
i ne 1uded) 

T rL, 1 [' ' 2 (il),. ' 2 (t), nj 
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Nature of 
the Forces 
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9. More General Quasi-Rectilinear Motions 

One of the reasons why we are interested in the motions parallel to the 
(z,x)-plane of symmetry of the hull, is that they are also parallel to the vertical 
plane. As a consequence, if we know which forces are exerted on the body in 
forced motions parallel to the (z.x)-plane, we are able to determine the fiee, 
natural motions in the vertical plane. 

Motions parallel to the horizontal plane are also of a great importance. 
But their approach is much more complicated. 

Let us consider the equations: 

-(U + ay' + V / + w q 1' + 0<£ 0 - 

When the motion is parallel to the horizontal plane, l o. But the components 
normal to the ( z,x)-plane of the hydrodynamic force and of the force of inertia 
of the body do not act through the same point. Consequently, they generate a 
V-component for the resulting moment; p and V cannot keep null values. Even 
if i o, the final motion is not parallel to the (x.y)-plane, since w and q are 
different from zero. 

I 

1 
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1 

A motion parallel to the horizontal plane is generally impossible when the 
diving planes are at a zero angle. For instance, the steady motions are, in this 
case, helicoidal motions around a vertical axis. 

Let us assume that u.w.q are null. 

The arc u ' along which the free vortices are shed depends upon the form of 
the hull. 

f ) We consider firstly the case w^ en there are, in the ( z,x)-plane, no 
singularities, appendages and so on, which constrain this arc to be located in 
this plane. 

a) p o. Because of the symmetry of the hull with respect to the 
i 7.x)-plane, the arc tí' is in the (7.x)-plane, or in a plane parallel to it. Con¬ 
sequently, when the motion is quasi-rectilinear and parallel to the x-axis, the 
wake surface is approximately parallel to the ( z.x)-plane. The previous rea¬ 
sonings for the motions parallel to the (7,x)-plane hold in the present case, 
provided v U and Lr U are respectively substituted for » u and Ln u. 

b) pío. It is possible that an u-shaped free vortex shed during the 
small interval ( ■ '. r ' - d ' ) have, at t ', an orientation with respect to the axis 
attached to the body different from the orientation at r ' + d, . In this case the 
summation at t ' of the effects of the free vortices shed during the intervals 
( ' • r +<fr ) cannot be carried out on the same manner as in the case of a mo¬ 
tion parallel to the ( 7, x)-plane. This case occurs, for instance, for a body of 
revolution with respect to the x-axis. 

2 ) Let us assume that there are in the ( 7,x)-plane singularities so that 
the arc if' is in this plane. 

a) P This case is quite similar to this of par. 1*) a). It is the 
simplest from the point of view considered in this paper. 

k) p f 0- Ip this case, if ; is relatively great, the wake surface is 
not a plane; it is more or less helicoidal. The nuclei found in the integrals 
which yield the effect of the wake depend not only upon t ' - < ' but also on r ' 
and the expression of the hydrodynamic forces due to the wake is much more’ 
complicated than in the case when the motion is parallel to the (z.x)-plane. 

3 ) It occurs very often that the singularities mentioned above (par. 2*) 
exist only on the upperside of the body, and not on the lower side, or inversely. 
In this case, when p 0, the wake surface is inclined with respect to the (z,x)- 
plane. Consequently, the velocities induced by the wake on the body itself and 
on the rudder and planes generate necessarily forces which components on the 
z-axis are not null (see Fig. 8). 

If, for instance, Lr u 0, v u >0, and if, moreover, the upper arc of (f is 
located in the (z.x)-plane, because of the singularities of the hull, but not its 
lower arc, this latter is located on the portside of the hull; the wake surface 
induces on the body and on the diving planes located on the stern velocities 
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* 

which components on the z-axis are 0. Consequently, the variation of 7. and of 
are both o. This effect is independent of the sign of v U. It leads to a per¬ 

turbation of the motion in the vertical plane even when the angle of heel is null. 

4*) When the six parameters u u, w u, Lq u, v U, Lr u, Lp U depend upon 
the time, is it possible to add the effect of the wake due to the three first of 
them and the effects of the wake due to the three others? The velocities due to 
one of the wakes may act on the configuration of the other wake. Nevertheless, 
when the dissymmetry of the body with respect to the (x.y)-plane is not too 
strong, and, when, moreover, we are in the case of par. 2*) with moderate 
angles of heel, the velocities due to the wake parallel to the fx.yj-plane are 
nearly parallel to the wake due to the variations of v U and Lr U and inversely. 
So it is possible, in a first approximation, to obtain the set of hydrodynamic 
forces exerted on the body in a quasi-rectilinear motion parallel to the x-axis 
by adding the sets of forces separately found for motions parallel to the ( z.x)- 
plane and for motions parallel to the (x.y)-plane. 

In paragraphs 10, 11, 12, we restrict our analysis, for reason of simplicity, 
to the cases when such an addition is allowed (however, in par. 12.4, we will 
consider a more general case). 

We set 

fnn< t ' ) f <) l( t ), (f), 

B ( Lp\ 
L \ U/t, 

B f 
L «5 (t') 

and assume, in par. 10, 11, 12, that these functions have negligible squares and 
products. 
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10. The Absolute Forces Due to the Velocity Potential 
(case of par. 9) 

The velocity potential in the absolute motion is 

5 5 

- <l>on(M) + £ <t>llk(M) fok(t') + £ VM.t') 
k = 0 k = 0 

Potentials <l> are those which are found alone when the fluid is quite perfect. 
Potentials ’l'k yield the effect of the wake. This formula involves the hypothesis 
at the end of par. 9. However, in the present paragraph, we don’t consider the 
effects of the wake on the appendages (see par. 11). 

10.1 Effects on the Wake on the Body Itself 

The contribution of f05(t') in Ve(M) is 

VseíM.I') - -iypz(M) + i z py( M) . 

(VEn)m is generally very small when m is on S. For this reason, we neglect 
here the contribution of f05. 

As seen in par. 5.3, the wake has an effect on the apparent forces of inertia. 
This effect will be taken into account in par. 10.2. 

For reasons of simplicity, we will change slightly the notations of par. 5.3. 
We use here the following symbols: a for the lift due to w U ; b for the lift due 
to Lq u; a' for the moment due to w u; b' for the moment due to Lq U; (a^aj) 
and (b,.b¡), are substituted respectively for (a,a') and (b,b') in the terms coming 
either from v u or from Lr u. 

Moreover, we assume, as in par. 5, that a set of three functions /, /-, p' is 
sufficient for yielding all the effects of the delayed circulation when f03, f04 are 
null; and in the same way that a similar set /,,-/-,, / ¡ gives this effect when 
foo-f0i-fn2 are nul1' 

Lastly, we admit that the 1'-component of the moment, when f03, f04 are 
different from zero, may be expressed by means of two coefficients m,m\ 

Finally, that leads, for quasi-steady motions, to the set of forces 

*0 

0 , 
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The effect of the delayed circulation gives a system of forces 

X X. - AX 
*0 

where 

f (D 

(2) 

(3) 

(Cont.) 
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'.'li 

. '(0) 

>- (3) 

y 

10.2. Effects of Potentials 'h 

These effects give a system of forces (\j. Y¡ — ) which expression will be 
added to the expression of the forces of inertia of the body in par. 12. 

11. Forces Due to the Appendages (case of par. 9) 

We assume here that the contribution of the appendages in the forces ïr and 
will be included in the expressions of the latter (see par. 12). We consider 

now the effects of the various lifts generated by appendages as diving planes and 
fins, rudder and aileron, sail. 

11.1. Diving Planes and Fins 

The set of forces on diving planes and fins was studied in par. 6, but with 
the restriction that 

'.U 0. f,M 0* f„5 0. 

The absolute velocity of the axis on of a diving plane ß is 

vi:(°b) •„ [U- lit Lq VB! t iy [v . Lr B-Lp B: + ¡2 [w-Lq -.B). 

The absolute velocity of the center of the lifting surface is 

VE„ ix.u t u • Lq ß-Lr n • * y v t Lr B - Lp B • i 7 [w + Lp / B Lq -B] . 

In order to obtain simpler formulae, we will assume that the effect of the com¬ 
ponent of vB parallel to the span is negligible (in fact, some corrections would 
be necessary; the lift decreases, particularly on the part of the plane which is 
in the hydrodynamical shadow of the hull). According to this hypothesis, the 

872 



A Vortex Theory for the Maneuvering Ship 

velocity induced by the wake due to f03. f04. f05 has no effect on the diving plane. 
The square of the effective velocity is consequently 

u2 1 + 2 

The component on the z-axis of the effective incident velocity is, in the quasi 
steady motion: 

*0B anB^ooft ^ ~ alB ^o 1 ^ ' a2Bf02(t ) 

The plane is at a zero angle ,.3 when the lift generated is null, the motion being 
parallel to the x-axis. Consequently, in the quasi-steady motion, the effective 
angle . t, is 

!'p = /3+ ^ T,B ] Z] akB^0k^1 ^ ■ 
k =0 

In the real motion, the velocity induced by the wake is 

2] akB f0k(°+> W1') +| ¿ W2') 

2 f' ’ 
r H akB J k^7 " ^ • 

k^O 0 

and the effective angle of attack is ß‘e - ße- A/3e , with 

A/3. 
2 r r 
E akB fok^'> - J W7') 4B(t'-7'>d7' 

Consequently, the set of hydrodynamic forces acting on the diving plane and 
fin B is: 

XB - - x PaB^2cxn + 2^00 + 2f02^B - 21()4¾] • 

yb = 0 , 

¾ = - 2 PaB^2cL„ [ * + 2foo + 2fo2^B ” 

/3 + ( f 01 ^0 2^8^ + ^05¾ ” E akB^0k - e 

k =0 
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^ B 2 ' CL„ t1 + 2fno f 2f02 B 2f04 !B]';B 

r 2 1 
x ' + ^f01-f02‘:B^ + f05 7'B ” Zj akBf0k ” Af1e ' 

k “ n -1 

^B " ” 2 />CrBLU2 bCxb ^ + 2f°0 + 2f02 B ” 2f047'B] 

+ 2 í>CrB^^2 ^BcLb _ cmpj[^ f 2^00 + 2fn2 ft ~ 2fMT/B] 

r 2 n 
x ^ + (f0 1 " ^0 2^B^ + ^0 5 7¾ “ Z] akB^0k - ’ 

k "0 

^B 2 P:JB^2 Cx0 t1 + 2f00 + 2f02fB_ ^047¾]7¾- 

Taking into account the fact that a diving plane is made of two parts sym¬ 
metrical with respect to the ( z,x)-plane, and neglecting the squares and prod¬ 
ucts of the functions fok, we get: 
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where 

X, is 2 

y (2) 

k ~ 0 L 0 

11.2. Rudders, Ailerons, and Other Appendages 
Located in the (z,x)-Planc 

Let L A.o.o, be the coordinates of the axis oA of a rudder A; L-A.o.L A 
those of the center of the lifting surface, which area (aileron included) is ja. 

The absolute velocity of the center of the lifting surface is 

vPa ix[(U+ u) + Lqt.A] + iy[v + Ir ; A - Lp-’A] + i z [w - LqiA] . 

We assume that the components of the incident velocity parallel to the span 
(hence, to i z) have no effect (this assumption is similar to the hypothesis already 
made about the diving planes and motivates similar comments). 

According to this assumption, the velocity induced by the wake generated by 
fonn'), fnl(t') and f02(t') has no effect on the rudder. The square of the 
effective velocity is 

The component on the y-axis of the effective incident velocity is, in the quasi 
steady motion: 

The rudder is at a zero angle < when the rudder is in the (z,x)-plane; a is >0 
when the lift has on the y-axis a negative component. In the quasi-steady 
motion, the effective angle of attack is 

4 

c 
k - 3 

In the real motion, the velocity induced by the wake has on the y-axis a 
component 
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4 
ü akA f0k(°^ + J 577 W^) ‘¿kA^'-7')^' 

k - 3 

c 
= E akA f0k(T') ■ 

k = 3 *^0 

and the effective angle is a' = a - Aa , with 

- L \A 
k * 3 

fouit') 
t 

1 ‘0^ 1 ' " I f0k(T') <4Aft'_T')dT' 

One has 

^kA^0^ = 0 - ^kA(+C0) = 1 ; 

<^kA(t') is monotonie. 

The set of hydrodynamic forces due to the rudder (and aileron) is: 

XA = - i ^aU2c 
1 + 2 (u)t, + 2 ( u)t, 4A [1 + . 

ya = - 3 ^,ctau2cl 1 *2 (d),, * 2(t),Aa 

“ + ^f03 + f04ÍA “ f05^A^ " É akA f0k " Aae 
k = 3 

ZA 0 , 

S’a - 5/ ^aLU2cl ^ 
1 + 2 (u)t, + 2 ( u)t, 

(f03 + ^04 A “ fos-A^ ~ E akA f0k “ Aae 
k =3 

^ poALU2c rA 1 f 2 Í—) + 2 Í—^ r luit, ^ l u/,, a 

^A = - 2 ^aLU3 (ÍAcLA-cmA) 1+2(öj,, + 2 

[ f03 + ^04 'A “ 5 rA^ “ E aka f0k ~ Aar 
k = 3 
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In these formulae, cLa, cxa and cmA are the characteristic coefficients of the 
rudder (and aileron, if any) or of the sail. 

Finally, one has: 

1 + 2 

Ya -- - f P-AU2cLa a 

(u)t. + 2 ( U )t, (A 

1 + 2 iï 2 \u/t, 

v' + itl\ A. 
u/t, \ V111 (lj) , ¿ akA fokO')j- AY, 

k ~ 3 

zA - 0 

- I ^ A 2 P<7aLU2cl \ <. a 
1 + 2iïï)t, + 2 fé),. 

u)t, + ( u)t, - (i)t, 'a] " 2] akA .k^j - Ai 

Ra 2^ctALU2cx Ça 1 + 2 ÏÏ + 2 fé)„ 

I paALU2 [i çacla - CmA a 1 + 2 Ü + 2 \U/t, fé)., 

L 1 1 1 J k = 3 
akA f0kf 4 M ~ 

with 

y o) 

4 r t ' 
AYa |p^au2cLa E akA fokf4') - J f0k(T"> ÀA(t'-r')dT' 

k = 3 

M’a = |pctALIj2cLa '=A E al<A 
k = 3 ■>-/ 

fok^’)-! fnu(T')AA(t'--')d 

i\n 1 V, 
A = 2 p(7ALU2 [<AcLA-CmAl E akA 

J k = 3 

Ok' ' > A' 

fok^'^-f f0kfT')¿kAÍt'"T''>dT' 
Jo 

y (4) 
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When the rudder is made of two parts symmetrical with respect to the 
( X, y)-planes, the term in A are vanishing, but not those in ’A2. In this case, 
one has: 

■*2(u)„]* t»»W' 
J L 1 1 J k = 3 

) - A1'a, 
M3') 

1 LU2 c * 2 “ r 2 A 2 ' A 
/Lq 
\ U t ' 

1'A 2 ' aLij2 [-A^a-^a] 

1 + 2 U)t, ®„’(l7)„f.]-Ê 
1 ' k - 3 

'kA Wt'Dh AV 

Ya as above 

'VA o 

',TiA as al)Ove . 

> (4') 

Of course, this simplification is impossible in the case of such appendages 
as sails. 

11.3. Some Comments About the Previous Formulae 

1*) At the beginning of a maneuvering, the delay in the growth of the 
circulation around the body increases the efficiency of the rudder and diving 
planes. 

2’) omA and cmR have been taken >0 when, in a steady motion, the 
torque about the axis tends to bring back the rudder or the diving plane to zero 
angle. 
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12. Other Sets of Forces Acting on the Body 
(case of par. 9) 

12.1. Gravity 

The set of forces is 

YS 

zs 

i’s 

îlig 

I P AU2 

~ f AU2 

5 P AU2 

I pALU2 

I/ALU2 

jfALU2 

Z? kL 
AL y2 

2W rL 
AL 

2W rL 
AL y2 

2W rL 
AL U2 

2W rL 
AL y 2 

2W rL 
AL IJ2 

t-(M- 1)U] 

Up - 1)'¿] . 

[p- 1] 

[(-pCg” ’ 

[-(píG_ ^c)0 " - "(.)] 

[f^G" • 

12.2. Friction, Propeller 

"N 

> (D 

Here the thrust T of the propeller ( i 2) pAU2t and the moment about the 
y-axis is u 2) p ALU2\t. t is the suction coefficient. One has 

Xf + T I / AU2 [-Cx + T(l-t)] , 

Yf+T 0 , 

Zf+T ipAU2 [-Cx + T(l-t)]u . 

|'ALU2A0, 

lnftT : J ALU2 [-Cm + At] , 

^f + T 0 • 

12.3. Forces of Inertia ?c for the Body, Forces Due to 

Potentials <i> and to Pressures p'< ' > 

The components of the general resultant on the ( x, y, z) -axis are: 

(2) 
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> (3) 

In these formulae the squares and product of çG, fG are neglected. Lastly, 
the components of the resultant moment are: 

y (4) 

12.4. Case When the Wake Generated in a Motion Parallel 
to the (x.y)-Plane is not Parallel to the (z.x)-Plane 

We assume that, because of singularities, appendages, and so on, on the 
upperside of the hull, one of the two arcs which constitute the arc Ö' along 
which the free vortices are shed is in the ( z,x)-plane, is on the upperside of 
the hull. The other arc of if' is on the portside when 
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lor the values of x inferior to the abscissa of the axis of the gyration here con¬ 
sidered (this abscissa is normally positive for the natural gyrations, and, con¬ 
sequently, for the forced gyrations which are not too different from the natural 
ones). 

The component on the z-axis of the velocity induced by the wake is always 
positive, whatever the sign of v u + rx u may be. It seems that it is a quadratic 
form of the arguments v u and rx u, or more exactly of the arguments: 

T? (ÍL 
&T ' V4(x,tt') dr' , 

when (v tht, and (Lr U)t, are continuous for t' >0. Functions /3(x,t').v4(x,t') 
are null for t ' o, and their limits, for t ' +% are finite and positive. 

This assumption leads to introduce new functions / 3( t ' ) » <¿>4( t ' ), ¢'3(t'), 
:'4( t ' ) null for t ' o, equal to 1 for t ' = +ri, and to add to the previous compo¬ 

nents of the hydrodynamic forces exerted on the body itself, the components 

where e3, c3, c4, are positive dimensionless coefficients. 

There is also an effect on the diving planes located at the stern. The effec 
tive angle of attack = ße-{sße (cf. par. 11) becomes 

In this formula, a3B and a4B are positive dimensionless coefficients, and 
,( t ' ). 4( t ' ) are null for t ' = o and equal to 1 for t ' ^ +°°. 

13. Other Motions of Practical Interest 

Previously we restricted our analysis to the "quasi-rectilinear" motions. 
But there are other motions of great interest, and particularly, the change of 
depth and the change of head. 
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In many circumstances, the angles /3 and a are not small. Consequently, 
the variations of u/r, w/u, Lq/u, v/U, Lr/U and Lp/u may be great. 

In such circumstances, the equations of the "quasi-steady motions” are the 
same as above, at least when the steady effects of the wake are neglected. How¬ 
ever, many coefficients which are found in the set of forces (îj) are unknown. 
Generally, the theory is unable to yield them. It is necessary to resort to ex¬ 
periments. But tests on models themselves require special and complicated 
instrumentation because of the high number of degrees of freedom and, conse¬ 
quently, because of the number of the coefficients which are to be determined. 

If we now consider the effects of the wake, we encounter difficulties which 
we partly emphasized in par. 9. When the nuclei found in the integral equations 
of the motions are functions of t' - r' only, they can be deduced, as we will see 
in Section II of this paper, from measurements made with small harmonic forced 
motions. But, when these nuclei are functions not only of t ' - r ', but also of r ', 
the problem is much more intricate. 

The main difficulties are of two types. 

The first is due to the fact that, for certain forms of hull, there is no rea¬ 
son why the free vortices should be shed along lines attached to the body (for 
instance, that is the case of a submerged body of revolution, the complication, 
in this case, being due to the fact that the axis of revolution is not always of 
revolution for the distribution of the masses inside the body). 

The second is due to the curvature of the trajectory described by the origin 
of the axis attached to the body, and also, to the roll motion. Obviously, the 
velocities induced by the wake are no more given by the formulae above. 

That does not mean that there are no possibilities to investigate this prob¬ 
lem with some chance of success, but, before undertaking such a research, it is 
desirable to check whether the effects of the wake are or not of importance. 

That is why, in the next section, we study the effects of the wake in har¬ 
monic forced motions in the (z.x)-plane. We will see that these effects are 
not negligible, at least for some coefficients. That will give a lead for fruitful 
researches. 

H. STEADY AND HARMONIC FORCED MOTIONS 
PARALLEL TO THE (z,x)-PLANE 

14. Definition of These Motions - Set of Forces 
Acting on the Body 

14.1. Steady Motions, Purely Heaving Motions, Purely 
Pitching Motions 

The fixed axis o'z', o'x' are in the (z.x)-plane. The z'-axis is vertical 
and positive downwards. The x '-axis is horizontal. The absolute coordinates 
of the origin o of the axis attached to the body are Li. 
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We assume here that 

dt 
constant . 

The angle of trim is 0 (OV,Ox). P2 is assumed to be negligible. The 
absolute velocity of o is 

d r . d- 
V(0) iz- TT + i dt *' dt z x 

i ,w + i ( U + u ) . 

One has 

,r d<£ . dt, dç ,, df . d-f „ , d’ dç 
w — COS Ö + — sin 0 it, U + u - — sin 0 + — cos H - — a + — 

dt dt dt dt dt dt dt dt 

Therefore 

The drift angle is 

w 2 ^ + U0 , U 2 , u 2 0 . 
dt dt 

w 1 d f 
e = ( VfO), Ox) 2-= 0,-- 

(1) 

(2) 

The angular velocity is 

. dfV 

1yq = N dt 

(w U)2, (Lq/U)2 and |(w.TJ) (LqU)l are assumed to be negligible. 

A. Steady motions 

The steady motions here considered are defined by the conditions: 

0 - constant , — 0 . at 

Consequently, we have: 

e 2 — = F, — 0, (0 = constant = 8) . 
U U 

The set of forces have the components on the axis attached to the body: 

Z, X. I. 

B. Purely heaving motions 

In these motions o = constant. 
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Let o'z j, o'X¡ be fixed axis respectively directed as the z-axis and the 
x-iixis. 

Let ¡. [ be the coordinates of o in the new set of axis. We have 

'1 = + f. . í¡ i- 

In the purely heaving motions here considered, one has: 

this product is therefore negligible. Moreover 

1 d?, 
ïï ' Ü dT 

is a sinusoidal function of the time. Therefore, we set: 

'[ "(0) * U t + z + Z0 cos at (ï - constant, z() >0, constant : 0) , 

and obtain 

7J1 _L 
> L U cos 

Lvv 

V2 L 
at . 

In these motions, the components of the set of forces are: 

(4) 

7. 

X 

']¡ 

* * Z", ' * Z|l2 “* (“* * ï) • 

X . X^co. a t xh¡ cos (,, , 5) . 

Ãi + Iliacos ,t + 'li^ COS |a;t + • 

ï (5) 

The subscript 1 is relative to the components in phase with the motion; the 
subscript 2 is relative to those which are out of phase with the motion. 

C. Purely pitching motions 

In these motions is a sinusoidal function of the time: ti = “+ n coswt, 
constant. n Oi; moreover, O'zJ.O'xJ being fixed axis, with fz'.zj) = T>; 

the ordinate ; + is also a sinusoidal function of the time chosen in such 
a way that the angle of drift be a constant. Consequently, the purely pitching 
motions here considered are defined by the conditions 

884 



A Vortex Theory for the Maneuvering Ship 

co s ■ t . ( ., 0 ) 

Lw 

Ü1 
0 . Lq 

•(-i)’ u 0 u 

The set oí torces has the components: 

_iL ki 
dt ' u (it) 

h-5) 

COS - t . 

7. 7. i Zpi cos .t t Zp2 cos (at + j) ' 

X X + XP1 COS at t Xp2 cos (vt + 2) , 

Tt - 111+¾ COS ‘t + HL cos , (-. I), 

14.2. The Set of Forces in a Steady Motion 

Using results oi par. 8, and substituting for w u, we get: 

, . 1 .,,2 J 2W kL 
Z - 2 pAU lAi , (/J 1) t AL y 2 

C + ¿ -T- Cv + ( 1 -1) 

ao - ; T CLnf 1 - alB> ' A CW 

X ^ pAU2 

1)1 I y ALU2 

2W Rh 

AL ij2 [-(P- I)'7] + - ( ,cx + ■ A cxB T A -a) 
C V + T ( 1 - t ) 

AL U2 ” ^fG- ac’*'"] 

-(cm .5: aîc. £. ♦ ï-?«. £ B , V A 

A C*B B ' A 1'Xa' a )’kT] 

L , 2W + a„ + 

y (6) 

> (7) 

y (8) 

*0 ' AL [^13 + + a'í, + (4CLB-CmH)(1- alB>~ 

+ > T (^clb " ^b)'9} • 

14.3. The Set of Forces in a Purely Heaving Motion 

We have to substitute 7< for 0, 
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u * i5 Tr ^ 1 1 ' 2) 

for w u, and 

cos t 

for Lw U2 in formulae of par. 8. 

We obtain, for instance: (given by the first formula 8) 

2W 
■3) (^) 2 C° S t A CLb( 1 ' nlB) 

L 
cos t u r ^ 2)1 i 

(which comes also from the contribution of the quasi-steady motion); 

l. 7. + Air.'i ( .*(0) -jj cos / .t - 7') dr' 
L 

(which gives the effect on the body itself of the delayed circulation around the 
body); 

(which gives the effect on the diving planes and fins of the delayed circulation 
around the body). 

Because the harmonic motion is assumed to be perfectly established the 
interval <0, t ’ ) is infinitely wide, and consequently, the lower limits in the 
integrals above must be taken equal to -<». But we have 

COS 
2): ;< t ' - t ' ) d-; c/< T ' ) dr 

5S Vt ' R (t) + cos H + 2)f(ll) ’ 

where 

f(ll) J C0S (iJ T') f|T'' «(ij) / sin t') 
0 -7(, 

are the cosine and sine Fourier transforms of the derivative 

dr' 
(10) 
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Finally, we obtain 

Z. cos t 
" i 

f 
1 ,,,2 I 2W K 
2 Al IST a - _L 

U 

n «in (t^) 
A "Ln >o _L 

U 
COS ' t 

zh cos 
n 2 •H*i) rw'{-*['-i'0' - ((t). 

n 
A CLn 1 n i n f i b ¥ r ^(-1 + 2) 

where 

f'B(u) = J '?'ß( ',) cos ( u T’) <|T'’ k'b(‘D:) f sin (tj t', 

are the cosine and sine Fourier transforms of the derivative / 

A quite similar reasoning leads to: 

.Bf1')- 

X. cos vt 
”i 2',U 1JL ".J'" 

uL . 
U/ L 

cos t 

xh2 cos (‘t + 2) , AU2 - >'(0) 4 f 
;( 

■L) _L fji 
U L ("*2) 

where 

;l(f) -- J 0iT*>cos(^ T')d7\ R;(^) J ;(r'> sin (i r'),! 
^ n J ' 

Similarly, we obtain 

\ cos ^ f + 

B 
A ( ’B c 

KlB( L U) 1 / L\ 2 zo 
L„ L Up I ’IB lu \ U / L 

> (ID 

dr' (12) 

> (13) 

(14) 

(15) 
(Cont.) 
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îlih^ cos ^o>t + 2! /ALU2 2W A X . , ' 
ÃL i/J3 " + a 

i-^o)-r(f) 

+ 1 T ( ’ B CLp _ CniB ) 1 - a , B f i(ij)]}ij r cos H + 

with 

-(^) -f J j(r') ,¡n(-t r'),l 
0 0 

14.4. The Set of Forces in a Purely Pitching Motion 

In formulae of par. 8, we have to substitute: 

tí + 0. cos .t for 
, w ,, ‘L 
for ö , O0 

Lq 

0 l U / 
cos .I for 

TT cos (1 + 2) for u ' 

L2q 

That gives: [z = expression given by (8)J, 

Zpi cos it I.AU2] 

fè) 

CX^TCxB + S;TCXa + T(1-t) 

2W 
AL (,'35 + ^+bß (^)/(-^) 

‘ • A cLBa2nií2B 

Zl>¡coS(.,(2) 3pA^(»(^„,)-c.[i-«o,-r(f) 

COS fit . 

2 -T Cj ' 2 ‘ 
A lh 

^ B 
+ ■ T CLn B + a2B f 2B ( u ) I u "0 cos ( ' 4 4 2 I 

where 

{2b(t) J ■W’') l'OS (-F r’) flT'' R3b(^) J /28 (f) Sin 

Similarly, we obtain: [x = expression given by (8)J, 

) , US) 

-'• (16) 

>• (17) 

B 
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X cos (vt -z , kV2 p i 2 
n «L 
AL y 2 ( M - n M) 

2W 
AL (iKs - 0 C os oA 

(p2 cos (''+ 2) i-"2 
2W 
AL 

(0) * fi (lu)]} ^ öo cos H + 3)- 

> (18) 

Lastly, we get: [Vt = expression given by (8)J, 

fó cos <t 4 ALU P1 2 
2 J 2tt' rL , r \ // L\ 2 2W , , 

f G- cV TT + XT (^5+/-1*) 

(vt + 2) -j / ALU Mb' 

M19) 

A rBcLB~cmB) ~B + a2B f2B 
/(4. 
\ U 

u 10 (, ( i). 

15. Interpretation of Experiment Results 
(Steady and Harmonic Forced Motions) 

15.1. Steady Forced Motions 

By testing a submerged body in various steady motions — without and with 
diving planes, without and with propeller — it is possible [see par. 14.2, Eq. (8)J 
to get the numerical values of the following coefficients: 

C„, c. 
‘n a 

B 
a, a . -7- c. , —T- 

A lh A 

113’ f 3 • 1 • 

B , , B , . . B , 
%/ 1 ' A ('BcLb- cmB) ■ X ( BCLb )(1- a iß) • > (D 
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15.2. "True" and ’’Apparent’’ Coefficients 

Now, let us consider the expressions of the forces in harmonic forced 
motions. 

We define the "apparent" coefficients of the motion by the following 
formulae: 

a) From par. 14, Eq. (11), we deduce: 

2W 
AL ...i.,,,,'» 

2W * (u) 
ÃL (^ + f'3) + a —T-ÿ” (without planes), 

2W V) . B ^ 1B m 
AL ( " * ' ALiiJ + ^J) + a -LU f' A cLBaiB ,l U ( witli planes), 

> (2) 

nHPP a 

■'■ipp ''' 

1 ; ( 0 ) - f 

1 - /(0) - f 

(without planes). 

V _B 

A cLb '’iB f IB (t) 
(with planes). 

b) The first equation of Eq. (13), par. 14, gives: 

2W 2W , \ U 
AL “1 ■’., p p AL iî “ LU ’ 

c) From par. 14, Eq. (15), it follows: 

• *.'-im 
2\V 2W , ,,11 
AL ( îV.pp ' " :G) AL ( J5 f g’ + a K \ p (without planes), 

n 
AL 3 5 p p '5) 

2W , , , , / - L\ // L 
AL ° ^ f 'GÍ 4 a « {-ÿ 

(3) 

a" (■BcLR"cmB) n.B«iB (11)/(^) (with Pl-mes) , 

2W 
AL ^3 i|),aa 

2W 

2W . , 
ÃT (/‘3 ‘ 4 '"b. 

ipp AL ( ‘'3 ^ 1 ) 4 a 

2W 

1-/70) r 

AL >pp AL ^J 3 , ) 3 a ' 1-:70) - f 

U, 

, / L\ 

> (4) 

(without planes) 

( BcLb~ CmB) 1 4 a!B f !b(ij) (with pianes) 
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d) From par. 14, Eq. (17), we get: 

2W 
AL 0 35 „pp 1 G> 

2W 
AL 

2W' 
AL 

( ,U * h , ) - I) 

( ’ . j ) I) 

< U 1 •' G> " b K Íirl/ííí) (withoul P1 aril's ) 
2W 
AL '‘35 

2W 
ÃL ( 1 ts ,lpp 1 ^ “g1 ÃL 

2W 
( 35 ^ ' G> - U*\t)I{t) 

'■ A CLn a2BS2B (lj)/(ij) (With planes) 

y (5) 

2W 
nop al 

n 
opp AL 

) l> 

(i. + /■[)- b 

1-:(0)-( 
m ( wi t limit pi nnes ) . 

.<0, -f(-i) 

* • A CL„ B+ a2Bf 2 (íj ) ( " '1,1 Pi ¡'ties ) 

e) Tht first equation of Eq. (18) gives: 

f,.•..¡ftj/f*). (6) 

Í) Lastly, Eqs. (19), par. 14, yield: 

2W .. 
AL ^2app +l^l) 

2W (^) 
3) ÄUf'j+vVj) + b’ j—jj (without planes), 

2W 
AL ' 2„ 

2W a, t V ) + 1 ' K ^ 
AL 2 /JV2) ' b .L U 

PB R 2B ( U ) 
5 T (;BL'Lb- CnJ a2B —nr ('Vith plnnes)' >(7) 

bápp b> 

b.;Pp 

(without planes) 

A (^B CLh” CmB ) B 1 -^28 f 2 ( (j) (with pi nnes) 
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Equations (2) to (7) show that the ’’apparent" coefficients are constant if, 
and only if, the effects of the wake are negligible. When this is not the case, 
they depend upon the "reduced frequency.” 

According to the quasi-steady theory, the harmonic forced motions should 
yield the coefficients which are found in the (3^)-set of forces. In fact, they 
may yield the effects of the wake and allow to check whether these effects shall 
be taken into account for practical purposes. 

15.3. Tne Behaviour of the "Apparent Coefficients" 

Let us consider again the functions f, f', f,, fin, g, j,', Ri, K 

We have admitted (par. 5) that an unique set of functions /.,, is sufficient 
in order to define the wake due to the body. We admit, here, for the same rea¬ 
son, that the functions . ID, ;20 (and ;nB) are identical. 

Such an assumption is presently not essential, since, in principle, the in¬ 
terest of tests on a body in harmonic forced motions is to supply these func¬ 
tions. But, the discussion which follows will be easier. 

Firstly, we may observe that, for instance: 

Consequently, any "apparent" coefficient involved in an "out phase" force 
or moment has, when L U - 0, a limit equal to its "true" value. For instance 
(.see (2) j : 

npp 
L U - 0 

and so on. On the contrary: 

1 0 for ~ 0 . u(0 ) 0 

Therefore, when L u is small, if we neglect the wake effects, we have a 
small error about the apparent coefficients involved in the out phase force and 
moment; on the contrary, the error may be great if we deal with those involved 
in the in-phase force and moment. When L U is great, the errors concerning 
this second family of coefficients are small (provided the reduced frequency is 
not high enough to change the nature of the flow around the body). 

Because .B is increasing from zero to 1, / is decreasing from a positive 
value to zero, and 
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• D1 ( ' ' ) cos (tj f') 

is positive and decreasing with a limit equal to zero. Hence 

a IB 

is increasing. Therefore, the apparent efficiency of the planes must increase 
with L u (see Fig. 9a). 

/¾ C 

Figure 9 

893 



Brard 

Let us consider again f, f ', f t. We know that ¢(0) i. In the case of an 
airfoil of infinite span, ¢(0) i 2. If, here, we have also 0 < /(0) 1, ) is de¬ 
creasing and probably f increases. Therefore n.,pp decreases when L u in¬ 
creases (Fig. 9b). If, on the contrary, ¢(0) 0, : is increasing, f decreasing 
and aapp is increasing (Fig. 9c). 

We note that functions f and fB are not necessarily monotonie. In its 
present state, the theory yields only the general behaviour of these functions. 
The real behaviour should be supplied by experiments. Nevertheless, on Fig. 
9a, b, c, f and fB are assumed to be monotonie. 

Functions t> are null when L u 0, and when . L u > ; but 

may be monotonie. We may consider that probably the general behaviour of 

is rather similar to that of f( L U). However, the possibility for one or sev¬ 
eral functions k. ( L U) to be increasing at first, and then decreasing, or vice- 
versa cannot be excluded a priori. 

Lastly we will observe that, in certain terms, the variations of the appar¬ 
ent coefficient may be damped because they are the sums of a constant term of 
a great value and of a variable term. That is, for instance, the case for .,, ,, 
aópp> bapp » 2;ipp but not for aapp. Moreover, some terms are probably small 
(; 35, b') and their variations are probably of a little importance. 

15.4. Calculation of /, 0, / , p 

From the considerations above, it results that, when an "apparent" coeffi¬ 
cient varies in a wide range, that is due mainly to a function f. Consequently, 
it is necessary to take into account the variation of the functions ,., 'or 
related to this coefficient when writing and solving the equation of the free 
quasi-rectilinear motion. 

In principle, such a function t may be obtained by starting from the experi¬ 
mental values of f or k- However, it is easily seen that the f-functions are 
known with a better accuracy than the «-functions (except when the variation of 
the coefficient are small, but, in this case, the knowledge of the . -function in¬ 
volved is of no practical interest). 

Finally, we consider that /, must be given by 
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Because 0( < ) o , one has: 

t ' 

/(t') f <¿( T ' ) dr'. 
CO 

16. Some Experimental Results 

We included in the draft of this paper, and we reproduce here four sheets 
(Nos. I to IV) which show the behaviour of some apparent coefficients related 
to z and 'll for a model of about 3 m in length, fitted with planes 

{ï —■ 0,0239^ . 
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These planes were located near the stern (at about o, 12 the total length of 
the model). 

The sheets show that the variations of some apparent coefficients may be 
great, particularly those of anpo. 

These variations have been explained not only by the influence of the wake 
on the body, but also by its influence on the planes. It was thought that 
... < 1, and, consequently, that the wake acts in opposite directions on the 
body and on the planes. 

At the time, we considered as certain that </> and </' were identical; and 
found that the lift acts through a point behind the middle section in the case 
when Lq u 0, and also in the case when w u o. 

Later on, other tests were carried out by using our Planar Motions Mech¬ 
anism. They showed that it is possible that ¢<o, and consequently, that the 
wake already acts on the body itself in such a way that aapp, without planes, is 
increasing function of <L u. In this case, the total variation of aapp with planes 
may be very large; the limit seems to be obtained for A/u = 10 or 12, and to be 
about three times higher than the value for a L u = o. 

In spite of these new experiments, we do not deem to be able presently to 
formulate general conclusions about the effects of the wake on the body itself. 
In return, we think that the effect of the wake on rudders or stern planes is 
really of a great importance. A closer analysis of this phenomena would re¬ 
quire the study of the blockage effect, of the waves generated by the moving 
body and also of the influence on the lift of the Reynold's number which is 
already great during steady forced motions. 
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III. POSSIBLE FURTHER DEVELOPMENTS - 
GENERAL CONCLUSIONS 

The purpose of the present section is to examine to what extent the ideas 
outlined above, may influence some problems of importance from a practical 
point of view. 

17. Stability of the Steady Motions 

Two cases should be studied. In the first case, one assumes that the con¬ 
trol devices are "OFF.’’ In the second case, the control devices are "ON" and 
act so as to keep constant the characteristics of the steady motion; the pilot 
system is included in the chain and the loop is closed. 

Let \¡ be the parameters which define the motion, the parameters 
which define the action of the control devices. Let a “,a°J, the values of 
in the steady motion. The method generally used to study the stability consists 
in the research of solutions of the form 

By substituting in the equations of the motion, one obtains an "equation in s”; 

the steady motion is stable when all the roots of this equation are negative or 
have a negative real part. 

When the equation of the motion contains terms of the form 

t ' 

) ÍV¡(t') ¿(t'-r')dT' , 
- OD 

the substitution leads to terms 

i’( n - Í e’ST * ¿( t ' ) dr ' , 

■o 

which are the Laplace Transforms of the derivatives introduced in 
pars. 5 and 12. 

The "equation in s" so obtained is no more algebraic and its study is more 
difficult. But of course, it is not impossible. 

The stability of the steady motions gives rise to various comments: 

1*) The steady motions in the vertical plane are necessarily rectilinear. 
The problem may be completely solved by measurements of the forces in steady 
and harmonic forced motions in the ( *,x)-plane. But it is possible also to use 
other ways (at the French Navy Tank, we generally carry out tests on a semi- 
model with its ( z.x)-plane on the free surface of the tank). 
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2*) The problem connected with the stability ol course oí a submerged body 
in the horizontal plane are more complicated than those related to the surface 
ship because oí the particular influence oí the heel. 

3*) We have not studied the stability oí the steady motions in the case when 
the history oí the previous motions is not negligible. That should be done; per¬ 
haps the effective stability is not so high as predicted by the quasi-steady mo¬ 
tion approximation. 

18. The Response to the Control Devices 

This problem is difficult because of the effect of the wake generated by the 
body itself on the rudders and planes. 

We showed that at the beginning of a maneuver, the efficiency of a rudder 
or of a diving stern plane is higher than that ded iced from tests in a steady 
motion. That comes from the fact that, at the beginning of the maneuver, the 
wake which should reduce the effective angle of attack on the rudder, is not fully 
developed. 

Moreover, when, for one or several functions . , one has . (0) o, the effect 
of pressures pj is so high that the lift (or the moment) following immediately a 
perturbation is greater than at t ' + ■ . Consequently, it may happen that the re¬ 
sponse of the body is quite different from that suggested by the word "deficiency." 
This point shall be emphasized, because the set of forces !f in the quasi-steady 
motion and the real set of forces If - if don’t act along a same line. For in¬ 
stance, at the beginning of a gyration, the heel could be greater than in the 
steady turning motion, even when the rudders are located so as to avoid an V- 
moment of their lifts in a steady turning motion. 

19. The "True" Equations of the Motion 

19.1. Motions in the ( i. x)- Plane 

The question examined here is as follows: In the case of a planar motion 
in the ( z. x)-plane, how is it possible to deduce the "true” equations of the free 
motions from the forces and moment measured in a harmonic forced motion? 

These "true" equations are those we have tc substitute for the equations of 
the quasi-steady motions. 

When they are reduced to the linear terms, the three equations of the mo¬ 
tion are obtained by writing that 

Z 0. X 0. 'll 0, 

z X 'K being the forces and moment given in par. 8. 

As explained in par. 15.1, tests carried out in steady forced motions give 
the numerical values of 
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C y _5 c V ^ c c 
A ’•b' A cV m' 

n. 
fCLB’ T (ÇBCLb" CmB); •> IB 

, , 2W . 
'13' a f AT (M3 “ Mi) AL 

^ (D 

We need to know also: 

2W 2W , , . 
+ — (m+m3). m;3. '-'is + MCC- is " ^Tg' '2 ♦ *lVr 

ao 1 ao ■ aoB ; . b . a2B ; 

;B 

(2) 

Let us operate, for instance, without planes. We obtain the numerical val¬ 
ues of the apparent coefficients linked with the out-phase forces and moment: 

aapp a 1 -7(0) - f 

2W 
AL ^ " I ' ' a app 

2W 
AL ( " * " b"PP 

2W 
AL i (..3-m,) + a' [l- y'(0) - f'(—) 

2W, 
AL ' .,) - b 1-:/(0) - f (i) 

b' 1 - /'(0) - f 

2W 
AL ” a 

(3) 

(4) 

(5) 

(6) 

(7) 

Consequently, from (3), we deduce the expressions of the function f. Equa¬ 
tion (5) gives b(1pp (and b) and also t ' ; Eq. (4) gives a second time the same 
function f, and also 

a 
2W 
AL 

, . 3 “ H ) • 

Lastly Eq. (7) gives f¡. 

By inversion of the Fourier integrals, we obtained / /. /' and also their 
sine Fourier Transforms r. Going to the apparent coefficients linked with the 
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in-phase forces and moment, we get 

,iS 1 G 15 ' fJ Q- 

In many cases, these five coefficients will be either nearly constant or small, 
and the calculation of the u -functions will be perhaps without practical interest. 

Similar reasoning based on the results of the harmonic tests with planes 
would show the possibility to obtain . 

Practically all the unknown coefficients and functions may be determined, 
except those which are connected with the variations of u u. In its present 
state, our Planar Motion Mechanism is unable to yield them, because no sinus¬ 
oidal motion parallel to the x-axis is possible. But it is to see that the system 
could be modified for that purpose, if necessary. 

19.2. Motions in the (x.y)-Plane 

From pars. 10-12, we could deduce, for this family of motions, formulae 
similar to those of par. 8, and we could show, in the same manner as in 19.1, 
that harmonic forced motions in the ( x. y)-plane give also the numerical values 
of the coefficients and functions which are needed to write the equations of the 
motion in the (x.y)-plane, or more generally, of any motion, provided the ex¬ 
pressions of the forces are additive. 

20. Effects of the Non-Linearity and Other 
Sources of Errors 

20.1. Non-Linearity 

The so-called "true" equations are true only in the linear field. The non¬ 
linearity may affect many points of the semi-theoretical views explained in this 
paper. Some of them are related to the part of the quasi-steady motions theory 
which we use in our formulae. Some others concern specifically the structure 
of the wake and the method used for taking its effects into account. 

1*) Because submerged bodies are generally very poor lifting surfaces, 
the coefficients a, l>, a' , h' , for the motions in the (z,x)-planes, a,, l>¡, a¡, 

b¡, for the motions in the (x.y) -plane, are not really constant. A question wou 
be to know whether it is possible to substitute for their expressions versus the 
drift angles t or S such expression as for a * > ' or for a - + - 3. 

We have also to observe that our integrals 

become 
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2*) The non-linearity is also to be taken into account when the mo¬ 
tions are not really quasi-rectilinear. From a practical point of view, this is 
very serious since, in many cases, the trajectory of the origin 0 of the moving 
axis is not a straight line. In such a case, the nuclei depend upon ' and t ' ', 
and not upon t ' - ' only. Consequently, we encounter here a new problem, 
which consists in the empirical determination of the new function . ( . t ' ' > 
which have to be substituted for it'-'). 

A similar circumstance happens when the heel becomes great even if the 
trajectory of o is nearly a straight line, for, in this case, the wake cannot be 
considered as a plane surface but is an helicoidal surface. The first phase in a 
change of heading would be different and the waive due to a gyration in the verti¬ 
cal plane could have a severe effect on the trim. 

3*) The non-linearity may affect also the scale effect since the coef¬ 
ficients a, I., ..., depend upon the Reynolds' number. This cause of error 
exists also in the quasi-static theory, but it has no effect on the functions 

/ 

1.1 * 

20.2. Other Causes of Errors 

They are the effects of the free surface and those of the walls and of the 
bottom of the tank. 

In order to get accurate measurements of the sets of forces, it is necessary 
to operate at a sufficiently high speed. But U becomes great and the range of 
values of L u which is accessible becomes narrow. In order to increase this 
range, one may be obliged to operate sometimes beyond the critical speed U Vrui(, 
where il is the depth of the tank, and sometimes below. On the other hand, the 
coefficient V where is the depth of o may be great and consequently, the 
waves generated by the model may be not negligible at all. Lastly because the 
range of values of is not ver> wide (from 1.1 to 3.27) it may be necessary to 
work at various values of L u « U2 in order to keep constant the values of 

L u and, consequently, the changes of the wave patterns which results from that, 
may lead to errors about the true effect of the reduced frequency. 

That means that experiments conceived in order to determine the functions 
/,. ..,</! require a very caution approach. 

21. The Solving of the True Equations 

Generally, one admits that, when the forces acting on the model are known, 
the equations of the maneuvering ship may be solved by analog computers. 

Such computers are most often fitted with curve-plotters, and it is possible 
to get the curves which give the motion of the body following a given maneuver 
as a function of time. 
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However, if we deal with integral equations, the conventional analog com¬ 
puters are no more sufficient. Bigger computers, analog, digital, or hybrid, 
are in fact necessary and the work to be undertaken to study all the possible 
interesting cases becomes really huge .. . 

22. General Conclusions 

22.1. As already stated in the Introduction, this paper is devoted to the 
effects of the circulation around a ship on the set of hydrodynamic forces 
exerted on her. 

As a matter of fact, the subject is restricted to the case of a submerged 
body in an infinite fluid. But the case of a surface ship is similar, apart of the 
fact that the free surface effects have to be taken into account. 

22.2. Our mathematical model is defined in Section I, pars. 3 and 4. 

We start from the possibility to substitute for a submerged body moving in 
a perfect fluid an equivalent distribution of bound vortices on its hull (and inside 
the volume interior to the body when the angular velocity is not identically null). 
Consequently, a motion is defined in the whole space; the fluid interior to the 
body is at rest with respect to the latter. Then we introduce a new family of 
bound and free vortices in order to get a wake. This new family has to be added 
to the first. 

We consider firstly the case of a small motion with one degree of freedom 
around an uniform motion of velocity u parallel to the x-axis. This small mo¬ 
tion is assumed to be parallel to the ( z.x)-plane of symmetry. Neglecting the 
deflection of the fluid due to the reaction of the body on the fluid or, which is 
equivalent, to the velocities induced by the vortices on themselves, we admit 
that the free vortices are at rest with respect to the fixed axis. They are lying 
on u-shaped arcs which are nearly located on planes parallel to the (x. y) - 

plane; because the angle of attack (or the reduced angular velocity) is small, 
these arcs are approximately located on a wake surface attached to the body 
along a line which is assumed to be known (given by experience for each body), 
and which acts as the trailing edge of a lifting surface. The bound vortices as¬ 
sociated to these free vortices are distributed on the hull. The total distribution 
fulfils the condition that the circulation around a closed fluid arc is equal to zero. 
The total potential equivalent to the free and bound vortices of the second family 
induces a velocity which is null inside the body and which, outside the body, is 
tangent to the external face of the hull and to the surface of the wake. It is shown 
that these conditions lead, when the motion is unsteady, to a formula which gives 
the circulation in term of the circulation in the quasi-steady motion. This ex¬ 
pression is a convolution function 

0 

where t ' is the reduced time t ' Ut L, L being the length of the body, and 
t ' o the time at the beginning of the unsteady motion. 
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Then we have to add the effects of a motion with three degrees of freedom 
u t!, w u, Ln u, the total motion being still parallel to the (/.x)-plane. In order 
to do that, we admit that these three parameters have negligible squares and 
products, and, consequently, that the wake surface is practically the same as in 
the previous case. 

22.3. In par. 5, we introduce the hydrodynamic forces due to the total 
velocity potential of the absolute motion of the fluid. For the sake of simplifi¬ 
cation, we assume here that the body is not fitted with planes or fins. We con¬ 
sider firstly the distribution of the pressure on the hull. It is shown that it is 
the sum of three terms. One is due to the velocity potential when the fluid is 
quite perfect, that is, when the wake is not taken into account. The two other 
terms are due to the wake. The first of them is generated by a local Kutta- 
Joukowsky or gyroscopic effect; the second is due to the partial derivative with 
respect to the time. A second method, more rapid, gives the total force and 
moment starting from the absolute momentum of the fluid and from its moment 
with respect to the fixed axis. In order to do that, we substitute to the vortices 
a distribution of doublets normal to the hull and to the wake. We show that it is 
possible to express the difference between the set of forces yielded by the quasi¬ 
steady motion theory and the real set of forces in terms of convolution functions: 

E I f«kf ’'>•<« ' -'h-' 
k 0 

for the lift, 

E * iili( ■'> It ' 'Ml 
k <) 

for the drag, 

E I 1 nk^ ' 'Xl-' 
k ) 

for the moment; fok(t ' ). k 0.1.2, are the arbitrarily given functions 

We call deficiencies these differences. In fact, each deficiency is made of two 
terms, one of them is really a deficiency, because it is due to the fact that the 
circulation is unable to take instantaneously the value relating to the quasi¬ 
steady motion; but the second one which is due to the partial derivative t, 
acts in the opposite sense. The three functions . . . . . ' are probably the samé 
whatever k may be; but we did not prove that rigorously. Moreover we cannot 
prove that they are proportional to one another (which is the case for an airfoil 
of infinite aspect ratio). From a theoretical point of view, something is lacking 
there but, from a practical point of view, that is without great importance, be¬ 
cause these functions may be obtained through experiments. 
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In par. 0, we consider the forces acting on the planes and fins. We neglect 
the effect of the history of their own motion. But we take into account the effect 
of the velocity due to the wake generated by the body itself and show that it acts 
so as to increase the efficiency of these appendages at the beginning of a 
maneuver. 

Paragraph 7 is devoted to the other set of forces acting on the body (fric¬ 
tion, gravity, inertia, ...), and par. 8 gives the total expression of the forces 
when the motion is parallel to the ( z,x)-plane. 

22.4. Paragraphs 9-12 are devoted to motions not parallel to the < x. y i- 
plane. In par. 9, we explain the difficulties we have encountered in this task. 
They are partly due to the fact that in the most general case, the field of 
vortices may be different from the sum of those which we deal with when the 
number of degrees of freedom is smaller. For instance, at a given instant t ', 
perhaps the free vortices are generally shed along a line only and not, simul¬ 
taneously, along the two lines which are respectively related to the components 
of the motion parallel to the (z.\) -plane, and to its components parallel to the 
( x, y )-plane. Nevertheless, after a discussion, we admit that such an addition 
is possible in some cases of great importance from a practical point of view, 
when the perturbations are small. Consequently, we obtain final formula simi¬ 
lar to those of par. 8. But it is necessary to consider, that in some cases, par¬ 
ticularly when the angle of heel is great, or when the body turns with a small 
radius of gyration, the nuclei found in the integral expressions of the forces 
and moments depend not only upon the difference t ' - ', but also upon ' (see 
par. 13). 

22.5. In Section II (pars. 14-16), we examine the case of steady and har¬ 
monic forced motions in the < z.x)-plane. Such a study leads to consider the 
differences between the case of the quasi-steady motion theory and the theory 
developed in the previous paragraphs. 

In both cases, it is possible to express the lift, the drag and the moment in 
Phase with the motion in terms which are proportional to the square of the re¬ 
duced frequency L U, and the lift, the drag and the moment outphase with re¬ 
spect to the motion, in terms which are proportional to the reduced frequency 
itself. But, if we use the quasi-steady motion theory, we find that the coeffi¬ 
cients before ( LU)2 or -L u are constants; on the contrary, if we take into 
account the delayed circulation, they depend upon the reduced frequency. 

That leads to define "apparent" coefficients. Those related to the outphase 
forces and moments, have their limits, for L u - o, equal to the "true" coef¬ 
ficients; the other are equal to their true values only for large values of LU. 

Consequently, tests carried out in harmonic forced motions give the pos¬ 
sibility to decide whether the effects of the wake are of importance, or may be 
neglected. Experiments showed that some of the apparent coefficients, those 
which are not mixed with terms of inertia of the body or with term coming from 
the rotation of the axis attached to the body, have important relative variations. 
Experiments show also that the effects of the wake on the stern diving planes 
and fins are very high. 
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22.6. In Section in, pars. 17-21, we examine some possible further devel¬ 
opments. 

The equations of motions nearly parallel to the x-axis involve unknown 
coefficients and functions. The unknown coefficients are ihose we find in the 
steady forced motions, the "added masses” and the terms which come from the 
rotation of the axis attached to the body. The unknown functions are due to the 
wake; they are the Fourier transforms of the part of the apparent coefficients 
which depend upon the reduced frequency in the harmonic forced motions. Con¬ 
sequently tests in steady and in harmonic forced motion yield, in principle, all 
the unknown coefficients and functions which are necessary for writing the equa¬ 
tions of such motions, although these motions are not harmonic. 

The equations so obtained are not differential, but integro-differential. 
Consequently, they are more complicated than the differential equations intro¬ 
duced by using the classical static derivatives, that is, the theory of the quasi- 
steady motions. For the naval architects, this new aspect of the problem is 
somewhat unpleasant and it would be of interest to check whether the errors 
from the classical treatment of the problem are great or not. Probably they 
are not negligible in the transient motions. But, until now, we have had no pos¬ 
sibility to compare the two families of solutions. Moreover, some people may 
consider as negligible differences which are important to the eyes of some 
others. In any case, we think that the views developed in this paper may explain 
some interesting particularities of the transient motions, because they call the 
attention to phenomena which prediction would be impossible according to the 
classical equations. Even if it is finally found that the differences between the 
solutions of the classical equations and those of the integro-differential equa¬ 
tions are not very high, it is of interest to discern why. From this point of 
view, we think that harmonic forced motion tests are useful, because the results 
so obtained lead to understand better how the term coming from the partial 
derivative may partially cancel those coming from the delayed circulation or 
inversely. 

Some points are yet to be emphasized. Firstly, tests in steady and har¬ 
monic forced motions require much care, because of the possible free surface 
effect in an ordinary tank. Moreover, it is possible that the planar motion 
mechanisms are not perfectly adapted for systematic research about such 
motions. For instance, the range of the possible amplitudes and frequencies is 
probably too narrow. For a point of importance would be to study the limits of 
the linear field. 

That means that the planar motion mechanisms, which interest has been 
many times emphasized, do not enable us to solve all the problems involved in 
the maneuvering qualities of a submerged body. Tests in a steering tank with 
a rotating arm are certainly necessary in order to explore motions of great 
amplitude and gyrations at a very large angle of rudder, as was previously the 
case for researches about the maneuverability of the surface ships. The planar 
motion mechanisms give new means; but the latter do not replace the previous 
facilities. It is even allowed to deem that it is necessary to explore the maneu¬ 
vering qualities of submerged bodies by using free models as it is already done 
in the case of surface ships. 
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22.7. Now we come back to the mathematical model which has been the 
starting point of the present paper. Obviously such a model could give too 
many remarks and criticisms For instance, we consider as a fact that a wake 
exists, but the real structure of the wake is in connection with the mechanism of 
the transport into this wake of the vorticity which originates in the boundary 
layer. Certainly the approximation of the quasi-perfect fluid is not a refined 
one. The present theory does not stand on the same refined level as the theory 
of the wings of finite span. Many improvements would be desirable from a sci¬ 
entific point of view. But, for practical purposes, we have for the time being to 
admit semi-empirical theories. The quasi-steady motion theory which until now 
has been the only one practically used, is also a semi-empirical theory. The 
most important point in this paper is the following: In practice, have we or have 
we not to take into consideration the facts disclosed by harmonic forced motions 
tests? 

We don't answer this question. But we sincerely hope that it is worth 
putting. 
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DISCUSSION 

Nils H. Norrbin 
Sicedisli Stale Shipbuilding Experimental Tank 

Goteborg, Sweden 

Admiral Brard has presented a line piece of work on the mathematics of a 
changing system of lifting vortices on bodies in transient and periodic motions, 
accepting the physical piciure of a flow separating along lines more or less 
parallel to the body axis and producing a downwash over almost the full length 
and width of the after body. 

When the body changes its attitude the interference between the vortex wake 
and after body, and fins, does also change, and this interference must be depend¬ 
ent on the time history of the motion. The physical picture also brings with it 
the concept of a certain time required before a change of boundary flow condi¬ 
tions develops into a change of separation and vortex wake, thus complicating 
the dependence of the history of a transient motion, or of the frequency of a 
periodic one. The present speaker fails to see to which extent the results of the 
oscillator experiments quoted by the author are in any quantitative support of 
this theory. 

To the speaker again, the flow separation parallel to the axis as mentioned 
is more associated either with surface ship forms with spontaneous separation, 
or with bodies of revolution at angles of attack no longer small. For the body of 
revolution at a small angle of attack, on the contrary, the Nonweiler theory sug¬ 
gests separation to occur much further aft and along the contour of a plane 
almost at right angles to the axis. The vortex wake then covers a narrow region 
of the after body only, and the circumferential flow will also be more rapidly 
adjusted to the boundary conditions, thus extending the domain of practically 
frequency independent derivatives. This might explain why ordinary differential 
equations with constant coefficients are seemingly sufficient to predict the nor¬ 
mal motion of a fair shaped submarine, but it would be interesting to hear of the 
authors experience of such predictions. 

* * * 

DISCUSSION 

A. J. Vosper 
Admiralty Experimental Works 

Gasporl, England 

The mathematical presentation in Admiral Brard’s paper is welcomed as 
a laudable attempt to calculate the forces on a submerged body. This is a 

908 



A Vortex Theory for the Maneuvering Ship 

problem which has defeated many people in the past, so that the outcome of the 
author's work is awaited with interest. 

I imagine that few wiL quarrel with the general principle expressed in the 
paper, that the motion of a ship or submarine depends on the past history 01 its 
motion. However, because of the insuperable difficulties involved in any other 
approach, the use of quasi-static derivatives has been widely accepted as a 
suitable approximation, since they were first introduced by G. H. Bryan in 1911. 
Piofessor W. J. Duncan later attempted to justify the use of quasi-static deriva¬ 
tives, and concluded that for the Linds of motion occurring in stability investiga¬ 
tions of aircraft flight, the use of constant derivatives was justified. However, 
he admitted that the influence of the frequency parameter had been neglected, 
apart from its consideration in the studies of flutter of control surfaces. 

It is not therefore surprising that in the submarine field, for which the the- 
oiies from the aircraft world were adapted, a quasi-static approach has been 
used to consider motions well beyond the range of the small deviations for 
which it was derived. However, one cannot ignore the not inconside; Jale argu¬ 
ment that in submerged body work good correlation has been achieved between 
theory and practice. To this extent one can reasonably claim that the end has 
justified the means. 

From this point of view, which is all-important to the practising naval 
aichitect, the introduction of a considerably more complex representation of the 
problem seems unnecessary. However, the case of a surface ship in a disturbed 
sea is entirely different and there may here be greater justification for the 
author's approach. 

Comparison of data obtained by rotating arm and planar motion mechanism 
will undoubtedly help to throw light on this problem, and the I.T.T.C. Maneu¬ 
verability Committee by sponsoring a series of international cooperative tests 
using the Mariner Class form, will eventually obtain data which may help to 
answer Admiral Brard's question. 

Finally, I must admit to some lingering doubts about the basic concept of 
the planar motion mechanism. If Admiral Brard will permit, I would like to re¬ 
phrase Question 1 on page 29: "Is it possible to deduce from the forces and 
moments measured in a harmonic forced motion, the true forces and moments 
experienced by a ship or submarine in a motion which is rarely harmonic?" 
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REPLY TO THE DISCUSSION BY NORRBIN 

Roger Brard 
Bassin (¡'Essais des Carenes de la Marine 

Paris, France 

Dr. Norrbin has drawn the attention to the mathematical model which 1 
choose as a starting point. I agree that the choice is a difficult one and, indeed, 
1 have hesitated for a fairly long time before deciding. That is why I wrote that 
the NACA model only "suggests” the physical picture of a surface wake limited 
by lines more or less parallel to the x-axis. As a matter of fact, the length and 
the shape of the arc along which the separation occurs depends strongly upon the 
hull form. For instance, for a thin surface ship, this arc is practically the keel 
line and the maximum of the density of the free and bound vortices is located 
near the bow. For a body of revolution, the arc depends also upon the angle of 
attack. But it does not seem to me that the final structure of the formulae giving 
the expression of the forces exerted on the ship or on the submerged body in an 
unsteady motion strongly depends upon these circumstances. I hope that, in the 
field of linearity, at least when the body is moving in its centerplane, the forces 
arc always given by convolution functions. The behaviour of these functions may 
differ when the form of the hull changes, and their calculation should be very 
intricate. My purpose was only to give means in order to get these functions 
starting from experimental results and not through mathematical calculations. 

When the motion is not parallel to the centerplane of the body, the form of 
the hull is of still greater importance. It is my intention to insist on this ques¬ 
tion in the final text of the paper. For instance, in the case of a nonsymmetric 
body with respect to the (x.y)-plane, strong forces along the z-direction and 
moment about the x -axis may appear. The intensity of these force and moment 
strongly depends on the form. 

Presently, the theory does not permit to predict which hydrodynamic forces 
are exerted on the body whatever its form may be. But it leads to a method for 
deducing these forces from these measured in particular motions, the steady and 
harmonic forced motions. The theory also indicated that the wake has a great 
influence on the forces acting on the stern planes and fins. 

Dr. Norrbin said that the surface of the body on which the wake acts is of 
small area when the body is of revolution and when the angle of attack is small. 
He expressed the opinion that it might explain why ordinary differential equations 
with constant coefficients are seemingly sufficient. 1 have indicated in the paper 
that, from my point of view, this question is presently not solved. It is quite 
evident that the coefficients which depend upon the added masses or which con¬ 
tain terms due to the rotation of the axis are much less sensitive to the history 
of the motion than the others. For this reason the history of the motion should 
act mainly on the lift coefficient due to the angle of drift. 

* * * 
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REPLY TO THE DISCUSSION BY VOSPER 

Roger Brard 
Bassin (/'Essais des Carenes de la Marine 

Paris, France 

1- rom a practical point of view, the use of quasi-static derivatives is prob- 
ablv justilied lor solving the problems concerning the stability of steady mo¬ 
tions. Ol course, as indicated in Section 5.2 of the paper, the "equation in s" is 
dillerent, at least in principle, whether the history of the past motion is taken 
into account or not. But the stability of the motion depends mainly upon the 
signs of the real parts of the roots of the equation which are in the vicinity of 
zero, and the signs seem to be very little affected by the history of the motion. 

In some cases, it is possible to observe motions of surface ships, such as 
harmonic variation of the heading, the rudder angle being constant and equal to 
zero, tor which complete explanation seemingly requires consideration of the 
history ol the past motion. 

In the case ol a surface ship, I believe that we generally do not need a very 
accurate theory to predict the motion of the ship, and, therefore, to introduce in 
the calculation the effects of the history of the motion. But, I am not sure that 
these effects are not of importance in the case of a submerged body. You state 
that in submerged body work a good correlation has been achieved between prac¬ 
tice and theory (that is the classical theory, without correction for taking into 
account the vortex wake generated by the body). I personally have no knowledge 
of results of comparisons between theory and experiments on models or on full- 
scale submerged bodies, which permit to conclude in a way or in the other. That 
is why I should be very grateful to you if you could give me more precise infor¬ 
mations about this point. 

I was surprised to find that our experiments carried out with the Planar 
Motion Mechanism show a great influence of the reduced frequency. Before 
getting these results, I considered the phenomenon aspossible, but I did not be¬ 
lieve that it could be of such great importance. However, I should like to re¬ 
mind you of the fact that the coefficients are not equally affected. It would be 
interesting to compare calculated motions with constant coefficients and with 
variable coefficients. But I have had no time to do it yet. 

I have also some doubts about the possibility to deduce the time forces and 
moments acting on a ship or on a submarine from the forces measured in har¬ 
monic motion by use of a planar motion mechanism. But, perhaps the reasons 
behind our lines of thought are not identical. You seem to consider that your 
doubts are justified by the fact that the actual motion of a surface ship or a sub¬ 
marine is seldom harmonic; I rather consider that the actual motions of a ship 
or a submarine are often outside the linear field, and therefore, that the inver¬ 
sion of the Fourier integral becomes either impossible or meaningless. 

* * * 
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THE REDUCTION OF SKIN 

FRICTION DRAG 

J. L. Lumley 
The Pennsylvania Slate University 

University Park, Pennsylvania 

ABSTRACT 

A survey and analysis is presented of the various principles which have 
been suggested to reduce the skin friction drag; a description of some 
of the techniques for the application of these principles and experimen¬ 
tal results are given. 

INTRODUCTION 

The majority of the drag of a properly streamlined underwater vehicle is 
skin friction drag resulting from the excessive momentum transport of the tur¬ 
bulent boundary layer. All techniques which have been suggested for the reduc¬ 
tion of skin friction drag act to reduce this transport by altering, or preventing 
the formation of, the turbulent boundary layer. Few of the techniques which we 
will describe are supported by complimentary experimental and theoretical in¬ 
formation; for some, only theory exists; for others only experiment; for a few, 
there is both, but in conflict. I will try to present hère the principles so far as 
they are known, the results where they are available, and attempt to explain the 
discrepancies. 

CONVENTIONAL TECHNIQUES 

General Considerations 

Most of the drag reduction techniques which have been suggested involve the 
stabilization of the laminar boundary layer, and these will be referred to as con¬ 
ventional techniques. The boundary layers in question are always thin relative to 
some relevant length, and are usually considered, for an examination of stability, 
as plane parallel flows without inflection points. 

In the discussion of the various stabilization techniques which follows, sev¬ 
eral things must be borne in mind. First, from the work of Klebanoff, Tidstrom 
and Sargent (1962) it is clear that transition can be caused in a laminar boundary 
layer at airy Reynolds number by a sufficiently violent disturbance—of the order 
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oí ten percent oí the free stream velocity. It must be anticipated that a laminar 
boundary layer can be successfully stabilized only in the absence of large dis¬ 
turbances, since once transition has occurred, few stabilization techniques could 
be expected to have the capacity to reestablish laminar flow downstream of a. dis¬ 
turbance. Disturbances appear either at the boundary, or in the free stream; 
consequently, great care must usually be exercised to make both as free of dis¬ 
turbances as possible. The only kind of stabilization that appears to be possible, 
then, is stabilization to small disturbances; that is, the preventing of small dis¬ 
turbances from growing to be big ones. This is what is customarily meant by 
stabilization. 

There are, generally, two types of small disturbances to which laminar 
boundary layers are unstable. One consists of progressive waves; these are 
known as Tollmien-Schlichting waves (Lin (1955)). The other consists of stream- 
wise standing vortices; these are known as Taylor-Goertler vortices (see Lin 
(1955), p. 96). The Taylor-Goertler type of instability only appears where there 
is concave curvature in the streamwise direction or where a surface is heated 
with a liquid flow above it in a gravitational field (Goertler (1959)). However, 
the condition on the curvature in order to assure the appearance of Tollmien- 
Schlichting waves before Taylor-Goertler ones is quite stringent, and probably 
few supposedly flat plates satisfy it. Practically without exception, the analyses 
which indicate a possibility of stabilization have reference only to Tollmien- 
Schlichting waves. In addition, most of these analyses have reference only to 
progressive waves in the streamwise direction. While for the ordinary boundary 
layer Squire's theorem (Lin 1955)) assures us that such waves become unstable 
first, in some of the situations under discussion, we may not have such assur¬ 
ance. While nearly all of the suggested techniques attempt to control the growth 
rate of the streamwise progressive waves, at least one (Kramer (1962a)) attempts 
to prevent the development of three-dimensionality, which appears to be (Kleb- 
anoff, Tidstrom & Sargent (1962)) a necessary prelude to transition, while another 
(Kramer (1962b)) attempts to control what appears to be a secondary instability 
associated with the developing three-dimensionality (Klebanoff, Tidstrom & Sar¬ 
gent (1962)). 

There are distinct differences between discussions of stability on two di¬ 
mensional bodies and on bodies of revolution. If the diameter of the body is in¬ 
creasing, two conflicting effects are felt. In the first, an increase in diameter 
means that the boundary layer must be spread over an ever widening area, pro¬ 
moting thinning and altering the profile (much as suction does). It might be ex¬ 
pected that this would delay instability beyond the point to which it is already 
delayed by the favorable pressure gradient usually present on the forward part 
of a body of revolution. In the second, cross-stream vorticity is being stretched, 
which, due to the associated increase in intensity, should result in an earlier 
occurrence of Tollmien-Schlichting instability. There is evidence (Groth (1957)) 
to indicate that the stretching dominates. The picture is complicated further, how¬ 
ever, by the possibility of Taylor-Goertler instabilities in the concave flow near 
the stagnation point (Goertler (1955), Goertler-Witting (1958)), and by the stretch¬ 
ing (and intensification) of vorticity which may be present in the free stream. 

^Although probably most will reestablish laminar flow if the disturbance is 
removed. 
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Finally, it should be mentioned that, even if the boundary layer can be sta¬ 
bilized in the absence of large disturbances, the wake cannot. The turbulent 
wake is known (Townsend (1956)) to be subject to large-scale, unsteady organized 
motions of the character of instabilities, which on a sphere interact strongly 
with the boundary layer and are responsible for the wandering of a rising free 
balloon of small size (Scoggins-private communication). It is possible that 
these motions, which are present in the wake of a streamlined body also, can 
disturb the supposedly stabilized boundary layer there. 

Change of Profile 

Of the various stabilization techniques* (see Fig. 1), the first method we will 
discuss is the alteration of the velocity profile to a more stable one. Roughly 
speaking, the stability of a profile is increased by an increase of the curvature 
of the profile, since the lower critical Reynolds number above which small dis¬ 
turbances will grow is monotonie with curvature of the profile at the critical 
layer. The critical layer is that layer at which the wave velocity and fluid ve¬ 
locities are equal (Lin (1955)). A more exact way of correlating this change in 
profile is through a shape parameter. 
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Fig. 1 - Techniques for the stabilization of the laminar layer 
to small disturbances 

^Specific citations will not in general be given; reference should be made to 
the appropriate section of the bibliography. 
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Fig. Z - Effect, of profile change expressed in 
terms of the ratio of displacement thickness 
to momentum thickness, (from Lin (1955)). 

Figure 2 shows the lower critical Reynolds number versus a shape param¬ 
eter, the ratio of displacement to momentum thickness. This parameter assumes 
the value unity for a "square" profile, and increases as the rise to free stream 
velocity becomes more gentle, reaching a value of roughly 3.5 at separation. 
While the curve in Fig. 2 was computed specifically for profiles in the presence 
of pressure gradients and heat transfer at the surface, it is only a slight gen¬ 
eralization to speculate that the same curve will describe, at least qualitatively, 
the effect of other conditions which work principally through a change in profile. 

In describing these stabilization methods, it should be remembered that 
some of them, especially suction, in addition to changing the profile (in a direc¬ 
tion to increase the lower critical Reynolds number) may also prevent boundary 
layer growth, if applied with sufficient intensity. Thus a boundary layer per¬ 
mitted to grow will eventually reach its critical Reynolds number (based on 
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thickness) no matter how delayed by a change in shape. A boundary layer whose 
growth is prevented may never reach its critical Reynolds number. 

The ways in which the profile can be altered can be placed in two categories, 
depending on whether constant or variable fluid properties are necessary. Under 
the heading of methods which work with constant fluid properties we can include 
pressure gradients and suction. The suction may be either distributed, or it may 
be through discrete slots (see particularly the work of Pfenninger et. al.). Dis¬ 
crete slots are satisfactory so long as the boundary layer is caught by the next 
downstream slot before disturbances have time to grow to a significant extent. 
Among the methods that involve variable fluid properties, most are dependent on 
a variation of the ordinary viscosity ,.. An increase of with distance from the 
wall increases the curvature. The viscosity w can be varied in several ways: in 
water it can be changed by heating the wall, a film of a different fluid can be 
placed next to the wall, such as a gas film or a liquid with a lower ,. —such a film 
being produced by injection, film boiling, cavitation, sublimation or chemical 
reaction. Finally, an additive could be placed in the boundary layer so that the 
fluid becomes non-Newtonian, in particular "shear-thinning"; then the high shear 
near the wall will mean a lower m there and the u will increase with distance 
from the wall. It should be mentioned that there is some disagreement as to 
whether the low ß fluid film should be considered primarily as a stabilization 
technique; this seems to be largely a matter of taste, and I have taken the posi¬ 
tion that if it did not stabilize, it would not work, since the low ß fluid would be 
mixed with the high. 

Flexible Boundary 

To the best of my knowledge there are only two methods that do not depend 
on changing the profile; the first of these is the stabilization of the laminar 
boundary layer by a compliant boundary. This does not damp the disturbances; 
as a matter of fact, it is a result of the theory (Betchov (1959), Benjamin (1960) 
Boggs & Tokita (1960), Landahl (1962)) that damping in the wall is in general 
destabilizing. Rather, the compliant boundary acts to change the phase rela¬ 
tions between the pressure and the velocity in the neighborhood of the wall, re¬ 
sulting in an alteration of the Reynolds stresses there, and changing the energy 
budget of a disturbance. While a passive wall in general changes the lower 
critical Reynolds number, Betchov (1958) has shown that an active wall may be 
expected to eliminate it entirely. In a tenuously related investigation Wu (1959), 
has shown that a suitable active wall can propel. 

In Fig. 3 are shown the phase relations induced at the surface by a visco¬ 
elastic material, together with the phase relations corresponding to a small dis¬ 
turbance in the region between the inner viscous layer and the critical layer of 
the laminar boundary layer over a rigid surface. If the former are added to the 
latter as a first order approximation, the influence on the disturbance Reynolds 
stress may be seen. 
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Non-Newtonian Additive 

The second method not dependent on a change of profile (Giles 1964) depends 
on the use of a non-Newtonian additive of viscoelastic character. One may ex¬ 
pect that if the apparent viscosity to a temporally sinusoidal simple shear in¬ 
creases with frequency, then the flow would be more stable to progressive waves, 
since the history of a material point involved in such a wave is unsteady. The 
opposite case is of greater interest for real fluids, and a recent analysis (Wen 
(1963)) indicates a destabilizing effect, but that may be because a model was 
used that is not materially objective. 

Drawbacks of the Conventional Techniques 

Most of these techniques are, or have been, under experimental investigation 
by various groups and individuals and show some prospects of success, but in 
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most there are difficulties. Many of these difficulties are related to kinds of in¬ 
stability other than those considered in the analysis which suggested the experi¬ 
ment. For instance, with a gas film one has an interfacial instability of the 
Kelvin-Helmholtz (Lamb (1945)) type. With a heated wall one has a gravitational 
instability due to the density differences, which can be shown to be analogous to 
the instability on a wall concave in the streamwise direction (Goertler (1959), 
Kirchgaessner (1962)). The boundary layer over a flexible surface is subject to 
two types of instability not present in the boundary layer over a rigid surface 
(Benjamin (1963)). Furthermore, the difficulties mentioned earlier relative to 
freedom from disturbances, both at the surface and in the free stream, are not 
easily overcome. It should be remembered that natural transition due to the 
growth of small disturbances seldom occurs earlier than a length Reynolds 
number of 10 s. Simply by rer oving all the disturbances this figure can be in¬ 
creased by a factor of about twenty-five, but a limit is reached in this direction. 
It has been suggested by Betchov (1960) that this limit is due to amplified mole¬ 
cular agitation. To achieve a substantial reduction in drag, the length Reynolds 
number must be increased at least an order of magnitude beyond this. Further¬ 
more, at these high Reynolds numbers the laminar boundary layer is very thin. 
The requirements on smoothness and in general the tolerances on construction 
of the surface are proportional to the inverse of the "Reynolds number per foot," 
and are extremely stringent. If all other disturbances are removed, the velocity 
field associated with a sound field can disturb the boundary layer, particularly 
in a gas-liquid combination. This velocity field in a liquid is ordinarily much 
smaller for a given sound pressure level than in a gas (by the ratio of the values 
of the product of density and speed of sound), but if there is a gas-liquid inter¬ 
face this does not appear to be true. Considered from all points of view it seems 
desirable to examine the possibility of altering a turbulent boundary layer so as 
to reduce the drag. If this can be done then all the difficulties mentioned above 
are eliminated. 

NONCONVENTIONAL TECHNIQUES 

General Considerations 

Several approaches have been suggested by means of which the turbulent 
boundary layer may be altered. In order to understand how these may work, it 
is necessary to recall to mind the physical principles which govern the normal 
turbulent boundary layer. For simplicity, let us consider the boundary layer 
with zero pressure gradient. These principles are (cf, Townsend (1956)): 

1. Reynolds number similarity: that the turbulence, once fully established, 
is predominantly inertial in the energy containing range (that part of the spec¬ 
trum responsible for drag and heat transfer); Le.,-that the structure of these 
eddies is essentially independent of viscosity. 

2. The "Law of the Wall"—that there is a layer of turbulent fluid near the 
wall that has no characteristic length scale other than distance to the wall, and 
that this layer has a single characteristic velocity, and therefore a universal 
structure. By the first principle, this layer is independent of viscosity, so that 
the Reynolds stress is constant. Defining the characteristic velocity w* as the 
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root of the kinematic Reynolds stress, and noting that mean velocity differences 
in the layer also must scale with we have y"' i X a universal constant, 
which gives immediately the familiar logarithmic law ~ > * l X in y yH , where 
y0 is a constant yet to be determined. 

3. The viscous sublayer—that there is a layer of fluid next to the wall in 
which dissipation is dominant, in the sense that no disturbance can be in equi¬ 
librium there without energy transfer into the layer. The profile of mean ve¬ 
locity there is nearly linear, since the stress is constant, and production of tur¬ 
bulent energy is not important. Phenomena seem superposable in this region 
(Sternberg (1961)) since the nonlinear convective-production terms are not sig¬ 
nificant. The thickness of the layer is fixed by the Reynolds number based on 
thickness. If we set R y* ; as the Reynolds number based on thickness 
where the sublayer profiíe, “ y,.* -. , meets the logarithmic profile (roughly 
12.6 in a normal boundary layer) then we can write 

which fixes the value of the constant. 

4. "Law of the Wake"—in the outer part of the layer, it is assumed that the 
profile is similar when referred to local length and velocity scales— ” - C] V*- 
f(y/S) which of course also involves Reynolds number similarity. If it is as¬ 
sumed that there is a region of overlap with the law of the wall, then we obtain 
the familiar drag law 

1 5// 
+ — In — 

K 

This is the relationship which must be changed if the effect on drag of the tur¬ 
bulent boundary layer is to be changed. 

R - - ln R 
K 

Change of Viscosity 

Let us now consider ways in which the familiar drag relationship can be 
changed (see Fig. 4). The simplest which comes to mind is a change of viscosity. 
This will not change the structure outside the viscous sublayer, since that was 
dominated by inertia. Therefore it does not matter whether the change in vis¬ 
cosity extends to the fluid outside the sublayer. A change in viscosity will not 
change the value of R so long as the change is uniform in the sublayer. Hence, 
any mechanism which changes the viscosity in the viscous sublayer will produce 
a turbulent boundary layer indistinguishable from a normal turbulent boundary 
layer at a different length Reynolds number. Since drag is only a weak function 
of length Reynolds number, this is not a particularly effective way to change 
drag. The viscosity in the viscous sublayer might be reduced by heating the 
wall (in a liquid). 
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Fig. 4 - Techniques to alter the structure of the turbulent boundary layer 

The Nonuniform Sublayer 

Some question may be raised about the possibility of having a nonuniform 
value of through the sublayer; it is not difficult to show that for a non- 
Newtonian fluid of arbitrary constitutive equation in a zero-pressure gradient 
boundary-layer the viscous shear stress near the wall is constant to terms of 
third degree in distance from the wall, so that there will be a region of uniform 
strain rate and hence uniform viscosity. Relations will, of course, not be simple 
at the outer edge of the sublayer, but it seems unlikely that the picture developed 
above, which ignores this transition region between sublayer and inertial region 
(on the grounds that the transition is in a thin layer (Townsend (1956)) can be far 
wrong. 

A hot wall (in a liquid) can produce a temperature (and hence viscosity) 
variation in the sublayer, if the heat flux is large enough, and a mechanism by 
which this could reduce drag has been suggested by G. B. Schubauer (private 
communication). The ratio of the temperature drop in the sublayer to that through 
the boundary layer is given to first order by (using a two-layer model) 

^ ^ hound.i r y layer 1 * (c ~ 1) T 

At moderate Reynolds numbers (in liquids), most of this drop takes place in the 
sublayer, and we may take the temperature (and hence the viscosity) at the outer 
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edge oí the sublayer as being essentially the free stream value. Then the shear 
at the outer edge will be nearly that without heating at the same wall stress. If 
we take the thickness Reynolds number as being determined largely by the shear 
at the outer edge, then this will be essentially the same (although it may increase 
somewhat due to the favorable curvature of the profile) so that the thickness will 
be essentially the same. Thus the whole effect will appear from outside the sub¬ 
layer as a slip at the wall of value (to first order) 

K * 

" s ~2~ 

Assuming self-preservation, negligible laminar length, and large Reynolds num¬ 
ber, we may obtain the effect on * of a change in by this mechanism: 

<1 ,* , * R 

. * d 2D 

which is of the order of 1/4 at moderate Reynolds number. The sensitivity of 
viscosity to temperature in liquids suggests that (at ordinary pressures) changes 
in * by 20% may be possible before boiling occurs. 

It should be mentioned in passing that surface heating in a gravitational field 
may produce secondary motions which will only increase the momentum trans¬ 
port and the drag. 

Change in the Wall Layer 

A slightly more sophisticated way in which the principles outlined above 
could be violated is by a change in the "law of the wall." This could be done by 
the introduction either of a length scale or of a velocity scale. These are essen¬ 
tially equivalent, since a height can be defined at which the mean velocity equals 
the velocity scale selected. Thus a new parameter is introduced, say the ratio 
of * to the new velocity scale. A simple way in which this can be done is by 
coating the wall with a nonrigid material having a Rayleigh wave speed below the 
free-stream speed. Then convected fluctuating pressure fields can exchange 
energy with the wall in the same manner as described by Phillips (1955) for the 
generation of ocean surface waves by turbulent wind. It is not obvious a priori 
why such an interchange should necessarily result in a reduction of drag. The 
random wave motion of the surface would necessarily be associated with dissi¬ 
pation of energy in the surface so that the simple existence of such an interaction 
world only increase the total dissipation, if it did not drastically alter the struc¬ 
ture of the boundary layer so as to reduce the dissipation in the fluid. Again, we 
have, as before for the laminar layer, that damping in the wall material is prob¬ 
ably detrimental, and it seems likely that we will not achieve favorable effects 
unless the damping in the surface material is considerably smaller than that in 
the fluid. This is the case for an air boundary layer over water, and P. A. 
Shepphard (private communication) has observed drag reduction in such bound¬ 
ary layers. Unfortunately, it is more difficult to find wall materials of viscosity 
lower than water. 
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Reynolds Number Similarity 

Another way in which the boundary layer may be attacked is through the 
principle of "Reynolds number similarity." Violating this principle is not a 
straight-forward matter. For instance, if the fluid viscosity is increased, there 
will be no important change (other than the slow increase in drag associated with 
the weak dependence on length Reynolds number) until the dissipative and energy- 
containing scales are nearly equal, at which point the turbulence can no longer 
extract energy from the mean motion at a sufficient rate to maintain itself, and 
the flow will become laminar. This would, of course, result in a drag reduction, 
but falls more properly in the realm of stabilization. One might suggest using 
a non-Newtonian medium which is shear-thinning. If indeed it behaved as though 
it had a simple shear-dependent viscosity (Lumley (1964)) it would change noth¬ 
ing. In the high-shear viscous sublayer, its viscosity might be expected to be 
nearly the value of the solvent; in any event, K would remain unchanged. If the 
flow outside the sublayer were turbulent, then it would be inertia dominated, and 
nothing would be changed. Only by increasing the effective viscosity outside the 
sublayer until the layer became laminar could a change be made, and again this 
falls more properly under the heading of stabilization. Evidently, in order to in¬ 
fluence Reynolds number similarity, it is necessary to have a material whose 
constitutive equation is such that terms in the energy equation, arising from that 
part of the stress which is not a pressure, are appreciable in the energy contain¬ 
ing range oi wave numbers, without being dissipative in character, so as not to 
turn the turbulence olí. That is, they must be non-negligible in the energy con¬ 
taining range of wave numbers without being viscous in character. There is both 
theoretical (Lumley (1964)) and experimental (see particularly Fabula (1963)) 
support for the conclusion that only a material having viscoelastic properties 
can behave in this manner, although the exact mechanism is not understood. 

Particles and Fibers 

There has been reliable observation of drag reduction in flows containing 
particles and fibers. Although this effect is described as "damping" the turbu¬ 
lence, the intensities are observed to increase (Elata, Ippen (1961)). From the 
principle of Reynolds number similarity, we know that a simple change in the 
mechanism of dissipation, so long as the flow remained turbulent, would be un¬ 
likely to change the turbulent structure, since this is determined by inertia. 
There is a known interaction of suspended particles with the viscous sublayer, 
which will be described below, but if the observed drag reduction does not arise 
from this source, then it seems likely that it is due to a violation of Reynolds 
number similarity by the introduction of other length and time scales. Depend¬ 
ing on the ratios of these scales to others in the flow, this may also be regarded 
as a violation of the law of the wall, of course, since particles having relatively 
small length or time scales may leave the outer part of the flow unaffected, be¬ 
ginning to exert an influence only as the scales of the energy containing eddies 
shrink to corresponding size as the wall is approached. Length scales may be 
introduced in a very direct way by long fibers, while velocity scales may be in¬ 
troduced by the settling velocity (in a gravitational field), and time scales by the 
characteristic time of the particles (the response time to a step function in rela¬ 
tive velocity). The mechanism associated with this latter may be similar to 
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viscoelasticity, since a particle of long characteristic time in a flow of short 
time scale will tend to remain motionless as the flow sloshes past it. Thus an 
unsteady fluid motion will be more dissipative than a steady one, as in a visco¬ 
elastic fluid having an effective viscosity increasing with the frequency of a 
temporally sinusoidal simple shear. : The particles will tend to store energy 
associated with steady, organized motions (steady from a Lagrangian viewpoint) 
and to oppose unsteady motion. This was probably first mentioned by Saffman 
(1902). See also Hino (1963). 

The presence of particles, or colloidal suspensions, can of course, be even 
more effective if the suspended material tends to combine with itself to form 
elastic structures capable of resisting small shear. This is possible with 
Bentonite, and may explain observations in flocculated thoria (Eissenberg and 
Bogue (1963)) and in flows of fine aqueous suspensions of wax-laden oil droplets. 
The suspended material then behaves somewhat as a Bingham-Plastic and need 
not depend on a long time constant to make unsteady motions of the fluid more 
dissipative than steady ones at low shear. 

Changing the Sublayer 

Finally, we may change the boundary layer by changing R. The effect of a 
small change in R at constant Ux is given by 

obtained by differentiating the expression for drag, assuming self-preservation, 
negligible laminar length, and indefinitely large Reynolds number. At the value 
of R associated with the normal turbulent boundary layer, this is negative, and 
of the order of one half. 

R may be changed in a number of ways. If a viscoelastic medium is used, 
the effective viscosity of which in a temporally sinusoidal simple shear increases 
with frequency, we may expect that a disturbance which is unsteady (from the 
Lagrangian viewpoint) will be more dissipative than would be indicated by the 
viscosity at the steady shear rate. Since R (based on the steady state viscosity) 
is determined by that thickness below w'hich all disturbances must import energy, 
we may expect R to be increased. In a similar way, particles may be intro¬ 
duced in the sublayer. If their time scale is large they also will make unsteady 
motions more dissipative and thus increase R. If they can form elastic struc¬ 
tures, like flocculated thoria, (Eissenberg & Bogue (1963)), the effect is even 
more pronounced. If the time and length scales are such that the energy con¬ 
taining eddies in the turbulent flow outside the sublayer are unaffected, then the 
familiar "law of the wall" will remain, K will be unaffected, but the logarithmic 
part of the profile will be displaced upward. This effect is illustrated by Fig. 5, 
the mean velocity profile in a flow containing a low concentration of flocculated 
thoria, reproduced from Eissenberg and Bogue (1963). 

‘•'But real viscoelastic media appear to display the opposite behavior. 
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Fig. 5 - Velocity profile in the wall layer in flow of 
flocculated thoria, from Eissenberg and Bogue ( 1 963). 
Nondimensionalization by shear velocity with small 
empirical correction c. Solid line is Newtonian pro¬ 
file. 

Another method of changing R, suggested by G. F. Wislicenus (private com¬ 
munication) is to change the boundary condition, by making the surface flexible. 
Again, the action of such a surface depends in a detailed way on changing the 
phase relationships, and thus the Reynolds stress. To make this distinct from 
the violation of the law of the wall mentioned ribcve, we must have the wave 
speed in the wall well above the free-stream speed. A detailed analysis based 
on energy considerations (Lumley and McMahon (1964)) shows that the situation 
is rather complicated, due to the fact that, although over a rigid wall no small 
disturbance can extract energy from a linear profile fast enough to maintain it¬ 
self, while some large ones can, this is no longer true over certain flexible 
walls. Thus, while the wall changes the energy budget of large disturbances, it 
also provides a mechanism* by which small oisturbances can extract energy. In 
Fig. 6 are shown the phase relationships calculated for small disturbances. It 
can be seen that, for this wall material, there is always a wave whose speed is 
such that it can extract energy. Evidently only a wall which is prevented from 
moving laterally is worth examining. 

Conclusions 

This outline has surely not exhausted the possibilities of changing (or elim¬ 
inating) momentum transport in a turbulent boundary layer. lor example, we 
have not discussed the possibility of influencing transition by oscillations of the 

'-Similar to Rayleigh wave propagation in the wall —the class B waves of Benjamin 
(1963). 
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surface (Miller) & Fejer (1964)).* Detailed, qualitative experimental data on any 
technique is relatively sparse, as sparse, say, as equally detailed theory. Prob¬ 
ably most is known about and greatest success has been achieved with suction 
through slots and the Toms phenomenon. The mechanism of the former is clear, 
though the mechanism of the latter is far from being so. If another speculation 
may be added to a growing list, it seems quite possible that we may learn more 
about the ordinary turbulent boundary layer by examining the effects of various 
changes; it is at least clear that there are interesting areas here for investiga¬ 
tion. 

haw w< discussed blowing, and other means 
turbulent boundary layer, since il does not seem 
the work doin' to thicken the layer. 

of artifically thickening the 
obvious that one can recover 
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* * * 

DISCUSSION 

S. K. F. Karlsson 
Brown University 

Providence, Rhode Island 

The following comments refer to the effects on a fluid flow by a non- 
Newtonian additive, which have been discussed to some extent by Professor 
Lumley and which appear to offer possibilities for considerable reduction in 
skin friction in turbulent boundary layers. 

For a visco-inelastic, shear thinning (Reiner-Rivlin) fluid, Lumley con¬ 
cluded (Phys. Fluids, Vol. 7, No. 3, March 1964) that turbulent transport effects 
in an existing turbul it flow would be no different from that in Newtonian fluids. 
However, it seems that this does not exclude the possibility that even in such a 
simple non-Newtonian fluid the development of instabilities both in the laminar 
and turbulent boundary layers may well be substantially altered, resulting in 
considerable changes of the overall boundary layer skin friction. 

We have started some laminar stability experiments with such a non- 
Newtonian fluid in rotating Couette motion at Brown University recently, and 
although cur geometry is different from that of the boundary layer, the results 
may still be of some interest here. Our fluid is a suspension of Milling Yellow, 
a dye stuff, in distilled water. Peebles and co-workers at the University of 
Tennessee have studied its properties extensively (e.g., A. E. Hirsch and F. N. 
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Peebles, The Flow of a Non-Newtonian Fluid in a Diverging Duct, experimental; 
Department of Engineering Mechanics Report, August 1964, University of Tennes¬ 
see, Knoxville, Tennessee) and they found it to be a shear-thinning, visco-inelastic 
fluid. 

Figure 1 shows the viscosity variation with shear rate of a particular sample 
of Milling Yellow as computed from data obtained with a capillary viscometer. 
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Fig. 1 - Rheological data for milling yellow: 
1.0()8¾ concentration 

The stability experiment performed is the well-known Taylor experiment in 
which one studies the motion of the fluid in the gap between two concentric cylin¬ 
ders rotating at different speeds. In our experiment the outer cylinder is sta¬ 
tionary and only the inner one rotates. Because of the shear rate dependence of 
the viscosity the tangential velocity profile in the gap is different from that of a 
Newtonian fluid. Figure 2 shows a comparison between the two for identical 
boundary conditions at the inner (R = 3.14 cm) and the outer cylinder (R = 3.49) 
obtained by computation using the experimentally determined viscosity. 
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Fig. I - Velocity profiles 

In our experiments we have made use of the fact that Milling Yellow sus¬ 
pensions are doubly refractive when subjected to a shearing motion. Thus, the 
flow field has been observed using standard birefringence techniques. 

So far we have measured three different quantities as functions of concen¬ 
tration of the additive: 

1. "critical" or "neutral stability" speed for the primary (Couette) motion, 
i.e., the rotation rate at which Taylor cells first appear; 

2. the rotation rate when the Taylor cells first become unstable. This in¬ 
stability consists of a sinusoidal deformation of the cells, making the 
heretofore steady flow time dependent; 

3. cell width of the primary cells, thus obtaining the wave number of the 
perturbation that is most unstable. 

The results from these measurements appear in Figs. 3, 4 and 5. The crit 
ical velocity is given in terms of the Taylor number which is the significant non 
dimensional quantity for this problem: 
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where 

• — and d R, K , . 
R j 

In computing T we have used the value of viscosity, , which corresponds to the 
average shear stress in the gap. With this, somewhat arbitrary, choice of the 
viscosity the primary motion of the non-Newtonian fluid appears less stable 
than its Newtonian counterpart. (Fig. 3.) 
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With respect to the second time dependent mode of instability, however, the 
non-Newtonian fluid is relatively more stable as can be seen in Fig. 4, showing 
the ratio between rotation rates for the appearance of the secondary and primary 
(Taylor) instabilities. Thus we have the seemingly somewhat contradictory re¬ 
sult that the primary motion is less stable in the non-Newtonian fluid, whereas 
once the instability has occurred the resulting motion is relatively more stable, 
when compared to a Newtonian fluid. 

Finally, Fig. 5 shows the variation with concentration of the Taylor cell 
width, normalized with the gap width between the cylinders. This plot is 
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particularly interesting because it does not depend on our choice of viscosity. It 
exhibits a distinct and consistent variation of this parameter with concentration. 

Hence it is clear that the non-Newtonian character of this fluid has a direct 
effect on the stability of its motion. Possibly this effect is a result of shear- 
induced normal stresses or anisotropy in the relation between stress and rate 
of strain, which is implied by the fact that the fluid is biréfringent under shear. 

* * * 

DISCUSSION 

A BASIC THEORY THAT COULD EXPLAIN DRAG REDUCTION 

IN A FLOW CARRYING ADDITIVES 

A. Cemal Bringen 
Purdue University 
Lafayette, Indiana 

Lumley [1], Hoyt and Fabula [2], and Vogel and Patterson [3] gave excellent 
experimental demonstrations of the phenomena of drag reduction by minute 
amount of additives to fluid surrounding a moving object. We do not possess as 
yet a theory explaining this phenomena. Classical Stokesian fluids do not contain 
a mechanism which could provide the desired mathematical treatment. In fact, 
I do not believe that even the modern theories of visco-elastic fluids [4] can 
throw light into this phenomena. Quite by accident, a new theory, "Simple Micro¬ 
fluids," introduced by Bringen [5], in a different context, seems to have just the 
proper mechanism for this purpose. 

The theory of simple micro-fluids requires that we determine nineteen un¬ 
knowns , ij - imk , :w and vk by solving nineteen partial differential equa¬ 
tions given in [5] subject to appropriate boundary and initial conditions. Here 

» 1 km > ki and vk are respectively the mass density, the micro-inertia, the 
gyration tensor and the velocity vector. The micro-inertia ikni provides a 
mechanism for the inertial anisotropy. Roughly speaking, it is similar to the 
inertia tensor of rigid dynamics. The gyration tensor provides a mechanism for 
the local micromotions and small vortices. 

The present theory is shown [5], [6] to contain the celebrated Navier-Stokes 
Theory of fluid dynamics and the theory of anisotropic fluids. A theory of tur¬ 
bulence based on this theory is as yet lacking. 

Some sample calculations made are indicative of the above mentioned drag 
reductions. However, presently this work is too naive for publication and the 
possible application of the theory of simple micro-fluids to the problem of drag 
reduction by additives is brought to your attention as a conjecture. 

S 
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* * * 

DISCUSSION 

Alan Kistler 
Yale University 

New Haven, Connecticut 

Professor Lumley has given an apt summary of the various proposals for 
reducing the skin friction on objects moving through a liquid. Since the motiva¬ 
tion for studying these methods is to find a way to reduce the total drag of an 
object, a few words about the rest of the drag problem for a submerged object 
might be appropriate. The neglected component (pressure drag) is associated 
with separation of the boundary layer. A technique that either increases or de¬ 
creases the friction drag could have the opposite effect on the pressure drag. 
The change of sphere drag with transition is the best known example. All of the 
suggestions for affecting the friction could affect the separation either by chang¬ 
ing the rate of momentum transport across the free shear layer or by changing 
the location of the separation point. Sufficiently detailed measurements of the 
pressure distribution about realistic shapes should be taken in order to evaluate 
and understand what is occurring when a particular drag reduction technique is 
being tested. 

Aeronautical experience has shown that most drag reduction schemes that 
depend on the delay of transition, with the possible exception of boundary layer 
suction, do not work well outside of the wind tunnel. Surface roughness, wake 
interaction, and cross flow all work against laminar flow. For this reason, it 
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appears likely that the techniques that change the structure of the turbulent 
boundary layer offer the most promise. The limits of what can be done with 
these techniques have still to be determined, however. 

* * * 

REPLY TO THE DISCUSSION 

J. L. Lumley 
The Pennsylvania State University 

University Park, Pennsylvania 

I wish to thank Professors Karlsson, Kistler and Eringen for their helpful 
comments. I feel that in particular the preliminary data presented by Karlsson 
indicates the caution with which one must use one's intuition in this very difficult 
problem. The contribution by Eringen will be somewhat more difficult to assess 
until turbulence dynamics have been worked out using the constitutive relations 
he suggests. Since the turbulence dynamics of non-Newtonian media in general 
are not understood, it is difficult to say whether constitutive relations fitting 
within the framework of the simple fluid of Noll " are adequate, or whether a 
locally orientable medium such as that proposed is required. The comments of 
Kistler seem particularly germane to the paper of Vogel and Patterson and sug¬ 
gest caution in the interpretation of their measurements in the near wake. 

* * * 

-Noll. \\\, Archiv. Rat. Mech. Anal. 1, (1958), 197. 

•S 
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THE EFFECT OF 

ADDITIVES ON FLUID FRICTION 

J. W. Hoyt and A. G. Fabula 
U. S. Naval Ordnance Test Station 

Pasadena, California 

INTRODUCTION 

It is now well established that very small concentrations of many natural 
and synthetic high-polymer substances have the property of reducing the turbu¬ 
lent friction drag of the liquid in which they aie suspended or dissolved. Be¬ 
cause of the many immediate possible applications of such an effect, current 
interest is high. 

The earliest published data showing turbulent-flow friction reductions in 
dilute polymer solutions appear to be those of B. A. Toms [1] who studied poly¬ 
methylmethacrylate in chlorobenzene. Flow of "thickened gasoline" was the 
subject of a U.S. Patent in 1949 [2]. Work with aqueous solutions of polymers 
was reported simultaneously by Shaver & Merrill [3] and Dodge & Metzner [4] 
both of whom used sodium carboxymethylcellulose as the friction-reducing ma¬ 
terial. The technique has found commercial use in oil-field applications [5, 6]. 

Because the earlier workers in the field attributed the friction-reduction 
phenomenon to "non-Newtonian" fluid properties, the term has become synony¬ 
mous with the effect. However, one purpose of this paper is to show that the 
turbulent-friction reduction effect can be observed (indeed, becomes most 
prominent) at polymer concentrations at which the solutions are Newtonian by 
conventional viscometry. Further, it will be shown that polymer additives can 
be effective in reducing the turbulent friction in concentrations of as little as a 
few weight parts per million (wppm). 

Although the exact mechanism of the effect is not shown, general rules as 
to the type of material likely to be effective can be developed, and predictions 
can be made of the maximum polymer effectiveness in several simple flow situ¬ 
ations. It is believed that the generalizations formulated here apply to all sol¬ 
vent fluids, but the experimental work has concentrated on aqueous solutions. 

EXPERIMENTS WITH ROTATING DISKS 

Simply because the apparatus happened to be on hand, early work in Pasa¬ 
dena was performed on a large-scale rotating disk facility. This equipment 
(Fig. 1) consists of a 3785 liter water tank in which a 45.7 cm diameter risk is 
rotated by a d-c electric motor at such a speed that turbulent flow extends over 
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a major portion of the disk. Disk speed and torque are measured using various 
concentrations of polymer additives in the tank. It can be reasoned that most of 
the torque is developed near the outer disk edge, so that torque reduction is es¬ 
sentially equivalent to friction reduction. Thus these terms are used inter¬ 
changeably hereafter. 

An example of the type of data obtained using this apparatus is given in Fig. 
2. The polymer additive used here is guar gum, the refined endosperm of Cyam- 
opsis tetragonolobus, a plant grown commercially in India, Pakistan, and the- 
United States for food and industrial purposes.1 At constant rotative speed, ad¬ 
dition of the polymer produces immediate lowering of the torque until at concen¬ 
trations of 300 -400 wppm the torque has been reduced to between 30 and 40 per¬ 
cent of its pure water value. As the concentration is further increased, the 
torque is increased somewhat, which can be attributed to the increased viscosity 
of the solution. 

Much more striking results can be obtained using the synthetic polymer 
polyethylene oxide) which is commercially available in four different molecular 
weight distributions.2 Figure 3 shows data taken with the 45.7 cm diameter disk 
at 40 rev/sec for the four molecular weights of the same chemical. As molecu¬ 
lar weight is increased, the material becomes more effective, and Fig. 3 shows 
that 70% torque or friction reduction may be obtained with less than 100 wppm 
of additive, using the highest molecular weight material. 

Similar tests have been made using a wide variety of natural and synthetic 
polymers, with the results shown on Table I, where the weight parts per million 
to achieve a friction reduction of 35% (half way between no effect and the maxi¬ 
mum of about 70% observed on this facility at 40 rev/sec) are listed together 
with the molecular weight of the polymer. 

From the table, it appears that at least three significant parameters affect 
the ability of a polymer to lower the turbulent frictional resistance of the fluid 
in which it is dissolved: linearity, molecular weight, and solubility. 

Linearity 

The striking thing about the most effective polymers is that they are "long- 
chain" materials having an essentially unbranched structure. The chemical for¬ 
mulas of guar and polyethylene oxide) (Fig. 4) indicate this characteristic, and 
a photograph of a model of a segment of the poly(ethylene oxide) molecule fur¬ 
ther illustrates the thread-like appearance of the material. 

While the exact configuration of these molecules in solution is poorly under¬ 
stood, calculations indicate approximate length-to-diameter ratios of from 350 
to 500 for guar, and from 22,000 to 165,000 for polyethylene oxide) of 6 million 
molecular weight depending on the helix model, selected, if we ignore, for the 

l 

¿ 

The guar gum used in these experiments was "Westco J-Z FP" supplied bv the 
Western Company, Research Division, 1171 Empire Central, Dallas, Texas. 
Supplied by Union Carbide Corp., ¿70 Park Ave., New York, New York. 
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Table 1 
Comparative Friction-Reduction Effectiveness of Water-Soluble 

Polymer Additives Measured With the Rotating-Disk Facility 

Additive C a 
'•'R 

M X IQ ■6 b Notable Characteristics 

Guar gum, w, s (J-2FP)C 

Locust bean gum, m 

Carrageenan or Irish 
moss, M (Stamere NK) 

Gum Karaya, m 

Gum Arabic, b 

Amylose, s (Superlose) 

Amylopectin, s 
(Ramalin G) 

Hydroxyethyl cellulose, u 
(Cellosize QP-15000) 
(Cellosize QP-30000) 
(Cellosize QP-50000) 

Sodium Carboxymethyl- 
cellulose, h (CMC 
7HSP) 

Poly(ethylene oxide), u 
(Polyox WSR-35) 
(Polyox WSR-205) 
(Polyox WSR-301) 
(Polyox Coagulant) 

Polyacrylamide, d 
(Separan NP10) 
(Separan NP20) 
(Separan AP 30) 

Polyhall-27, s 

60 

260 
(260)d 

650 
(420) 

780 

Ineff. 

Ineff. 

Ineff. 

220 
220 
160 

400 

70 
44 
17 
12 

26 
25 
29 

130 

0.2 

0.31 

0.1 - 0.8 

9.5 

0.24 - 1 

>0.15 

1.2 

0.2 - 0.7 

0.2 
0.6 

4 
>5 

1 
2 

2-3 

Straight chain molecule will 
single-membered side 
branches 

Similar to guar but with 
fewer side branches, caus¬ 
ing reduced solubility and 
less hydrogen bonding 

Strongly charged anionic 
polyelectrolyte 

Highly branched molecule; 
relatively insoluble; acidic 

Highly branched molecule 

Linear chain molecule; ret¬ 
rogrades rapidly 

Highly branched molecule 

Nonionic; formed by addition 
of ethylene oxide to cellu¬ 
lose; has side branches of 
various lengths 

Very water soluble; no bio¬ 
logical oxygen demand; ap¬ 
parently an unbranched 
molecule with unusual af¬ 
finity for water 

Nonionic 
Nonionic 
Anionic 
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Table i. ^cuauiiLeu; 

Additive CR a Mx io~6 b Notable Characteristics 

Polyvinylpyrrolidone, f 
(K30) 
(K90) 

Polyvinyl alcohol, e 
(Elvanol 51-05) 
(Elvanol 72-60) 

Silicone, u (L-531) 

Polyacrylic acid, g 
(Goodrite 773x020 B-3) 
(Goodrite K-702) 
(Goodrite K-714) 

Carboxy vinyl polymer, g 
(Carbopol (941) 

Ineff. 0.04 
2900 0.36 

Ineff. 0.032 
Ineff. 0.17 - 0.22 

Ineff. 

Ineff. 0.006 
Ineff. 0.090 
Ineff. 0.2 - 0.25 

Ineff. Inconclusive test due to pre¬ 
cipitation upon dilution 

áCK - concentration required (in weight parts per million) for 35% disk-torque 
^reduction at 40 rev/sec with lake water as the solvent. * 

M - approximate molecular weight of the polymer according to the literature. 
The source of each polymer for this work is indicated by the letter after its 
name: b = Braun Div., Van Waters and Rogers, Inc.; d = Dow Chemical Co.; 
e = E. I. Dupont; f = General Aniline and Film Corp.; g = B. F. Goodrich Chem¬ 
ical Co.; h - Hercules Powder Co.; m = Meer Corp.; s = Stein, Hall and Co.; 

çj'-* “ Union Carbide Chemicals Co.; w - Westco Research. 
CR values in parenthesis are for solutions given heat treatment to increase 
polymer solubility. 

moment, the molecular chain flexibility which will produce a Gaussian-coil con 
figuration for such long molecules. Thus the linearity of the molecule appears 
to play an important role in the drag-reducing effect. 

Molecular Weigh 

Accompanying the linearity is a corresponding increase in molecular weight 
However, from the experiments with Gum Karaya (Table 1) it appears that high 
molecular weight in itself is not as effective as the linearity. The poly(ethylene 
oxide) is some 65 times more effective than the heavier Gum Karaya molecule 
on a weight basis. ' 

The effect of molecular weight (or linearity) can be demonstrated by replot¬ 
ting the disk data of Fig. 3 taken at a constant rotative speed of 40 rev/sec for 
poly (ethylene oxide) to give the logarithmic presentation of Fig. 5. In addition 
to showing the dependence of friction-reduction on molecular weight, Fig. 5 also 
indicates that substantial increases in molecular weight (degree of polymerization) 
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would be required to achieve better friction-reduction performance by, say, an 
order of magnitude, with this particular chemical. Such unusually large macro¬ 
molecules would suggest the possibility of finite particles also producing the 
friction reduction effect. Experiments with wood-pulp [7j show that this is in¬ 
deed the case, but friction reductions were much lower than those reported 
here. This is possibly because of the third requirement for maximum effec¬ 
tiveness, solubility. 

Solubility 

Referring again to Table 1, tests with Carrageenan indicate the greater the 
solubility the more the friction reduction effect. Further, molecules which 
otherwise would be expected to be effective, such as Amylose, do not show up 
well, probably because of poor solubility. 

FURTHER WORK WITH ROTATING DISKS 

Because the large-scale rotating disk apparatus described in the previous 
section required large amounts of experimental solutions, a smaller apparatus 
was developed consisting of a 7.6 cm diameter disk rotating in two liters of so¬ 
lution. Figure 6 shows experimental data obtained with this equipment using 
guar gum. The maximum torque reduction obtained was on the order of 40%. 
Similar data are shown in Fig. 7 for solutions of polyethylene oxide). The 
values of the torque reduction which were obtained on this apparatus as com¬ 
pared with the large-scale equipment, together with the variation of torque re¬ 
duction with rotative speed, suggest plotting these data as a function of Reynolds 
number. 

Such a comparison is shown in Fig. 8 where data from the 7.6 cm, the 45.7 
cm, and also a 76.2 cm disk are shown. The resultant envelope of maximum 
torque reduction obtained in this way seems surprisingly similar for many poly¬ 
mers, that is, the same maximum torque reduction at any given Reynolds num¬ 
ber can be obtained with any of the "effective" polymers, with only the concen¬ 
tration required to obtain this reduction varying from polymer to polymer. The 
Reynolds number used in this plot is based on water viscosity without consider¬ 
ing any viscosity increase due to the polymer. As some typical data for the 
maximum torque reduction curve of Fig. 8, Table 2 gives concentrations of var¬ 
ious materials required to attain 70% reduction at a Reynolds number of 1.3 
million with the 45.7 cm disk facility. 

Effect of Sea Water 

The work presented so far has been based entirely on tap water or water 
drawn directly from a fresh water lake. Additional tests were made with the 
45.7 cm rotating disk to show the effect of sea water on the performance of 
polymer additives. As shown in Fig. 9, friction reduction data taken in simu¬ 
lated sea water agree closely with those obtained on fresh water for guar. The 
tests shown are at three different temperatures, ranging from 13°C to 27 C. 
Polyethylene oxide) is even less affected by presence of sea water salts. 
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Table 2 
Concentrations (wppm) to Achieve 70% Torque 

Reduction at a Rotating Disk Re = 1,300,000 

Guar gum (J-2FP) 500 

Locust bean gum 1700 

Gum Karaya 2700 

Polyhall-27 850 

Polyox-WSR 205 250 

Separan AP 30 100 

(The source and molecular weight of the above 
materials is given in Table 1) 

Rheological Studies 

Since high concentrations (above 1000 wppm) of these polymers are known 
to be shear-thinning, early explanations of the friction reduction were based on 
the "non-Newtonian" (i.e., variable) viscosity with rate of shear. Considerable 
effort was thus placed upon the rheology of these substances and how their 
shear-thinning behavior could explain drag reduction. 

It was quickly realized, when rheograms were available, that at the concen¬ 
trations where maximum friction reductions were obtained, these solutions were 
not "non-Newtonian," but of essentially constant viscosity, greater than that of 
the solvent. It was only at higher concentrations that departures from constant 
viscosity were evident. For example, Fig. 10 shows a rheogram for guar, and 
Fig. 11 for poly(ethylene oxide) of 4 million molecular weight.3 At the concen¬ 
trations of most interest (under 500 wppm for guar and under 100 wppm for 
polyethylene oxide) it is difficult, from these data, to ascribe a variable vis¬ 
cosity with shear to these solutions. The constant viscosity extends to very low 
shear as shown in Fig. 12.4 Thus the term "non-Newtonian" is inappropriate 
for these fluids, unless one allows the possibility that non-steady measurements 
will show that these solutions display shear rigidities at high frequencies which 
ideal ’Newtonian" fluids would not. J. L. Lumley [8] has recently argued that 
friction reductions should not be expected from the purely viscous, non-Newtonian 
class of fluids. Since many of the effective additives produce highly viscoelastic 
solutions in higher concentrations, it is possible that the drag reduction phenom¬ 
enon is related to viscoelasticity. However, viscoelastic solutions are not nec¬ 
essarily effective drag reducers: e.g., Carbopol (Table 1). 

3These data were obtained under U. S. Navy contract by the Western Company, 
^Research Division, using Fann and Burrel-Severs viscometers. 

These data were obtained by J. M. Caraher of the Naval Ordnance Test Station, 
using a new type, helical-coil viscometer of his design. 
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Furthermore, additional experiments have shown that the effect is not en¬ 
hanced by increasing the viscosity of solution of guar by "complexing" with so¬ 
dium borate [9j. Increasing the viscosity in this way resulted in lowering the 
drag-reduction effect based upon the weight of guar in solution. In a typical test 
the viscosity was increased by a factor of 22 over the guar solution alone, by 
addition of sodium borate, and the drag reduction than obtained was only 70% of 
that which would have occurred using guar only. 

However the friction reduction is produced, it seems clear that the action 
involved is suppression of turbulence intensity. Figure 13 shows test data from 
the 45.7 cm diameter disk for guar, correlated with disk Reynolds numbers 
based on water. At concentrations of guar up to 311 wppm, the slopes of the test 
curves are roughly parallel to, but lower than the turbulent flow water data. For 
621 wppm and above, the slopes are roughly parallel to, but higher than, the 
laminar water flow case. From Fig. 10 it can be seen that no significant changes 
in Fig. 13 would result from use of Reynolds numbers based on the measured 
viscosities of the solutions for under 500 wppm. 

PIPE FLOW EXPERIMENTS 

The friction reducing effect of polymer solutions can be easily studied by 
measuring the pressure drop occurring in a given length of pipe in which the 
polymer solution flows. Many experimental facilities of this type have been 
constructed, and in general they are similar to that shown schematically in Fig. 
14, except for the use of air-pressure pumping to minimize degradation of test 
solutions [10 j. Pre-mixed polymer solution contained in tanks is forced through 
the pipe test section where the static-pressure gradient is measured. Flow 
rates can be determined by weighing the amount of polymer solution discharged 
in a given time. Discharged solution is discarded to minimize bias due to shear 
degradation which occurs very rapidly for many of the solutions. By compari¬ 
son of similar data taken using pure water as the flowing medium, drag reduc¬ 
tion may be calculated. 

Typical data using polyethylene oxide) of 4 million molecular weight are 
shown in Fig. 15. Drag reduction of well over 75% is easily obtained. Similar 
data using the same polymer in sea water, but in a different apparatus,5 are 
given in Fig. 16. 

Another pipe flow apparatus, which is essentially a turbulent flow rheome¬ 
ter, has recently been constructed according to the sketch of Fig. 17. The pis¬ 
ton of the cylinder is moved upward at 1.245 cm per second, forcing fluid through 
the small diameter pipe. The entire apparatus is mounted vertically to allow 
entrapped air to escape. 

Some representative data from this instrument, taken at a constant flow ve¬ 
locity of 12.65 meters/sec (Reynolds number based upon water at 21.1°C of ap¬ 
proximately 14,000) are given in Fig. 18. 

“’Data taken by the Western Co. under U. S. Navy contract. 
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Reynolds Number Correlation 

Data irom polyethylene oxide) of 4 million molecular weight has been cor¬ 
related on a pipe flow Reynolds number basis using the viscosity of pure water. 
At a concentration oí 100 wppm, drag reduction reaches a maximum of 78- 79% 
at a Reynolds number oí about 10.5 At a lower concentration (30 wppm) the ef¬ 
fect falls off at higher Reynolds numbers. A possible explanation for the fall-off 
is rapid shear degradation of the polymer at the higher flow velocities. 

The envelope of maximum drag reduction shown on Fig. 19 is the maximum 
effect obtained for any polymer in pipe flow as a function of Reynolds number. 
Thus it is an empirical relationship for pipe flow corresponding to that given for 
rotating disks in Fig. 8. These pipe flow data are consistent in general with 
those reported in Ref. 11. 

^o further demonstrate the validity of Fig. 8, Table 3 gives some concentra- 
tic is of materials required to attain the maximum drag reduction of 67% at a 
pipe flow Reynolds number of 14,000. 

Table 3 
Concentrations (wppm) of Material Required to 
Achieve 67% Drag Reduction in Pipe Flow at 

Re = 14,000 

Guar (J-2FP) 

Colloid HV-6* (refined Guar) 

Polyox WSR-301 

Colloid HV-2* (refined Guar) 

400 

375 

30 

500 

-■‘Source of polymer: Stein, Hall and Co. 
Source of other materials listed in Table 1. 

OTHER EXPERIMENTS 

The drag reduction phenomena has been suggested [12] as a possible expla¬ 
nation of certain erratic fluctuations of measured resistance in some towing 
tanks.0 Frictional drag measurements on the same model in the same towing 
tank are known to be subject in some tanks to considerable variation, always 
down from the "standard," and as much as 14%, with no other complete explana¬ 
tion than a "change in resistance characteristics of the water." Since it is 
known that many algae and marine organisms secrete mucous or slime, it is 
conceivable that these may act in the same manner as the compounds studied 
above. 

5Data taken by the Western Co. under U. S. Navy contract. 
6 It appears that these fluctuations are reduced in tanks where the water is 
chemically purified. 
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The experiments shown in Table 4 were not intended to be rigorous, or even 
very quantitative, but simply tests to show the possibility that organic materials 
similar to those which might be present in towing tanks or other hydrodynamic 
facilities would affect the measured drag. 

Table 4 
Drag Reduction of Living Materials 

Material 

Algae from fresh water 
aquarium (principally 
Ankistodesmus falcatus) 

Same with green cells 
centrifuged out 

Green cells resuspended 
in tap water 

Bacteria-free culture of 
sea diatom Chaetoceros 

Same concentrated to 
1/6 volume 

Slime from sea snail in 
sea water 

Same concentrated to 
1/3 volume 

Scraped slime from sea 
fish in sea water 

Same concentrated to 
1/6 volume 

Observed 
Drag Reduction 

3.37^ 

3.38% 

0.45% 

1.5% 

14.5% 

9.1% 

12.0% 

1.5% 

14.5% 

Apparatus 

7.6 cm disk 

7.6 cm disk 

7.6 cm disk 

.109 cm pipe 

.109 cm pipe 

.109 cm pipe 

. 109 cm pipe 

.109 cm pipe 

.109 cm pipe 

The experiments shown in Table 4 were not intended to be rigorous, or even 
very quantitative, but simply tests to show the possibility that organic materials 
similar to those which might be present in towing tanks or other hydrodynamic 
facilities would affect the measured drag. 

From Table 4 it is seen that sizeable redactions in drag can be obtained 
from a variety of natural substances. While concentrations required for signifi¬ 
cant effect were high enough that the contamination was apparent in these tests, 
it is conceivable that other, more effective natural contaminants may occur 
which approach the synthetic polymers in effectiveness at very low concentra¬ 
tions. The search for such contaminants in tank water at the time of such a 
drag reduction excursion must be directed at concentrations of a few parts per 
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million, since 40% friction reduction or more for 2 wppm of high molecular 
weight polymer is demonstrated in Fig. 15. 

It is interesting to speculate on the idea that some marine animals might 
have evolved the release of friction reducing agents into their boundary layer. 
This appears to be a possible area for further research. 

APPLICATIONS 

The only known present application of these materials as friction-reducing 
agents is in oil-field pumping operations. However, the attractive power reduc¬ 
tions which seem attainable should promote extensive interest in the further use 
of these polymers. 

In considering applications, however, careful thought must be given to prac¬ 
tical matters such as surface roughness, mechanical polymer degradation, and 
economic feasibility. 

Surface Roughness 

A preliminary check on the effect of roughness was made with the large- 
scale rotating disk facility. The data shown in Figs. 2, 3, and 5, and Table 1 
were obtained with a smooth, polished disk. Another disk with about 100 micro¬ 
inch rms machine-turned roughness was also tested, but showed no change in 
torque required for either water or guar solutions. A rough surface was then 
produced by means of wrinkle-finish paint. In water tests, the torque for a 
given speed was increased about 35% due to the roughness. Figure 20 shows 
that two or three times the concentration of guar gum was required to achieve a 
given torque reduction with the rough disk. Also, effects of rotative speed ap¬ 
pear at low guar concentrations in contrast to the smooth disk data. Neverthe¬ 
less it seems clear that the additive can be effective on practical structures. 

Mechanical Degradation 

The polymer molecules are subject to mechanical degradation as the friction- 
reduction process continues. For example, concentrations of 15 wppm oí poly 
(ethylene oxide) of 4 million molecular weight were repeatedly tested in the large 
disk apparatus, with the results shown on Fig. 21. Each test was about 15 sec¬ 
onds in duration, repeated at intervals of 3 minutes or 10 minutes. Each test 
run with this polymer evidently contributed to the mechanical degradation. A 
similar test with guar gum did not show this effect, and this is the main reason 
for continued interest in this less effective, but apparently very sturdy polymer. 

Economic Feasibility 

The additive concentrations used in oil-field applications are about 1000 
wppm and up [6j. Such concentrations, if assumed across the full turbulent 
boundary layer thickness are out of the question for boundary-layer applications. 
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This difference in feasible concentrations is simply because the unit of additive 
in pipe flow is used over and over again, until the end of the pipe, while in a ve¬ 
hicle boundary layer, the unit of additive is effective only on a certain wetted 
surface area for a certain time, before it is discarded into the wake. 

This key difference can be seen more clearly by comparing fully estab¬ 
lished pipe flow and high Reynolds number flat-plate boundary-layer flow. A 
useful measure of performance is 

Additive Effectiveness (A.E.) _Power Saved 
Additive Weight Flow Rate 

With units Of hp - hr kfi. 

In the following it is assumed that speeds are kept fixed and that only pipe 
length and plate length are varied. 

For pipe flow, assume that an additive weight concentration per unit volume, 
C, produces a percent pressure-drop or friction reduction, R, for fully estab¬ 
lished turbulent Low in a pipe of diameter, D, for a throughput of Q with the 
mean flow velocity U 4Q -D2. The pumping power saved is RPo where Po is 
the power required for C - 0. Thus 

A.E. L> . RL 
CQ C 

const. 

where Po L is the pumping power per unit length for C = 0. Thus if polymer 
degradation is negligible, A.E. will increase indefinitely with L. 

For boundary-layer flow, one can assume for a first approximation that the 
local percent skin friction reduction will require about the same mean concen¬ 
tration across the turbulent boundary layer thickness, , as in pipe flow for 
5 D 2 and freestream speed Ux = u. The friction reduction factor, R, will be 
assumed to be determined by C as in the typical pipe flow results given earlier. 

Because the additive concentration in the turbulent boundary layer will be 
continually reduced by mixing as the boundary layer thickens, more additive will 
have to be injected at intervals along the plate length, or else the concentration 
will have to be very large near the leading edge. In either case, the total addi¬ 
tive supply rate per unit width will be C( - *) UT, where * is the boundary- 
layer displacement thickness. If ' o is the momentum thickness for C = 0, then 
the thrust power saved per unit width is 

R' o (■ 2)UX3 . 

Thus for a flat plate 

Additive Effectiveness R'qO _ 

" C(:- i*)UT 
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For high Reynolds numbers, reasonable approximations are 

■ - ò* = kS - kV 

where k and k' are constants as L is varied. Thus 

R „ 
A E. ~ —— X const. 

and since iVtf0 = 1. - R, 

Thus in boundary-layer applications the additive effectiveness is helped by 
the reduced boundary-layer throughput as R is increased, but the increase with 
L is lost. 

Since a concentration of a few wppm is 2 to 3 orders of magnitude smaller 
than used in the pipe-line applications, the newly discovered effectiveness at 
such concentration of the extremely high molecular weight, linear, soluble poly¬ 
mers now makes the situation more hopeful for boundary-layer applications. 
(Fortunately, for such applications, the extreme sensitivity of the same poly¬ 
mers to mechanical degradation may not be a major problem since the use-time 
of the polymer is short.) However, calculations indicate that even the increase 
in the factor 1 c by about 1000 still leaves the technique of reducing ship fric¬ 
tion by boundary-layer additives economically uncompetitive. 

Hence until additive costs can be brought considerably lower, this method 
of drag reduction appears to be reserved for applications where an emergency 
speed increase would be required. Of course, in an application where a large 
proportion of the total drag is frictional, such as a slow speed ship, the tech¬ 
nique may look economic. 

In any event, the applications of the rather basic experiments presented 
here are difficult to foresee. Certainly the possibilities of achieving substantial 
drag reductions with relatively small amounts of additive are attractive enough 
to warrant intensive further effort. 
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DISCUSSION 

H. Schwanecke 
Hamburg Model Basin 

Hamburg, Germany 

At Hamburg Model Basin experiments are performed concerning the effect 
of polymer solutions on the viscous drag of the model of a surface ship. Addi¬ 
tives of several molecular weights are used. The main problem is to distribute 
the polymer solutions all over the wetted surface as a film of sufficient concen¬ 
tration. May I ask Dr. Hoyt, if he has done any experiments in that way or if he 
knows about such experiments having been performed elsewhere? May I ask 
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Dr. Hoyt further, if there is any upper limit with respect to the molecular weight 
of the additives beyond which a film of a polymer solution is no longer obtained? 

* * * 

DISCUSSION 

Marshall P. Tulin 
Hydronantics, Incorporated 

Laurel, Maryland 

The authors are very much to be congratulated for their fine experimental 
studies. Their data should tend enormously toward a better understanding of 
the unexpected and puzzling effects which small concentrations of macro¬ 
molecules seem to have on turbulence. 

Our own experiments on a flat plate with leading edge injection confirm that 
a maximum drag reduction results when as little as 10 parts per million of 
Polyox WSR 301 is present in the boundary layer at the trailing edge. Unlike 
the flows in pipes and on rotating plates, however, a rather rapid decrease in 
effectiveness of the additive occurs when the concentration is increased only 
slightly beyond its optimum value. Perhaps this has to do with the special cir¬ 
cumstances which accompany injection of the fluid containing additive. 

We were curious whether macromolecules would affect "free" decaying 
turbulence as distinct from maintained turbulence in a shear flow in close prox¬ 
imity to a wall. Therefore we have studied the decay of a cylindrical cloud of 
turbulence. Rather, we have measured the diffusive spread of the cloud. These 
experiments show that additives do affect free turbulence and tend to increase 
the rate at which it decays. 

I have been doing some theory on the effect on turbulence of weak solutions 
of macromolecules. It seems to me that the shear stiffness of the resulting 
viscoelastic solution is the crucial characteristic and that the generation of 
elastic shear waves by turbulence offers a mechanism for significant "damping" 
of turbulent motions. Figure 5 contains very clear evidence that the elastic 
shear stiffness controls the turbulence damping effect; it may be shown using 
certain results of the molecular theory for weak polymer solutions that this 
stiffness is virtually constant on the lines of constant torque ratio in this Figure. 

* * * 
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REPLY TO THE DISCUSSION 

J. W. Hoyt and A. G. Fabula 
U. S. Naval Ordnance Test Station 

Pa sadena, Ca tifo rnia 

The authors would like to thank the several discussers for their comments 
regarding this interesting new field in fluid dynamics.* It is to be hoped that 
theoretical attacks on the mechanism of drag reduction through the use of high- 
polymer solutions will soon give the firm foundation needed for further advances 
in the application of the method. Perhaps the approaches of Prof. Bringen and 
Mr. Tulin will provide the keys to this understanding. With regard to Dr. Schwa¬ 
necke's questions, the only published data now available on the ejection of ad¬ 
ditives over a body seems to be the Vogel and Patterson paper in this Sympo¬ 
sium. Our experience with various molecular weight additives seems to indicate 
that the higher the better, if the molecule is also fairly linear. 

Fig. 1 - Large rotating-disk apparatus 

:'!Seu contribution by Er ingen to the paper by Lumley. 
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Fig. Z - Rotating-disk torque curves for guar additive 

Fig. 3 - Rotating disk-torque curves for 
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Fig. 4 - Chemical formulas of two effective additives 
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Fig. 5 - Dependence of required concentrations 
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Fig. 6 - 7.6 cm disk torque reduction vs 
guar gum concentration 
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Fig. 7-7.6 cm disk torque reduction vs 
poly(ethylene oxide) concentration 

Fig. 8 - Maximum torque reduction as a 
function of Reynolds number 
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Fig. 11 - Rheogram of poly(ethylene oxide) of 4 million 
molecular weight in water 
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Fig. 12 - Rheograin for polyethylene oxide) of 4 million 
molecular weight at low shear rates 
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Fig. 13 - Torque coefficient as a 
function of Reynolds number 

Fig. 14 - Schematic diagram of blowdown pipe apparatus 
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Fig. 15 - Drag reduction curves for poly(ethylene 
oxide in blowdown pipe apparatus 

Fig. lb - Friction reduction curves for poly(ethylene oxide) 
in pipe-flow apparatus 
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Fig. 17 - Turbulent-flow rheometer 
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í 

Fig. 18 - Turbulent-flow rheometer data 
for poly(ethylene oxide) 
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PIPE FLOW REYNOLDS NO. 

Fig. 19 - Reynolds number correlation 
for pipe flow 
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Fig. 20 - Effect of high surface roughness 
on the percent torque reduction with the 
45.7 cm diameter disk 
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AN EXPERIMENTAL INVESTIGATION 

OF THE EFFECT OF ADDITIVES 

INJECTED INTO THE BOUNDARY 

LAYER OF AN UNDERWATER BODY 

W. M. Vogel and A. M. Patterson 
Pacific Naval Laboratory 

Victoria, British Columbia, Canada 

ABSTRACT 

The effects of injecting solutions of three linear, high molecular weight 
polymers into the boundary layer of a three-dimensional streamlined 
model are being investigated. The following are the preliminary results 
of this experiment: 

(a) The drag of the body decreased with increasing molecular weight of 
the polymer. 

(b) The drag decreased as the concentration of the polymer solutions 
increased. At concentrations above 500 ppm for the highest molecular 
weight polymer used, the amount of drag reduction decreased. 

(c) For increased flow rates of the polymer solution, the drag reduc¬ 
tion increased. 

(d) The flow rate of the solution injected into the boundary layer, and 
not the injection flow velocity, was the controlling factor at the injec¬ 
tion velocities used. 

(e) Turbulence and average velocity measurements in the wake of the 
body indicated two effects when the polymer solution is injected: a 
change in the mean square of the turbulence velocities, and a change in 
the velocity profile. 

INTRODUCTION 

B. A. Toms (1949) pointed out that, in turbulent pipe flow, dilute solutions of 
linear polymers reduced the pressure drop along the pipe to a value below that 
of the solvent. Since then there has been a growing body of literature on the flow 
of polymer solutions which exhibit non-Newtonian characteristics. Experimen¬ 
tally, most of the studies have been concerned with the rheological characteris¬ 
tics of the fluid, or with pipe friction. The work by Shaver (1957) showed that in 
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some cases the addition of a long molecule polymer to a liquid resulted in higher 
friction losses at low flow rates and lower friction losses at high flow rates. 
This is analogous to the behaviour observed by Daily and Bugliarello (1961) in 
wood fibre suspensions in smooth pipes. Shaver and Merrill (1959) observed the 
velocity profiles of dilute polymer solutions in circular pipes and found that at 
high flow rates the profiles were sharper than for a corresponding Newtonian 
flow. This did not check with Dodge and Metzner's (1958) prediction of profiles 
blunter-than-Newtonian. This disagreement was attributed by Dodge and Metz- 
ner to the possible presence of elastic effects in the fluids used by Shaver and 
Merrill. 

Recently Fabula, Hoyt and Crawford (1963) investigated about twenty-five 
water-soluble polymers. They discovered that whenever the polymer had both a 
high molecular weight and a linear molecule, significant reduction in friction 
occurred in the high Reynolds number flows (Re > 10s). This phenomenon was 
first observed with a rotating-disc apparatus and later confirmed using a pipe 
flow apparatus. The very dilute solutions studied were often superficially indis¬ 
tinguishable from plain water, and their apparent viscosities for the high shear 
rates involved were nearly that of water. 

One of the polymers tested in the rotating disc apparatus, polyethylene 
oxide), gave about a 70% torque reduction for a .01% solution (Hoyt and Fabula 
1964). In the pipe flow apparatus, cases of 50% pipe friction reduction were 
found for very dilute solutions of poly(ethylene oxide) in water (Fabula, 1963). 
Because of these large changes in the turbulent flow produced by very low con¬ 
centrations of polyethylene oxide) in water, it was proposed to study the effect 
of these polymer solutions when they were injected into the boundary layer of an 
underwater body. 

EXPERIMENTAL APPARATUS 

There are a number of variables which should be considered when a fluid is 
injected into the boundary layer of a body. These are: 

1. Type of polymer solution 

2. Concentration of the polymer solution 

3. Velocity of injection of the solution 

4. Position of the injection slot 

5. Tunnel velocity 

A body of revolution (Fig. 1) was chosen as the most convenient to use for 
these exploratory experiments. Because our low-turbulence water tunnel has a 
working section 35cm by 35cm, the maximum diameter of the body was limited 
to about 5cm so that tunnel blockage would be minimized. The body as finally 
constructed was 41.3cm long and had a maximum diameter of 5.08cm. Five slots 
were made in the body; the positions of the slots are shown in Fig. 2. The section 
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Fig. 1 - Model used for drag reduction experiments 

Fig. 2 - Schematic of model 
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up to the second slot is elliptical in shape, the section from the second to the fifth 
slot is cylindrical and the tail section is faired to a pointed trailing edge. Each 
slot can be individually adjusted, and the polymer solution can be injected through 
each slot independent of the flow through the other slots. Only the nose slot was 
used for this work. 

The wings are elliptical sections symmetrical about the line joining the lead¬ 
ing and trailing edges. They are mounted on the body so that the planes of sym¬ 
metry of each wing pass through the centre-line of the body. The wings serve 
two purposes: to support the body in the three-component force balance, and to 
act as a shield for the lines running to the slots. Three lines are in one wing and 
two lines in the other. 

The pumping system and tunnel set-up are shown in Fig. 3. In order to min¬ 
imize the possibility of degrading the fluid before it is injected into the boundary 
layer it was decided to use air pressure as the pumping force. When the fluid 
is mixed it is drawn into the pump by reducing the air pressure in the pump. To 
inject the fluid into the boundary layer a known positive pressure is applied to 
the pump. The pressure is adjusted until the desired flow rate is achieved. The 
flow rate is determined by using a stopwatch to measure the time required for a 
known volume of the fluid to leave the pump. 

Fig. 3 - Water tunnel and equipment used for 
drag reduction experiments 
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POLYMER SOLUTION 

Three types oí polyethylene oxide) were used; these are manufactured by 
the Union Carbide Chemicals Company and are designated: POLYOX WSR-35, 
which has a weight-average molecular weight of several hundred thousand, 
POLYOX WSR-205, which has a weight-average molecular weight oí about 
500,000 and POLYOX WSR-301, which has a molecular weight of about 4 million. 
POLYOX resins are made up oí very long linear molecules which are com¬ 
pletely soluble in water at room temperatures. At concentrations oí 1% or more, 
aqueous solutions of polyethylene oxide) with a molecular weight oí a million or 
more exhibit a stringy consistency and are classed Theologically as "shear 
thinning" (Powell and Bailey, 1960). For very dilute solutions, however, the rhe¬ 
ological properties are indistinguishable from water (Fabula et al, 1963). 

Because previous work (Hoyt and Fabula, 1964) indicated that the reduction 
in friction was very sensitive to polymer molecular weight and to mechanical 
degradation, a standard mixing technique was employed to minimize and to 
standardize the degradation. The solutions were mixed in 4000 ml amounts, 
using a standard laboratory stirrer rotating at about 5 revs/sec. A large pro¬ 
peller with cylindrical blades was used to reduce the chopping of the molecules, 
which could occur with a sharp edge propeller. The poly(ethylene oxide) was 
used as received from the manufacturer and was slowly added to the water to 
prevent lumps forming. The length of the mixing was between 30 seconds and 
one minute, depending on the concentration being mixed. In order to ensure that 
the polymer was fully hydrated, the solution was left at least four hours before 
it was used. Usually the solution was left standing overnight. Before being put 
into the pump the solution was gently stirred to make certain that none of the 
polymer had settled out. 

APPEARANCE OF THE SOLUTION 

Concentrations of up to 250 ppm of POLYOX WSR-35 and WSR-205 were 
used for these tests. They were easily mixed, and at the 250 ppm concentration 
had a slippery feel but did not exhibit any stringiness. POLYOX WSR-301 was 
easily mixed up to concentrations of 500 ppm but at higher concentrations the 
material had a tendency to form lumps which, at the highest concentration used, 
(2,500 ppm) sometimes did not disperse even after the solution had been left 
standing for several days. In these cases the solution was re-mixed with the 
stirrer, with no apparent adverse effect. At about 400 ppm the WSR-301 solu¬ 
tion began to exhibit stringiness; this stringiness increased markedly as the con¬ 
centration was increased. Concentrations up to 2,500 ppm of the WSR-301 were 
used in these tests and it was found that, once mixed, these solutions were 
readily diluted, which indicated that even the highest concentration would mix 
with t boundary layer fluid when it was injected. 

DRAG REDUCTION 

A series of runs was carried out to examine the state of the boundary layer 
at different tunnel velocities. In order to ensure that the boundary layer would 
be turbulent over the body even at the lowest tunnel speeds used, it was decided 
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to use a trip ring made of 0.09 cm diameter wire placed 1.43 cm from the nose 
of the body (between the nose slot and the 2nd slot). Observations using threads 
attached to the body indicated that at tunnel speeds above 150 cm/sec the bound¬ 
ary layer was completely turbulent from the trip ring to the tail. It is uncertain 
whether the boundary layer from the nose slot to the trip ring is completely tur¬ 
bulent at the lower speeds used. 

Before the drag runs wert made the body was aligned by measuring the lift 
and pitching moment on a three component force balance (Kempf and Remmers, 
Hamburg) and rotating the body vertically until these forces were zero. The 
balance holds the model so that the centre-line of the wing section is horizontal 
and at right angles to the centre-line of the tunnel. 

Figure 4 shows the drag of the body-wing combination with the trip ring vs 
the tunnel velocity used for this work. The Reynolds numbers, based on the 
length of the body, are 6.5 x 105 for 150 cm/sec and 2.6 x 106 for 625 cm/sec. 

SOURCES OF ERRORS IN DRAG MEASUREMENTS 

There are several sources of error in determining the drag of the body. 
Fluctuations in tunnel velocity during the run gave rise to fluctuations in the 
drag reading by as much as plus or minus 1 to 2 grams. This error was mini¬ 
mized during the runs with the polymer injection by reading the drag reduction 
when the fluid was injected, and the drag increase when the fluid was stopped. 
If there was a marked difference between the two readings the run was repeated. 
Another source of error is a reading error of the meter recording the drag; this 
is about plus or minus 0.25 grams. A third source of error is the gradual build¬ 
up of the concentration of the polymer in the tunnel. The drag of the body was 
measured before each run and if there was a difference between it and the data 
in Fig. 4 the tunnel was drained and refilled with water. On only one occasion 
was it necessary to drain the tunnel for this reason; the usual procedure was to 
drain the tunnel after each day's runs when the higher concentrations were be¬ 
ing used. At the lower concentrations the tunnel was drained after three day's 
runs. The tunnel holds 23,000 litres of water. Most of the drag data reported 
is an average of the data recorded for at least two runs, and the estimated error 
is plus or minus 1 gram. 

EFFECT OF POLYMER CONCENTRATION AND 
MOLECULAR WEIGHT 

A series of runs was carried out to determine the effect of polymer concen¬ 
tration on the drag reduction for the three polymers. The fluid was injected into 
the boundary layer through the nose slot which was 0.25 mm wide. Although the 
nose slot is at right angles to the centre-line of the body, the fluid when injected 
flows back over the body and does not appear to disturb the flow in the boundary 
layer. 

Figures 5 to 7 show the drag reduction vs tunnel velocity obtained with the 
three polymers when they are injected into the boundary layer at a rate of 30 
ml/sec. The average velocity through the slot would be 200 cm/sec. These 
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figures are replotted in Figs. 8 to 12 to show the effect of polymer concentration 
on the drag reduction for different tunnel velocities. It is usual when plotting 
drag reduction to plot the percentage reduction. However, in this work we have 

Fig. 4 - Drag of body plus wing supports 
and trip wire at nose 

Fig 5 - Drag reduction using POLYOX WSR-35 
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Tunnel velocity * cm/sec 

Fig. 6 - Drag reduction using POLYOX WSR-Z05 

not separated the body and wing drag, and as the drag reduction takes place es¬ 
sentially over the body it was felt that plotting in terms ot the actually drag re¬ 
duction would give a clearer picture of the effect of additive injection. The in¬ 
crease in the effectiveness of the polymer as the concentration is increased is 
clearly shown. Figures 7 and 12 also show that a peak in the drag reduction 
curve is reached somewhere between a concentration of 500 ppm and 1,000 ppm. 
A similar peak occurred in the rotating-disc work carried out by Hoyt and 
Fabula (1964). Complete agreement is not likely as there is a large unknown 
dilution ol the additive in our case. The increased drag reduction as the molec¬ 
ular weight is increased is shown in Figs. 9 to 10. 

Figure 13 shows two sets of runs at a lower polymer flow rate of 13 ml/sec 
(average velocity through the slot would be 87 cm/sec). These curves also show 
that there is a decrease in the effectiveness of the polymer solution as the con¬ 
centration is increased above about 500 ppm. Runs were also done injecting 
ualoi of ilow rates of 30 ml sec and greater; no drag reduction was observed 
over the tunnel velocity range of 150-625 cm/sec. 

VELOCITY OF INJECTION OF THE SOLUTION 

Figure 14 shows the effect ol increasing the flow rate of the polymer through 
the nose slot. Although this effect is plotted for only 500 ppm of WSR-301 it was 
also observed for other concentrations of the three polymers. Runs at other 
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Tunnel velocity - cm/sec 

Fig. 7 - Drag reduction using 
POLYOX WSR-301 

Fig. 8 - Drag reduction vs polymer concentration 
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Fig. 9 - Drag reduction va polymer concentration 

Fig. 10 - Drag reduction using polymer concentration 

concentrations were carried out to a flow rate of 50 ml/sec and the drag reduc¬ 
tion was still increasing with increasing flow rate. There was some indication 
that at flow rates higher than this a plateau was reached in the drag reduction. 
Whether this is a real effect in the boundary layer or a limitation in the flow 
through the tubes to the slot has not been determined. It has also been sug¬ 
gested that increased turbulence in these tubes could degrade the polymer. 

The average velocities through the nose slot for these flow rates are; 87 
cm/sec for 13 ml/sec, 154 cm/sec for 23 ml sec, 200 cm/sec for 30 ml/sec 
and 335 cm/sec for a flow rate of 50 ml/sec. These injection velocities are com 
parable to the tunnel velocities at which these tests were run. 

Figure 15 shows the effect of increasing the slot width from 0.25 mm to 
about 0.9 mm. Four flow rates were used with each slot opening, and although 
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Fig. 11 - Drag reduction vs polymer concentration 

there is some scatter in the data which could indicate that there is some degra¬ 
dation of the fluid at the smallest slot opening, the main conclusion drawn is that 
at these flow rates the important parameter is not the flow rate but the quantity 
of the fluid injected. 

DEGRADATION OF THE POLYMER SOLUTION 

On several occasions a solution was mixed and for some reason left stand¬ 
ing for three or four days in a metal container. A brown deposit was usually 
found in the bottom of the container, and when the solution was used it was noted 
that the drag reduction was less than that obtained with solutions which had been 
standing less than 24 hours. These runs were not included in the foregoing fig¬ 
ures. To determine the magnitude of this effect we did runs with a standard and 
with a degraded solution; the results are shown in Fig. 16. No analysis of the 
brown deposit was carried out. 

No experiments were carried out to determine the mechanical degradation 
of the polymer solutions. 

DYE-INJECTION STUDIES 

In order to determine whether the gross structure of the boundary layer was 
affected when the polymer solutions were injected, it was decided to dye the fluid 
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Fig. l¿ - Drag reduction vs polymer concentration 
for POLYOX WSR-301 
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Fig. 13 - Drag reduction using POLYOX WSR-301 

being injected and to monitor the dye concentration in the wake of the body. A 
series of runs was carried out at 450 cm/sec, using pure water and a 100 ppm 
solution of POLYOX WSR-301. Tbe dye used was Rhodamine 'B\ which is de¬ 
tectable to about 1 part in 1011 by a fluorometer (Model 111, G. K. Turner, Palo 
Alto, Calif.). The initial concentration of the dye in the fluids was 1 part in 104. 
The flow rate through the slot was 30 ml/sec. 

Visual observations of the flow over the body indicated that the dye was al¬ 
most immediately mixed into the boundary layer. The boundary layer thickness 
at the downstream end of the cylindrical section of the body was about 0.3 cm. 
Separation occurred over the tail section of the body, and the boundary layer at 
the trailing edge appeared to be about 2.5 cm thick. The dye measurements 
were made 7 cm downstream from the tail of the body. At this location the 
boundary layer appeared to have about the same diameter as the cylindrical por¬ 
tion of the body. 

The total head pressure in the working section of the tunnel, which is about 
0.7 kilograms per square inch above atmospheric pressure, was used to draw 
the fluid from the wake through a conical pitot probe, with a 2 mm opening, to 
the fluorometer. The probe was mounted on a holder which could be continu¬ 
ously moved across the wake and could be placed vertically in accurately meas¬ 
ured steps. When the dye was injected the probe was moved at a known speed 
through the wake and the output was recorded on a paper chart. The probe was 
then moved vertically and the process repeated. The dye did not affect the 
properties of the polymer solution, because the drag reduction was the same as 
obtained for previous runs. 
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i 
ft 

Tunnel velocity - cm/sec 

Fig. 14 - Drag redaction vs polymer injection 
flow for 500 ppm. POLYOX WSR-301 

I 
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Fig. 16 - Effect of polymer degradation 
on drag reduction 

Figure 17 shows the results of these runs. It is apparent from the dye con¬ 
centration contours that the centre of the wake is between 1 cm and 1.5 cm 
above the centre-line of the body. This means that the body had become mis¬ 
aligned with the flow by about 1.75 for these runs. For the most part the dis¬ 
tribution of the dye is very much the same for both the water and the polymer. 

989 



Vogel and Patterson 
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There appears to be a slight increase in the concentration of the dye at the cen¬ 
tre of the wake for the polymer injection. The maximum reading for the water 
was 95 parts in 10H, while for the polymer it was 97.5 parts in 10H. The differ¬ 
ences in shape at the outer portion of the wake are more likely the effect of the 
misalignment of the body than the effect of injecting the polymer solution. These 
runs do indicate that the solution is diluted appreciably in the boundary layer. 
At the centre of the wake the dilution is about 100:1. while at the edge of the wake 
it is at least 10.000:1. 

CROSS - SECTION Of WAKE 7cm DOWNSTREAM Of BODY- 

WITH lOOppm POlYOX WSR-301 INJECTED fROM Nnsr cmr 

Figure 17 
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TURBULENCE STUDIES OF LHE WAKE 

To obtain more detailed information on the effect of the injection of a poly¬ 
mer solution on the drag, a study of the turbulence in the wake was made using 
two concentrations of POLYOX WSR-301. 100 ppm, and 500 ppm. A tunnel ve¬ 
locity of 400 cm/sec and an injection flow rate of 30 ml/sec through the 0.25 
mm nose slot were used for all the runs. 

A hot-film probe was used to measure the turbulente and the average ve¬ 
locity in the wake. The sensitive element is a thin platinum film, mounted near 
the tip of the conical nose of the probe, which is maintained at a constant tem¬ 
perature by appropriate electronics (Evans, 1963). This type of probe essen- 
tially responds to the turbulence fluctuations in the direction of the mean veloc¬ 
ity in the tunnel (Ling, 1955). The probe was mounted in the same holder as 
used for the dye work, with the platinum film 7 cm behind the tail of the model. 
This is the same position as used for the dye runs. The frequency response of 
the probe is reasonably flat to about 1000 cps, and the average velocity output 
of the equipment was adjusted so that it had a linear response over the velocity 
range encountered in the wake. 

The procedure in each set of runs was to record the turbulence signal for 
about a minute starting at the centre of the wake without a polymer solution in 
the boundary layer. The polymer solution was then injected, and the turbulence 
again recorded for about a minute. The average velocity at that position in the 
wake was read from a meter, and any changes in the velocity when the polymer 
solution was injected were recorded. After each run the probe was moved up 
0.5 cm and the procedure repeated until the probe was out of the wake. 

The recorded turbulence signal was passed through a digitizer with a sam¬ 
pling rate of 2500 samples/sec. and the resulting digital tape was processed on 
our Packard-Bell PB-250 computer to obtain the mean square of the turbulence 
velocities, and the power spectrum of the turbulence at the probe positions in 
the wake. 

Figures 18 and 19 show the average velocity profiles and the mean square 
of the turbulence velocities for the wake with no fluid injection, and with 100 
ppm. and 500 ppm solutions of POLYOX WSR-301 injected at 30 ml/sec. The 
tunnel velocity for these runs was about 400 cm/sec. Two effects of the poly¬ 
mer solution injection are shown. For the 100 ppm solution the mean velocity 
increased and the turbulence level decreased; for the 500 ppm solution, the 
mean velocity increased markedly, but the turbulence level also increased. 
There is a reading error of about plus or minus 2 cm/sec in the average veloc¬ 
ity curves. The significance of the differences shown in Fig. 19 for the probe 
positions between 2 cm and 3 cm above the wake centre-line is not known. 

Figure 20 shows a set of spectrum of the turbulence taken 0.5 cm above the 
wake centre-line for the 100 ppm solution. Figure 21 shows three sets of spec¬ 
tra for the 500 ppm solution taken at the centre-line of the wake, 1.5 cm above 
the centre-line, and 3 cm above the centre-line. These curves are plots of log -P 

vs log k where -t is the mean square of the turbulence velocity per unit wave 
number k, and k = 2t7 (frequency of the turbulence signal) divided by the average 
velocity passed the probe. 
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PROBE POSITION 7cm DOWNSTREAM OF BODY TAIL 

Fig. 18 - (a) Average velocity, (b) mean square turbulence 
velocity through wake 

PROBE POSITION 7cm DOWNSTREAM OF BODY TAIL 

Fig. 19 - (a) Average velocity, (b) mean square turbulence 
velocity through wake 
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100 ppm Polyox WSR-301 

Flow rate — 30 ml./sec 

10 1.5 
log k 

20 

Fig. 20 - Turbulent velocity power spectra 

The curves in Fig. 20 show that the injection of the polymer solution re¬ 
duced the turbulence intensity over the frequency band analyzed. The highest 
frequencies used for this analysis are about 1200 cycles per se :ond because tl 
frequency response of the hot-film probe falls off in this regio In Figure 21 
the curves for the probe at the centre-line of the wake show that , ior the smal 
wave numbers, the turbulence energy is increased when the fluid is injected, t 
as the wave number increases the curve for the additive crosses the other cur 
and the energy at the higher wave numbers is less for the polymer in the boun 
ary layer. For the 1.5 cm position, the additive curve is again higher, and the 
point at which the curves appear to cross over is at a higher wave number tha 
for the centre-line case. With the probe 3 cm above the centre-line of the wal 
the character of the signal, as observed on an oscilloscope, contains many lar 
spikes which indicate that the wake turbulence is intermittent in this position. 
The curve for the additive case are still higher than for the wake without the £ 
ditive but the slope of the curve indicates that a cross-over might occur at a 
wave number larger than for the 1.5 cm case. 

DISCUSSION OF EXPERIMENTAL RESULTS 

This is essentially on exploratory experiment which attempts to add to th 
knowledge of the behavior of polymer solutions in reducing the friction of a flc 
along a solid surface. Previous work by Fabula et al (1963) had shown that th 
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Fig. ¿1 - Turbulent velocity powe r spectra 

cuTe rT^H?re!npnirCvnvWaS obtained by a linear- hlKh molecular weight mole- 
e. Tht three POLYOX resins gave very good results in pipe-flow and rotating 

disc experiments (Fabula, 1963; Hoyt and Fabula 1964) and were chosen for this 
work because of the amount of information available on some of their character- 
istics lamiting ourselves to POLYOX limits the number a variables of the poly¬ 
mer characteristics to that of molecular weight. ^ 

All the runs were carried out with the polymer solutions and the water in the 
tanncl at a temperature ot between 19.5 and 21"C so that If there are any tém- 

use'ot et]eC S °" t,R' draB ■'bd'tetion they would not show up in this work. The 
use ol standard mixing techniques should give solutions which if degraded will 
have a constant degradation for each concentration of each polymer used ’ It is 
proposed in future to measure the molecular weights of the polymers after they 
have been mixed so that any degradation can be determined. 

Increasing the molecular weight of the polymer gave increasing drag reduc¬ 
tion as has been demonstrated by Fabula et al. It is difficult to relate our results 

11^00 Lmr ?nTt0i H°ht a,u ^ WC IUVe ^ but large dilution of the polymer solution when it is injected into the boundary layer. Measurements 
in the wake using a 100 ppm POLYOX WSR-301 solution indicate that a dilution 
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oi 100:1 takes place at the centre of the wake 7 centimetres behind the body. A 
rough calculation based on the observed boundary layer thickness at the down¬ 
stream end ot the cylindrical portion oí the body showed that the dilution through 
the boundary layer would be oí this order. The boundary layer is too thin to 
probe so no direct measurements in the boundary layer have been made. 

The effect of increasing the polymer concentration has been shown for the 
three polymers used. For POLYOX WSR-301 a peak in the drag reduction curve 
is reached somewhere between a concentration of 500 ppm and 1,000 ppm. It is 
suggested that polymer molecular entanglement and interaction at the higher con¬ 
centration is responsible for this effect. It is possible that the time interval the 
fluid is flowing over the body is too short for the molecules to become untangled 
even though the fluid is being diluted as it flows over the body. In extending this 
work we plan to carry out more dye runs at the higher concentrations to deter¬ 
mine whether the fluid is being mixed through the boundary layer or concentrat¬ 
ing near the body. 

The turbulence studies in the wake have indicated that both the mean veloc¬ 
ity and the turbulence level are being affected by the injection of the polymer 
solution into the boundary layer. We have not measured these parameters at 
other distances downstream nor in the boundary layer of the body itself so do not 
know whether the measurements are only applicable at this one position. Also 
the turbulence probe measures only the component of the turbulence in the direc¬ 
tion of the mean flow. It would appear though that the polymer is interacting 
with the turbulence and with the shear stresses. The increase in the turbulence 
level for the low wave numbers for the 500 ppm solution of WSR-301 could be a 
result of the interaction of the polymer with the turbulence components in the 
two directions not measured and energy being fed into the downstream component. 
It could also be a result of the change in the shear stresses winch occur with the 
change in the average velocity profile. 

The one spectrum shown for the 100 ppm solution and the high wave number 
portions of the 500 ppm solution spectra indicate that the polymer does interact 
with the downstream component of the turbulence. Further information is re¬ 
quired before a more definite statement on the significance of these results can 
be made. 

In order to obtain more detailed information we are in the process of inves¬ 
tigating the wake of a cylinder at right angles to the flow. The polymer solution 
is injected into the wake through holes in the rear >f the cylinder and measure¬ 
ments of the effect of the polymer on the turbulence and mean flow of the wake 
are being investigated. Because the wake of a cylinder is quite well known it is 
hoped that some of the questions raised with this experiment will be answered. 

SUMMARY OF RESULTS 

The effects of injecting solutions of three linear, high molecular weight 
polymers into the boundary layer of a three-dimensional streamlined model 
are being investigated. The following are the preliminary results of this ex¬ 
periment: 
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1. The drag of the body was decreased as the molecular weight of the poly¬ 
mer was increased. At tunnel velocities of 300 cm/sec and 400 cm/sec the re¬ 
sults for the two lower molecular weight polymers, POLYOX WSR-35 and -205 
were almost the same. At 500 cm/sec and 600 cm/sec the differences were 
greater. POLYOX WSR-301 was at least twice as effective as WSR-205 at all 
tunnel speeds used. 

2. The drag of the body was decreased as the concentration of the polymer 
solution was increased. However, for POLYOX WSR-301, the amount of drag re¬ 
duction decreased at concentrations above 500 ppm. No runs were carried out 
with concentrations greater than 250 ppm for the other two polymers. 

3. For increased polymer flow rates, the drag reduction increased. There 
was some indication that a plateau in the drag reduction was reached at flow 
rates greater than 50 ml/sec. Whether this is a limitation of the experimental 
equipment or a real effect in the boundary layer was not determined. 

4. The flow rate of the polymer solution injected into the boundary layer, 
and not the injection flow velocity, was the controlling factor at the injection 
velocities and polymer concentrations used. 

5. Dye-injection studies indicated that for a concentration of 100 ppm of 
POLYOX WSR-301 the fluid was quickly mixed through the boundary layer. The 
dilution of the injected fluid appeared to be at least 100:1 and was found to be 
10,000:1 at the edge of the wake 7 cm downstream of the body. 

6. Turbulence and mean velocity measurements were made in the wake 7 
cm downstream of the body. These preliminary measurements showed that: 

(a) For the 100 ppm solution of POLYOX WSR-301, the average velocity 
increased and the mean square of the turbulence decreased when the polymer was 
injected. Both these effects were distributed across the full width of the wake. 
Previous runs with dye had indicated that the polymer solution was distributed 
through the whole wake. The power spectra of the turbulence signal measured 
0.5 cm above the centre-line of the wake, indicated that the decrease in turbu¬ 
lence energy occured over the wave number range measured. 

(b) For the 500 ppm solution of POLYOX WSR-301, the average velocity 
was markedly increased over the central portion of the wake, but was not 
changed very much in the outer portion of the wake. The turbulence level in¬ 
creased over the central portion of the wake but was not changed very much in 
the outer portion of the wake. No dye measurements were carried out to deter¬ 
mine if the polymer solution was concentrated in the central portion. The 
power spectra of the turbulence signals indicated that for the small wave num¬ 
bers the curves for the polymer flow were higher than the curves for no addi¬ 
tive. At the centre-line of the wake, the curves crossed, indicating that at the 
higher wave numbers the energy in the turbulence was reduced when the polymer 
solution was injected. With the probe 3 cm above the wake centre-line, the addi¬ 
tive curve was again higher, but the curves appeared to cross at the limit of the 
wave number range analyzed. 
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DISCUSSION 

T. G. Lang 
Naval Ordnance Test Station 

Pasadena, California 

In the analysis of data from tes.s of the type described by Dr. Patterson, the 
question of the effect of additives on boundary layer separation and wake flow 
arises. As a preliminary study in investigating such effects, we constructed a 
small tank 7 ft high and 1 ft by 1 ft in cross-section in which we dropped 25 
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different bodies in water and also in water with 200 and 1000 parts per million of 
Polyox 301 additive. Most of the bodies were cones or spheres. The d*'a*- of the 
bodies was obtained through the photographic measurement of their terminal 
velocities using a darkened room and a strobe light for illumination. Separate 
photographs of the boundary layer separation and wake shape were obtaiiud'in a 
similar series ol drop tests in which particles of potassium permanganate wo re 
attached to the aft end of each body. Figure 1 is a photograph of the wake How 
behind a 2-inch sphere in plain water and in 200 and 1000 ppm Polyox solutions. 
Note that the point of boundary layer separation has been shifted rearward Fn-u’re 2 
is a typical photograph of the multiple images of a falling cone produced bv the 
strobe-light technique. 

Figure 2 
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The drag data on spheres from 0.25 inch to 2 inches in diameter showed 
that Polyox reduced drag in all cases. The amount of drag reduction increased 
with sphere diameter up to a maximum of 69 percent. The results on the stable 
cones showed little or no drag reduction or change in wake shape due to the 
Polyox additive. In the tests on the unstable Ixidies that were tested, such as 
cylinders and the flatter cones, the Polyox had a small effect on stabilizing the 
trajectories. 

* * * 

REPLY TO THE DISCUSSION 

W. M. Vogel and A. M. Patterson 
Pacific Naval Laboratory 

Victoria, B. C. 
O 

The discussion by Dr. Eringen,,, on his theory of simple micro-fluids was very 
interesting. We have not had time to assimilate the material presented in his 
referenced report, but if this theory can be used to predict the behaviour of di¬ 
lute polymer solutions it will be a major step in our understanding of these fluids. 

With reference to Mr. Lang's comments we have carried out some experi¬ 
ments with a cylinder mounted across our water tunnel. We have not measured 
the drag but when dilute polymer solutions are injected from the trailing edge of 
the cylinder major modifications to the structure of the wake occur. 

* * * 

*See discussion by Eringen on the paper by Lumley (p. 944). 
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AN EXPERIMENTAL STUDY OF DRAG 

REDUCTION BY SUCTION THROUGH 
CIRCUMFERENTIAL SLOTS ON A 

BUOYANTLY-PROPELLED, 
AXI-SYMMETRIC BODY 

Barnes W. McCormick, Jr. 
The Pennsylvania State University 

University Park, Pennsylvania 

ABSTRACT 

This paper presents the analysis, design, and results of testing per¬ 
formed to date on TRI-B, a buoyantly-propelled body incorporating 
boundary layer control by suction through circumferential slots. This 
body is designed to maintain a nearly, full-length laminar boundary 
layer at a length Reynolds number of 39 * 10fi. Although the expected 
performance has not yet been achieved in the field with the free-running 
body, nearly full-length laminar flow has been measured in wind tunnel 
tests at lower Reynolds numbers. From the results of an analysis 
based on the Karman-Pohlhausen method, it is believed that transition 
is occurring ahead of the first suction slot at the higher Reynolds 
number. 

INTRODUCTION 

The purpose of this paper is to report on the TRI-B program currently in 
progress at the Ordnance Research Laboratory. Specifically, the method by 
which TRI-B, a buoyantly-propelled body with boundary layer control, was de¬ 
signed together with an analysis of the experimental results obtained to date 
will be pi esented. 

A diagram of TRI-B is shown in Fig. 1. It has an overall length of 93 inches, 
a diameter of 12.75 inches and displaces 294 lbs. Beginning 6 inches back from 
the nose and spaced every 2 inches are circumferential slots having a thickness 
of .007 inches through which the boundary layer is removed. The suction is ac¬ 
complished by means of an axial-flow pump driven by a hydraulic motor. The 
motor is supplied with hydraulic fluid under pressure from a piston driven from 
an accumulator capable of being pressurized to 5000 psi with nitrogen. 
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Fig. 1 - Section of TRI-B body 

The purpose of removing the boundary layer is to stabilize the laminar 
layer and prevent it from becoming turbulent. The slots and suction flow quan¬ 
tity were chosen to prevent the Reynolds number based on the thickness of the 
laminar boundary layer from exceeding a critical value. This prescribed value 
and the means by which the slot geometry was chosen were based on the find¬ 
ings of Loftin and Burrows as reported in Ref. 1. 

For testing, TRI-B is placed in a protective launching tube, lowered to a 
depth of 400 ft and released. Its buoyancy of approximately 84 lbs propels it 
vertically upward attaining a velocity at the surface of approximately 30 to 50 
fps depending on whether or not laminar flow is achieved. 

HYDRODYNAMIC DESIGN OF BODY 

The method used to design the suction slots, i.e., their axial spacing, slot 
width and suction flow quantity was based on the semi-empirical approach pro¬ 
posed in Ref. 1. This reference relates experimentally the change in Reynolds 
number, based on the boundary layer thickness, across a suction slot to the 
amount of boundcry layer flow removed through the slot. 

If '0 is the flux removed per unit length of slot, then Ref. 1 has determined 
experimentally the ratio of ¿ immediately after the slot, to immediately 
before the slot, ,. 

(1) 
o 

Qbl is the flux per unit width of fluid in the boundary layer. 

Again from the experimental results of Ref. 1, the power required for the 
suction flow was calculated from an expression for the head loss across each 
suction slot. According to the reference, 
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II 
q, 

1.0 + 0 (2.26 K' - 1.26) (2) 

where 

K' 1.0 for 9- < .045 
%L 

g, = local velocity head outside boundary layer. 

According to the reference for laminar stability, the Reynolds number based 
on o,, the local velocity outside the boundary layer, and the boundary layer 
thickness should not exceed approximately 3400. In this case, the boundary 
layer thickness was defined as the value of for which u u, = 0.707. 

A velocity profile through the boundary layer of the form 

was assumed. In lieu of calculating the actual boundary layer profile, this 
seemed to be a reasonable choice since when based on the displacement thick¬ 
ness, this profile lies between that of Blasius and the asymptotic suction profile. 

These results were then substituted into the Karman momentum integral 
equation and the boundary layer thickness obtaining by numerically integrating 
along the length of the body for different values of Q QBL. 

At each increment in length, x, along the body the value of the boundary 
layer Reynolds number was compared to the critical value quoted by Ref. 1. 

If Rs equalled, or possibly slightly exceeded 3400, the value of x was 
printed out and 0 through the slot at the X location calculated from 

(3) 

immediately after the slot was calculated from Eq. (1) and the numerical in¬ 
tegration continued to the next slot location wiiere Rj once again reached a 
value of 3400. In this manner the slots were located along the body and the total 
suction flow requirement determined as the sum of all the 0’s obtained from 
Eq. (3). 

After a series of trial designs, a value of AQ qbl of 0.17 was selected. This 
resulted in slots 0.007 inches thick spaced every 2 inches starting 6 inches back 
from the nose. These continue back to within 7 inches from the tail at which 
point the axial flow pump is installed. On the recommendation of Ref. 1, the slot 
thickress was chosen equal to the boundary layer thickness. The required suction 

1003 



McCormick 

flow quantity was calculated to be 1.37 cfs for a design velocity of 50 fps. The 
pump was estimated to require 8.34 hp. 

In order to integrate the Karman momentum equation it is necessary to 
know the body radius and static pressure distribution. The body shape of TRI-B 
is composed of three parts: (a) a modified ellipsoid nose, (b) a parallel mid- 
section and (c) the afterbody of the DTMB series 4166 body. The final shape is 
similar to a Reichardt constant pressure body. 

For this shape, the pressure is nearly constant over 80% of its length be¬ 
ginning 5% back from the nose. The measured pressure distribution obtained 
from wind tunnel tests is presented in Fig. 2. Included on the figure are empir¬ 
ical expressions which were used in the numerical integration. 

At 50 fps, the laminar skin-friction drag on the body was estimated to be 
11.7 lbs. The drag of the ring tail was estimated at 29.4 lbs giving a total drag 
of 41.1 lbs. 

If laminar flow were not achieved, the body drag was estimated to be 132 
lbs giving a total drag of 173.1 lbs. The pump was designed to eject the suction 
flow at 50 fps; hence in evaluating the drag from the terminal velocity, thrust 
(or drag) from the pump must be considered. In terms of equivalent flat plate 
area, t D q, f was predicted to be equal to 0.069 for a turbulent boundary 
layer and 0.0164 for a laminar one. 

The method by which the body was designed has been presented only briefly 
because of various shortcomings in the method which became obvious as the 
project progressed. These will be discussed later in the paper. 

TESTING OF TRI-B 

The first tests of TRI-B began October 1962 at the U.S. Naval Torpedo Sta¬ 
tion, Keyport, Washington. Over a period of two months, 12 runs were per¬ 
formed of which 7 yielded valid data. A photograph showing the body exiting 
from the water is presented in Fig. 3. For these runs, only the velocity as a 
function of time was measured. From the results, the disappointing conclusion 
was reached that the expected laminar flow had not been achieved. 

The fact that the boundary layer with the pump operating was turbulent was 
substantiated by running with a trip ring on the nose for which the body attained 
the same terminal velcoity as without the ring. 

There were several possible reasons at this time why laminar flow was not 
being achieved. First, a calibration of the suction pump showed that at the de¬ 
sign hydraulic pressure of 2000 psi, it was delivering only 0.85 cfs instead of the 
design value of 1.37 cfs. Secondly, the suction slots were not continuous around 
the circumference, instead they were interrupted by small, structural, carry- 
through bridges. Finally, the body exhibited a tendency to depart from the ver¬ 
tical in its travel to the surface. 
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Fig. 3 - TRI-B body exiting from water 

In view of these questions, the program at NTS was temporarily suspended 
and the body returned to ORL for modification and laboratory tests. Tests were 
conducted in the low turbulence wind tunnel at the Garfield Thomas Water Tun¬ 
nel, a division of ORL, which showed that even at a length Reynolds number of 
approximately 4.5 x 10fl, lower than the design value by a factor of 8, extensive 
laminar flow could not be achieved. In light of these results, the suction slots 
were modified to assure a continuous suction around the circumference. When 
this was done, laminar flow was achieved at the low Reynolds number over ap¬ 
proximately 90% of the body as determined by listening to the noise of the 
boundary layer with a total head tube connected to a stethescope. Hence it ap¬ 
peared that the interruptions to the slots were the cause of the difficulties. 

At this time, tests were run to determine the suction coefficient, c^, re¬ 
quired to maintain full-length laminar flow for different length Reynolds num¬ 
bers. c0 is defined as 

where Sw is the wetted area. For uniform suction c0 is simply the ratio of 
suction velocity to free-stream velocity. 
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Transition Reynolds number for different length Reynolds numbers are 
presented in Fig. 4 as determined experimentally in the wind tunnel. The de¬ 
sign value of c0 at 50 fps is 12.3 x 10"4. This value is appreciably higher than 
an extrapolation of Fig. 4 to the design length Reynolds number of 39 x 106 would 
indicate is necessary. This was the first indication that the design method was 
not sufficient. 

s 

SUCTION COEFFICIENT ~ CQ x |0 

Fig. 4 - Transition Reynolds number vs suction coefficient 

Field testing of TRI-B was resumed at NTS in March 1964. In addition to 
having the slots modified, the body incorporated more refined instrumentation. 
10 channels of information were recorded on a galvanometer; measured were 
the velocity, depth, pressure across the pump, time, pump rpm, velocities at 
the tail at 3 different radial locations, and the deviation from the vertical in two 
mutually perpendicular planes. 

The project was plagued with instrumentation difficulties throughout the 
second series of tests. This included the failure of pressure transducers, the 
sensitivity of differential transducers to change in temperature and absolute 
pressure and shifting in the zero settings of the bridge outputs, possibly the re¬ 
sult of a mechanical hysteresis in the transducers. 

I 
fi 
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Though somewhat inconsistent, the data: namely, the time history of the 
velocity, did point to the fact that laminar flow was still not being achieved with 
TRI-B even though the slots were now modified. However, the tilt traces and 
visual observations of its surfacing confirmed the fact that the body was under¬ 
going violent excursions during its rise to the surface. This had been experi¬ 
enced to a lesser degree during the first series of tests and had apparently been 
cured by adding 10 lbs of lead in the tail. For the second series of tests the CG 
was even slightly behind that of the configuration with the lead. At this point, it 
was realized that the contribution of the hydrodynamic forces on the tail to the 
slope of the pitching moment curve completely overshadows that due to the dis¬ 
placement between the CG and the center-of-buoyancy above about 10 fps. Hence 
on a buoyant, vertically-rising body, moving the CG aft improves the stability at 
low speeds but, due to the shortening of the tail moment arm, is detrimental at 
higher speeds. 

At this point in the program wind tunnel tests of a model of TRI-B showed it 
to be statically unstable, contrary to calculations of its dynamic stability made 
early in its design. These same tests indicated that an increase in the chord of 
the tail from 4 inches to 6 inches would provide static stability. Hence a new 
tail was made and shipped to the field. Successive runs with the new tail showed 
the stability problems to be solved. The body repeatably rose with no indication 
on the tilt traces of any deviations from the vertical. 

Unfortunately, solving the stability problem did not result in a reduction in 
the drag according to the terminal velocity. Thus in the latter part of May, the 
body was returned to ORI for additional laboratory studies. It is planned to test 
this body in the Garfield Thomas Water Tunnel at the design Reynolds number. 
However, these tests must await the installation of a honeycomb in the tunnel 
designed to reduce the turbulence in the test section to a level acceptable for 
such tests. 

ANALYSIS BASED ON KARMAN-POHLHAUSEN METHOD 

The analysis on which the design was based was felt to be inadequate for 
several reasons. The assumed veloc ity profile was too approximate. In addi¬ 
tion the stability limit having a fixed value did not consider the dependence of 
the stability of a laminar layer on the shape of velocity profile. Also there was 
no means to calculate the change in velocity profile across the slot. 

An exact prediction of the stability of laminar boundary layers involves the 
solution of the eigen-value problem defined by the Orr-Sommerfeld equation. 
Fortunately, enough cases, with and without suction have been investigated so 
that one is able to specify a stability limit, R.*rit, as a function of some meas¬ 
ure of the shape of the velocity profile. Figure 5 taken from Ref. 2, presents 
Rs*rit as a function of the shape parameter H, the ratio of displacement thick¬ 
ness to momentum thickness. More recently Tollmein in Ref. 3, presented the 
curve shown in Fig. 6. Here, the shape parameter used is related to the curva¬ 
ture at the wall measured in terms of displacement thickness. Qualitatively 
both criteria are in agreement. A profile having a relatively higher velocity at 
the wall will have a greater value of K and a smaller value of H . 
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Fig. 5 - Stability limit Rj* vs shape parameter H 

Hence the problem is reduced to calculating the boundary layer growth over 
the body and, at each location along the body, comparing Rs* to Rs;ri, obtained 
from Figs. 5 or 6. 

To do this, the Karman-Pohlhausen method modified to account for suction 
at the walls was used. A brief outline of the method follows. 

The velocity prolile is represented by a fourth order polynomial 

07 r ar< + hT'2 + CT'3 + (i7'4 (4) 
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Fig. 6 - Stability limit R•. ' vs shape parameter K 

where 

_y 

The boundary conditions to be satisfied for a suction velocity of vo are: 

At y " o, h = o. -V — o -y 
1 dp <2u 

r*;* ' 
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At y " . u u,. —— - o. ---.H - o. 
■y y 

From the above it can be found that: 

12 + \ 6 - 3 \ 
a - -I) - -- 

6 * ■ 6 • 

-12 - 8 * 3 \ 6 * 3 - \ 
c - - d - - 

ft • .: 6 f ■ 

where 

. ■2 (lu i . _ V . 

. dx 

The displacement thickness * can be expressed as: 

. * v 1 b _ c _ <1 
2 3 4 5 

while the momentum thickness is given by: 

* [a2 ab (2actb*) (ad + bc) , (2bd+c2) , cd , d2 
" " T + T ' 5 ..3   7 4 9 

(6) 

(7) 

(8) 

The shape parameter K can be calculated from 

2 

K =-2b. 
i2 

(9) 

For an axi-symmetric body with suction, the Karman momentum integral 
equation is written as 

11 2 
1 

» dui 
(2,t . ) u, + u- 

t) dr 
r dx + (10) 

r o is the body radius at any x. 

In the above all velocities are dimensionless with respect to the free-stream 
velocity Uo and all distances with respect to a reference distance. The dimen¬ 
sionless shearing stress ro/puo2 can be determined from 

pur & re (11) 
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The dimensionless velocity u1 is found from the static pressure distribution, 

(ix 

where Cp, the pressure coefficient is 

Cr 

The numerical integration is started close to the nose by estimating * on 
the basis of the exact solution of viscous flow near a stagnation point. is then 
assumed to be equal approximately to 3 \ Actually the ensuing integration 
depends very little on the initial choice of >. Knowing 0, Cp( x ) and specifying 
vo> one can now integrate Eq. (10) numerically along x with the aid of Eqs. (6), 
(7) and (8). 

This integration has been carried out for the two Reynolds numbers of 
2.3X I0f> and 39 xlO6 and for cQ values from 0 to .0003. The lower Reynolds 
number is typical of the wind tunnel tests while 39xiof’ represents the design 
value. The results of these calculations are presented in Figs. 7 and 8. In each 
case the suction was assumed distributed uniformly over the body starting 6 
inches back from the nose. Also included on each figure are the stability limits 
predicted from Figs. 5 and 6. 

These results are very interesting and in agreement with the experimental 
observations. From Fig. 7 for zero suction, the transition point is predicted to 
lie between 8 inches to 14 inches back from the nose. With a CQ of .0001, the 
shape parameter H predicts transition 33 inches from the nose while K predicts 
it at 9.5 inches. Finally for a C„ of .0002 both criteria predict laminar flow 
over nearly the entire length of the body. Observe that the lines of critical R;* 
and actual R *, as increases, become nearly parallel. Hence as CQ is in¬ 
creased slightly above some value close to .0002, the transition point shifts sud¬ 
denly from the nose rearward. This predicted behavior was observed experi¬ 
mentally. It should be noted also that the flow is stable at a C0 of .0002 not 
simply because the suction is inhibiting the growth of the boundary layer but, 
equally as important, because the suction is causing the profile to become more 
stable. 

Now consider the predictions of Fig. 8 made at the design Reynolds number. 
Both shape criteria predict transition before the first suction slot at 3 or 4 
inches from the nose. Thus it appears that transition may be occurring before 
the suction can take effect. In fact it appears as if the velocity would have to be 
reduced to about 17 fps in water to move the transition point behind the first 
suction slot. However, calculations, not presented here, have shown that a C0 
starting 3 inches back from the nose would be sufficient to prevent transition. 

/1 ~ cp 

1 dCp 

211! dx 

defined by 

P- P 
1 ■ u 

i 12) 
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* (m) 

Fig. 7 - Calculated boundary —layer thickness and stability limits for TRI-B 
according to Karman-Pohlhausen method for low Reynolds number 

CONCLUSIONS 

It is concluded from the results of the Karman-Pohlhausen method that the 
probable reason why TRI-B has not yet achieved full-length laminar flow at 50 
fps is due to transition occurring before the first suction slot. Wind tunnel 
experiments at low Reynolds number and predictions based on the Karman- 
Pohlhausen method were found to be in close agreement. This method assumes 
the suction to be continuously distributed over the surface. A method, based on 
calculating the decrease in across a slot, did not prove fruitful. 

It was found experimentally that, even at low Reynolds number, continuous 
suction in the circumferential direction was necessary to the maintenance of a 
laminar layer. Interruption of the slots probably results in secondary flows or 
streamwise vortices which cause instabilities. 

This paper would not be complete without pointing out the experience which 
has been gained in handling a body of this type in the field. It is very important 
to provide for proper handling equipment in the planning of such a program. All 
dollies and packaging equipment must be lined with soft coverings. Field per¬ 
sonnel, particular ordinary seamen, must be impressed with the importance of 
not allowing the slightest scratch on the surface. This is not as easy as it may 
sound. A navy diver bobbing up and down with the body along side the ship is 
naturally more concerned with his own skin than with the skin of the body. It 
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x(in ) 

Fig. 8 - Calculated boundary— layer thickness and stability limits for 
TRI-B according to Karman-Pohlhausen method for high Reynolds number 

was also necessary to have fresh water available on board the ship in a quantity 
sufficient to wash the body thoroughly immediately upon recovery. Not only was 
the external surface washed but the slots were flushed from the inside by in¬ 
serting a hose in the tail. 
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DISCUSSION 

T. G. Lang 
Naval Ordnance Test Station 

Pasadena, California 

1 would like to compliment Dr. McCormick on developing a relatively sim¬ 
ple system for testing bodies with boundary layer control in a variety of open- 
water conditions. Using this system, such problems as clogging due to plankton 
and transition caused by natural turbulence can be investigated. A few years 
ago, we experimented on the susceptibility to clogging of several types of per¬ 
meable materials. Samples of sea water, tap water, lake water with suspended 
particles, and distilled water were used in a small water tunnel specially de¬ 
signed to provide a high-speed laminar boundary layer over a small test plate 
to which suction was applied. The results of our limited tests showed that slots 
greater than 0.002 in. in width were relatively free from clogging, as were per¬ 
forated plates with holes greater than 0.002 in. in diameter. Test plates made 
of sintered spheres clogged very rapidly while samples of porous fibrous mate¬ 
rial could be used for 5 to 10 minutes before clogging to the point where their 
permeability was reduced by a factor of two. Also, it was found that backflush- 
ing for about one second cleared the material. Perhaps if Dr. McCormick en¬ 
counters problems due to clogging that the backflush technique would be of help. 

* * * 
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PROBLEMS RELATING TO THE 

SHIP FORM OF MINIMUM 

WAVE RESISTANCE 

Hajime Maruo 
National University of Yokohama 

Yokohama, Japan 

INTRODUCTION 

The problem, to find a ship iorm which presents minimum resistance under 
a certain condition imposed by the practical requirement, is one of the aims of 
the ship designer. Experiments of methodical series of ship models have been 
considered as the most reliable method to find the best form. On the other hand 
recent developments in ship hydrodynamics urges the mathematical analysis of 
components of ship resistance, and attempts were made to find out the ship form 
of minimum resistance by means of the hydrodynamic theory. When the resist¬ 
ance of a ship is separated into a component due to viscosity and that due to 
wave-making, both of them have some correlation with the ship's form. As the 
effect of the form upon the viscous resistance is not only the effect on the wetted 
area but gives much influence to the boundary layer separation, our knowledge 
is not enough to make a full analysis of the relationship between the viscous re¬ 
sistance and the ship form. On the other hand, an analytical representation of 
the wave resistance is made possible by virtue of the assumption of the inviscid 
fluid and the technique of linearization of the fluid motion. The wave resistance 
of a thin ship is given by celebrated Michell's integral. The problem of mini¬ 
mizing Michell's integral has been a stimulating interest of theorists since 
Weinblum first published his calculation in 1930 [1]. When the wave resistance 
is represented by a functional of a function which gives the equation of the ship's 
surface, to minimize the wave resistance becomes a purely mathematical prob¬ 
lem, that is the calculus of variations. The method of solution employed by 
Weinblum and his successors is a sort of approximation usually called Ritz's 
method. It assumes a type of solution involving some unknown coefficients which 
are determined by the condition of maxima or minima. It gives a reasonable 
approximation provided the problem has a solution of the specified type. Doubts 
were thrown with respect to the existence of the solution. The ship form of 
minimum wave resistance or, exactly speaking, minimum Michell's integral, 
can be expressed by a solution of an integral equation. Recently mathematical 
investigations were made into the nature of the integral equation and the contro¬ 
versy with respect to the existence of the solution seems to be nearly settled. 

Because of the fact that the numerical results for the above problem were 
limited, attempts to apply the theory of minimum wave resistance to the practi¬ 
cal ship design are quite scarce. However some shipbuilders have begun to 
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show interest in the application of the above theory in recent years. It is not at 
all simple to realize its direct application because the theory ol wave resistance 
is not necessarily an approximation accurate enough to describe the actual phe¬ 
nomenon. The exclusion of viscosity should be the most serious defect. Never¬ 
theless a great utility of the above theory can be anticipated. The present paper 
is prepared in order to place emphasis on ne feasibility of the theoretical result 
on the ship form of minimum wave resistance. 

SIDE CONDITIONS AND EXISTENCE OF THE SOLUTION 

The problem of minimum wave resistance can be considered only when 
some side condition is imposed, because without any restriction, there is a so¬ 
lution which makes no .vave. It does not necessarily mean the trivial conclusion 
that no ship makes no wave. In fact, a class of singularities was found which 
are not accompanied with any wave term in the linearized potential of fluid mo¬ 
tion. These wave-free singularities were found first by Krein |2j and later by 
Bessho [3] independently. The latter considered an application to the practical 
ship design problem. An important nature of the wave-free singularity is that 
the total sum of the dipole singularities is zero. This fact can be interpreted to 
Michell's theory that the linearized volume of the wave-free ship is zero. 
Bessho's application of the wave-free singularity is the method of changing the 
ship's form without any change in wave resistance. The theoretical result has 
been proved by experiments. 

It can be easily understood that the restriction with respect to the volume 
is one of the necessary side conditions mentioned before. However a constant 
volume can not become a sufficient condition. The draft may become another 
restriction, otherwise the volume can be placed infinitely downward, resulting 
the wave resistance to be reduced to any extent. Therefore the problem of min¬ 
imum wave resistance is usually considered under the conditions of constant 
volume and constant draft. However the existence of the wave-free singularity 
distribution invalidates the solution of the problem of this kind, because one can 
obtain an infinite set of the solution by addition or subtraction of the wave-free 
singularities. There is another difficulty. When the draft is fixed, or the lower 
boundary of the singularity distribution is prescribed, the body can be reduced 
to a fully submerged body, and Bessho (4] showed the wave resistance of sub¬ 
merged singularity distribution to have no solution of minimum problem. Hence 
the minimum problem of ships of given draft and constant displacement has no 
solution. 

The minimum problem which has been usually considered is not such a gen¬ 
eral one, but a problem to find out a longitudinal distribution of displacement 
which makes the wave resistance minimum when the shape of the frame line is 
given by a prescribed equation. 

Take the x-axis along the longitudinal axis of the ship, the y-axis athwart 
ships and the z-axis draftwise downwards. Write the equation of the ship's sur¬ 
face by the form like 

y f(x.z) (1) 
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Weinblum considered a case in which the function f<x. z j is a product of a func¬ 
tion of X only and that of z only, such as 

f ( X, Z) X( X ) 7( z) (2) 

and called it an elementary ship. The problem now becomes to choose the func¬ 
tion X( X ) in such a v/ay that the wave resistance becomes minimum when the 
function 7.( z) is given. He published a number of numerical examples. 

The simplest case is the wall-sided ship of infinite draft or the infinite strut 
for which 7( /) is constant throughout the whole range of the positive z. The 
condition of the constant displacement is interpreted into the word ’’constant 
area of the water plane." When the equation of the waterline is 

y f(x) . (3) 

Michell's integral for the infinite strut of length 2 moving with a uniform speed 
U becomes 

R — f 
^2 y .v2 -1J - f * -1 

<lf(x) df(x') , ,,, ,, 
_— —-—— cos [>A(x-x ) dxdx 

dx dx 
(4) 

where t? U2. 

The area of the water plane is given by the integral 

Aw 2 ( f ( X) d X 

(5) 

-2 f * ^ X 
).( (lx 

dx 

since f(if) 0. 

The determination of the function f(x) so as to minimize Michell's integral 
(4) for a fixed value of Aw leads to the equation derived by the theory of calculus 
of variations, 

os [ ,i • ( X - X ' )] dx ' + kx 0 . (6) 

Sretenski [5] concluded that no solution could exist among square-integrable 
functions, but there is some doubt in his reasoning as was pointed out by 
Wehausen [6]. Karp, Kotik and Lurye [7] has proved explicitly that the integral 
equation has really no solution except a trivial case df(x) dx 0 when k o. 
Being integrated by parts with respect to x and x' remembering that f(tf’) 0, 

Eq. (4) becomes 

Ji ■2 vrTTT J i1 

d f ( x ' ) 

dx' 
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R ^í,âí:í l'(x) f(x') cos ( X X ' ) , dx (Ix ' (7) 

From this equation, the condition oí the minimum wave resistance for a fixed 
water plane area gives the integral equation 

t 

i 
f( X ' ) cos , ‘ ( X - X 1 ) ' dx ' t k ■ ) (8) 

Because of the integral representation of the Bessel function of the second kind, 
the kernel is expressed by a known function. 

Í f(x') Y , .(X ’)] dx' (9) 

This equation was dealt numerically by Pavlenko |8] without regard of the exist¬ 
ence of the solution. Wehausen pointed out that the solution of the integral equa 
tion has a type of 

U( X ) 

where U(x) is bounded. Karp, Kotik and Lurye calculated the function U(x) nu¬ 
merically for several Froude numbers. It was found that U( x) did not vanish at 
X > •, so that the solution becomes singular at both ends. If f< x) gives the 
ordinate of the surface, infinite horns appear and the condition f (> ■ ) o is 
violated. A similar situation appears in the case of finite draft because of the 
logarithmic singularity still existing in the kernel. As far as original Michell's 
assumption is employed, there is no admissible solution of the present problem. 

However the formula of the wave resistance may have a different interpre¬ 
tation from the definition of original Michell's integral. It can be shown that the 
Eq. (7) gives the wave resistance of a distribution of x-directed dipoles over 
the vertical plane y o. Then f(x) does not mean the shape of the strut but 
gives the density of the dipoles. Karp and others calculated the boundary 
streamline when such a dipole distribution was placed in a uniform stream. 

The integral Eq. (9) belongs to the family of equations of the type 

f ( x ' ) Yn [ >( x - x ' V¡ dx ' K( x) 

which was solved by Dörr |9j. By the change of variables 

X ! cos , x1 - ' cos i:> ' 

Eq. (10) is converted into 

(10) 
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( ' ) Y .( cos ■ ' cos ")] d' ' : '?('■) (ID 

where u . Dorr has shown that 

n C0n( '.(|) Yr> 2\/q (cos '-cos ),(1 ' cen( (12) 
J 0 

where ccn( ,q) is the even Mathieu function of the integral order. As cen is 
orthogonal in the interval (o. ), the functions ( ) and ( ) can be expressed by 
Fourier series of c< n. If p( ) is expressed by 

D( ) - £ ancen(i,q) 
II - 0 

the solution of the integral equation becomes 

(13) 

■( ) Z an 1 n ce ^ * 
(14) 

Then the optimum dipole distribution f(x) takes the form 

( X2) 
1 2 

Bessho 110] calculated the eigenvalues n and showed numerical results for the 
solution of Eq. (9) at various Froude numbers. The function t( ) does not van¬ 
ish at o and , so that the singularity in the dipole distribution always ap¬ 
pears, but becomes less remarkable at lower Froude numbers. The best form 
has blunt cylindrical nose and tail, but the radius of the cylinder decreases rap¬ 
idly according to the decreasing Froude number. Though the solutions at higher 
Froude numbers show so to speak dog-bone shapes and are hardly regarded as 
practical, the shape appears quite plausible at moderate and lower Froude num¬ 
bers. It can be noted that negative ordinates which have appeared often at ap¬ 
proximate solutions by Pavlenko and others never appear. Therefore the prob¬ 
lem to minimize the wave resistance of infinite struts under a single condition 
of constant sectional area always has a solution, if a slight deviation from 
Michell’s original assumption is allowed. The similar situation holds in the 
case of elementary ships of finite draft. Though the kernel of the integral equa¬ 
tion cannot be expressed by known functions and eigenfunctions which are given 
in the case of infinite struts are not known, a numerical solution is possible. A 
few results at Froude number 0.4 were published by Kotik |11]. Weinblum’s in¬ 
vestigation has assumed not only the condition of constant volume but also other 
side conditions such as the fixed beam. For elementary ships, the constant 
beam together with the constant volume means a constant block coefficient. To 
seek the best form among those of constant block coefficient seems to have 
greater importance from the practical side because the solution under a single 
condition of constant volume often presents a ship form of too small block 
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coeííicient. However Bessho has proved for the infinite strut that there is no 
solution under such dual condition. This situation is similar for the elementary 
ship of finite draft. 

The wave resistance of an elementary ship is expressed by a general 
form as 

R f ( X ' ) K( X - X 1 ■) dx ' (15) 

where y f( x ) is the equation of the load water line and the kernel K( x - x ' j 

depends upon the shape of the frame line. Change of the variables 

X - ' COS , X' - ' cos ' 

and substitution of the expression for the solution, remembering that the opti¬ 
mum form is symmetric, 

f( X ) 
I) 

s i n 

lead to the equation such as 

cos 2 (• a cos 4 + • • •) (16) 

R 
n * 0 
I M 

i ' 12 n , 2 m (17) 

where 

M,m Jm I d I cos 2n cos 2m ' K( ‘ cos ' - ' cos "id (18) 
J a Jo 

b being the half breadth of the ship. The condition of the constant volume is 

ao constant C (19) 

while the half beam which is also assumed constant is 

l) (20) 

Now let us determine the coefficients a ,M in such a way that the right hand side 
of Eq. (17) becomes minimum. Consider a function 

T(nr '2’ ' 
■ k) X] ^ a2na2m^2n,2m 

n ft rt> ft 
I 
n 0 

n 
( ) 

(21) 

lè! 
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In order to make the wave resistance minimum under the condition of Eqs. (19) 
and (20), the coefficients a2n and k should satisfy the following equations. 

-1 -I 0....-I o (22) 
a 2 ;14 k 

together with Eq. (19). These are equivalent to the simultaneous equation 

2 ¿ a2m ^2n, 2m ~ k( -1 )" , n 1.2. (23) 
m ~ 0 

If the infinite series of Eq. (16) is truncated at Nth term, Eq. (23) together with 
Eqs. (19) and (20) presents N * l equations for N • 1 unknowns. The coefficients 
can be determined provided the characteristic determinant is non-zero. Assume 
that the coefficients of the Fourier series, Eq. (16), satisfy the Eq. (23) and sub¬ 
stitute in the integral 

r; - ) K( X - X ' ) dx ' . 

Making use of the Eq. (18), it is easily found that 

I f ( X ' ) K( X - X ' ) dx ' 1) ' j ( ' ) K [ ' ( cos ' 
-I’ Jo 

cos ' )] d 

(24) 

'•x T+ L 
2n 

where 

f( X) 111 
si n 

When one tends N toward infinity, Eq. (24) will give an integral equation which 
the minimal solution f(x) or ( ) should satisfy. However there is a relation 

4f X] (-)°cos 2n" 
n= 1 

(-)N cos (2N + n- 
2 cos f' 

and the right hand side of Eq. (24) does not converge to a continuous function. 
Bessho has proved that the solution diverges in the case of infinite strut. For 
the infinite strut, the solution is expanded into a series of eigen-functions as 
mentioned before. The coefficients can be determined analytically. By virtue 
of the asymptotic behavior of Mathieu functions, a few terms at the beginning of 
the series becomes dominant when the speed parameter >o increases. Though 
the minimal solution gives a diverging series, the latter may be regarded as an 
asymptotic expression for small Froude number. According to the numerical 
results, the asymptotic value obtained by taking first three terms gives a 
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reliable approximation of the present problem, if the speed parameter is 
greater than 5. Instead of the condition of constant beam, Bessho proposed an¬ 
other side condition as a substitute. That is a condition of constant moment of 
inertia of the water plane with respect to the transverse axis. 

I 2j f(X) x2dx constant . (25) 

In this case, the integral equation satisfied by the minimal solution becomes 

J fix' ) K(x - x') dx' k, . k2 X3 . (26) 

The solution exists and is unique. If the solution of the problem with a single 
condition of constant volume is designated by f0< x), the solution with dual con¬ 
dition is expressed as 

f(x) f0(x) + f,(x) (27) 

where is the difference between the given midship beam and fr/0). Bessho 
published the function f ,(x) for the dual condition involving the constant moment 
of inertia. Figure 1 shows a comparison between the asymptotic approximation 
for constant beam and Bessho's substitute. 

f,(X) 

Figure 1 
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Ship Form of Minimum Wave Resistance 

It has been shown that the best form does not exist under a single side con¬ 
dition of constant volume unless the elementary ship with prescribed vertical 
distribution is assumed. However Krein pointed out that a solution could exist 
if another side condition such as a fixed area of the wetted surface would be 
added. From the mathematical point of view, the solution under this dual condi¬ 
tion is equivalent to the ship form for which the sum of the wave resistance and 
the skin friction becomes minimum. Lin, Webster and Wehausen |12] computed 
the ship form of minimum total resistance, which was assumed as the sum of 
Michell's integral and the frictional resistance according tc Schoenherr's mean 
line. Their results are quite plausible except undulating lines which seem to be 
a consequence of an improper choice of the series used for the expansion of the 
solution. 

According to Froude's hypothesis, the frictional resistance of a ship is 
equivalent to the frictional resistance of a flat plate of same length and same 
area. However the frictional resistance of a curved surface is an integration of 
the longitudinal component of the tangential stress. If the local frictional coef¬ 
ficient Cf at a point where the normal to the surface makes an angle a to the 
longitudinal axis, x say, the total friction is given by 

R f -J - U2yjcf sin ads . (28) 

When the surface is expressed by an equation, y f(x, z), one can put 

df 
<:)x 

COS a " —----- 

* If • (Æ)! 

■is * K * (t)‘ • (4)' *•<*• 
Therefore the frictional resistance becomes 

Rf cU2jJCf )/l + [j-z)2 dxdz. 

Taking the mean value of the local friction, one may write 

(29) 

Rf 
(30) 

where cf is regarded as the frictional resistance coefficient of the ship. The 
area 

s dx dz (31) 

1027 



« 

Maruo 

is called the effective area which is the product of the length and the mean girth. 
Let us consider a dual condition of constant displacement and constant effective 
area. Let us start with the formula for the wave resistance of a ship of length 
2 f and draft T as 

R 2. U2 .4 J" J J J f(x, z) f( X z ' ) K( z + z', X - x' ) tlx dx ' dz ilz ' (32) 

where 

K( z t z '. X - X' ) /. ( z + 7 ' ) 
(33) 

which is obtained by the integration by parts of Michell’s integral. According to 
the principle of the calculus of variations, the minimization of the wave resist¬ 
ance under the conditions of constant volume of displacement 

2 X. z) (ix dz const ant 

and of the constant effective area 

(34) 

2 JJ t j (Ixdz constant 

gives a non-linear integro-differential equation as 

(35) 

1’ -i 

Ü f(x' ,z') K( z tz '. X - X ') (lx ' dz' k , t k , — 

M4Í 
where k, and k2 are constants. Integrating with respect to z, one obtains 

(36) 

LI ( z + z '. X - X ' ) dx ' dz ' k ,z t k 

_l‘ 

z 
.,(X) (37) 

where 

K (z tz'. X x') - -f- e ’y A ( 7 + z ) cos [ , . ( X - X ' ) ¡ _____ (38) 

and p,(x) is an arbitrary function of x only. Since the Eq. (37) is non-linear, 
an iterative method is employed. In the first place, the vertical gradient of the 
surface f )z is assumed as small. Then a linearization of tne integro- 
differential equation is made by the exclusion of the non-linear term ( z)2. 
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Ship Form of Minimum Wave Resistance 

í'í ífx’.z'i K V z + ? ' ■ X -X ' ) tix '<lz ' UjZ i h 2 —“ + fp,( x) . (39) 

Integrating again with respect to /., one may obtain a linear integral equation as 

j" J f( x', z') K1 ‘’( Z 4 z'■ X-x') dx'dz' k jZ2 f k3f(x, z) + zíji ,( x ) + cp jf x) (40) 

where 

K1 J)(z 4 z *, x-x') —, e-y'-2(z+z,) cos [-^( x-x')] 

vA7"! 

(41) 

and p2(x) is another arbitrary function oí x only. Since ki2,(z4z', x-x') is 
absolutely integrable in the domain 

. f 2 ). 
< St o _ z < T, one can write 

LI 
M is the maximum of the integral in this domain. Now assume that 

y k,z2 + z'p,(x) + >p2(x) 

is bounded. Then the Neumann series for the integral Eq. (40) converges uni¬ 
formly if I k 21 > M. Therefore the linearized integral Eq. (40) has a solution, 
and the latter is unique except for the arbitrary constants k, and k2 and the ar¬ 
bitrary functions ¢,(x) and <p2(x). These unknowns are determined by side con¬ 
ditions. There are already two of them, the given volume and the given effective 
area. However the solution is still indeterminate owing to the functions rp,(x) 
and <p2(x). Two other conditions are necessary in order to determine the solu¬ 
tion. It is understood easily that the vanishing ordinate at the keel line, i.e., 

f(x,T) 0 (42) 

can become one of the required conditions. The other can be a condition im¬ 
posed on the shape at the water line z o. As the integral on the left hand side 
of Eq. (39) is bounded in the domain - l í x < !, 0 < z < T, one may have 

i" f f( x, z' ) K( '(z'.x-x^dx'dz'^kj j + <p,(x) . (43) 
J r Jo ,7' 

Therefore r,(x) can be determined by giving the slope of the surface f>f/9z at 
z o. The vertical sides for instance corresponds to af/az o at z o. This 
condition is equivalent to the implicit assumption employed by Lin, Webster and 
Wehausen in their calculation. As the non-linear factor has always a non-zero 
denominator Ji * ( f z)2, the integral equation at any stage of the iteration has 
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a solution. It can be shown by the Eq. (40) that f(x. z) is finite (or zero) at both 
ends X i . 

ASYMPTOTIC FORM OF THE OPTIMUM ELEMENTARY 
SHIP FOR VANISHING DRAFT 

It has been shown that the elementary ship of given vertical distribution has 
a minimal solution for modified Michell's integral under the single condition of 
constant displacement. The wave resistance is given by 

R 2. U 2 4 air Xf X ) Z( z ) X( X ' ï Z( z ' ) K( z + z ', X - X ' ) dx dx ' dz (lz (44) 

Letting 

7( z) Z( z ' ) K( z t z ', X - X ' ) dz flz ' K(x-x') (45) 
Jq Jo 

and writing ffx) in place of X(x), one obtains 

R 2rVly* j J f(x) f(x') K(x-x') dxdx' . (46) 

Therefore the optimum form is given by a solution of an integral equation such as 

f(x') K(x- X ' ) tlx ' k . (47) 

As mentioned before, the above integral equation have a solution which can be 
determined only by a numerical way. Though there have been some examples, 
the solving procedure requires very tedious and extensive calculation any way. 

As the basic assumption of Michell's theory is that the beam of the ship is 
very small in comparison with the length, it applies to the thin ship. However 
actual ships have draft which is smaller than the beam. The slender ship stands 
on the idea that the draft length ratio is of the same order of amount as the 
order of the beam length ratio which is much smaller than unity. The lineari¬ 
zation is achieved by means of these parameters. Attempts have been made to 
find out a slender ship form of minimum wave resistance [13]. They seem not 
to be successful from the practical point of view. The reason is that the solu¬ 
tion involves only ship forms of a very restricted class and is by no means the 
best among whole admissible ship forms. 

Results which will be reported here deviate from the original slender ship 
assumption. The basic idea is to return to Michell's integral and to look for an 
asymptotic form of the minimal solution when the draft becomes infinitesimal. 
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The solution to minimize Michell's integral for elementary ships under a 
single condition oí constant volume exists as mentioned before. Assume an ele¬ 
mentary ship, f(x.z) X(x)Z(z), and write Michell's integral 

R 2- U2 4 Xí X ) X< X ' ) K( X - X ' ) dx dx ' (48) 

where 

K(x-x') 1 ( X - X ' ) 1 f Vo 
7.( z ) c 

The integral equation to determine the minimal solution is 

(49) 

J X( X ' ) K( X - X ' ) dx ' k . (50) 

Since the kernel has a logarithmic singularity at x x', the solution takes the 
form 

vA.2-x2 

If U(x) is finite at x tí, the function X(x) becomes singular at both ends. Now 
let us consider the asymptotic behavior of the wave resistance when the draft T 
tends to zero. The simple slender ship theory expands the integral 

fT 2 
/me-"' *dz 

Jo 

by an ascending power series of T and takes the first term that makes the kernel 
K( x - x') hav ‘he order of T2. Though the kernel has a higher singularity at 
x x', the integral with respect to x and x' is regarded as the finite part due to 
Hadamard. Then Eq. (48) becomes finite only when dx<x) dx o, otherwise the 
integral diverges. Since the finite part of the integral is taken, the singularity 
of the kernel does not matter except at the end points x 11. Therefore the in¬ 
finity appears from the behavior of the integrand at the ends. This phenomenon 
may be called the end effect. It has been shown that the end effect gives a term 
of the order of T2 fnl when dX( x) dx is finite there. The order of the end effect 
can be evaluated if Z( z) is assumed as a simple function such as Z( z^ l and 
the behavior of the resulting integral is examined at the limit of zero draft. It 
can be proved that the end effect has the order of T1 2 when the water line func¬ 
tion takes the form of Eq. (51). Since the volume is proportional to T, the re¬ 
sistance per unit volume increases infinitely when the draft decreases. It seems 
to be natural that this case is excluded from the admissible solution. The case 
that X(x) is finite at both ends is also excluded by the same reason because the 
order of the end effect is T fn T. Therefore the only case that the width of the 
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water plane vanishes at both ends is taken as the asymptotic form oí the opti- 
ship. Then the left hand side of the integral Eq. (50) is integrated by parts mum 

<1X( X ) ( 1 ) r i i I. 
-—— K ( X X ) dx K 

(lx 
(52) 

where k' ' ’ is an integral oí Eq. (49) with respect to x. Integrating Eq. (52) 
three times with respect to x, and taking account oí the iact that <!X( x ) .lx is 
an odd function oí x' and Ki x - x' ) is symmetric, one obtains 

r* iix(x' ’ K' 4 *( x - x ' ) <lx ' -¿-kx-1 . k'x 

where 

.< * - '27. 
Z( z) o dz K ( x - x1 1 cos • i x x ' ) y 

k' 4 ’ has an asymptotic form when T tends to zero as follows 

/72 

K' 4 1 ( x - x ' ) -i, C° S I . ( X- X ) I Z( z) <lz 

Y„ [.(x-x')l r Z(z) dz 

where Y is the Bessel function of the second kind. By putting 

A( x) 2X( x ) 7.( z ) <lz I */() 

that means the area of the transverse section, Eq. (53) becomes 

T I1 
if f dA(x') ,, r , 

)] dx' -r + k'x. 

This is an asymptotic form of the integral equation. If the condition 

dA( x ) _ 

dx 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

at x - i ' is employed, the end effect does not exist and the minimum wave re¬ 
sistance is given by 
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2. U2 X( x) dx . (59) 

This is the case of a simple slender ship theory. The method of solution and 
numerical results are given in literature (13j. In order to solve the integral 
equation, let us employ the dimensionless coordinates 

X -Í COS ' , x' cos 1 . (60) 

The sectional area is non-dimensionalized and to facilitate the solution, one 
may put 

(IAf x ) ( ) 

<lx 2'2 sin 

Then Eq. (57) is equivalent to the following integral equation: 

(61) 

I L o ( cos ■■ - cos '')<!' k , cos r + k 2 cos 3' 
Jo 

where n g u2. The displacement becomes 

so that 

1 ■( ) cos ck' 2 ■ 

(62) 

(63) 

The integral Eq. (62) can be solved by means of Fourier expansion by Mathieu 
functions. There is a relation for even Mathieu functions cen( , q), that 

n cen(t?',q) Y0 [2 \ q (cos - cos 0' } d* 
J 0 

'n(i-.q) 

Since cen(f ,q) makes an orthogonal system such as 

con(-,q) cem( ,q)df 0 

1 

n ) m 

n m 
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1 

any function can be expanded into Fourier series of ci'n. As A(x) is an even 
function of x, the expansion for ( ) contains odd terms only. 

) a,cPi( .q) + ajcc-jf ,q) . n5ce5( ,q) + . 

There is also a relation 

cos ( 2r + 1)- L ( 2n* i ) 
'i r + 1 in* 1 ( .q) 

where is the Fourier coefficient of ce2n+1, such as 

CD 

V ( 2 n + l ) 
ce2n*i( ■‘l) = A2r + 1 cos ( 2r * 1) 

n-0 

Substituting these relations in Eq. (62), the following equation is obtained: 

£ aan*l ct>2n*|(^q> '2,1*1 £ , ‘ ce2nt ,( .0) 

Therefore the unknown coefficients are determined as 

2 n * I i n * 1 , 1 n 1 

The condition (63) gives 

4.a:- i ) 
k2A3 

( 2n* 1 ) (64) 

y ., a( 2,1,1 
Z-1 a 2 n +1 A, 

) 4 (65) 

and together with the condition -( ) o at o and -- the arbitrary constants 
k, and k2 are determined. Since 

6k2- rT 
k - —_ Z( z) dz (66) 

* o Jo 

the wave resistance is given by 

6k_ , U2V2 

—T— (67) 

Necessary coefficients for the calculation of Mathieu functions have been given 
by Bessho and the optimum forms of simple slender ships are calculated. Fig¬ 
ure 2 gives the best curves of sectional area of the simple slender ship. It has 
been found that the minimum wave resistance of the simple slender ship given 
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by Eq. (67) is not the minimum oí the asymptotic value oí Michell's integral ior 
vanishing draft, as a result oí comparison of it and the wave resistance of a 
slender ship with vertical stem. In the latter case, <IA <lx or ( ) does not van¬ 
ish at the ends. If the condition Eq. (58) is discarded, one of the two coefficients 
in Eq. (62) becomes undetermined unless another side condition is introduced. 
Then solutions of the integral Eq. (62) give a family of curve of sectional area 
by which the wave resistance excluding the end effect is minimum for a constant 
displacement. One may have a doubt since the above indeterminateness seems 
to contradict with the fact that the minimal solution for Michell's integral of 
finite draft is unique. By a proper choice of the midship ordinate, k2 can be 
eliminated. Then the principal part of the wave resistance given by feq. (67) 
vanishes. Though difficult is it to identify the true asymptote, the above solu¬ 
tion may be regarded as the asymptotic form of the minimal solution with the 
single condition of constant volume for vanishing draft. Figure 3 shows a com¬ 
parison between the curve of sectional area obtained from the above method and 
the dipole distribution for the optimum infinite strut. The difference between 
them is small especially at lower Froude numbers. Kotik calculated the opti¬ 
mum form of the elementary ship of finite draft at Froude number 0.4, one of 
which concerned a 4th power vertical section and the other concerned a wall¬ 
sided section. His results with respect to a draft-length ratio 0.05 are plotted 
in Fig. 3 for comparison. They fall between the result for a infinite strut at 
Froude number 0.397 and that of the aforementioned approximation. When finite 
value of k2 is retained, a family of solutions with various midship section area 
is obtained. As mentioned before, there is no minimal solution for dual condi¬ 
tion of constant volume and constant midship section. Then the above results 
seem to correspond to the asymptotic solution for the condition of constant 
volume and constant moment of inertia. Figures 4-12 give the asymptotic opti¬ 
mum curve of sectional area at various speed coefficient 0 g ' l'2 with pris¬ 
matic coefficient p as a parameter. In some of the figures Weinblum's results 
114] are given by dotted lines. Difference is not remarkable except the case of 
■yo 2 where the polynomial representation employed by him seems to lose its 
accuracy. In Fig. 6, curves of forebody sectional area of the Taylor Standard 
Series (T.S.S.) are shown for comparison. There is a surprising agreement 
between the T.S.S. and the theoretically optimum form for medium prismatic 
coefficient at Froude number 0.25. On examining the chart of residuary resist¬ 
ance coefficient, one may find out that T.S.S. shows an excellent behavior at 
Froude number near 0.25, if the prismatic coefficient is around 0.60 where the 
best agreement is obtained. It is of some interest to observe that a hump ap¬ 
pears at Froude number 0.25, if the prismatic coefficient is reduced to 0.48 or 
raised to 0.68 where deviation from the optimum curve becomes remarkable. 
At Froude numbers other than 0.25, T.S.S. does not agree with the optimum 
curve. Therefore better results than those of T.S.S. can be expected by em¬ 
ploying the theoretical curve of sectional area. 
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Figure 8 

Figure 9 
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Ship Form of Minimum Wave Resistance 

Figure 12 

SOME CASES OF SMALL WAVE RESISTANCE 

As shown by Krein and Bessho, there is no definite solution of the problem 
to minimize Michell's integral for a given volume. This fact suggests that the 
theory of minimum wave resistance discussed so far is not the only way to ob¬ 
tain a ship form of small wave resistance. Inui [15] has shown that the wave 
resistance can be reduced to a great extent by addition of a bulb at the bow which 
enables the cancellation of the wave generated by the main hull. This method 
was refined by Yim [16]. He considered a combination of a source distribution 
representing the ship's hull and a distribution of dipoles along a vertical line of 
infinite length at the bow. According to him, the wave resistance can be elimi¬ 
nated when a suitable choice is made in the combination of sources and dipoles. 
The vertical dipole distribution of Yim's model shows a vertical cylinder of in¬ 
finite length at the bow. Instead of it, one may consider a source distribution on 
the vertical line. In fact, it is possible to make the wave resistance vanish by a 
suitable choice of source distribution along a horizontal line and those along 
vertical lines at both ends of the horizontal distribution. As the simplest exam¬ 
ple, let us consider a source distribution along a horizontal line of length L - 2-Í 
on the free surface. Choose the density of sources given by the following 
equation: 

X) m, sill , --£ < X < Í . (68) 

If a distribution of sources along an infinite vertical line at x = -i and that of 
sinks along a vertical line at x --f have density distribution given by 

C72(Z) 0 < z < oo (69) 
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the wave resistance becomes 

R 87! p y Í (70) 

where 

r; -,( X) sin ( .X sec )dx t 2 sin ( > sec 
*>f 

4 z ) exp (- ) dz (71) 

Substituting Eqs. (68) and (69) in (71) and carrying out the integration, one 
obtains 

sin ( . sec '•) 

if /o > If there is a relation 

«» 
m,, = rrm./y l 1 o 

(72) 

(73) 

the wave resistance vanishes. Though Krein and Bessho have shown that wave- 
free distribution of sources gives zero linearized volume, the wave-free distri¬ 
bution without negative ordinates does exist if the draft is allowed to be infinite. 
The horizontal distribution corresponds to a half immersed body of revolution 
with cross sectional area given by the equation 

A( X ) 
8 t m, 

ü- 
cos (74) 

The vertical distribution corresponds to a vertical strut of infinite depth, the 
horizontal section of which is the Rankine oval. The resultant shape is a com¬ 
bination of them and is so to speak a yacht shaped ship with infinite vertical 
keel. As the infinite keel cannot be realized, it must be truncated at a finite 
depth. The truncation invalidates the perfect cancellation of the waves gener¬ 
ated by each system of sources. Figure 13 shows the results of calculation of 
wave resistance when the vertical keel is truncated at a depth 0.25L and 0.1L, 
when the designed Froude number at which the wave resistance vanishes for the 
infinite keel is 0.316 or >0 5 . Though the truncation of the vertical keel does 
not matter much at lower Froude numbers, it weakens the cancellation of the 
wave at high Froude number especially when the vertical keel is truncated at 
smaller depth because of the practical requirement. In order to compensate the 
weakened effect of the vertical keel, the strength of the vertical distribution 
should be augmented considerably. An investigation has been made so as to find 
out the vertical distribution which makes the resultant wave resistance mini¬ 
mum. According to the result, a remarkable peak appears at the bottom of the 
vertical source distribution. This fact suggests that the best form has a con¬ 
centration of the source at the bottom. Instead of pursuing the best distribution 
along the vertical lines, a discrete source and a sink are assumed at the depth 
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Figure 13 

of the bottom. Then the system of sources is the combination of a discrete 
source at the forward end of the bottom and a discrete sink at the after end to¬ 
gether with the horizontal distribution. The source and the sink form the so- 
called Rankine ovoid, and the resulting shape is the combination of a submerged 
ovoid and a surface piercing hull. At a lower Froude number, the surface 
piercing part is much greater than the submerged part, so that the former can 
be regarded as the main hull, while the latter forms bulbs on both sides. At 
higher Froude numbers on the other hand, the submerged part becomes the 
main hull, while the upper part is like the super-structure or bridge of a half 
submerged submarine. Such a type of ship as this may be called a semi- 
submerged ship which has been discussed from time to time [17]. If the strength 
of the submerged source at the point x f, z f, is designated by mo* and an 
equal sink is placed at the point x -l, z f, the wave resistance when com- 
bineo with the horizontal source distribution given by Eq. (68) becomes 

R sin2 ( sec ) sec J- il 
(75) 

Write the area of the midsection of the Rankine ovoid as A0 and that of the 
bridge by A,. Then there is approximate relations due to a linearized theory 
such as 

nlo 
4'irt 

and 
UA, 

71 
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Then the wave resistance can be written as 

The ratio \ can be chosen in such a way that the resulting wave resistance be¬ 
comes minimum. If the volume of the submerged part is kept constant, it is 
merely given by the equation 

1 o. (79) 

Calculation has been carried out for cases of f 4 and 5. Models for tank 
experiment were prepared as shown in Fig. 14. Figure 15 shows some of the 
results of the experiment together with the computea curves. The designed 
speed at which the relation Eq. (79) holds is indicated by the arrow. As the ex¬ 
perimental value is the residuary resistance coefficient, some difference exists 
between the experimental curves and the theoretical wave resistance coefficient. 
However, the general feature of the curves is similar. There are also shown 
theoretical curves of wave resistance coefficient when the submerged body, the 
Rankine ovoid, moves alone under the water surface, and one can observe how 
the wave resistance is reduced by the interference between two parts. 

L/f = 8 

Kotik calculated the value of minimum wave resistance of elementary ships 
at Froude number 0.4. For a wall-sided ship of draft length ratio 0.1, the wave 
resistance coefficient defined by 
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Figure 15 

Cw r/y-u2 

where 2B is the mean breadth, becomes 0.32612 and for a ship with 4th power 
section, it is 0.35665. The corresponding value for a semi-submerged ship of 
minimum wave resistance at Froude number 0.4 was calculated. It was found to 
be 0.08837, and a considerable reduction of the wave resistance is achieved. 

The experiment of the semi-submerged ship was conducted under a finan¬ 
cial support by Uraga Heavy Industry Co. Ltd. The author wishes to express 
his gratitude. 
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EXPERIMENT DATA FOR TWO SHIPS 

OF "MINIMUM” RESISTANCE 

Wen-Chin Lin, J. Randolph Paulling 
and J. V. Wehausen 

University of California 
Berkely, California 

ABSTRACT 

This report presents the results of towing-tank tests carried out on two 
of the models of minimum "total" resistance described in an earlier 
report by Lin, Webster and Wehausen (1963). One model was sym¬ 
metric fore and aft, the other asymmetric with a prescribed afterbody. 
Each was supposed to be optimum within its class for a Froude number 
0.316 and a Reynolds number 1.18 *109. Although the forms showed 
resistance qualities near the design speed as good as the equivalent 
forms for Taylor's Standard Series, they were not significantly better. 
The occurrence of separation behind the stern bulb of the symmetric 
model may have masked possible superior wave-making qualities as 
indicated by a rather small surface disturbance. 

INTRODUCTION 

In a paper presented at the International Symposium on Theoretical Wave 
Resistance in Ann Arbor in 1963 (Lin, Webster and Wehausen, 1964)* two dif¬ 
ferent minimization problems for ship resistance were considered. In each 
problem an estimated "total" resistance consisting of the equivalent flat-plate 
frictional resistance plus the wave resistance as given by Michell's integral was 
minimized for selected values of the Froude number. In one of the problems, 
only the volumetric coefficient cv v L3 and the ratio H I were fixed. The re¬ 
sulting optimum hull-form was necessarily symmetric about the midship section. 
In the other problem, H L and a particular afterbody were prescribed, and an op¬ 
timum forebody was found. In each case the class of hull shapes within which an 
optimum was sought was limited to a 6x6 double Fourier series: 

f(x'z)~ LE "mp cos I (2h- 1) ™ cos - (2p- 

'‘References are identified by author(s) and date and collected at the end. 
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"T! ‘mrecHonibyTL6 «' dimens;onl'ss ^ -"easurins distances in the 
• nS by !l> R° rpose^ respectively, where no is not the true beam but is fixed at 3H for this purpose.’ 

of the" parameter* '“Ti .ftn1*6 SymmetrlC ^ ,or mêãmmÊrn was so small that these regions rnniH h0 ^ - ;h dmount of negativeness 
altering the linpQ th« ^formed to zero without significantly 

ârpredicttt by Miel ,•! mir:,5'3“6 at Speed ,or each ‘^se forms, 
resistance, in fact Cneslicibfefor^th^afnVery Smal1 C°mpared with the fictional 
nre 1 shows thfwave-feSsÍLce cSÄ I,0 >. = 6 t0 10' F1S- 
forms as predicted bv Mirhpii’c inf i f 1¾1 kV ^0r eac^ ^ese optimum 
0 so predicted by Michell s integral for Froude numbers between 0.18 and 

.»i «. ™; „J.. ¿•ZZ.Z-JZX STÄiffl, 
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Fig. lb - Michel! resistance for optimum symmetric forms 

larger amount than for the symmetric bodies, partly it was the result of exces¬ 
sive waviness in the waterlines. In the present context the latter was objection¬ 
able not because of the practical difficulty of fabricating such shapes but be¬ 
cause of the great liklihood of boundary-layer separation behind the bellies. As 
was stated in the cited paper, imposition of restraints like o ■ f(x, z) _ M, 
-C f x( X, g) D, which would have prevented the excessive waviness, presents 
a much more difficult problem in computation. The wave resistance for these 
forms, again as predicted by Michell's integral, is no longer negligible compared 
with the frictional resistance for comparable forms. For example, at the design 
speed the coefficient RM , gV for the form corresponding to 0 = 5 is approxi¬ 
mately half the coefficient Rr «V for the equivalent ship from Taylor's Standard 
Series, and about one third the frictional resistance coefficient Rf , Kv. 

Following the obtaining of these results, severa' courses of action seemed 
open: there were mathematical questions to be resolved; the effect of increasing 
the number of Fourier components upon the waviness of the waterlines could be 
studied; a feasible method of incorporating inequalitiei' among the constraints 
could be devised. However, more important than any of these seemed having 
some experimental evidence that the optimum forms derived from theory did, 
in fact, have good resistance characteristics. The main purpose of this paper 
is to report the results of testing two of the forms. 
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Some preliminary comments with regard to possible expectations seem in 
order. As noted above, for the symmetric forms the Michell wave resistance at, 
and for some interval below, the design speed is generally negligibly small 
compared with the frictional resistance. If the "real" wave resistance does in 
some sense approximate this, any attempt to observe it experimentally will be 
plagued by the uncertainty in estimation of the "viscous part" of the total resist¬ 
ance. In particular, a region of boundary-layer separation or even an excessive 
form drag may have the effect of masking completely the quantity being meas¬ 
ured. In addition, one must bear in mind that Michell's integral is based upon 
linearization of the boundary conditions and represents the first term in a per¬ 
turbation series in B L . However, the fact that this first term is very small for 
a particular form does not imply that the second-order term is also very small 
for this form. Under such circumstances it may, in fact, be considerably larger, 
although still of second order. Consequently, there may exist an appreciable 
wave drag in an inviscid fluid even though the linearized theory predicts prac¬ 
tically none. 

CHOICE AND CONSTRUCTION OF MODELS 

One hull form was selected from each of the two series. For each, the form 
^ptiniuiu for o = 5 (Fr = 0.316) was selected. As has been mentioned above, 
the choice 0 = 5 for the hull with prescribed afterbody was hardly a free one. 
For the symmetric ship this form was chosen because 0.316 was the largest 
Froude number for which the corresponding optimum ship had waterlines of 
small enough slope so that boundary-layer separation did not seem likely to 
occur and thus render invalid the fundamental assumptions underlying the com¬ 
putation. Figure 2 shows the section curves, waterlines and area curve for the 
optimum symmetric ship for ,o = 5. Figure 3 shows the prescribed afterbodv, 
both as designed and as represented by the Fourier series. Figure 4 shows the 
optimum forebody for ,, = 5. 

The models as actually constructed differed slightly from those designed by 
the computer. For the symmetric model the lines in the neighborhood of the 
regions of negative ordinates were modified slightly so that the ordinates were 
zero in these regions. In effect, this created a submerged protruding bulb as 
in some of Inui's optimum forms, but not as deeply submerged. The optimum 
forebody as shown in Fig. 4 has rather noticeable wiggles in the midship section 
and in the section just ahead of it, a result of trying to fit a U-shaped section 
with only six terms of a Fourier series. In this case the afterbody was built as 
originally designed and not as approximated, and the forebody was modified 
slightly near the midsection to make it join smoothly to the afterbody Figure 5 
shows photographs of each model. 

CRITERIA AND STANDARDS OF COMPARISON 

One way to judge the performance of a proposed hull form is to compare it 
with others of acknowledgedly good performance. Of the usual measures of per¬ 
formance the dimensionless ratio Rt at and near the design Froude and 
Reynolds numbers seems most appropriate and has been used in this paper. The 
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AREA CURVE FOR OPTIMUM SYMMETRIC SHIP 

GAMMAO = 5.00 H/L = 0.0500 B/H = 2.64 

CSUBB = 0.455 

CSUBV = 0.003 
CSU8P = 0.613 

CSUBX = 0.743 

CSUBF = 0 00190 

CR-MIC = 0.62654E - 03 
CR-VIS = 0.12454E - 01 

CR-T0T-- 0.13080E - 01 

LINES DRAWING OF OPTIMUM SYMMETRIC SHIP 

Figure ¿ 

coefficient R, 's, Sv2, although convenient for working up model data, has several 
obvious disadvantages as a figure of merit for comparing different hull shapes. 

Of the available standards of comparison, the two which have been used here 
are Taylor's Standard Series and Series 60. The "equivalent" hull in each case 
has been taken as the one with the same prismatic and volumetric coefficients 
and the same ratio b h. Other geometric parameters such as H L and the block 
coefficient cannot be kept constant in this comparison. Furthermore, an equiv¬ 
alent hull for the ship with prescribed afterbody did not seem to be available in 
Series 60. Table 1 below gives various geometric parameters for the two opti¬ 
mum hulls and the equivalent ones. The sources of data for Taylor's Standard 
Series have been Gertler (1954) and for Series 60 have been Todd (1963). 

There is a second method by which a comparison can be made with Taylor's 
Standard Series. One can try to carry out within the series the same minimiza¬ 
tion problem as was formulated for the symmetric ships, i.e., with cv = 0.003 
and L H = 20 fixed, one can look for a Taylor-Standard-Series hull which 
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AREA CURVE FOR OPTIMUM FOREBODY 

GAMMAO = 5.00 H/L= 0.0437 B/H = 3.00 

CSUBB = 0.500 
CSUBV = 0.003 
CSUBP : 0.556 
CSUBX = 0,099 

CSUBF = 0.00190 
CR-MIC • 0.54367E - 02 

CR-VIS r QI5597E - 01 
CR-TOT = 02I034E - 01 

Figure 4 

Table 1 
Geometric Parameters 

Opt. 
Symm. 

Ship 

Taylor’s 
St. Series 

Series 60 
Opt.- 

Forebody 
Ship 

Taylor's 
St. Series 

B'H 

L H 

cv 

CP 

CB 

2.64 

20.0 

3.00 X 10’3 

.613 

.455 

2.64 

20.0 

3.00 X IO"3 

.613 

.567 

2.64 

23.0 

3.00 X IQ-3 

.614 

.60 

3.00 

22.9 

2.87 X 10 "3 

.556 

.500 

3.00 

20.7 

2.87 X 10 '3 

.556 

.515 
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Fij;. 5 - Photograph of the two models tested 

minimizes Kt f-v for the design Fronde and Reynolds numbers. The various 
steps required are incorporated in Table 2 and are explained below. The suc¬ 
cessive lines in the table are obtained as follows. Fixing L 11 fixes L n for each 
of the three available values ot iî H. Then tp is fixed by the given value of cv ' 
[see Gertler (1954), pp. 10-12]. Since there is no hull form with B H = 3.75, 
1 H = 20, Cv = 0.003, this column now drops out. The associated values of 
cs sl- ‘cv ’ and of Cr Rr u Sv’are read directly from Gertler [1954]. The 
value of Cf Rf h Sv is the Schoenherr coefficient for Ru = 1.182- 10 ', cor¬ 
responding to a 400' ship in salt water at 63 F. with a ship's speed correspond¬ 
ing to o = 5. Then c, c, • c, and 

R, 1 ,-,1 -. -, 

The hull with B ll = 3 and cp = 0.536 is evidently the best within Taylor's 
Standard Series which meets the constraints L ll = 20 and cv = 0.003. Although 
this is not an "equivalent" hull, it does seem to be also a legitimate one to use 
in a comparison with the optimum symmetric ship for , = 5. 

TEST PROCEDURE 

The models were each tested in the Ship Towing Tank of the University of 
California. The models were attached to the dynamometer so that they were 
free to both heave and trim. Figure 6 shows the symmetric model being towed 
at a Froude number of 0.316. 

Each model was tested both with and without a tripwire. In the region for 
which data are presented there was a small constant difference in the resistance 
coefficients Rt Sv2 with and without the tripwire. This was taken as evidence 
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Table 2 
Optimization Within Taylor's Stan ird Series 

that the region of laminar flow was confined to the region ahead of the tripwire. 
The data were appropriately corrected for the added resistance of the tripwire 
where necessary. 

In order to test for separation of the flow behind the bow and stern bulbs of 
the symmetric model, thread tufts were attached to the model and observed vis¬ 
ually. There was no evidence of separation behind the bow bulb. However, be¬ 
hind the stern bulb there appeared to be separation at all speeds tested. This 
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taken intTa^co^ with viscosity which is not 

.nteTal fÄ“ ¿reamUneVj^wWohtcSrs 

test results 

by using Schoenherr's fricUonrcoefficientsland T^61 hXtrapolatod to a 400, ship 
the same figure is shown the same resistant r^ghness all°wance 0.0004. On 
in Taylor's Standard Series and Series 60 and fn f°r the cciuivalent ships 
Standard Series, as explained earlier The re« 0ptimum" ship in Taylor’s 
optimum symmetric ship is sliehtlv hut inc- SfUltS Speak for themselves. The 
"equivalent” ships near íhedes^n Leed hgmflCftly better than eith^ of the 
Taylor's-Series ship S Speed bui ,s not as good as the optimum 

ship and the equivalent Taylor's-SeHeï ship ^ also^^M^lÍOr the symmetric 

s- 
bUt ,ha'the be— - -rly 
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Fig. 8 - Residuary and Michell resistances for symmetric model- 
Residuary resistance for equivalent models. 

the other hand, observation of the water surface during test runs near design 
speed shows remarkably little surface disturbance. This leads one to suspect 
that the residuary-resistance coefficient in this region may contain a significant 
amount of form resistance, a suspicion partly confirmed by the observed sepa¬ 
ration behind the stern bulb. 

Figure 9 shows R, gV for the optimum-forebody model, and for the equiv¬ 
alent Taylor's-Series ship, both extrapolated to a 400' ship. Over the range 
from Fr = 0.25 to 0.35 the two are practically indistinguishable. 

Figure 10 shows the residuary resistance Rr / gV for this model together 
with the Michell wave resistance R*, gV. It is evident that the agreement is 
much better here than it was for the symmetric ship. 

SOME CONCLUSIONS 

As is evident from the foregoing, the "optimum" computer-designed ships 
have not shown any dramatic improvements in resistance properties over the 
equivalent ones in Taylor’s Standard Series. In fact, they are hardly distin¬ 
guishable. For the ship with prescribed afterbody this should cause no sur¬ 
prise, for the predicted improvement was a fairly modest part of the whole. The 
situation is somewhat different with the symmetric ship. Here the predicted 
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PROM EXPERIMENT 

TSS EOUIV 

0.2 03 
Fr 

04 

Fig. 9 - Total resistance coefficient for optimum-forebody 
model and for equivalent model 

02 

Fig. 10 - Residuary and Michell resistance for 
optimum-forebody ship 
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improvement was substantial and has not been realized. Unfortunately, for the 
present purpose, the reasons are not clear-cut and one cannot ascribe the failure 
entirely to unreliability of the linearized theory in a situation where it predicts 
unusually small values of the wave resistance. As has already been mentioned, 
there was, in fact, remarkably little disturbance of the free surface at and near 
the design Froude number, so that a small value of the residuary resistance 
might have been expected. It seems possible that the contribution of the observed 
boundary-layer separation behind the stern bulb to the residuary resistance may 
have increased this so much that the favorable wave-resistance properties of 
the hull were lost. With the wisdom of hindsight it seems evident that for our 
first symmetric model we should have chosen the one designed to be optimum 
for o = 6 (Fr = 0.289) or 0 = 9 (Fr = 0.236) instead of ,o = 5. Their Michell 
wave resistances are negligible in the Froude number range 0.2 to 0.3 (see 
Fig. 1) and their maximum waterline slopes at the stern are smaller, about 16° 
and 11°, respectively. 

Even though the two computer-designed ships have not shown any marked 
superiority in resistance qualities, there is another sense in which the attempt 
to let certain over-all requirements and the optimization procedure design the 
ship can be said to have been successful. All forms have been designed without 
aid of the naval architect's practiced and expert eye and yet the two tested ones 
have performed as well as the equivalent Taylor's-Series hulls. This in itself 
is encouraging and seems to indicate that it is worth the trouble to refine the 
method, in particular, to devise computational procedures for taking into account 
more complicated kinds of restraints. 

SYMBOLS 

R, Total resistance 

R, Frictional resistance 

Rr Residuary resistance 

Ry Wave resistance according to Michell 

Cp Prismatic coefficient 

CB Block coefficient 

Cv Volumetric coefficient = v L1 

Cs Area coefficient = SL'2cv''’ 

Ct R, /% Sv2 

Cr Rr/b, Sv2 

Cf R f Ai, Sv2 
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DISCUSSION 

P. C. Pien 
David Taylor Model Basin 

Washington, D. C. 

This paper gives us the theoretical and experimental results of two mini- 
.reS‘Stance m°dels- « is quite clear as to how these results have been ob¬ 

tained. However, it is not easy to digest these results. 

Why the theoretically predicted low resistance has not been obtained ex¬ 
perimentally . Why are the relative resistance qualities of these two models 
just opposite to the theoretical predictions? In explaining the results of the 
symmetneal model the authors suggested the possibility of the second term in 
the perturbation series being greater than the first term. If it is so then this 

moCri0eid tern\u0Uld als0 be much larger than the first term of the asymmetrical 
“ce tbe experimental results show that the symmetrical model has mucl 

true^situatfon^006 ^ asymmetrical model- This is not likely to be the 

Based on Professor Inui's important research work, we know the linearized 
ThhlPrpSfor?íh C°ndltl°n 1S, nül curate for the beam value used in the paper. 

herefore the theoretical model of singularity distribution used in the wave- 
making resistance computation is not in correspondence with the physical model 
used in the experiment. In such situations, we should not be surprised to see 

isdnothgoa(Sreement betWOen the theoretical and experimental resistance values 

Based on the experience of Professor Inui as well as our own, I believe a 
much better agreement between theoretical and experimental wavemaking resist 
iw Br,eS?US ^an bc obtaincd> especially for the symmetrical case where the 
frte-surface disturbance is small ard the Froude number is not too low if a 
higher order approximation is applied on the ship-surface. It would be interesting 
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to see the experimental results of a new model which is more exactly corre¬ 
sponding to the theoretical model used in the wavemaking resistance computation. 
Even though it means additional work it is a rather essential step. I would like 
to know the authors' views on doing this additional experiment. 

♦ * * 

DISCUSSION 

Lawrence W. Ward 
Webb Institute of Naval Architecture 
Glen Cove, Long Island, New York 

This is a very interesting paper following the Ann Arbor paper and signifi¬ 
cant in including model tests of the forms. I would like to quote a sentence from 
the paper and then make a comment on it. In the last part of the "Abstract" we 
read: 

The occurrence of separation behind the stern bulb of the 
symmetric model may have masked possible superior wave¬ 
making qualities as indicated by a rather small surface dis¬ 
turbance. 

Thus, the authors clearly recognize that the residual resistance is not a good 
measurement of wave resistance in that it is not based on the waves in a direct 
way. I suggest at the least one should take a qualitative look at the wave pattern 
as is done by Inui, using stereo-camera pairs. Better yet, one should make 
quantitative measurements by means of a wave survey according to methods 
such as the ones which have been proposed by Dr. Eggers at Hamburg, Hogben 
and Gadd at NPL, or myself. Such methods are not as difficult to use as some 
might think, and while subject to certain approximations they should form a 
much more accurate means of obtaining the wave resistance in cases such as 
those in this paper. 

* * * 

DISCUSSION 

G. P. Weinblum 
Institut für Schiffbau der Universität 

Hamburg, Germany 

The discusser has tried to popularize the application of polynomials for the 
determination of hull forms of low wave resistance. There were two reasons for 
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fhreí!frenC!: 4the theorem of Weyerstrass from a mathematical point of view 
and the attempt of using the wisdom of art embodied by "spline curves." The 

ugly wiggled forms obtained by the authors justify my dislike of trigonometrical 
series as longas a relatively small number of terms is admitted. Exact solu- 
tions (Karp, Maruo, Kotik, etc.) indicate that the wiggles are not significant re- 
sults but an outcome of the use of the functions mentioned. In the meanwhile it 
follows from a kind information by Prof. Wehausen that the wiggles are smoothed 
out when a larger number of terms dependent upon * is used. 

.. Notwithstanding the offense against beauty committed by the authors the 
theoretical investigation has furnished valuable information on the 

(a) low magnitude of resistance up to relatively high F when a large num¬ 
ber of terms is used, 

(b) influence of vertical displacement distribution on resistance, and 

(c) dependence of resistance upon number of form parameters. 

.J? agreement with my experience when testing forms of extremely low wave 

rr sS snCeT yhï CUlatl?n) thC aUth0rS arC disaPP°inted by their experimental 
thoi íí Th. resistance measured may be due (a) principally to the fact 

at viscosity destroys the calculated favorable interference effects This ao- 
pijes even_e° fine streamline forms in the afterbody (compare ^¡es^wllh a 

p ' ~ °-52, commumcated at Ann Arbor Proceedings 1963, (b) to sep- 
aration and excessive viscous form drag due to the stern bulb. The author's P 

-lü? t0 m?re normal iorm is commended, further, forms with bow 
*n the light of our earlier experiments (Schiffbau 

(1936) pomt (a) may be more decisive than (b)), (c) the authors point out at the* 
possibility that second order terms in the resistance integrai may become im¬ 
portant when developing optimum forms based on first order theory This is a 

b„e Cheïked by a second appro2at7„„ ulg " 
Sisoy s formula. Such work is going on under the guidance of Dr Eireers at the 
Institut für Schiffbau, University Hamburg. ^uluance 01 ur- Aggers at the 

REPLY TO THE DISCUSSION 

ï 
Wen-Chin Lin, J. Randolph Paulling 

and J. V. Wehausen 
University of California 
Berkeley, California 

a 0f We should like to state that we are pleased that Dr. Pien has found 
it quite clear how our results were obtained, even though their significance mav 
remain cloudy. It seemed particularly important for these tests that this should 
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be the case and that there be no question of finagling with data in order to "im¬ 
prove” it. 

The authors cannot agree with Dr. Pien's statement that the "relative re¬ 
sistance qualities are just opposite to the theoretical predictions." For both 
models the residuary resistance is greater than the Michell resistance at the 
design Froude number 0.316. This is, in fact the usual occurrence at this 
Froude number for hulls with these prismatics. The only thing which really 
seems out of the ordinary is the very low ratio of Michell to residuary resist¬ 
ance for the symmetric model, but here there are no similar experiments to 
compare with. However, it is because of the extremely low Michell resistance 
in this case that we called attention to the necessity of considering the possi¬ 
bility that the second-order term overpowers the first-order term. This neces¬ 
sity does not seem so pressing for the asymmetrical model. An accurate 
assessment of the effect of viscosity is also correspondingly more important 
for the symmetric model. 

Although Dr. Pien might appear to have deprecated the importance of the 
second-order approximation, he is, in fact, also proposing that we take it into 
account. He states, "... we know the linearized ship-surface condition is not 
accurate for the beam value_" Indeed, we know much more, for we know that 
the linearized approximation is not accurate for either the hull shape or the 
wave surface. In a paper by one of the authors presented at the Ann Arbor 
Symposium in 1963 it was shown that the more important error is associated 
with this phenomenon in a related situation. Dr. Pien's argument that, in cases 
where the first-order resistance is very low, it is legitimate to use the linearized 
free-surface condition together with the exact body boundary condition is tempt¬ 
ing, but assumes that low wave resistance is associated with small surface dis¬ 
turbance everywhere. However, it is still possible that the local disturbance is 
substantial and it is just in this locality where the inaccuracy is most important. 

With regard to further experiments, it is our own opinion that the influence 
of viscosity should be clarified before any attempts to improve the approxima¬ 
tion are made, and, in particular, that one should have a more reliable experi¬ 
mental determination of the wave resistance. This also appears to be the import 
of Prof. Ward's remarks. It is a pleasure to add that he has later volunteered 
to undertake an investigation of the wave resistance of the symmetric model ac¬ 
cording to his method. 

Prof. Winblum states that he has preferred polynomial representations for 
hulls partly on mathematical grounds because of Weierstrass's Theorem. We 
hope he will take it as good-natured malice if we point out that there are two 
Weierstrass approximation theorems. One states the uniform approximability 
of continuous functions on closed intervals by polynomials, the other by trigo¬ 
nometric sums. Thus there is no mathematical reason for preferring polyno¬ 
mials. The advantage of the trigonometric sums lies in the orthogonality of the 
expansion functions, which results in smaller coefficients for higher harmonics. 
The same can, of course, be achieved with Legendre or Chebyshev polynomials 
(Prof. Maruo worked out the details for the latter during a visit to Berkeley), 
but now the numerical computation becomes somewhat more complicated. 
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With regard to the anaesthetic aspect of our wavy forms we are pleased to 
report the following. Since the forms from which the tested models were made 
were computed, we have extended the computations from Mxp = 6x6toMxp = 
10 x4, 12 x4 and 15 x4 for the symmetric model. The numerical evidence sug¬ 
gests that the 15 x4 form is already quite close to the limit with P = 4. The im¬ 
provement in resistance is negligible. However, there is a quite noticeable 
change in form as one proceeds from 6x4 to 15 x4, and, although the latter form 
is no longer wavy, it does not "smooth" the wavy lines of a 6 x4 form, and it 
would have been misleading, if not even somewhat dishonest, to have drawn 
smooth curves through the wavy ones on this basis. It may be of interest to note 
the following. In going from 6 x4 to 10 x4 the beam decreases, the middle sec¬ 
tions become more U-shaped and the ends much bulbier. In going from 10 <4 io 
15 x4 the middle sections remain practically the same, but the bulbiness con¬ 
tinues to increase, although the difference between 12 x 4 and 15 <4 jS slight. If 
one keeps M fixed at 10 and lets P be successively 2, 3, and 4, the section-area 
curve hardly changes, the sections near the ends change little, but the middle 
sections become more U-shaped. 

The authors thank the discussers for their interest in and comments on 
their paper. 
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SOME RECENT DEVELOPMENTS IN 

THEORY OF BULBOUS SHIPS 

B. Yim 
Hydromutics, Incorporated 

Laurel, Maryland 

INTRODUCTION 

The history of the bulbous bow on ships may start in the early 19th century 
■with submerged rams on combatant vessels projecting forward along the water¬ 
line at the stem, or with the projecting underwater hulls of many old French 
warships built about the same time. Later, the British armored cruiser Levia¬ 
than had such a projecting ram bow. D. W. Taylor suspected that this ram bow 
played a definite part in the ships superior performance, and he based the par¬ 
ent model for his famous Standard Series (D. W. Taylor 1911 or 1943) upon the 
lines of Leviathan. Systematic bulb bow experiments were made by E. F. Eggert 
in the early 1920's and the general data were reported upon by D. W. Taylor 
(1923). It had been generally understood that the decrease of resistance due to 
a bulbous bow is a wavemaking phenomenon, such as a decrease in bow wave 
height due to a bulb wave. This understanding was more strongly supported 
when Havelock (1928) calculated the surface wave due to a doublet immersed in 
a uniform stream. A deeply submerged sphere is equivalent to a doublet. 
Hence according to his calculation, a sphere moving through water at a constant 
speed causes the surface wave to start with the trough just aft of the sphere. It 
is natural to imagine that this trough has something to do with the bow wave 
crest which is seen to start just aft of the bow in ordinary ships. However 
there was also some other suspicion that the bulb effect is due to a change in 
the effective ship length owing to the alter ation by the bulb of the posi'ion of the 
bow wave. This suspicion was removed by Wigley's mathematical and experi¬ 
mental investigation (1930). He used Havelock’s formula for wave resistance 
(1934) in terms of the regular wave heights due tr the ship hull and a point dou¬ 
blet. He separated the wave resistance into three parts: the hull wave resist¬ 
ance, the bulb wave resistance and the interference resistance of the hull and 
bulb. The most favorable case occurred when the negative interference resist¬ 
ance was largest. He derived the following six rules for the bulbous bow as the 
conclusion of his investigation (W. C. S. Wigley, 1936)- 

"(1) The useful speed range of a bulb is generally from v = 0.8 to v /L = 
1.9 (or in Froude numbers based on ship length, from 0.238 to 0.563), V being 
the speed in knots and L the ship's length in feet. 

(2) The worse the wavemaking of the hull itself is, the more gain may be 
expected with the bulb and vice versa. 
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(3) Unless the lines are extremely hollow the best position of the bulb is 
with its center at the bow, that is, w'ith its nose projecting forward of the hull. 

(4^ The bulb should extend as low as possible consonant with fab less in the 
lines of the hull. 

(5) The bulb should be as short longitudinally and as wide laterally as pos¬ 
sible, again having regard to the fairness of the lines. 

(6) The top of the bulb should not approach too nearly to the water surface; 
as a working rule it is suggested that the immersion of the highest part of the 
bulb should not be less than its own total thickness." 

G. Weinblum (1935) dealt with this same problem by expressing the form of 
a ship with a bulbous bow in terms of a polynomial according to Michell's thin 
ship approximation. His theory was also supplemented by model experiments. 
He expressed a diiferent view from Wigley's, concerning the best vertical posi¬ 
tion of a bulb (Wigley's rule [4| and [61). According to Weinblum's result for an 
extremely hollow form of ship, a uniformly distributed bulb along the stem line 
was superior (taking into account the wave resistance only without considering 
other effects like spray) to the bulb located near the keel, both having the same 
sectional area. However neither Weinblum or Wigley suggested any optimum 
variation of bulb size with the speed. 

Since then, some experimental investigations on bulbous bows were per- 
formed by Lindblad (1944) in calm water and by Dillon and Lewis (1955) in 
smooth water and in waves. However, after Wigley (1936) and Weinblum (1935) 
no significant theoretical development on bulbous ships seems to have been 
made, until Takao Inui and his colleagues made a great contribution on this sub¬ 
ject. This will be discussed in a later section in some detail. 

In this report, first the necessity of a bulb for minimizing wave resistance 
will be discussed, followed by a brief review on Inui's explanation of the bulb 
efb ct. Inui, using the concept of Havelock's elementary surface waves brought 
us a clear understanding of the mechanism of bulbs and an easy approach to 
their design. 

Yim (1963) found the ideal bulb or the doublet distribution on a semi-infinite 
vertical stem line which completely cancels the sine regular waves starting 
from the stem of a given ship. For the cosine waves from the ship bow, a 
source line or a quadrupole line are considered. The separation of waves and 
the wave resistance into the components as in the diagram of Fig. 1, simplified 
the analysis of the bulb effect at the bow or the stern of a ship. The size and 
the form of the bulb, which are functions of ship shapes and Froude numbers 
are supplied extensively. The location of the bulb is of course related to the’ 
ship shape and the type of bulb. However, the higher order effect is found to be 
non-negligible. These are discussed in the next sections. 

Throughout this report, inviscid, homogeneous, incompressible, and poten¬ 
tial flow around a fixed ship is considered. The origin of the right handed Car¬ 
tesian coordinate system is located on the bow of the ship and on the mean free 
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Fig. 1 - Diagram for the characteristics of ship waves 

surface. The intersection of the ship's center plane and the mean free surface 
is taken as the x axis, with the z axis perpendicular to the free surface, posi¬ 
tive upward. The flow at x - < is considered to be uniform with the velocity V 

parallel to the x axis in the positive x direction (see Fig. 2 . 

SHIPS OF MINIMUM WAVE RESISTANCE AND 
BULBOUS SHIPS 

Since Michell's wave resistance formula (1898) was found, problems of 
finding the Michell's linearized ship which has the minimum wave resistance 
have been attacked by many hydrodynamists in various forms and ways. 
Sretenskii (1935), Pavlenko (1937), Karp, Votik and Lurye (1958) and Maruo and 
Bessho (1962) treated symmetric infinite vertical struts. Weinblum (1930, 1957), 
Krein (1355) and Martin (1961) dealt with three-dimensional symmetric ship 
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Fig, 2 - Schematic diagram for a surface 
ship and the coordinate system 

with a given vertical distribution of volume. In their solution, they all found 
either some singularities in the functions representing hull shapes at the ends 
of ships, or bulblike forms around the bows and the sterns. Wehausen, Webster, 
and Lin (1962) treated the optimum forebodies of ships with a given afterbody as 
well as three-dimensional symmetric ships without any restriction on the verti¬ 
cal distribution of volume. However they took the ship surface area into account 
to minimize the wave and friction resistance, and they too found big bulblike 
forms near the bottom of bows for higher Froude numbers. 

Havelock's wave resistance formula (1934) from the regular waves due to 
the singularity distribution on the center plane of a ship is essentially the same 
as Michell s, as long as the linear relation of the ship hull form with the singu¬ 
larity distribution 

m( X . z ) 
_y_ 
9 

df 
dx 

( X. z ) (1) 

is used, where mfx.z) is the source strength and f(x, z> is the ship hull form. 

Inui (1957) calculated an exact hull form (body streamlines of a doubl* 
model) from a given source distribution for zero Froude number (flat free sur- 
face), and he used this hull iorm for his model experiment to test waves and the 
wave resistance. He compared his experimental results with his calculated 
wave heights and the wave resistance due to the source distributions. He found 
that the calculation agrees better with his experiment on his model than the 
corresponding Michell's model satisfying (1). The way Karp, Lurye, and Kotik 
(1958) interpreted their result to a ship form of infinite draft is similar to the 
idea of Inui's which we have just described. The singular behavior of Michell's 
ship hull can be easily treated by reinterpreting Michell's ship hull as the dis¬ 
tribution of varioua singularities like sources or doublets either distributed or 
concentrated. 

1068 



Developments in Theory of Bulbous Ships 

Krcin (1955) proved in a rigorous manner the existence of a lower bound 
for the Michell's resistance of ships with a given center plane, a given velocity, 
a given displacement, and a given vertical distribution of volume. However he 
concludes that the lower bound of the wave resistance due to a submerged ship 
is obtained only with generalized functions (i.e., linear combinations of Dirac 
delta functions) of a ship hull shape; and for floating bodies the wave resistance 
achieves a lower bound but only for functions of hull shapes having integrable 
singularities at the ends of the ship. 

In the Michell's ship hull representation (1), it is easy to see that the hull 
shape f(x. z) is proportional to the doublet strength distributed on a given center 
plane of the ship. Therefore, if we consider the body streamlines due to the 
doublet distribution in the uniform stream instead of considering fix. z) as a 
hull shape, we may be readily convinced that the ship form of minimum wave 
resistance has a bulbous bow. In addition, it is worthwhile to note here that, the 
Dirac delta function of the distributed doublet at the bow is the concentrated line 
doublet, and the integrable singularity of the doublet distribution at the bow may 
also be interpreted as a doublet concentrated around the bow. 

ELEMENTARY WAVES AND THE WAVE 
RESISTANCE FORMULA 

By Lord Kelvin (1887), it was found that the surface wave due to a point dis¬ 
turbance in a uniform stream consists of two parts: the local disturbance which 
is limited to the neighborhood of the point disturbance and the regular wave which 
propagates far aft of the point, mainly restricted to the sector of 19 30 '. 

This is a mathematical solution of the equation for the potential . perturbed by 
the disturbance, 

(2) 0 

with linear boundary conditions at the mean free surface z o, considering the 
wave height is small compared to the wave length, 

where kn k V2 (u ~ acceleration of gravity) and at x and z 

(4) 

Now it is well known that a point source of strength m located at a point 
(x,.o.-z, ), where z{ >o, produces a regular wave height at a large x 

- f 2 

(5) 
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L is the ship length, 

H is the ship draft, 

m is nondimensionalized with respect to lhv, 

X. X, . y. is nondimensionalized with respect to L, 

-z, ' z is nondimensionalized with respect to n. 

For a distribution of sources at a ship center plane S0(y o. o z - i. 
0 X l ) represented by a series 

m( X. z) m,( X) m2( z) 

ml(x) 2] an x" 
n - 0 

m 2( z ) 1 

the wave height will be, by the integration of (5) with (7) 

s sD T "ss 

sU 4 ) (1 _ ''xP("^n ‘’‘'f* )} [5,(0) sin -(0) + 5,(0) cos .(0)] ti (9) 

' ss -4 I {l - ('*P kn svc2 )} [5,(1) sin -(1) + 5,( 1 ) cos - ( 1)] ,1 (10) 
. -• i 

where 

(7) 

in the domain s , o J 

(8) 

Hr 
V7 

(6) 

(a) k o sec2 ;(x-n) cos t y sin )] 

5 , ( a ) 

T 

(-1) 

k,(k. 

( 2n) 
m ( a ) 

sec )2n 

5,( a ) I 
n-0 

n ♦ 1 ( J n + 1 ) 
( - 1 ) m ( a ) 

k ,( k , sec ) 2"* 1 

(ID 
(Cont.) 
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(ID 

According to the theory developed by Havelock, sB and s. are understood as 
bow waves and stern waves respectively. 

The regular wave heights (5), (9) and (10) all have a form 

Si ) • ( X n ) cos y s i n 

* J C( ) cos [k j sec2 {(x-a) cos t y sin !}j . (12) 

Havelock (1934a) showed that the integrands in (12) indicate one-dimensional 
waves propagating from the point (a.o.o) with the speed Veos in the direction 

Indeed it can be easily understood if we recognize: 

( X - n) cos -t y sin r (13) 

is the equation of the straight line -(r. ) on the plane z o with the distance, r, 
from the point (a,o,o) to the line , and the angle between the normal to the 
line and the x axis, ; the wave speed c Veos in the deep sea satisfies 

C2 ÿ V2 cos2 (14) 

where is the wavelength. Hence the one-dimensional wave in the direction 
angle is 

2tt 
0 A sin — ( r - Ct ) 

A s i n V 2 // — sec • |(x-a) cos o + y sin - Vt cos 

If we replace x - vt by x and nondimensionalize by l 

o A s'n [k ! sec2e {(x-a) cos + y sin }] . (15) 

Therefore these Kelvin regular surface waves are a superposition of the one¬ 
dimensional sine and cosine waves with the respective amplitude Sc) and C( ) 

in the direction -- 2 2. He named these one-dimensional waves "ele¬ 
mentary waves" and S( ) and CO , amplitude functions. We may omit the word 
"elementary" in this report except to avoid ambiguities. 

1071 



Y im 

f ir a^r^r COnsidered (1934b) the energy carried away by regular waves 

oMs' añ e tormùL'reS?" T Md "" d^ved the wave 
be rearrange™“ WaVM (8)' From <9) and <«) can 

fA'( )sin(klxst'c I ' A_,( ) cos Í k ,x sec ijc-osfk.vs ,y sin sec,') d (17) 

where 

A|' ’ "[1'"XP,^S"C1 , - Sj( 1 ) sin ( k j sec )] (18) 

*,( ) R[l - ''xp(-kosvc2 )] [S2(0) > 5,(1) sinfk, sec ) - S,( 1 ) cos ( k, sec )], (19) 

Then Havelock's wave resistance formula is 

^ 2 ) [Aif") + A2(")J cos3 d 

where R is related to the wa -e resistance R by 

(20) 

2 : L2VJ 

Since the integrand of (20) is positive definite, R is zero if and only if 

A if > Ajf ) 0 , for o.2 • 

The wave resistance (20) can be written as 

R Rn ‘ Rs 1 RRs 

Rfj bow wave resistance 

2 [ [s,‘(0) * s/íO)l K2 cos3 <| 
0 

Rs stern wave resistance 

i f” 2 r i 
J I [S, f 1) + S2 ( 1 )1 K2 cos3 (1 

0 J 

RBs stern bow interference resistance 

(21) 

(22) 

(23) 

(24) 

? ' 

„Il ^ 
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Fig. 12 - Comparison of the first order wave and the total wave ( = 0.1 rad) 

We notice that when we cancel the regular wave by the bulb, the line integral due 
to this wave will be also cancelled. 

This study of the line integral (50) has just started. However it seems to be 
quite promising for furtherance of a proper understanding of ship waves and of 
their reduction. 

CONCLUDING REMARKS 

Theory and experiment are always stimulating and helping each other. Al¬ 
though this report is on the theoretical side, it does not mean that the influence 
of experiments are underestimated. This report is merely intended to further 
appreciation of our great predecessors, Michell, Havelock, Wigley, Weinblum 
and Inui for the theories related to the bulbous bowed ship, and to add a slight 
theoretical illumination to them. 

The mechanism of the bulb at the ship bow (or stern) is completely clari¬ 
fied. The type of bulb for a given ship hull, and the size and the vertical area 
distribution of bulb for a given Froude number are derived. The higher order 
influence is known to be the major reason for the phase shift of the regular 

221-249 0 - 66 - 71 
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waves. Although the stern problem in the non-viscous Huid is exactly the same 
as the bow problem, it should be studied separately due to the large influence of 
viscosity, wakes, propellers, etc. Because of these influences, the bow waves 
are more important in practice than the stern waves. The humps and hollows of 
the curve of the wave resistance due to a ship without a bulb may be applied to 
that for the ship with the bulb without any considerable error. The bulb has an 
effect of smoothing out the humps and hollows of the resistance curve to a con¬ 
siderable extent (Yim 1962) in the vicinity of the designed speed or for larger 
speeds. Pien (1962) seems to have obtained this effect using the principle of 
wave cancellation by distributed singularities rather than concentrated ones. 
Naturally, a ship with a bulbous bow would have much the better performance if 
it has a better stern. At the present time, shapes like the transom stern seem 
to attract the interest of many naval architects for high speed ships. 

The higher order effect and the influence of viscosity are extremely difficult 
to analyze, yet they should and will be gradually exploited in the near future. 
The theoretical study on the seaworthiness of the bulbous ships remains to be 
done, although it is known from experiments that bulbous bows are still effective 
in waves. 
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NOTATION 

■i Length of run of wedge strut 

an = Coefficients of polynomial representing source distribution for 
a ship 

i)n = Coefficients of polynomial representing concentrated singularity 
distributions for a bulb 

B Beam 

f(N /> Ship hull form 

fm.F| = Froude numbers with respect to draft and length respectively 

K Acceleration of gravity 

II = Draft of ship 

lln Struve function 

k0 = nil V- 
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k, vL V- 

L Length of ship 

m = Nondimensional source strength 

K Nondimensional wave resistance 

V = Uniform velocity at x 

X V / Right handed rectangular coordinate system with ?. positive up¬ 
ward, x in the direction of the uniform velocity v, and the origin 
on the mean free surface 

Yn Bessel function of the second kind 

^ = Half entrance angle 

, First order wave height 

, = Second order wave height 

. = Coordinate system equivalent to o x.y. z 

= Nondimensional doublet strength 

= Nondimensional quadrupole strength 

.() = (x - ) ros • y sin . 
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* * * 

THE SHIP BULB 

Ata Nutku 
Technical University 

Istanbul, Turkey ' 

The merits of the ship bulb as a resistance reducing mean has first been de¬ 
tected by Admiral D. W. Taylor. However, a great amount of testing has since 
been carried out to utilize it as an improving medium of ship form. The testing 
has been confined to minor changes on its size and form, and no attempt has 
been made towards a scrutiny on its basic concept or characteristic function. 

As a matter of fact, the bulb today stands as we have inherited it from our 
forefathers who designed and used it for ramming the enemy ships during ac¬ 
tion. The original form of the bulb has been conservatively retained with only 
minor changes, which has satisfied its experimenters within the limits of 2 per¬ 
cent to 5 percent gain in total resistance of a ship. Some of the explanations for 
the action of the bulb may be summarized as: 

(a) lowering centre of pressure zone at bow, 
(b) displacing the bow wave to forward, consequently changing the phase of 

the wave system as to their order of synchronization, and 
(c) causing a suction on the surface wave phenomena. 

All the above will consequently cause change of flow pattern at bow. 

The section of the bulb has attracted my attention from the observations 
made on the behaviour of a submerged circular streamlined body towed near the 
surface at different depths, and from the analysis of the results of its resistance 
and trimming moments. The purpose of these tests, conducted in the years 
1956-57 has been purely academic, parallel to Wigley's and Gawn's experiments 
with fish form bodies. 

I acknowledge the help and directives given by Prof. Dr. Günther Kempf, 
who was then a visiting professor in i.T.Ü. 
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A circular streamlined body of L D = 4 has been used as a basic model 
which has later been utilized for different purposes as: the submerged body of 
a hydrofoil supported catamaran ship, as the ballast keel of sailboat tests and 
later as a bulb for Turkish fishing boat model tests. 

Bulbs as large as one third the length of the model were tried and interest¬ 
ing results were obtained, which however not published has served to inspire 
the visitors to Turkish Tank, to promote new strides in chapters of wave re¬ 
sistance of ships with bulbs. 

The action of the bulb as to its characteristic of producing suction can be 
visualized by the head-on trim it causes on the surface ship. This suction be¬ 
comes highly distinctive when it is towed under a flat bottomed pontoon, or near 
the water surface. 

The pictures of a fish form circular body of L D = 3 taken at different 
speeds are shown in Fig. 1. 

Fig. 1 - Fish form circular body 

It is noted that, at speeds lower than (the critical Froude number for depth), 
a wave trough is produced immediately after the bow wave of the fish, which 
moves aft as the speed is increased. This trough, the focal point of suction 
when coincides with the bow wave of the ship is swallowed in it. The effect be¬ 
comes more pronounced as the bulge nears the surface. At greater speeds a 
sheet of water covers the top and the centre of the suction moves further aft 
over the tail. 

The ships which are sensible to trim, when fitted with bulbs, have some¬ 
times indicated increased resistances, at certain speeds, due to dive in of their 
bow, resulting from the suction produced by their bulbs, consequently increased 
bow waves, instead of reduced ones. This will mean a wrong shape, size and 
position of the bulb. This complex interaction of bulb and ship necessitated 
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systematic testing with bulbs fitted as separate appendages at the fore end of 
the ship. 

Unconventional means and methods were tried to assess the behaviour and 
interaction. For this purpose, geometrical bodies like spheres, cones, cylin¬ 
ders, etc., were included in the programme (Figs. 2a, 2b, 2c, 2d, and 2e). 

The science of hydrodynamics already reveals the individual resistances 
of geometrical bodies, also when they are towed in tandem formation at differ¬ 
ent spacings between them. In choosing the unusual devices, the aim has been 
to study their comparative interactions with the hull, rather than their direct 
adoption as a resistance reducing mean. 

The circular streamlined axisymmetric body has been selected as the near¬ 
est geometrical contemporary to the existing ship bulbs. Two ship models: one 
of a coastal tanker and the other of a motor launch were selected to be subjected 
to systematic testing. Some of the devices as fitted are shown in the accom¬ 
panying photographs. The devices as tried may be subdivided into the following 
categories according to their functions: 

(a) interference effect, 
(b) bow wave suction or flow deviation, 
(c) wave suppressors, and 
(d) wave scrapers or spears. 
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Developments in Theory of Bulbous Ships 

Fig. 2b - Passive means — suction elements 
and deviators — fish form bodies 

Fig. 2c - Passive means — suction elements 
and deviators — fish form bodies 
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Developments in Theory of Bulbous Ships 

I 
The axisymmetric fish form body has been split into two and has been fitted 

in different positions on the ship as shown in Fig. 3. 

The comparative curves of resistances of the original naked model and that 
of a composite configuration having a bulb fitted at stem on the designed water¬ 
line in combination with a circular segmental suppressor of hydrofoil section 
(curved on top, Fig. 4). This model with (WL bulb plus suppressor) has shown 
itself of having less resistance after a model speed of v = 1.60 m sec approxi¬ 
mately equivalent to F, = 0.217, F = 0.292 and a V L = 1.00. 

Fig. 4 - Naked bufb and bulb with 
circular segmented suppressor 
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It has shown a 17.5 percent gain in total resistance at maximum speed of 
vm = 1.75 m/sec and up to higher speeds (from v L - 1.10 upwards). Compar¬ 
ative wave formations at certain speed ranges are shown in Fig. 5. 

It may be concluded that, the ordinary ship bulb as fitted near the keel does 
not perform as well as a bulb fitted at the designed waterline. The wave forma¬ 
tion being a surface phenomena, the surface bulb becomes more effective, in 
taking the core of the bow wave, transforming thus the original solid bow wave 
into a sheet wave. 

The water at the trailing edge is accelerated at its lower edge, trailing aft. 
Submerged bulbs of greater sizes may similarly influence the downwash, but the 
penalty paid for their extra resistances, due to their bulkiness thwarts off the 
advantage brought by their adoption. A badly designed bulb, is therefore, worse 
than having no bulb at all. 

The bulb is destined to kill the bow wave which is the father wave and once 
it is killed, next of kin will not be as predominant. However, the effect of shoul¬ 
der wave does still retain its place of importance and however the use of shoul¬ 
der bulbs were also resorted to, it still needs careful considerations, calcula¬ 
tions and a good programme of experimenting, to find its proper shape and place. 
It might be a denting instead of bulbing. 

The devices shown in Fig. 2 as wave suppressors, scrapers or spears are 
impressive and effective in quenching or suppressing the waves, which is dem¬ 
onstrated by smoothed surface around the hull, yet their resistances are so 
high that their use for calm water alone may not be justifiable. Therefore, the 
term (waveless form) should not essentially implicate a form of least resist¬ 
ance, in every case. 

The type, form, size and placement of the bow devices have to be decided 
according to the designed speed/length ratio, angle of entrance and other form 
characteristics of the ship. Some of the tests carried out with the model oi a 
motor launch and the placement of the bulb or spear and the resulting wave 
formations are shown in Figs. 6, 7 and 8. The spear, solely an experimental 
device, piercing the water with a finer angle of entrance is also seen at speed. 

The waterline bulb may invite suspicion of many of us as conservative naval 
architects, also due to its higher resistances up to the cruising speed range. 
Yet, apart from the fact that the part of the resistance curve we are most in¬ 
terested in, is in the high speed ranges, we may well go to introduce inflated rubber 
bulbs or appendages to suit the different speed ranges of the ship. Nearly every 
modern vehicle, from cars to ground effect machines are benefitting from its 
advantages. We may thus inflate it only at the speed ranges we want. 

Naval architects of today trying to design sea kindly ships with solid walls 
of steel are preoccupied with problems of seakeeping and slamming. A bulb 
properly designed and fitted at design waterline may be a better antipitching 
device than its submerged contemporary, also insuring less loss of power in a 
seaway. 
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Fig. 5 - Comparative wave formations at certain speed ranges 
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Fig. 7 - Spear placement 
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Fit». H - Mounted bulb and ship 

* * * 
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THE APPLICATION OF WAVEMAKING 

RESISTANCE THEORY TO THE DESIGN 

OF SHIP HULLS WITH LOW 

TOTAL RESISTANCE 

Pao C. Pien 
David Taylor Model Basin 

Washington, D.C. 

ABSTRACT 

Despite its limitations, the existing wavemaking resistance theory can 
be applied effectively to the design of better hull forms with practical 
proportions. Proper application of the theory can produce not only the 
direct benefit of reducing wave drag but also an indirect gain in viscous 
drag. Most of the numerical work involved in such application has 
been programmed into the 7090 IBM high-speed computer. Some nu¬ 
merical results obtained by using computing programs are shown. A 
ship design example to show how we can reduce both wave and viscous 
drags is also included. 

INTRODUCTION 

The total resistance of a ship consists of two parts, wavemaking resistance 
and viscous resistance. If wavemaking resistance theory can be used to minimize 
the wave drag of a ship, we can not only have the direct benefit of low wave drag 
but also a great possibility of reducing viscous drag. 

It has often been said that the application of this theory to ships currently 
designed to operate at low Froude numbers holds little promise because wave 
drag is a very small portion of the total drag. It is true that we cannot reduce 
the total drag of a ship very much in such cases even if we can eliminate the 
wave drag entirely. However, if the length of a ship is reduced, the wetted sur¬ 
face will be reduced, and as a result, the viscous drag will be decreased. If 
ship length is decreased, and speed and displacement volume are kept constant, 
the operating Froude number will be increased. Any experienced ship designer 
will agree that the increase in wave drag will far exceed the decrease in viscous 
drag. If the wavemaking resistance can be kept low through the application of 
the wavemaking resistance theory, then reducing the ship length will achieve a 
great gain in total resistance as well as a reduction of construction costs. This 
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concept of applying the wavemaking resistance theory to reduce the total resist¬ 
ance of ships can be applied advantageously in the design of "practical" ships 
i.e., ships with practical L B and B H ratios. 

To date, numerous attempts to utilize this theory have had disappointing 
results. However, this lack of success is not necessarily due to the limitations 
of the theory. It is my belief that, despite its defects, the existing theory can be 
used in the design of practical ships with low resistance. The justification for 
this view is fully discussed in this paper. 

In the belief that much better forms can be obtained by using this theory, I 
have undertaken a hull form research project at the David Taylor Model Basin. 
The first part of this project has been to program for automatic computation all 
the numerical work involved in the application of the theory to ship design work. 
Once this has been done, the application of the theory becomes a fruitful, enjoy¬ 
able task rather than tasteless, tedious labor. The second part of this project 
is devoted to the actual application of the theory to the design of ships. Models 
will be designed according to the theory and then tested, and the model experi¬ 
ment results can be applied immediately to the shipping industry. After suffi¬ 
cient theoretical and experimental data have been gathered, further improve¬ 
ment in the present wavemaking resistance theory can be expected. 

The first part of this project has already been accomplished. Two comput¬ 
ing programs have been developed. The first is used either to compute the 
wavemaking resistance and free-wave amplitudes of a given singularity distri¬ 
bution or to optimize a singularity distribution to fulfill a ship design problem. 
The second is used to compute the hull geometry from a given singularity dis¬ 
tribution. 

With these two computing programs, the second part of this project becomes 
relatively simple and easy. One model has already been designed and is under 
construction. The theoretical results for this model are given. 

This paper is essentially a progress report of the present hull form re¬ 
search project. The second part of this project has just been started. Another 
paper will be published upon completion of this phase. 

JUSTIFICATION FOR APPLYING THE WAVEMAKING 
RESISTANCE THEORY TO THE DESIGN OF 
PRACTICAL SHIPS 

Two important assumptions are involved in the development of the existing 
wavemaking resistance theory; these must be carefully considered if the theory 
is applied to ships with practical L B and B H ratios: 

1. The free-surface disturbances created by a moving ship are small, and 
so wave height will be small in comparison to wave length. This assumption 
justifies linearizing the free-surface condition. 
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2. The viscosity effect is negligible and the potential theory can be used in 
the study of ship-created waves. 

The first assumption is usually satisfied by selecting a beam that is very 
small in comparison with the length and the draft. Such ships are called thin 
ships. Since a thin ship has no practical value, the theory has also been applied 
to ships with practical beams in the hope that some good may result despite the 
limitations of the theory. 

Fortunately, while a small beam is a sufficient condition for a small free- 
surface disturbance, it is not a necessary one. If a practical (thick) ship can be 
designed which disturbs the free surface as little as a thin ship, the linearization 
of the free-surface condition should be applicable to this practical ship as well. 
Since the main portion of the free-surface disturbance is due to the free waves 
which cause the wavemaking resistance, the theory should be applicable to thick 
ships of low wave drag as well as to thin ships. Therefore, the pertinent ques¬ 
tion to be asked with regard to the linearization of the free-surface condition is 
whether or not the wavemaking resistance is small rather than whether or not 
the beam is small. If we limit our study only to hull forms with very small 
wavemaking resistance, the theory is valid so far as the assumption about the 
free surface is concerned. 

In later sections, a procedure will be given for obtaining low wave-drag 
ships under the restraint of practical design conditions. Let us first examine 
more carefully the argument for using the theory to design low wave-drag prac¬ 
tical ships. For this purpose, the comparisons made in the past between theo¬ 
retical and experimental results have been carefully re-examined. Unfortunately, 
most of these comparisons have severe defects except those of Inui. He has 
clearly shown that the linearized condition on the ship surface is not accurate 
enough to obtain the singularity distribution of a given hull geometry for thick 
ships, or vice versa. If this situation is not improved, the theoretical model 
(singularity distribution) and the experimental model are not equivalent. Inui 
has been criticized by many people for employing a higher than first-order ap¬ 
proximation on the ship surface while keeping the first-order approximation on 
the free-surface condition. His approach has been fully justified by the impor¬ 
tant results he has so obtained. 

Since at this point we are examining only the consequence of the linearized 
free-surface condition, our study is confined to the comparison in the Froude 
number range where the viscosity effect is relatively small. In many cases, 
due to the fact that the theoretical and experimental models are not equivalent, 
such comparisons are rather confusing. Generally speaking, the percentage 
differences between theoretical and experimental results are smaller when the 
level of wavemaking resistance is lower. Emerson’s paper [1], based on Wig- 
ley's experimental work, definitely shows this tendency. Fortunately, we have 
the comparisons of the S-series models made by Inui [2]. In each of these cases, 
the theoretical model and the experimental model are equivalent. Table 1 gives 
the theoretical and the experimental wavemaking resistance coefficients and the 
corresponding Froude numbers taken from Inui's published curves. Some geo¬ 
metrical parameters of these models are also listed. Figure 1 shows a simple 
comparison of the theoretical and experimental wavemaking resistance 
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Application of Wavemaking Resistance Theory- 

Fig. 1 - Comparison of theoretical and experimental 
Cw values of S-series models 

coefficients. All the curves show a rather well-defined trend. Near the origin, 
the linearized theory gives quite accurate results. As the wavemaking resist¬ 
ance increases, the experimental values deviate more and more from the line¬ 
arized theoretical results. At higher Froude numbers the experimental values 
are closer to the theoretical predictions. The theory always overestimates the 
experimental values. This is a rather familiar experience when using linear¬ 
ized theory for nonlinear problems. 

In view of the fact that these four models vary greatly in beam, draft and 
angle of entrance, Fig. 1 is rather an interesting plot from which the following 
remarks can be made: 

1. If the wave making resistance theory is applied to the forebody only, 
where the viscosity effect is small, the theoretical prediction will be an upper 
limit to the possible experimental wavemaking resistance values; and 
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2. the theory based on the linearized free-surface condition is more accu¬ 
rate when the level of the wavemaking resistance is very low (disregarding the 
value of beam) and when a higher order of ship surface condition approximation 
has been made. In such a case, the linearized free-surface condition is suffi¬ 
cient even though the ship-surface condition must have a higher than first-order 
approximation for practical beam values. Therefore, Inui’s approach is both 
logical and practical even though it may seem inconsistent. 

The second defect in the existing theory is that the viscosity effect has been 
neglected. At the present time there is no reliable method of estimating this, 
and the existing theory cannot predict the wavemaking resistance of a given hull 
form accurately. However, this fact should not prevent us from using the theory 
to search for forms with good wavemaking resistance qualities. The statements 
may seem to be self-contradictory, but it is hoped to show in what follows that 
they are quite consistent. 

Because, for practical purposes, the viscosity effects can be neglected on 
the forebody and because the linearized free-surface condition will always over¬ 
estimate the wavemaking resistance, we can use the theory to compute the upper 
limit of the wavemaking resistance of a forebody alone. This is equivalent to 
that of an infinitely long prismatic form fitted to the after end of the forebody. 
Since the forebody contributes most of the wavemaking resistance, the capability 
of th '¡resent theory to predict the upper limit of the forebody wavemaking re¬ 
sista e immediately gives the theory a very important role in the search for 
hull U ms with low resistance. 

The most frequent use made of the theory in ship design problems is to op¬ 
timize the wavemaking resistance of a whole ship without checking the forebody 
free-surface disturbance alone. It is conceivable that the optimum value so ob¬ 
tained might be attributable not to the fact that both the bow and stern produce 
very small free waves but rather to the favorable theoretical interference effect 
of large bow and stern free-wave systems. Due to the viscosity effect, the ex¬ 
isting theory cannot accurately predict either the amplitude or the phase of the 
stern free waves, so that the favorable interference effect as predicted by the 
theory may not always be realized in practice, thus leading to a large wavemak¬ 
ing resistance. Therefore, it is rather important to minimize the forebody free- 
surface disturbance. 

It will be shown later that by proper application of the existing theory, we 
can obtain hull forms with theoretical wavemaking resistance values much less 
than those of existing designs. Due to these low levels of wavemaking resist¬ 
ance, such theoretical predictions will be quite accurate, any remaining errors 
no longer being of great practical significance. In concluding this section, I 
feel that the present wavemaking resistance theory can and should play an im¬ 
portant role in the design of future ships. 
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NUMERICAL COMPUTATIONS 

Theoretical Representation of a Hull Form - Singularity 
Distribution 

For theoretical analysis of the wavemaking resistance of a given hull form, 
the latter is theoretically represented by a singularity distribution. Since our 
aim is to obtain a hull form with low wavemaking resistance rather than to pre¬ 
dict the wavemaking resistance of a given hull form, the singularity distribution 
has been chosen as the starting point. After a suitable distribution has been 
found, the hull form is then generated from it. 

A distribution of singularities in space is defined by their location as well 
as their density. Our ultimate objective is to find an optimum singularity dis¬ 
tribution which will generate a hull form with low resistance and practical pro¬ 
portions, and at the same time is convenient for theoretical analysis. 

It is obvious that a central plane distribution cannot yield practical hull 
proportions, and it must be discarded. On the other hand, if we choose the hull 
surface as the location (as has been done in Ref. 3), the density is automatically 
fixed. In such cases, even though we can always choose a satisfactory hull ge¬ 
ometry to start with, we have no room left for improvement of the wavemaking 
resistance. A logical choice of the location is somewhere between the central 
plane and the hull surface. 

The gross overall ship dimensions can be effectively controlled by the loca¬ 
tion of the singularity distribution. Our procedure is to select this location first 
and then to determine the density distribution on the chosen location such that 
the wavemaking resistance will be kept low. Let - , n, and 5 be the nondimen- 
sional coordinates normalized by one-half of the ship length. The origin is lo¬ 
cated at the midship section on the undisturbed free surface. The positive di¬ 
rections of 77, and ç are in the forward, port, and upward directions 
respectively. 

Equation (1) defines an ^/-surface on which our singularity distribution is 
placed. 

with 

n = iB(f) [1-(1-3- b) x3n - ax2n - bsen] 

X = —k— For 0 < .f ■ P, (Í) 
pb(0 - - b 

and 

x = FfT) For _ 0 

(1) 

where B( O, Pb( ' \ and P,( ' ) define the midship section, bow profile and stern 
profile of the rj-surface, respectively. Parameters ", t>, and n are needed to 
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obtain a large family of surfaces. At present, B( '), Ph( ), and Ps(0 are 
chosen to be constant. Later, if necessary, the general case will be examined. 

We choose Eq. (2) as the expression for the singularity density, which is 
defined as the singularity strength per unit velocity of a moving ship. 

M(c.i) = L L aj . s'V for -1 < f < 1, -T . ; < 0 (2) 

These surface singularities can be either source or doublet. For the purpose of 
generating a bulb, a line source and line doublet located at the end of the r-surface 
are also included in our scheme. Equations (3) and (4) define the line source and 
line doublet strength, respectively. 

line source S( Q - £ s. * (3) 

line doublet 0(0 ^ £ <K '^ 

To obtain a flat keel line or a flat bottom, an additional surface source and 
doublet are placed on the horizontal bottom of the ^-surface. 

Theoretical Analysis of Wavemaking Resistance 

We first assume that our hull form, theoretically represented by Eqs. (1) 
through (4), has a very low level of wavemaking resistance. Under this assump¬ 
tion, the theory can be used to analyze wavemaking resistance characteristics 
of the forebody of a hull form quite accurately. If, at the end, the theoretical 
wave-resistance level of the hull form under consideration is not low, we reject 
such singularity distributions. 

We are interested in two different kinds of theoretical analysis. First we 
must obtain the theoretical wavemaking resistance curve as well as the free- 
wave amplitudes of a given singularity distribution. Second we must find the 
optimum singularity distribution under a set of design conditions. A computing 
program has been developed to perform both kinds of theoretical analysis. 

The general scheme and procedure for performing the double integrations 
for free-wave amplitudes and triple integrations for wavemaking resistance 
numerically have been fully discussed in Ref. 4. Computing the free-wave am¬ 
plitudes and wavemaking resistance curve of a given singularity distribution is 
a relatively straightforward procedure. To find the optimum singularity distri¬ 
bution under a given set of design conditions is more complicated. Our aim in 
such theoretical analysis is to develop a hull form with both low wavemaking 
resistance and a satisfactory hull geometry. It should be emphasized here that 
the wavemaking resistance theory is used to obtain a hull form with low wave- 
making resistance rather than to predict the wavemaking resistance. The wave¬ 
making resistance of a final design is obtained by model experiments. It should 
also be mentioned that when we write down a set of design conditions, we have 
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to forego the usual way of specifying a number of hull proportions and hull co¬ 
efficients intended for good resistance characteristics based on past experience. 
Basically, the chief objective of a design is to produce a ship which is safe to 
operate and economical to build and run, to carry a specified displacement at a 
specified operating speed. The conditions imposed in any design problem should 
not include any hull form coefficients related to the resistance. They are not to 
be spelled out as design conditions, but rather are to be determined in the proc¬ 
ess of design. 

In our design problem, the objective is not to obtain the optimum hull form 
among the family covered by our theoretical representation scheme, but rather 
to find one hull form in this family which satisfies the design requirements and 
has an acceptable low level of wavemaking resistance. From a practical point 
of view, further reduction in wavemaking resistance has no great significance 
after such a level has been reached. 

Our theoretical representation of hull forms is rather general, and the de¬ 
sign conditions to be specified vary from one problem to another. In order to 
have a computing program that will cover a large variety of design conditions 
and perform the optimization, we split the surface source distribution in Eq. (2) 
into four elements. Equation (2) can be viewed as a polynomial of i with coeffi¬ 
cients as functions of i. Each of the l terms is considered as a singularity 
distribution element. These elements are denoted by E,, e 2, E 3, and E4 re¬ 
spectively, corresponding to the zero, first, second, and third power terms of 5 
in the case of surface source distribution. Similarly, E5, E6, E7, and E8 rep¬ 
resent the four elements of surface doublet distribution. The line source dis¬ 
tribution is denoted by E9 and the line doublet is denoted by E10. Altogether, 
we have ten independent singularity distribution elements. 

Consider E, as an example. It is expressed as follows: 

(5) 

with £,(-:) -E,( ) and define: 

(6) 

T, = E,( 1 ) . (8) 

Equations (6) to (8) define three possible restraints to be imposed on the ele¬ 
ment E,. They are grossly related to the displacement volume, the midship 
area, and the entrance angle of the waterline. Similar restraints are defined 
for the rest of the nine elements. In the case of the surface doublet distribution, 
the first restraint is related to the icb position of a half body and the second 
one is related to the displacement volume. In the case of the line source or line 
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doublet, the first restraint is related to the vcb and the second one is related to 
the volume of a bulb. In any specific design problem, we can choose any number 
of the ten elements and impose any number of the three available restraints on 
each of the chosen elements. 

The computing program performs basically one operation. The free-wave 
amplitude is computed from all the elements specified in the input data. Then a 
chosen element which is not specified in the input is determined under the spec¬ 
ified restraints so that the resultant free-wave amplitudes of this particular 
element and that specified in the input will yield a minimum wavemaking resist¬ 
ance at the design Froude number. If no element is specified other than those 
in the input, the program simply computes the wavemaking resistance and the 
free-wave amplitudes of the singularity distribution given in the input at the 
specified Froude number range and interval. 

To obtain a singularity distribution with a low level of wavemaking resist¬ 
ance, only two or three elements are required for a main hull form. The re¬ 
maining surface singularity distribution elements are provided mainly for the 
purpose of meeting the hull geometrical requirements. 

The computing program is very flexible. We can start either v'ith the de¬ 
sign of main hull form alone and later consider the size and shape of the bulb, 
or we may first specify a bulb and then design a main hull form in conjunction 
with this bulb. 

A number of interesting theoretical analyses have been performed by using 
the computer program. The results are given in later sections. 

Hull Form Tracing From a Given Singularity Distribution 

A second computer program has been developed which can be used to develop 
a set of hull lines from a given singularity distribution. This program is an im¬ 
portant link between a theoretical model and its corresponding experimental 
model. The basic assumption made here is that the free surface can be replaced 
by a rigid plane. Inui has shown in Ref. 2 that in the low Froude number range, 
the error resulting from this assumption is not serious so far as developing 
hull lines is concerned. Therefore, at the same Froude number, the less the 
wavemaking resistance, the closer the free surface will approach the rigid plane 
assumption. That means if we limit ourselves only to hull forms of low wave¬ 
making resistance, the error involved in the rigid plane assumption will be even 
less serious. 

The input data for this program specify all the singularity distribution ele¬ 
ments involved in the theoretical representation of the hull form under consid¬ 
eration. The first item the program computes is the additional bottom surface 
singularity distribution required for obtaining flat keel line or flat bottom. The 
program will trace a specified number of streamlines generated by all the sin¬ 
gularity distributions involved. The output of this program consists of a table 
of offsets which define a hull geometry. The details of this computation are 
given in Refs. 2 and 4. 
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If the hull geometry so obtained is not satisfactory, we may either introduce 
additional singularity distribution elements with the necessary restraints or 
modify the restraints on the original singularity distribution elements. Based 
on the gross effects of either modifying the restraints of a particular element 
or introducing a new element to the singularity distribution, we may decide what 
modifications should be made on the restraints or which additional elements 
should be introduced and then make corresponding changes in the input data for 
the first computer program. The output will give a new singularity distribution 
optimized with new elements or with new restraints. The iteration between 
these two programs is necessary in order to obtain a good compromise between 
hull resistance and hull geometry. 

NUMERICAL EXAMPLES IN WAVEMAKiNG RESISTANCE 

In the previous sections two computing programs have been described. The 
first one is used to obtain an optimum singularity distribution for a ship design 
problem or to compute wavemaking resistance curve and free-wave amplitudes 
of a given singularity over a specified range of Froude numbers. The second 
program is used to compute the hull geometry generated by a given singularity 
distribution. This section gives a few numerical results obtained from these 
programs. 

The first example is intended to show that a thick ship can produce less 
free-surface disturbance and wavemaking resistance than a thin ship. The ques¬ 
tion of whether a ship is thin or not is a relative matter, and so is not easy to 
define. It may be thin enough at high Froude numbers and yet not be considered 
thin at low Froude numbers. Model S-101 of Ref. 2 is arbitrarily considered to 
be thin for Froude numbers greater than 0.30, based on the fact that the theo¬ 
retical and experimental wavemaking resistance values are then in reasonably 
good agreement, as shown by the comparison of the computed and measured Cw 
curves in Fig. 2. This model is generated by a surface source distribution on* 
a central plane having the following density expression: 

M(. ) - 0.4- (9) 

with 1 if : 1, and - o.io o. The body plan is shown in Fig. 4. The L B 
ratio is 13.37. 

We can now show that a model can be found with much smaller L B ratio 
and much greater displacement-length ratio, but with less wavemaking resistance 

Fig. 2 - The computed and measured 
Cw curves of Model S-101 
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than Model S-101 at F = 0.30. At first, as in the case of Model S-101, only one 
singularity distribution element E, over the same distribution area as in Model 
S-101 is used. Only the restraint of a certain displacement volume requirement 
is imposed on the optimization of E, at F = 0.30. The E, so obtained is shown 
below: 

£,<•• : '> 3.5127- - 5.4415-72 + 13.3125-3 - 24.4694-4 + 13.6865- 5 (10) 

Figure 3 gives the plot of the corresponding density distribution. 

The body plan of the model generated by E, is shown in Fig. 4. It is denoted 
as Mode) A. It has a LB ratio of 6.06 which is less than half that of Model S-101, 

Figure 5 shows the comparison of Cw curves of Models A and S-101. Up to 
a Froude number of 0 31, Model A actually has less wavemaking resistance than 
Model S-101. This result proves the point that a thick ship can have less wave¬ 
making resistance than a much thinner ship. 

If a singularity distribution is uniform in the draft direction, the free waves 
produced by layers of singularities at various depths are all in phase even though 
the magnitude is reduced as the depth is increased. There is no cancelling ef¬ 
fect between them. To obtain favorable interference, the density distribution 
should vary with depth. To demonstrate this idea, a new singularity distribution 
element, say e3 , is added to the singularity distribution of Model A. Let us 
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0 .04 .08 .12 .16 .20 

Fig. 4 - Body plans of Models A and S-101 

Fig. 5 - Comparison of theoretical 
Cw curves of Models A and S-101 

1 
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assume that the only restriction put on E, is that the displacement volume of 
Model A should be increased by one-third. The optimum E3 so obtained is 
shown below. 

Ej = 115.977-;- 137.8429-f2 t 441.3259:3 - 575.0504-“ 4 259.431.5^s]Ç2 (11) 

This is derived in such a manner that the wavemaking resistance due to the 
combined singularity distributions of E, and E3 is an optimum at F = 0.3. Let 
us denote the model, generated by E1 and E,, as Model B. Figure 6 shows the 
comparison between the Cw curves of Models A and B. Despite the fact that 
Model B has one-third more displacement volume than Model A, it has less 
wavemaking resistance at F = 0.3. 

To illustrate the importance of section shape upon the wavemaking resist¬ 
ance, let us consider a third case, Model C, which has the following singularity 
distribution: 

M( -;, ■ ) - 3Ej '2 4 £, 302 (12) 

where E, and E, are defined in Eqs. (10) and (11), respectively. 

It is obvious that to the first order of approximation Models B and C have 
the same sectional area curve. Figure 7 shows the comparison of the Cw curves 
of Models B and C. The differences between these curves are quite large. This 

Fig. 6 - Comparison of cw curves of Models A and B 
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Fig. 7 - Comparison of theoretical 
Cw curves of Models B and C 

figure also indicates that a good vertical displacement-volume distribution at 
low Froude numbers may not necessarily be good at higher Froude numbers. 

In Fig. 8, Cw curves are given for three cases with M(-, :,) ^ 4 3 f2, and 
7;3 f , respectively. To a first approximation, all three cases have the same 
displacement volume. At low Froude numbers, the differences between the 
three curves are amazingly large, mainly due to changes in angle of entrance. 
It is also interesting to note that in the case of M(ç,0 = 7 3-;5, the last hump is 
much less pronounced than the preceding ones. 

REDUCTION OF VISCOUS DRAG 

The viscous drag constitutes a major portion of the total resistance of a 
ship. A great potential, therefore, exists for reducing total resistance by de¬ 
creasing the viscous drag, which is mainly a function of wetted surface and 
Reynolds number. However, if not designed properly, the hull form can produce 
large eddies, resulting in a large form drag. Therefore, to reduce the viscous 
drag, we have to reduce both the wetted surface and the form factor. 

We know how to shape a hull to keep down viscous drag for a deeply sub¬ 
merged body, but such information cannot be directly applied to designing a ship 
hull subject to free-surface effects. In ship design, the principal dimensions 
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are chosen to give a proper balance between the viscous and wave drag rather 
than for optimum viscous drag. ^ 

Knowing how to keep the wave drag at a low level, as previously described 
we can select principal dimensions without the danger of increasing wavemakine 
resistance materially. This fact immediately opens the way to reducing the 
wetted surface. & 

for 
As an example, let us consider Model 4210 of Series 60. 
V /L 0.9 and has the following characteristics: 

It was designed 

L B 7.5 

B H r 2.5 

A (L 100)3 = 122 . 

Assuming the length to be reduced by 20 percent, and the displacement and ship 
speed kept the same, v v/T becomes about unity and A (L 100)3 becomes 190 6 
The reduction in wetted surface is of the order of 16 percent. For this model’ 
such a change in length will greatly penalize the performance, the increase of’ 
wave resistance being much greater than the gain in viscous drag. If, based on 
theory, we can design a hull form of these proportions and displacement, with 
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very low wave drag at V A/X = 1.0, such a gain in viscous drag can be realized 
without the penalty of increased wave drag. 

This idea of reducing the wetted surface through the application of wave- 
making resistance theory is quite useful. However, this is not the only way the 
theory can be used to reduce viscous drag — the form drag can also be reduced, 
as described below. 

Ever since the comparison of the results of Models 4946 and 4953 (repro¬ 
duced here as Fig. 9) were published (Ref. 4), some uneasiness has been felt. 
The body plans are given in Fig. 10. Model 4953 has 28 percent less displace¬ 
ment and 7 percent less wetted surface than Model 4946, and yet has greater 
total resistance at the lower Froude numbers. It was thought that this was 
mainly due to the wavemaking resistance, but considering the fact that the dif¬ 
ference between these two models is confined to areas much below the free sur¬ 
face, it should not produce a big difference in wavemaking resistance, especially 
at lower Froude numbers. 

One possible explanation for the larger total resistance of Model 4953 is a 
greater form drag. Due to the flat bottom, large eddies may be created in the 
water which flows over the bilge to reach the flat bottom. Such eddies are not 
likely to be created in the case of Model 4946 because of its .’ounded bottom. 
However, the turn of the bilge in the case of Model 4953 is not particularly hard. 
If large eddies do exist under the flat bottom of this model, it is likely that a 
majority of flat bottom models have the same drawback. 

In searching for evidence of eddies beneath a flat bottom model, the wake 
survey results behind a smaller version of Model 4210, reported by Wu (Ref. 5), 
have been studied with great interest. Some of the figures of Ref. 5 have been 
reproduced here as Fig. 11. This model has a draft of only 0.53 ft and yet the 
wake is still quite strong at a depth of 0.7 ft. This cannot happen without the 
presence of large eddies underneath the flat bottom. 

It is quite possible that although Model 4953 has less displacement volume 
and wetted surface than Model 4946, it may have a stronger wake belt trailing 
behind it. It would be very desirable to conduct wake surveys behind these mod¬ 
els, but these are quite tedious and expensive, and it was thought that a flow 
visualization test might give a general picture of the flow near the bilge and 
bottom. Such tests have been conducted on both Models 4953 and 4946 in the 
circulating water channel. 

Figures 12 and 13 show the corresponding pictures of these two models. 
Ink was introduced at nearly the same longitudinal stations. All the photographs 
were taken at a speed of 3 knots. It is quite clear from these pictures that large 
eddies do exist in Model 4953. These may account for a large portion of the in¬ 
creased total resistance. The bottom picture in Fig. 13 shows the ink flow near 
the stern of Model 4946. The ink was introduced at the bow, and there was no 
noticeable change in the thickness of ink marks as viewed from the other side of 
the model. If there is strong eddying, the diffusion of ink is very great, as ob¬ 
served in a similar test on Model 4953. (Unfortunately, the corresponding pic¬ 
ture was not successful.) 
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It is obvious from the foregoing that if water is prevented from flowing 
across the bilge, as in the case of Model 4946, formation of eddies can be 
avoided. However, the round bottom of Model 4946 is not practical, and we have 
to search for other means. A sizable bulb can be used for such a purpose. 
Starting from the stagnation point, the water can be guided in all directions by a 
bulb, so that it is properly channeled toward the flat bottom from the very begin¬ 
ning rather than spilling over the bilge to reach the bottom at a later stage. 

A bulb can be used in this way to prevent the formation of eddies and thus 
reduce the form drag. However, the total resistance will not necessarily be re¬ 
duced. If not properly matched to the main hull form, a bulb will produce a 
large wave drag, and any gain in form drag may well be exceeded by the penalty 
of wave-drag increment. Again the wavemaking resistance theory can be used 
to great advantage in this situation. To start with, we may choose a proper 
sized bulb and place it at a correct location based on the consideration of 
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Model 4953 Model 4946 

Fig. 12 - Pictures of flow on the forward end of 
Models 4946 and 4953 
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SHIP DESIGN AND MODEL EXPERIMENT 

Having finished the ground work in the first part, we now proceed to the 
second part of this research project. A number of ships will be designed and 
their models will be built and tested for resistance as well as self-propulsion. 
In each design problem, two models will be designed and built. The first one 
will have a simple stern profile. It will be tested for resistance only. The the¬ 
oretical wavemaking resistance curve will be computed for comparison with the 
experimental curve. The second model will be obtained from the first one by 
modifying the afterbody for the purpose of self-propulsion tests in such a way 
as to obtain better propulsive characteristics. However, the original afterbody 
sectional area curve will be kept intact as much as possible. 

One ship design has been started already, and the first model is now under 
construction. Perhaps it is worthwhile to discuss some of the thoughts incorpo¬ 
rated in the design of this model. 

The design conditions are very broad. It is required to develop a fast cargo 
ship with a displacement of 21^500 tons and a designed speed of 24 knots. A ship 
length of 550 ft will give a v/v L value of 0.98 and a A/(L/100)3 value of 129. If 
normal practice is followed, a ship length of more than 550 ft would be chosen. 
Based on the idea of r educing viscous drag, we limit the ship length to 500 ft. 
This will increase the designed speed-length ratio from 0.98 to 1.07 and the 
displacement-length ratio from 129 to 172. 

A bulb of moderate size has been adopted for the purpose of reducing eddy¬ 
ing underneath the flat bottom. This bulb is placed above the base line so that 
the keel line is bent upward toward the bow. In doing so it is hoped that the 
favorable flow condition on the bottom of Model 4946 will also exist on this de¬ 
sign. We have thus shaped the bow first entirely from the consideration of re¬ 
ducing eddying. Then the main hull is optimized in conjunction with the chosen 
bulb such that the forebody free-surface disturbance is very small. 

To start with, only Eg shown below is used to generate the bulb. 

E, = .01 + .0542 + -08¾3 (13) 

with -0.8 <. r < o . E,0 has not been included here in order to avoid excessive 
narrowing between the bulb and the main hull. 

The next item to be considered is the -surface. It has been found that sat¬ 
isfactory results can be obtained by approximating the ^-surface waterline to 
the sectional area curve of a Standard Series Model with about the same pris¬ 
matic coefficient as the model under consideration. The width and the depth of 
/-surface as well as the singularity distribution placed on it determine the L B 

and B/H ratios of the design. To start with, the width and depth of '/-surface 
are estimated. Satisfactory solution is obtained by trial and error. 

From the eight available singularity distribution elements, we arbitrarily 
chose E, and E3 for the main hull. The only restraint imposed upon the opti¬ 
mization is the required displacement volume. However, if the midship section 
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area so obtained is too big, we can add one more restraint on the design condi¬ 
tion so that a desirable prismatic coefficient can be obtained. 

From the experience obtained from Model 4946 and many models tested by 
Inui at the University of Tokyo, we can anticipate a phase shift between theoreti 
cal and measured wavemaking resistance curves. The experimental curve is 
always shifted to the right of the theoretical curve. Therefore, in this design 
the optimization is done at F = C.28 rather than 0.32. 

At this point the computer programs are used to carry out the lengthy, tedi 
ous numerical computations. After a few trials and errors, we obtain the fol¬ 
lowing singularity distribution for our final design. 

r = i [.013^6 + .04813-:4 - .16113¿f2 + .1] . 

On the side of -surface we have 

E, ¡6.5504-: - 29.0186-2 + 67.4020,f3 - 74.720.lf4 + 30.2692Í5] 

E3 - [10.9934-: - 61.3783<f2 + 158.8456f3 - 183.8859f4 + 75.0307:5]^. 

or 

M(,-:,0 = E, + e3 . 

On the end of ^-surface we have 

e9 = .008 + .04:,2 + .04:,3. 

On the bottom of 7-surface we have surface source 

Ms ( -, v) = [-.1882-: - 2.3841,f2 + 15.9590-3 - 28.8343-4 t 13.6760,f5] 

+ [2.2616- - 5.3769-:2 - 625.5772,f3 + 163.9480-4 - 82. 5272:5] 7; 

+ [-13.3743-: + 107.5863-2 - 208.1482:3 + 151.7266-4 - 88.7849^0,2 

+ [12.2606-: - 121.115&r:2 + 338.7764,f3 - 419.1692-4 + 232.2801,f5]7¾3 

surface doublet 

M,|( - , ) = [. 1131f - . 4594c 2 + 1.5838-3 - 2.7567,f4 + 1.6938-5] 

+ [-2.5399- + .9383:2 -4.1500-3 + 7.5077,f4 - 5.1727c5]7, 

, [-.3740- f 2.4491,-:2 - 8.8036-3 + 12.8106-4 - 5.2930c5 If,2 

+ [.4157- - 3.4692-2 ♦ 1.3092c3 - 20.3145]4 + 1.0316-5]f3 
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with -0.08 <. f, <: o and 0 < ç < i, where is the nondimensional distance from 
the central plane as normalized by the local offsets of r;-surface. 

The afterbody has been chosen as the mirror image of the forebody. This 
model is denoted as Model 4996. 

Fig. 14 - Theoretical Cw curve of Model 4996 

The theoretical Cw curve for this design is given in Fig. 14 and the body 
plan and waterline endings are shown in Fig. 15. Due to certain limitations in 
the second computer program, we cannot obtain a true flat bottom. Some hand 
fairing is necessary at the present time. However, such fairing is limited to 
the bottom portion of a model only. In the case of Model 4996 as shown in Fig. 
15, such fairing is done below the 0.3' W.L. An effort is being made to eliminate 
this shortcoming in the computer program. 

Model 4996 has a B/H ratio of 2.64, a L/B ratio of 5.82, A/(L too)3 ratio of 
172.2. These proportions are very desirable, especially the large displacement- 
length ratio which has a large influence on the per ton construction cost. The 
experimental result of Model 4996 is anxiously awaited. 
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CONCLUDING REMARKS 

While fully aware of the limitations of the existing theory, we believe that 
useful results have been achieved without exceeding these limitations. By re¬ 
stricting the analysis to forms of absolute low-wavemaking we have not unduly 
violated the linearization at the free surface, and by recognizing the relative 
importance of forebody wavemaking we have avoided some of the problems of 
viscosity. 

The idea of reducing the viscous drag of a ship through the application of 
the wavemaking resistance theory is rather interesting. It may have an impor¬ 
tant influence in the design of future ships. 

However, even though the arguments used in this paper to support our views 
and ideas are quite logical and plausible, the final proof of the validity of these 
arguments rests on model experiments to be carried out in the very near future. 
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NOTATION 

a,b, n 

a. . 
» > 

B 

d. 

D(0 

E,.E2.E3E4 

ES'E6’E7'E8 

'10 

F 

Three parameters defining n-surface 

General coefficient in Eq. (2) 

Ship beam 

Defined by Eq. (7) 

Total resistance coefficient 

Wavemaking resistance coefficient 

General coefficient in Eq. (4) 

Strength of a line doublet 

Surface source distribution elements 

Surface doublet distribution elements 

Line source distribution element 

Line doublet distribution element 

Froude number 
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K Gravitational constant 

H Ship draft 

Hb Total head referring to the undisturbed condition 

Hb Total head referring to the behind condition 

K Form factor used with Hughes friction line 

L Ship length 

*1(Í.0 Density of surface singularity distribution 

Mo Surface source density at = i 

Rt Total resistance 

R» Wavemaking resistance 

sj General coefficient in Eq. (3) 

S(0 Strength of a line source 

T Depth of singularity distribution 

Ti Defined by Eq. (8) 

v Ship speed 

vi Defined by Eq. (6) 

> Coordinates 

A Displacement. 

Hull Design," INA (1954)^^268-271^6 Resistance Calculations to Ship 

3' 
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DISCUSSION 

G. P. Weinblum 
Institut für Schiffbau 

University of Hamburg 
Hamburg, Germany 

Leaving aside basic theoretical considerations in the field of wave resist¬ 
ance, we consider Dr. Pien's recent proposal a valuable contribution following 
which bodies are generated in a uniform flow by distributing singularities over 
a suitably chosen skeleton surface instead of over the central plane. By these 
"Pienoids" a serious difficulty has been mitigated when investigating hull forms 
of least or low wave resistance; the recent trend to study flow conditions by de¬ 
termining singularities over a prescribed body surface makes an optimisation 
of the latter obviously impossible. 

In the present paper an attempt has been made to apply theory to the solu¬ 
tion of a rather general engineering problem, the determination of hull forms of 
low total resistance (instead of low wave resistance, etc.). The exposition of 
this important task is in my opinion slightly impaired by some global and dep¬ 
recating statements made by the author. Some aspects of the problem have 
been clearly described by D. W. Taylor in his "Speed and Power of Ships"; cf., 
his famous sketch representing the total rest and frictional resistance Rt, R 
and Rf of a given dimensionless form and V = const, as function of the length". 
The essential difficulty consists in finding the wave and viscous drag components 
leading to an optimum. 

It is typical and unavoidable that one has to face the viscous resistance 
problem when dealing with the wave resistance. The author asserts that we 
know how to shape a deeply submerged body of low viscous drag. This is cor¬ 
rect as long only as a qualitative reasoning is concerned. Reference is made to 
the pertaining formulas 

with 
Cv = (1 * ">C*0 

n = 2. 2 B/L + ... 
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for a cylinder; 

for a body of revolution; 

ni 0.6 D L + ... 

n ' 19(CgB L)2 

Granville's formula for shiplike bodies. 

The primitive character of these relations indicates that quite a bit of re¬ 
search work should be done before the author's optimistic statement can be ac¬ 
cepted, e.g., with regard to dependency of the drag of full forms upon propor¬ 
tions. Contrary to his optimism, Dr. Guilloton has recently expressed the 
opinion (Bull. Ass. Technique Maritime, 1964) that our knowledge of viscous 
drag as function of the hull form is almost nil. 

The difference in the total resistance R, of Model 4946 and Model 4953 can 
be explained by viscous as well as by wave effects. The former are estimated 
by K,„..i at low F (as pointed out by the author), the latter by the intersection 
of resistance curves at F = 0.30. The difference in the prismatic coefficients 
is helpful for such a phenomenological discussion. 

The author emphasizes as a new result that the wave drag of a fat ship can 
be smaller than for a thin ship. In the light of Taylor's findings (and those de- 
duced from theory) this may be trivial in a range where Rw depends strongly 
upon the prismatic coefficient. Examples based on theoretical calculations 
have been frequently given; some caution, however, in the quantitative applica¬ 
tion is advisable. 

The shift of the measured wave drag curve to higher F as compared with 
theory has been firmly established by Wigley and Havelock. 

The author asserts that in the field of comparison between theory and facts 
almost only the work done by Prof. Inui counts. Although I am an admirer of 
the valuable contributions made by our distinguished chairman the author's state¬ 
ment is in my opinion erroneous; the most valuable experiments are those by 
Mr. Wigley (TINA 1924) and the TMB Report where the so-called friction plate 
furnished by mistake the ideal thin ship model. 

It is erroneous to assume that wave resistance results by computation are 
always larger than those derived by experiment; this certainly does not apply to 
hull forms which by theory are extremely advantageous (due to strong interfer¬ 
ence effects which may be destroyed by viscosity). 

The hull form proposed by the author appears to be promising for medium 
Froude numbers (cp = -/. = 0.58, moderate bulb, gentle turns of bilge). The raised 
bulb, however, may be unfavorable in a seaway, especially under ballast condi¬ 
tions. 

The attempt of applying theoretical reasoning to actual design problems is 
highly appreciated. 
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DISCUSSION 

K. Eggers 
Institut für Schiffbau 

University of Hamburg 
Hamburg, Germany 

I have to make a general remark concerned with the method by which Dr. 
Pien and other colleagues find hull iorms for which certain singularity distribu¬ 
tions are considered representative for calculation of wave resistance. 

We know that by the Hess-Smith procedure we can determine source distri¬ 
butions on surface of these hull forms, and that wave resistance for such distri¬ 
butions then can be calculated along the lines developed in the paper of Breslin 
and Eng. 

I declare that there is definitely no convincing argument for the assumption 
that resistance calculations for these alternative singularity distributions should, 
precise numerical methods assumed, lead to identical values. 

Furthermore, we can create systems of arbitrary high wave resistance, 
which still generate the same flow around the double body under infinite gravity, 
just by proper linear combination of both kinds of distributions ! 

Which wave resistance then is to be considered the 'correct' one, assuming 
now the form to be given ? We could select the lower limit from the class of all 
distributions representing the form under infinite gravity and constant speed at 
infinity. But probably this value is not attained by a single distribution over the 
whole range of Froude numbers. 

It is easily shown that for any form of nonzero volume there must exist 
more than one distribution to represent it in infinite fluid. We can, for instance, 
at any interior point add a source layer of constant strength on a surrounding 
sphere, compensated by a corresponding sink layer on an exterior concentric 
sphere such that there is no resulting flow outside. 

In case of a submerged body this will not change the wave resistance. In 
case of a floating body, however, only the part of the additional system below 
the undisturbed free surface will contribute within linear theory. The flow due 
to this lower part only will in general not vanish outside and will thus induce 
additional waves. 

Take the case of a semi-submerged spheroid. This can be represented by 
volumetric dipole distributions in any confocal spheroid, equivalent to source 
layers on the surfaces. As a limiting case we get a line dipole distribution be¬ 
tween the foci. This latter gives the largest, i.e., infinite resistance. 

For a singularity distribution found by analytical methods to be optimal 
within a certain class, we may determine some associated body form by tracing 
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stream lines. But if the body is piercing the undisturbed free surface, why 
should just this distribution be selected for calculation of wave resistance ? 

Intuitively, I would prefer the combined source-dipole layer on the surface 
used in Green's theorem, as this has minimal, i.e., zero-inner kinetic energy. 
In any case we have to formulate proper restrictions for the flow within a ship's 
waterplane area to keep variation of resistance calculated in reasonable limits. 

* * * 

DISCUSSION 

J. N. Newman 
David Taylor Model Basin 

Washington, D.C. 

There has been considerable discussion this afternoon concerning the rela¬ 
tive importance of nonlinearities in the free surface condition, and now Dr. Pien 
has advanced the suggestion that the linear free surface condition is valid for 
"fat" ships if they are ships of low wave resistance, or that fat ships of mini¬ 
mum wave resistance are equivalent to thin ships, as far as the free surface 
condition is concerned. This may in fact be a valid analogy from the engineer¬ 
ing standpoint, but I hope that it will not be confused with a rigorous mathemati¬ 
cal development. 

A necessary condition for the linearized free surface assumption is that the 
elevation of the free surface is everywhere small, compared to the wave length 
of a characteristic wave. This is clearly true for a thin ship since (in an ideal 
fluid) the fluid disturbance and free surface elevation can be made arbitrarily 
small by making the ship sufficiently thin. The free waves or far-field disturb¬ 
ance associated with a ship of minimum resistance will also be small because 
wave resistance implies wave energy radiation, but the free surface disturbance 
near the ship will not necessarily be small since this is a local disturbance and 
is essentially independent of the wave resistance of the ship. An obvious exam¬ 
ple is the waveless (infinite draft) ship discussed by Dr. Yim; for this case 
there will be no free waves and the linearized free surface condition will clearly 
be justified in the far-field, but close to the ship there will be a local disturb¬ 
ance which can be made arbitrarily large simply by increasing the singularity 
strength. In other words, a ship of low wave resistance will satisfy the linear 
free surface condition over most of the free surface, but not necessarily close 
to the ship. 

Please let me emphasize that my objection is based upon the rationality of 
the theory, and not upon practical considerations. For practical purposes I 
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would encourage the use of the linear theory, as long as it gives satisfactory re¬ 
sults. Intuitively I would agree with Dr. Pien that a ship of small wave resist¬ 
ance will probably have less associated nonlinear effects from the free surface 
than another ship of the same principal dimensions but larger wave resistance. 

DISCUSSION 

Lawrence W. Ward 
Webb Institute of Naval Architecture 
Glen Cove, Long Island, New York 

Dr. Pien has presented a very stimulating paper and one which I feel is es¬ 
sentially correct, but I would like to take this opportunity to discuss two points 
which I feel are of importance in connection with this work and with some of the 
other papers given this afternoon as well. 

The first point is that of the question of the definition of wave resistance 
which is essentially that of the definition of wave resistance in real fluid since 
in the case of an ideal fluid all definitions seem to lead to the same result. 
There are a number of definitions possible, depend ng on the use to which the 
definition is to be put; and I would like to review this matter with you at the risk 
of boring those who were at Ann Arbor with the help of a table similar to one 
shown at that time (Fig. 1). Since the theory of wave resistance in a real fluid 
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has not been developed to any useful extent, I have included only those definitions 
which can be related to experiments in some way. 

In Fig. 1 various breakdowns of ship resistance into components are shown 
in historical order from left to right. First we have (1-a) Froude's hypothesis 
and (1-b) the modernization thereof by Hughes. Here the goal is mainly that of 
model scaling, and the breakdown into frictional and residual components is 
done on the basis of dimensional analysis, that is, Buckingham’s Pi Theorem. 
Froude's original hypothesis was that the total resistance could be separated 
into a "residual" part, C r, depending on the Froude number and a frictional 
part depending on the Reynolds number. In practice, the latter was estimated as 
being the skin friction, Cf, of a plank of the same length and wetted area. This 
results in the residual resistance including some viscous effects due to separa¬ 
tion. These are sometimes termed "form" and "eddy" resistance. Hughes added 
the concept of a form effect (l + r) on cf derived from tests of geometrically 
similar models (Geosim tests), this being a practical improvement only if such 
factors do not depend strongly on the Froude number and can be estimated with¬ 
out recourse to such tests. By assuming no Froude number dependence, the 
form resistance can also be estimated on the basis of the resistance at low 
Froude numbers where the wave resistance is expected to be negligible. The 
corrected residual resistance, C'r, includes the wave resistance but also an un¬ 
defined portion of the eddy and form resistance, probably that part which is 
Froude number dependent. 

The second listed breakdown is with respect to the vectorial nature of the 
local fluid stresses at the hull boundary, i.e., tangential shear and normal pres¬ 
sure. The latter are determined from . ressure survey over the entire hull 
and then are integrated in conjunction w u the known hull surface slopes to give 
a resultant pressure drag component, Cpr. This can then be subtracted from 
the measured total drag to deduce the integration of tangential viscous shear 
stresses. It should be pointed out that the major effects of viscous separation 
are not included in this force component but in the normal pressure drag com¬ 
ponent. The required experiments and analysis, originally done by Eggert and 
more recently by Townsin and Hogben are quire extensive. While historically 
interesting, this has not yet proved to be a practical means of meeting any im¬ 
portant goal. 

The third breakdown is with respect to the physical phenomena involved, 
i.e., the formation of waves and the development of a viscous shear wake. Here 
the question of breakdown reduces to that of separating the total momentum 
survey around a closed control volume away from the hull into (a) that portion 
involving the viscous wake and (b) that due to wave orbital velocities, and then 
integrating these to obtain Cv and Cw, respectively. The experimental tech¬ 
niques available to measure the wave resistance, Cw, are therefore either (a) 
a direct momentum survey of the waves making a proper correction in the wake 
region or (b) a valid viscous wake survey adjusted for the presence of waves 
which is then subtracted from the measured total resistance. The latter method, 
which has been employed for example by Landweber, is less direct and might 
suffer from inaccuracies due to the process of taking differences of large num¬ 
bers. In addition, one must assume that there is no third mechanism of energy 
dissipation present, which has not been proven yet. It is the third breakdown of 
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total resistance that I tend to favor. The wave resistance is in this way defined 
in terms of the energy actually going into the wave system in the real fluid (not 
for example what might be the energy going into the wave system of the same 
ship in an ideal fluid). It is evident that no direct relationship between the wave 
resistance, Cw so defined, and the pressure resistance, Cpr, or the residual 
resistance, Cr (or C' ), need necessarily exist, and this is the p > nt I wish to 
make. Recognition of this can eliminate pointless arguments as 10 which method 
of measuring wave resistance is correct. 

My second point deals with the various statements by Dr.Pien on pages 1110- 
1116 and the results given in Table 1 and Fig. 1 of Dr. Pien’s paper. The state¬ 
ments which I refer to and which seem to be backed up by comparison of theory 
and experiment are those which infer that the theory approaches the experimen¬ 
tal values in some monotonie way (a) as the Froude number gets larger and (b) 
as the wave resistance gets smaller and furthermore that Michell’s prediction 
forms an upper bound to the experimental wave resistance. I find it hard to be¬ 
lieve that the situation in general is that simple and would like to point out some 
evidence to the contrary. The first involves experimental results I obtained in 
the Webb tank from direct measurement of the wave pattern using the ”XY" 
method of analysis. The first (Fig. 2) shows this result for the A TTC Standard 
Model which is also the parabolic form Wigley tested and reported in 1926-7 in 
the INA. It can be seen that there is in fact a region where Michell's estimate 
is less than the wave survey result, and it would also be less than the residual 
resistance with a suitable Hughes form factor. The second result (Fig. 3) is a 
series of tests using the same method on the Series 60, 0.60 block model car¬ 
ried oat to very high Froude numbers and while .here is some question of the 
circular cylinder used in the method being large enough at the high Froude num¬ 
ber end of the curve, it is obvious that a very major adjustment in the data 
would be required to bring theory and experiment together in this range. 

Fig. 2 - Experimental wave resistance of 
the ATTC standard model (L = 5 ft 4 in.) 
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Fig. 3 - Experimental wave resistance of 
the 5 ft 0 in. Series, 60 Model (0.60 Block) 

ld t0 say in reference t0 the suggested improvement in 
agreement of theory and experiment as either value becomes small, Wigley him- 
self as most of us know tested two models of the parabolic form of 3/4 and 1/2 
the beam of the original, which was already quite a thin ship, with no such im- 
m nfnt ll? aSrfement between the experimental values obtained and the 
T Hohni! ® calc“latl0n ^h.of course, remained constant (on a coefficient basis). 
! do not njean to imply that Dr. Pien's results are not correct but that they 
should not be looked at as being general. y 

DISCUSSION 

A. Silverleaf 
National Physical Laboratory 

Teddington, England 

, ,. Dr‘Pi?n ! w°rk in aPPtying wavemaking resistance theory to ship design is 
held in the highest regard at N.P.L., and this latest progress report contains 
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many fruitful ideas. A general programme of research into low resistance hull 
forms is now being undertaken at N.P.L.; this incudes experiments to examine 
Pien's suggestion that the double model approximation should give closer agree¬ 
ment between calculated and measured resistances for source distributions hav¬ 
ing low wave resistance than for resistful forms. Two bodies are being designed 
from wave source theory, each consisting of a bow shape followed by a long par¬ 
allel afterbody, and an attempt will be made to measure their head resistances 
alone. One of these forms does not have a particularly low calculated wave re¬ 
sistance, but the second has been optimised following the same general princi¬ 
ples as those adopted by Pien. If good agreement between theory and experi¬ 
ment is obtained for this second form, we believe that it will aid significantly in 
using wave source theory as a practical design tool in the way indicated in this 
paper. 

The assessment of the results of any such study of calm water resistance 
effects depends on the establishment of a recognised yardstick or resistance 
criterion. In assessing wave resistance alone, this criterion should preferably 
involve only the displacement, speed and length. Displacement and speed are 
the primary specified operational requirements, and length may be regarded as 
a primary limiting parameter. The hydrodynamic criterion of quality should be 
based on the maximum immersed length, thus imposing a penalty on a device, 
such as a projecting bulbous bow, which reduces resistance at the expense of 
increased underwater length. Not ail comparisons have been made on this basis 
and it is more than possible that this has influenced the conclusions drawn from 
them. 

* * * 

DISCUSSION 

S. W. W. Shot 
Bureau of Ships 
Washington, D.C. 

In commenting on Dr. Pien's paper I first wish to congratulate him on the 
persistence with which he has pursued his search for a practical solution to the 
problem of reducing the total resistance of a ship's hull. The fact that this 
search seems verging on a successful result with even more general applicabil¬ 
ity than we had dared hope is most gratifying. 

As to the details of his paper, I wish to invite attention particularly to two 
of his statements which are corroborated by my own work. 

First, Dr. Pien is quite correct that the best approach within the confines 
of existing ship wave theory is to optimize the shape of the forebody of the ship, 
and then to design the stern separately. This means that he does not count on 
using the stern waves to cancel the bow waves, but instead sees to it that the 
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forebody does not generate bow waves. This approach is suggested by Inui’s 
work. We may recall that Inui found that bow wave amplitudes are close to 
those predicted by theory, particularly if they are small, but that stern wave 
amplitudes are significantly smaller than those predicted. The ratio of observed 
!mvndiCîed s^ern .wave amplitude is Inui’s parameter , and it becomes quite 
small at low Froude numbers. At the Froude numbers around 0.3, for which 

Pl®n has dfsisned his models, the value of for Inui’s Model’s-^Ol is under 
0.7, and for S-202 is even smaller, just above 0.5. This means that the stern 
waves, which by theory for these double-ended hulls should be as big as the bow 
waves, are in reality only a little over half as big and so cannot do much to can¬ 
cel the bow waves. Worse, they are generated in the frictional wake which 
moves in the same direction as the ship, and so their transverse components 
must have a shorter wave length than the transverse components of the bow 
wave if the stern wave pattern is to move with the ship. Waves must both move 

¡¡¡Jíff™1116 îre.Ctr.and have.the same wave len&th if theV are to cancel. It is 
therefore evident that in practice we cannot expect cancellation of the trans¬ 
verse portions of the bow wave by the transverse portions of the stern wave 
even to the extent suggested by the existence of non-zero values of ß. It is 
possible to show, also, that transverse components of the bow wave should not 
penetrate into the wake at all, but should be reflected from its Sündary so ttat 
cancellation becomes impossible. This, of course, can also be deduced from 
inui s experimental observation of the wave-shadow effect. Because of this we 
should not expect complete cancellation of bow waves by stern waves even at 

much rnSrSeS“ gher ^ °'3 ^ ^ ß 

Actually, it is possible not only to provide an explanation for Inui’s semi- 
empincal parameter ,- fr:m the fact that viscosity causes water to be dragged 
along with the ship, but an estimate of how much this reduces the velocity of 
wpter relative to the stern. As a result of viscosity the stern waves are^gener- 

thtn ^ m0V!ng atua rl0City relative t0 the hul1 which is somewhat less than that of the water which generates the bow waves. How much less can be 
deduced by working backwards from Inui’s results. This has been done in Fig. 

QÍ0ríe£e+?errat10 C 1SJhat rati0 oi relative sPeed of ship and water at the 
stern to the forward speed of the ship which is required to fit Inui’s curves of ß 
vs Froude number As shown in Fig. 1, the ratio does not change much over a 
wide range of speeds. Although the bow, as Pien points out, should be optimized 
at-*K sp®ed close t0 the speed of the ship (he optimized at F = 0.28 for a ship 
with actual speed F = 0.32), it follows from the data shown in Fig. 1 that the 
stern should be optimized for a much lower speed. For example, referring to 
the figure if we were to optimize the stern of hull S-202 to operate at a ship 

(0.32) = (0MH0.32)e=S0O2íd °PtimiZe the Stern at a Froude number (‘Ve) 

A second point which Dr. Pien makes is that the conventional hull form pa- 
râmeters must be disregarded when hull forms are optimimized. Certainly I 
íiad thi.S.t0.be true- have just finished a calculation using the method of steep 
descent to decrease the wave resistance of a destroyer type ship intended to * 
operate at 30 knots, and in the calculation I held constantSte secttonal aref 
curve as well as the load waterline, the sound dome, and the draft. The calcu¬ 
lation, which started with a hull designed by a good naval architect, had to make 
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auxiliary functions arising from each term obtained by squaring the left-hand 
side of Eq. (2) are analogous to his functions tabulated in TMB Report 886. The 
main difference is that Eq. (2) is used to express the singularity distribution 
which will generate the hull form rather than to express the hull form directly. 
With this remark, I shall attempt to answer a number of points raised by him as 
follows: 

It would indeed be erroneous to make a general statement that wavemaking 
resistance values as computed are always larger than those obtained experimen¬ 
tally. Remark 1 in the justification of application section of my paper was based 
on the observation of Fig. 1 that if the wavemaking resistance theory is applied 
to the forebody only, where the viscosity effect is small, the theoretical predic¬ 
tion based on Professor Inui's method will be an upper limit to the possible ex¬ 
perimental wavemaking resistance values. I am fully aware of the fact that 
strong favorable interference effect may not be realized due to the viscosity 
effect. I mentioned this fact as a source of difficulty when the wavemaking re¬ 
sistance theory is applied to a whole ship. Hence the importance of minimizing 
the forebody free-surface disturbance has been advocated. 

In the past, many comparisons have been made between the theoretical and 
experimental wavemaking results. No consistent conclusion has been reached 
from these comparisons. One of the main causes is due to the fact that the 
theoretical model and the experimental model are not "exact" as explained 
clearly by Inui in Ref. 2. Therefore it is extremely important to know whether 
the theoretical and the experimental models are equivalent or not, when we 
study the comparisons. To illustrate this important point, let us study the com¬ 
parisons of three models made by Mr. Wigley in 1927. 

Figure A is a replot of a portion of Mr. Wigley's original comparisons. In 
this figure, Cw versus Froude number (and V/v L) curves are plotted instead of 
©w versus ©as in the original figure. Models 825, 829 and 755 are identical 
except in beam scale. Model 825 has the smallest beam and its theoretical pre¬ 
diction at high Froude number, where the viscosity effect is small, should be 
closer to the experimental curve than in the cases of the other models. How¬ 
ever, this figure does not show this fact. This apparently puzzling situation had 
been cleared by Professor Inui thirty years later in Ref. 2. Figures B and C 
are taken from Ref. 2. Figure B shows how the singularity distribution per unit 
beam varies with beam instead of being constant as in the Michell’s thin ship 
theory. Figure C shows how the wavemaking resistance coefficient Rw/!4pv2B2 
varies with beam rather than independent of beam as Michell's theory asserts. 
Even though both of these figures are for the case of infinite draft, it is quite 
obvious that the theoretical wavemaking resistance curves computed according 
to Professor Inui's method would be higher than the experimental curves at 
high Froude number range for all of these three models. The overestimation 
by the theory varies depending upon the level of wavemaking resistance: the 
higher the wavemaking resistance level, the larger the overestimation. This 
agrees with remark 2 made in the justification of application section of the 
paper. 
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a considerable change in hull shape within the given constraints to work a one 
percent decrease in the wave resistance. It was obvious from some of the in¬ 
termediate quantities computed that with less constraint much more improve- 
ment couid have resulted from the same amount of departure from the given 
hull form. The calculation was therefore repeated with the constraint that in¬ 
creases but not decreases in hull volume could be accepted. Under this con- 
straint which is much less rigid than one which holds die sectional area con¬ 
stant, the same amount of calculation as used before resulten in a wt,r núrc¡nt 

un- 

REPLY TO THE DISCUSSION 

Pao C. Pien 
David Taylor Model Basin 

Washington, D.C. 

PROFESSOR WEINBLUM 

Professor Weinblum’s comment has been studied with great admiration. 
His work has greatly influenced my thinking in carrying out the work repeated 
in the paper. For instance, the surface singularity distribution expressed by 
Eq. (2) is quite similar to his polynomials representing ship surface. Likewise, 
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F 

Fig. A - A comparison of the theoretical and 
experimental wavemaking resistance results 
of Models 755, 825, and 829 

From the above discussion, then, it should not be unduly criticized for th 
fact that only Professor Inui's comparisons have been shown in Fig. 1 of the 
paper. 

The fact that a fat ship can have smaller wave drag than a thin ship has i 
been stated in the paper as a new result. It is merely used to make the argu¬ 
ment that the existing theory can be applied to a fat ship with very small wav' 
drag as well as to a thin ship. The term "fat" has been used to indicate a lar 
displacement-length ratio rather than a large beamlength ratio. 

In the light of Taylor's findings, Rw may seem to depend strongly upon th 
prismatic coefficient. However, our experience based on the experimental rt 
suits of models derived according to the method described in the paper is tha 
the prismatic coefficient may not always be the dominating factor upon the wa 
resistance. For example, our most recent experimental results of a model w 
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Fig. B - Comparison in waterline 
and in source distribution 
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a prismatic coefficient of 0.64 showed that the Cr value of this model at 
V y L i. i is almost the same as that of a Taylor's Standard Series Model with 
the same beam-draught and displacement-length ratios, but with a much smaller 
prismatic coefficient value of 0.59. 

Another point mentioned in Professor Weinblum's comment is related to 
the viscous drag which is much more complicated than wave drag. Our knowl¬ 
edge of viscous drag as functions of the hull form may be almost nil from the 
scientific viewpoint. But for practical ship design, it may not be a too difficult 
task to shape a form with a constant volume such that its viscous drag can be 
kept within reasonable limits. Besides these formulae quoted by him, there are 
thousands of models having been tested at Froude number ranges where the 
wave drag is very small in comparison with the viscous drag. Additional prac¬ 
tical information as to the reduction of viscous drag of ship hulls may be ex¬ 
tracted from this source. 

DR. EGGFRS 

Dr. Eggers' comment is very interesting. It is indeed true that for a given 
body in infinite fluid there are many possible singularity distributions to repre¬ 
sent that body. But for a given singularity distribution, we have a quite differ¬ 
ent situation. In this case, we should determine the body correctly by including 
the free-surface effects. Since such procedures are very time consuming, a 
double model technique has been used in the paper. Then the logical question is, 
how much difference is there between these two bodies so obtained. Such differ¬ 
ence depends upon the singularity distribution under consideration. As mentioned 
in the paper, if it disturbs the free surface very little, such difference would 
also be little. Since we are interested in singularity distributions which produce 
very small free-surface distributions, we may not need to be too seriously con¬ 
cerned with the point raised by Dr. Eggers. In the meantime, we are considei - 
ing the possibility of tracing the streamline by including the free surface effect. 

DR. NEWMAN 

Dr. Newman points out that a ship of low wave resistance will satisfy the 
linear free surface condition, but not necessarily close to the ship. Since the 
wavemaking resistance depends on the far field free surface disturbance only, 
it would be interesting to know, in such case, to what extent the local disturb¬ 
ance influences the accuracy of the computed wavemaking resistance. 

In general, when we deal with ship-shape forms such a situation is not 
likely to occur. Professor Inui and his students in Tokyo University have com¬ 
puted many wave profiles along the side of ships. The local disturbance seems 
to be always much smaller than the free wave disturbance. 
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PROFESSOR WARD 

Professor Ward gives a clear picture as to how the ship resistance has 
been divided into its components in many different ways. At the present time, 
the "Modern Froude hypothesis (Hughes)" has been used until the technique of 
obtaining the wavemaking resistance more directly is perfected. 

Another point raised by Professor Ward is related to my remarks on the 
theoretical and experimental wavemaking resistance comparisons. I believe 
this point has already been covered in my reply to Professor Weinblum's com¬ 
ment. 

MR. SILVERLEAF 

Mr. Silver leaf's comment has been studied with great interest. The results 
from their experiment with two bows, one having low wave resistance and the 
other having resistful form, with a long parallel afterbody would be very reveal¬ 
ing. I hope he will publish these results when they are available. 

Mr. Silverleaf has suggested that in assessing wave resistance alone, the 
criterion should preferably involve only the displacement, speed, and length. 
The basic aim of any ship design is to obtain a hull form to carry a specified 
payload at a specified speed, safely and economically. The principal dimensions, 
especially the length, should be kept as small as possible so that the hull weight 
and building cost can be kept low. On the other hand, the smaller the length, the 
higher the v \T value and consequently, the higher the wave resistance. For a 
chosen length, smaller beam and draft values would result in a higher prismatic 
value. In the range of Froude number from, say, 0.9 to 1.2, increase in pris¬ 
matic may also have a detrimental effect upon wave resistance. Higher resist¬ 
ance means higher machinery weight, fuel weight, and fuel consumption. There¬ 
fore, a final design is always a compromise between these contradictory factors. 
Then how could we assess the merit of any design on wave resistance alone, 
fairly? In view of the fact that the principal dimensions and the prismatic co¬ 
efficient are decided upon by many factors besides wave resistance, we cannot 
assess the merit of such decision purely from the resistance standpoint. There¬ 
fore, for a fair comparison of wave resistance or total resistance, we have to 
compare with forms of same principal dimensions and prismatic coefficient. 
For this purpose, an equivalent Taylor's Standard Series form can be used as a 
yardstick. 

CAPTAIN SHOR 

Captain Shor's explanation of the parameter ß as used by Professor Inui is 
quite interesting. At present, even though a few semi-empirical parameters, as 
used by Professor Inui, can bring the theoretical wavemaking resistance curve 
into good agreement with an experimental curve, the values of these parameters 
cannot be predicted accurately before the experiment is conducted. The flow 
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near the stern of the ship is greatly complicated by the viscosity effects. It is 
very difficult to estimate the wavemaking ability of the afterbody of a ship. For 
this reason we cannot expect the theory to give an accurate prediction. The 
theory is used in the paper for obtaining relatively good hull forms. 

In conclusion, I would like to thank all the discussers for their valuable 
comments. 

* * * 
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