TECHNICAL REPORT 67-20-CM GESTER TRACES FOR TEXTILE FROM US; LIBERS OF SOLUTIONS OF EGOAFFORS FOR VEX VALUE BY EACH ABLLEY FROM TEXTILE TEXTI Looks I. Walner PAR PLANTAL SCHOOL AND PAR PLANTAL SCHOOL AND PROPERTY AND Parisony Rierolique + 700 11,75 34 50 a / ABCHIVE COPY August 1766 Clarking and Argente Asterials Division # DISTRIBUTION OF THIS DOCUMENT IS UNLINETED. The findings in this report are not to be constrained as an official Department of the Army position unless so designated by other authorized documents. Citation of trade names in this report does not constitute an official indorposent or approval of the use of such items. Destroy this report when no longer needed. We not return it to the originator. Distribution of this document is unlimited | ΑI |) | | | | |----|---|------|------|--| | | |
 |
 | | TECHNICAL REPORT 67-20-CM 1965 DESIGN TABLES FOR TEXTILE FABRICS: TABLES OF SOLUTIONS OF EQUATIONS FOR MAXIMUM WEAVABILITY FABRICS MADE FROM SINGLE FIBER SPECIES AND BLENDS DV LOUIS I. WEINER Materials Research Branch August 1.966 Project Reference: 11013001A91A Series: TS-144 Clothing and Organic Materials Division U. S. ARMY NATICK LABORATORIES Natick, Massachusetts 01760 #### FOREWORD The U.S. Army Natick Laboratories, as part of its research mission in the field of Textiles, has extended the pioneering work of F.T. Peirce on fabric geometry to develop equations, graphs, and tables which can be used in the design of practical textile structures. The studies initiated and supported by the Department of the Army since 1952 have translated initial, rather theoretical, concepts of fabric geometry into easily useable engineering design data. In 1952, E.V. Fainter developed a system for the graphical analysis of plain weave fabrics based on a plot of the basic Peircean equations for the plain weave. In 1957, D.F. Adams, E.R. Schwarz, and S. Backer developed a nomographic solution of the geometric relationships in the plain weave. The first attempt to extend the work of Peirce to fabrics other than the plain weave was accomplished in 1955 by L. Love, who derived the equations for maximum weavable cotton fabrics and plotted graphs which could be used in design. In 1964, L.T. Weiner and J.E. Johnston, Jr., making use of a GE 225 Computer, tabled the equations for maximum weavable cotton fabrics, covering a practical range of variables for the plain, 3-, 4-, and 5-harness, and the oxford weaves. In the present report the generalized solutions of the maximum weavable equations are derived and tabled for a broad spectrum of yarn bulk densities; this now permits the design of fabrics made from any of the textile fiber species in use today and any blend of them. In making these tables available, we hope to assist the textile fabric designer in the rather difficult problem of designing maximum weavable textile structures, and also to encourage further studies of the relationship between fabric geometry and fabric performance. We wish to acknowledge the contributions made to the Army studies of fabric geometry by the above-named individuals and contributions of many others in this country and abroad who have worked toward the simplification of a rather complex textile geometry. Appreciation is expressed to the Data Analysis Office of the U.S. Army Natick Laboratories for the use of their computer and to Mr. David Gracia of the Data Analysis Office for writing the program for solutions to the equations. ATC COMME S. J. KENNEDY Director Clothing & Organic Materials Division #### APPROVED: DALE H. SIELING, Ph.D. Scientific Director W. M. MANTZ Brigadier General, U.S.A. Commanding # CONTENTS | | | Page | |-----|--|---------------------| | Abs | tract | vi | | 1. | Purpose and scope | 1 | | 2. | Theoretical background and previous techniques | 2 | | 3. | Computation and organization of the three tables | 2 | | | a. Tarn bulk density table for fibers (Table I) b. Yarn bulk density table for blends of the important commercial fibers (Table II) | 2 | | | c. Maximum weavability table (Table III) | 4 | | 4. | Use of Tables I and II | 6 | | 5. | How to use Table III | 6 | | 6. | Examples of use of tables | 9 | | | a. Design of fabrics made from one type of fiber only b. Design of fabrics made from a blend of two fibers c. To determine percentage of maximum weavability d. To determine weavability or practicality of a given loom construction | 9
10
12
14 | | 7. | Basic assumptions and limitations of the tables | 14 | | 8. | References | 16 | | App | endix: Derivation of the general maximum weavability equations for the plain, twill and sateen weaves for yarns of varying bulk densities | 17 | # LIST OF TABLES | | | Page | |------|---|------| | I. | Bulk densities of yarns, computed from fiber densities | 49 | | II. | Yarn bulk densities of blends of the important commercial fibers | 53 | | III. | Maximum weavability table: Maximum filling cover factor in terms of warp cover factor and beta factor | 63 | | | Plain weave fabrics | 65 | | | Three-harness weave fabrics | 112 | | | Four-harness weave fabrics | 161 | | | Five-harness weave fabrics | 215 | | | Oxford fabrics | 277 | #### ABSTRACT This report contains in tabular form the solutions of the maximum weavability equations for the plain, oxford, 3- and 4-harness twills, and 5-harness sateen in terms of warp and filling cover factors and yarn number ratio (beta) for fabrics made from any fiber species and from blends. The tables are set up for yarn bulk densities ranging from 0.54 to 4.6; this includes fibers as light as polyethylene and as heavy as stainless steel. Supplementary tables are provided giving yarn bulk densities (assuming a standard packing coefficient of 0.59) for all of the commercial fibers and for blends of the most important commercial fibers in increments of 5% ranging from 5% to 95% blend composition. # TABLES OF SOLUTIONS OF EQUATIONS FOR MAXIMUM WEAVABILITY FABRICS MADE FROM SINGLE FIBER SPECIES AND BLENDS #### 1. Purpose and Scope #### a. Purpose The tables in this report are presented to facilitate the designing of high-texture or maximum-weavable fabrics. Maximum-weavable fabrics are the largest class of functional fabrics used by industry and the military. Among many weaves they include: ducks, poplins, wind-resistant twills and sateens, airplane and balloon cloths, and linings. In designing maximum-weavable fabrics it is always of concern to the designer to know whether his fabric is practical in terms of the capacity of the loom to put in the necessary picks. The purpose of these tables is to eliminate the need for direct computation or for graphical techniques previously used for obtaining the solution of maximum weavability problems. For the first time, the tables provide the solutions to the maximum weavability equations for fabrics made from any type of fiber or from blends. These tables augment those published in Textile Series Report No. 128 (1), which can be used only for cotton fabrics. #### b. Scope This report contains in tabular form the solution of the equations for maximum weavability fabrics for the plain, oxford, 3- and 4-harness twills, and 5-harness sateen for yarn bulk densities equivalent to polyethylene on the low side and to stainless steel on the high side and including all the commercial textile fibers and blends of the most common textile fibers in increments of 5% from 5% to 95% blend composition. The maximum weavability tables (Table III) in this report provide solutions over a warp cover factor range of from 8 to 62 inclusive (on a sliding scale depending upon yarn bulk density), at intervals of 1, and over a beta factor range of from 0.5 to 2.0 at intervals of 0.1, where design data are given in terms of yarns per inch and warp or filling yarn number, cover factors and beta factors may be obtained from tables in Textile Series Report No. 128 (1) or computed from equations (4), (5), or (6) given in 3c below. In addition, two tables are presented which provide a means of obtaining the yarn bulk density when this information is not otherwise available. One of these tables (Table I) gives the standard fiber density for every commercial textile fiber and the equivalent yarn bulk density computed on the assumption of a standard packing coefficient of 0.59. Table I may also be used for any experimental fiber having a fiber density equivalent to that of a given commercial fiber. The second of these tables (Table II) gives the yarn bulk densities of blends of the most important of the commercial fibers. The blends are tabled in 5% increments from 5% to 95% blend composition. #### 2. Theoretical Background and Previous Techniques The findings of Peirce have been considered basic in the design and development of fabric structures. The equations of Peirce (2) for the plain weave were published in graphical form by Painter (3), and also in nomographic form, by Backer, Adams and Schwarz (4). Finally, Love (5) extended Peirce's equations to weaves other than the plain, and developed a series of graphs to simplify the prediction of construction parameters of maximum weavability fabrics. Weiner and Johnston (1) solved and tabled the Love equations for a range of cover factors from 10 to 32 and over a beta factor range from 0.5 to 2.0. #### 3. Computation and Organization of the Tables #### a. Yarn bulk density table for fibers (Table I) Ideally it would be desirable to know the exact bulk density of yarns comprising textile fabrics, in order to obtain the maximum design
accuracy from the maximum weavability tables in this report. It is difficult, but not impossible to obtain a fair approximation of yarn bulk density. The weight of a given length of yarn may be obtained with considerable precision, as can the length of yarn itself. However, because of the inherent compressibility and "hairiness" of many yarns, it is difficult to obtain a realistic measurement of yarn diameter (or yarn area) which is needed to compute the bulk density. Despite the difficulties, many methods have been used with reasonable success to obtain such measurements, including microscopic, seriplane, thickness gauge and Peirce's roving twist technique. Most workers (5, 6) conventionally follow Peirce's recommendations for cotton fabrics of .909 gm/cm³ as a standard yarn bulk density for design work. Since the density of cotton fiber is 1.54, the degree of "packing" can be considered to be the ratio of the yarn bulk density to the fiber density, or: This value of 0.59 which is called the <u>packing factor</u> or packing coefficient has been standardized (6) for fibers other than cotton and on this basis may be used to compute the yarn bulk density from the fiber density of any fiber. Thus: fiber density x packing coefficient = yarn bulk density or For mylon (Der of 1.14), for example, if we assume a packing coefficient of 0.59 we get as the yearn bulk density: $$1.14 \times .59 = .67$$ The yarn bulk density table was prepared in this manner. Thus, the first step to take in designing a maximum weavable fabric, from say, Acrilan, in the absence of experimental data on yarn bulk density, would be to look up its bulk density in Table I. # b. Yarn bulk density table for blends (Table II) Table II provides for blends of the most common fibers the same information contained in Table I for single fiber yarns. Blend proportions are from 5% to 95% in 5% increments. The values in Table II were obtained from the solution of the equation: Dey $$\frac{0.59}{A}$$ (Yarn bulk density of blends for (2) $$\frac{De_{1}}{De_{1}}$$ Def2 Where De = the bulk density of the blended yarn Defl = fiber density of fiber #1 Def2 = fiber density of fiber #2 A = percentage of blended fiber #1 expressed as a decimal A sample calculation for a blend of 25% mylon and 75% cotton would be as follows: $$De_y = \frac{0.59}{.25 + (1-.25)} = .84$$ In Table II the fiber density of one of the component fibers is given at the nead of the first column with the percentage of that fiber (from 5% to 95%) given below it. The headings of the following seven columns give the fiber densities of the ther component fibers, and the values in the body of the table are yarn bulk densities. For the problem solved above by Equation (2) turn to section of Table II showing fiber density of 1.14 (for nylon) in first column: drop down to 25 (the percentage of nylon in blend) in first column, go across this row (25) to value under column headed 1.54 (fiber density of cotton); this will give bulk density of 0.84. If necessary, linear interpolation may be used for other blend percentages or fiber densities. # c. Maximum weavability table (Table III) Table III ("Maximum filling con r factor in terms of warp cover factor and Beta factor") shows the maximum filling cover factor (K₂) that is theoretically obtainable for a given combination of warp cover factor and beta factor. The filling cover factors for the various yarn bulk densities and weaves were obtained by the solutions of the following equations, the derivation of which is given in the Appendix. PLAIN WEAVE $$M = 1$$ $\sqrt{1 - \left[\frac{29.2\sqrt{De}}{(1+\beta)K_1}\right]^2} + \sqrt{1 - \left[\frac{29.2\sqrt{De}}{(1+\beta)K_2}\right]^2} = 1$ THREE HARNESS WEAVES $M = 1.5$ $\sqrt{1 - \left[\frac{M\left(\frac{31.4\sqrt{De}}{K_1} - 1\right) + 1.08}{1.08(1+\beta)}\right]^2} + \sqrt{1 - \left[\frac{M\left(\frac{31.4\sqrt{De}}{K_2} - 1\right) + 1.08}{1.08(1+\beta)}\right]^2} = 1$ FOUR HARNESS WEAVES $M = 2.0$ $\sqrt{1 - \left[\frac{M\left(\frac{32.7\sqrt{De}}{K_1} - 1\right) + 1.12}{1.12(1+\beta)}\right]^2} + \sqrt{1 - \left[\frac{M\left(\frac{32.7\sqrt{De}}{K_2} - 1\right) + 1.12}{1.12(1+\beta)}\right]^2} = 1$ FIVE HARNESS WEAVES $M = 2.5$ $\sqrt{1 - \left[\frac{M\left(\frac{33.6\sqrt{De}}{K_1} - 1\right) + 1.15}{1.15(1+\beta)}\right]^2} + \sqrt{1 - \left[\frac{M\left(\frac{33.6\sqrt{De}}{K_2} - 1\right) + 1.15}{1.15(1+\beta)}\right]^2} = 1$ OXFORD WEAVE $M_1 = 2.0$ $M_2 = 1.0$ $\sqrt{1 - \left[\frac{M_1\left(\frac{32.7\sqrt{De}}{K_1} - 1\right) + 1.12}{1.12(1+\beta)}\right]^2} + \sqrt{1 - \left[\frac{29.2\sqrt{De}}{(1+\beta)K_2}\right]^2} = 1$ where M = Number of yarns per repeat of weave Number of interlacings per repeat of weave 27230mm Cover factors or beta factor may be computed from the following equations: $$K_1 = \frac{n_1}{\sqrt{N_1}}$$ [Warp cover factor equation] (4) where K₁ is warp cover factor nl is warp texture or yarns per inch Nl is warp yarn number or "count" $$K_2 = \frac{n_2}{\sqrt{N_2}}$$ [Filling cover factor equation] (5) where K₂ is filling cover factor n₂ is filling texture or yarns per inch N₂ is filling yarn number or "count" $$B = \sqrt{\frac{N_1}{N_2}} \qquad \qquad \text{[Beta factor equation]} \qquad (6)$$ where B is Beta factor or yarn balance N₁ is warp yarn number N₂ is filling yarn number ^{*}Throughout this report subscript 1 refers to warp and subscript 2 refers to filling. If yarns are numbered in systems other than the "cotton" system, they should be converted to the cotton system in order to use Table III. In Table III warp cover factors range from 8 to 62 (depending on yarn density), and beta factors from 0.5 to 2.0. In order to simplify the programming and print-out, non-valid values (because of K_1 being too low) are indicated by zeros ("0") in the table. This does not mean that the numerical value of K_2 is zero. The zero should be read as a blank space. For each of the yarn bulk densities, ranging from .54 to 4.6, there is a section for each of the five weave types. The maximum filling cover factor values are given to one decimal place, which is quite adequate precision for textile design work. Interpolation may be used for fractional values of warp cover factor. ### 4. Use of Tables I and II Tables I and II merely provide the essential value of yarn bulk density which indicates the correct location in Table III to enter (each page of Table III has yarn bulk density at the top) to obtain the solution appropriate to the fiber type or blend of which the fabric is composed. #### 5. How to Use Table III Table III is the one from which the usefulness of this report derives. Table III is presented primarily as the solution of the equation for filling cover factor (see paragraph 3c) when warp cover factor, beta factor and yarn bulk density are known. (It can also be read for a solution when <u>any three</u> elements are given or required, to find the fourth.) Perhaps the easiest way to visualize the relationship of these four elements of Table III and how they are obtained is by considering this tabulation: | Element of Table III | Obtainable from | If you have | | |--|---|------------------------------------|--| | Yarn Bulk Density (De) | 1. Actual physical measurement | | | | | 2. Table I (for single fiber) | Fiber name or fiber density | | | | 3. Table II (for blends) | Blend composition | | | Warp Cover Factor (K1) | 1. Equation 4 $(n_1/\sqrt{N_1})$ or 2. TSR #128 (Table I)* | W yarn number and
W texture | | | Filling Cover Factor (K ₂) | 1. Equation 5 $(n_2/\sqrt{N_2})$ or 2. TSR #128 (Table I)* | F yarn number and
F texture | | | Beta Factor (B) | 1. Equation 6 $(\sqrt{N_1/N_2})$ or 2. TSR #128 (Table II)* | W yarn number and
F yarn number | | is chame. Knowledge of any three of the four "elements" listed above will provide the necessary information for obtaining the fourth from Table III. However, in the conventional design of fabrics the yarn bulk density, warp cover factor, and Beta factor are usually known first or computed and the filling cover factor is the unknown factor which is usually sought. Text...e Series Report No. 128 [reference (1)] provides the solution of the cover factor equations (4) and (5) and the Beta factor equation (6) for a wide range of yarn numbers and textures. The textile designer normally has access to the information in the far right column above; this enables him to make the preliminary calculations or to check in Tables I and II to obtain the yarn bulk density to enter Table III. Thus, if he is looking for the greatest number of filling yarns of a given size which car be used for a given weave type, he will know: - (1) the fiber density or blend composition which will then give him the yarn bulk density - (2) the warp yarn number and warp texture which will provide the warp cover factor - (3) the filling yarn number, which with the warp yarn number will provide the beta factor Using the above three items, he can secure from Table III the maximum filling cover factor. The maximum filling texture can be obtained by solution of the following equation: $$n_2 = K_2 \sqrt{N_2}$$ [Maximum filling texture equation] (7) where n₂ is filling texture, or yarns per inch K₂ is filling cover factor N2 is filling yarn number Maximum filling texture can also be obtained from TSR No. 128 In addition to thus obtaining the requirements for maximum weavable constructions, it is possible to find what percentage of maximum weavability any construction is. That is, divide the actual filling cover factor by the theoretical filling cover factor. This percentage may be expressed on the basis of either filling cover factor or filling texture. Also, given a particular construction, the textile designer can determine its <u>practicality</u>. That is, he can determine from the table whether or not it is weavable, without trial weavings. Given a particular
construction, the fabric designer can, by using Table III, determine whether it can be tightened to any extent. Finally, given certain filling parameters, such as yarn size and texture, it is possible to project certain <u>combinations</u> of warp sizes and textures. # 6. Examples of Use of Tables Since Tables I and II are incidental to the use of Table III, they will not be discussed separately but as an integral part of the discussion of each problem presented in this section. However, it may be well to provide some general information on the role of yarn bulk density before proceeding with specific examples. Ideally, it would be desirable to know the exact yarn bulk density of the yarns going into the fabric, by means of microscopic or some other type of objective measurement rather than using the approximations of Tables I and II. Where a given yarn is used in many different constructions it may be advisable to go through the mechanics of measuring the actual yarn density. It is recognized that measuring errors may in some instances be as large as estimating errors because of the difficulty in getting a realistic indication of yarn diameter. However, it is important to be aware of differences if they do exist, in the event that actual loom experience yields results that differ somewhat from the predictions of Table III. Despite the advantages that may accrue from actual yarn density measurements, the busy designer will probably rely more on Tables I and II to obtain the necessary values for entering Table III; the problems below will be based upon this assumption. #### a. Design of fabrics made from one type of fiber only Problems of this type involve the design of a maximum weavable fabric which is made wholly from one type of fiber, such as Arnel or Orlon. Given: fiber type, filling yarn number, warp yarn number, texture and weave To find: number of picks for maximum weavable construction Problem: What are the maximum number of picks of yarn number 19/1 cotton count Orlon that can be woven into a poplin having 106 ends of 40/2 Orlon. #### Solution: Step 1. Find the yarn bulk density of Orlon in Table I; it is 0.67. Step 2. Find warp cover factor for the 106 ends of 40/2 yarn. First convert 40/2 to 20/1 (cover factor Step 2. cont'd. computation is based upon singles equivalents). Obtain warp cover factor using equation (4) where $K_1 = n_1/\sqrt{N_1}$, substituting: $106/\sqrt{20} = 23.702$. Or look it up on page 94 of TSR No. 128. - Step 3. Find Beta factor for yarns, using equation (6) Beta = $\sqrt{N_1/N_2}$ = $\sqrt{20/19}$ = 1.026. Or look it up on page 138 of TSR No. 128. - Step 4. Find maximum filling cover factor. Turn to Table III for plain weave fabrics (poplin is a plain weave) and yarn bulk densities of 0.67. The intersection of "beta factor" (top column) of 1.0 (closest value to 1.026) and row 24 "warp cover factor" (far left) gives "maximum filling cover factor" of 12.1. - Step 5. Compute maximum filling texture using equation (7): $n_2 = K_2 \sqrt{N_2}$, substituting: 12.1 $\sqrt{19} = 53$. Or look it up on page 95 of TSR No. 128. #### b. Design of fabrics made from a blend of two fibers This problem concerns the design of maximum weavable fabrics made from an intimate blend of two fibers such as nylon and cotton or polyester and cotton. Given: fiber types, blend composition, filling yarn number, warp yarn number, warp texture and weave. To find: number of picks for maximum weavable construction *If it is desired to obtain increased precision, interpolation may be used with the fractional beta factor and the fractional cover factor obtained from the computations in Steps 2 and 3, respectively. In this particular problem, the interpolation would be of no value with respect to warp cover factor, since the equivalent filling cover factor is identical for warp cover factors of 23 and 24. Interpolation for the beta value of 1.026 would increase the maximum filling cover factor to 12.23 or 12.2 in three significant figures. Accordingly, it is suggested that interpolation be ignored for first approximations. Problem: How many picks/inch must be used in a fabric having 150 ends of 36° yarn to obtain maximum weavability. Solve for both 36° and 25° filling yarns; and for plain and 3-harness weaves. Assume yarns are blended and contain 25% of nylon and 75% of cotton. 24/5/90 - Step 1: Determine density of blended yarn from Table II. Go down column one (headed "fib. den. = 1.14," i.e., fiber density of nylon) to row 25 (% of nylon in yarn). Move across row to value under column headed 1.54 (density of cotton); this gives 0.84. Thus, the yarn density of the blended yarn is .84. - Step 2: Compute cover factor of warp, using Equation (4). $$K_1 = m_1 / \sqrt{N_1} = 150 / \sqrt{36} = 25$$ Or look it up in TSR No. 128. Step 3: Compute Beta factor for both yarn combinations, using Equation (6) $$B = \sqrt{N_1 / N_2} = \sqrt{36 / 36} = 1$$ $$= \sqrt{36 / 25} = 1.2$$ Or look it up in TSR No. 128. - Step 4: Go to section of Table III covering Plain Weaves and yarn bulk density of .84 For Warp cover factor of 25 and Beta of 1, the maximum filling cover factor is 13.5. For Warp cover factor of 25 and Beta of 1.2, the maximum filling cover factor is 14.7. - Step 5: Go to section of Table III covering 3-harness weaves and yarn bulk density of .84. For Warp cover factor of 25 and Beta of 1, the maximum filling cover factor is 17.0. For Warp cover factor of 25 and Beta of 1.2. the maximum filling cover factor is 18.2. Step 6: Compute maximum filling texture (picks per inch) from cover factor, using equation (7), $n_2 = K_2 \sqrt{N_2}$ Or look it up in TSR No. 128. Values of no are given in the following tabulation: | | Plain Weavo | 3-Harness Weave | | | |-----------------|------------------------|------------------------|--|--| | 36 ⁸ | $n_2 = 13.5 \sqrt{36}$ | $n_2 = 17.0\sqrt{36}$ | | | | | = 81 | = 102 | | | | 25 8 | $n_2 = 14.7 \sqrt{25}$ | $n_2 = 18.2 \sqrt{25}$ | | | | | = 74 | = 91 | | | Thus, for the plain weave, as we go to the coarser filling yarn (36s to 25s) there are fewer picks that can be woven into the fabric for maximum weavability (81 vs. 74). The same holds true for the 3-harness weave. We can weave 102 picks of the 36s yarn, but only 91 of the 25s yarn. However, in going from the plain weave to the 3-harness weave it takes more picks to fill the weave. Thus for the 36^S yarn we must increase the number of picks from 81 to 102; and for the 25^S yarn we must increase the number of picks from 74 to 91. #### c. To determine percentage of maximum weavability #### Problem: - (1) A Type III wind-resistant <u>all-cotton</u> oxford has a specified texture of 136 by 46. If a 40/2 warp yarn is available, what percent of maximum weavability will be obtained if we use a 12/1 filling? - (2) If we use the same "size" warp and filling yarns, but made of a <u>blend</u> of 50% Dacron and 50% cotton, what will be the percent of maximum weavability? #### (1) Solution # For all-cotton fabric: First convert 40/2 to 20/1 Step 1: Find yarn bulk density of cotton in Table 1 as .91. Sel Same - Step 2: Find warp cover factor by using equation (4) or from TSR No. 128; it is 30.4, - Step 3: Find filling cover factor by using equation (5) or from TSR No. 128; it is 13.3. - Step 4: Compute Beta factor, using equation (6) or obtain from TSR No. 128; it is 1.3. - Step 5: Find maximum possible filling cover factor in Table III for oxford weaves and yarn bulk densities of .91. This value is 15.9. - Step 6: To obtain percent maximum weavability: Divide actual filling cover factor (13.3) by computed maximum filling cover factor (15.9) to obtain 83.6 as percent of maximum weavability. #### (2) Solution #### For Dacron-cotton blend: - Step 1: Find yarn bulk density of a 50% Pacron 50% cotton blend from Table II as .86. - Step 2: Find warp cover factor of 30.4 as above. - Step 3: Find filling cover factor of 13.3 as above. - Step 4: Find Beta factor of 1.3 as above. - Step 5: Find maximum possible filling cover factor in Table III for oxford weaves and yarn bulk densities of .86. This value is 15.4. - Step 6: To obtain percent maximum weavability: Divide actual filling cover factor (13.3) by computed maximum filling cover factor (15.4) to obtain 86.4 as percent of maximum weavability. Thus, even though the cotton yarns and the Dacron/cotton blended yarns used in this example were both the same "size" in terms of yarn number (which is a measure of linear density), actually the blended yarn has a larger diameter because of the lower density of the Dacron constitutent. Thus, keeping yarn numbers and textures constant, the blended yarns will produce a fabric with a higher percentage of maximum weavability. # d. To determine weavability or practicality of a given loom construction Problem: Is a sateen fabric weavable if it has 129 ends of 31/1 polypropylene yarn in the warp and 94 picks of 14/1 polypropylene yarn in the filling? #### Solution: - Step 1: Find warp and filling cover factors: 23.2 and 25.1 respectively. - Step 2: Find Beta factor: 1.5. - Step 3: Find Maximum Filling Cover factor in section of Table III for 5-harness weaves and for polypropylene yarn bulk density of .54. This is 19.0. Since the cover factor desired (25) is <u>larger</u> than the theoretical maximum (19), this fabric would not be weavable. It is interesting to note that a fabric with the same construction characteristics as this could be woven from cotton yarns. Thus, it is erroneous to anticipate that the fiber composition of a fabric can always be changed without also changing the texture and/or the yarn sizes. #### 7. Basic Assumptions and Limitations of the Tables Three assumptions were made in developing the equations that led to the formulation of these tables: - a. The yarn compression in a fabric woven to maximum tightness produces a change in the shape of the yarn section but does not alter the fiber packing density. - b. Complete
flattening takes place in that half of the yarn that is in contact with a neighboring yarn under a single float (see Appendix). - c. The packing coefficient of yarns made from all fibers and blends is 0.59. If yarns are numbered in systems other than the "cotton" system, they should be converted to the cotton system in order to use these tables. For all practical purposes, these assumptions produce only minimal errors and thus the tables are suitable for first-order approximations in fabric design. For designers who work with a few types of fibers or blends it might be useful to check the yarn bulk densities of the yarns they work with, since twist and other factors may alter the yarn bulk density values given in Tables I and II. If actual yarn bulk density values are available, then the only important limitations on the validity of these tables and the equations from which they were derived are the first two assumptions (a and b) listed above. # 8. References - 1. Weiner, L.I. and Johnston, J.E. Jr., Design Tables for Cotton Fabrics: Tables of Solutions of Equations for Cover Factor, Beta Factor and Maximum Weavability for Cotton Fabrics, Textile Series Report 128, U.S. Army Natick Laboratories. Natick, Mass., Aug 1964. - 2. Peirce, F.T., The Geometry of Cloth Structure, J Textile Inst., 28, T45 (1937). - Painter, E.'., Graphical Analysis of Fabric Geometry, Part VIII of: Mechanics of Elastic Performance of Textile Materials, Textile Res J, 22, 556 (1952). - 4. Adams, D.P., Schwarz, E.R. and Backer, S., Nomographic Solution of the Geometric Relationships in Cloth Geometry, Part VI of: The Relationship Between the Structural Geometry of a Textile Fabric and its Physical Properties, Textile Series Report 93, QM R&D Command, Natick, Mass., Feb 1957. - Love, L., Oraphical Relationships in Cloth Geometry for Plain, Twill and Sateen Weaves, Textile Series Report 90, QM R&D Command, Natick, Mass., Sept 1955. - 6. Dickson, J.F., Practical Loom Experience on Weavability Limits, Textile Res J. 24, 1083 (1954). # APPENDIX* DERIVATION OF THE GENERAL MAXIMUM WEAVABILITY EQUATIONS FOR THE PLAIN, TWILL AND SATEEN WEAVES FOR YARNS OF VARYING BULK TENSITIES ^{*}Originally published as: Material Examination Reports No. 8316 (9 Sept 1965) and No. 8320 (10 March 1966), by Louis I. Weiner, U.S. Army Natick Laboratories, Natick, Mass. # DERIVATION OF THE GENERAL MAXIMUM WEAVABILITY EQUATIONS FOR THE PLAIN, TWILL AND SATEEN WEAVES FOR YARNS OF VARYING BULK DENSITIES #### INTRODUCTION The steps leading to the derivation of the general maximum weavability equations are presented in five sections of this report titled as follows: - I Derivation of K_0 (procedure of Ball¹). - II Derivation of the maximum weavability equation for the plain weave (procedure of Peirce²). - III Derivation of the equations for local spacing in twills and sateens. - IV Derivation of K_g (max) and maximum weavability equations for other weave types (procedure of Love³). - V Derivation of the generalized maximum weavability equations for all fiber species and blends. # I. DERIVATION OF Ko It is customary for textile designers to express the "cover" of a woven textile fabric by means of a computed "cover factor" which is designated by the letter "K". K is derived from fractional coverage as follows: # Fractional coverage $(\frac{d}{p})$: The cover of a fabric can be expressed as "fractional coverage" which is the ratio of the area "covered" by yarns to the total area of the fabric. For a given fabric direction (warp or filling), fractional coverage may be visualized as the projected area divided by the total area as shown below: - d = diameter of each yarn in inches. - p = inches/yarn (this is called the "spacing" and includes a "space" and a "yarn diameter") - n = yarns/inch For 1 in 2 of fabric, the fractional coverage of either the warp or filling is: fractional coverage = $$\frac{yarns/inch \times d'' \times l''}{1 \text{ in}^2} = \frac{nd \times l}{l}$$ numerically fractional coverage = yarns/inch x d" = nd yarns/inch = $$\frac{1}{\text{inches/yarn}}$$ or n = $\frac{1}{p}$ (1) therefore nd $$\frac{d}{p}$$ (2) The conventional expression for fractional coverage is $$\frac{d}{p}$$ (3) Because of the difficulties encountered in measuring the diameter of yarns it has become customary for textile technologists to use yarn number (N)*, which is easily calculable, in expressions where yarn diameter (d) is normally required. ^{*} N = number of 840 yard hanks per pound or N = $\frac{1}{840w}$ # Cover factor (K): Yarn diameter (d) varies as the reciprocal of the square root of yarn number (N) for the indirect system (which is the system used almost exclusively in this country for staple yarns). Thus $$d \propto \frac{1}{\sqrt{N}}$$ (4) therefore $$\frac{d}{p} \propto \frac{\frac{1}{\sqrt{N}}}{p}$$ (5) From Equation (1) $$p = \frac{1}{n}$$ where $n = yarns/inch$ therefore fractional coverage = (constant) $$\frac{n}{\sqrt{N}}$$ (6) and $$\frac{\text{fractional coverage}}{(\text{constant})} = \frac{n}{\sqrt{N}}$$ (7) The ratio on the left above is designated as cover factor or K, and thus: $$K = \sqrt{\frac{n}{N}}$$ (8) The maximum value of " (designated as K_0) is obtained when d/p = 1, in other words when the projected area of the yarns in the fabric equals the total area. However, as will be seen later in the derivation of the equations for maximum weavability, when compression of the yarns under the float takes place in tightly woven structures, it is possible to get values of K exceeding K_0 . The development of the maximum weavability equations is based on values of K which exceed K_0 . The larger value is designated as K_0 (max). At this stage of our development, however, K_0 can be considered to be the maximum practical cover factor and much valuable design and development work is done utilizing K_0 as a threshold value against which a computed K may be compared. # Yarn diameter (d): The value of K_0 will vary depending upon the specific volume or density of the yarns for which it is used. Therefore, it is necessary to derive the relationship between diameter (d) and yarn Number (N) as a basis of computing a range of K_0 values. An assumption which has been made in working with this relationship is that cotton yarns have a specific volume of 1.1. If this assumption is accepted, then values of K_0 for a wide variety of fiber types and blends may be computed, if the packing factor or packing coefficient for yarns made from these fibers is considered as identical to that of cotton yarn. More will be said about this later. . The Chro The relationship between diameter and yarn number may be deduced as follows: Consider a textile yarn as an incompressible cylinder of length "L" and diameter "d" The volume of this cylinder = $$\frac{d^2 \mathcal{L}}{4}$$ (9) The weight of the cylinder = $$\frac{\pi d^2 De}{l_1}$$ Where De is density (10) of yarn In the metric system the weight in grams of the yarn would be $$W = \frac{1}{4} \frac{2De}{4} \qquad \qquad \int_{De} \frac{\ln cm}{cm/cm^3} \qquad (11)$$ Keeping De in the metric system, which is conventional, but converting W, L, and d to pounds, yards and inches respectively, which are conventional for textile yarns, the following results: gm = $$\frac{7 \text{ cm}^2 \text{ cm De}}{4}$$ lbs x 454.6 = gms in² x 2.54² = cm² gm = .785 cm² cm De yds x 36 x 2.54 = cm 11.3 x 454.6 = .785 $$\sin^2 x \ 2.54^2 \ x \ yds \ x \ 36 \ x \ 2.54 De$$ (12) $$W = 1.0189 d^2 \cancel{L} De$$ (14) $$d^2 = \frac{W}{1.0189 2 \text{ De}}$$ (15) $$d = \sqrt{\frac{W}{1.0189 \text{ p be}}}$$ (16) Divide top and bottom of fraction by W $$d = \sqrt{\frac{1}{1.0189 \text{ g/W De}}}$$ (17) By definition, in the cotton numbering system where \mathcal{L} is in yds. and W in pounds and N = Yarn Number $$\mathcal{L}/W = 840 \text{ N}$$ (18) $$d = \sqrt{\frac{1}{840 \times 1.0189 \text{ N De}}}$$ (19) d $$=\sqrt{\frac{.001168L}{N De}}$$ (20) $$d \sim \sqrt{\frac{.0342}{N \text{ De}}}$$ (21) # Relationship between K and d/p: If we find the general relationship between K and d/p, then K_0 can be determined as the value of K when d/p = 1, in other words, when the fractional coverage is unity or the projected area of the yarns equals the total fabric area. Recall from equation (8) that: $K = \frac{n}{\sqrt{N}}$ and from equation (1) that: $n = \frac{1}{p}$ therefore $K = \frac{1}{p\sqrt{N}}$ (22) and $p = \frac{1}{K\sqrt{N}}$ (23) From equation (21) d • .0342 therefore $\frac{\frac{.0342}{\sqrt{N} \quad De}}{\frac{1}{K \sqrt{N}}}$ thus $\frac{d}{p} = \frac{.0342 \text{ K}}{\sqrt{D_{\bullet}}} \tag{25}$ # Calculation of Ko: By definition when d/p = 1 $K = K_0$ or $\frac{d/p}{1} = \frac{k}{K_0}$ (26) $1 = \frac{.03 42 \text{ K}_0}{\sqrt{\text{De}}} \tag{27}$ $K_0 = \sqrt{\frac{De}{.0342}}$ or $K_0 = 29.2 \sqrt{De}$ (28) Thus for any yarn, regardless of fiber composition or structure, if we know the yarn density (bulk density) we can compute Ko, i.e., the "maximum" cover factor corresponding to d/p = 1. The problem of determining yarn density is a difficult one and much fabric design as practiced today for cotton fabrics is based upon Peirce's selection of .909 as the bulk density of cotton yarn (.909 is the reciprocal of the specific volume value of 1.1). For cotton then: $$K_0 = 29.2 \sqrt{.909} = 27.8$$ (29) Some workers round this figure off to 28.0 # Packing factor: It is convenient to relate the density of cotton yarn to the density of cotton fiber. This relationship, expressed as a ratio, is termed the packing coefficient or packing factor. $$PC = \frac{De (yarn)}{De (fiber)}$$ (30) For cotton: $$PC = \frac{.909}{1.54} = .59$$ (31) It has become conventional for designers working with fibers other than cotton to assume that the packing factor of yarns made from these other fibers is constant at .59. With this assumption it becomes simple to compute the densities of yarns, made from a wide variety of fibers, using equation (30).
$$De(yarn) = PC \times De(fiber)$$ (32) Substituting this relationship in equation (28), the following is obtained: $$K_0 = 29.2 \sqrt{\text{De (yarn)}}$$ (34) $$K_0 = 29.2 \sqrt{PC \times De \text{ (fiber)}}$$ (35) $$K_0 = 29.2 \sqrt{.59De (fiber)}$$ (36) $$K_{O} = 22.4 \sqrt{\text{De (fiber)}}$$ (37) K values for some typical fiber species are ; iven in the following table: | Fiber | Density of fiber | VDe (fiber) | К _о | |--------|------------------|-------------|----------------| | Nylon | 1.14 | 1.067 | 24.0 | | Wool | 1.32 | 1.149 | 25.8 | | Dacron | 1.37 | 1.170 | 26.3 | | Cotton | 1.5կ | 1.241 | 27.8 | | Glass | 2.54 | 1.594 | 35.8 | ## II DERIVATION OF THE HAXIMUM WEAVABILITY EQUATION FOR THE PLAIN WEAVE In order to reduce the number of variables required in the solution of the geometry of the plain weave, Peirce introduced the parameter "E" which is the sum of the diameters of the warp and filling yerns. Thus $$D = d_1 + d_2$$ where (38) subscripts 1 and 2 apply to warp and filling respectively. Other symbols used by Peirce are: h = maximum displacement of yarn axis measured normal to the cloth as follows: length of yern in a unit cell θ = angle between yarn axis and plane of clothp, n, and d are as used previously in this report In tight fabric constructions the yarn systems are considered to be jammed. When the warp yarn is jammed, for example, there is no straight portion in the warp yarn and a line joining the centers of the filling yarns is perpendicular to the warp yarn axis at the point of intersection. When this condition prevails, as shown below, both the filling yarn spacing p₂ and the filling yarn displacement h₂ are functions of the angle (0) between the warp yarn axis and the plane of the cloth.* ^{*} No yarn compression is assumed in these preliminary derivations. Construction for Filling Yarn Spacing p₂ is the spacing of the filling yarns and thus is equal to the distance between the vertical lines above: AB D is the sum of the diameters of the warp and filling yarns which is the length of the diagonal line above: AC From the geometry of the triangle ABC: $$\sin \theta = \frac{AB}{AC} = \frac{p_2}{D} \tag{39}$$ and $$p_2 = L \sin\theta$$ (40) # For filling yarn displacement: h_2 is the displacement of the filling yarns, which is the distance BC below. D is the sum of the diameters: AC below. Construction for Filling Yarn Displacement From the geometry of the triangle ABC: $$\cos \theta = \frac{BC}{AC} = \frac{h2}{D} \tag{41}$$ and $$h_2 = D \cos \theta$$ (42) It can also be shown that for any yarn configuration $$h_1 + h_2 = D \tag{43}$$ $$.5h_1 + .5h_2 = ef + fg$$ $.5h_1 + .5h_2 = ab + bc$ $$h_1 + h_2 = ab + bc + ef + fg$$ ab = r₁ (radius of warp yarn) bc = r2 (radius of filling yarn) ef r₂ $fg = r_1$ $$h_1 + h_2 = r_1 + r_2 + r_1 + r_2$$ $h_1 + h_2 = 2(r_1 + r_2) = d_1 + d_2 = D$ therefore $h_1 + h_2 = D$ Summarizing: When the warp is jammed, then from equation (42) h₂ = D cos 3₁ When the filling yarn is jammed it can be shown in an analogous fashion that: $$h_1 = D \cos \theta_2$$ (44) Since $$h_1 + h_2 = D$$ (45) then D cos $$\theta_1$$ + D cos θ_2 = D (46) and $$\cos \theta_1 + \cos \theta_2 = 1$$ (L7) Since $$\cos^2\theta + \sin^2\theta = 1$$ (48) $$\cos \theta_1 = \sqrt{1 - \sin^2 \theta_1} \tag{49}$$ and $$\cos \theta_2 = \sqrt{1 - \sin^2 \theta_2}$$ (50) Therefore $$\sqrt{1 - \sin^2\theta_1} + \sqrt{1 - \sin^2\theta_2} = 1$$ (51) Recall from equation (40) that $$p_2 = D \sin \theta_1$$ (52) then $\sin \theta_1 = \frac{p_2}{D}$ analogously $$p_1 = D \sin \theta_2$$ and $\sin \theta_2 = \frac{p_1}{D}$ (53) Therefore $$\sqrt{1-\left(\frac{p_2}{\overline{D}}\right)^2}+\sqrt{1-\left(\frac{p_1}{\overline{D}}\right)^2}=1$$ (54) Equation (54) is the basis of the widely used equations for maximum weavable fabrics. To make it more generally applicable to the design problems of the textile engineer, it has been customary to introduce the cover factor (K) into the relationship and also to use the Peta (B) factor instead of D. Beta (B) is defined as the ratio of the filling yarm diameter to the warp yarm diameter. It is also numerically equal to the ratio of the square root of the warp yarm number to the square root of the filling yarm number, for the indirect yarm numbering system. Thus $$B = \frac{d_2}{d_1}$$ and $d_2 = Bd_1$ (55) or $$B = \sqrt{\frac{N_1}{N_2}} \tag{56}$$ Since D = $$d_1 + d_2$$ it follows from (55) that D = $d_1 + B d_1$ and D = $d_1 (1 + B)$ (57) also $$D = \frac{d_2}{B} + d_2$$ $D = \frac{d_2(1 + B)}{B}$ (58) Therefore $$\frac{p_1}{\overline{D}} = \frac{p_1}{d_1 (1 + B)}$$ (59) $$\frac{p_2}{D} = \frac{p_2 - B}{d_2 - (1 + B)} \tag{60}$$ Recall from (26) that $$\frac{d}{p} = \frac{K}{K_0}$$ (61) Also from (29) for yarns numbered in the cotton system and having a bulk density of .909 (the value selected by Peirce): $$K_0 = 27.8$$ (62) Then $$\frac{d}{p} = \frac{K}{27.8}$$ or $\frac{p}{d} = \frac{27.8}{K}$ (63) Thus from (57) $$\frac{p_1}{D} = \frac{27.8}{K_1(1 + B)}$$ (614) and from (58) $$\frac{p_2}{D} = \frac{27.8B}{K_2 (1 + B)}$$ (65) Therefore: $$\sqrt{1-\left(\frac{27.8}{K_1} \frac{2}{(1+B)}\right)} + \sqrt{1-\left(\frac{27.8B}{K_2} \frac{2}{(1+B)}\right)} = 1$$ (66) This is the equation for the plain weave, from which the supplementary equations for the twill and sateen weaves have been derived. Before going into the derivation of these other equations it might be well to briefly review the manner in which the above equation is used. Observe that there are variables K_1 , K_2 , and B. These three are not completely independent. The warp yarn number N₁ is a component of K₁, the filling yarn number N₂ is a component of K_2 and the ratio of these two yarn numbers determines E. For a given B and K₁ however, it is possible to obtain the corresponding K₂ required to make the fabric a maximum weavable construction and conversely for a given B and K2 it is possible to obtain the corresponding K1 required to make a maximum weavable construction. In Textile Series Report No. 1284 this equation was solved for a wide range of cover factors (K) and Beta factors (B). For example, on page 149 of report No. 128 it may be observed that for a fabric having a warp cover factor (K1) of 20 and a Beta factor (B) of 1.4, the maximum possible filling cover factor (K2) is 16.6. From the practical point of view, the textile designer would tentatively select a warp texture (n) and a warp yarn number (N) to obtain the warp cover factor. Then for a given filling yarn number, which would provide the Beta (B), he would obtain the maximum possible filling cover factor and finally for the given filling yarn number he would find in the tables in Report No. 1284 the maximum number of filling yarns (n) which could be woven into the given structure. Depending upon which constructional factors are known, a spectrum of the unknowns in the design of the plain weave fabric can thus be obtained. ## III DERIVATION OF THE EQUATIONS FOR LOCAL SPACING IN TWILLS AND SATEENS Peirce did not extend his geometry of jammed plain weave fabrics to other weave types. This was done by Love in 1955. Two additional assumptions must be made regarding the geometry of the yarns in long float weaves, such as the twills and the sateens, before a model can be formulated for analysis. The first assumption is that the yarns under a long float move toward each other under the stress of weaving until they touch. The second assumption goes beyond the touch stage and postulates that complete flattening takes place in that half of the yarn which contacts a neighboring yarn under the float, i.e., that the original simicircle of the yarn half section becomes a rectangle after compression; and that this compression does not alter the fiber packing density (packing factor). Actual observation of yarns in many tight constructions confirms the fact that these assumptions have a valid basis. In this section of the report two equations are derived which provide solutions for local spacing (p) in terms of weave factor (M), average spacing (p_R) and either original average yearn diameter (d_{OR}) which pertains to the situation where the yearns move toward and touch each other but are not compressed (designated as Aspect I) or (M), (p_R) , (d_{OR}) and compressed average yearn diameter (d_{CR}) which pertains to the situation where compression of the yearns takes place in that half of the yearn which contacts a neighboring yearn under the float (designated as Aspect II). #### The following terms are defined: - M = weave factor = Number of yarns per repeat of weave Number of interlacings per repeat of weave - p = local spacing = distance between yarn centers of warp or filling at interlacings. - pa = average spacing = numerical average of "local spacings" and spacing at points of no interlacing, - doa = original average lateral diameter = the numerical average of the yarn diameters assuming no compression has taken place (Aspect (I)). - d_o = original lateral diameter = same value as d_{oa} for an individual yarn. - d_{C2} = compressed average lateral diameter = the numerical average of the compressed and uncompressed lateral diameters of the yarns (Aspect (II)). - d_o = compressed lateral diameter = lateral diameter of compressed yarn only. - 1 = subscript l as in pl, pal, doal, etc. --- indicates warp yarn. ## Aspect I First examine the situation of Aspect I where the yarns under the floats are assumed to be in contact but not compressed. This can be illustrated diagramatically for a 3, 4, and 5-harness weave as follows: 3 Harmess $$M = 1.5$$ $$P_{i} \rightarrow d\sigma_{i} \qquad k-P_{i} d\sigma_$$ 5 Harness M = 2.5 ## Warp Yarn Arrangement in Twill Weaves (No Compression) As shown above, p_1 is the local spacing, which is defined as the distance between centers of the warp yarns (for this case) at the interlacing. And d_{01} is the uncompressed diameter of the warp yarn. In these illustrations d_{01} also
represents the spacing at points of <u>no</u> interlacing under the floats. Now the average warp spacing (pa1) for each of the three weaves is: 3-harness - $$p_{a1} = \frac{2p_1 + d_{o1}}{3}$$ 4-harness - $$p_{a1} = \frac{2p_1 + 2d_{o1}}{4}$$ 5-harness - $$p_{a1} = \frac{2p_1 + 3d_{o1}}{5}$$ Solving each of the above for p1 we obtain: 3-harness: $$3p_{a1} = 2p_1 + d_{o1}$$ $p_1 = 3/2 p_{a1} - 1/2 d_{o1}$ 4-harness: $$4p_{a1} = 2p_1 + 2d_{o1}$$ $p_1 = 4/2 p_{a1} - 2/2 d_{o1}$ 5-harness: $$5p_{a1} = 2p_1 + 3d_{o1}$$ $p_1 = 5/2 p_{a1} - 3/2 d_{o1}$ Note that for all of these simple weaves the number of interlacings is two and the number of yarns per repeat is equal to the number of harnesses of the weave. Thus, the weave factor is numerically equal to half the number of harnesses. In the above equations the coefficient of $p_{8.1}$ is always equal to the number of harresses divided by the number of interlacings—which is the weave factor "H". Likewise, the coefficient of $d_{0.1}$ is equal to the weave factor less one or "M-1". Thus for uncompressed yarrs: $$p_1 = Mp_{a1} - (M_{-1}) d_{o1}$$ Since for uncompressed yarns doi = doa1 then $$p_1 = Mp_{a1} - (M-1) d_{oa1}$$ Aspect (I) (67) #### Aspect II Now examine Aspect (II) in which compression takes place in the warp ## Aspect I First examine the situation of Aspect I where the yarns under the fleats are assumed to be in contact but not compressed. This can be illustrated diagramatically for a 3, 4, and 5-harness weave as follows: ## Warp Yarn Arrangement in Twill Weaves (No Compression) As shown above, p_1 is the local spacing, which is defined as the distance between centers of the warp yarns (for this case) at the interlacing. And d_{01} is the uncompressed diameter of the warp yarn. In these illustrations d_{01} also represents the spacing at points of $\underline{n}\underline{c}$ interlacing under the floats. Now the average warp spacing (pa1) for each of the three weaves is: 3-harness - $$p_{a1} = \frac{2p_1 + d_{o1}}{3}$$ 4-harness - $$p_{a1} = \frac{2p_1 + 2d_{o1}}{4}$$ 5-harness - $$p_{a1} = \frac{2p_1 + 3d_{o1}}{5}$$ Solving each of the above for p1 we obtain: 3-harness: $$3p_{a1} = 2p_1 + d_{o1}$$ $p_1 = 3/2 p_{a1} - 1/2 d_{o1}$ 4-harness: $$4p_{a1} = 2p_1 + 2d_{o1}$$ $p_1 = 4/2 p_{a1} - 2/2 d_{o1}$ 5-harness: $$5p_{a1} = 2p_1 + 3d_{o1}$$ $p_1 = 5/2 p_{a1} - 3/2 d_{o1}$ Note that for all of these simple weaves the number of interlacings is two and the number of yarns per repeat is equal to the number of harnesses of the weave. Thus, the weave factor is numerically equal to half the number of harnesses. In the above equations the coefficient of p_{a1} is always equal to the number of harnesses divided by the number of interlacings——which is the weave factor "M". Likewise, the coefficient of d_{o1} is equal to the weave factor less one or "M-1". Thus for uncompressed yarns: $$p_1 = Mp_{a1} - (M-1) d_{o1}$$ Since for uncompressed yarns $d_{01} = d_{001}$ then $$p_1 = Mp_{a1} - (M-1) d_{oa1}$$ Aspect (I) (67) #### Aspect II Now examine Aspect (II) in which compression takes place in the warp yarns under the float. Recall that compression occurs in that half of the yarn which contacts a neighboring yarn under the float. For the three weaves this may be represented as follows: ## Warp Yarn Arrangement in Twill wgaves (Compressed Situation) The average compressed and average yarn diameter (dcal) and the compressed yarn diameter (dcl) for the three weaves is then: The average spacing (pal) for each of the three weaves is: 3-harness: $$p_{al} = \frac{2p_1 + d_{cl}}{3} = \frac{2p_1 + 3d_{cal} - 2d_{oal}}{3}$$ 4-harness: $$p_{al} = \frac{2p_1 + 2d_{cl}}{4} = \frac{2p_1 + 2\left(\frac{4d_{cal}}{4} - \frac{2d_{cal}}{4}\right)}{4}$$ 5-harmess: $$p_{al} = \frac{2p_1 + 3d_{cl}}{5} = \frac{2p_1 + 3\left(\frac{5d_{cal} - 2d_{oal}}{3}\right)}{5}$$ Solving each of the above for pl we obtain: 3-harness: $$3p_{al} = 2p_l + 3d_{cal} - 2d_{oal}$$ $p_l = 3/2 p_{al} - 3/2 d_{cal} + d_{oal}$ $= 3/2 (p_{al} - d_{cal}) + d_{oal}$ 4-harness: $$4p_{al} = 2p_l + 4d_{cal} - 2d_{cal}$$ $p_l = 4/2 p_{al} - 4/2 d_{cal} + d_{cal}$ $= 4/2 (p_{al} - d_{cal}) + d_{cal}$ 5-harness: $$5p_{al} = 2p_l + 5d_{cal} - 2d_{oal}$$ $p_l = 5/2 p_{al} - 5/2 d_{cal} + d_{oal}$ $= 5/2 (p_{al} - d_{cal}) + d_{cal}$ Here, the coefficient of $(p_{al} - d_{cal}) = M$ for each of the weaves. Thus for compressed yarns: $$\frac{p_1 = M(p_{al} - d_{cal}) + d_{oal}}{Aspect (II)}$$ (68) # IV DERIVATION OF Ka (max) AND MAXIMUM WEAVABILITY EQUATIONS FOR OTHER WEAVE TYPES Equation (68) provides a means of determining the local spacing (n) in the warp and filling directions for twill and sateen fabrics in which the assumed movement and compression of the yarns under the float takes place. This provides the numerator of the ratio p/D which is the essential expression in the formulation of the equation for maximum weavability. Now we must find the appropriate value of D (sum of diameters of warp and filling yarms) which will take into consideration the assumed yarn movement and compression. It is understood that compression takes place only in the plane of the fabric and that accordingly the vertical dimension of the yarn (that direction perpendicular to the plane of the fabric) does not change during compression. In addition, fiber packing density does not change. We can now visualize the dimensional arrangement of the yarns in situations where there are 2, 3, and 4 yarns under the float, representing 3, 4, and 5-harness weaves and can compute the average compressed diameter (d_{Ca}) of the yarns. DIAGRAM: YARN COMPRESSION BETWEEN THE FLOAT We assumed that complete flattening takes place in the half of the yarn which contacts a neighboring yarn under the float and that the original semicircle of the yarn half section became a rectangle after compression. Since the vertical dimension of this compressed half section does not change from the original uncompressed yarn, all of the compression must take place in the horizontal direction. But since the fiber packing density remains constant, the area of the compressed half section must equal that of the uncompressed half section. This means that the product of the compressed horizontal dimension (width) multiplied by the uncompressed vertical dimension (height) must equal the area of the uncompressed semi-circular yarn section. In other words, $$\frac{\pi d^2}{8} = d \times (Compressed width)$$ (69) Compressed width $$=\frac{\pi d}{8}$$ (70) In the situation shown in the diagram "Yarn Compression Between the Float," for M = 1.5 (where three yarns constitute a repeat of weave), the original (before compression) lateral diameter of the three yarns in the repeat is: $$d \times 3 = 3d \tag{73}$$ After compression has taken place the lateral diameters of the three yarns in the repeat is: $$d + d + .79 d = 2.79 d$$ (74) The compressed average lateral diameter is then $$d_{ca} = \frac{2.79 \text{ d}}{3} \tag{75}$$ Or putting this in terms of the standard symbols: $$d_{ca} = .93 d_{oa}$$ (for M = 1.5) (76) By following the same reasoning we find that the relationships between d_{ca} and d_{oa} for the weaves with M = 2 and M = 2.5 are: $$d_{ca} = .89d_{oa}$$ (For M = 2.0) $$d_{ca} = .87d_{oa}$$ (For M = 2.5) ## Computation of Ka (max): Since the average compressed lateral diameters of the yerns are less than the average original lateral diameters of the yerns, it is obvious that more compressed yerns can be squeezed into the same space than would be predicted from the value of K_0 which was previously computed, since K_0 represents the maximum cover factor for yerns assumed to be completely cylindrical. Therefore, in dealing with the 3-, 4-, and 5-harness weaves where migration and compression of the yerns under the float take place, it is necessary to develop a new K_0 to take into consideration the additional number of yerns it is possible to squeeze into the structure. This new K_0 is designated as K_a (max.) Recall from equation (25) that: $$\frac{d}{p} = \sqrt{\frac{0.342K}{De}}$$ (77) Since for cotton De = .909 then $$\frac{d}{p} = .0359K$$ (78) and $$K = \frac{27.8d}{p}$$ (80) The maximum cover factor or K_a (max) will occur when adjacent yarns are in contact. When this situation prevails the average spacing equals the average compressed diameters or $$p_{\mathbf{a}} = d_{\mathbf{c}\mathbf{a}} \tag{21}$$ therefore $$K_a (max) = \frac{27.8 d_{0a}}{d_{ca}}$$ (82) And since from (76) for M = 1.5 $$d_{ca} = .93 d_{oa}$$ (83) We have $$K_a$$ (max) = $\frac{27.8 \text{ dos}}{.93 \text{ dos}}$ = 29.9 (84) The factor 28.0 has been used in the past in lieu of 27.8. In this case for 28.0 we have: $$K_a \text{ (max)} = \frac{28.0 \text{ dos}}{.93 \text{ dos}} = 30.2$$ (85) Now express d_{oa} in terms of D using equations (55) to (58). $$B = \frac{d_{oa2}}{d_{oa1}} \qquad D = d_{oa1} + d_{oa1}B$$.. $$p = d_{oal} (1 + B)$$ (87) Since from (76) $$d_{cal} = .93 d_{cal}$$ (88) $$d_{oal} = 1.08 d_{cal}$$ (89) therefore: $$D = 1.08 d_{cal} (1 + B)$$ (90) and using equation (68) for local spacing $$p_1 = M(p_{al} - d_{cal}) + d_{oal}$$ (91) Subscripts 1 and 2 refer to warp and filling respectively. We obtain $$\frac{p_1}{D} = \frac{M(p_{al} - d_{cal}) + d_{cal}}{1.08 d_{cal} (1 + B)}$$ (92) From equation (80) using the value 28.0, we get: $$K_{al} = \frac{28 \text{ d}_{cal}}{P_{al}} = \frac{30.2 \text{ d}_{cal}}{P_{al}}$$ (93) and $$p_{al} = 30.2 d_{cal}$$ (94) therefore $$\frac{p_{1}}{\overline{D}} = \frac{1.5 \left(\frac{30.2 \, d_{cal}}{K_{al}} - d_{cal}\right) + d_{cal}}{1.08 \, d_{cal} \, (1 + B)} \tag{95}$$ $$\frac{p_1}{D} = \frac{1.5 d_{cal} \left(\frac{30.2}{K_{al}} - 1\right) + d_{oal}}{1.08 d_{cal} (1 + B)}$$ (96) $$\frac{p_1}{\mathbf{D}} = \frac{1.5 \, d_{cal} \left(\frac{30.2}{K_{al}} - 1\right) + 1.08 \, d_{cal}}{1.08 \, d_{cal} \, (1 + B)}$$ (97) $$\frac{P_1}{D} = \frac{1.5 \left(\frac{30.2}{K_{a1}} - 1\right) + 1.08}{1.08 (1 + B)}$$ (98) Recall from
(55) that $$B = \frac{doa2}{doal}$$ doal $\frac{doa2}{B}$ (79) And $$D = d_{oal} + d_{oa2}$$ (100) therefore $$D = \frac{d_{Oa2}}{B} + d_{Oa2}$$ (101) $$D = \frac{d_{0a2} + d_{0a2} B}{B}$$ (102) $$D = \frac{d_{0a2} (1 + B)}{B}$$ (103) And from (89) $$d_{0a2} = 1.08 d_{ca2}$$ (104) therefore $$D = \frac{1.08 \text{ d}_{\text{ca2}} (1 + B)}{B} \text{ (for M = 1.5)}$$ (105) And from (68) for local spacing $$p_2 = M (p_{a2} - d_{ca2}) + d_{oa2}$$ (106) therefore $$\frac{p_2}{D} = \frac{M(p_{a2} - d_{ca2}) + d_{oa2}}{\frac{1.08 d_{ca2} (1 + B)}{B}}$$ (107)* And $$\frac{p_2}{D} = \frac{\left[M \left(p_{a2} - d_{ca2}\right) + d_{oa2}\right] B}{1.08 i_{ca2} (1 + B)}$$ (108) And from (94) $$p_{a2} = \frac{30.2 \text{ d}_{ca2}}{K_{a2}}$$ (109) ^{*} M = 1.5 for equations 107 to 115 inclusive therefore $$\frac{P_2}{D} = \frac{\left[M\left(\frac{30.2 \text{ d}_{ca2}}{K_{a2}} - \text{ d}_{ca2}\right) + \text{ d}_{oa2}\right]_B}{1.08 \text{ d}_{ca2} (1 + B)}$$ (110) $$\frac{P_2}{D} = \frac{\left[\frac{M_{dca2}\left(\frac{30.2}{K_{a2}} - 1\right) + d_{oa2}}{1.08 d_{ca2} (1 + B)}\right]}{1.08 d_{ca2} (1 + B)}$$ (111) $$\frac{p_2}{D} = \frac{\left[\frac{M_{dea2}}{K_{a2}} - 1\right] + 1.08 d_{ea2}}{1.08 d_{ea2} (1 + B)}$$ (112) $$\frac{P_2}{D} = \frac{\left[\frac{M}{K_{a2}} - 1\right] + 1.08 B}{1.08 (1 + B)}$$ (113) And since from (54) $$\sqrt{1 - \left(\frac{p_1}{D}\right)^2} + \sqrt{1 - \left(\frac{p_2}{D}\right)^2} = 1$$ (114) We have $$\sqrt{1 - \left[\frac{M \left(\frac{30.2}{K_{al}} - 1 \right) + 1.08}{1.08 (1 + B)} \right]^{2}} + \sqrt{1 - \left[\frac{M \left(\frac{30.2}{k_{a2}} - 1 \right) + 1.08}{1.08 (1 + B)} \right]^{2}} = 1$$ (115) This is the specific maximum weavability equation of a three harness weave for cotton fabrics numbered in the cotton system and using a $K_{\rm O}$ of 28.0. ## V. DERIVATION OF THE GENERALIZED MAXIMUM WEAVABILITY EQUATIONS FOR ALL FIBER SPECIES AND BLENDS We shall now derive the general equation for a 3-harness weave made from any type of fiber but also numbered in the cotton system. Recall from (77) that $$\frac{d}{p} = \frac{.0342 \text{ K}}{\sqrt{\text{De}}}$$ (116) Where De is the bulk density of the yarn and $$\frac{d}{p} = \frac{K}{29 \cdot 2 \sqrt{De}}$$ (117) Thus, recalling equation (79), whenever we use the factors 27.8 or 28.0 in the derivation of Equation (115) above, we may now substitute 29.2 / De For example, for the three harness weave, Equation (85) $$K_a \text{ (max)} = \frac{29.2 \text{ VDe}}{.93 \text{ d}_{oa}} = 31.4 \text{ VDe}$$ (118) Thus the general equation for the 3-Harness Weave is: (119) $$1.5 \left(\frac{31.4 \sqrt{\text{De}}}{\text{K}_{81}} - 1\right) + 1.08\right)^{2} + \sqrt{1 - \left[\frac{1.5 \left(\frac{31.4 \sqrt{\text{De}}}{\text{K}_{82}} - 1\right) + 1.08}{1.08 (1 + B)}\right]^{2}} + \sqrt{1 - \left[\frac{1.5 \left(\frac{31.4 \sqrt{\text{De}}}{\text{K}_{82}} - 1\right) + 1.08}{1.08 (1 + B)}\right]^{2}} + 1$$ For the four harness weave (M = 2) d_{cal} = 357 $d_{oal}/4$ = .89 d_{oal} And $$d_{cal} = 1.12 d_{cal}$$ (121) $$K_{al} = \frac{28 \text{ doal}}{p_{al}} = \frac{28 \times 1.12 \text{ doal}}{p_{al}} = \frac{31.4 \text{ doal}}{p_{al}}$$ (122) For the general case of the 4-Harness Weave, we use $$K_{al} = \frac{29.2\sqrt{De} \times 1.12 d_{cal}}{P_{al}} = \frac{32.7\sqrt{De} d_{cal}}{P_{al}}$$ (123) And the general equation for the 4-Harness Weave is: (124) $$\sqrt{1 - \left[2 \frac{32.7 \text{ VDe}}{K_{al}} - 2\right] + 1.12} + 1.12 + 1.12 \frac{2}{K_{a2}} + 1.12 \frac{2}{K_{a2}} - 1 + 1.12 \frac{2}{K_{a2}} 1.1$$ For the Five Harness Weave (M = 2.5) 1 $$d_{cal} = .87 d_{cal}$$ (125) $$d_{oel} = 1.15 d_{cel}$$ (126) For the general case of the 5-Harness Weave we use $$K_{al} = \frac{29.2 \sqrt{De} (1.15) d_{cal}}{p_{al}} = 33.6$$ (127) And thus the general equation for the 5-Harness Weave is: $$\sqrt{1 - \left[\frac{2.5 \left(33.6 \sqrt{De} - 1\right) + 1.15}{1.15 (1 + B)}\right]^2 + \sqrt{1 - \left[\frac{2.5 \left(33.6 \sqrt{De} - 1\right) + 1.15}{1.15 (1 + B)}\right]^2} = 1$$ (128) For the Oxford Weave the warp portion of the equation is identical to that for the 4-Harness Weave (M = 2.0) and the filling portion of the equation is identical to that for the Plain (2-Harness Weave). The general equation for the Oxford is therefore: $$\sqrt{1 - \left[\frac{2.0 \left(\frac{32.7 \sqrt{De}}{K_{al}} - 1\right) + 1.12}{1.12 (1 + B)}\right]^{2}} + \sqrt{1 - \left[\frac{29.2 \sqrt{De}}{(1 + B) K_{a2}}\right]^{2}} = 1$$ (129) These general equations are now in practically the same form as the original equations for cotton which were derived in Textile Series Report No. 90°, and solved and tabled in Textile Series Report No. 128°. One new variable appears, namely, De, the bulk density of the yarn. In the tabulations which appear in TSR 128°, one table is required to encompass the solutions of the maximum weavability equation for each weave type, or a total of five tables are necessary for the five basic weave types: the plain, 3-harness, 4-harness, 5-harness, and oxford. To establish a series of tables of solutions for the new general equations it will be necessary to have a group of five tables (representing the five weaves) for each of the yarn bulk densities which are selected. ## REFERENCES - 1. Ball, H.J., "Engineering Design of Textile Structures," Lowell Tech. Inst., Lowell, Mass. (1961). - 2. Peirce, F.T., "The Geometry of Cloth Structure," Textile Inst. 2. T 45 (1937). - 3. Love, L., "Graphical Relationships in Cloth Geometry for Flain, Twill and Sateen Weaves," Textile Series Report No. 90, US Army Natick Laboratories, Natick, Mass., (Sept. 1955) - Weiner, L.I. and Johnston, J.E., "Design Tables for Cotton Fabrics," Textile Series Report No. 128, U.S. Army Natick Laboratories, Natick, Mass. (August 1964). #### TABLE I ## BULK DENSITIES OF YARNS, COMPUTED FROM FIBER DENSITIES This table lists the fiber densities of the natural and man-made fibers in use today. Corresponding to each fiber density, the yarn bulk density of a theoretical yarn spun from this fiber is given, assuming that the packing coefficient of the yarn is 0.59. The range of densities includes fibers as light as polypropylene and as heavy as stainless steel. The additional fiber densities provide for the development of fibers which differ in density from existing fiber species. TABLE I BULK DENSITIES OF YARNS, COMPUTED FROM FIBER DENSITIES* (Listed in order of fiber density) | Fiber Designation | Fiber Density | Yarn Bulk Density gm/cm3 | |-----------------------------|---------------|--------------------------| | Folypropylene | •91 | •54 | | Folyethylene (Low Density) | •92 | •54 | | Polyethylene (High Density) | •95 | •56 | | | •98 | •58 | | | 1.10 | .65 | | | 1.12 | •66 | | Mylon | 1.14 | .67 | | Orlon | 1.14 | .67 | | | 1.15 | •68 | | Acrilan | 1.17 | .69 | | Creslan | 1.18 | .70 | | Nytril | 1.18 | .70 | | Zefrag | 1.19 | .70 | | | 1.20 | •71 | | Kodel | 1.22 | .72 | | | 1.24 | •73 | | Silk (Boiled-off) | 1.25 | •74 | | Az? on | 1.25 | .74 | | Vinal | 1.26 | •74 | ^{*}Yarn bulk density = fiber density x 0.59 (standardized "packing confficient"); see Equation (1) TABLE I (Cont'd) | Fiber Designation | Fiber Density | Yarn Bulk Density gm/cm3 | |-------------------|---------------|--------------------------| | | 1.27 | •75 | | | 1.29 | .76 | | Dynel | 1.30 | •77 | | Arnel | 1.30 | •77 | | Ardil | 1.30 | •77 | | wool | 1.32 | •78 | | Lohair | 1.32 | . 78 | | Acetate | 1.32 | .7 8 | | | 1.34 | •79 | | Vinyon | 1.35 | .80 | | Vyeron | 1.36 | .80 | | Verel | 1.37 | .81 | | Dacron | 3 8 | .81 | | Fortrel | 1.38 | .81 | | | 1.39 | .82 | | | 1.41 | .83 | | | 1,42 | .84 | | | 1.44 | . 85 | | | 1.46 | .86 | TABLE I (Cont'd) | Fiber Designation | Fiber Density | Yarn Bulk Density | |-------------------|---------------|-------------------| | Hemp | 1.48 | .87 | | Jute | 1.48 | .87 | | | 1.49 | .88 | | avril | 1.50 | .89 | | Flax (Linen) | 1.50 | .89 | | Ramie | 1.51 | .89 | | Zantrel | 1.51 | .89 | | Viscose Rayon | 1.52 | •90 | | Cuprammonium | 1.52 | •90 | | Fortisan | 1,52 | •90 | | Cotton | 1.54 | .91 | | | 1.56 | •92 | | | 1.58 | •93 | | | 1.59 | •94 | | Saran | 1.70 | 1.00 | | Alginate | 1.70 | 1.00 | | Teflon | 2.30 | 1.36 | | Asbestos | 2.50 | 1.48 | | Fiberglas | 2.54 | 1.50 | TABLE I (Cont'd) | Fiber Designation | Fiber Density | Yarn Bulk Density | |-------------------|---------------|-------------------| | | 3.00 | 1.7? | | | 4.00 | 2.36 | | | 5.00 | 2.95 | | | 6.00 | 3.54 | | | 7.00 | 4.13 | | Stainless Steel | 7.80 | 4.60 | TABLE II YARN BULK DENSITIES OF BLENDS OF THE IMPORTANT COMMERCIAL FIBERS | Fiber Density | Fiber Designation | |---------------|---------------------------------------| | 1.14 | Nylon, Orlon | | 1.17 | Acrilan | | 1.22 | Kodel | | 1.30 | Dynel, Arnel | | 1.32 | Wool, mohair, acetate | | 1.38 | Dacron, Fortrell | | 1.52 | Viscose rayon, cuprammonium, Fortisan | | 1.54 | Cotton | The fiber density of one of the component fibers is given at the top of the first column, with the percentage of that fiber (from 5% to 95%) given below it. The <u>headings</u> of the following seven columns give the fiber densities of the <u>other</u> component fibers, and the values in the body of the table are yarn bulk densities. For example: Given a blend of 25% nylon, 75% cotton. Turn to page of table with "Fib. den = 1.14" above first column (fiber density of nylon is 1.14). Drop down to 25 in this column (the percentage of nylon in the blend). Go across this row (25) to the column headed 1.54 (this is the fiber density of cotton). This will give the bulk density of a blend of 25% nylon and 75% cotton as .84. TABLE II YARN BULK DENSITIES OF BLENDS OF THE IMPORTANT COMMERCIAL FIBERS | (FIR. DEN. = 1.14) | 1.17 | 1.22 | 1.30 | 1.32 | 1.38 | 1,52 | 1.54 | |--------------------|------|------|------|------|------|---------|------| | (%) | 0.69 | 0.72 | n.76 | 0.77 | 0.81 | 0.83 | 0.89 | | 1 0 | 0.69 | 0.71 | 0,76 | 0.77 | 0.80 | 1.87 |
0.88 | | 15 | 0.69 | 0.71 | 0.75 | 0.76 | 0.79 | 0.85 | 0.86 | | 5 u | 0.69 | 0.71 | 0.75 | 0.75 | r./8 | H . H 4 |).HD | | 25 | 0-69 | 0.71 | 0.74 | 0.75 | 0.77 | 0.83 | 0.84 | | 30 | 0.68 | 0.70 | 0.74 | 0.74 | 0.77 | 0.82 | 0.82 | | 35 | 0.68 | 0.70 | 0.73 | 0.74 | 0.76 | 0.80 | 18.0 | | 4 0 | 0.68 | 0.70 | 0.73 | 0.73 | ٥.75 | 1,19 | J.40 | | 4 h | 0.68 | 0.76 | 0.72 | 0.73 | Λ.74 | 0.78 | 0.73 | | 5 n | 0.68 | 0.70 | 0.72 | 0.72 | 0.74 | 0.77 | 0.77 | | 55 | 0.68 | n.69 | 0.71 | 0.72 | 0.73 | 0.76 | 0.76 | | 60 | 0.68 | 0.69 | 0.71 | 0.71 | 0.72 | 0.75 | 0.75 | | 65 | 0.68 | 0.69 | 0,70 | 0.71 | 0.72 | 0.74 | 0.74 | | 70 | 0.68 | 0.69 | 0.70 | 0.70 | 0.71 | 0,73 | 0.73 | | 75 | 0.68 | 0.68 | 0,69 | 0.70 | 0.70 | 0.72 | 0.72 | | 90 | 0.68 | 0.68 | 0.69 | 0.69 | 0.70 | 0.71 | 0.71 | | 85 | 0.68 | 0.68 | 0.69 | 0.69 | 0.69 | 0,70 | 0.70 | | 90 | 0.67 | 0.68 | 0.68 | 0.68 | 1.68 | 0.69 | 0.69 | | 95 | n.67 | 0.67 | 0.68 | 0.68 | 0,48 | 0.68 | 0.68 | | | • | | | | | | | TABLE II YARN BULK DENSITIES OF BLENDS OF THE IMPORTANT COMMERCIAL FIBERS | [FIB. DEN. = 1.17] | 1.14 | 1.22 | 1.30 | 1.32 | 1.38 | 1,52 | 1.54 | |--------------------|------|------|------|------|------|------|------| | (%) | | | | | | | | | 5 | 0.67 | 0.72 | 0.76 | 0.77 | 0.81 | 0.88 | 0.89 | | 10 | 0.67 | 0.72 | 0.76 | 0.77 | 0.80 | 0.87 | 0.88 | | 15 | 0.68 | 0.72 | 0.75 | 0.76 | 0.79 | 0.86 | 0.87 | | 50 | 0.68 | 0.71 | 0.75 | 0.76 | 0.79 | 0.85 | 0.85 | | 25 | 0.68 | 0.71 | 0.75 | 0.75 | 0.78 | 0.83 | 0.84 | | 30 | 0.68 | 0.71 | 0.74 | 0.75 | 0.77 | 0.82 | 0.83 | | 35 | 0.68 | 0.71 | 0.74 | 0.75 | 0.77 | 0.81 | 0.82 | | 40 | 0.68 | 0.71 | 0,73 | 0.74 | 0.76 | 0.80 | 0.81 | | 45 | 0.68 | 0.71 | 0.73 | 0.74 | 0.75 | 0,79 | 0.80 | | 50 | 0.68 | 0.70 | 0,73 | 0.73 | 0.75 | 0.78 | 0.78 | | 55 | 0.68 | 0.70 | 0.72 | 0.73 | 0.74 | 0.77 | 0.77 | | 60 | 0.68 | 0.70 | 0.72 | 0.72 | 0.74 | 0.76 | 0.75 | | 65 | 0.68 | 0.70 | 0.72 | 0.72 | 0.73 | 0.75 | 0.75 | | 70 | 0.68 | 0.70 | 0.71 | G.71 | 0.72 | 0.74 | 0.74 | | 75 | 0.69 | 0.70 | 0.71 | 0.71 | 0.72 | 0.73 | 0.73 | | 80 | 0.65 | 0.70 | 0.70 | 0.71 | 0.71 | 0.72 | 6.73 | | 85 | 0.69 | 0.69 | 0.70 | 0.70 | 0.71 | 0.71 | 0.72 | | 90 | 0.69 | 0.69 | 0.70 | 0.70 | 0.70 | 0.71 | 0.71 | | 95 | 0.69 | 0.69 | 0.69 | 0.69 | 0.70 | 0.70 | 0.70 | | | | | | | | | | TABLE II YARN BULK DENSITIES OF BLENDS OF THE IMPORTANT COMMERCIAL FIBERS | (FIR. DEN. = 1.22) | 1.14 | 1.17 | 1.30 | 1.32 | 1.38 | 1,52 | 1.54 | |--------------------|------|------|------|------|------|------|------| | 5 | 0.67 | 0.69 | 0.76 | 0.78 | 0.81 | 0.89 | 0.90 | | 10 | 0.68 | 0.69 | 0.76 | 0.77 | 0.80 | 0.88 | 0.89 | | 15 | 0.68 | 0.69 | 0.76 | 0.77 | 0.80 | 0,86 | 0.87 | | 20 | 0.68 | 0.70 | 0.76 | 0.77 | 0.79 | 0.85 | 0.86 | | 25 | 0.06 | 0.70 | 0.75 | 0.76 | 0.79 | 0.54 | 0.85 | | 30 | 0.69 | 0.70 | 0.75 | 0.76 | n.78 | 0.84 | 0.84 | | 35 | 0.69 | 0.70 | 0.75 | 0.76 | 0.78 | 9.83 | 0.83 | | 4 0 | 0.69 | 0.70 | 0.75 | 0.75 | 0.77 | 0.82 | 0.82 | | 45 | 0.69 | 0.70 | 0.75 | 0.75 | 0.77 | 0.81 | 0.81 | | 50 | 0.70 | 0.70 | 0.74 | 0.75 | 0.76 | 0.80 | 0.80 | | 55 | 0.70 | 0.71 | 0.74 | 0.75 | n.76 | 0.79 | 0.79 | | 60 | 0.70 | 0.71 | 0.74 | 0.74 | 0.75 | 0.78 | 0.79 | | 65 | 0.70 | 0.71 | 0.74 | 0.74 | 0.75 | 0.77 | 0.78 | | 70 | 0.70 | 0.71 | 0,73 | 0.74 | 0.75 | 0.77 | 0.77 | | 75 | 0.71 | 0.71 | 0.73 | 0.73 | 0.74 | 0.76 | 0.76 | | A 0 | 0.71 | 0.71 | 0.73 | 0.73 | 0.74 | C.75 | 0.75 | | 85 | 0.71 | 0.72 | 0.73 | 0.73 | 0.73 | 0.74 | 0.74 | | \$ n | 0.71 | 0.72 | C,72 | 0.73 | 0.73 | 0.73 | 0.74 | | 95 | 0.72 | 0.72 | U.72 | 0.72 | 0.72 | 0.73 | 0.73 | TABLE II YARN BULK DENSITIES OF BLENDS OF THE IMPORTANT COMMERCIAL FIBERS | (FIB. DEN. = 1.30) | 1.14 | 1.17 | 1.22 | 1.32 | 1.38 | 1.52 | 1.54 | |--------------------|------|-------------|------|------|------|--------|------| | 5 | 0.68 | 0.69 | 0.72 | 0.78 | 0.81 | 0.89 | 0.96 | | 10 | 0.68 | 0.70 | 0.72 | 0.78 | 0.81 | 0.88 | 0.89 | | 15 | 0.69 | 0.70 | 0.73 | 0.78 | 0.81 | 0.87 | 0.88 | | 50 | 0.69 | 0.70 | 0.73 | 0.78 | 0.80 | 0.87 | 0.88 | | 25 | 0.69 | 0.71 | 0.73 | 0.78 | 0.80 | 0.86 | 0.87 | | 30 | 0.70 | 0.71 | 0.73 | 0.78 | 0.80 | 0 - 85 | 0.86 | | 35 | 0.70 | 0.72 | 0.74 | 0.77 | 0.80 | 0.85 | 0.85 | | 40 | 0.71 | n.72 | 0.74 | 0.77 | 0.79 | 0.84 | 0.85 | | 45 | 0.71 | 0.72 | 0.74 | 0.77 | 6.79 | 0,83 | 0.84 | | 50 | 0.72 | 0.73 | 0.74 | 0.77 | 0.79 | 0,83 | 0.83 | | 55 | 0.72 | 0.73 | 0.75 | 0.77 | 0,79 | 0.82 | 0.82 | | 60 | 0.73 | 0.73 | 0.75 | 0.77 | 0.79 | 0.81 | 0.82 | | 65 | 0.73 | 0.74 | 0.75 | 0.77 | 0.78 | 0.81 | 0.81 | | 70 | 0.74 | 0.74 | 0,75 | 0.77 | 0.78 | 0.80 | 0.80 | | 75 | 0.74 | 0.75 | 0.75 | 0.77 | 0.78 | 0.80 | 0.80 | | A O | 0.75 | 0.75 | 0.76 | 0.77 | 0.78 | 0.79 | 0.79 | | 85 | 0.75 | 0.75 | 0.76 | J.77 | 0.77 | 0.78 | 0.79 | | 90 | 0.76 | 0.76 | 0.76 | 0.77 | 0.77 | 0.78 | 0.78 | | 95 | 0.76 | 0.76 | 0.76 | 0.77 | 0.77 | 0.77 | 0.77 | YARN BULK DENSITIES OF BLENDS OF THE IMPORTANT COMMERCIAL FIBERS | (FIR. DEN. = 1.32) | 1.14 | 1.17 | 1.22 | 1.30 | 1.38 | 1.52 | 1.54 | |--------------------|------|------|------|------|------|------|------| | 5 | 0.59 | 0.69 | 0.72 | 0.77 | 0.81 | 0.89 | 0.90 | | 10 | 0.68 | 0.70 | 0.73 | 0.77 | 0.81 | 0.88 | 0.89 | | 15 | 0.69 | 0.70 | 0.73 | 0.77 | 0.81 | 88,6 | 0.89 | | 20 | 0 69 | 0.71 | 0.73 | 0.77 | 0.81 | 0.87 | 0.88 | | 25 | 0.70 | 0.71 | 0.73 | 0.77 | 0.81 | 0.86 | 0.87 | | 30 | 0.70 | 0.71 | 0.74 | 0.77 | 0.80 | 0.86 | 0.87 | | 35 | 0.71 | 0.72 | 0.74 | 0.77 | 0.80 | 0.85 | 0.86 | | 4 0 | 0.71 | 0.72 | 0.74 | 0.77 | 0,89 | 0.85 | 0.85 | | 45 | 0.72 | 0.73 | 0.75 | 0.77 | 0.80 | 0.84 | 0.85 | | 50 | 0.72 | 0.73 | 0.75 | 0.77 | n.eo | 0.83 | 0.84 | | 55 | 0.73 | 0.74 | 0.75 | 0.77 | 0.79 | 0.83 | 0.83 | | 60 | n.73 | 0.74 | 0.75 | 0.77 | 0.79 | 0.82 | 0.83 | | 65 | 0.74 | 0.75 | 0.76 | 0.77 | 0.79 | 0.82 | 0.82 | | 70 | 0.74 | 0.75 | 0.76 | 0.78 | 0.79 | 0.81 | 0.81 | | 75 | 0.75 | 0.75 | 0.76 | 0.78 | 0.79 | 0.81 | 0.81 | | 80 | 0.75 | 0.76 | 0.77 | 0.78 | 0.79 | 0.80 | 0.80 | | 85 | 0.76 | 0.76 | 0.77 | 0.78 | 0.78 | 0.79 | 0.80 | | 90 | 0.77 | 0.77 | 0.77 | 0.78 | 0.78 | 0.79 | 0.79 | | 95 | 0.77 | 0.77 | 0.78 | 0.78 | 0.78 | G.78 | 0.78 | | | | | | | | | | YARN BULK DENSITIES OF BLENDS OF THE IMPORTANT COMMERCIAL FIBERS | (FIB. DFN. = 1.38) | 1.14 | 1.17 | 1.22 | 1.30 | 1.32 | 1.52 | 1.54 | |--------------------|------|------|------|------|------|------|------| | 5 | 0.68 | 0.70 | 0.72 | 0.77 | 0.78 | 0,89 | 0.90 | | 10 | 0.68 | 0.70 | 0.73 | 0.77 | 0.78 | 0,89 | 0.90 | | 15 | 0.69 | 0.71 | 0,73 | 0.77 | 0.78 | 0.88 | 0.89 | | 5.0 | 0.70 | 0.71 | 0.74 | 0.78 | 0.79 | 0.88 | 0.89 | | 25 | 0.70 | J.72 | 0.74 | 0.78 | 0.79 | 0.87 | 0.88 | | 30 | 9.71 | 0.72 | 0.75 | 0.78 | 0.79 | 0.87 | 0.88 | | 35 | 0.72 | 0.73 | 0,75 | 0.78 | 0.79 | 0,87 | 0.87 | | 40 | 0.72 | 0.74 | 0.75 | 0.79 | o.79 | 0.86 | 0.87 | | 45 | 0.73 | 0.74 | 0.76 | 0.79 | 0.79 | 0,86 | 0.86 | | 50 | 0.74 | 0.75 | 0.76 | 0.79 | 0.80 | 0.85 | 0.86 | | 55 | 0.74 | 0.75 | 0.77 | 0.79 | 0.80 | 0.85 | 0.85 | | 60 | 0.75 | 0.76 | 0.77 | 0.79 | 0.80 | 0.85 | 0.85 | | 65 | 0.76 | 0.77 | 0.78 | 0.80 | 0.80 | 0.84 | 0.84 | | 70 | 0.77 | 0.77 | 0.78 | 0.80 | 0.80 | 0.84 | 0.84 | | 75 | 0.77 | 0.78 | 0.79 | 0.80 | 0.81 | 0.83 | 0.84 | | A 0 | 0.78 | 0.79 | 0.79 | 0.80 | 0.81 | 0,83 | 0.83 | | 85 | 0.79 | 0.79 | 0.80 | 0.61 | 0.81 | 0.83 | 0.83 | | 90 | 0.80 | 0.80 | 0.80 | 0.81 | 0.81 | 0.82 | 0.82 | | 95 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.82 | 0.82 | YARN BULK DENSITIES OF BLENDS OF THE IMPORTANT COMMERCIAL FIBERS | (FIB. DEN. = 1.52) | 1.14 | 1.17 | 1.22 | 1.30 | 1.32 | 1,38 | 1.54 | |--------------------|------|------|------|------|------|------|------| | (%)
5 | 0.68 | 0.70 | 0,73 | 0.77 | 0.78 | 0.82 | 0.91 | | 10 | 0.69 | 0.71 | 0.73 | 0.78 | 0.79 | 0.82 | 0.91 | | 15 | 0.70 | 0.71 | 0.74 | 0.78 | 0.79 | 0.83 | 0.91 | | 20 | 0.71 | 0.72 | 0.75 | 0.79 | 0.80 | 0.83 | 0.91 | | 25 | 0.72 | 0.73 | 0,76 | 0.80 | 0.81 | 0,83 | 0.91 | | 30 | 0.73 | 0.74 | 0.77 | 0.80 | 0.81 | 0,84 | 0.91 | | 35 | 0.74 | 0.75 | 0,77 | 0.81 | 0.82 | 0.84 | 0.90 | | 4 () | 0.75 | 0.76 | 0.78 | 0.81 | 0.82 | 0.85 | 0.90 | | 45 | 0.76 | 0.77 | 0,79 | 0.82 | 0.83 | 0,85 | 0.90 | | 50 | 0.77 | 0.78 | 0.80 | 0.83 | 0.83 | 0.85 | 0.90 | | 55 | 0.78 | 0.79 | 0.81 | 0.83 | 0.84 | 0.86 | 0.90 | | 60 | 0.79 | 0.80 | 0.82 | 0.84 | 0.85 | 0.86 | 0.90 | | 65 | 0.80 | 0.81 | 0,83 | 0.85 | 0.85 | 0.87 | 0.90 | | 70 | 0.82 | 0.82 | 0.84 | 0.85 | 0.86 | 0.87 | 0.90 | | 75 | 0.83 | 0.83 | 0.84 | 0.86 | 0.86 | 0.87 | 0.90 | | 8.0 | 0.84 | 0.85 | 0.85 | 0.87 | 0.87 | 0,88 | 0.50 | | 85 | 0.85 | 0.86 | 0.86 | 0.87 | 0.88 | 0.88 | 0.90 | | 90 | 0.87 | 0.87 | 0.88 | 0.88 | 0.88 | 0.89 | 0.90 | | 95 | 0.88 | 0.88 | 0,89 | 0.89 | 0.89 | 0.89 | 0.90 | TABLE II YARN BULK DENSITIES OF BLENDS OF THE IMPORTANT COMMERCIAL FIBERS | (5) | 1.14 | 1.17 | 1.22 | 1.30 | 1.32 | 1,38 | 1.52 | |-----|------|------|------|------|------|------|------| | 5 | 0.68 | 0.70 | 0.73 | 0.77 | 0.78 | 0.82 | 0.90 | | 10 | 0.69 | 0.71 | 0.74 | 0.78 | 0.79 | 0.82 | 0.90 | | 15 | 0.70 | 0.72 | 0.74 | 0.79 | 0.80 | 0.83 | 0.90 | | 20 | 0.71 | 0.73 | 0,75 | 0.79 | 0.80 | 0,83 | 0.90 | | 25 | 0.72 | 0.73 | 0.76 | 0.80 | 0.81 | 0.84 | 0.90 | | 30 | 0.73 | 0.74 | 0.77 | 0.80 | 0.81 | 0.84 | 0.90 | | 35 | 0.74 | 0.75 | 0.78 | 0.81 | 0.82 | 0,84 | 0.90 | | 4 0 | 0.75 | n.76 | 0.79 | 0.82 | 0.83 | 0,85 | 0.90 | | 45 | 0.76 | 0.77 | 0.79 | 0.82 | 0.83 | 0,85 | 0.90 | | 50 | 0.77 | 0.78 | 0.80 | 0.83 | 0.84 | 0,86 | 0.90 | | 55 | 0.78 | 0.80 | 0.81 | 0.84 | 0.85 | 0,86 | 0.90 | | 60 | 0.80 | 0.81 | 0.82 | 0.85 | 0.85 | 0,87 | 0.90 | | 65 | 0.81 | 0.82 | 0.83 | 0.85 | 0.86 | 0,87 | 0.90 | | 70 | 0.82 | 0.83 | 0.84 | 0.86 | 0.67 | 0,88 | 0.91 | | 75 | 0.84 | 0.84 | 0.85 | 0.87 | 0.87 | 0,88 | 0.91 | | 80 | 0.85 | 0.85 | 0.86 | 0.88 | 0.88 | 0.89 | 0.91 | | 85 | 0.86 | 0.87 | 0.87 | 0.88 | 0.89 | 0.89 | 0.91 | | 90 | 0.88 | 0.88 | 0.89 | 0.89 | 0.89 | 0,90 | 0.91 | | 95 | 0.89 | 0.89 | 0.90 |
0.90 | 0.90 | 0.90 | 0.91 | #### MAXIMUM WEAVABILITY TABLE TABLE III. MAXIMUM FILLING COVER FACTOR IN TERMS OF WARP COVER FACTOR, BETA FACTOR, AND YARN BULK DENSITY This table provides solutions for the maxim: weavability equations (3c) for: - A. Plain weaves, 2-harness B. Twills, 3-harness - C. Twills and crowfoot, 4-harness - D. Sateens, 5-harmess - E. Oxford weave For each yarn bulk density value listed below there is a section of Table III for each of the above weave types on the page indicated below: | Yarn Bulk
Density | Plain
Weave | Three
Harn. | Four
Harn. | Five Harn. | Orford | |--------------------------|------------------|----------------|---------------|------------------------------|-------------| | •54
•55 | 65 | 112 | 161 | 215
216 | 277 | | •55
•57 | 66 | 113 | 162 | 217
218 | 278 | | .58 | 67 | 114 | 163 | 219 | 279 | | •59
•60 | | | | 220
221 | | | .61
.62 | | ¢ | | 222 | | | .63 | | | | 223
2 2 4 | | | .64
.65 | 68 | 115 | 164 | 225
226 | 280 | | .66 | 69 | 116 | 165 | 227 | 281 | | .65
.66
.67
.68 | 70
71 | 117 | 166
167 | 228
229 | 282
283 | | .69 | 72 | 119 | 168 | 230 | 284 | | .70
.71 | 7 3
74 | 120
121 | 169
170 | 2 31
2 32 | 285
28ර | | .72 | 75 | 122 | 171 | 233 | 287 | | •73 | 76 | 123 | 172 | 234 | 288 | | .74 | 77 | 124 | 173 | 235 | 289 | | •75
•76 | 78
79 | 125
126 | 174
175 | 2 3 6
2 3 7 | 290
291 | | .77 | 80 | 127 | 176 | 238 | 292 | | .78 | 81 | 128 | 177 | 239 | 2 93 | | •79 | 82 | 129 | 178 | 240 | 294 | | .80
.81 | 83
84 | 130
131 | 179
180 | 241
242 | 295
296 | | Yarn Bulk
Density | Plain
<u>Weave</u> | Three Harn. | Four
<u>Harn</u> . | Five
<u>Harn</u> . | Oxford | |-------------------------------------|-----------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------| | .82 | 85 | 132 | 181 | 243 | 297 | | .83 | 86 | 133 | 182 | 244 | 298 | | .84 | 87 | 134 | 183 | 245 | 299 | | .85 | 88 | 135 | 184 | 246 | 300 | | .86 | 89 | 136 | 185 | 247 | 301 | | .87 | 90 | 137 | 186 | 248 | 302 | | .88 | 91 | 138 | 187 | 249 | 303 | | .89 | 92 | 139 | 188 | 250 | 304 | | .90 | 93 | 140 | 189 | 251 | 305 | | .91 | 94 | 141 | 190 | 252 | 306 | | .92 | 95 | 142 | 191 | 253 | 307 | | .93 | 96 | 143 | 192 | 254 | 308 | | .94
.95
.96
.97
.98 | 97 | 744 | 193
194
195
196
197 | 255
256
257
258
259 | 309
310
311
312
313 | | .99
1.00
1.36
1.48
1.50 | 98
99 | 145
146
147
148 | 198
199
200
201
202 | 260
261
262
263
264 | 314
315
316
317
318 | | 1.77 | 100 | 149 | 203 | 265 | 319 | | 2.00 | 101 | 150 | 204 | 266 | 320 | | 2.36 | 102 | 151 | 205 | 267 | 321 | | 2.50 | 103 | 152 | 206 | 268 | 322 | | 2.75 | 104 | 153 | 207 | 269 | 323 | | 2.95 | 105 | 154 | 208 | 270 | 324 | | 3.25 | 106 | 155 | 209 | 271 | 325 | | 3.54 | 107 | 156 | 210 | 272 | 326 | | 3.75 | 108 | 157 | 211 | 273 | 327 | | 4.00 | 109 | 158 | 212 | 2 7 4 | 328 | | 4.13 | 111 | 159 | 213 | 275 | 329 | | 4.60 | | 160 | 214 | 276 | 330 | The overall range of warp cover factors is from 8 to 62. However, depending upon the yarn bulk density and/or the weave type the range may be less than this. Beta factors range from 0.5 to 2.0 See Sections in the body of the report for: Computation and organization of Table III (3c) How to use Table III (5) Examples of use of Table III (6) Basic assumptions and limitations of tables (7) PLAIN WEAVE MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.54 | α. | | | | | | | | | | | | | | | | | | |---------|-----|-----|------|------|----------|------|----------------|------|----------|------|------------|----------|-----------|----------|-------|----------|-------------| | OVER | | | | | | | | 96 | 1 | 1 | | 1 | | 19.8 | 1 | | | | - AC10R | 0 | 9.0 | 0.7 | 60 | 0.0 | 1.0 | । स्त ।
। स | 1.2 | 1 | 4 |) and | 9 | 1.7 | 1,8 | | 2. | 0 | | 60 | 0 | .0 | 0 | i |) · | | 9 | | 0 | | . 0 | 0 | ** | 19. | 17, | 17 | 8 | | ٥ | | | | | | | | 0 | | • | • | Ġ. | N | 2 | 6 of | 15 | _ | | | | | | | | | | 8 | 80 | 80 | 4 | • | 4 | 4 | 14. | 15 | | | | | | | • | • | 7 | 4 | 'n | 3 | 2 | • | 4 | 4 | * | 14. | 41 | | | | | | • | • | 5 | ; | W | ä | 2 | 3 | 5 7 | 3 | 4 | • | 14. | 4 | | | | • | • | 13.6 | 11.9 | 11.8 | 11.9 | 12.2 | 12.4 | 12.7 | 13.0 | 13.3 | 13.6 | 13.8 | 14.1 | 14.3 | · | | | | 0 | | 0 | • | 1 | - | • | 2 | N | | • | • | 9 | • | * | ₽
•1 | • | | 15 | • | • | • | • | | ed | = | 8 | 3 | 8 | P) | 3 | 3 | 3 | 14. | 4 | - | | | 8 | • | • | 0 | 0 | - | - | ö | 2 | ° | • | 5 | 63 | 3 | 54. | 4 | | | | • | • | • | 0 | | 14.0 | 11.5 | 11.9 | 12.3 | 12.7 | 13.0 | 13.3 | 13.6 | 13.9 | 14.1 | | | | | • | • | • | • | 0 | 0 | - | + | 2 | 2 | 2 | 3 | | 3 | 14. | 14 | | | | 7.6 | | 9.1 | | | | | 1 | Ċ. | 2 | 07) | m | 10 | m | 44. | 4 | 17) | | | • | • | • | • | 0 | 0 | = | + | 2 | 2 | 8 | 3 | 10 | 2 | 14. | 14 | | | | • | • | • | • | 0 | 0 | + | + | 2 | 2 | ~ | ,
, | m | 2 | 14. | 14 | | | | • | 8.2 | 0.6 | 9.7 | 10.3 | 10.8 | 11.3 | 11.8 | 12.5 | 12.6 | 12.9 | 13.2 | 13.5 | 13.8 | 4 | + + | 1 70 | | | • | • | • | • | | 0 | | - | 2 | N | 2 | ٠
ا | ٠
ا | 9 | +- | * | | | | | • | • | • | • | • | - | + | ò | ŝ | N | ,
, | · | | * | * | | | 25 | • | • | • | • | 0 | | - | + | ċ | 3 | 2 | 17 | | 3 | 44 | 14 | | | | • | • | • | • | | • | - | ; | ٠
د | 2 | 2 | ,
M | ,
P | . | 44 | 1 | _ | | | • | • | • | • | | 0 | 7 | | ٠
د | Ċ | ~ | m | 3 | 2 | 14. | 4 | - | | | • | • | | | 10.2 | 10.8 | 11.3 | 11.7 | 12.1 | 12.5 | 12.9 | 13.5 | 13.5 | 13.8 | 14.1 | 14. | - | | | 7.2 | 8.1 | 8.0 | 9.6 | • | 0 | •
•4 | + | ċ | 2 | 8 | M | n | m | 14. | 14 | m | | | • | • | | • | | 6 | - | + | 8 | 2 | ~ | 1 | P) | 2 | 14. | 4.4 | | | 36 | 7.2 | 8.1 | 8.9 | 9.6 | 10.2 | 10.7 | 11.3 | 11.7 | 12.1 | 12.5 | 12.9 | 13.2 | 13.5 | 13.8 | 1.4.1 | + | m | | | • | • | • | • | 0 | | -1 | + | 5 | 2 | ~ | 5 | ,
10 | 3 | 14. | 4 | | # MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA # YARN BULK DENSITY = 0.56 | ス
()
() | , | | 1 | | | | | BET | < | ! | | 1 | ! | , | (| 1 | | |------------------------------|---------------------------------------|---------------------------------------|------------------------------|---|--------------------------------------|---|---|---|--|--|--|--|--|---------------------------|--|---------------------------------------|-------| | « ~ · | 0.5 | 0 | 6.7 | . — | 6.0 | 1.0 | - | 1.2 | 1 | 4 | | | + | 1.8 | 4 | 8 | - | | 80 0 | | 00 | | 00 | | 00 | 00 | | 0.0 | | 20.5 | 17.5 | 0. | 16.2 | 19.1 | 4 4 6 6 . | 0.0 | | O ਜ਼ U P 4 | 00000 | 1000
1000
1400
1400 | 100°,
117°,
11°, | 0,
0.
12.7 | 11.5
11.5
11.5
11.5
11.5 | 00000
10000
4000 | 0 8 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 | 64444
6446
6466
6466
6466
6466
6466
64 | 24 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 24888
74888
74884 | 44444
84888
88888
88864 | 444
644
646
646
646
646
646
646
646
646 | | 24444
27.5.8.8 | 4 4 4 4 4 4 4 4 6 10 10 10 10 10 10 10 10 10 10 10 10 10 | 2 4 4 4
2 4 4 4 | N00@N | | 4444
9846
9 | 11.2
9.0
8.3
8.0
7.8 | 10.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 10001 | 211111
2111111111111111111111111111111 | 111.9 | 8666 | 44444
44444
44444
44444 | 20000
00000 | 100
100
100
100
100
100
100
100
100
100 | 4 4 4 4 4
6 4 6 6 6 | 6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6. | 2 7 4 4 4
0 0 0 0 0 0 | **** | * * * * * * * * * * * * * * * * * * * | ~~000 | | 20
22
24
24 | V V V V V V V V V V V V V V V V V V V | 00 00 00 00 00
10 4 4 4 10 | 00000
WUUHH | 99999 | 00000
00000
00004 | +0000 | | 11222 | 4 . 4 4 4 | 22224
22224
88888 | 000000
000000
000000 | | 80 80 80 80
80 80 80 80
80 80 80 80
80 80 80 80 | : 'तनन
१११ | 44444 | **** | *** | | 2222
2027
2027
2027 | V V V V V V V V V V V V V V V V V V V | 0 0 0 0 0 0 0 0 0 0 | | 00000 | | | | 111111111111111111111111111111111111111 | 44444
4444 | 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | กราช
ค.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ | ************************************** |
 | | 4444 | * * * * * | ••••• | | 321 | 7.7. | 8 8 8 | 000 | V. 0
V. 0 | 000 | 11.0 | 11.5 | 6.00 | 4.21 | 12.08
12.08
12.08 | +++
%
%
#
++ | 4 4 4
8 8 8 8 | # # # # # # # # # # # # # # # # # # # | र । । ।
व च च
च च च | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 4 | • • • | 3 MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF MARP COVER FACTOR AND BETA YARN BULK BENSITY #0.58 | 1 | | 04 | N 4 N H O | 0000 | 00000 | 00000 | | |-------|-----------------------|-------------|---------------------------------|-----------------------------------|---------------------------|---------------------------------------|--------------------| | | NI | 10. | 5 15 15 15 15 | W 4 4 4 4 | 44444 | **** | 4 4 4 | | | | • | 0 N O 0 0 | ~~~~ | 00000 | ••••• | 000 | | (| | 200 | 2
2
2
2
2
4
4 | 44444 | 4444 | * * * * * * * * * * * * * * *
* * * * | 444 | | • 1 | | 4-4 Ch | Necon | W4444 | nnnnn | nnnnn | 50 50 50 | | | • | 100 | W W 4 4 4 | 44444 | * * * * * *
 | 4444 | 444 | | 1 | • (| | N 0 0 4 N | ~~~ | 40000 | 00000 | 000 | | l | | 17 | 84444 | 4444 | **** | **** | 4 ¥ 4
H H H | | | | . 6 | 84444
67840 | | V V V V | できるるる | 7.7 | | | | | 66666
6666 | 98999 | ਜਜਜਜ | न ज न न न | स्त स्त स | | 1 | • 1 | 0.80 | 80 4 4 80 80
0 0 0 0 0 0 | nnnn | 44444 | 44444 | 444 | | | 1 | C4 | ~~~~ | ended
Boded | # # # # #
0000 | 99999
9999 | A A A | | | + | 00 | 04888
04888 | nnnnn | BBBBB | BBBBB | 222 | | | 10 | | @ r @ p = | 00011 | V 000G | 00000 | | | | 8 ← 1 (
8 (| | 4444 | 22222 | 22222 | 22222 | 12 | | ш | | | 2640 | 6448N | ~~~~~ | 00000 | 999 | | | • | | -व्यक्ति'व्यक्ति | क्षिक के के ले | न ने ने न न | न न न न न | न न न | | | - | | 0 V W W W O V W W W | 20000 | 88777 | **** | 7.4 | | | | • | | 80848
44444 | 80000 | 4444
00000 | + + + +
+ + + + | | | | 00 | 00488 | | | |
 | | | . 0 | | 60 60 60 | 4:4060 | **** | *** | • • • | | | 0 | 00 | 10000 | | 00000 | 00000 | | | | | | 96 | 00400 | 44000 | 00000 | 000 | | | • | | 14.4
00004 | | 0 0 0 0 0
in'n'n'n'n | 90000 | 000 | | | | | | 74008 | | | | | | • | | 70000 | 44 | • • • • • | 0000 | 0 ~ 0 | | | - | | 40000 | | 0 00 0 0 0
- 0 0 0 0 0 | 10 4 4 4 % | | | | | • | 4 | 0 W 0 W 0 | | so to to to to | | | | | 00 | 00000 | 40000 | | | | | | | 1 | | ~ | | | | | | B K | | | | | | | | Q W (| X | 60 O | 0 4 0 M 4 | | | | | | ₹ C (| | |) क्वी (क्वी (क्वी (क्वी (क्वी | । स्त्री (स्त्री) स्त्री (स्त्री) | 00000 | ~~~~ | 10 10 10 | | | | | | | | | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.65 | 0
0
0
0
0
0
0
0
0
0
0 | 6 1.7 1.8 1.9 | 22.5 19.8 18.7 | 7 17.2 17.0 17.0 17
1.1 15.1 16.2 16.3 16
1.4 15.6 15.8 16.0 16
1.1 15.3 15.6 15.8 16 | 1.8 15.1 15.4 15.6 15
1.7 15.0 15.3 15.6 15
1.7 15.0 15.3 15.5 15
1.6 14.9 15.2 15.5 15
1.6 14.9 15.2 15.5 15 | 1.6 14.9 15.2 15.5 15
1.6 14.9 15.2 15.5 15
1.5 14.9 15.2 15.5 15
1.5 14.9 15.2 15.5 15
1.5 14.9 15.2 15.5 15 | 1.5 14.9 15.2 15.4 15
1.5 14.8 15.2 15.4 15
1.5 14.8 15.2 15.4 15
1.5 14.8 15.2 15.4 15
1.5 14.8 15.1 15.4 15 | 1.5 14.8 15.1 15.4 15
1.5 14.8 15.1 15.4 15 | |---|---------------|----------------|--|---|---|--|--| | 1
1
1
1
2 | \$. A . S | 00 | 2 16.9 17
2 18.9 15
3 14.9 15 | 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8 14.1 | | A | ٠.
د | 00 | 0. 23
17.2 16
3 15.1 15
2 14.4 14
7 14.0 14 | 22 22 22 22 22 22 22 22 22 22 22 22 22 | 2000
2000
2000
2000
2000
2000
2000
200 |
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40 | 9 13.3 13 | | 96 | 1 | 00 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 122.4
122.4
122.4
122.4
123.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4
133.4 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 44444
44444 | 12.4 12. | | 6 | 0.9 1. | | 000MM | |
ਜਜਜਜ | संस्थान न | ÷. | | 1 | 0.7 0.8 | 00 | 0.
0.
0.
0.
0.
0.
0. | 2 4 7 4 2 5 4 2 5 4 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 | 0.0
9.9
40.7
9.9
40.7
6.9 | 44444
0000
0000 | .8 10.5 | | 1
1
1
1 | .5 0.6 | | | 411
4110
9100
6100
6100
6100
6100
6100
6100
6 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 0.000 | 60 0 | WARP HAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.66 | | 3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 | 0 0 0 0 24.0 20.4 19.1 18.5 | 0. 26.1 19.5 19.1 17.5 17.3 17.2 17.2 17.7 16.7 16.7 16.4 16.5 16.6 5.4 15.4 15.4 15.6 15.8 15.9 16.1 16.3 4.6 14.8 15.0 15.2 15.5 15.7 15.9 16.2 4.2 14.5 14.8 15.0 15.3 15.6 15.6 15.8 16.1 | 3.9 14.3 14.6 14.9 15.2 15.5 15.7 16.0
3.8 14.2 14.5 14.8 15.1 15.4 15.7 16.0
3.7 14.1 14.4 14.8 15.1 15.4 15.7 15.9
3.6 14.0 14.4 14.7 15.1 15.4 15.6 15.9
3.6 14.0 14.4 14.7 15.0 15.3 15.6 15.9 | 3.5 14.0 14.3 14.7 15.0 15.3 15.6 15.9
3.9 13.9 14.3 14.7 15.0 15.3 15.6 15.9
3.5 13.9 14.3 14.7 15.0 15.3 15.6 15.9
3.5 13.9 14.3 14.6 15.0 15.3 15.6 15.8
3.5 13.9 14.3 14.6 15.0 15.3 15.6 15.8 | 3.5 13.9 14.3 14.6 15.0 15.3 15.6 15.8
3.5 13.9 14.3 14.6 15.0 15.3 15.6 15.8
3.4 13.9 14.3 14.6 15.0 15.3 15.6 15.8
3.4 13.9 14.3 14.6 15.0 15.3 15.6 15.8
3.4 13.9 14.3 14.6 15.0 15.3 15.6 15.8 | 3.4 13.9 14.3 14.6 15.0 19.3 15.6 15.8
3.4 13.9 14.2 14.6 14.9 15.3 15.6 15.8
3.4 13.9 14.2 14.6 14.9 15.3 15.6 15.8 | |--------|-------------------------------|-----------------------------|---|--|--|--|--| | | 1.1 | 00 | 4 V 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 22 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1000
000
11111
1212
1213
1314
1314
1314
1314
131 | 00000
1111111
111111111111111111111111 | 9 9 12 9 12 5 12 5 13 5 15 15 15 15 15 15 15 15 15 15 15 15 1 | | | 0.9 | .00 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 64900 | 211111
2111111111111111111111111111111 | | # # # # # # # # # # # # # # # # # # # | | | .7 | 00 | | 94888
94888
94444
47846 | 211000
21000
20000
20000
20000 | 99998
14444
10000
10000
10000 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | 9.0 | | | 16.8 12
10.4 11
5.9 10
9.6 10 | | | 0.00 | | | 10 | 00 | 00000 | 14.0
10.0
9.3
8.8 | | | @ @ @ | | ET REI | X | 600 | ଠ କ ଓ ୭ ୪
'କ'ଟାଟା କାଟା | | | 8 8 8 8 8 8
8 8 8 8 8 8 | 010 | # MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA # YARN BULK DENSITY #0.67 #### PLATE WEAVE FABRICS | VER | | | | | | | | BET | | | | | i | | | • | ; | |-------------------------|----------------------|-------------------------------|------------------------
---|---|----------------------------|---------------------------|---------------------------|--|--|---------------------------------------|----------------------------|----------------------------------|---------------------------------------|---------------------------------------|--|-------------| | | 0.5 | 0 | 6.7 | | 0.0 | 1.0 | +
+
+ | 4 | P | 4 | 5 | 1.6 | 1.7 | 1.8 | 1,9 | | | | ;
;
; 00 05 | | • • | 66 | | 00 | | | | 00 | | .00 | , , | 0. | 24. | R | 55
50
50 | 10 0 | | O 규 N P 약
:하 하 하 하 하 | 00000 | 00000 | | 000004 | | 147860
14560
14560 | 00V48
4400 | 04044
04044
0000 | 0 0 0 4 4
0 0 0 7 6
0 0 7 6 | 82 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 21 日東直出
日島15 15 4
15 6 16 16 | 411111
800000
800000 | 111111
1005
1009
1009 | 7.00 E | 4.00 to | V 0 0 0 0
5 5 5 5 5 5 | 200020 | | | | 21.5
111.7
10.5
10.0 | 24444
2404
07004 | 9.6.6.4 | 122
122
142
143
143
143
143
143
143
143
143
143
143 | 800000
800000
800000 | 30000
44000 | 44444
6446
6446 | 48886
48886
48886 | 44444
48044 | 44444
74444
7465 | 0.0444
0.0444 | 50 50 75
50 50 75
50 50 75 | 44444
66666 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 99999 | 44500 | | | ∞ ∞ ∞ ∞ ∞ ∞ ∞ | 00000
N4000 | 80000
0000
0000 | 44444444444444444444444444444444444444 | 44444
44444
44664 | 26666 | 77.77
7.7.74
7.7.49 | 889999
888888
88888 | N 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 | 4444 | 4444 | 4 4 4 4
0 0 0 0 0 0 | | 44444
4444 | 155.7
155.7
157.7
157.7 | 99999 | 00000 | | | | 00000 | 0 C 9 P P | 100 H | *****
 | 44444
6666
6666 | 4444
200000
20000 |
 | 99888
99888 | 4444 | * * * * * * * * * * * * * * * * * * * | 444
444
7777 | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | けらららら | ************************************** | 00000 | | | • • • | 0.00 | 600 | 10.7
10.7
10.7 | 4 4 4
 | 12.0
12.0 | 12.6
12.6
12.5 | +++
+++
+++ | 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 444 | 444 | 14.7
14.7
14.7 | 15.1
15.1
15.1 | 2 4 4 4 | 15.7
15.7 | 5 5 5 | 000 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.63 | x > 0 | | | | | | 1 | | BET | | 1 | | 1 | 1 | 1 | 1 | 7
8
1 | ı | |-----------------|---|----------------|---------------------------|--|----------------------------|-------------------------|---------------------------------------|---|---|---|--|--|---|--|---------------------------------------|-------------------|------------| | < .∼ | 0.5 | 0 | 0.7 | | 0 | 1.0 | | 1.2 | 64.1 | , -1 | 1.5 | 1.6 | 4 | - | | 2 | | | | | 60 |
 C C | | | | | | | 00 |) | 00 | 30.3 | 24.6 |) | 49. | · N | | | 00000 | | | MGGGG | | 5 0 0 20 10
4 00 | 00748
000 | 20:444
00044
4000 | 0 8 9 8
0 8 9 8 | 0 / 10 mm 4 m | 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | #####
############################### | # 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 44444 | 44444
70000 | N 0 0 0 0 | NO 04 N | | € 6 € 6 | 9 9 9 9 | 11000 | 894460
894400
47478 | 8095C | 4444
6449 | 24444
26666
26667 | 20400
20400 | 日本ままま
ででででで | 44 B B B B B B B B B B B B B B B B B B | 44444
W4550 | 44444 | 24444
2564
2460 | 2000
2000
2000
2000
2000 | まままま
できらき
ファクタク | 44444
85550 | 99999 | 2224 | | | න න න න න
න න හ 4 ව | 00000
00400 | 40000 | 40000
44000
44000 | 44444 | 4444
4444
44444 | 2222
2223
2223
2225 | 8 8 8 8 8 8
8 8 8 8 8 8
8 8 8 8 8 8 | 800000
800000 | 4444 | 4 4 4 4 4
6 10 10 10 10 | 4 4 4 4 4
0 0 0 0 0 | 150.00 | ង | 4 4 4 4 4
6 6 6 6 6 6
6 6 6 6 6 | \$ \$ 9 \$ 9 \$ 9 | | | 800000
80000 | 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 | 00000 | 44444 | 14 4 4 4 4 4
0 0 0 0 0
0 0 0 0 0 | | 44444
8888
8888 | 2001
2001
2001
2007 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | PER 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | लन्तन्त्
कक्षक्ष
नन्तन्त् | 4444
000000 | 44444 | 51
51
51
51
51
51
51
51
51
51
51
51
51
5 | 44444
5556 | 44444
55565 | 9 9 9 9 | ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ | | 0 4 6 | 60 60 60
FI TH T | 000 | 000 | 444
000
000
000 | 2
2
2
3
4
4 | 222 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 444 | 4 4 4
4 4 4 | ++++ | 444 | 4 4 4
8 6 6 | 44
45
40
40
40 | 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2 | 15.8 | 999 | ਜ ਜ ਜ | # MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA # YARN BULK DENSITY = 0.59 | 日
年
年 | | | | | | | | 96 | 1 | | 1 | | | • (| | | | |-------------------------|----------------|------|-------------------|-------------------------|--------------------|----------------------------|---|---------------------------------------|----------------------|--------------|---|----------------------------|---|--|----------------------|---|-----| | - X | 0 | 9.0 | 0.7 | 6.0 | 0 | 1.0 | - | 1.2 | 1 | - | 1.5 | 1.6 | 1.7 | - | | • 1 | . ! | | 000 | • • | | | | | | | | 00 | | 00 | | 0 4
.v. | 22.8 | 23.5 | 19.5 | | | O ન (U P)
한: 편 편 : 편 |
o o o o | | 0000 | 0000 | 0000 | 1
1
1
0
0
0 | 44
46
46
46 | 76.00
0.66 | 19.0
19.0
19.1 | 17.9
15.9 | 22.17.1
17.1
15.0 | 16.9
16.9
17.7 | 1166
1166
100
100
100 | 844
864
964
964 | 17.0
14.0
16.6 | 17.7
17.1
16.8
16.8 | | | | | | | | | 4 | 4 | 4 | 4 | 4 | * C | 5 | | • | • | 9 | | | | | 0 (| 'n. | m (| m 0 | 67) E | 10 H | 4 1 | 4 | 4 4 | w . | יי ע | w w | NU W | • | 9 4 | | | | 11.2 | 20,0 | 1 4 4 4 | 110.1 | 1 4 4
0 0 0 | 126 | 4 | 0 0 K | 44.0 | 4 4 | 14.8 | 15.7 | 1 4 4
0 4 4 | 15.7 | 4 6 6 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | • • | | | • ;
• ; • | | | , m | הי ה
הי כ | , m | • | | | | 5 | . 6 | • | | | 0 2 0 | | • | 00 | + + | +1 - | N' N | 20 | M W | W W | 4 4 | 4 4 | יו יה | יון טו | 5 | • W | 00 | | | | 00 00
10 4 | 00 | 100 | 1110 | 1111 | 122.3 | 111 | 4 m | M W W | 44.0 | 9.4 | 44
50
00
00
00 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 10
10
10
10
10 | 15.0 | 16.2 | | | | • | • | 6 | 0 | - | 2 | 2 | į. | M | * | 4 | 5 | 5 | 5 | 5 | • | | | | • | • | | 0 | ÷ , | 20 | 200 | m . | M 14 | 4. | + | 5 | K. 1 | 5 | 50 | 9 | | | | • • | • • | 0 0 | | | · ~ | · ~ | , w | , w | | 4 | 5 | . r. | 5 | טוט |
o .o | | | 2 8
2 6 | 88.2 | 9.5 | 10.1 | 10,9 | 11.6 | 12.2 | 12.8 | 43.3 | 13.7 | 14.2 | 14.6 | 15.0 | 15.3 | 15.6
15.6 | 15.9 | 16.2 | | | 321 | 8 8 8
5 7 5 | 000 | 4.0
4.0
4.0 | 40.0
10.0
10.0 | 444
444
8000 | 12.2 | 12.7 | # # # # # # # # # # # # # # # # # # # | 13.7 | 444 | 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 444 | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | 11 15 15 15 15 15 15 15 15 15 15 15 15 1 | 45.0
40.0 | 4 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.70 | | • 1 | 6.6 | | W4444 | nnnnn | ***** | 600 | |-------|------------|------------|---|---------------------------------------|--|--|--------------------| | ! | | | トト 999
ਰਾਜ਼ਾਰਾਜ | 9 9 9 9 9
9 9 9 9 9 | 4 4 4 4 4 | | 944 | | | - 1 | 21.0 | 8 7 4 6
6 7 7 7 8 | 6666 | 44460 | | 999 | | | i | 0 | 50.00.00.00.00.00.00.00.00.00.00.00.00.0 | | 800077 | 7,7,7 | | | • | | 20 | 80 N 90 90
H H H H H H | 4 4 4 4 4
6 10 10 10 10 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | # # # # # # # # # # # # # # # # # # # | 255 | | • | . 7 | | 8 F 4 5 F | | 8 10 10 10 10
10 10 4 4 4 | 4444 | 444 | | • | | | 5 4 6 6 6 | 48000 | संस्थात
सम्मन् | नेनेनेने | ###
| | | - 1
- 1 | 00 | 07.000 | 55555 | | | 55.5 | | li i | 1 | | 日本土の も | 40000 | 47.400 CB | ~~~~ | 777 | | | | 00 | でままままちゃうちょう | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | **** | ************************************** | 444 | | • | | | 0 0 0 W W | 44444
00004 | 44444 | 4444
wwww | *** | | | 6 | | 2000× | 40040 | | 99999
9999 |
 | | | + | 00 | 00004 | • • • • • • • • • • • • • • • • • • • | **** | 888888
888888 | 9 9 9 9
9 9 9 9 | | E I | | | 20 W | 40000 | **** | 4444 | 444 | | - ; | | | (को को।को | 국 N N N N
:러!러 러'러 러 | 999999 | ਅ ਅ ਅ ਅ
ਜ'ਜ'ਜ ਜ ਜ | 444 | | i | जी । | 000 | 000804
8040 | | 88884
00000 | 00000
00000 | 12.8 | | | 0 | | | W-100 F-0 | W444W | ппппп | ыыы | | (| | 00 | 00004 | こち まままま | 2 4 4 4 4 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4 4 4 | | | 0.9 | | | 80000
07840 | 96677 | よまままま
アアア 6 6 | 666 | | 1 | 6 6C | | 8 | edddd
nnoog | 4444
80440 | 00000 | ###
000 | | | 0 | • | 00000 | ਨਾਨ ਦੀ ਦੀ ਦੀ ਦੀ
ਦਿੱਤੀ ਦੀ ਦੀ ਦੀ | ਜਜਜਜਜ | 44400 | 000 | | | | • • | | | | 20004 | | | | | | 00000 | न न न न न न | को को को को को | 44444 | न न न | | | | | | 04140 | | | | | - | 180 | • • | | | | 400000 | | | | | | 00000 | C D + Q Q | O- 00 00 00 00 | 60 60 60 60 60 | 60 90 60 | | | r . | | | | | | | | Q W + | 3 X | ω Φ | O ਜ਼ (N f) 중
'ਜ਼'ਜ਼ ਜ਼ ਜ਼ ਜ਼ | 10 0 N O O | 04000
04004 | 00000
0000 | 32 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF MARP COVER FACTOR AND BETA # YARN BULK DENSITY #0.71 | | T | | | | (
!
! | | ! | 8 9 € | • | | , <u>(</u> | | | | • | 1 | | |---------------------------------------|--------------------------|----------------------|--|-------------------|-------------------------|---|----------------------------------|--|-------------------------------------|---------------------------------------|---|---|--|---|--|--|------------------| | 1 × 1 | 0 | 9.0 | 0.7 | 0 | 0 | | | 1.2 | 1.3 | 4 | 4.5 | 1.6 | 1.7 | 1.8 | 70 | 8 | 0 | | 6 00 00 | | 00 | | | 00 | | | | | 00 | | | | 25.5 | 21.6 | 20. | 100 | | | | | | | 00000
4 | | | | | | | | | 00000 | 00000 | 807700 | 4400K | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 20020
20020 | | 50 2 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | さます まま
で ここ まま | | 11000
1000
1000
1000
1000
1000 | 44444
888888
9486 | 44888
2007 | 4 4 4 4 4
4 4 4 4 4
4 4 5 6 6 | 4 4 2 4 4
9 8 7 6 R | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4445
6445
5445 | 2444
2000
2000
2000
2000
2000
2000
2000 | 4466 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | | | | 0,00,00,00
4,00,00,00 | 00000
0 0 0 0 0 0 | 7 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 | 4 M C C C C | 0 0 0 E 6 | 44444
6666
6666
6666
6666
6666
6666
66 | ##500
| 2000
2000
2000
2000
2000
2000
2000 | 4444 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 4 4 4
4 4 0 0 0 0 | 24444
56656
6666
6666
6666
6666
6666
666 | 221111
2211111
22211111111111111111111 | 0.000.00 | 6666 66666666666666666666666666666666 | 99999 | <i>W W</i> 4 4 4 | | | | | 4444
60666
60666 | | 44444
44444
66777 | 44444
4444 | 22.00
20.00
20.00
20.00 | 4 4 4 4 4
5 5 5 5 6 6
6 6 6 6 6 6 | 444WW
000000 | 4 4 4 4 4
4 4 4 4 4
4 4 4 4 4 | 4 4 4 4 4
0 0 0 0 0 0 | 20000 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | ង ង ង ង ង ង
ស ស ស ស ស ស
ល ល ល ល ល ល | | 99999 | 4444 | | | 8 8 8
8 8 8
8 8 8 | 999 | 100.0 | 11.0
11.0 | 111.7 | 12.4
12.3 | 12.9 | 24 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 9.69 | 444 | 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 15.2
15.2
15.2 | 2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 117.
157.00 | 4.64
4.64 | 977 | 444 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.72 MAR | CE C | (| i
1 | (| 1 | 1 | | 1 | 9ET | 1 | 8 | 1 | ! | | ! | • | 1 | | |-------------|--------------------------|--|----------|---|---|---|---|---|-----------------------------------|---------------------|---|------------------------------------|---|---|-------------------------|---|--------------| | k
0 m | 0.5 | . 0 | 6 | 0 | | 0 | 4.1 | 1.2 | . I | | . . | 1.6 | - I | 4 | - | 8 | 9 1 | | • | 00 | - | | 00 | 00 | | | | | | | | 00 | | 22. | 20 | ~ | | | 00000 | | 00000 | 40000 | Meeco | 0.00
14.7 | 000 N M 4
N W 4 | 00 H H H 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 11112
11125 33 0
11125 30 0 | 4444 | 0 0 0 0 0 0
0 0 0 0 0 0 | 27 4 4 4 4
4 7 9 9 4
5 9 4 8 | 2000
2000
2000
2000
2000
2000
2000
200 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 | 4444
8446
86079 | 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 40000 | | N 20 1 20 0 | 120 0
100 0
100 0 | 11 14 10 10 10 10 10 10 10 10 10 10 10 10 10 | 80 H H B | 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 00000
00000 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 4 4 4 10 10 10
4 4 4 0 0 10 | 4444
FB400 | 24444
000/0000 | 4 2 4 4 4 5
4 2 4 4 4 5 | 24444
55550
70544 | 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 99999 | 4446 | 99999 | VVV00 | | C 40104 | \$ \$ \$ \$ \$ \$ \$ | 0.00 | 00000 | 80004
4444
6456 | 40000 | 2000
2000
2000
2000
2000 | 88888
88888
88888 | 200000
200000
200000 | 4444 | 44444
66600 | 2 2 2 3 4 4 5 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 | 4 10 10 10 10
4 10 10 10 10 | 7. C. | 9 | 44444 | | 00000 | | | 0 0 0 0 0 0
0 0 0 0 0 | 00000 | 00000 | 2 + p p p | | 2000
2000
2000
2000
2000
4 | 2000
2000
11000 | 44444
888888
99999 | 4444 | 44444
wwwww | 4444 | 200000
200000
200000 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 44444
44444
64644 | | សសសសស | | | @ @ @
4 4 10 | 444 | 000 | | 4
4
4
4
4
4
6
8
8 | 4.22 | 13.0
13.0 | 4 4 4
8 8 8
8 8 | 444
600 | 444
444
8.0.0 | 444 | 844
85.84
8.84 | 15.6
15.6
15.6 | 200
200 | 444 | 16. | W W W | YARN BULK DENSITY #0.73 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | • | | 4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 | |---|------------|---------|------|-------------|----------|------|------|----------|------|------| | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | | | . 0 | | . 0 | 0. | . 0 | 0 | 0 | 0 | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | | | • | • | • | • | 0 | # | 23. | • | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 2 | | 0 | | 2 | ~ | 0 | 6 | 18. | | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 0. | | 25. | 7.6 | • | 7 | 7 | | 17. | 7 | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | | 5 | 17. | 8.9 | • | 9 | • | 17.0 | 17.2 | 17. | | 0. 0. 14.8 12.9 12.1 13. 11.9 12.9 10.7 10.8 11.3 11.9 12.9 10.7 10.8 11.3 11.9 12.9 10.7 10.7 11.8 11.9 12.9 10.7 10.7 11.8 11.9 12.9 10.7 10.7 11.8 11.9 12.9 10.7 10.7 11.8 11.9 12.9 10.7 10.7 11.8 11.9 12.9 10.7 10.7 11.8 11.9 12.9 10.7 10.7 11.8 11.9 12.9 10.7 10.7 11.8 11.8 11.9 11.9 11.9 11.9 11.9 11.9 | 7.9 1 | 2 15. | 15. | 5.9 | • | 9 | 6 | • | 16. | ^ | | 0. 14.8 12.9 12.13.
3.7 11.7 11.8 12.2 12.
9.3 10.1 16.8 11.7 12.
9.0 9.9 10.7 11.4 12.
8.7 9.6 10.5 11.4 12.
8.5 9.5 10.4 11.2 12.
8.5 9.5 10.4 11.2 11.
8.5 9.5 10.4 11.2 11. | .9 1 | .8 14.9 | 15.2 | 15.4 | 18.7 | 16.0 | | • | 16. | ~ | | 3.7 11.7 11.8 12.9 12.8 13.
9.7 10.4 11.0 11.7 12.
9.3 10.1 10.8 11.7 12.
9.9 9.8 10.6 11.7 12.
8.7 9.6 10.5 11.4 12.
8.5 9.5 10.4 11.2 12.
8.5 9.5 10.4 11.2 11.
8.5 9.5 10.4 11.2 11. | - 6.
6. | 2 14. | 4 | 5.2 | E | 5. | • |
• | 16. | 9 | | 3.7 11.7 11.8 12.2 12.
9.3 10.1 16.8 11.7 12.
9.0 9.9 10.7 11.4 12.
8.7 9.6 10.5 11.3 12.
8.5 9.5 10.4 11.2 12.
8.5 9.5 10.4 11.2 11.
8.5 9.5 10.4 11.2 11. | 7 | 4 | 4 | 5.0 | 8. | ĸ. | • | • | 16. | 9 | | 9.3 10.1 16.8 11.3 11.9 12.
9.3 10.1 16.8 11.7 12.
8.9 9.8 10.6 11.4 12.
8.7 9.6 10.5 11.4 12.
8.5 9.5 10.4 11.2 11.
8.5 9.5 10.4 11.2 11.
8.5 9.5 10.4 11.2 11. | 7.2 | 6 14. | 4 | 4.9 | 3 | 5. | 5 | • | 16. | • | | 9.3 10.1 16.8 11.7 12.
9.9 9.8 10.6 11.4 12.
8.7 9.7 10.6 11.4 12.
8.7 9.6 10.5 11.3 12.
8.5 9.5 10.4 11.2 11.
8.5 9.5 10.4 11.2 11.
8.5 9.5 10.4 11.2 11. | 3.0 | 5 44. | + | 4.8 | ι. | 5 | 15.9 | 16.2 | 16.5 | 16.7 | | .3 10.1 10.8 11.5 12.
.9 9.8 10.7 11.4 12.
.7 9.6 10.5 11.4 12.
.7 9.6 10.5 11.3 12.
.6 9.6 10.5 11.2 11.
.5 9.5 10.4 11.2 11.
.5 9.5 10.4 11.2 11. | 12.9 13 | .4 13.9 | 14.3 | ® | 15.1 | 15.5 | 5 | • | 16. | • | | 0 9 9 10 7 11 8 12 | C | M. W. | 4 | 4.7 | | 10 | 5 | • | 46. | 9 | | 9 9 8 10 6 11 4 12 | 2.7 | , M | 4 | 4.7 | ×. | 5 | 5. | • | 16 | ø | | 7 9.7 10.6 11.3 12.
5 9.6 10.5 11.2 12.
5 9.5 10.4 11.2 11.
5 9.5 10.4 11.2 11.
5 9.5 10.4 11.2 11. | 2.7 | 2 4 3 | 14.2 | 4.7 | 15.1 | 15.4 | 15.8 | 16.1 | 16.4 | 16. | | . 5 9.6 10.5 11.3 12.
.5 9.5 10.4 11.2 11.
.5 9.5 10.4 11.2 11.
.5 9.5 10.4 11.2 11.
.5 9.5 10.4 11.2 11. | 2.6 | 2 13. | 4 | 4.6 | 8 | 5. | 5. | • | 16. | Ø | | .5 9.6 10.5 11.2 12.
.5 9.5 10.4 11.2 11.
.5 9.5 10.4 11.2 11.
.5 9.5 10.4 11.2 11. | 12.6 13 | .2 13.7 | • | 9 | 5 | 5. | 5 | • | 16. | 9 | | 5 9.5 10.4 11.2 11.
5 9.5 10.4 11.2 11.
5 9.5 10.4 11.2 11. | - 2 | 2 4 3 | 4 | 4.6 | ĸ. | , r | 5 | 9 | 16. | • | | 5 9.5 10.4 11.2 11.
5 9.5 10.4 11.2 11. | 12.6 |) M: | 4 | 4.6 | 8 | 5 | 5 | • | 16. | 9 | | .5 9.5 10.4 11.2 11.
5 9.5 10.4 11.2 11. | 12.6 | - M | 4 | 4.6 | 8 | 5 | 5 | • | 16. | • | | .5 9.5 10.4 11.2 11. | 12,51 | 4 6 | 4 | 4.6 | 8 | | 15.7 | 16.1 | 16.4 | 16. | | | i ÷i | .1 13.7 | 14.1 | 14.6 | 15.0 | | 5 | • | 16. | • | | .t 7.11 - 10 C.6 +. | 12.5 1 | 1 13. | 14. | 4.6 | ĸ | | 15.7 | 16.1 | 16.4 | 16.6 | | .4 9.4 10.3 11.2 11. | 12.5 1 | 1 13. | 14. | 4 .6 | ĸ. | _ | | . | 16. | ٠. | | 8.4 9.4 10.3 11.1 11.9 | 12.5 13 | .1 13.6 | +1 | ۰ | • | ъ. | ·. | • | 16. | 9 | ### YARN BULK DENSITY #0.74 | 4 W P | | | I | ! | 1 | ! | 1 | က
မ | 1 | 1 | • | 1 | | • | 1 | | | |---------------------------------------|--|------------------------|------------------------------|--|--|------------------------------|---|--|---|----------------------------------|---|--|---|--|--|---|--------------------| | X X X X X X X X X X X X X X X X X X X | 0.5 | 9.0 | 0.7 | 6 | 0.0 | 0 | 4.4 | 1.2 | ו מו | 4 | | 1.6 | | • • | | 5 | | | | | i | | | | | | | | | | | | 41.1 | 2 4 | 21. | ı | | | 00000 | | | | # 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 100.
100.
15.7 | ### ### ### ### ### ### ### ### ####### | | 1111
1100
1100
1100
1100
1100
1100
110 | 11120
14470
14470
14470 | 4444
4666
4666
4666 | 25 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 20.4
17.9
16.6
16.3 | 44444
64444
84484 | 44444
67779 | | ■ ♥ ₹ ♥ ♥ ₹ | | | | · | 4 4 0 4 4 | 4 10 10 10 H | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 48888 | 44888
44888
807.08 | 44444
44444
44444 | 24444
24444
24440 | 88844
84000 | #####
#####
| ###################################### | 16.1
16.1
15.0 | 44444
6464
6466 | 44
44
46
46
47
47
47
47
47
47
47
47
47
47
47
47
47 | 7 4 4 4 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 | ~~~~~ | | 00000 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 40000
9990
70000 | 10.9
10.8
10.7
10.6 | | 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 12.9
12.9
12.7
12.7 | 44888 | 8 8 8 8 8
8 8 8 8 8
8 8 8 8 8
8 8 8 8 8 | * * M M M M M M M M M M M M M M M M M M | 44444 | 44444
8 8 8 8 8 8
9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 44444
500000
600000 | 444445
455
456
456
456
456
456
456
456
4 | 146.00
146.00
146.00
146.00 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | STAVAILABL | @ @ @ @ @
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 00000
V000N | 00000
00000
000004 | ###################################### | 122
122
122
122
123
123
123
123
123
123 | 112.7 | 22223
23223
23223 | 88888
88888
78888
7888 | 44444
90000 | 4444 |
 | ដដ្ឋក្នុង
សល់ស្គីស្គ
ស្គីស្គីស្គីស្គ | 11111111111111111111111111111111111111 | 4444
4444
4444
4444
4444
4444
4444
4444
4444 | | ************************************** | | | 10 10 10 | | 0 0 0
0 0 0 | 4 4 4 4 | 1111
1111
1111 | 12.0
12.0
11.9 | 12.6
12.6
12.6 | 113
13.0
13.0 | 13.7 | 444 | 14.7
7.4.7 | | 15.5
15.3
15.3 | 11.55
15.56
15.68 | 16
16
16
16 | 116
16
16
16 | 16.8
16.8 | | ### YARN BULK DENSITY = 0.75 | ARP
OVER | | | | | | | | 96 | | 1 | - | | | 1 | 1 | 1 | | |----------------|-----|------|------|----------------|----------|----------|-------------------|----------|--------------|--------|-------------|------------|------|------|----------|------------|--------------| | FACTOR
(K1) | 0.5 | 9.0 | | . 0 | 0.0 | 0 . | ; +
; +
; + | 1.2 | | | 1.5 | 1.6 | 1.7 | 4.9 | 6 | 2 | | | . 00 | | . 0 | | | i | | | | | • 0 | 6 | • | 0 | | 0 | 0 | 1 | | | | | | | | | | | | | | • | • | | 'n | • | ~ | | | | | | | | | | | | | | 4 | 0 | • | • | 6 | | | | | | | | | | | 0 | 8 | + | • | 8 | 8 | 80 | 80 | œ 1 | | | | | | | | | | 6 | 6 | 7 | 7 | £. | | | | <u>,</u> | | v o . | | | • | • | | | | 19.7 | 16.9 | 16.3 | 16.2
16.2 |
 | প্র
ল | 16.5 | 16.7 | 16.9 | 17,2 | 7. | ❤ (| | | | | | | • | | , | | | | •
8 | • | • | • | • | • | u | | | | 0 | + | 4 | 4 | 4 | 4 | + | υ. | 5 | | • | • | • | • | 7. | + 1 | | • • | 0 | 17.7 | 13.4 | 13.2 | 13.4 | 13.7 | 14.1 | 14.5 | 14.9 | 15.2 | 15.6 | 15.9 | 16.2 | 16.5 | 16.8 | 17.1 | _ | | | | ~ | 2 | 2 | % | 1 | ×, | ÷ | ÷ | ت | | ٠. | • | • · | • | . . | . | | | ij | ij | + | ? | 2 | m | ,
, | ÷ | ÷ | ر
د | 50 1 | S | • | • | • | | _ | | | 0 | • | ; | + | 5 | 1 | m | 4 | * | 2 | ٠. | | • | 0 | • | : | _ | | | • | | + | - | 2 | 'n | ь. | 4 | 4 | 4 | E . | 5 | • | • | • | • | • | | | | 10.1 | 10.9 | 11.6 | 12.3 | 12.9 | 13.5 | 14.0 | 14.5 | 14.9 | 15.3 | 15.7 | 16.0 | 16.3 | 16.6 | • | • | | | • | 6 | 6 | + | ? | 2 | Б. | m. | ÷ | * | . | ر.
د | • | • | • | • | • | | 9 | 80 | 6 | 6 | : | ; | 2 | ,
, | ,
P | 4 | 4 | E | , N | • | 6 | • | • | • | | 4 | 80 | • | | 1. | • | 'n | • | m | ÷ | 4 | . | | • | • | • | • | • | | ر
بر | 60 | • | c | | 2 | 2 | ь. | 1 | 4 | 4 | K | N. | • | • | • | • | • | | • • | 80 | • | 6 | , , | 2 | ~ | 5 | ы. | 4 | 4 | 5 | ς. | • | • | • | • | _ | | | • | | 10.6 | | 5 | 12.7 | 13.3 | 13.9 | 14.3 | 14.8 | 15.2 | 15.6 | 16.0 | 16.3 | 16.6 | 16.9 | _ | | | • | • | | + | 2 | 2 | ,
M | 3 | 4 | 4 | . | Ŋ. | | • | ò | • | • | | | 8.5 | 9.6 | • | | | 2 | M | 8 | . | 4 | 1 0 | 1 0 | | • | • | • | _ | | | • | | C | • | 2 | , | M | 177 | 4 | 4 | 10 | 150 | 10 | • | • | • | _ | | | • | • | | | 2 | | 5 | 5 | 14.3 | 14.8 | 15.2 | 15.6 | 15.9 | 16.3 | 16.6 | • | • | | 32 | 8.5 | 9.6 | 10.5 | 11.3 | 12.0 | 12.7 | 13.3 | 13.8 | • | 4 | R . | 5 | 5 | • | • | • | • | YARN BULK DENSITY #0.76 | | | 60 | NULVE | 00 | 00000 | 00000 | 000 | |-------------|----------------|----------------|---|---|---|---|--| | | 2 | • • • | 49.
47.
47. | 4444
4474
4474 | 2,22,2 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 17.
17. | | | - 1 | 9.9 | 44400 | C O O O O | 87777 | 7,7,7, | 7.09 | | | 80 | | 226 | 70000 | N. d. d. d. | 4444 | 444 | | | | | 20
14
17
16 | 99999 | 9999 | 99999 | 46 46 | | 1 | - | 9.0 | 21.5
118.3
116.9 | 4.61
4.61
4.62
5.61 | | | 16.0
16.0
16.0 | | | 1.6 | 00 | 9.7.9 | 6 6 10 10 10
4 6 6 6 8 | 8 8 8 7 7 | ろうろうろう | ろうろ | | ĺ | .5 | | | 88888
87688
44444 | 4444W | | 8888
888
888 | | 1 | | | ने ने ने ने | ने ने ने ने न | न न न न न | ने ने ने ने न | न न न | | 1 | - | 00 | 17.0
17.9
15.4
15.4 | 22444
22772
25744 | WWW44 | 4444 | 44.9
44.9
9.44.9 | | | 1.3 | | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 20.411
20.411
6.44 | 44444 | 44444
8.8.444 | 4 4 4 | | 8 | 1.2 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4444
96480 | 4444 | 44400 | 13.9 | | | | ì | 0000 M | 444WW | | 4444 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 1 | v- | | 71. | 4 8 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | # 0 0 0 0 | 22.22.2
22.23.3
23.33.3 | 0 0 0 0
0 0 0 | | | 6.0 | 00 | | 4 10 10 10 10 10 10 10 10 10 10
10 10 10 | 2.5.5.5 | 22222 | 4.62 | | | 1 00 | • | | 74.000
44.000 | # P 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 200444
200444 | | | | 7 | ; | | 0 8 8 P 4 | ਜ'ਚ:ਚ'ਚ:ਚ
ਜ © 0 © N | ++++++++++++++++++++++++++++++++++++++ | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | . 6 | 900 | 00000 | 25.
12.
11. | 111111 | 0000 | 900 | | | 10 | | 00000 | 24.3
12.5
11.3 | 4.001 | 88777 | 6.6
9.6 | | | 0.5 | 0.0 | | 110000000000000000000000000000000000000 | 0 0 0 0 0
0 0 1 0 0 | | 8
8
8
6
6 | | ARP
OVER | FACTOR
(K1) | 1
1
00 O | © + (U P) 수
(대 (대 (| | | 2 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | # MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA # YARN BULK DENSITY = 0.77 | | 2 | 4 | 80777
80777
80408 | 4 M M M M M | Notes Notes Notes | 44444
60000
60000 | 47.4 | |--------|------------------------|-----|---|---|---|---|--| | | - | 9. | 911111
94747 | 40000 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 44 44 44
40 40 40
40 40 40 | | Ü | ₩. | 00 | 2.00
1.00
1.00
1.00
1.00 | 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 44444
44444
44444 | 44444
66666
66666 | 16.5 | | | 1.7 | | 122.
147.5
147.5 | 4 4 10 10
6 4 4 10 10 | 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 44444
6666
66666 | 16.2
16.2
16.1 | | | • | | 807799
807799
80886 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 4 4 4 4
6 6 6 6 6
6 6 6 6 6 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 24 44 42 42 42 42 42 42 42 42 42 42 42 4 | | | | 00 | 144.00 | 44444
68888
08766 | 4 4 4 4 4
5 6 6 6 6 6
6 6 6 6 6 6
6 6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6
6 6 6 6
7 6 6 6
7 6 6
7 6
8 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | # | 00 | 24430
44430
46430 | n n n n n
n n n n n
r n n n n | ************************************** | 4 4 4 4 4
8 8 8 8 8
6 6 6 6 6 | 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | • | | 20000
20000
2000 | 4 4 4 4 4 4 6 6 6 6 | 4444 | 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 4 4
8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 89 | | 00 | 6) D 4 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10 | 04444
07848 | 44444 | 4444 | 444 | | | | 00 | 144
144
146
168 | 44400 | 200000
200000 | a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | 1 -/ ;
1 | 00 | 24.0 | 44000 | 44444
44000 | 44444 | 200 | | | 0 | 00 | 0.
0.
17.6 | | ने ने ने ने न | न न न न न | | | | 0 | 00 | 00006 | 4 5 6 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 90110 | | 4 4 4
4 4 4
8 8 8 8 | | | 0 | 00 | | | 2000
2000
2000
2000 | 9 10.8
8 10.7
8 10.7
6 10.7 | 7 10.6
7 10.6
7 10.6 | | | 0 | 00 | | 000 | 00000 | 00000 | 000 | | | | 00 | 00000 | 0.
0.
111.7 | | 80 80 80 80 | | | 0. 111 | A X | 000 | | でるとの
(年)年 年(年)年 | | | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.78 | | | | | | | | A. A: | |--------|------------|----------|---|---|---|----------------------------|----------------------| | - | | 04 | 0 8 8 L L | アファファ | P P P P P P P P P P P P P P P P P P P | ~~~~~ | 777 | | | | ~ | 4 5 5 5 4
5 5 5 5 5 5 | N - + + + - | 00000 | 90000 | 800 | | - | • | 31 | 44496 | **** | 7 7 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 99999 | 46. | | • | 60 | • • | 0.000.4 | 7.1000 | 77000 | 00000 | 000 | | • | 1 | | 0 E T T T T T T T T T T T T T T T T T T | N 9 9 9 9 | 99999 | 9699 | 444 | | ; | - | | 0.007.40 | 00000
00004 | 40000 | 00000
nnnnn | 8 6 6
8 8 8 8 | | | 9 | | N 10 0 0 0 | 40040
44444 | 00000 | 00000 | 000 | | | ન ! | 00 | 3077 | 99999 | 4444
4444 | 5555 | 55.55 | | | 20 | | 47.04 | 40 80 F F | | rom rom rom
rom rom rom | 10 10 10
10 10 10 | | • | | | 8444 | 8 9 4 M M | | निस्नेस्स | | | • | | 00 | 5 4 4 4
5 4 5 6 | 20 50 50 50 50 50 50 50 50 50 50 50 50 50 | E SE SE SE SE | N N N N N | 80 80 80 | | 3 | 100 | 1 | 4000 | ₽ 00 0 0 | 00 00 N N N | N 0 0 0 0 | 000 | | | - | | 444 | END E | 4 4 4 4 4
H H H H H H | 4 4 4 4 4
ल न न न न | 4 4 4 | | w (| | 0.0 | 0000 | N4444 | 44444
NNUUU | 4444 | 444 | | ĺ | + | | 0 0 0 | 9 N N O 9 | 88774 | 44444
9999 | 600 | | | - | 00 | 00005 | |
 |
 | 888 | | | | | 00000
4 W | 4 4 10 10 10
0 4 0 10 4 | 22222 | 00000 | 000 | | | | | 2 | 448888
44444
44444 | nnnnn
HHHHHH | 44444 | 224 | | - | 0 | • • | 00000 | ***** | 7.00.00
7.00.00 | 44000 | 122.3 | | | • |) | • • • • • | 4 60 0 | 00.00 // | V 0 0 0 0 | N N N | | | | 00 | | らまままま | ~ | न न न न न
न न न न न | ल ल ल
ल ल ल | | | 6.7 | | | 0400H | W W O O O | 99999 | 7.0 | | | | 1
M | | 4 A A A | 6 4 8 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 8 8 8 | |)
(| 0 | 00 | 00000 | 00894 | 00000 | 50000 | 000 | | ĺ | FU. | • • | | | 0 N N 4 0 | 6 0 0 0 0 | V. V. V. | | ! | • | | 00000 | 90000 | 0000 | 60 60 60 70 60 | യയയ | | | | | | | | | | | 2 4 1 | | l
I | .⊐ ⊶ ∧ı × × | 10 50 50 50 | 0 - 0 - 0 | N 0 1 0 0 | 0 - 0 | | Y O | ~ ~ | 1 | | | | 00000 | | HAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA # YARN BULK DENSITY #0.79 | 8 N N | | | | | | | | in . | | | | | | | | | | |----------------------------------|--------------------------|--|-------------------------|---------------------------------------|--|---|--|-----------------------------------|-----------------------------|---|--|---|------------------------------|--|--|-------------------|----------------| | ACTO
(K1) | 0.5 | 0.6 | 0.7 | 0.0 | 0.0 | 4 | - | • | 1.3 | 5 47 | . 5 | - | 6 | |) • i | | | | 800 | • | | | | • | • | i |) | | | | 00 | | 00 | 38 | 250 | ~ 1 | | ୍ଟ ମଧ୍ୟ ଅଟେ ଏ
ମଧ୍ୟ ମଧ୍ୟ ଅଟେ ସ | 00000 | | | | 0000 | 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 44
66
60
60
60 | 00470
 | 0
110
147
15
15 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4444.0
44.00
50.00 | 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 23.7
19.0
17.8
17.3 | 1811
1817
1807
1807 | こままままりのののアア | 120
180
171 | | | | 0.
0.
12.5 | 000000
11000
1000 | 1120 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 24 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 4444
84444
44840 | 44444
66444
80748 | 44444
55566
5566 | まままままりちゅうてくちょ | 4 4 4 4 4
6 6 8 8 8
6 6 9 6 8
7 6 9 6 8 | 999999
84886 | 00000
00000
00000 | 117
126
10
10
10
10
10
10
10
10
10
10
10
10
10 | 2222
2222
2222
2222
2222
2222
2222
2222
2222 | 44444
7777 | | | | 00000 | 100
100
100
100
100
100
100
100
100
100 | 40.000
 | 400000 | 22222 | 4 5 C C C C C C C C C C C C C C C C C C | 2000
2000
2000
2000
2000
2000 | 4 4 4 4 4
4 4 4 4
4 4 4 4 4 | 44444
0.0000 | 2022
2022
2022
2022
2022
2022
2022
202 | 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | 44440 | 00000
00000
00000 | 116.8
116.8
116.7 | 44440
77777 | まままま | | | | 0 0 0 0 0 0
0 0 0 0 0 | 110000000000000000000000000000000000000 | 9 0 0 0 0
9 0 0 0 0 | 411.7
411.7
411.7 | 22222
22222
2444 |

 | 44444
64444
7777 | 4 4 4 4 4
9 6 6 6 6 6 6 | 44444
0 7 7 7 7 | 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 44444
66666
66666 | 44444 | 24
26
26
27
26
27 | 7777
7777
6000 | これできます | 6000000 | | 9 H W | @ @ @
@ @ @ | 9 9 9 | 4 4 4
0 0 0
0 0 0 | 999 | 122. | 444
988
000 | 113
13.6 | 444 | 444
4.44 | 11 15 15 15 15 15 15 15 15 15 15 15 15 1 | 13.6 | 0.94
0.94
0.09 | 444 | 16.7
16.7
16.7 | 17.0
17.0 | 4 4 4 4 | nnn | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK BENSITY #0.80 MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BEFA YARN BULK DENSITY #0.81 | ; | 6 | 7.5 | 00000
94940 | 7 7 7 7 7 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 | 7777 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 7 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | |--------|---------------|-----|--|---|---
--|---| | , | i 🕶 i | 5 6 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | <i>PPPPP PPPPP <i>PPPPP PPPPP PPPPP PPPPPP PPPPPP PPPPPP PPPPPPP PPPPPPPP</i></i> | nnnnn
NNNNN | 4444 | 7.52 | | ! | | | 22.4 2 19.2 1 17.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 17.2
17.2
17.1
17.1
17.0 | 17.011 | 0.0000 | 16.9 | | | | .0 | 26.0
19.6
118.2
17.6 | 16.9
16.9
16.8
16.8 | 16.6
16.6
16.6 | 6.66.6 | 16.6 | | ! | 1.6 | | 0 2 4 4 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0 0 0 0 0
0 0 0 0 0 | 999999
99999
99999 | 00000 | 16.2
16.2 | | | i vetici
L | | 18.4
17.3 | 8 8 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 111111
1515
1516
1516
1516
1516
1516
15 | 111111
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00 | 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8 | | (| + | | 36.0
149.0
16.8 | 44444
46666666666666666666666666666666 | 44444
6000000
600044 | 4 4 4 4 4 | 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | | , | 1 T | | 0.
20.6
17.4 | ###################################### | 446000
446000 | 44444 | 444
999 | | 8
H | 1.2 | | 000
000
1600
1600 | 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | . 4 4 4 4 4
4 4 4 4 4
6 6 10 10 10 | 4 4 4 4 4
4 4 4 4 4
6 6 6 6 6 | 444 | | | 4 | - | 10000
10000
11000 | 24444
40880 | 44488
400000 | 0.000
0.000
0.000
0.000 | 13.8
13.8
13.8 | | - | 4.0 | | 4.7.4 | 24444
24499
46490 | 444
80
80
80
80
80
80
80
80
80
80
80
80
80 | 11111
11111
111111 | 13.2 | | • | 0. | | 23.00
23.3 | 24444
2464
867
867
867
864 | 13.0
12.8
12.8
12.7 | 12.6
12.6
12.6
12.6 | 12.5
12.5
12.5 | | | . 0 | | 60000 | 84899
84898 | 222 <u>4</u>
222 <u>4</u>
22109 | \$ \$ \$ \$ \$ \$ \$ | 6 8 8 8 · | | | 0.7 | | | 10000
10000
10000 | 44444
44444
44644 | 11111 | 110.9 | | | 1 0 | | | 0
14.7
11.2.7 | 10.9 | 1001 | 110 | | | 0.5 | - | | 0.
0.
13.7
11.1 | 00000 | 00000
44000 | 80 80 80
9 9 9 9 | | or im | AC 70 | 000 | 0 대 전 전 전
0 대 전 전 전
0 대 전 전 전 | 20 9 P 80 P | 22
23
24
24 | 2 2 2 2 2 2 2 4 4 5 5 5 5 6 5 6 5 6 5 6 5 6 6 6 6 6 6 | | # MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA ### YARN BULK DENSITY #0.82 | VER
REP | | | | | | 1 | | 8 | | 1 | | | | ! | 1 | | | |---|---------------------------------|---------------------------------------|-----------------------|-------------------------|-------------------------|--|-------------------|---|--|--|--|-------------------------|------------------------------|------------------------------|--|--|--| | A X | . 0 | 9.0 | 0.7 | | (A) | 0 | ्र
। ५० | ; • ;
; • • ; | ٠
ا | 4 | 10 | 9 | | 4.8 | 0 | | | | , 20 C | 00 | - | | • • | • • | | | | | | 66 | • • | | | | • • | | | ੦ ਚ ੦ ਲ਼ ਚ
ਬਚ ਚਾਂਚਾਚਾਂਚ | | | | 00000 | | 00.00.17.8 | 0.
0.
16.00 | 0 0 0 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0.
21.3
17.7
16.9 | 19.3
17.5 | 23.0
13.7
17.5 | 20.7
18.4
17.6 | 27.6
19.9
18.4
17.7 | 22.9
19.5
18.4
17.9 | 24.04.4
10.04.4
10.04.4 | 21 4 4 4 4
0 0 0 0 0
0 0 0 0 0 | | | | 000
114
000
000
000 | 0
10
10
11
14
14
15 | 1111
12360
0350 | です!
ななできる
きてきる | | 2444
6.444
6.02
8.03 | 20 / E | 000044
00044
0000 | 44444
600000
600000 | 44444
668
800
800
800
800 |
44444
64664
64664 | 16.7
16.5
16.5 | 17.2
17.0
16.9
16.9 | 17.4
17.2
17.2
17.2 | 1444
1446
1446
1446
1446
1446
1446
1446 | 18.0
17.9
17.8
17.8 | | | | 00000
40040 | 11.0
10.7
10.0
10.3 | 7.111 | 40000 | 10000
10000 | 111111
121111
121111111111111111111111 | 4444 | 4444
4444
77000 | 8 10 10 10 10 10 10 10 10 10 10 10 10 10 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 11 14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16 | 44440 | 16.8
16.3
16.7
16.7 | 17.1
17.1
17.1
17.1 | *****

***** | と ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ | | | | 00000 | 1001
1001
1001
1001
1001 | 211111 | | 12221
12221
12247 | 44000 | 44888
00000 | ,4,4,4,4
4,4,4,4
8,8,8,8,8 | 20000
20000 | ដាជាជាជា
សលសសស
សលសសស | 11111111111111111111111111111111111111 | 66666
66666
66666 | 16.7
16.7
16.7
16.7 | 17.0
17.0
17.0 | 44400 | 100
100
100
100
100
100
100
100
100
100 | | | 0 4 4 0 0 4 4 0 0 4 4 0 0 4 4 0 0 0 0 0 | 9 9 8 | 10.1
10.0 | 1111 | 4 4 4
4 4 4
6 8 8 | 12.6
12.6
12.6 | 113.
13.3 | 13.9
13.9 | .4 4 4
2 8 8 8 | 15.0
15.0 | 15.5 | 15.9
15.9 | 16.3
16.3 | 16.7
16.7
16.7 | 17.0
17.0
17.0 | 17.4 | 17.6
17.6
17.6 | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.83 | ARP | | | | | | | | L | | | | | | | | | | |---|----------------|---|---|--------|----------------------------------|--|--------------------------|-----------------------------------|---|---|---|---|---------------------------------------|----------------------------|---|--------------------------|-----------------------| | FACTOR | 0.5 | 9.0 | 0 | 0 | 0 | | 9 🕶 | | 1 14 | 4.4 | , | 1.6 | 4.7 | + | - | 8 | | | 1 00 00 | | | | , | 00 | | | • | 00 | | 00 | - | - | 00 | | 31. | | | O + Q M 숙 | | 00000 | 00000 | 00000 | | 00000
00000
00000 | 0.
0.
12.1
17.6 | 4 B B O | 14720
1477
16.7 | 19.7
16.7
16.9 | 0.444
0.467
0.600 | 21.
148.1
17.7
147.7 | 30.0
20.1
17.9
17.9 | 23
19.7
18.0
17.7 | 20 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 50 d d d d | 04040 | | 50 47 80 A | 00004 | 100
100
1100
1100 | 123.00
123.00
123.00
123.00 | SAMORT | 4499 | 87 4 4 4 50
80 64 4 6 | 200444
200444 | (4)44444
 | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 4 2 2 3 5 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4444
4444
7447 | 7
4
7
6
7
8
7
9
9 | 24.74
10.74
10.09 | 044 N N | 8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 | 0 00 7 7 7
0 00 7 7 7 | 40000 | | さ さ さ さ さ さ さ も も ま さ ま さ ま な ま な ま な ま か | | 40000 | #####
################################ | 22222 | ਜਜਜਜ | 11
12
12
13
13
14
15
15
15
15
15
15
15
15
15
15
15
15
15 | 9 4 4 4 4
9 0 0 0 0 0 | 4444
000770 | 11111111
000000
000000 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 0 + + + 0
\$ \(\phi \) \(\phi \)
\$ \(\phi \) \(\phi \) | 44444
6666
60000 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 17.7.1 | 27774
27777
20000 | こうしょう ちょうしょう | 60 60 60 60 | | 20000 | 80444
66666 | 11111
1000
1000
1000
1000
1000
1000 | 000000
00000
00000 | 40000 | 122.4
122.4
123.4
123.4 | 888888
84444 | 44444 | 0 0 0 0 0
4 4 4 4
e'd d d'd | | 20000
2000
2000
2000
2000
2000 | 44444
66666
66666 | 44444 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | P P P P P | 60 40 60 60 60 | | 0 4 0 | | | न न न | | स स स | 4 4 4 | 444 | 444 | 255
255
255 | 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2 | 24 4
26 0
0 0 0 | 4.64 | 16.00
16.00
16.00 | 744 | 4.74 | 4 4 d | 000 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.84 | MARP
COVER
FACTOR
[K1] | 0 1 0 | 1 0 | 1 1 | 1 00 | | 4 | ! स्त
। • | E I | 1 1 | 4 | 1.4 | 4.6 | 1 44 | 1 • | ; | 2 | | |---------------------------------|-----------------|---|---|-----------------------|---|--|-------------------------|---|--------------------------|------------------------------|-------------------------|--------------------------------------|---|--|------------------------------|---------------------------------------|--------| | | | | | | | | | 0.0 | 100 | 00 | 0.0 | 00 | | 00 | | 100 | 0 | | | | | | | | 000000 | 10000
17000
1000 | 14,40
16,90
16,00
16,00 | 1420
6000
4000 | 0.
20.1
17.9 | 44400 | 21.6
18.8
17.9 | 33.9
20.4
18.7
17.6 | 24 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 22.2
19.7
18.8
18.4 | H O 00 00 00 | naonn | | K & K & & & | | 12.9
11.3 | 5 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | でまままる。まちちちちちちりろりさりためる | 64488
83474 | 44444
600444 | 200444
20075 | 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 | 44444
68888
867.68 | 2000
2000
2000
2000 | 44444
66666
86646 | 17.1
16.9
16.8
16.7 | 47.4
47.3
47.0
47.0 | V V V V V V V V V V V V V V V V V V V | 44444
66677 | 8 8 8 8 8
9 9 9 9 9 | N4000 | | | 20000
V 4600 | 110
110
110
10
10
10
10 | 9
2
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | 44500
44500 | 8 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 800000
800000 | 44444 | 4 4 4 4 4
0 0 0 0 0 N | 4 8 8 8 8 8 | 222222
222222
222222 | 80000
99999
99777 | 2000
2000
2000
2000
2000 | 17.0
16.9
16.9 | 27
27
27
27
27
20
30
30 | 4444 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 0,0000 | | 2222
2223
234
234 | 00000
00000 | 4 D W C C | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 44400
44400 | 0.00000
0.00000
0.00000 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 0 | ************************************** | ままままま
で 50 50 50 50 | ないない。 | | 44444
66666
500000 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2777 | 4444
6666 | ななませれ | 00000 | | | 000 | 10.2 | # # #
#
| 222 | 12.8
12.8
12.7 | 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | + + +
+ + +
+ + + | 444
4.44
6.44 | 15.2 | で りょう
マ ら な | 4 4 4
9 9 9
9 9 9 | 2 4 4 4
2 4 6
2 8 8 | 16.9
16.9 | 17.2
17.2
17.2 | 17.6
17.6
17.5 | 447 | 000 | # MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =0.85 | 1 | • 1 | . 60 | 004×10 | 10 00 00 00 00 00 00 00 00 00 00 00 00 0 | 00000 | 60600 | 900 | |---------------|------------------|------|--------------------------------|---|--|--|-------------------------| | (| | | 20000 | © ® © © © | 8 | 80 80 80 80 | 4 4 4 | | | - | 00 | 74414
76688
76087 | 4444
4444
4444
4444
4444 | 44 7 7 7 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7 | 17.7
17.7
17.7 | | • 1 | 4.8 | | 110000 | 117.8
17.6
17.6
17.5
17.5 | 4 4 4 4 4 | 44555
4455 | 17.3
17.3 | |
 | | | 40111
40111
4000
4000 | 0.71
0.71
0.71
0.71 | 447.44
47.44
47.00 | 44444
7777
0000 | 17.0
17.0
17.0 | | | 1.6 | 00 | 122.1
19.1
17.5 | 17.5
146.9
16.8
16.8 | 116.7
116.7
116.7
116.6 | 44444
6666
6666 | 16.6
16.6 | | | 1.5 | - | 118.7
118.57 | 0.00
0.00
0.00
0.00
0.00
0.00 | 4 2 2 2 2 2 2 3 4 2 2 2 2 2 2 2 2 2 2 2 | 44444
6666
70000 | 116.2
16.2
16.2 | | | , , | | 1.8.1
1.8.1 | 4 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 1 | 200000
00000 | 4 4 4 4 4
6 6 6 6 6
6 6 6 6 6 | 15.7
15.7
15.7 | | | 1 | | 00487
 | 4 4 8 7 9 | 4445
64446 | 50 50 50 50
50 50 50
50 50 50
50 50 50
50 50
50
50 50
50
50
50
50
50
50
50
50
50
50
50
50
5 | 15.3
15.3 | | 9
₩ | 4.2 | • • | 7,000 | 4 4 4 4 4
6 12 12 12 12
12 12 14 14 | 1111111
V4444
D0008 | 4 4 4 4 4
eleterated | 14.7 | | | 1 + | | 470000 | 44 0 60 6 | 44444
84488 | 44444
44444 | 444 | | | 4.0 | 00 | .0000 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 44444
44444
44444
44444
44444 | 44444
44444
6466 | 444
888
888 | | | 0 | | 00000 | 11111
78488
8988 | 8 6 4 0 0
4 4 4 4 4 | 20000
20000
20000 | 4444
222
80 80 80 | | | | 00 | | 84444
4744
57440 | 4 4 4 4 6 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 | 00000
00000 | 122.1 | | | . 0 | | | 04450
04400
0404 | 24444
24444
24444
2664 | 4 5 5 5 6 7 | 111.2 | | | 9.0 | i | 00000 | 11190°
12490°
12490° | 40000 | 00000
00000
04000 | 10.2 | | | 0.5 | 1 | 00000 | 000000
44 | 110
100
100
100
100
100
100
100
100
100 | 00000
4 10 10 10 10 | 9 9 9 2 1 1 1 | | O. W 1 | KA1 | 60 0 | (라 하 라 라 라
다 라 있 P 주 | \$5 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | | 2222 | 30
32
32 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.86 | G 111 | 1 | , | (| | 1 | | | 8E | 1 | 1 | 1 | 1
1
1 | 1 | · (| 1
 | (| | |-----------------------|----------------|------------------------------------|--|-------------------------|---------------------------|---|---|-----------------------|-------------------------|---|--------------------------------------|--------------------------------------|---------|---|---|--|-----------| | KA1 | 0.5 | 9.0 | 0.7 | 0.0 | 0 | | 1 | 1.2 | | 4 | 1 | 1.6 | - | 0 ।
चर्च । | • 1 | 2. | 0 | | 80 0 | | | | 00 | | | | | | | | | . 0 | • | 00 | 00 | | | '라 라'라'하'라 | 00000 | 00000 | 00000 | 00000 | 00000 | 20000 | 2000
1700
1700 | 200. | 2000
1739
273 | 1484
1484
1486
1486 | 6 6 6 6 7
6 6 6 6 7
6 6 6 7 10 | 190.7
180.3
17.2 | 040 BV | 00000
60000
44464 | N 0 0 0 0
0 0 0 0 | 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | | 8 9 N 80 A | 00000 | 0
134.0
12.5
12.5 | 124.00
124.00
120.70 | 00488
00884 | 78488
78488 | 40444
60444
60746 | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 44444
65565 | 44444
44545
80000 | 2000
2000
2000
2000
2000
2000
2000
200 | 2.0000
2.0000
2.0000 | 4.7.1
2.7.1
1.0.7.1
1.0.0 | 65.45.C | 117
177
177
17
10
10 | 8 8 8 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 4 4 4 4 4
8 8 8 8 8 | | | | 40000
40000 | 111
110
10
10
10
10 | 111111111111111111111111111111111111111 | 22222
22222
8486 | 4 B C - + | 4 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 4 4 4 4 4
0 8 4 4 4 | N N N N 4 | 22222
22222
22224 | 24444
2000
2000
2000 | 8 4 4 4 P | 6.644
6.644
6.66
6.66
7. | 47.52 | なるなっている。 | 147.9
147.8
147.8 | 0 0 0 0 0 0
H H H H H | N ज ज ज ज | | 20000
2000
2000 | 00000
04000 | 00000
00000
00000 | 44400 | 20000
20000
20000 | 888888
888888
88888 | 1111
1131
1131
1131
1131
1131
1131
113 | ************************************** | ゆうちゅう
マママママ | 24444
44444 | 2 4 4 4 4
2 2 2 2 2 2
2 2 2 2 2 2 | 00000
0000
0000 | 16.7
16.7
16.7
16.7 | | 2000
2000
2000
2000
2000 | 86.60
8.60
8.60
8.60
8.60
8.60
8.60
8.60 | 0 0 0 0 0 | | | 321 | 000 | 10.3
10.3 | 55.
55.
55.
55.
55.
56.
56.
56.
56.
56. | 444 | 12.9 | 9999 | 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 444 | # 15 E | 25.00
8.00
8.00 | 16.44
16.44 | 16.7
16.7
16.7 | 1.7.1 | 4.7.4 | 444 | 80 80 80
87 87 87 | न न न | # MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF MARP COVER FACTOR AND BETA ### YARN BULK DENSITY #0.87 | | 91 | |---|--------------------| | | | | 040
(4)4)4
00400 | 00400 | | 20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00 | 00000
0 7 0 2 4 | | 2.2.4.4.4.
2.2.4.4.4.
2.2.2.2.2.2.2.2.2. | 00000 | | .4 12.2 13
.3 12.2 13
.3 12.2 13 | 444 |
YARN BULK DENSITY =0.88 | ARP
OVER | • | | | | | i | | BET | , | | 1 | - 1 | 1 | | t | 9 | • | |---|---|----------------------|--|---|---|---------------------------------------|---|---|---|---|------------------------------|--------------------------------------|------------------------------|------------------------------|---|---|---| | FACTOR
[K1] | 10 | . 0 | 0.7 | 0.8 | [CA. | 1.0 | 1.1 | . | 1.3 | - | | , - | 1.7 | 1.8 | 4.9 | 2. | • | | 000 | | | | L | 00 | | | 00 | 00 | .0 | | | | | 66 | | ! | | চ ল ও চ ক
লে-লালালাল | 00000 | | | | | 0.
0.
0.
22.5 | 0000 | 0.
0.
17.3
17.8 | 10.
122.3
17.6 | 0.
0.
22.1
18.7 | 6.00
200.0
118.5 | 24.0
19.8
17.9 | 0
24.8
119.5
118.6 | 28.9
21.0
19.4
18.7 | 200 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 222
220
400
140
160
160
160 | | | ()
() () () () () ()
() () () () () () () () () () () () () (| 00000 | 00040 | | (4) 4) 4) 4)
(6) 4 8 8
(6) 4 8 8 | 18.
14.7
14.7
13.2 | 11114
1419
1419
1419
1419 | 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 44444
6677
74664 | 116.8
16.2
15.0
19.0 | 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1144
1444
1669
1669 | 6.4.
6.4.
6.4.
6.4.
6.4. | 9.71
7.71
8.71
8.71 | 1148 | 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 0 4 0 0 0 0
0 4 0 0 4 | 11
10
10
10
10
10
10
10
10
10
10
10
10
1 | 11.7
11.3
10.9 | 122.
112.
113.
113.
12.
13. | まるなるなるののもてるの | 44444
88888
88488 | 4444
4444
24000 | 4444
4444
67444
6744 | 2000
2000
2000
2000
2000
2000
2000
200 | 21.22.23
27.22.23
27.23.23 | 22.55 | 16.6
16.6
16.6
16.5 | 17.0
17.0
17.0
16.9 | 4445 | 17.8
17.7
17.7
17.7 | 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 | ** *********************************** | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 00000 | | | ######
############################### | 44444
888888
88888 | 4444
4444
88844 | ## 0 0 0
0 0 0 |
############################### | 4444
4466
44000 | 111666
16666
16666 | 110000
10000
10000 | 44444
44444
94444 | 17.7
17.7
13.6
17.6 | 44444
6 6 6 6 6
0 0 0 0 0 | 8 8 8 8 8
8 8 8 8 8
8 8 8 8 8 | | | 3
3
3
3
3 | | 10.4
10.4 | 444 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 | 13.8 | 444 | 15.0 | 25.51
15.51
15.51 | 16.0
16.0
16.0 | 16.5
16.5
16.5 | 16.9
16.9
16.9 | 17.3
17.3
17.3 | 17.6
17.6
17.6 | 444
86
80
00
00
00 | 8 8 8
8 8 8 | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.89 | 7 A C T O R | | | 7.0 | | 6.0 | | = | BET. | 4 | ļ - | | 1.6 | | - | 1.9 | 2.0 | | |--------------------------|-----------------------------|---|------------------------------|---|---|---|---|---|---|--|--|---|------------------------------|--|--|---------------------------------------|--------| | 000 | 0 | 50 | | - | 1 | | 00 | | 90 | | • | ï | | | - | • | •
• | | © + Q 10 4
© + Q 10 4 | 00000 | 00000 | 00000 | 00000 | | 20000 | 00000 | 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0
10
17
17
17
19 | 17.50 0
17.50 0
17.50 0
17.50 0 | 00.
200.7
17.9 | 24.8
20.0
18.7 | 222.2
199.7
18.8 | 20 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 400
400
400
400
400
400
400
400 | 90400
90400
90400 | | | | | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 1436
123.4 | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 44444
80444
800000 | 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 | 4 4 4 4 4
4 4 4 4 6 6
6 0 10 10 0 | 44444
50000
500000 | 4444
6666
6666
6666
6666
6666
6666
666 | 11111
7.0011
9.00.00 | 14444
1444
1647
1660
1660 | 7.7.4
7.7.4
7.7.4
7.6.7
8.6.6 | 18.0
17.7
17.7
17.6 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 4 4 4 4
6 6 6 6 6
6 7 6 8 8 | | | 04000 | 11.5
10.7
10.0
9.8 | 4.00
6.00
6.00
6.00 | 81000
81000
81000 | 2002
2002
408
408
679 |
567987987987987989999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<l< td=""><td>44444
80440</td><td>44444
98779</td><td>4556
4556
4556</td><td>またちょうちゅうちゅうちゅうちゅう</td><td>44444
44444
54444</td><td>8
8
8
8
7
8
7
8
8
7
8
8
8
8
8
8
8
8
8
8</td><td>27.74
27.74
21.10</td><td>アアファファララララ</td><td>11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>8 8 8 8 8</td><td>311144
808088
808444</td><td></td></l<> | 44444
80440 | 44444
98779 | 4556
4556
4556 | またちょうちゅうちゅうちゅうちゅう | 44444
44444
54444 | 8
8
8
8
7
8
7
8
8
7
8
8
8
8
8
8
8
8
8
8 | 27.74
27.74
21.10 | アアファファララララ | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 8 8 8 8 8 | 311144
808088
808444 | | | | 00000
0000 | 10.7
10.6
10.6
10.6 | 44444
44444
74666 | なまままり
こここここ
で ラム・4 | ************************************** | 4 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 4 4 4 4 4
0 0 0 0 0 0 | 2 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | はままま
5 55 55 55
7 7 7 9 9 | N N H H H
9 9 9 9 9
H H H H H | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 17.0
17.0
17.0
17.0 | 7777 | 80.
70.
80.
70.
70. | | 4 4 4 4 4 | | | | 000
440 | 10.5 | 111
111
10
10
10 | 450 | 888
888
844
844 | 444
668
668 | 444
800 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 22 H H H H H H H H H H H H H H H H H H | 1.61 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 17.0
17.0
17.0 | 4.7. | 17.7
17.7
17.7 |
666
444 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.90 | a wi | | | ! | | | 1 | | 9E ₹ | | | | | | | | | • | |---------------------------------------|---------------------------------------|--|---------------------------------|--|---|---|---|---|--|--|---|---|---|---|---|--|----------------| | K 1 1 1 1 1 1 1 1 1 | | 10 | | 6 0 | 0.0 | 0 | 1.1 | 1.2 | 100 | 4.4 | S | 1.6 | 1.7 | 1.8 | - | - | 0 | | (a) (b) | 00 | - | | | | | | | 00 | | | - | | ŀ | | 00 |) | | O 국 (N M 주
다 전 대 대 대 | 00000 | 00000 | 60000 | 00000 | | 26.7 | 000004 | 10000
1000
1000
1000 | 12000 | 1000
1400
1400
1000 | 00:48
 | 2000
4400
460
600
600
600
600 | 19.0
19.0
18.0
18.4 | 80 90 90 90 90 90 90 90 90 90 90 90 90 90 | 200444
24008
30000 | 80000
80000 | 4 60 60 41 | | でるである
なられるな | 00004
 | 000000
000000
000000 | 0000N
0000N
000 | 0 / 10 m | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 | 6 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 44444
7.394
47.484 | 44444
77999
80009 | 90 40 6
90 40 6 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 8
4
4
4
6
6
7
7
7 | 4 0 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 8 4 4 4 4 5
8 8 8 8 8 8 | 00110 | | | 11001
1001
1001
1000
1000 | 1111
1111
1011
1011
1011
1011 | 8
8
8
8
8
8
8 | 20000 | 80 N 90 M 4 | 4444 | 24444
64444
0000V | ម្នាក់ ម្នាក់ មួយ | 4 4 4 4 4
6 8 8 8 8
6 8 8 8 | 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10 | 44444
6444
9444
9444
9444
9444 | 27.74
27.74
27.74
27.74 | 44444
44444
44444
44444 | 1444
1777
1999 | 4 4 4 4 4
8 8 6 6 6
8 5 6 6 6 | (a) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c | 40 40 IO IO IO | | 2020
2020
2020
2020 | 00000
00000 | 10.7
10.7
10.7
10.6 | 87.999
 | 4 4 4 4 4
2 2 2 2 2 2
4 4 5 15 15 15 | 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4444 | 4444
77.000 | ままままま
50 50 50 50 50
50 60 60 60 | ままままま
50 50 50 50 50
60 80 7 7 7 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 24444
2664
2777
2077 | | ななななななる。 | 2000
000
000 | 4 4 4 4 4
6 6 6 5 5
6 6 6 6 6 | et et et et et
et et et et et | | | | 444 | 10.6
10.5 | 11.6 | 200 | 133.2 | 200
200 | 444 | 15.2
15.2 | 15.7 | 16.2
16.2
15.2 | 16.7
16.7
16.7 | 17.1
17.1
17.1 | 17.5 | 17.00
17.00 | 2000 | 44 44
45 40 40 | 10 10 10 | # MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF MARP COVER FACTOR AND BETA # YARN BULK BENSITY #0.91 ### PLAIN WEAVE FABRICS HARP | OVER |
 | 1 | 1 | í | 1 | 1 | | 861 | 1 | (| | | _ | | | 1 | | |-------|--|----------------------|---|--------------------------------------|---------------------------------------|-----------------------------|--|--|-------------------------------|--------------------------------|--------------------------------------|---------------------------------------|---|--|---------------------------------------|--------------------------------------|---| | K108 | 0.5 | 9.0 | 6.7 | 0 | | 0 | 1.1 | 1.2 | 1.3 | 4. | 4. S. | 1.6 | 1.7 | 1.8 | 6.4 | 2 | • | | 60 0 | 0 | | | 00 | | - | - | • | 00 | | | | | | 66 | | | | | | 20000 | 00000 | | | 0.
0.
34.7 | 19999999999999999999999999999999999999 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0007
1000
1000
1000 | 00400 | 2000
2000
2000
2000
2000 | 27.0
20.5
19.0 | 23.2
20.1
19.1 | 40.40
199.9
198.7 | 40.00
40.00
40.00 | 20044
99049
99099 | | | 80×00 | | 13.7 | 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 011111
10044
88080 | 111111
7.0074
0.04.07 | まままままで よらまっちょう | 7 4 4 4 4 5 4 5 4 5 4 5 4 5 5 5 5 5 5 5 | 11111
6667
7000
7000 | 117.5
116.9
16.7
16.6 | 44444
7777
74040 | 148.0
17.7
17.6
17.8
17.8 | 800 K K K K K K K K K K K K K K K K K K | ######
############################## | ままままま
80 80 80 80 80
80 90 90 4 | 00000
00000
00000 | | | | 111
110
110
110
100
100
100
100
100
100 |
2 | 7.21
12.21
12.20
11.9 | 2001
2001
2001
2000
2001 | 44444
44444
46669 | 44444
04000 | 20044
4000 | 44444
5556
6556
6556
6556
6556
6556
655 | 11166 | 0 0 0 0 0
0 0 4 4 4 | 44444
66664
00000 | 4 m m m c | 7.7.1
7.7.7
7.7.7
8.7.7 | 40000
00000 | 44556 | 1881
7.81
7.81
7.81
18.6 | | | 28265 | 00000
00000 | 10.9
10.7
10.7 | 111
111
111
111
111
6 | 20000
20000
20000 | 44488
44488 | ++++0
++++ | 34444
8777 | 4 4 4 4 4
6 6 6 6 6 6
6 6 6 6 6 6 6
6 6 6 6 | | 4 m m m m | 4 4 4 4 4
6 6 6 6 6
6 6 6 6 6 | 17.71
17.72
17.72
17.72 | 0.71
0.71
17.6
0.71 | 18.0
18.0
17.9 | 4 4 4 4 4
8 8 8 8 8
8 8 8 8 8 | \$ \$ \$ \$ \$ \$ \$ | | | | 000 | 10.6
10.6
10.6 | 11.6
11.6
11.6 | 122.3 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 444 | 14.7
14.7
14.7 | 15.3
15.3 | 17.
17.
10.
10. | 16.44
16.44 | 16.8
16.8
16.7 | 17.2 | 17.6
17.6
17.6 | 17.9
17.9 | 4 4 4
80 80 80
10 10 10 | 118.6
118.6 | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.92 | 2 00 | 1 | | 1 | - |
 | ! | 8E7 | | | | | | ĺ | • | ŧ | | |---------------------------------------|------------|---|-------------------------|---|---|---|--|------------------------------------|---|--------------------------------------|---|---------------------------------------|------------------------------|---|---------------------------------------|--|-----| | X 1 1 1 1 1 1 1 1 1 | 0 | 9.0 | 0.7 | | 0 | 2,0 | 1,1 | t ye t | 1.3 | 4 | 2.5 | 1.6 | = | 60 | | 6 | , , | | 600 | 00 | | | | • | | - | • | | | - | | 00 | | 00 | | | | | | 00000 | 66666 | 00000 | 00000 | 00000 | 00000 | 00 010 00
00 010 00 00
00 00 | 00000
0000
0000 | 2000
1000
1000
1000
1000 | 0 to 1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000
00000
00000 | 222.2 | 22241
24000
26441 | 20011
410011
60000
60000 | | | 写るアのマ
id dist d d | 00000 | 00 0 0 H H H H H H H H H H H H H H H H | 20/45
20/45 | 00 N 4 N | 0.444
0.6044
5.6057 W | 4 4 5 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 111111
12055
14055 | 14444
76667
8668 | 111111
70000
40040 | 17.7
17.0
16.0
16.7 | 44444
44444
40000 | 40.744
70.74
70.70 | 40000
40000 | 4 + + + + + + + + + + + + + + + + + + + | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | | 2444 | 11111111111111111111111111111111111111 | 0.000
0.000
0.000 | 4 4 6 6 8 | 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 44444
60455 | 2
2
2
2
3
4
3
4
5
6
6
7
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | 211111
22222
20222 | 44444
64466
64466 | 44444
44646
44666 | 40000 | 2444
2444
2444
84448 | 17.0
17.0
17.0
17.7 | 0 0 0 0 0 0
1 1 1 1 1 1 1 | 41444
80000
80444 | 1113
113
113
113
113
113
113
113
113
11 | | | 00000
0000
0000 | 00000 | 11444
1000
1000
1000
1000
1000 | 44444
44444
98877 | 1222
1222
1222
1223
123
123
123
123
123 | 22444
225444 | 4444 | 4444 | 4 4 4 4 4 | • 1444
• • • • • • • • • • • • • • • • • • | 4 4 4 4 4 | 44444
66666
66666 | 2777
7777
88888 | 7.71
7.71
7.71
7.71 | 44400
66666 | 44444 | 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | | 000
000 | 10.7
10.7
10.6 | 11.7 | 4 4 4
6 6 6
6 6 6 | 444
444 | + + +
+ + +
+ + + | 14.8 | 15.3
15.3 | 15.9 | 444 | 44.6
4.6
9.0
9.0
9.0 | 17.
17.
18.
18.
18. | 17.7 | 1188.0 | 8 8 8 8 | 18.7 | | # MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA # YARN BULK DENSITY #0.93 | | | | 0
C
e | | | | • | ш і | : | 1 | | | |
t | • | | • | |-------------|-------------|------|-------------|------|------------|------|------|-------------|--------------|------|------|--------------|------|---------------------------------------|---|-------------|------------| | X | 0.5 | | 7: | 60 | | 1.0 | 1.1 | N | | 4 1 | 4.5 | 9 | 1. | ન ા | 1.9 | 2. | | | 60 0 | ٠. ٥ | 66 | | 00 | 00 | | 0 5 | 00 | | 00 | | | | 00 | 000 | 00 | 0 | 0 | 0 | 80 | 4. | | | | | | | | | | | | | · • | 6 | 0 | 4 | 2 | • | -1 4 | | | | | | | | | | | 0 | D | • | 2 | | D | D | D | 0 | | | 44 a.q | | | | 0 0 | | | 21.0 | 27.2 | 21.3
18.6 | 18.4 | 18.5 | 19.4
18.6 | 19.4 | 19.0 | 19.5 | 19. | ~ 4 | | | | | | | R . | • | - | 7 | 7 | | • | œ | 60 | • | • | 0 | | | | | | | | 7 | • | 9 | • | | 7 | | 60 | 00 | 6 | 60 | 0 | | | | | 0 | 80 | 15.8 | 15.5 | 15.7 | 16.0 | 16.3 | 16.7 | 17.1 | 17.5 | 17.8 | 18.1 | 18.5 | 18.8 | 19. | | | | 0 | ~ | | * | 4 | 50 | 5 | | | \$ | | | | 00 | 8 | O. | | | 19 | 17.6 | • | 3 | 3 | * | * | 5 | Ś | • | • | | 7 | | 60 | 60 | 00 | | | | S | 8 | 2 | 2 | • | * | 10 | 5 | 9 | • | | 7 | | 6 | 60 | 00 | 0 | | | + | - | 2 | PY) | 2 | 4 | 5 | 5 | • | 9 | | 7 | | œ | 8 | 8 | - | | | | | 2 | 3 | M : | 4 | K) | Ŋ. | • | • | | 7 | 7 | 00 | 80 | 00 | _ | | % € | 4 | 11.3 | 12.2 | 20.0 | 13.7 | 4.4 | 15.0 | 15.6 | 16.1 | 16.6 | 17.0 | 17.5 | 17.3 | 2 6 | 2 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | - F | | | | • | 1 | i | 1 | • | | | , | | | • | | • | 9 | | - 0 | | | | • | - | ò | 2 | m 1 | * | + | 5 | • | ů, | | ~ 1 | 7 | 6 | • | 6 | _ | | | • | | | o o | | • | 4 . | v : | ė | • | | | | | | 3D 0 | | | | • | | ÷. | · | · | • | * • | . H | | • | | | | | D Q | 0 4 | _ | | 0 0 | 0.7 | 10.8 | 11.00 | 12.7 | 13.5 | 14.2 | 14.8 | 4
0
4 | 16.0 | 16.5 | 16.9 | 17.4 | 17.8 | 18.1 | 10.01 | 1 9 | 0 60 | ٠
•
• | | 11.8 | 12.7 | M | 14.2 | 44.4 | | 16.0 | 16.5 | 16.9 | 47.4 | 17.8 | 18.1 | 44 4
80 8
80 8 | 60 a | ∞ α | | 326 | • • | | • • | • • | • • | | • | , ru | • • | 0 | | | | • • • • • • • • • • • • • • • • • • • | • • • | တေ | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =0.94 | 0.41 | (| 1 | ! | | | 1 | 1 | 1 00 0 | 1 | | , 1 | 1
1
1 | | | • | 0
8
0 | | |----------------------|---|---------------------------------------|--|--|--|---|---|--|--|--------------------------|--|---|---|---|--|---|--| | * ~ | 0.5 | 9 | 0.7 | E . | 0.0 | 0 | 1.1 | 1.2 | 1 of 1 | भी ।
को | .5 | 1.6 | 1.7 | 1.8 | 4 | 2 | | | 60 0 | • • | 00. | • • | | | | | 00. | 0 0 | | | | 000 | | 00 | 000 | | | | 00000 | | 00000 | | 00000 | 00000 | 0.
0.
21.7 | 00000
9 H | 2000
484
696 | 422
423
646 | 100
100
100
100
100
100
100
100
100
100 | 6 | 0.440
1.00
1.00
1.00
1.00
1.00
1.00
1.00 | 190.50 | 222
222
200
200
200
200
200
200
200
200 | これ ひかり | | | | 2000 | 0000M | 444
66048
400 | 04944
04944 | 80 4 4 4 4 8 4 4 6 16 16 16 16 16 16 16 16 16 16 16 16 1 | 24444
2488
200
200
200
200
200
200
200
200
200
2 | 4 4 4 4 4 5 5 5 5 6 5 6 5 6 5 6 5 6 5 6 | 70000
70000
70000 | 111111
10111
10111 | 24444
27774
28.000 | 40045
40045
40045 | 188.14
17.14
17.74 | 44444
88888
64044 | 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 20000
2000
2000
2000
2000
2000
2000
20 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2000
2000
2000
2000
2000
3000
4000 | 4 4 4 4 4
6 4 6 4 6 | 44335 | 44444
87.004 | 4 2 2 3 4 4 4 4 4 4 7 2 4 7 2 4 4 4 4 4 4 4 4 4 | 80 00 00 00 00 00 00 00 00 00 00 00 00 0 | 4 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14 | 116.3
116.7
15.7 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 7 7 7 7 7 7 7 7 7 7 7 9 9 8 8 8 8 8 8 8 | 118.0
118.0
17.9 | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 2 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | 2222
2020
2000 | | | 40000
0000 | 00000
00000
0000
0000
0000
0000 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4444
48888 | 2 2 2 2 4 4 4 5 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 | មានក្នុង
ស្សសសស
ភ្ភសស្ស |

 | 4444
6966
6966 | ************************************** | 22444
77777
88888 | 47.9
47.9
47.9
6.7 | 4 4 4 4 4
8 8 8 8 8
8 6 6 6 | 4 4 4 4 4
8 8 8 8 8
6 6 6 6 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | | V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10.8
10.8 | 4 4 4 4 6 8 6 6 6 6 | 12.7 | 4 4 4
5 5 5
6 6 6 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 444 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 16.6
16.6 | 17.0 | 17.5 | 17.9
17.9
17.9 | 4 4 8 4 4 8 4 4 6 4 6 4 6 4 6 4 6 4 6 4 | 4 4 4
6 6 6
6 6 6 | 4 4 4 8 8 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | # MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA ### YARN BULK DENSITY #1.00 | 2 4 4 | | 1 | ! | | | | | 8 E | ! | (| () | (| | 1
1 | 0
9
0 | | 1
0
1 | |----------------------------|----------------------------|---|--|---|--|------------------------------|---|--|---|-------------------------------|--|---|--|---|--------------------------------------|--------------------------|-------------| |
K 1 | 0.5 | 1 | ~ | 8. | | 1.0 | • | | | | · + · | 1.6 | + | -1 | 4.9 | ~ 1 | 0 | | 80 0 | - | | Ì | | | | | | | • • • | 00 | | 60 | 00 | 6.6 | 00 | | | ਨ ਚ ਨਾਲ ਵ
ਚ ਦ ਦ ਦ ਦ | | | 00000 | | | | N 3000 | , | 200.
200.
200. | 00000 | 127.00
127.55
6.125 | 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 200
200
200
200
200
200
200
200
200
200 | 2000
2000
2000
2000
2000 | 2000
2000
2000
2000
2000 | 20.
20.
20.
20. | どりょとい | | 15 4 5 5 5 5
10 4 7 8 4 | | 0.00.00.00.00.00.00.00.00.00.00.00.00.0 | | | | 22.9
18.1
16.7
15.0 | 91
91
91
91
91
91
91 | 1148
1147
1166
1166
1166
1166
1166
1166
1166 | 118
17
17
17
18
18
18 | 118.7
17.9
17.7
17.7 | 20000
2000
2000
2000
2000 | 44444
98888
48645 | 0000
0000
0000
0000
0000 | 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 4 4 4 4 | 44469 | | | | 201111
201110
201110 | 13.6
12.7
112.7
11.9 | 44444
88066
68066 | 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4 4 4 4 4
6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 222224
202524
40409 | 11111111111111111111111111111111111111 | 2000
2000
2000
2000
2000
2000 | 11669 | 46.64 | 11111111111111111111111111111111111111 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 44444
8888
6088
8088 | 0.000
0.000
0.000 | 9 9 9 9 9
9 9 9 9 9
9 9 9 9 9 | 00000 | 0000m | | | | 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 1. 4 4 4 4 6
0. 0. 0. 0. 0.
0. 4 4 10 10 | ****** | 4444 | \$ \$ \$ \$ \$ \$ \$ | ង | 44400
5000
4444 | 111111
6066
6066 | 21414 | 4777 | 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 | 444
800000
80000 | 4 4 4 4 4
8 8 8 8 8
8 8 8 8 8 | 20000
00000
00000 | 9 9 9 9 9
9 9 9 9 9 | ស | | | 10.0 | 11.2
11.2
11.1 | 12.2
12.2 | +++
+++
+++ | 44.0 | 14.7
14.7
14.7 | 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 16.0
16.0 | 16.6
16.6
6.6 | 17.1
17.1
17.1 | 17.6
17.6
17.6 | 48
48
6
6
6
6 | 4 4 4 | 80 H H H
80 80 80 | 19.5 | 949 | וח וח וח | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =1.36 | 9674 977 9874 9874 9877 9877 9877 9877 977 9 |--|----------|---------|--------|------|-------------|------|-----|------|--------------|----------|---------------|------------|-----|--------------|--------------|----------|-----|----------|-----| | 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | t
tz | 1 | , | I ê | 1
1
1 |
 | | 1 | œ | 4 | | | | | | | | | | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 25.0 22.9 22.4 22.2 22.5 22.5 22.7 23.0 23.2 23.0 0.0 0. 0. 0. 38.4 23.1 21.6 21.3 21.3 21.5 21.8 22.1 22.4 22.7 23.0 23.2 23.0 0.0 0. 0. 36.0 21.7 20.5 20.3 20.5 20.7 21.6 21.3 21.3 21.5 21.8 22.1 22.4 22.7 23.0 23.2 20.0 0. 0. 0. 36.0 21.7 20.5 20.3 20.5 20.7 21.6 21.8 22.1 22.4 22.7 23.0 0. 0. 0. 19.6 18.4 19.4 19.6 20.0 20.4 20.8 21.2 21.6 22.0 22.4 22.7 23.0 0. 19.6 18.4 19.4 19.6 21.0 20.4 20.8 21.2 21.6 22.0 22.4 22.7 23.0 0. 19.2 17.3 17.4 17.8 18.7 18.9 19.9 20.4 20.9 21.4 21.8 22.2 22.6 22.2 15.4 15.3 16.3 16.4 17.1 17.8 18.5 19.1 19.7 20.2 20.8 21.3 21.7 22.1 22.5 22.1 15.4 17.1 17.8 18.5 19.1 19.7 20.2 20.8 21.3 21.7 22.1 22.5 22.1 12.1 16.4 17.1 17.8 18.5 19.5 19.6 20.1 20.7 21.2 21.6 22.0 22.4 22.1 12.8 14.9 15.9 16.8 17.7 18.4 19.0 19.6 20.1 20.7 21.2 21.6 22.0 22.4 22.1 12.8 14.9 15.9 16.8 17.5 18.9 19.5 20.1 20.5 21.1 21.5 22.0 22.4 22.1 12.8 14.9 15.9 16.8 17.5 18.1 18.8 19.4 20.0 20.5 21.1 21.5 22.0 22.4 22.1 22.1 13.4 14.5 15.5 16.5 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.1 18.8 14.4 15.5 16.4 17.3 18.1 18.8 19.4 20.0 20.5 21.0 21.5 21.9 22.8 22.0 22.4 22.1 18.8 14.4 15.5 16.4 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.8 22.7 22.0 22.4 22.1 18.8 14.8 15.8 14.8 15.8 14.8 15.8 14.8 15.8 14.8 15.8 14.8 15.8 14.8 15.8 14.8 15.8 14.8 15.8 14.8 15.8 14.8 15.8 14.8 15.8 14.8 15.8 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.8 22.7 22.0 22.4 22.7 18.8 14.8 15.8 14.8 15.8 14.8 15.8 14.8 15.8 14.8 16.8 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.8 22.7 22.0 22.4 22.7 18.8 14.8 15.8 14.8 18.8 19.8 20.5 21.0 21.5 21.9 22.8 22.7 22.9 22.8 22.7 22.0 22.8 22.9 22.8 22.9 22.8 22.9 22.8 22.9 22.9 | 1 | U.5 n | 9 - | 7 | 60 : | 0 ! | + | + | | 2 1. | 3 1 | 4 | . 7 | i +-i | - | 7 | | - | 2 | | 0. 0. 0. 0. 38.4 23.1 21.6 21.3 21.5 21.8 22.1 22.5 22.7 23.0 23.2 23.0 23.0 0. 0. 0. 0. 36.0 21.7 20.5 20.5 20.7 21.3 21.5 21.8 22.1 22.4 22.7 23.0 23.0 0. 0. 0. 0. 36.0 21.7 20.5 20.5 20.7 21.3 21.5 21.8 22.1 22.4 22.7 23.0 23.0 0. 0. 0. 19.6 18.5 19.4 19.4 19.6 20.0 20.4 20.8 21.2 21.6 22.0 22.4 22.7 23.0 0. 19.2 17.3 17.4 18.0 18.5 19.9 19.4 20.4 20.8 21.5 21.9 22.3 22.6 22.0 20.0 16.3 16.3 16.4 17.4 18.0 18.6 19.2 19.9 20.4 20.9 21.4 21.8 22.2 22.6 22.0 20.0 16.3 16.3 16.4 17.4 11.7 17.8 18.5 19.9 19.9 20.4 20.8 21.2 21.7 22.1 22.5 22.0 22.4 22.1 22.1 15.7 16.4 17.1 17.8 18.5 19.9 19.9 20.4 20.8 21.2 21.7 22.1 22.5 22.0 22.4 22.0 14.5 15.3 16.4 17.4 17.8 18.5 19.9 19.6 20.2 20.8 21.2 21.7 22.1 22.5 22.0 22.4 22.0 14.5 15.0 15.9 16.8 17.4 19.9 19.6 20.2 20.8 21.2 21.6 22.0 22.4 22.0 2.8 13.8 14.9 15.0 15.9 16.8 17.5 18.9 19.6 20.1 20.7 21.2 21.6 22.0 22.4 22.0 2.8 13.8 14.9 15.0 15.7 17.5 18.1 18.8 19.5 20.1 20.6 21.1 21.6 22.0 22.4 22.0 2.7 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 | | | | | 0 | | 0 | 6 | 27 | 9 24. | 6 23 | .6 2 | | - m | 23 | | 1 . | 1 10 | 1 6 | | 0. n. n. 36.0 21.7 20.5 21.3 21.5 21.5 21.8 22.1 22.4 22.7 23.0 23.0 0. n. n. 36.0 21.7 20.5 20.3 20.5 20.7 21.1 21.4 21.8 22.2 22.5 22.6 23.0 0. n. 19.6 18.4 18.4 18.4 19.6 20.0 20.4 20.8 21.2 21.6 22.0 22.4 22.7 23.0 10. 19.6 18.4 18.4 18.4 18.5 19.6 21.0 20.4 20.9 21.6 21.6 21.9 22.3 22.6 22.0 10.0 16.3 16.8 17.4 18.0 18.6 19.2 19.6 20.4 20.9 21.4 21.8 22.2 22.6 22.0 10.0 16.3 16.8 17.4 18.0 18.6 19.2 19.8 20.3 20.8 21.3 21.7 22.1 22.5 22.0 15.4 15.1 15.7 16.4 17.1 17.8 18.5 19.1 19.7 20.2 20.8 21.2 21.7 22.1 22.5 22.1 13.0 14.5 15.3 16.1 16.9 17.7 18.4 19.0 19.6 20.2 20.7 21.2 21.6 21.7 22.1 22.5 22.0 22.4 22.0 18.8 14.9 15.8 14.9 15.8 14.0 17.5 18.9 19.6 20.1 20.7 21.2 21.6 22.0 22.4 22.0 12.8 13.8 14.9 15.8 14.7 15.7 16.7 17.4 18.1 18.8 19.5 20.1 20.6 21.1 21.6 22.0 22.4 22.0 13.8 14.9 15.8 14.0 15.6 16.5 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.0 13.3 13.5 14.6 15.5 16.4 17.7 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.0 13.3 14.4 15.5 16.4 17.7 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.7 11.9 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.7 11.7 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.7 11.7 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.3 22.7 11.7 13.1 14.3 15.3 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.3 22.7 11.7 13.0 14.2 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 13.0 14.2 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 13.0 14.2 15.3 16.7 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 12.0 14.2 15.3 16.7 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.0 21.5 21.9 22.3 22.7 11.6 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.0 21.5 21.9 22.3 22.7 11.6 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.0 21.5 21.9 22.3 22.7 11.6 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21. | | | | | · · | . ac | 200 | 25. | 0 22 | 25. | 4 22 | 5 | • | à | 22 | 7 2 | | • • | S W | | 0. 0. 0. 20.5 19.4 19.4 19.6 20.0 20.4 20.8 21.2 21.6 22.0 22.4 22.7 23. 0. 19.6 18.4 18.4 18.7 19.2 19.6 20.1 20.6 21.0 21.5 21.9 22.3 22.6 25. 10. 19.2 17.3 17.4 17.8 18.3 18.9 19.4 20.4 20.6 20.9 21.4 21.8 22.2 22.6 22. 15.4 15.1 15.7
16.4 17.1 17.8 18.5 19.1 19.7 20.2 20.8 21.3 21.7 22.1 22.5 22.1 15.4 15.1 15.7 16.4 17.1 17.8 18.5 19.1 19.7 20.2 20.8 21.2 21.7 22.1 22.5 22.1 15.5 14.5 15.3 16.1 16.9 17.7 18.4 19.0 19.6 20.2 20.7 21.2 21.7 22.1 22.5 22.1 15.8 14.5 15.3 16.1 16.9 17.7 18.4 19.0 19.6 20.2 20.7 21.2 21.7 22.1 22.5 22.1 15.8 14.5 15.5 16.1 16.9 17.7 18.4 19.9 19.5 20.1 20.5 21.1 21.6 22.0 22.4 22.1 15.8 13.8 14.9 15.8 16.7 17.5 18.2 18.9 19.5 20.1 20.6 21.1 21.6 22.0 22.4 22.1 2.1 13.4 14.5 15.7 16.4 17.4 18.1 18.8 19.4 20.0 20.6 21.1 21.6 22.0 22.4 22.1 2.1 13.4 14.5 15.5 16.5 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.1 2.1 13.4 14.5 15.5 16.4 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.7 1.7 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 1.7 13.1 14.3 15.3 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 1.6 13.0 14.2 15.3 16.2 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 1.6 13.0 14.2 15.3 16.2 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 1.6 12.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 1.6 12.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 1.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 1.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 1.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 1.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 1.8 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 1.8 18.0 18.0 18.0 18.3 19.3 19.9 21.0 21.5 21.0 21.5 21.9 22.3 22.7 1.8 18.0 18.0 18.0 18.0 18.3 19.9 21.5 21.0 21.5 21.0 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22 | | | | | • | | 20. | 20. | 3 20 | 200 | 212 | ν.
 | • | N | 200 | 00 | • | | 23 | | 0. 0. 10. 21.0 19.4 19.5 20.0 20.4 20.8 21.2 21.6 22.0 22.4 22.7 23.0 10.2 17.3 17.4 17.4 18.7 19.2 19.6 20.1 20.6 21.0 21.5 21.9 22.3 22.6 23.0 10.4 17.3 17.4 17.4 18.7 18.9 18.9 20.4 20.9 21.3 21.7 22.1 22.5 22.6 22.0 16.3 16.3 16.4 17.4 18.0 18.6 19.2 19.8 20.3 20.8 21.3 21.7 22.1 22.5 22.1 22.5 22.1 15.4 15.1 15.7 16.4 17.1 17.8 18.5 19.1 19.7 20.2 20.8 21.2 21.7 22.1 22.5 22.1 22.5 16.3 16.3 16.9 17.7 18.4 19.0 19.6 20.2 20.7 21.2 21.7 22.1 22.5 22.1 22.8 14.1 15.0 15.9 16.8 17.6 18.3 18.9 19.6 20.1 20.7 21.2 21.6 22.0 22.4 22.1 22.8 13.6 14.9 15.8 16.7 17.5 18.2 18.9 19.5 20.1 20.6 21.1 21.6 22.0 22.4 22.1 22.5 13.6 14.9 15.6 16.5 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.6 22.0 22.4 22.1 22.3 13.5 14.4 15.5 16.5 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.4 22.1 13.3 14.4 15.4 16.5 17.3 18.1 18.8 19.4 20.0 20.5 21.0 21.5 21.0 22.6 22.4 22.1 13.3 14.4 15.4 16.5 17.3 18.1 18.8 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.7 17.8 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.7 17.1 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.7 11.7 13.1 14.3 15.3 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.4 13.5 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.4 13.0 14.2 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.4 13.0 14.2 15.3 16.3 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.4 13.0 14.2 15.3 16.3 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.4 13.0 14.2 15.3 16.3 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.4 13.0 14.2 15.3 16.3 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.4 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.4 11.5 11.5 11.5 11.5 11.5 11.5 11.5 | | C. | | | • | • | | | |)
 | 1
J | J | | •
-i | 2 | N | • | · | 23 | | 0. 19.2 17.3 17.4 17.8 18.3 19.6 20.1 20.6 21.0 21.5 21.9 22.3 22.6 23.5 20.9 16.3 16.3 16.3 16.4 17.8 18.3 18.4 19.9 19.4 19.9 20.4 20.9 21.4 21.8 22.2 22.6 22.5 22.6 22.5 15.3 16.3 16.4 17.1 17.8 18.5 19.1 19.7 20.2 20.8 21.2 21.7 22.1 22.5 22.6 22.5 13.0 16.3 16.8 17.1 17.8 18.5 19.1 19.7 20.2 20.8 21.2 21.7 22.1 22.5 22.1 22.5 22.1 23.5 14.1 15.0 15.9 16.4 17.1 18.5 19.0 19.6 20.1 20.7 21.2 21.6 22.1 22.5 22.1 22.5 13.7 14.1 15.0 15.9 16.4 17.5 18.9 19.6 20.1 20.6 21.1 21.6 22.0 22.4 22.1 22.5 13.6 14.7 15.7 16.6 17.4 18.1 18.6 19.5 20.1 20.6 21.1 21.6 22.0 22.4 22.1 2.3 13.5 14.6 15.6 16.5 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.1 2.1 13.4 14.5 15.5 16.5 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.1 2.0 13.2 14.4 15.5 16.4 17.7 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.0 21.5 22.0 22.4 22.7 13.1 14.3 15.3 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.7 17.3 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.7 17.3 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.7 17.3 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.4 22.7 17.3 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.3 18.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.3 18.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.3 18.1 18.5 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.3 18.7 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.5 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.5 17.7 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.5 17.7 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.5 17.7 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.5 17.7 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.5 17.7 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.0 21.5 21.9 22.3 22.7 17.5 17.7 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.0 21.5 21.9 22.3 22.7 17.5 17.5 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.0 21.5 21.9 22.3 22.7 17.5 17.5 17.5 18.7 19.3 19.9 20.5 21.0 21.5 21.0 21.5 21.9 22.3 22.7 22.0 22.0 22.0 22.0 22.0 22.0 22.0 | | | • | | • a | > a | 6 9 | 6 | 20. | 0 20. | 20 | 8 2 | • | 7 | 2 | 0 2 | 4 | 0 | 1 | | 20.9 16.3 16.3 16.8 17.4 180 186 19.2 19.8 20.4 20.9 21.4 21.8 22.2 22.6 22. 15.4 15.1 15.7 16.4 17.1 17.8 186 19.2 19.8 20.3 20.8 21.3 21.7 22.1 22.5 22. 13.9 14.5 15.3 16.4 17.1 17.8 18.6 19.2 19.8 20.3 20.8 21.2 21.7 22.1 22.5 22. 13.5 14.1 15.0 15.9 16.8 17.6 18.3 18.9 19.6 20.1 20.7 21.2 21.6 22.1 22.5 22. 12.8 13.8 14.9 15.8 16.7 17.5 18.2 18.9 19.6 20.1 20.7 21.2 21.6 22.0 22.4 22. 12.8 13.6 14.7 15.7 16.4 17.5 18.2 18.9 19.5 20.1 20.6 21.1 21.6 22.0 22.4 22.1 2.3 13.5 14.6 15.6 17.3 18.1 18.6 19.5 20.1 20.6 21.1 21.6 22.0 22.4 22.1 2.3 13.5 14.6 15.5 16.5 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.6 21.0 13.3 14.4 15.5 16.5 17.3 18.1 18.8 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.6 19.9 13.3 14.4 15.5 16.5 17.3 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.7 17.0 13.3 14.4 15.4 16.4 17.7 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.7 17.1 14.3 15.4 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.7 17.1 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.4 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 17.9 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 17.9 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 17.9 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 17.9 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 17.9 17.9 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.0 21.5 21.9 22.3 22.7 11.6 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.0 21.5 21.9 22.3 22.7 11.6 17.9 18.6 19.3 19.9 20.5 21.0 2 | | . 19 | 7 7 | m | | 0 1 | 0 | | 61, | 6 20. | 20 | 9 | • | 1. | 21 | 2 | 3 | 5 |) P | | 15.4 15.1 15.7 16.4 17.1 17.8 18.5 19.1 19.7 20.2 20.8 21.3 21.7 22.1 22.5 22.2 23.9 14.5 15.3 16.1 16.9 17.7 18.4 19.0 19.6 20.2 20.8 21.2 21.5 22.1 22.5 22.1 23.9 14.5 15.3 16.1 16.9 17.7 18.4 19.0 19.6 20.1 20.7 21.2 21.6 22.0 22.4 22.1 23.8 14.9 15.8 14.9 15.8 14.9 15.8 16.7 17.5 18.2 18.9 19.6 20.1 20.7 21.2 21.6 22.0 22.4 22.1 2.5 13.6 14.7 15.7 16.6 17.4 18.1 18.6 19.5 20.1 20.6 21.1 21.6 22.0 22.4 22.1 2.3 13.5 14.6 15.6 16.5 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.2 2.1 13.4 14.5 15.5 16.5 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.2 2.0 13.3 14.4 15.5 16.4 17.3 18.1 18.8 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.7 19.1 13.2 14.4 15.4 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.7 17.7 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.7 17.7 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.4 22.7 17.7 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.7 13.1 14.2 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.4 13.0 14.2 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.4 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.5 17.5 17.5 17.5 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.5 17.5 17.5 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 22.7 22.7 22.7 22.7 22.7 22.7 | | 0.9 16 | 3 | ٣. | | | 1 8 | . d | ,
, | | 20 | 4 t | • | ÷ | 21 | 8 2 | | 2 | N | | 13.9 14.5 15.3 16.1 16.9 17.7 18.4 19.0 19.6 20.2 20.7 21.2 21.6 22.1 22.5 22. 12.8 13.8 14.9 15.0 15.9 16.8 17.5 18.3 18.9 19.5 20.1 20.7 21.2 21.6 22.0 22.4 22.1 22.8 13.8 14.9 15.8 14.9 15.8 14.9 15.8 16.7 17.5 18.2 18.9 19.5 20.1 20.6 21.1 21.6 22.0 22.4 22.1 22.5 13.6 14.7 15.7 16.6 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.8 22.3 13.5 14.6 15.6 16.5 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.8 2.0 13.3 14.4 15.5 16.4 17.3 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.8 11.9 13.3 14.4 15.5 16.4 17.3 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.7 1.9 13.2 14.4 15.4 16.3 17.2 18.0 18.7 19.4 20.0 20.5
21.0 21.5 21.9 22.4 22.7 17.7 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.7 17.7 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.7 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.4 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.4 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 22.7 22.7 22.7 22.7 22.7 22.7 | 77 | 5.4 15 | 1 1 | . 7 | 9 | 7 | 17. | 69 | 19. | 1 19. | 202 | 2 C | • • | | 27 | 200 | ٠.٠ | N C | CUC | | 13.2 14.1 15.0 15.0 16.8 17.6 18.4 19.0 19.6 20.2 20.7 21.2 21.6 22.0 22.4 22.2 13.8 14.9 15.0 16.8 17.6 18.3 18.9 19.5 20.1 20.7 21.2 21.6 22.0 22.4 22.2 2.3 13.8 14.9 15.8 16.5 17.4 18.1 18.6 19.5 20.1 20.6 21.1 21.6 22.0 22.4 22.2 22.3 13.5 14.6 15.6 16.5 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.2 22.3 13.5 14.4 15.5 16.4 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.1 2.0 13.3 14.4 15.5 16.4 17.3 18.1 18.8 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.1 1.9 13.2 14.4 15.5 16.4 17.3 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.1 1.9 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.1 1.7 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.1 1.7 13.1 14.3 15.3 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 22.3 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 22.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 22.3 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 22.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22 | • | 3.9.14 | ر
ر | M | 4 | × | r | , | | | | 1 | • | • | 4 | V | 7. | • | N | | 2.8 13.8 14.9 15.8 16.7 17.5 18.2 18.9 19.6 20.1 20.7 21.2 21.6 22.0 22.4 22.2 13.6 14.7 15.7 16.6 17.4 18.1 18.6 19.5 20.1 20.6 21.1 21.6 22.0 22.4 22.2 13.5 14.6 15.6 16.5 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.2 13.5 14.6 15.5 16.5 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.1 2.1 3.3 14.4 15.5 16.4 17.3 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.1 18.3 14.4 15.5 16.4 17.3 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.1 18.3 14.4 15.5 16.4 17.3 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.1 17.3 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.1 17.3 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.4 22.1 17.3 15.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22 | · 🗝 | 3.2 14 | , 4- |) c | 0 r | | | 9 | 6 | 19. | 20 | 2 | ۲. | + | + | C | 4 | 2 | 0 | | 2.5 13.6 14.7 15.7 16.6 17.4 18.1 18.6 19.5 20.1 20.6 21.1 21.6 22.0 22.4 22.2.3 13.5 14.6 15.6 16.5 17.3 18.1 18.6 19.5 20.1 20.6 21.1 21.6 22.0 22.4 22.2.3 13.5 14.6 15.6 16.5 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.2.0 13.3 14.4 15.5 16.4 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.1 19.1 14.5 15.5 16.4 17.3 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.1 19.1 14.3 15.4 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.1 17.1 14.3 15.4 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.4 22.1 17.1 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1 17.5 13.0 14.2 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.5 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.5 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.5 17.5 17.5 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.5 17.5 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.5 17.5 17.5 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.5 17.5 17.5 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.5 17.5 17.5 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.5 17.5 17.5 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.5 17.5 17.5 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 17.5 17.5 17.5 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 22.7 22.7 22.7 22.7 22.7 22.7 | | 2.8 13 | 4 00 | 0 | · u | | | 13 | 18. | 19. | 20 | ~ 1 | .7 | + | | N | | | | | 2.3 13.5 14.6 15.6 16.5 17.3 18.1 18.8 19.5 20.1 20.6 21.1 21.6 22.0 22.4 22.2 22.1 13.4 14.5 15.5 16.5 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.2 22.0 13.3 14.4 15.5 16.4 17.3 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.1 19.9 13.2 14.4 15.5 16.4 17.3 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.1 19.9 13.2 14.4 15.4 16.4 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.1 17.3 15.4 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.1 17.7 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 15.4 15.3 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 16.5 13.0 14.2 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 12.9 12.5 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 12.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 12.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 12.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.7 11.6 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 | - | 2.5 13 | 4 1 4 | . ~ | , 10 | • | | E 0 | æ ; | 19. | 20 | 1 2 | 9. | 1. | + | N | 0 | 2 | · · | | 2.1 13.4 14.5 15.5 16.5 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.0 13.3 14.4 15.5 16.4 17.3 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.1 19. 13.2 14.4 15.5 16.4 17.3 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.1 18.1 14.3 15.4 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.1 17.1 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.4 22.1 17.1 13.1 14.3 15.3 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 17.1 17.1 17.1 17.1 18.3 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22 | - | 2.3 13 | 44 | 9 | 3 | 9 | | 0 00 | . 4 | 19. | C (| ~ ; | 9. | ÷. | + | N | 0. | 2 | è | | 2.0 13.4 14.5 15.5 16.5 17.3 18.1 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22. 2.0 13.3 14.4 15.5 16.4 17.3 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22. 1.9 13.2 14.4 15.4 16.4 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22. 1.8 13.1 14.5 15.4 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22. 1.7 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.4 1.7 13.1 14.3 15.3 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1 15.1 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1 1.6 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1 1.6 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1 1.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1 1.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22 | • | • | | | | | | • | • | • | 0 2 | ~ | • | - | | 2 | 0. | 2 | ċ | | 2.0 13.3 14.4 15.5 16.4 17.3 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.1 1.9 13.2 14.4 15.4 16.4 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.1 14.3 15.4 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.1 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.1 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.4 22.1 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.4 22.1 14.3 15.3 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1 15.1 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1 16.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22 | - | 2.1 13. | 4 14 | 5 | 5.5 | ø. | 7 | 18. | Ø. | 0 | 0 | ر
د | • | , | | | | | | | 1.9 13.2 14.4 15.4 16.4 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22.1.8 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 21.9 22.4 22.1.7 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.4 22.1.7 13.1 14.3 15.3 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.4 22.1.7 13.0 14.2 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1.9 13.0 14.2 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1.9 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1.9 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 16.5 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22 | - | 2.0 13. | 3 14 | 4 | 5.5 | 9 | 7 | 4- | | 7 | •
• | v (| 0 1 | - | . | 22 | 0. | Ç, | Š | | 1.8 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.4 20.0 20.5 21.0 21.5 22.0 22.4 22. 1.7 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.4 22. 1.7 13.1 14.3 15.3 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22. 1.6 13.0 14.2 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22. 1.6 13.0 14.2 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9
22.3 22. 1.6 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22. 1.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22. | - | 1.9 13. | 2 14 | 4 | 5.4 | 9 | 1 | 0 a | 0 0 | | | N (| ů. | + | + | 22 | 0. | 2 | 2 | | 1.7 13.1 14.3 15.4 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.4 22. 1.7 13.1 14.3 15.3 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1.6 13.0 14.2 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1.6 13.0 14.2 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1.4 13.0 14.2 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1.6 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1.6 17.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22 | 1 | 1.9 13. | 1 14 | * | 4. | | | • | 01 | 19. | 20. | 0 | i. | • | Η. | 22 | 0 | 2 | ~ | | 1.7 13.1 14.3 15.3 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.4 22. 15.1 14.2 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22. 15.5 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22. 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22. 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22. 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22. 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22. 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22. | - | 1.7 13. | 1 14 | . M) | 4 · 4 | • | | C . | 100 | 19. | 20. | 0 | 5 | 7 | + | 2 | 0. | ~ | | | 1.7 13.1 14.3 15.3 16.3 17.2 18.0 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1.6 13.0 14.2 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1.6 13.0 14.2 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1.4 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 22.3 16.5 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22 | | | | 1 | • | • | • | 10. | E | 19. | 19. | 8 | 5. | ,
+ | - | 21 | 6 | | | | 1.6 13.0 14.2 15.3 16.3 17.1 17.9 18.7 19.9 20.5 21.0 21.5 21.9 22.3 22. 1.5 13.0 14.2 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22. 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22. 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22. 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22. 17.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22. | | 1.7 13. | 14 | 3 | M | , C | _ | a | | , | | | | | | ! | | , | 1 | | 1.6 13.0 14.2 15.3 16.3 17.1 17.9 18.7 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 10.4 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 10.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 22.3 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22 | | 1.6 13. | 4 | < | <u>بر</u> |) H | | c r | 101 | 19. | 19. | 20 | 5 | . | + | 21 | 0 | 2 | C | | 1.6 13.0 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.1.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22.3 | | 1.6 13. | 4 | 1 | M (| . W | | | 2 | 19. | 19. | 20 | 2 | | • | 21 | 0 | 1 | , 0 | | 1.6 12.9 14.2 15.3 16.2 17.1 17.9 18.6 19.3 19.9 20.5 21.0 21.5 21.9 22.3 22. | +-1 | 1.4 13. | 4 | · ~ |) P | 2 0 | | | x 0 (| 6 | 6 | 20 | 5 | · | *** | 21 | 0 | 2 | , , | | 10.0 17.0 17.0 17.5 17.0 21.0 21.5 21.9 22.3 22. | 11 | 1.6 12. | 4 | 2 | M | | | | 0 | 61. | 13 | 20 | 5 | + | •
إسي | 21 | 0 | 8 | N | | | | | | i | | | • | • | - 07 | 14. | ,
,
, | 2 | S. | e
Jud | | 21 | 0 | 2 | 2 | 11.5 12.9 14.2 15.2 16.2 17.1 17.9 18.6 19.3 19.9 26.5 21.0 21.5 21.9 22.3 22.7 4.0 # MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #1.77 | K (| | | | | | | | | | | | | | | | , | - | |--------|--------|------|------|------|----------|------|------|---------|----------------------------|----------|------------|------|----------|--------------|-----|------|---| | K13 | 0.5 | 9.0 | | , GC | 0.9 | | 1.1 | 1.2 | \$ 000
\$ 000
\$ 000 | 1.4 | 6.4 | 1.6 | 1.7 | . 40
1 40 | 1 | 6 | 0 | | }
• | 1 • | 0 | • | | • | 0 | | . 0 | ١. | | | l ′ | 0 | 0 | 0 | . 0 | • | | | | 0 | 0 | | | | | • | | • | | | 0 | • | M | מי | • | | | | | | | | | | | | | 0 | | | v-(| 3 | N | | | | | | | | | | | • | 0 | 0 | 9 | | • | 8 | 28 | ~ | • | | | | | | | | | 0 | 0 | 7 | 4 | 0 | | ~ | 7 | 27 | 2 | • | | | | | | 0. | 0 | | | | • | | • | 26.1 | 26.7 | 26.8 | 27. | 0 27 | • | | | .0 | 0. | 0. | | 0 | 0 | N | 7. | 26.1 | | | ic. | 9 | 9 | 26 | ~ | • | | 0 | | | | | • | - | 5 | r. | + | 4 | 10 | 10 | K | 9 | 26 | ~ | | | | | | | | œ | 4 | 3 | ,
(4 | 4 | * | ** | 5 | 5 | R. | 26 | ~ | • | | | 0 | | | 6 | 2 | ċ | 2 | ۲٠) | 3 | 3 | 4 | 4 | 5 | 5 | 2.0 | ~ | • | | | | | 4 | 01 | | - | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 25 | ~ | • | | | •
0 | · c | 22.2 | 20.9 | 20.9 | - | 21.8 | 22.4 | 22.9 | • | 24.0 | 24.5 | 25.0 | 25.4 | N | 8 26 | • | | | 0 | Ċ. | • | ď | 0 | | - | 8 | 2 | ю. | M) | 4 | * | 5 | 23 | ~ | • | | | + | 0 | 80 | 6 | 6 | 0 | | 2 | 2 | ·) | PC | 4 | 4 | 5 | 23 | ~ | • | | | \$ | | 8 | 80 | 6 | 0 | + | + | S | M | 3 | 4 | 4 | 5 | 25 | ~ | • | | _ | 9 | ė | | 18.5 | • | 0 | + | + | 2 | 3 | 8 | 4 | 4 | ĸ. | 25 | N | • | | | 15.5 | 16.3 | | • | 19.5 | 0 | 20.9 | 21.7 | 22.4 | 23.0 | 23.6 | 24.2 | 24.7 | 25.2 | 25. | 6 26 | 0 | | _ | 4 | ÷ | ~ | 80 | 0 | • | 0 | +1 | ~ | 2 | • | 4 | 4 | Š | 87 | | • | | | | 15.7 | 16.9 | 16.0 | 19.0 | • | | + | ò | | 3 | 4 | 4 | 5 | 5 | ~ | • | | | 4. | r. | . 9 | | 8 | • | | • | 2 | 2 | 2 | 4 | 4 | 5 | 1 | ~ | • | | | 4 | r. | 9 | 7. | 8 | 6 | 0 | • | i | 2 | | • | * | 'n | 10 | N | • | | | | r. | • | • | © | 19.7 | 0 | 21.4 | 22.2 | 2 | | 24.0 | 24.6 | 25.1 | 25. | 5 26 | • | | | ~~, | r. | 16.5 | 7. | 8 | • | 0 | | ? | · CU | 5 | 4 | - | 5 | | (1) | • | | 9 | 3 | 5 | ·C | 7 | 80 | • | 0 | 1. | 8 | 2 | m | 4 | 4 | 5 | 5 | 2 | • | | | 13.5 | 15.0 | | 17.6 | 18.7 | 6 | 20.5 | 21.3 | 22.1 | 22.8 | 23.4 | 24.0 | | 25.0 | 25. | 5 26 | 0 | YARN BULK DENSITY = 2.00 | | .6 1.7 1.8 1.9 2. | 0. 0. 0. 0. | 0000
0000
00000 | 27.6 27.8 28.1 28.3 28.6
27.1 27.4 27.7 28.1 28.4
26.7 27.1 27.5 27.9 28.2
26.4 26.9 27.3 27.7 28.1
26.2 26.7 27.2 27.6 28.0 | 26.1 26.6 27.1 27.5 27.9
26.0 26.5 27.0 27.4 27.9
25.9 26.4 26.9 27.4 27.8
25.8 26.4 26.9 27.3 27.8
25.8 26.3 26.8 27.3 27.7 | 5.7 26.3 26.8 27.3 27.
5.7 26.2 26.7 27.2 27.
5.6 26.2 26.7 27.2 27.
5.6 26.2 26.7 27.2 27.
5.6 26.2 26.7 27.2 27. | 25.6 26.1 26.7 27.2 27.6
25.5 26.1 26.6 27.1 27.6
25.5 26.1 26.6 27.1 27.6 | |-----------------------|-------------------|-------------|--|--|--|--|--| | ;
;
;
;
; | .4 1.5 | | | 7.6 27.5 2
6.6 26.8 2
6.0 26.3 2
5.6 26.0 2
5.3 25.8 2 | 5.1 25.6 2
4.9 25.4 2
4.6 25.3 2
4.6 25.2 2 | 4.5 25.1 2
4.4 25.1 2
4.4 25.0 2
4.4 25.0 2 | 4.3 25.0 2
4.3 24.9 2
4.2 24.9 2 | | T.A. | 2 1.3 | | 0.
0.
63.0 3 | 8 28.2 2 7 25.4 2 8 25.7 2 3 2 4.8 2 5 2 2 3 2 4.8 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 | 2 24.1
2 24.1
2 24.1
2 23.9
2 23.9 | 11 23 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 8 23.6 2
7 23.5 2 | | 80 | 1.1 | | 0.00.00.00.00.00.00.00.00.00.00.00.00.0 | 37.6 29.
28.4 27.
25.9 25.
24.7 24.
23.9 24. | 23.4 23.
23.1 23.
22.8 23.
22.6 23. | 22.3 23.
22.2 23.
22.1 22.
22.1 22. | 22.0 22.
21.9 22.
21.9 22. | | • | .9 1.0 | .00 | | 0. 35.9
6.6 27.3
6.4 24.9
3.9 23.7 | 2.7 22.9
1.9 22.4
1.4 22.1
1.1 21.8
0.8 21.6 | 0.6 21.5
0.4 21.3
0.3 21.2
0.2 21.2 | 0.0 21.0
0.0 21.0
9.9 21.0 | | . ! | • | .00 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3 23.0 2
2 21.6 2
6 20.8 2
7 20.3 2
1 19.9 2 | 7 19.6 2
1 19.4 2
1 19.3 2
0 19.1 2
8 19.0 2 | 7 18.9 2
6 18.9 2
5 18.8 1 | | | 0 9 | 0 0 0 | | | 10. 26.
37.5 22.
21.9 20.
19.6 19.
18.5 19. | 17.8 18.
17.3 18.
17.0 18.
16.7 18. | 16.4 17.
16.2 17.
16.1 17. | | | 0.5 | | 00000 | 00000 | 0.
0.
23.9
18.9 | 17.2
16.4
15.8
15.4 | 14.0
14.7
14.6 | | 2 N E E E | ACT0 | | 11111
100
100
100
100
100
100
100
100
1 | 101
2 2 2 2 2
2 4 2 5 4 | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 35
37 | ### YARN BULK DENSITY = 2.36 | 8
P
B | | | | | | | | BET | | , | | 1 | 1 | | 1 | | |----------------|------|----------|------|--------|--------------|----------|-------------|-------------|-------------|-------------|-------------|--------------|----------|----------|-------------|----------| | FACTOR
[K1] | 0.5 | 9.0 | 0.7 | 0.8 | 0.0 | 1.0 | - | 1.2 | 1 PO 1 | 4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 | | ! | 1 | t | i | 1 | 1
1 | 1 | 1
1
1 | !
!
! | 1
1
1 | !
!
! | •
•
• | t
;
; | |)
 |)
)
) | 1 | | | 0 | | | 0 | | | | | | | | | | | 6 | | | | U | | | | | | | | | | | | 0 | | 4 | Ġ | | | = | <u>.</u> | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0. | 45.9 | 38.6 | 36.2 | , | | | 0 | | | | | | | | | • | | | Š | 4 | . | m | | 19 | 0 | | c | ċ | | | ċ | 0 | | Ŋ | • | m | 8 | 'n | 2 | ċ | | | c | | | - | | | | | | 4 | ~ | + | + | + | - | ++ | | | | | | | | | | | 32.6 | 31.2 | 30.7 | 30.6 | 30.6 | 30.8 | 31.1 | 31.3 | | ٠, |
| | | | | 0 | \$ | 7 | • | 6 | 6 | 6 | 0 | | • | 1 | | , M | | | | | 0 | 5 | | 6 | 80 | 8 | • | 6 | • | | • | • | | | 0 | | 0 | 0 | 37.2 | 29.3 | 28.0 | | - | 8 | • | 6 | • | 6 | 0 | • | | | | | (| , | | , | | • | • | | a | α | 0 | 0 | <u> </u> | _ | | | | | | •
H | | • 1 | •
D • | • | • | • | • | • a | | | | | | | • 0 | | 6 | 28.5 | 26.1 | 25.8 | 920 | 26.4 | 200 | C. /C | 200 | 70.0 | 2 4 6 | 2000 | | | | | | | | 2 | 4 | ٠. | , ı | • ı | ė, | • | : | • | • | • | > C | | | | | • | 4. | M | 4 | 4. | Ċ | ٠ | • | : , | : , | • | | | • (| • | | | | 25.2 | ٥. | ٠. | m | 4 | 4 | 5 | • | • | | œ | ò | | • | • | | | - a | ć | • | | М. | ь. | 4 | 5 | • | 9 | 7 | 80 | 8 | 6 | 0 | | | | | | , - | , - | 2 | 8 | 4 | Š | • | • | • | 28.0 | 28.6 | 29.1 | 29.7 | 30.1 | | | 0 | 0 | | | | 2 | 4 | ď. | 5 | • | 7 | & | 80 | 6 | • | | | | · a | | | | ί . | , m | 4 | 'n | 5 | • | 7 | 7. | œ | <u>.</u> | • | | |) W | 17.6 | 18.7 | 19.9 | 21.0 | 22.1 | 23.2 | 24.1 | 25.0 | 25.8 | 26.5 | 27.2 | 7 | 8 | . | • | 0 | | | | | | + | | | | | | | 1 | r | | c | C | | | | 7 | œ | • | • | ٠
د | m | 4 | 4 | | 6 | | :, | 0 | | • | | | | • | æ | · | ċ | + | M | 4 | 4 | · | 6 | | :, | ,
0 | • | •
• | | | 37 | 16.4 | 17.9 | 19.4 | 20.7 | 21.8 | 22.9 | 23.9 | 24.8 | 25.6 | 26.4 | 27.1 | 27.0 | *** | 29.0 | 200 | | | | ŝ | 7 | • | • | . | ÷ | က
က ၊ | 4 | ٠
د | • · | | :, | | | . 0 | · - | | | ċ | 7 | 6 | • | + | 2 | 8 | 4 | ζ. | . | : | : | • | | • | • | YARN BULK DENSITY =2.50 | RP
VER | | | | | | | | BET | 1 | !
! | i | 1 | 1 | 1 | 1 | , | | |----------------|----------|------|------|----------|----------|----------|--------|-------------|-------------|--------------|-------------|----------|----------|----------|------------|------|-----| | FACTOR
[K1] | 0.5 | 9.0 | | 0.8 | | 1.0 | | 1.2 | 1.3 | + | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 |) (| | 1 | ŧ | | | t | 1 | 1 | 1
1 | 1
1
1 | !
!
! | |)
!
! |]
; |)
 |)
) |)

 |
 | | | | | | | 0 | | | | | | | | 0. | 0 | 0 | • | 9 | | | | | | | | | | | | | | | | | 0 | 6 | 4 | | | | | | | | | | | | | | © | | | | • | 7 | | | | | | | 0 | | | | | 0. | 0 | 6 | | 40.0 | 37.1 | 35.8 | • | | | 19 | 0 | 0 | 0 | 0 | 0. | • | 0 | 0 | | | P | | v. | ₹. | 4 | m | | | | | | | ′ (| | | | | | 0 | × | ~ | ~ | 0 | C | | | | | | | | •
• | | | •
• | • | > v | 3 | 200 | |) E | , , | 40.4 | | | | | | | | 6 | | | • | • | ċ | •
• | , | | | | i, | i | | | | | | | • | | | • | S | ? | . | | ; | | | ; | · | | | | | | | 0 | | | 4. | ÷ | ö | 0 | Ö | | | | H | ÷ | | | | 0 | · C | 0 | - | 0 | 33.6 | 30.2 | 29.4 | | 6 | 6 | | • | . | - | ; | 4 | • | 80 | 80 | φ | æ | 29.3 | 29.7 | 30.2 | 30.6 | 31.1 | 31.5 | | | | | | | 7. | 8 | 7 | 7 | 7 | ж | 8 | ò | · | | 0 | 6 | ÷ | | | | | | | 60 | • | • | • | 7 | | φ. | æ | ٠. | • | | • | ÷. | | | | | | 6 | 5 | 3 | 5 | Ġ | 9 | | 8 | 80 | ٠
• | • | | ö | ÷ | | | 29 | 0 | 39.8 | 25.0 | 24.3 | 24.5 | 25.1 | 25.8 | 26.5 | 27.2 | • | 8 | • | 6 | | 0 | ₩. | | | | | | | | ٠, | | , | , | • | r | ٠, | | | • | • | | | | | <u>.</u> | 5 | 3 | m | 4 | • | 5 | ė | : | : | . | · (| _(| • | • | ; , | | | | ₹ | 2 | 8 | ٥. | m | ₹. | ٠. | ÷ | • | | • | . | • | | • | ÷, | | | | 2 | | + | ò | 3 | 4 | 5 | • | • | | œ | Ø | Ġ | 30.0 | 30.5 | | | | | 0 | _ | + | 2 | m | 4 | 3 | 5 | • | 7 | € | 8 | . | 6 | 0 | ÷ | | |) T | 18.8 | 19.6 | 20.7 | 21.8 | 22.9 | 23.9 | 24.9 | 25.8 | 26.6 | 27.4 | 28.1 | 28.7 | | • | • | ÷ | | | | • | | • | • | c | - | - | u | | _ | α | œ | 0 | | Ġ | 0 | | | | ò | • | • | - | i | •
• | • | •
• | • | | • | | | | | | | | | | 8 | • | + | <u>٠</u> | m | 4 | 3 | ċ | • | 0 | | | • | • | • | | | | 7 | 8 | - | | 2 | 5 | 4 | 5 | ÷ | 7 | © | œ | • | • | 6 | • | | | | · • | α | 0 | | 2 | m | 4 | 5 | \$ | 7 | 1 | 28.6 | 29.5 | 29.8 | 30.4 | 30.9 | | |
0 O
M | 16.7 | 18.3 | 19.8 | 21.2 | 22.4 | 23.5 | 24.6 | 25.5 | 26.4 | 27.2 | • | 80 | • | 6 | 6 | | | | | • | • | • | 1 | , | • | | | | | | | | | | | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =2.75 | | | 1 | 1 | | | | | 96 | | | 1 | | | | | | |-------|---------|--------|------|----------|------|------|------|--------|------|------|------|--------|------|----------|------|----------| | X | | 9 | 6 | 0.8 | 0.0 | 1,0 | | | 1.3 | ÷ | | 7.6 | 1.7 | 80 ; | 4.9 | 2.0 | | |) | !
! | |
 | • | | 1 | ł |) |) | | i
I | | | | | | | | ,
c | | O | | | | | | | | | | | | | | | | | | <u>.</u> | | | | | | | | | | | • | • | | | | | | 0 | | | | | | | | | • | | 4 | 4 | | | | | | | | | | | 0 | 0 | | 0 | 5. | 5 | 40.7 | 30.9 | | 40 | 0 | 0 | 0. | · | 0. | | 0 | • | | °. | 0 | 46.9 | 41.1 | | 7. | 9 | | | Ü | | | ċ | | | | | | • | 4 | 20 | • | | R. | r. | | | | | | | . 0 | | | | | 0 | • | 3 | 4 | 4 | 4 | 4 | | | | | | | | | | 0 | 60 | S | 4 | 2 | 3 | 2 | 19 | * | | | | | | 0 | . 0 | | | ~ | 4 | 33.1 | | 2 | 32.9 | 33.1 | 33.4 | 33.7 | | 4 | 0 | 0. | 0 | c | 0 | 0 | 36.7 | 33.1 | 32.0 | 1. | | 32.1 | 6 | 5 | 'n | M | | P. C. | | | | | | • | 2 | • | 0 | ** | | • | 2 | ~ | ~ | 3 | | | | | | | 60 | • | | • | 0 | 0 | 0 | + | * | 2 | 2 | W | | | | | | · m | 30.9 | | 28.9 | 29.1 | 29.5 | 30.0 | 30.5 | 31.0 | 31.5 | 32.0 | 32.5 | 32.9 | | | | | | | 80 | 7 | | ٠
ص | 6 | œ. | 0 | 0 | ** | ** | 8 | 0 | | 56 | 0 | о
С | 34.2 | | • | | 7. | 80 | 80 | 0 | 0 | 0 | ** | + | ò | N) | | | | | 7 | Š | • | • | 7. | 7 | 80 | 0 | 6 | 0 | - | +4 | S | · | | | | 0 | S | 4 | _ | • | • | L. | | 29.1 | 29.8 | 30.4 | • | 31.6 | 32.1 | 32.6 | | | | 4 | 3 | 4 | 5 | u) | 9 | 7. | 8 | c, | 0 | Ú. | 0 | + | 0 | ò | | | 9 | S | CU | 2 | 4 | 'n | 40 | ~ | 60 | 8 | | • | 0 | + | 2 | 2 | | 40 | 25.8 | 21.6 | 22.4 | 23.4 | | 25.4 | 26.3 | 27.2 | 28.0 | • | 0 | ເ | 0 | · | ċ | C | | _ | : | 0 | 2 | 2 | 4 | 5 | • | 1 | 7 | 00 | 6 | 0 | 0 | + | 2 | 2 | | _ | 6 | 0 | • | 2 | 4 | Γ. | | ۲. | 7 | 8 | 6 | 0 | 0 | - | • | 2 | | 47 | 18.8 | 20.1 | 21.4 | 22.7 | 23.5 | 25.0 | 26.0 | 26.9 | 27.8 | 28.6 | 29.4 | 30.1 | 30.7 | 31.3 | 31.9 | 32.4 | | _ | ,
00 | 6 | + | 2 | ٠, | + | 5 | • | 1. | œ | • | 0 | Ö | <u>.</u> | -4 | ò | | - | φ
Ω | 6 | بہ | 5 | m | 4 | 3 | • | 7 | 8 | 0 | 0 | 0 | - | • | 0 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #2,95 | | 1 | 1 |

 | ! | 1 | 1 | 1 | 89 | • | 1 | 1 | 1 | | !
! | 1 | t
t
t
t | |--|----------|--------------|-----------|--------|-------|--------|----------|-------|---------|--------------------|----------|------|--------------|---------------------|-----------|------------------| | K1 C C C C C C C C C | 0.5 | 0.6 | 0.7 | 80 | 0 | D . | | 1.2 | ₩ ; | 4 | £ . | 1.6 | 1.7 | +1 1
+1 1
0 1 | 6 | 2.0 | | 6 ()
6 () |
 | : (| | •
• | • | 1 | | | | | • | | | • | c | | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | 0 | | | | | | | | | | | | | | | | • | • | 8 | | | | | | | | | | | | | | | 0 | 4 | 7 | 3 | | 4 | °, | 0 | 0 | 0. | 0. | 0 | 0 | 0 | ,
6 | | . 0 | | 51.5 | 43.2 | 40.5 | 39.3 | | | | | | | | | | | | C | , | r. | | a C | , | 7 | | | | | | | | | | | | ,
, | | | | , | | | | | | | | | | | | | : | , | · · | 0 . | • | 0 1 | | D L | | | | | | | | | | 0 | 1. | 0 | | • | 3 | • | 0 | | | | | | | | | с
С | 0 | 55.0 | 38.8 | 36.0 | 35.0 | 34.7 | 34.6 | 34.7 | 35.0 | 35.2 | | | 0 | ٠, | Ċ. | 0. | 0 | | 9.09 | 7. | 4 | 4 | % | м. | رس | 4 | + | 4 | | 2.5 | . | c. | | | | | 7 | P) | 5 | 2 | | 3 | ** | M | 4 | * | | | | | | | | | P | | | 0 | | C | | ~ | - | 4 | | | | | | | • ox | . (| • | |
• + |
J . | | | | , M | | 4 | | | | : c | | • • | 3.1.0 | 30.1 | 20.00 | 1 0 M | 30.5 | 31.0 | 35.6 | 32.1 | 30 | 33.1 | 33.6 | 34.4 | | | | | | | 0 | 90 | 0 | 0 | | 0 | | • | | 1 | 147 | 4 | | | | | | ; | • | • | | • | • | • | • | ŧ | 1 | • |) | | | | .0 | | S | æ | 7. | 00 | 60 | 6 | 6 | 0 | -4 | + | 8 | 8 | 10 | 8 | | | | \mathbf{C} | 80 | 9 | | 7. | 60 | 8 | 6 | 0 | # | -4 | N | ò | P | 3 | | | | - | \$ | 5 | . 9 | 7 | 7 | 8 | 6 | 0 | | - | 2 | 8 | 5 | 3 | | | | 25.9 | 24.8 | 25.2 | 25.9 | 26.8 | 27.6 | 28.5 | 29.3 | 30.0 | 30.8 | 31.4 | 32.1 | 32.7 | 33.2 | 33.8 | | | 29.1 | • | • | • | • | • | 7 | 60 | 6 | 9. | 6 | + | 5 | 3 | 3 | 3 | | | ₩. | ~ | (A) | 4 | 5. | • | | 00 | • | Ch. | • | • | ~ | 0 | 2 | ۲٦ | | | ~ | | C | 4 | ď | 4 | 1 | α | o | 0 | • | | | C | - | ~ | | 0 M | 20.4 | 21.2 | 20.00 | 23.7 | 24.9 | 26.0 | 27.0 | 28.0 | 28.3 | 29.7 | 30.5 | 31.2 | 31.9 | 32.5 | 33.1 | 33.6 | | _ | 0 | | 2 | | 4 | 5 | • | | 60 | 6 | 0 | · | - | 0 | 2 | 3 | | 39 | • | 0 | 5 | 3 | 4 | iv. | ċ | 7. | 8 | 6 |
C) | ** | - | 8 | 3 | 3 | YARN BULK DENSITY =3.25 | | | | | | | | | 96 | | | | | | | | 1 | 1 | |-----|----------|--------|----------|------|------|------|-------|------|------|-------|-------------|--------|------------|------|----------|-----|------------| | * _ | 0,5 | 9.0 | 0.7 | 0 | 0.0 | 1.0 | 1 + | 1,2 | H . | | | 1.6 | 1.7 | 60 | 44
0, | 8 | | | | |)
) | i
I | 1 | 1 | 1 |)
 | 1 | • |)
 | 6
1
2 | l
I |)

 | | • | |) | | 5 | | | | | | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | | | 0 | | | 18 | | | | | | | | 0 | | | | | | 0 | | 55. | 90 | | 18 | 0 | 0 | 0 | 0 | . 0 | | 0. | 0 | .0 | . 0 | 0 | .0 | 0. | 65.3 | 48.6 | 4 | S | | 50 | | | ů | c: | | | | | | | | • | 2 | S | ~ | 4-4 | | | 21 | | | | | | | | | | | 0 | ~ | 2 | 0 | • | 0 | · PO | | 25 | | | | | | | | | 0 | 0 | 4 | 0 | 0 | 80 | C | 0 | • | | 23 | | | | | | | | | 68.6 | 42.9 | • | 8 | 37.9 | 7 | 37.4 | | ın | | 2.4 | | | 0. | | 0 | 0. | 0. | 74.4 | + | • | ~ | | 9 | | • | ~ | 0 | | 52 | 0 | C | | 0 | | | 0
 0 | 7. | • | W) | r. | 10 | • | • | | V O | | 26 | | | | | | • | 0 | 9 | ľ. | 4 | 4 | * | 5 | 5 | • | 9 | œ | | 27 | | | 0 | 0 | 0 | 41.8 | 35.4 | 34.0 | 33.7 | 33.8 | 34.1 | 34.4 | 34.8 | 35.3 | 35.7 | 36. | O. | | 28 | | | | | 00 | م | 3 | 5 | 3 | 3 | ~ | 4 | 4 | R. | 5 | • | _ | | 59 | | 0 | | | | 8 | + | - | 8 | C | M) | 3 | 4 | | 5 | S | ~ | | 30 | | | | 7 | + | 0 | | + | - | 2 | m | 3 | 4 | 4 | 8 | 5 | ~ | | | | | + | -4 | 0 | 6 | 0 | 0 | - | 2 | å | 3 | 4 | 4 | ₹. | r. | 5 | | | | | 35.6 | 0 | 80 | 9 | 29.8 | 30.5 | 31.2 | 31.9 | 32.6 | 33.3 | 33.9 | 34.5 | 35.0 | • | • | | | | - | 8 | 7. | 80 | 8 | • | 0 | + | + | 0 | 3 | 3 | 4 | 5 | S. | ۱۵ | | 40 | 0 | 29.7 | • | • | 27.5 | 28.3 | • | 0 | 0 | - | ~ | 3 | 3 | 4 | * | ŝ | 10 | | _ | | • | 5 | • | 7 | œ | 00 | 6 | 0 | + | ~ | وتعنا | 3 | 4 | 4 | 5 | • | | - | 1 | 4 | च | r. | 9 | 7 | 90 | 0 | 0 | + | 2 | 2 | 5 | 4 | 4 | 5 | • | | 37 | 24.9 | 23.5 | 24.3 | 25.4 | 26.5 | 27.6 | 28.6 | 29.6 | 30.5 | 31,3 | 32.1 | 32.8 | 33.5 | 34.2 | 34.8 | 35. | e po | | | ~ | 5 | m | 5 | 9 | 7 | 8 | 0, | 0 | + | ò | 5 | <u>ب</u> | 4 | 4 | ŝ | N) | | 35 | . | ? | 3 | 4 | 9 | 7. | 60 | 0 | 0 | *4 | 2 | 2 | 3 | 4 | * | r) | m | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #3.54 WARP | 1 | | CA. | | | 6 W C | | | 00000 | တ ပေး ထ | |------------|------------------------|-------|------|----------|----------------------|-------|---|--|---------------------------| | • | NI | | 50 | 4 8 8 9 | 8 8 8 8
8 9 9 9 | ~ ~ | 8837
847 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 366.
366. | | 1 | 4.9 | 94.0 | D P) | 44.44.4 | 4.00 | 7. | 00000000000000000000000000000000000000 | 888888
8888
8888
8888
8888
8888
8888
8888 | 36.3 | | | - | 00 | 0.0 | 39.0 | 38.2
37.6
37.2 | 9 9 | 888888
88888
8888
8888
8888
8888
8888
8888 | 80000000000000000000000000000000000000 | 33.0 | | 1 | | | 50 | 44.00 | 33.1 | 9 9 | 88888888888888888888888888888888888888 | 88888
888
88
88
88
88
88
88
88
88
88
88 | 6.48
6.49 | | 1 | 9 | | | 85. | 38.2 | 6.0 | まままま
5.57.4.4.4
5.40.60.6 | 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 3.48.2 | | 1 | 1.5 | | 00 | 46.5 | 38.7 | 50.00 | 88888
44448
868949 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 888
888
448 | | 1 | ∜
← | | | | 40.0
37.7 | r. 4 | 888888
888888
88888 | 88888
8888
8888
8888 | 32.6 | | 1 | 4.3 | 0.0 | 0 | 0.0.72.3 | 39.9 | R 4 | 800000
80000
800000
80000 | 3322
332.2
31.8
61.8 | 31.7
31.6
31.6 | | BEY | + | | | | 99.0
3.0
89.2 | וני ב | 333.33 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 30.6 | | 1 | → | 0.0 | | 000 | 000 | | 33.53 | 30.5
30.3
30.1
29.9 | 29.7
29.6
29.5 | | i | 1.0 | 00 | | 000 | 000 | | 34.3
32.6
31.5
30.7 | 20.7
20.1
20.1
20.0
20.0
20.0 | 0 0 0 0
0 0 0
0 4 € | | | 0 0 | 00 | | 000 |
 | | 38.3
31.7
20.4
20.4 | 28.5
28.5
27.8
27.6 | 27.2 | | 1 | 0.8 | | | | | | 34.2
34.2
31.1
29.5 | 200
200
400
400
400
400
400
400
400
400 | 25.0 | | (| 0.7 | 00 | | | | | 0.
0.
37.5
31.2 | 228
228
238
25
25
25
25 | 000
444
000 | | 1

 | 0 | | | | | | | 25 24 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 23.6 | | 1 | | | |
၁၀๓ | | | | 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 22.8
21.9
21.3 | | V E R | ≪ | 1 8 6 | | | 886 | | | 6 40 K 60 G
6 K 60 K 60 K | 4 4 4
0 4 () | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #3.75 | | | | | | | | | BET | 1 | 1 | 1 | 1 | 1 | | | 1 | |-------------------|--------|------|------|--------|-------------|------|------|----------|----------|--------------|------|----------------|------|---------|-----------|------| | A K | 0.7 | 9.0 | 0.7 | 0 . 0 | | 1.0 | | 10 | 1 1 | 1 1 1 | 1.5 | 1.6 | 1.7 | 41 | 4.9 | 2.0 | | 1
1 00
1 +1 | | 0 . | 0 | 9 . | 0. | t • | | . 0 | | 0 | 0 | 0 | 9 1 | 0 | 0 | C:1 | | | | | | | | | | | | | | • | | | | • | | | | | | | | | 0 | | | | | • | 0. | 0 | • | 0 | | | | | | • | | | | | | | | 0 | 4 | ·
N | | Š | | | | | | | | 0 | | | | | 0 | 5 | 6 | 5 | 2 | 3 | | | | | 0 | ٠
٥ | | 0 | 0 | <u>.</u> | | 0 | 59.1 | 47.1 | 44.0 | 45.6 | 42.0 | 41.7 | | | 0 | 0. | | 0 | 0 | | | | | | 5 | ? | - | `.
O | 0 | 0 | | | | | | | | | | • | R. | 4 | - | 0 | 0 | • | • | 0 | | | | | | 0 | 0 | | 0 | 58.4 | 43.3 | 40.4 | 39.4 | 39.0 | 39.0 | 59.1 | 39.4 | 39.7 | | | | | | | | | 90 | 2 | 0, | 8 | • | œ | | 60 | • | 6 | | | | | | | | | | • | 7 | 7 | | 7 | 7 | 60 | 90 | • | | | 0 | ċ | 0. | | | | 60 | 9 | • | • | • | 7. | 7. | 7 | 60 | 60 | | 30 | 0 | c | | | r. | 7 | r. | i | i. | E) | • | • | 7 | | • | 00 | | | | | 0 | ċ | 00 | 35.0 | 34.3 | 34.4 | 34.7 | 35.2 | 35.8 | 36.3 | 36.9 | ~ | 38.0 | 38.5 | | | | | | 2 | 4. | 3 | 3 | 3 | 4 | 4 | 5. | 9 | • | | | 00 | | | | | | 4 | ė | 2 | 2 | 3 | 3 | . | 5 | ٠. | 9 | 7 | | | | | 0. | 9 | 38,2 | _ | 31.3 | + | 2 | è | M | 4 | • | ر ب | ٠, | , | 7. | 60 | | | 0 | | ~ | 0 | 0 | + | | ~ | 2 | 4 | 4 | r. | • | 7 | ~ | 40 | | | 0 | ć | 29.6 | 29.5 | 29.0 | 30.6 | 31.5 | 32.3 | 33.2 | 34.0 | 34.8 | 35.5 | 36.2 | 36.9 | 37.5 | 38.1 | | | | | œ | 00 | 6 | 0 | = | 2 | 3 | 3 | 4 | ٠
۱:۲۰ | 9 | • | | 80 | | | ٠
۵ | 7 | 7 | 7 | 80 | 0 | • | 5 | ٠
د | 3 | 4 | 5 | • | 9 | 7 | 80 | | | | • | \$ | 7. | 8 | • | 0 | ÷ | 3 | 3 | * | 5 | • | • | 7 | œ | | | 5. | r. | 9 | ~ | or 2 | 6 | 0 | - | 2 | 3 | 4 | 'n. | • | • | | 80 | | 41 | 23.7 | 24.4 | 25.6 | 26.9 | 29.5 | 29.4 | 30.6 | 31.6 | 32.6 | 33.5 | 34.4 | 35.2 | 36.0 | 36.7 | 37,3 | 37.9 | | - | ? | 3 | 5 | 9 | 60 | 6 | 0 | + | 2 | س | 4 | 5 | 5 | • | 7 | 7 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =4.00 | _ | | | 1 | ! | | I | (
(| ₽6 | , | 2 | | | i | | 1 | | |--------|---------|----------|------|----------|------|--------|---------------------------------------|------|------|------------|------------|------|------|--------|-------------|------| | ▲ F | 0
بر | | | 0 . 8 | 6 | . 0 | # # # # # # # # # # # # # # # # # # # | 1.2 | 1.3 | → ! | 1.5 | 1.6 | 1.7 | 4.3 | ₩ 1 | 2.0 | | 1 80 1 | | | • | | | | | • | 0 | | | • | .0 | | | 0 | | | | <u>ت</u> | | <u>.</u> | 0. | 0 | | | • | | | | | • | | • | | | | | | | | | | | | | | | 0 | O | • | - | | | | | 0 | c | | | | | | | | | 0 | 0 | 4 | 6 | | | | <u>-</u> | ٥. | | | | | | | | | 0 | 3 | - | 7 | • | | | 0 | <u>.</u> | ت | | 0 | | 0 | 0 | 0 | 0. | 0 | 58.0 | 48.9 | 46.0 | 44.7 | 44.0 | | | 0 | 0. | 0 | 0 | | 0 | | 0 | | | | 7 | * | 10 | 2 | 2 | | | | | 0 | | | | | | 0 | m | 8 0 | 3 | Ö | 8 | ë | N | | | 0 | | | | 0 | 0. | 6 | 0 | 53.3 | 44.7 | 42.3 | 41.4 | 41.1 | 41.0 | 41.1 | | | | | | | | | | 0 | S. | 3 | +4 | 0 | 0 | 0 | | • | 0 | | | | | | 0 | | | • | | | φ. | 0. | 0. | 0 | • | 0 | Ö | | | 0. | 0. | 0 | . 0 | | | 3 | 6 | φ | 8 | | 90 | 6 | • | • | 0 | | | | | | | | 5 | 0 | 7 | 7 | 7 | | 00 | 80 | 6 | • | | | | . 0 | · c | 0 | | . 9 | 39.1 | 36.9 | 36.4 | 36.5 | 36.8 | 37.3 | 37.8 | 38.3 | 38.9 | 39.4 | 39.9 | | | | | | | | • | ď, | 5 | S | • | 9 | 7 | 8 | 80 | • | ò | | | | | | 5 | 5 | 4 | 4 | 4 | ď, | • | 9 | 7. | 7 | 8 | • | • | | | | | | | M | 3 | 2 | 4 | 5 | 'n | • | 7. | 7 | œ | o. | 0 | | 35 | | | - | 5 | 8 | 2 | ₩, | 4 | 4 | 5 | • | 7 | 7 | æ | • | • | | | 0 | C | 33.7 | 31.5 | 31.5 | 32.1 | 32.9 | 33.7 | 34.5 | 35,3 | 36.1 | 36.8 | 37.5 | 38.2 | 38,8 | 39.4 | | | | 5 | 0 | <u>-</u> | 0 | + | 2 | 3 | + | ŝ | *0 | ٠. | 7 | æ | • | 6 | | | | | 6 | 6 | 0 | *4 | 2 | 3 | 4 | 5 | 5 | • | 7 | ф
Ф | 8 | 0 | | 96 | | œ | 00 | • | 0 | ; | ? | 3 | 4 | 4 | ı. | 9 | , | 80 | c C) | 0 | | _ | ċ | | , | œ | 6 | 0 | - | ~ | m | 4 | 5 | • | | 60 | 20 | • | | 4 | 26.8 | 26.1 | 27.0 | 28.2 | 29.4 | 30.6 | 31.7 | 32.8 | 33.8 | 34.7 | 35.6 | 36.4 | 37.2 | 37.9 | 38,8 | 39.5 | | | 4 | r. | ÷ | 7. | 6 | с
С | -1 | ? | 3 | 4 | 5. | • | 7 | 7 | 60 | 6 | TARN BULK DENSITY #4.13 | | | | | | | | | 8 | | | | | 1 | | | | |----------------|------|------|------|------|------|------|---------------------------------------|-------|------|------|------|------|------------|---------------------------------------|-----------|-------------------| | * ~ . | 0.5 | 9.0 | 7.0 | • | 0 | 1.0 | + + + + + + + + + + + + + + + + + + + | 1.2 | 1.3 | 4 | | 1.6 | 1.7 | 1.8 | g=
 | 1 | | 1
1
00 0 | . 0 | | | 6 | | • • | | | | • | | | 000 | 000 | | 0 | | | | | | | | | | | | | | | | | | • | | | | | | | 0 | | | | | | | | | | 6 | 5 | | | | | | | | | | | | | | | 0 | 0 | - | ċ | | | | | | | | | | | | | | 0 | 26. | • | 0 | | | | | c | | ධ ර | | | | | | o c | | 75.8 | 52.7 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 46.3 | 4. V. A. G. A. G. | | | | | | | • | | | | | | | · | • | | • | • | | | | | | | | | | | 0 | 9 | | N. | 10 | 6 | 'n | 8 | | | | | | | | | | • | 6 | 7 | * | 2 | 0 | 0 | 2 | 2 | | | | 0 | | | 0 | 0 | 0.1 | 109.8 | 47.3 | 43.5 | 41.8 | 41.3 | 41.2 | 41.2 | 41.5 | 41.7 | | | | | | | | | • | 47. | 2 | 0 | • | 0 | 0 | 0 | + | + | | | • | | | 0 | | | | + | 0 | 6 | • | 6 | 0 | | 0 | Tel. | | 30 | | | | | | 9 | | 6 | 60 | 80 | • | 6 | 0 | 6 | | 0 | | | | 0 | 0 | 0 | 0 | 42.2 | 38.5 | 37.6 | 37.5 | 37.7 | 38.1 | 38.6 | 39.1 | 39.6 | 40.1 | 40.7 | | | | | | • | ů. | 80 | 9 | 9 | • | | | œ | 80 | • | • | 0 | | | | | | | | 3 | 5 | S. | • | • | | œ | 00 | • | • | 0 | | | 0 | | | 0 | 5 | 4 | 4 | 'n | | • | | ۲, | œ. | • | ò | 0 | | 35 | | | 5 | 5 | 2 | PT) | 4 | 4 | R. | 9 | • | 7 | 6 0 | • | • | 0 | | - | | | 7 | ò | ċ | 2 | m | + | 'n | • | • | | 80 | 60 | 6 | 0 | | | | 0 | ċ | - | ÷ | 2 | M | • | 5 | | • | 7 | 9 | 0 | 6 | 0 | |
30 | = 0 | 35.7 | 30.7 | 30.5 | 31.1 | 32.0 | 32.9 | 33.9 | 34.8 | 35.7 | 36.5 | 37.3 | 38.0 | 38.7 | 4.00 | 40.0 | | _ | | 0 | • | • | 0 | ÷ | ė | m | • | | • | 7 | 7 | 0 0 | • | • | | | 7 | 00 | 00 | 6 | 0 | + | S | 3 | 4 | 5 | • | 7. | 7 | 60 | • | • | | 4. | 29.3 | 27.2 | 27.8 | 28.9 | 30.0 | 31.2 | 32.3 | 33.4 | 34.4 | 35.3 | 36.2 | 37.1 | 37.8 | 38.5 | 39.5 | 39.9 | | | • | ċ | 7. | œ | 6 | + | 3 | 3. | 4 | 'n | Š | 7 | 7 | 6 0 | • | 0 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #4.60 | \$ \cdot \cdo | | | | | | | | BET | | | | | | , | ! | (| |---|-----|----------|------|------|----------|------|--------|------|----------|------|----------|------|------|----------------|----------|------| | AC10R
[K1] | 0.5 | 0.6 | 0.7 | 60 | 0.0 | 0 | - | 1.2 | | 4. | 7.5 | 1.6 | 1.7 | ~ 1 | ٠
ا | 2.0 | | 0 | 0 | | | | | 0 | | | | | | | | | | • | | | 0 | | | | | | | | | | | | | | 0 | 3 | | | 0 | | | | | | | | | | | | | | 0 | 7 | | | | | | | | | | | | 0 | | | | 8 | 54.4 | 51. | | | 0 | 0. | 0 | 0 | 0. | 0 | 0 | 0 | 0 | 0 | | 0 | 58.9 | | • | Ø | | | | | 0 | | 0 | | | | | | • | 9 | 0 | • | 7 | • | | | | | | | | | | | | • | 5 | 6 | 7 | | R | ĸ. | | | | | | | | | | | | 4 | • | 9 | 5 | 4 | 4 | d. | | | | | | | | | 0 | 0 | 5 | 47.4 | 45.1 | 44.2 | 43.9 | 43.9 | 44.0 | 44. | | | 0. | | 0 | | 0 | 0. | 0. | | | 4 | 3 | 3 | 3 | | 20 | 3 | | 0 6 | 0 | ċ | | 0 | | | ~ | 9 | M | (V | 0 | 8 | 2 | N | 20 | 3 | | | | | · c | | | 0 | 47.8 | 42.9 | 41.5 | 41.1 | 41.2 | 41.5 | 41.9 | 42.3 | 42.8 | 43.0 | | | | | | | | - | ċ | 0 | 0 | 0 | C | *-1 | | (V) | ~ | 3 | | | | | | | 9 | 2 | 6 | 6 | 6 | • | | 0 | + | + | 5 | è | | | . 0 | c
c | 0 | | 45.2 | • | е
• | 80 | 60 | 6 | • | 0 | | ,
#1 | ~ | C | | | 0 | | | - | 0 | 7 | 7 | 7 | 80 | 60 | • | 0 | 0 | | ~ | 2 | | | | | | • | | 9 | 9 | 7 | 7 | 8 | 0. | 0 | 0 | • | • | 2 | | | | | - | 7 | 5. | 'n | 5 | • | | 8 | 0 | 0 | 0 | • | 71 | è | | | 0 | C | | 34.7 | 34.3 | 34.7 | 35.5 | 36.3 | 37.1 | 38.0 | 38.8 | 39.6 | 40.3 | 41.0 | 41.7 | 42.3 | | 3.5 | | | | 5 | M | • | 5 | • | • | 7 | œ | 6 | 0 | 0 | • | 2 | | 0 4 | | œ | o. | 2 | 8 | M) | 4 | 5 | 9 | 7 | | 6 | 0 | | •4 | 8 | | | | M | - | • | 01 | 3 | 4 | Š | . 9 | 7 | œ | S | 0 | | -1 | ò | | 54 | · | 50.5 | 30.2 | 31.0 | 32.1 | 33.2 | 34.3 | 35.4 | 36.5 | 37.4 | 38.3 | 39.2 | 0.0 | 40.7 | 41.5 | 42.1 | | | | 0 | ò | 0 | •
• | 3 | 4 | 5 | • | 7 | c | 6 | 6 | 0 | • | ċ | | 4 4 | ю | α. | oC. | - | - | Ċ | 4 | S. | • | 7 | œ | 6 | 6 | 0 | - | 3 | # MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF MARP COVER FACTOR AND BETA YARN BULK DENSITY #0.54 | | | | | | | | | B = ₹ | | j | | | 1 | 1 | | | 1 | |----------|----------|------|--------------------|-----------|------|--------|--------------------|-------------------|--------|------------|------------|----------|------|------|------|------------|---| | X X | 0.5 | 9.6 | 0.7 | 0 | | 0 . 4 | +
 *
 + | 1.2 | | ₹
•1 | | 4.6 | | 4 | 4.9 | 2.0 | | | 1 00 | | | • | t - | • | • | . 0 | | 0 | 0 | | • | • | • | | 0 | | | o | | | | | | | | | | | | | | | • | • | | | | | | | | | | | | | | | | 0 | • | 10 | 4 | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 1 | | o : | | | | | | | | | 0 | e | • | ر
د | 0 1 | | 10x | · I | | | - 1 | | | | | | e e | | | 17.4 | 20 4
20 4 | 4 4
6 4
6 4 | 17.4 | 46.34 | 17.0 | 17.7 | 17.1 | 17.5 | 17.4 | 17.5 | | | | | | | • | | • | • | • | • | | • | • | • | | • | | | | | 0 | | 0 | | 5 | 10 | K) | 3 | 15.7 | 15.9 | | 16.4 | 16.6 | 16.8 | 17.0 | | | | | ° | • | 14.9 | | 14.2 | • | • | 15.1 | • | 5 | • | 9 | • | • | • | 7 | | | | | | 5 | بر | m | • | T | 4 | KU. | · | . | • | • | • | • | • | | | | <u>ب</u> | • | 2 | N | m | P7 | * | • | 5 | in. | æ. | • | • | 9 | • | | | | | 0 | + | 2 | 2 | 64 | 50 | | 4 | 5 | K U | K) | • | • | • | • | 7 | | | 2!. | Θ. | • | • | 2 | P) | * | 4 | 4 | 5 | 10 | 5 | 9 | • | 6 | • | 7. | | | | 10.0 | 10.9 | 11.7 | 12.4 | 13.0 | 13.6 | 14.1 | 14.5 | 15.0 | 15.3 | 15.7 | 16.0 | 16.3 | 16.5 | 16.8 | 17.0 | | | | 0 | c | - | ċ | 'n | 5 | 4 | 4 | 4 | 5 | S. | ô. | • | • | • | ~ | | | | • | 0 | •
#1 | 5 | 2 | · · | 4 | + | 4 | 5 | 6 | • | • | • | • | - | | | | • | 0 | - | ò | 2 | P) | • | 4 | 4 | ď. | ر.
د | S. | • | ó | 9 | 7. | | | | • | 0 | • | è | 2 | 100 | 4 | • | 4 | 5 | 80 | r. | ý | • | 9 | 7. | | | | 9.6 | 10.6 | 11.5 | 12.2 | 12.9 | 13.5 | 14.0 | 14.3 | 14.9 | 1,2.3 | 15.6 | 6.53 | 16.2 | 16.5 | 16.7 | 17.0 | | | | • | ċ | ٠
۲ | 5 | ~ | 3 | 4 | 4 | 4 | 'n | 5 | S | • | • | • | | | | | • | • | | è | 2 | 5 | | 4 | 4 | N | 5 | ľ. | • | Ś | • | 7 | | | 56 | • | | + | · | 8 | ,
D | + | 4 | 4 | R. | 5 | ľ. | • | • | • | 7. | | | | • | 0 | · | è | i | 3 | 4 | + | 4 | 5 | | N | 9 | 9 | • | 1 | | | 31 | 9.5 | 10.5 | 11.4 | 12.2 | 12.8 | 13.4 | 14.0 | 14.4 | 14.9 | 15.2 | 19.6 | 15.9 | 16.2 | 16.5 | 16.7 | 17.0 | | | | • | 0 | •
-1 | c, | 2 | 'n | 4 | 4 | 4 | 5 | 5 | ď. | 9 | . 9 | • | | | #### 3-HARNESS (Starting on page 112) MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.56 | | | | ~ N D O N | W W 4 4 4 | ппппп | риппп | nnn | |--------|------------------------|--------|-----------------|--------------------------------|---|---|------------------| | • | | 00 | 20877 | ~~~~ | ~~~~ | ~~~~ | 7.7 | | | 6 |)
 | N TO BO CH UI | 4000 | चित्तस्त
सन्सन्त | | 000
000 | | - | | 66 | 80377 | なるなるま | 44444
7777 | とうててて | *** | | | 60 | | нычы | 00000 | 0.00000 | 60 60 60 60 | 60 60 60 | | | | | 44800
44800 | ままままれるアフクロウ | * 9 9 9 9
* | 66666 | 16
16
16 | | 1 | | | 24864 | 0.077.00 | 000000
000000 | | ພາບຄ | | | | | N H H H | 99999 | न न न न न | 99999 | 9 4 4 | | | | 00 | 0 / 8 / V | 20000
70040 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00000
00000 | 66.6 | | | 10 | | 800 | 800000 | 00000 | 00000 | 999 | | | | 00 | 9449 | **** | 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 55.55 | | | * |)
 | 027 | M000V | V 0 0 0 0 | onnnn | ທຸທ | | | | 00 | 2000 | 44444 | 4 4 4 4 A A | 4 4 4 4 4
5 5 5 6 6 | 255 | | | | ; | 44 | るちちちちち | 50000 | N N H H H | ਜਜ਼ਜ਼
8 10 10 | | < | l
L | 1
2 | न न | न न न न न | 8 8 8 8 8 8
9 8 8 8 8 8 | 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 | 2
2
2
3 | | 96 | 1 🕶 | 00 | 00000 | N N N N 4 | 4444 | 44444
VVVVV | 4 4 4 V V V | | |
 - 4 | • | 6 .4 | 600000 | 44000 | #####
10000 | 0 0 0
4 ft ft | | | | 00 | 10000 | B B A A A A | • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • | 4 4 4 | | | 0. | - | • • • • | 001010 | 0.0.0000 | vvvv | | | | | 100 | 40000 | 80 4 4 4 4
H H H H H H | 99999
| ททททท
ส.ส.ส.ส | 444 | | | _ | | | 80 44 4 10 10
80 60 44 7 80 | 4 W W W W | | e e e e | | | . 60 | 6
6 | | ਜਜਜਜ
ਅ ਨ ਲਅਨ | #####
6 | enene
Reserv | ने ने न
य च च | | | | 00 | 00000 | 04 W W W | 00000 | 00000 | 200 | | | - | | | 40 40 € | 40007 | ~~~~ | 000 | | | 1 0 | 00 | | 5 4 4 4 A | ~~~ |

 | -
-
-
- | | | | | | 441 | 40000 | 000000 | | | | l
I | | 00000 | 00404 | 44400 | 00000 | 440 | | | • | | | 00004 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 9000 | 7.0 | | | • | • | | ਰਜ | ਜਜਜ | | _ | | | œ | | | | | | | | 0. W (| 100 | 1 | 0 4 0 W 4 | N 0 V 00 0 | 0 4 0 M 4 | 10 0 C 00 0 | 6 4 N | | 30 | < ~ | 1 | ਹੀਂ ਦੀ ਦੀ ਦਾ ਦੀ | | 20000 | | nnn | | | | | | | | | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COYER FACTOR AND BETA ### YARN BULK DENSITY #6.58 | 4 10 10 | | í | (| (| | | | 9E | | 1 | | (
(| | | • | 1 | * | |---|-------------------------------
-----------------|-----------------------|--|----------------------------|---|---|---------------------------------------|--|----------------------------------|---|----------------------------------|--|--------------|--------------------------|---|--------------| | 5 X | 0.5 | 9.0 | 7 | 0 | 0.0 | 1.0 | 1.1 | 6 | 10 | 4 | 6.5 | 1.6 | - | | 0 1 | • 1 | 0 | | 1
0
0 | | |
 | | 00 | | | 00 | | | 00 | | | 00 | 90 | 00 | nomno | | 87 47 47 60 60 60 60 60 60 60 60 60 60 60 60 60 | | | | 0 10 4 10 16
0 10 4 10 16 | | 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 4 4 4 4
6 8 8 8 8 8
8 8 8 8 8 | 44444
66888
84676 | 44444
6666
74640 | 44444
4444
64548 | 10.00
10.00
10.00
10.00 | 244
144
16.00 | なまままなろうちょうころ | まるままま かい ママアア フログラウム | 2 - C - C - C - C - C - C - C - C - C - | 00111 | | 0 4 0 0 0 4
0 4 0 0 4 | 01111
0101
0001
0001 | V 4 10 C H | 40400 | 50000
50000
50000
50000
50000
5000
500 | 200000
200000
200000 | 44444 | 4444
7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 84400
88888 | ដាជាជាជា
សល់លេខប
៤ស់សសស | 2000000
200000 | 4444
4444
4444
4444
4444 | 44444
66666
6668 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 2444 | 4444
4444 | 7777 | *** | | N N N N N N N N N N N N N N N N N N N | 0.00 | 111111011101100 | 00000
 | 22222
22222
22223 | 44000
90000
90000 | 444BB
00000 | 44644
800000 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 22 22 25 25 25 25 25 25 25 25 25 25 25 2 | ជាជាជាជាជ
សសសសស
សំខាត់សំខា | 4 | 44444
66666
88888 | 4 4 4 4 4
6 6 6 6 6 | | 44444
44444 | 7777 | ••••• | | | 000 | 10.9 | 41.8
41.9
8.11. | 12.6
12.6
12.6 | 444
444
444 | ###
| 4 4 4
8 6 6 | 1500 | ###################################### | 14 14 14
10 10 10
10 10 10 | 116.2 | 4444
664
808 | 444
66.60
66.60 | 17.1
17.1 | 144
144
144
144 | 17.6 | ~ ~ ~ | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.65 THREE-HARNESS WEAVE FABRICS | | 1.9 2. | | 25.4 23.0
26.8 20.5
19.7 19.7
19.2 19.3 | | 18.4 18.7
18.4 18.7
18.4 18.7
13.4 18.7 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 18.4 18.6
18.4 18.6
18.4 18.6 | |------------|---------------|-----|--|---|--|--|---| | | जर्द
। | | 1200
1400
1400
1400 | 4 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 | 118
118
118
118
118
118
118 | | 4 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 10 | - | - | 9 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1118
118
18
18
19
19
19 | 0.00
0.00
0.00
0.00 | | 17.8
17.8
17.8 | | | 1.5 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 118
118
117
118
118
118
118 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | なったこれである。 | 17.5
17.5
17.5 | | | 3 0 | 0.0 | 60
80000
80000 | 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | ************************************** | 2555 | 4. K 4. K | |
 | 1 | 00 | 120°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° | 11771
1771
1771
1770 | 44444
6666
9966 | 44444 | 16.7 | | < | | | 00000 | 14111
14091 | 4444
444 | 40000 | 16.3 | | 6 0 | • | 00 | %
0000
1000
1000 | 84444
8444
8444
8444
8444 | 44000 | 4 4 4 4 4
7 7 7 7 7
9 9 9 9 9 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | | 00 | 00000 | 0 1 4 1 8 9 1 4 1 8 9 1 4 1 8 9 1 4 1 8 9 1 4 1 8 9 1 4 1 8 9 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 | 7.67.7. | 4446 | 15.3 | | | 9 1.0 | 00 | 00000 | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 7.54 N N N N N N N N N N N N N N N N N N N | 66666666666666666666666666666666666666 | 14.8
114.8
114.7 | | | 0 | 00 | 00000 | 2 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4444 | 44444 | 1 | | | 0 | 00 | | 8 0 0
0 0 0 0 4 | # # # # # # # # # # # # # # # # # # # | | 5 4 4 4 | | | . 60 | | 00000 | 4 0
0 0 0 0 4
4 0 0 0 0 0 0 0 0 0 0 0 0 | 04000
44444
88880 | 66778 | 666 | | | | 00 | 00000 | 44 | 3027 | 24444 | 5 H H H H H H H H H H H H H H H H H H H | | | 0 | 00 | | | 24440 | 20000 | 000 | | or mi | N X | 000 | 0 4 8 B 4 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | | 00000
00000 | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.66 | | ! | | | | ! | | | BET | • | | | | | . (| | | | |----------|------|------|------|----------|-------|------|----------|------|------|------|------|------|------|-------------|------------|----------|------------| | 3 X | | - | 7.0 | ල
ල | 6.0 | 4 | , +1 | • | 4 | 4 | | 1.6 | F-1 | 20 1 | 1.9 | ć | 0 | | 60 | | | | | • | • | 9 | 0 | 0 | 0 | 6 | • | • | | 0 | 0 | | | ٥ | | | | | | | | | | • | | • | 0 | 0 | | | | | | | | | | | | | | | 0 | ç. | 0 | • | · | 'n | | | | | | | | | | | | 0 | | 7. | 2 | + | -1 | • | | | | | | • | • | 0 | • | 0 | 9 | 0 | 23.9 | 21.3 | 20.4 | 20.1 | 19.9 | 6.51 | 6.6 | • | | 4 | | | • | | | | | | | 0 | 0 | • | • | 0 | D. | • | ^ | | | | | | | 0 | 37) | 0 | 80 | 80 | \$ | • | 60 | 60 | 80 | • | 6 | 8 | | | | | • | 0 | \$ | 7. | 7 | 7 | 7, | | | 00 | 60 | • | 60 | • | | | | | | 7 | 7 | 9 | • | 6. | • | 7 | 7 | | 8 | 60 | 6 | 60 | () | _ | | | | 19.3 | 15.6 | 15.3 | 15.5 | 15.9 | 16.2 | 16.6 | 16.9 | 17.3 | 17.6 | 17.9 | 18.2 | 18.4 | 18.7 | 18.9 | • | | 19 | 16.9 | • | 4 | • | 5 | 3 | • | 9 | 9 | 7 | | , | 80 | 60 | 60 | 60 | _ | | 20 | 8 | 1 | • | 4 | 4 | 5 | | • | 9 | | | 7 | 60 | 90 | 10 | 8 | • | | | | 12.6 | 13.3 | 14.0 | | 15.2 | 15.7 | 16.2 | 16.6 | 17.0 | 17.4 | 17.7 | 18.0 | 18.3 | 18.6 | 13.6 | an. | | | + | è | 3 | 3 | 4 | 5 | N | • | • | 7. | | 7 | 80 | 0 | | 60 | ~ | | | + | ? | 3 | 3 | 4 | 5 | 171 | • | • | 7 | | 7 | € | a | 60 | φ. | m | | | | ò | 0 | 3 | 4 | | 5 | • | • | • | | 7 | 60 | • | 6 0 | €0 | | | 25 | 0 | + | 64 | M | 4 | | | • | 10 | • | 7 | 7. | 60 | • | 60 | 60 | • | | | 10.7 | 11.8 | 12.8 | 13.6 | 1.4.3 | 14.9 | 15.5 | 16.0 | 16.5 | 16.9 | 17.3 | 17.6 | 18.0 | 18.2 | 18.5 | 18.8 | • | | | 0 | + | 2 | 3 | ₹. | 4 | . | • | • | • | 7 | 7 | 7 | æ | • | a | • | | | 0 | + | 2 | · | 4 | 4 | N | | • | 9 | | 7 | 7 | 8 | • | 8 | øn. | | | Ċ | + | 2 | M | 4 | 4 | N | • | • | • | | 7. | 7 | a | 60 | 00 | 6 0 | | | 0 | + | 8 | 3 | 4 | 4 | K | • | Š | • | | 7 | | 30 | 80 | 60 | 6 0 | | 31 | 10.5 | 11.7 | 12.6 | 13.5 | 14.2 | 14.9 | 15.4 | 16.0 | 16.4 | 16.9 | 17.3 | 17.6 | 17.9 | 18.2 | 18.5 | 18.6 | 60 | | | 0 | + | 5 | M | 4 | 4 | 5 | 9 | • | 9 | 7 | 7. | 7 | 60 | •0 | 80 | 6 0 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =0.67 THREE-HARNESS WEAVE FABRICS | ARP
OVER | | | | | | | | BET | | | | | 1 | | | | | |-------------|----------|------|------|---------|------|----------|----------|----------|------|------|------|----------|--------|------|------|------------|---| | | 0.5 | 9.0 | 0.7 | 0.0 | | 1.0 | 1.1 | • | • | | | 1.6 | 1.7 | 1.08 | 6 | | • | |
 60 | 0.0 | | | . 0 | 0. | • | | • | 0 0 | | | 0 | 0 | • | 0 | 0 | • | | • | | | | | | | | • | 0 | 0 | | | | | | | | | | | | | | | 0 | • | 0 | 60 | * | | | | | | | | | | | | | 0 | 6 | S | m | 2 | - | + | | | | | 0 | • | 0 | 0 | 0 | 0 | • | 0 | 25.7 | 21.9 | 20.8 | 20.4 | 20.5 | 20.1 | 20.1 | | | 14 | | e) | ° | | | | | | | • | • | 6 | 6 | 0. | 6 | | | | - | | | | | 0 | 80 | 0 | a | 60 | 80 | • | ٠. | 60 | 6 | • | 19.4 | | | _ | | | | | 0 | • | | 7 | | 7 | • | 60 | ۔
س | 8 | • | ٠
٥ | | | | | 0 | • | 7 | | • | • | | 7 | 7 | 6 | 8 | 80 | 60 | • | 6 | | | | 0 | * | 16.0 | 15.6 | 45.7 | 16.0 | 16.4 | 16.7 | 17.1 | 17.4 | 17.8 | 18.1 | 18.3 | 13.6 | 18.8 | 0 | | | 49 | 19.9 | 14.6 | • | • | • | 3 | • | • | • | | | © | 60 | 0 | 60 | 0 | | | 20 | m | P3 | 5 | • | 4 | 1 | • | • | 9 | ~ | 7. | 17.9 | • | • | 18,8 | 0 | | | | 8 | · | , | 4 | | ĸ. | N | • | • | | | 7 | œ
œ | 8 | 6 | · | | | | 4 | 12.4 | 13.2 | 14.0 | 14.6 | 15.5 | 15.8 | 16.3 | • | • | 17.5 | • | 18.1 | • | ٠ | • | | | | - | 0 | 2 | ,
M | • | K | 5 | • | • | | | 7 | 60 | | • | භ | | | 24 | 11.0 | ~ | | 5 | • | . | S | • | • | 7 | | | 60 | 6 | 60 | 60 | | | | 0 | 8 | ~ | 100 | 4 | 10 | | • | • | 7. | | 7 | 80 | | | 8 | | | | 0 | - | 2 | 3 | 4 | ×. | E | • | 9 | 7 | • | 7 | 60 | 8 | 60 | 80 | | | | 0 | | 2 | 3 | 4 | . | 5 | • | • | | | 7 | ď, | 0 | 9 | ,
60 | | | | | 11.8 | 12.8 | 13.6 | 4.4 | 15.0 | 15.6 | 16.1 | 16.6 | 17.0 | 17.4 | 17.8 | 18.1 | 18.4 | 18.7 | 18.9 | | | 56 | | + | 0 | m | 4 | 5 | E | • | • | 7. | | 7 | 00 | Ø | 60 | 60 | | | | 0 | • | 0 | m | 4 | 50 | 5 | • | 9 | 7 | 7 | 7 | 00 | 10 | • | 3 0 | | | | 0 | | 2 | ,
(M | 4 | S | _ | 16.1 | 16.6 | 17.0 | 27.4 | 17.7 | 18.1 | 18.4 | 18.6 | 18.9 | | | 32 | 10.6 | 11.7 | 12.7 | 13.6 | 14.3 | 15.0 | | • | • | 7. | 7 | 7. | • | Ø | 80 | o O | | # MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.68 # THREE-HARNESS WEAVE FABRICS | BETA | 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 0.
0. 0. 20.7 19.3 18.9 18.8 18.8 18.9 19.1 19.2 19.4 0. 21.5 18.5 18.0 17.9 18.0 18.1 18.3 18.6 18.8 19.0 19.2 18.4 17.1 16.9 17.0 17.3 17.5 17.8 18.1 18.3 18.6 18.8 19.1 15.9 16.0 16.2 16.6 16.9 17.3 17.6 17.9 18.2 18.5 18.7 19.0 15.4 15.8 16.3 16.7 17.1 17.4 17.8 18.1 18.4 18.7 18.9 | 14.5 15.1 15.6 16.1 16.6 17.0 17.4 17.7 18.0 18.3 18.6 18.9 14.3 14.9 15.5 16.0 16.5 16.9 17.3 17.7 18.0 18.3 18.6 18.9 14.1 14.8 15.4 15.9 16.4 16.8 17.2 17.6 18.0 18.3 18.6 16.8 14.0 14.7 15.3 15.8 16.3 16.8 17.2 17.6 17.9 18.3 18.6 18.8 13.9 14.6 15.2 15.8 16.3 16.8 17.2 17.6 17.9 18.2 18.5 18.8 | 13.8 14.6 15.2 15.8 16.3 16.7 17.2 17.6 17.9 18.2 18.5 18.8 13.8 14.5 15.2 15.7 16.3 16.7 17.2 17.5 17.9 18.2 18.5 18.8 13.8 14.5 15.1 15.7 16.2 16.7 17.1 17.5 17.9 18.2 18.5 18.8 18.7 14.5 15.1 15.7 16.2 16.7 17.1 17.5 17.9 18.2 18.5 18.8 13.7 14.5 15.1 15.7 16.2 16.7 17.1 17.5 17.9 18.2 18.5 18.8 | 13.7 14.4 15.1 15.7 16.2 16.7 17.1 17.5 17.9 18.2 18.5 18.8 13.7 14.4 15.1 15.7 16.2 16.7 17.1 17.5 17.9 18.2 18.5 18.8 13.7 14.4 15.1 15.7 16.2 16.7 17.1 17.5 17.9 18.2 18.5 18.8 | |------|---|--|--|--|---|---|---| | | | .00 | 000000
00000 | 4444
447
747 | 00 00 00
0 00 00 00
0 00 00 00
0 00 00 0 | 7 4 4 7 7 4 4 7 7 4 4 7 7 4 4 7 7 4 4 7 7 | 7 17. | | BETA | 1.2 1 | 0 6 | | 9.3
7.9
18
6.9
17
17 | 66666
66466
66466
66466
6666 | 00000
00000
00000
00000 | 6.2 16 | | | 1.1 | 60 | • • • • | V 0 0 0 W | 400000 | るちちちきち | 77. | | , | + | 00 | | 00000 | ************************************** | # # # # #
| £ £ £ | | ! | 0 | 00 | 00000 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 20000
0000
00000
00000 | 0000 r r s s s s s s s s s s s s s s s s | 444 | | 1 | 2 - 0 | 00 | | | 4444W | SH CH CH CH CH | 10 to 14 | | | 8 |
 -
 - | | | 112.00.01 | 1120.11 | 11.9 12 | | 1 | 0.5 | | | n • • • | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | -0000 | 7.01 | MAXIMUM FILLING COVER FACTURS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.69 | OF 0. 1 | | | | • 1 | | | | BET | 1 |
 | (| | | * (| • | | · | |-----------------------|--------------|------|----------|------------|------|----------|------------|------|------|----------|------|------------|----------|------------|-------------|------|---| | Y.Y | . 2 | 9.0 | 6.7 | 8 | 0.0 | 1.0 | | • 🕶 | 1,3 | - | 1.5 | 4.6 | 1,7 | 4.0 | ज ं। | ~ 1 | | | 000 | 0.0 | 00 | | | 00 | 00 | 00 | 00 | 00 | | | | | 00 | | 00. | | | • | | | | | | | | | | | | | | | 1 | | | | | 0 | 0 | | | | 0 | | 0 | | ,
(2) | 0 | | • | | | | | | | | | | | | | | | | | | | •
• | D | 0 | • | | | | | | | | | | | | | • | | 0 | • | M | c) | | | | . 4.
53 | 0 | | 9. | • | | | 0 | • | | 40.8 | 23.4 | 21.7 | 21.0 | 20,7 | 20.6 | | | | 4 | | | | | | | | | | • | 6 | 0 | • | 6 | o. | • | | | | | | | | | | - | 6 | • | • | • | 0 | 0 | 6 | • | • | | | _ | | | | | 3 | 6 | • | 60 | • | 8 | | ق | 60 | 6 | o. | 8 | | | | | | | 0 | 7 | | | 7 | | 8 | | 8 | 8 | 6 | • | 6 | | | | 0 | 0 | 7 | 16.2 | 16.2 | 16.4 | 16.7 | 17.1 | 17.4 | 17.7 | 18.0 | 18.3 | 18.6 | 18.9 | 19.1 | 19.4 | | | 19 | | | | E. | Ę, | • | ÷ | • | | 7 | | 60 | 60 | 60 | 6 | ò | | | | * | 10 | 4 | + | 5. | 5 | * | 9 | 7 | - | 7 | 60 | 80 | 80 | 6 | 6 | | | | 12.5 | 13.1 | 13.6 | 14.4 | 15.0 | 15.6 | 16.1 | 16.6 | 17.0 | • | 17.8 | 16.1 | 18.5 | 18.7 | 19.0 | 19.3 | | | | + | ÷ | 5 | + | 4 | 5 | • | \$ | 7 | | | œ | œ | 8 | • | ° | | | - | ·- | ò | 3 | 4 | 4 | . | • | • | • | , | | œ | 80 | 6 0 | • | • | | | 4 | + | 5 | 2 | 4 | 4 | 5 | 1 0 | • | • | | | œ | 40 | 40 | • | • | | | _ | + | C) | | 5 | 4 | 80 | | • | • | 7 | 7 | 60 | a | 60 | • | • | | | _ | 4 | ~ | 3 | | 4 | Š | 5 | 9 | • | 7. | 7 | 00 | œ | 0 | 60 | 6 | | | - | ن | 2 | | 3 | 4 | Ę | 5 | • | • | | 0 | 8 | . | • | 8 | 6 | | | _ | 10.9 | 12.0 | 13.0 | 13.8 | 14.6 | 15.5 | 15.8 | 16.4 | 16.8 | 17.3 | 17.7 | 18.0 | 18.3 | 18.7 | 18.9 | 19.5 | | | 53 | 0 | 2 | M | ٠. | 4 | 'n | 5 | • | • | 7 | 7 | 6 0 | œ | ف | 60 | • | | | | 0 | 8 | 2 | 3 | * | 5 | 5 | 9 | 9 | 7. | | 80 | • | 40 | 60 | • | | | | 10.8 | 11.9 | 15.9 | 13.8 | 14.5 | 14.2 | 15.8 | .6.3 | 16.8 | 17.2 | 17.6 | 18.0 | 18.3 | 18.6 | 18.9 | 19.5 | | | 32 | • | • | 2 | M) | 4 | | r, | • | • | 7. | 7 | 3 0 | œ | œ | œ | • | | # HAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.70 | 9 | | | | | | | | | | | | | | | | | | |---|------|------|----------|-------|------|----------|------|------|------|------|------|------------|---------|------|------|-----|--------------| | A N N N N N N N N N N N N N N N N N N N | | | | | | | | BET | | | ĺ | | | 1.4 | | | | | FACTOR
[K1] | 0.5 | 9.0 | 0.7 | 0 . 0 | | 1.0 | 1.1 | 1.2 | 1.3 | | 1.5 | 1.6 | 1.7 | 1.8 | | (4) | 0 | | 1 80 | | 0.0 | i
i • | | | | | 0 | 0 | | 0 | i
i • | | 0 | • | | | | ٥ | 0 | | | | | | | | | | | | | | | | 0. | 0 | 0 | | • | | | | | | | | | | | | | 0 | 0 | 7 | • | N. | o o | 0 | | | | | | | 0 | 0 | | | 0 | O | 24.3 | 22.1 | 21.3 | 21.0 | 20.8 | | 5 0 (| | | | | | | | | | | | | 0 | 0 | 0 | D | • | • | N | | | 0 | | | | | • | 8 | 0 | • | 0 | 0 | 0 | • | 0 | _ | | • | | | | | | 0 | 8 | 19.6 | 18.6 | 18.4 | 18.4 | 18.5 | 18.7 | 18.9 | 0 | 19.3 | _ | 19. | _ | | | | | 0 | 0 | 7 | • | | 7. | 7 | 80 | 60 | 8 | 8 | • | 0 | 0 | Ŷ | | | | 0 | 7 | • | • | • | • | 7 | 7 | 7 | ED | • | о
С | 0 | • | 0 | 1 0 | | | | 16.1 | 15.3 | 15.4 | 15.8 | • | • | 7. | 7. | 7. | • | 60 | 60 | C, | • | • | R) | | 20 | 4 | 4 | 4 | 4 | 2 | 5 | • | • | 7 | 7 | | 00 | 60 | 80 | • | 6 | 4 | | | ò | 3 | m | | 5 | 15.7 | 16.3 | 16.7 | 17.2 | 17.6 | 17.9 | 18.3 | 18.6 | 18.9 | 19.5 | 19. | 4 | | | o, | 2 | 3 | 4 | 5 | Ŗ. | ٠. | • | | 7 | | ф
Ф | 80 | 60 | • | 0 | • | | | + | 2 | 5 | * | 4 | S. | | • | | 7 | 7 | 8 | 60 | 00 | · | • | • | | | | | | 4 | 4 | 3 | | 9 | | 7 | 7 | œ | 00 | 60 | 0 | • | • | | | | 12.3 | 13.2 | 14.1 | 14.8 | 15.4 | • | 16.5 | 17.0 | 17.4 | 17.8 | 18,2 | 18.5 | 18.8 | 19,1 | • | | | | | 2 | 3 | 4 | 4 | v | • | • | 7 | 7 | 7 | 80 | 60 | • | • | ċ. | | | | - | ċ | M | 4 | 4 | 'n | • | 9 | 7. | 7 | * | 8 | ٠.
ص | | • | 6 | | | | + | 3 | ю
• | 3 | 4 | . | 15.9 | • | • | ~ | • | œ, | ੋ.
ਹ | 8 | 0 | ċ | | | | | 5 | 9 | 3 | 4 | 5 | N. | \$ | • | | | 6 0 | © | œ | • | • | | | | 0 | 8 | 3 | 3 | 4 | 5 | 80 | • | | 7. | | • | œ | 80 | • | 0 | ы | | 31 | 10.9 | 12.0 | 13.0 | 13.9 | 14.6 | 15.3 | 15.9 | 16.4 | 16.9 | 17.4 | 17.8 | 18.1 | 18.5 | 18.8 | 19.1 | 19. | 17 3 | | | 0 | 2 | 3 | M) | 4 | 5 | 2 | . 9 | • | 7 | | œ | 60 | 8 | 0 | 0 | m | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WAR? COVER FACTOR AND BETA YARN BULK DENSITY #0.71 THREE-HARNESS WEAVE FABRICS | | | | 2000
2000
2000
2000
2000
2000 | 14000
14000
14000
14000 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 8 8 8 8 8 8
8 8 8 8 8 8 | 19
19
19
19
19 | |---------|---------|-------------|--|--|--|---|----------------------------| | | 6 | | 0000
0400
040 | 90000
9000 | 99999
99999
99999 | 00000 | 419 | | • [| - | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2000
2000
2000
2000
2000 | 199.0
199.0
199.0 | 44444
884
896
996
996
996
996 | 18.9
18.9 | | (| . e-((| 000 | 30.6
20.7
20.2 | 44444
60000
60460 | 118.0
118.7
108.7
108.7 | 44444
8888
8686
866 | 18.6
18.6
18.6 | | • | 4.6 | 90 | 0
0
0
0
0
0
7 | 44444
60000
84000 | 5 4 4 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 | 000000
00000
11111 | 8 8 8
8 8 8
8 8 8 | | | 5. | 00 | 2200. | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 | 44444
44444
6666 | 17.9 | | | | | | 8444
844
844
844
844
844
844
844
844
84 | 4444
7444
8777
6074 | 44444
44444
64666 | アファ | | | - | | | 449
449
66
69
67
67 | 45000 | | 17.1
17.1
17.1 | | 30
P | 10 | | | 2021
2011
2010
2011
2011
2011
2011
2011 | 1446.00
100.00
100.00 | 4444
6666
6666 | 16.6
16.6
16.6 | | | + | | | 20
40
40
40
40
40
40
40
40
40
40
40
40
40 | 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 44444 | 16.0
16.0 | | 1 | 4 | | | 200
114
16.72
16.33 | 1115
155
155
155
155
155
155
155
155
15 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 | R: 10 tt | | : | 0 | | 00000 | 9444
00000
00000 | # # # # # # # # # # # # # # # # # # # | 4 4 4 4 4
0 0 0 0 0 | 14.8
14.8
14.7 | | | 0.0 | i | 00000 | ##200
#500
#500 | 24444
07860 | 4444 | 4 4 4
0 0 0 | | | 0.7 | i | 00000 | 21.000
31.0000
6.00 | 4 4 8 8 8
4 4 8 8 8
6 4 6 6 4 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
 | | | 0 | 00 | 00000 | 0
0.0
0.0 | 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4.00.00 | 12.1 | | | 0.5 | 1 | | 00000 | 15.2
12.2
11.7 |
 | 11.0
11.0
10.9 | | 2 2 4 | X | 60 0 | ' | | 04000 | | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.72 | 0. U. b | | | | | | | | 867 | | | | | | | 1 | • | |---|--------------|---|---------------------------------------|----------------------|---|-------------------------|---|--|--|---|---|--|--|-------------------------|---------------------------------------|--| | X C | 0.5 | 9.0 | 0.7 | 0 | 0.0 | 1.0 | 4.4 | 1.2 | 1.3 | 4 | 4.5 | 4.6 | 1.7 | 1.8 | ₩ | N I | | 000 | - | | - | | | | | | 00 | | | | 0.0 | 00 | 00 | 000 | | 이 라 전 전 전 편 편 | 00000 | 00000 | 00000 | 50000 | 0000 | 00000 | 00000 | 00000 | 25.00.00.00.00.00.00.00.00.00.00.00.00.00 | 20000 | 00014 | 2000
2000
600 | 300
200
200
300
300
300 | 000000 | 2000
2004
2004
2000 | 2220 | | 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 00000 | 0.
0.
0.
17.8 | | 25.7
17.2
15.8 | 0 11 11 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 | 24.0
18.0
17.0 | 26.9
17.9
17.9
16.9 | 21.2
18.9
18.0
17.6 | 20.1
18.8
18.2
17.9 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 44444
80000
70754 | 19.7
19.0
18.0
18.7 | 91199199999999999999999999999999999999 | 0.0400
0.0400 | 10000 | 200
200
400
600
600
600 | | 01000 | 110000 | 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 44888
80000 | 24444
200024 | 24444
26666
24864 | 16.6
15.9
15.8 | 11111111111111111111111111111111111111 | 10000000000000000000000000000000000000 | 244
244
244
244
244
244
244
244
244
244 | 17.9
17.8
17.7
17.7 | 111111
88888
80000 | 11 18 18 18 18 18 18 18 18 18 18 18 18 1 | 444444
66884
600000 | 22.5.5 | 90909
0.0000 | 49.7
49.7
49.6 | | 2222 | | 20111
20121
74455 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 44444
800000 | 00444
00000 | 44444
50000
50000 | 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 16.7
16.7
16.7 | 17.2 | 17.7
17.7
17.6
17.6 | 44444
6666
640
640
640
640
640
640
640
6 | 4 4 4 4 4
0 0 0 0 0 0
0 0 0 0 0 | 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13 | #####
66666
| 44888 | 99999
66666 | | 030 | 11.0
11.0 | 12.2
12.2
12.2 | 13.2 | | 4 4 4
9 9 8 | 15.5 | 16.2
16.1
16.1 | 16.7 | 17.2 | 17.6
17.6
17.6 | 448
48.0
8.0 | 4 4 4
4 4 4 | 18.7
18.7
18.7 | 19.0 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 19.6
19.6 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.73 | A C T C B B B B B B B B B B B B B B B B B | 0.0 | 1 0 1 0 | 1 1 | 80 | 0 0 | 4 0 | H 6 | 101 | M) C | 4 | . M . O | | 1.7 | 60 | 410 | 0 0 | | |---|---|---------------------------------------|---------------------------------------|------------------------|------------------------|-------------------------|---|--|---|-------------------------------|---|---|---|--------------------------------------|--|-------------------------|----------------| | o o | | | | | | | | | | | • • | | | | | • | | | 0401 | 0000 | | | 0000 | 0000 | 6000 | 0000 | | 0000 | 0000 | 0000 | 000 | 000 | 26.5 | 2000 | 0 8 % | 0 4 7 | | 0 4 | | | | | | | | | 28.0 | | | | | 40 | 4 10 | | 7 60 | | N.0 V.00 Q | | 00.
00.
19.2 | 00000 | 0.00
10.00
16.11 | 119.
147.
147. | 143.0
143.0
16.2 | 2.61
1.61
1.71
1.0 | 191
19.2
17.7
17.7 | 190.0
180.0
180.7
190.0 | 190.1
19.1
18.6
19.3 | 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 9 4 H 9 8 | 0.001
1.001
1.001
1.001 | 10000 | 220
200
1190
190
190
190
190 | 00000 | 40400 | | 9 H W M 4 | 211247
21247
21257 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 84488
0408V | 207.95
407.96 | 44444
55565 | 44444
6668
84068 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 17.11.17.17.19.19.19.19.19.19.19.19.19.19.19.19.19. | 7.71
6.71
7.71
8.71 | 18.0
17.9
17.9 | 4 5 5 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 | 8 8 8 8 8 7 7 7 8 8 8 9 9 9 9 9 9 9 9 9 | 1100.0 | 2000
2000
2000
2000
2000 | 99999 | 00000 | တ ကား လေး ကာ လ | | rv 0 1 00 00 | 4 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4444
66444 | 4 4 4 4 4
4 W W W W | 44444
6666
64066 | 155.7
155.7
155.7 | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 4444
446
446
446
446
446
446
446
446
44 | 4 4 5 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 | 17.8
17.8
17.8
17.6 | 111111
80808
00000 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 111188
1188
1188
1188
1188
1188
1188
1 | 9 9 9 9 9 | 00000
00000
00000 | 00000
00000
00000 | 44000 | | 6 H () | ###################################### | 12.3
12.3 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 44.2 | 15.0
15.0 | 15.7
15.6
15.6 | 16.3
16.2 | 16.8
16.8
16.8 | 17.3
17.3
17.3 | 17.7
17.7
17.7 | 18.2
18.1 | 18.57
18.57
18.57 | 18.9
18.9 | 19.2
19.2 | 149
149
150
150
150 | 9 9 9 | 111 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA ## YARN BULK DENSITY #6.74 | A 50 | | | | | | | | 4 | | | | | | | | | | |---------------|----------|------|----------|------|------|-----------|------|------|------|------|------|--------|------|------|----------------|------|---| | FACTOR | 0 | 9.0 | . 7 | 1 60 | 1 | 1.0 | 1.1 | 1.2 | 1.3 | • | 1.5 | | 1.7 | • | 4.9 | 0 | • | | . 00 | | | 1 | - | | | . 0 | | 0.0 | • | . 0 | 0 | | 0 | | • | • | | 0 | | | | | 0 | | | 0 | | | °. | c) | | | | | | | | | | | | 0 | | | | | 0 | • | 0 | | | | | | | | | | | | | | 0 | 0 | 0 | | + | m | | | | 0 | | 0 | 0 | 6 | | | • | 0 | 0 | 4.4 | 24.8 | 22.9 | 22.2 | 27 4 6
20 6 | 21.7 | | | | | | | | | | | | | | - | | | • | D | > | | | . | | | | | | | • | 8 | | 0 | • | 0 | 0 | 0 | | 0 | | | | | | | | | .0 | 0 | 13 | CA. | 6 | 6 | 6 | 6 | 0 | 6 | 0 | | | | 0 | | 0 | 0 | 0 | 18.6 | 18.4 | 18.4 | 18.6 | 18.8 | 19.0 | F . 6T | 19.5 | 19.8 | 20.0 | 20.5 | | | | | 0 | • | 60 | 7 | | | 7 | œ | 8 | 70 | 6 | 6 | 6 | 4) | Ċ, | | | | 0 | 21.8 | • | | | . 9 | 7 | 7. | 60 | 8 | • | 0 | 6 | ó | 0 | 0 | | | 20 | 0 | 10 | I | 5 | • | • | • | 7 | 7 | • | • | 80 | 0 | 6 | 6 | 0 | | | | | 14.0 | 14.5 | 15.1 | 15.7 | 16.3 | 16.8 | 17.3 | 17.7 | 18.1 | 18.5 | 18.8 | 19.1 | 19.4 | 19.7 | 20.0 | | | | 2 | 2 | 4 | 4 | 5 | • | ý, | 7 | 7 | 8 | • | œ | 6 | • | 6 | 6 | | | | 8 | 5 | 3 | 4 | 5 | • | • | | 7. | æ | • | æ | 6 | 6 | c. | • | | | 24 | | ŝ | 3 | 4 | 5 | 10 | • | 7. | 7 | 8 | • | 8 | 6 | • | 0 | 0 | | | | | 8 | 2 | 4 | 5 | K | • | 7 | | 7 | • | 60 | 6 | 6 | 0 | 6 | | | _ | - | 2 | 5 | 4 | 5 | 5 | • | 7 | ~ | 7 | 60 | 8 | 6 | • | 6 | 6 | | | - | + | 12.5 | 13.5 | 14.4 | 15.2 | 15.8 | 16.4 | 17.0 | 17.5 | 17.9 | 18.3 | 18.7 | 19.0 | 19.3 | 19.6 | 19.9 | | | _ | + | 'n | 5 | * | 5 | w | | • | 3 | 7 | 8 | 8 | 6 | 6 | • | • | | | 56 | 11.3 | ò | 2 | 4 | | 5 | 9 | • | 7 | 7 | Œ | 60 | 6 | • | • | 0 | | | | | ~ | n | 4 | 5 | 10 | • | • | ۶. | 7 | • | 60 | 0 | 0 | • | 6 | | | 31 | 11.2 | 12.4 | 13.4 | 4.3 | 15.1 | 15.8 | 16.4 | 16.9 | 17.4 | 17.9 | 18.3 | 18.6 | 19.0 | 19.3 | 19.6 | 6.63 | | | | <u>.</u> | ? | 8 | 4 | 5 | 3 | • | • | 7 | 7 | • | 60 | 6 | 6 | • | 6 | | HAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.75 | 4 4 6 | | | | | | , | | 96∓ | , | | | ! | | | | | | |-----------------------|---|--|---|---|------------------------------|---------------------------------------|--------------------------|--|---|---|---------------------------------|--|--|------------------------------|-------------------------------------|--|--| | X | . R | 6.0 | 9.7 | 10 | 0 | 1.0 | 1:1 | 1.2 | 1.3 | 4 | - | 1.6 | 1.7 | - | | 2 | | | 000 | | | _ | | | | | | |
| 00 | | | 60 | | | | | | | | | | | | | | | 24.1 | 2000 | 70000
70000 | 0
0
0
0
0
0
0
1
0 | 0.
30.0
22.5
21.1 | 222
223
223
211 | 0.000.000.0000000000000000000000000000 | | | | | 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00.
00.
17. | 0.
0.
188.7 | 0.
20.
17.7
16.7 | 250
119.0
17.6 | 20.6
19.6
17.8 | 2000
1000
1000
1000
1000
1000
1000
1000 | 2000
2000
2000
2000
2000
2000
2000
200 | 20000
0000
0000
0000 | 0 4 4 4 6 8 8 6 4 6 0 0 0 8 6 8 | 20
110
110
100
100
100
100
100
100
100
1 | 100
100
100
100
100
100
100
100
100
100 | 20.5
20.1
19.9
19.8 | 40000 | 20000 | | | | 8 4 4 4 4 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 | 74888
74888
76880 | 4 4 4 4 8 4 7 8 4 7 8 4 9 6 9 6 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 | 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 15.2
15.2
15.3
15.4 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 40.87.9
40.87.9 | 24444
2777
84506 | 17.9
17.9
17.7
17.6 | 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 00000 | 111999
19999
1999 | 9 9 9 9 6
8 6 7 6 6 | 4 4 4 4 4
9 9 9 9 9
9 6 6 6 6 | 00000
0000
44440 | | | 00000
0000
0000 | | 12.8
12.7
12.6
12.6 | 80000000000000000000000000000000000000 | 4444 | | 44444
66888 | 44444
44444
44444 | 44444
44444
44444 | 17.6
17.6
17.6
17.6 | 44444
60 60 60 60
40 0 0 0 0 | 4 4 4 4 4 | 4 4 4 4 4
6 6 6 6 6 6
6 6 6 6 6 6 | 2001
1100
1100
1100
1100
1100
1100
1100 | 00000
0000
0000 | 99999 | 2222 | | | | | 120
120
120
130
130
130
130
130
130
130
130
130
13 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4 4 4 | 15.2 | 0.00
0.00 | 444
666
700
700 | 17.0
17.0
17.0 | 17.5
17.5
17.5 | 18.0
18.0 | 0 0 0
4 4 4 | 18.8
18.8
18.8 | 616 | 9 4 4 4 | 19.7 | | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.76 | ARP
OVER | | | | | | | | ₩ | | | | | | | • | 1 | |-------------------------|---|------------------------------|-------------------------|---|---|--|--|--|--|---|--|---------------------------------------|---|---|---------------------------------------|---------------------------------------| | 22 | 0.5 | 9.0 | 0.7 | 1 | | 4.0 | 1.1 | = | 1.3 | 4.4 | | 1.5 | 1.7 | - | | | | 80 0 | - | • | - | | - | | _ | ŧ | 00 | | | | | | | 00 | | '리 레'리 리 리
ㅁ 레 집 팅 릭 | | 90000 | 60000 | | | | | | | 00000
00000 | 20000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000
11000
0000 | 00001
140 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | 0.
0.
17.6 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.
21.
18.0 | 000
100
100
100
100
100
100
100
100
100 | 1200
1300
1300
1300
1300
1300 | 2224444
40884
74869 | 21
10
10
10
10
10
10
10
10
10
10
10
10
10 | 20
190
190
180
180
190 | 7 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 20.6
20.1
19.8
19.7 | 200.00
200.00
190.00 | 000000
00000
00000 | 00000
00000
00000 | | 0 1 0 8 6
0 1 0 8 4 | 04800
'V-30-1 | 44555
44556
4474 | N4444
V0400 | 0 4 4 0 8 | 11111
1000
1000
1000
1000
1000 | 8 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 111177
11077
10000
10000 | 17.7
17.5
17.5
17.5
17.5
18.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19 | 18.1
17.9
17.8
17.8 | 8 8 8 8 8
6 8 8 8 | 44444
8884
800
600
600
600
600 | 44000
44000
44000 | 9444
9444
8448 | 19.8
19.7
19.7
19.6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 20000
20000
20000 | | | 6. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. | 12.9
12.7
12.7
12.7 | 44444
88888
88779 | 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 | 4 4 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 111666 | 16.7
16.7
16.7
16.6 | 17.3
17.2
17.2
17.2 | 7.71
7.71
7.71
7.71 | 118
18
18
19
19
11
18 | 6 6 6 6 6 6
6 6 6 6 6 6
6 6 6 6 6 6 | 118
118
18
19
19
19 | 88888
6666
6666 | 9 9 9 9 9 1 1 1 9 9 9 9 9 9 9 9 9 9 9 9 | 9 9 9 9 9 | 00000 | | | ধ ৰ গ
লেল ল
লেল | 12.6
12.6
12.5 | 13.6
13.6
6 | 4 4 4
0 0 0 0 | 644
666
888
888 | 16.0
16.0
16.0 | 16.6
16.6
16.6 | 17.2
17.1
17.1 | 17.7
17.7
17.6 | 88 H
4 H H
4 H H | 18.5
18.5 | 18.9
18.9 | 19.8
19.2
19.2 | 19.6
19.6 | 0
0
0
0
0 | 20.1
20.1
20.1 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.77 | | l | | | | I | 1 | (| 8ET | | 1 | | - 0 | | | | • | |-----|------|--------|----------|------------|------------|-------|------|------|----------|------|------|------|---|------|------|----------| | A A | 0,0 | 9.0 | 6.7 | 0 . 0 | 3. | 1 · 0 | 4.4 | 1.2 | # · | 1.4 | 1.5 | 1.6 | # · · · · · · · · · · · · · · · · · · · | 90 | 1.9 | 2.0 | | 60 | • | • | 9. | 0 | • | i | 0 | • | 0 | . 0 | , | 0 | 0 | 0 | 0 | . 0 | | o | - | | 0. | | | | | | | | | | | • | | | | | | | | | | | | | | | | | 0 | . | | | | | | 0 | | | | | | | | 0 | 0 | | 7 | + | | | 0 | 0 | | • | | | • | 0 | 0 | 0 | • | 28.7 | 24.6 | 23.3 | 22.7 | | | 4.4 | | | | 0 | | | | | | | | 2 | + | • | - | - | | | | | | | | | 0 | • | 8 | - | 6 | 0 | 0 | 0 | | ÷ | | _ | 0. | • | 0 | 0 | 0 | 0 | 21.8 | 20.4 | 20.0 | 19.9 | 20.0 | 20.1 | 20.3 | 20.4 | 50.6 | 20.8 | | - | | | | | 2 | 6 | • | • | • | 6 | 6 | • | 0 | | 0 | 0 | | | | | | 0 | | • | 0 | 90 | 8 | 6 | 6 | 0 | • | ö | • | 0 | | 19 | | | | | 7 | ~ | 7. | 60 | 8 | 60 | • | 6 | • | 0 | • | 0 | | 50 | | 9 | E | • | • | 9 | • | 7 | 60 | 80 | • | 6 | 0 | • | • | 0 | | | (5 | 14.7 | 15.1 | 15.6 | 16.1 | 16.7 | 17.2 | 17.7 | 18.1 | 18.5 | 16.9 | 19.5 | 19.5 | 19.8 | 20.1 | 20.4 | | | m | 3 | 4 | 1 0 | 5 | • | 7 | 7 | æ | 80 | 8 | ٠. | 6 | • | • | 0 | | | N | ,
M | 4 | 5 | 3 | . 9 | 7 | 7 | | 8 | • | ٠. | 0 | • | | 0 | | | • | 3 | 4 | 4 | 3 | . 9 | · | 7 | 7. | 0 | • | 6 | • | 0 | 0 | 0 | | 25 | 3 | | 4 | 4 | 5 | * | • | 7 | 7 | 60 | • | 0 | • | 6 | | 0 | | | 11.8 | 12.9 | 13.9 | 14.8 | 15.5 | 16.2 | 16.8 | 17.3 | 17.8 | 18.3 | 18.7 | 19.1 | 19.4 | 19.7 | 20.0 | 20.3 | | | 6-4 | 2 | 3 | + | ĸ. | • | • | 7 | 7 | • | € | 6 | • | • | ô | • | | | + | 2 | 3 | • | N. | • | • | 7 | 7 | 60 | 90 | 6 | 6 | • | ċ | 0 | | - | 7 | 2 | P) | 4 | 5 | 9 | 9 | 7 | 7 | 60 | • | ٠. | 6 | 6 | 0 | 0 | | | -1 | 2 | 2 | 4 | rU. | • | • | 7 | 7. | • | • | 6 | 6 | 0 | • | 0 | | 31 | 11.4 | 12.7 | 13.7 | 14.5 | 15.4 | 16.1 | 16.7 | 17.3 | 17.8 | 18.2 | 18.6 | 19.0 | 19.4 | 19.7 | 20.0 | 20.3 | | | + | 2 | 3. | 4 | 1 0 | 9 | 9 | 1 | 7. | 60 | • | ٥. | o. | 6 | 0 | 0 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.78 | ARPOVER | | | | | | | | E | | | | | | | | | |--------------------------|---|------------------------|--------------------------|----------------------------------|--|---|------------------------|--|---|---|--------------------------------------
--|--|--|---------------------------------------|---| | FACTOR
[K1] | 0.5 | 0.6 | 0.7 | 0 . 0 | • | . 0 | 1 wel | 12 | 1.3 | | 1.5 | 1.6 | 1.7 | 1 4 | | 2 | | 1 00 0 | | | | | | • | 9.0 | | | 00 | | | | | | 0 6 | | 는 다 다 다 다
O 다 CV PV 수 | | | | | | 00000 | 00000 | 00000 | 00000 | | 23.7 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 0000
0000
000 | 0.0
0.23.7
21.8 | 0
28.2
21.7 | 0000
0000
1000
1000
1000
1000
1000
100 | | 50 6 7 8 8
50 6 7 8 8 | 00000 | | | | 0.
25.3
18.7 | 0.
20.3
18.3 | 22.0
19.6
17.8 | 200
200
200
200
200
200
200
200
200
200 | 222
202
1199
109
109
109
109
109 | 221
201
199
199
199
199 | 21.1
20.1
1.9.7
4.9.4 | 21.0
20.3
19.9
19.7 | 220
200
400
400
800
800 | 2000
2000
2000
2000
2000
2000 | 22222
20000
10000 | 21.2
21.0
20.0
20.0
7 | | | 11111
12245
1366
1366
1366
1366
1366
1366
1366
136 | 14.7.2
13.6
13.6 | 48444
987444
98749 | 60.00
60.00
60.00
60.00 | 16.0
16.0
17.0
17.0
15.0 | 10000 | 17.71 | 17.0
17.8
17.7
17.7
17.6 | 4444
80888
80440 | 18.6
18.6
18.5
18.5 | 0 0 0 0 0
0 0 0 0 0 | 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 19.7
19.7
19.6
19.6 | 20
20
10
10
10
10
10
10 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00000
0000
0000
0000
0000
0000
0000 | | 2020 | 12.1
11.9
11.8
11.7 | 13.2
12.9
12.9 | 44888
44888
40008 | 44444 | 7.00
7.00
7.00
7.00
7.00
7.00 | 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 144.0
146.9
16.9 | よきままさ
ファファ
5.5.4.4.4 | 18.0
17.9
17.9 | 60 60 60 60
4 4 4 4 4 | 441414
60 60 60 60
60 60 60 60 | 1100.0
1100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100. | 19.6
19.5
19.5
19.5 | 1199.9
1199.9
199.8 | 00000 | 2000
2000
2000
4444 | | 0 10 0 | 11.6 | 12.8
12.7
12.7 | 13.0
13.0
13.0 | 14.7 | #
#
#
#
| 16.2
16.2 | 16.8
16.8
16.8 | 4.7.4
4.7.4
4.7.4 | 17.9
17.9
17.9 | 8 8 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 23 44 44
80 80
80 80 | 19.2
19.1
19.1 | 19.5
19.5
19.5 | 19.8
19.8
19.8 | 2002 | 0.00 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK BENSITY #0.79 | 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | A N N N N N N N N N N N N N N N N N N N | | | | | | | | 9E | | | | | ! | | | |
---|---|------------|-------------|-----------|----|------------|----|-----|-----|----------|--------|----------|------|------|------|----------|------| | 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | K11 | 0.5 | 0 | | 60 | 0 | 0 | 1.1 | 1.2 | H . U | 4.4 | Α.
Ε. | 1.6 | 1.7 | 60 | 1.9 | 2.0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 60 | 0 1 | | • | .0 | 0 | | 0 | 0. | | | 0 | | | | | 0 | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | Φ | | | | | | | | _ | | | | | | • | | • | | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | | • | | 2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | | | | | | | | | | | | | | | 0 | • | | 3 0. </th <td></td> <td>0</td> <td>0</td> <td>0</td> <td>6</td> <td>9</td> | | | | | | | | | | | | | 0 | 0 | 0 | 6 | 9 | | 4 0. 0. 0. 0. 0. 31.5 24.5 5 0. 0. 0. 0. 23.5 21.2 23.5 22.0 21.2 6 0. 0. 0. 0. 20. 20. 7 0. 0. 0. 20. | | | | | | | | | | | 0 | 0 | 38.6 | 26.0 | 24.1 | 23.3 | 22.9 | | 0. 0. 0. 0. 0. 0. 0. 0. 23.5 21.2 23.8 22.0 21.2 0. 0. 0. 0. 0. 23.5 21.2 20.6 20.4 20.0 0. 0. 0. 0. 0. 20.0 20.8 19.7 19.5 21.0 20.6 20.4 20.0 0. 0. 0. 0. 22.4 19.1 10.6 10.6 10.6 10.6 19.0 19.3 19.7 19.0 0. 0. 0. 19.8 17.7 17.5 17.7 10.0 10.0 19.3 19.7 19.0 19.0 17.7 17.5 17.7 10.0 10.0 19.3 10.0 19.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10 | | | | - | | | | | | | •
• | + | 2 | 2 | 2 | - | + | | 0. 0. 0. 0. 0. 0. 0. 0. 23.5 21.2 20.6 20.4 20.0 0. 0. 0. 0. 0. 30.0 20.8 19.7 19.5 19.5 19.7 19.7 19.0 0. 0. 0. 22.4 19.1 18.6 18.6 18.8 19.0 19.3 19.0 0. 0. 0. 19.8 17.7 17.5 17.7 18.0 18.3 18.7 19.0 19.3 19.0 19.8 17.7 17.5 17.7 18.0 18.3 18.7 19.0 19.3 13.9 14.3 14.9 15.9 16.4 16.9 17.4 17.9 18.4 18.8 19.1 12.5 13.5 14.9 15.5 16.2 16.8 17.3 17.8 18.5 18.7 19.0 19.0 12.5 13.5 14.4 15.2 15.9 16.5 17.1 17.7 18.1 18.5 19.0 19.0 12.5 13.5 14.4 15.2 15.9 16.5 17.1 17.7 18.1 18.5 19.0 17.9 13.0 14.0 14.9 15.7 16.4 17.0 17.5 18.1 18.5 18.7 18.1 11.8 13.0 14.0 14.9 15.7 16.4 17.0 17.5 18.0 18.5 18.1 11.7 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.1 11.6 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.1 11.6 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.1 11.6 12.8 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.1 | | | | | | | | | 7 | P) | 8 | -1 | 1 | + | - | - | - | | 0. 0. 0. 0. 0. 22.4 19.1 18.6 18.6 18.6 19.7 19.5 19.7 19. 0. 0. 0. 0. 22.4 19.1 18.6 18.6 18.6 19.0 19.3 19. 0. 0. 0. 19.8 17.7 17.5 17.7 18.0 18.3 18.7 19.0 19. 15.6 15.2 15.4 15.9 16.4 16.9 17.4 17.9 18.4 18.8 19. 13.0 13.8 14.9 15.5 16.2 16.8 17.3 17.4 17.9 18.4 18.8 19. 12.5 13.5 14.4 15.2 16.2 16.8 17.3 17.7 18.1 18.5 18.7 19. 12.5 13.5 14.4 15.2 15.9 16.5 17.1 17.7 18.1 18.6 19. 12.5 13.5 14.4 15.2 15.9 16.5 17.1 17.7 18.1 18.5 18. 18.5 18. 11.9 13.0 14.0 14.9 15.7 16.4 17.0 17.6 18.1 18.5 18. 11.8 13.0 14.0 14.9 15.7 16.4 17.0 17.5 18.0 18.5 18. 11.7 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18. 11.6 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18. 11.6 12.8 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18. 11.6 12.8 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18. | | | | | | 0 | | 3 | - | 0 | 0 | 0 | 0 | 0 | c | 0 | + | | 0. 0. 19.0 17.7 17.5 17.7 18.0 18.0 19.0 19.3 19.0 19.0 19.3 19.0 10. 10. 19.0 17.7 17.5 17.7 18.0 18.3 18.7 19.0 19.0 19.0 15.2 15.4 15.9 15.4 16.9 17.4 17.9 18.4 18.8 19.0 13.0 14.3 14.9 15.5 16.2 16.8 17.2 17.7 18.1 18.5 18.9 19.0 13.0 13.8 14.6 15.3 16.0 16.6 17.2 17.7 18.2 18.6 19.0 12.5 13.3 14.2 15.1 15.9 16.5 17.1 17.7 18.1 18.5 18.6 19.0 12.0 13.1 14.1 15.0 15.7 16.4 17.0 17.6 18.1 18.5 18.5 18.5 18.5 18.5 18.5 18.5 | | | | | 0 | | | • | 6 | 6 | 6 | 6 | 0 | | 0 | 20.7 | | | 0. 19.8 17.7 17.5 17.7 18.1 18.3 18.7 19.0 19. 16.6 15.2 15.4 15.9 15.4 16.9 17.4 17.9 18.4 18.8 19. 13.9 14.3 14.9 15.5 16.2 16.8 17.3 17.8 18.3 18.7 19. 12.5 13.5 14.4 15.2 15.9 16.5 17.2 17.7 18.2 18.6 19. 12.5 13.5 14.4 15.2 15.9 16.5 17.1 17.7 18.2 18.6 19. 12.2 13.3 14.2 15.1 15.8 16.5 17.1 17.6 18.1 18.5 19. 12.0 13.1 14.1 15.0 15.7 16.4 17.0 17.6 18.1 18.5 18. 11.9 13.0 14.0 14.9 15.7 16.4 17.0 17.5 18.1 18.5 18. 11.6 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18. 11.6 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18. | | | | 0 | è | 6 | • | • | 80 | • | • | • | • | 0 | | 0 | 0 | | 16.6 15.2 15.4 15.9 16.4 16.9 17.4 17.9 18.5 18.9 19. 13.9 14.3 14.9 15.5 16.2 16.8 17.3 17.8 18.5 18.7 19. 13.0 13.8 14.6 15.3 16.0 16.6 17.2 17.7 18.2 18.7 19. 12.5 13.5 14.4 15.2 15.9 16.5 17.1 17.7 18.2 18.6 19. 12.5 13.5 14.4 15.2 15.9 16.5 17.1 17.7 18.1 18.6 19. 12.0 13.1 14.1 15.8 16.5 17.1 17.7 18.1 18.5 19. 11.9 13.0 14.0 15.7 16.4 17.0 17.5 18.1 18.5 18.1 11.8 13.0 14.0 15.7 16.4 17.0 17.5 18.0 18.5 18.1 11.7 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.1 11.6 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.1 11.6 12.8 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18. | | | | 0 | 7. | 7. | 7. | 8 | œ | 80 | 6 | 6 | 19.7 | | | 0 | 20.7 | | 15.6 15.2 15.4 15.9 15.4 16.9 17.4 17.9 18.4 18.8 19. 13.9 14.3 14.9 15.5 16.2 16.8 17.3 17.8 18.3 18.7 19. 13.0 13.8 14.6 15.3 16.0 16.6 17.2 17.7 18.2 18.7 19. 12.5 13.5 14.4 15.2 15.9 16.5 17.1 17.7 18.2 18.6 19. 12.0 13.1 14.1 15.0 15.7 16.4 17.0 17.6 18.1 18.5 18. 11.9 13.0 14.0 14.9 15.7 16.4 17.0 17.6 18.1 18.5 18. 11.8 13.0 14.0 14.9 15.7 16.3 17.0 17.5 18.0 18.5 18. 11.7 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18. 11.6 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18. 11.6 12.8 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18. | | | G () | • | • | • | | 7 | 80 | 80 | 80 | • | 6 | 0 | | 9 | 0 | | 13.9 14.3 14.9 15.5 16.2 16.8 17.3 17.8 18.3 18.7 19. 12.5 13.5 14.4 15.2 15.9 16.6 17.2 17.7 18.2 13.6 19. 12.5 13.5 14.4 15.2 15.9 16.5 17.1 17.7 18.1 18.6 19. 12.0 13.1 14.1 15.0 15.7 16.4 17.0 17.6 18.1 18.5 18. 11.9 13.0 14.0 14.9 15.7 16.4 17.0 17.5 18.1 18.5 18. 11.8 13.0 14.0 14.9 15.7 16.3 17.0 17.5 18.0 18.5 18. 11.6 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18. 11.6 12.8 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18. | | 9 | 5 | 8 | 5 | 8 | • | 7. | 7. | 00 | 8 | 6 | 19.5 | 19.8 | 20.1 | 21 4 | | | 3 13.0 13.8 14.6 15.2 15.9 16.5 17.1 17.7 18.2 18.6 19. 12.5 13.5 14.4 15.2 15.9 16.5 17.1 17.7 18.1 18.6 19. 5 12.0 13.1 14.2 15.1 15.8 16.5 17.1 17.6 18.1 18.5 19. 7 11.9 13.0 14.0 14.9 15.7 16.4 17.0 17.5 18.1 18.5 18.1 11.8 13.0 14.0 14.9 15.7 16.4 17.0 17.5 18.0 18.5 18.9 11.7 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.0 11.6 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.1 11.6 12.8 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.0 11.6 12.8 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.0 18.5 18.0 18.6 18.6 18.8 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.0 18.5 18.0 18.5 18.0 18.6 18.6 18.8 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.0 18.5 18.0 18.6 18.6 18.8 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5
18.0 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 | | 3 | 4 | * | 5 | • | 9 | | 7 | 8 | | • | 6 | 0. | 0 | 0 | 9 | | 12.5 13.5 14.4 15.2 15.9 16.5 17.1 17.7 18.1 18.6 19. 12.2 13.3 14.2 15.1 15.8 16.5 17.1 17.6 18.1 18.5 19. 12.0 13.1 14.1 15.0 15.7 16.4 17.0 17.6 18.1 18.5 18. 11.9 13.0 14.0 14.9 15.7 16.4 17.0 17.5 18.1 18.5 18. 11.8 13.0 14.0 14.9 15.7 16.3 17.0 17.5 18.0 18.5 18. 11.6 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18. | | 3 | 3 | 4 | 5 | • | • | 7 | 7 | 8 | æ | • | • | 0, | 0 | | | | 5 12.2 13.3 14.2 15.1 15.8 16.5 17.1 17.6 18.1 18.5 19.
6 12.0 13.1 14.1 15.0 15.7 16.4 17.0 17.6 18.1 18.5 18.
7 11.9 13.0 14.0 14.9 15.7 16.4 17.0 17.5 18.1 18.5 18.
8 11.8 13.0 14.0 14.9 15.7 16.3 17.0 17.5 18.0 18.5 18.
9 11.7 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.
11.6 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18. | | 2 | 10 | 4 | 5 | | 9 | 7 | 7. | • | 60 | 0 | • | 6 | • | 0 | 0 | | 12.0 13.1 14.1 15.0 15.7 16.4 17.0 17.6 18.1 18.5 18.7 11.9 13.0 14.0 14.9 15.7 16.4 17.0 17.5 18.1 18.5 18.9 11.8 13.0 14.0 14.9 15.7 16.3 17.0 17.5 18.0 18.5 18.9 11.7 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.0 11.6 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.1 11.6 12.8 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.1 | | 2 | 2 | - | 5 | 5 | • | | 7 | œ | 80 | • | 6 | 0 | 0 | 0 | 0 | | 11.9 13.0 14.0 14.9 15.7 16.4 17.0 17.5 18.1 18.5 18. 11.8 13.0 14.0 14.9 15.7 16.3 17.0 17.5 18.0 18.5 18.9 11.7 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.0 11.6 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.1 11.6 12.8 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.1 | | 2 | 3 | 4 | 5 | 5 | • | | 7 | 00 | 8 | • | 19.3 | 19.7 | 20.0 | 20.3 | 20.6 | | 8 11.8 13.0 14.0 14.9 15.7 16.3 17.0 17.5 18.0 18.5 18.9 11.7 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.0 11.6 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.1 11.6 12.8 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.1 | | + | 3 | 4 | + | 5 | | | 7 | 8 | 80 | • | • | • | 0 | 0 | | | 9 11.7 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.
0 11.6 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.
1 11.6 12.8 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18. | | + | 3 | 4 | 4 | ٠.
س | • | 7 | 7. | ස | 8 | • | 6 | 0 | | | | | 11.6 12.9 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18.
1 11.6 12.8 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18. | | + | 3 | 6 | 4 | Š. | • | • | 7 | 60 | œ | ି
ସେ | · | φ. | 0 | • | 0. | | 11.6 12.8 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18. | | | 2 | (A | 4 | 5 | • | • | 7 | 00 | 8 | • | 6 | 0 | 0 | 6 | 0 | | | | - | 3 | 3 | 4 | S. | • | 9 | 7. | 00 | 60 | • | 19.3 | 19.6 | 20.0 | 20.3 | 20.5 | | 2 11.6 12.8 13.9 14.8 15.6 16.3 16.9 17.5 18.0 18.5 18. | - | - 4 | 2 | 2 | 4 | 1 0 | • | • | 7 | œ | | • | 6 | 0 | 0 | • | 0 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.80 # THREE-HARNESS WEAVE FABRICS | | 1 | | | | 1 | | | BET | i | 1 | | 1 | | | Ł | 1 | i | |----------|--------|----------|----------|------|------|------|-------|------|------|--------------|------|------------|------|-------------|--------|------|---| | X . | 0.5 | 9.0 | 0.7 | 0.0 | | 1.0 | ₩ · ₩ | 1.2 | 1.3 | ₩. | | 1.6 | | 60 1 | 4.9 | 2.0 | | | 0
0 | 1 | 8
1 • | !
! • | 1 | | 1 . | • | 0 | • | 0 | | | | • | 0 | | 1 | | | | | | 0. | | 0 | | | | | | • | • | 0 | | | | | | | | | | | | | | | | | 0 | - | • | | | | | | 0 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 27.0 | 24.6 | 23.7 | • | | | T | • | C | Ö | • | | | | | | | | | 6 | 2 | 2 | ż | | | | | | | | 0 | | 0 | 0 | 4 | 2 | 1 | v-4 | wd | + | -4 | 4-1 | | | | | 0 | 0 | 0 | | 0 | 24.7 | 21.6 | 20.8 | 20.6 | 20.6 | 26.6 | 20.8 | 20.9 | 21,1 | 21.3 | | | | | | | 0 | | - | 0 | • | 6 | 6 | 0 | 0 | • | c > | 0 | + | | | | | | 0 | 4 | 0 | | 8 | 8 | 6 | 6 | 6 | 0 | | 0 | 6 | + | | | 40 | 0. | | 21.0 | • | | 7 | • | 80 | 6 | 6 | • | 6 | 0 | 0 | 0 | 0 | | | 20 | | 0 | • | 9 | 7 | | 7. | 90 | 60 | 6 | 6 | • | 0 | 0 | 0 | 0 | | | | 7. | 15.5 | 15.6 | 16.1 | | 17.1 | 17.6 | 18.0 | 18.5 | 18.9 | 19.3 | 19.6 | 19.9 | 20.2 | 29 , 5 | 20.8 | | | | | | 5 | 5 | • | • | | 7 | 8 | 8 | • | 6 | 6 | ç, | 0 | 0 | | | | ٠
د | 3 | 4 | Š | 0 | | ~ | 7 | 80 | о
О | • | 6 | 6 | 0 | 0 | 0 | | | 24 | 8 | 3 | • | 5 | | 9 | 7. | 7. | 60 | 40 | 6 | 6 | ů. | 0 | 0 | 0 | | | | 2 | 100 | * | 5 | N. | • | | 7 | 60 | œ | 0 | 6 | 0 | 0 | 0 | 0 | | | | 8 | 3 | 4 | S. | 5 | • | 7 | 7 | 80 | ф
Ф | • | о . | 6 | | 0 | 0 | | | | ċ | 3 | 4 | 5 | 5 | • | 7 | 7 | 8 | & | 6 | 6 | 6 | 0 | 0 | 0 | | | | 11.9 | 13.0 | 14.1 | 15.0 | 15.8 | 16.5 | 17.1 | 17.6 | 18.1 | 18.5 | 19.0 | 19.4 | 19.8 | 20.1 | 20.4 | 20.7 | | | 62 | | m | 4 | | 5 | • | 7. | 7 | œ | 80 | • | • | 6 | 0 | 0 | 0 | | | | + | ~ | * | 4 | 5 | .0 | 7. | 7. | 60 | • | 6 | ٥. | 0 | 0 | 0 | 0 | | | | 11.7 | 12.9 | 14.0 | 14.9 | S | 16.4 | 17.0 | 17.6 | 18.1 | 18.6 | 0 | 19.4 | 19.8 | 0 | 20.4 | | | | 32 | + | è | 3 | 4 | • | 9 | • | • | • | 60 | • | · | 6 | • | 0 | • | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.81 THREE-HARNESS WEAVE FABRICS | | | | | | | | | 867 | | | | ı | 1 | (
(| | | | |------|------|----------|------|------|------|----------|---------|------|----------|------------|-----------|--------|------|--------|------|------|--| | A T | 0.5 | 0.6 | 0.7 | 0.8 | - | 1.0 | 1.1 | 1.2 | | | | 1.6 | 1.7 | | 6.4 | 2.0 | | | 60 | | 0 | 0 | . 0 | | |
 c | 0. | 0 | 0 | 0 | | | 0 | • | | | | ው | | | | | | | | | | | | | • | • | | | | | | | | | | | | | | | | | | 6 | 0 | | | | | | | | | | | | | | | | 0 | 0 | ÷ | 7 | | | | | | 0. | ວໍ | | . | 0 | | 0 | | 9 | | 28.2 | 25.1 | 24.0 | • | | | | 0 | | | 0 | | | | | | | | • | 2 | 2 | N | N | | | | 0 | 0 | | | C | | | • | ľ. | 2 | N | + | • | w-1 | - | ÷ | | | | | | | | | 0 | 9 | 5 | + | 0 | 0 | 0 | + | ř | ** | + | | | | | | | 0 | • | 22.1 | 20.4 | 20.0 | 19.9 | 20.0 | | 20.4 | 20.6 | 20.8 | | 21.2 | | | | | | 8 | | 0 | 6 | 6 | 6 | 0 | 6 | 0 | 0 | • | 0 | • | ÷ | | | | 0 | 0. | | 8 | | 80 | 60 | 60 | • | ò | | 6 | 0 | 0 | 0 | · | | | 20 | | 0 | 7 | • | 7. | | 60 | 0 | 60 | 6 | • | 0 | 0 | 0 | 0 | - | | | | 0 | 15.8 | 15.8 | 16.2 | 16.7 | 17.2 | 17.7 | 18.2 | 18.6 | 19.0 | 19.4 | 19.7 | 20.1 | 20.4 | 20.7 | 20.9 | | | | 4 | 4 | 5 | 5 | • | | 7. | 80 | 8 | 60 | 6 | · | 0 | 0 | 0 | 0 | | | | 3 | 4 | + | 5 | 9 | • | 7 | æ | 8 | 8 | 6 | 0 | 0 | | 6 | 0 | | | | 12.8 | • | • | N. | • | • | 7 | | 60 | 60 | 0 | 0 | 0 | 0 | • | 0 | | | | 2 | 30 | 4 | 3 | 9 | • | * | 7 | 00 | 900 | • | 0 | 0 | 6 | 0 | 0 | | | | 2 | M | 4 | 5 | • | è | 7 | 7. | ъ. | 6 0 | 0. | ° | ď | 0. | 0 | 0 | | | | è | ,
M | 4 | 5 | Ŋ | 9 | 7 | ~ | 8 | ъ | • | • | · | 0 | | | | | | 2 | 3 | 14.2 | 15.1 | 15.9 | 16.6 | 17.2 | 17.8 | 18.3 | 18.7 | 19.5 | 19.5 | 19.9 | 20.5 | 20.5 | 20.8 | | | 62 | 11.9 | | • | r. | 5 | 6. | 7. | r- | 60 | 00 | • | ٠
ټ | 0 | 0 | 0 | 0 | | | - | -4 | 1 | * | 5 | 5 | é | 7. | 7 | e | 80 | 0 | 0 | 0 | ċ | 0 | 0 | | | | - | M) | 4 | 5 | D. | 6 | | 1 | a) | | 0, | o. | O | 0 | 0 | 0 | | | i Ci | 11.7 | 13.0 | 14.0 | 15.0 | 15.8 | 16.5 | 17.1 | 17.7 | 18.2 | 18.7 | 6-4
C: | 19.5 | 19.9 | 20.2 | 20.5 | 20.8 | | # MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA ## YARN BULK DENSITY #0.82 | | | | | | | | | 80 | | 10 | - 1 | | | | • | i | |----------|--------|----------|-------------|------|------|------|--------|------|------|------------|------|------|--------|--------|--------|----------| | KA10 | 0 | t | 0.7 | 0 | 0.0 | 1.0 | ਜ
ਜ | 1.2 | P) | * i | 7 | 1.6 | | ₩
₩ | 0 1 | 2.0 | | 60 | 1 | | | 0 | | 0 | 0, | 0 | . 0 | • | 0 | | 0 | • | • | 0. | | 3 | 0 | • | • | • | | | | | 0. | | | | | 0 | | • | | | | | (3) | | | | | | | | | | | | Ö | • | | | | | 0 | | | | | | | | | | | | | 0 | | | | | | | | | | | | | | | 6 | 0 | • | œ 1 | | | •
• | 0 | 0 | | 0 | 0 | 0 | j. | 0 | e. | 0 | | 29.7 | 25.7 | 4.4 | 80.00 | | 4 4 | | | | 0 | | • | | | | | | | ٠
د | · | 2 | N | | | | | | | | | • | 0 | • | 3 | 2 | | - | - | - | - | | | 0 | 0 | 0 | 0 | 0. | | 29.0 | 22.6 | 21.9 | 21.1 | 21.0 | 21.0 | 21.1 | 21.3 | 21.4 | 21.6 | | | | | | | | 2 | • | 6 | 0 | 0 | 0 | 0 | 0 | ٠
• | •
• | - | | | | | | | 0 | 0 | 6 | 6 | • | • | 9 | 0 | 0 | 0 | | $\dot{}$ | | 10 | | | | | • | | • | 60 | • | 6 | • | 0 | 0 | 0 | • | •
• | | 20 | | ы. | 7 | 7 | 7. | 7. | 8 | 60 | 90 | 0 | • | 0 | 0 | 0 | | - | | | 2 | 16.2 | 16.0 | 16.4 | 16.9 | 17.4 | 17.9 | 18.3 | 18.7 | 19.1 | 19.5 | 19.9 | 20.5 | 20.5 | 20.8 | 21.1 | | | 4 | 4 | 5 | 9 | • | | | 8 | 80 | 6 | • | • | 0 | 0 | • | ٠, | | | | 4 | 80 | 5 | 9 | | 7 | 8 | 8 | 6 | • | 6 | 0 | 0 | • | ÷ | | 24 | 2 | 2 | 4 | 5 | • | • | 7. | 9 | 60 | 60 | • | 0 | 0 | 0 | 0 | ÷ | | | 2 | * | * | S | • | • | | 80 | 60 | 60 | 0 | 6 | 0 | 0 | 6 | - | | | 2 | 30 | 4 | 5 | | • | | | 60 | 60 | 6 | 6 | 0 | 0 | • | -1 | | | ς. | 3 | 4 | 5 | • | • | 7 | 7. | 8 | œ | 0 | 6 | 0 | 0 | 0 | 0 | | | 12.0 | 13.2 | 14.3 | 15.2 | 16.0 | 16.7 | 17.3 | 17.9 | 18.4 | 18.8 | 19.3 | 19.7 | 20.0 | 20.3 | 20.7 | 20.9 | | 50 | • | m | 4 | IV. | 5 | • | 7. | | 60 | 60 | 0 | • | 0 | 0 | • | 0 | | | ** | P) | 4 | 5 | 41 | • | 7 | 7 | 60 | 60 | 6 | 0 | 0 | 0 | | 0 | | 31 | 11.8 | 13.1 | 14.1 | 15.1 | 15.9 | 16.6 | 17.2 | 17.8 | 18.3 | 18.8 | 19.2 | 19.6 | 20.0 | 20.3 | 20.6 | 20.9 | | | 7 | 3 | + | υ. | • | . 9 | | 7 | 80 | 8 | 6 | • | 0 | 0 | 0 | • | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.83 THREE-HARNESS WEAVE FABRICS | | | 0. | • • | 29.7 |
22.
22.
21.
21. | | | |-------------|-----|-------|-------|---------|--|---|--| | | - | 0 . 0 | | 24.8 | 2 2 7 7 7 | a a b b c c c | | | | | 1 0 | | 7,000 | 2 0 4 4 6 | | | | | 1.7 | 0 | _ | 32.1 | 2 2400 | 4 4 8 8 9 9 | 2.00.00 | | | ; - | 0 | - | | 2022 | 40000 | 00000 000
00000 000
000000 000 | | | - | 0.0 | - | | M 40 0 | | 44444 44 | | | • | 0 0 | - | 0000 | 2001
2001
2004
2004 | 40044 | 00000 000 | | 4 | • | 000 | | | 26.1
21.8
20.4
19.7 | 0.087.0 | ស្តេសស្តេស ស្តេ
ស្រុសស្រុស ស្រុស | | 96 | 1 | 000 | _ | | 20.02
19.5
19.5 | | 88.0
88.0
7.9 | | | - | 00 | | 000 | 35.9
21.2
19.5 | 18.3
18.0
17.8
17.7 | UUVUV UVV
UU444 444 | | | | 00 | | | 24.0
14.7 | 17.0
17.0
17.0 | 00.00 00.00 | | | 0 | 0.0 | | | 60
00
00
00
00
00
00
00 | 17.0
116.7
16.7
16.3 | 00000 000
0000 000 | | | 0.8 | | • • • | | 40000 | 47.4
46.6
45.8
45.8 | あちらるち らちょうちょうこう | | 1
1
1 | | | 000 | • • • • | 00000 | 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | V 10 4 4 W W W W | | | | | 000 | | | 4 0 10 4 4
8 0 0 4 0 | ти ч т т т т т т т т т т т т т т т т т т | | | 0.5 | | | 000 | 00000 | 3430 | 12.7
12.4
12.3
12.0
12.0
12.0
11.9
11.9 | | CAR. | ×1. | 50 sa | 0 H 0 | | 2.9 × 8 9 | | | # MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARD COVER FACTOR AND BETA TE GE ALLENDED AT & COTA | A R P
O V F R | | | | | | | | ←
W | | | | | | | | | | |------------------|----------|------------|------|------|------|----------|------|---------------|------------|------|------|--------|------|--------|------------|---------------|-----| | FACTOR
(K1) | 0.5 | 9.6 | 0.7 | 60.0 | 0.9 | 1.0 | | ; - | | | | - | 1.7 | 1 00 1 | 1.9 | , 0 | , , | | 000 | 1 | 1 | i | 1 | | 00 | 001 | | 000 | | 1 | | | 000 | 0 1 | C) W | स्यं य | | | 0 4 | | | | | 90 | | | | | | 30.7 | 25.4 | 24.0 | 23.4 | 23.1 | 22.9 | | | _ | | | | | | | | 0 | 0 | 4 | 2 | 2 | 2 | 2 | 2 | c. | | | | | | | | | 0 | • | 3 | 2 | | - | •
• | - | ب | - | + | | | | 0 | | ċ | 0 | 0 | 25.4 | 21.6 | 20.8 | 20.6 | 20.6 | 20.7 | 20.9 | 21.1 | 21.3 | 21.5 | 21.7 | | | | | | | | ب | 0 | • | 6 | 6 | 0 | 0 | 0 | 0 | -4 | ٠
• | 7 | | | 19 | | | | | | © | 60 | 6 | 6 | 6 | 0 | 0 | 0 | 0 | | ÷ | | | | | | 60 | 7. | 7 | 60 | 8 | 00 | 6 | 0 | 0 | 0 | 0 | 0 | • | +4 | | | | | 7 | • | ý | | 7 | 8 | 00 | 6 | 6 | 6 | 0 | 0 | 0 | <u>.</u> . | : | | | | 15.7 | 15.3 | 15.7 | 16.3 | 16.8 | 17.4 | 17.9 | 18.4 | 18.9 | 19.3 | 19.7 | 20.1 | 20.4 | 20.7 | 21.0 | 21,3 | | | | 0 | 4 | 5 | ľ. | · | | | 60 | 80 | 0 | • | | | Ċ | ر
چو | ; | | | 4 | ~ | 4 | r. | ŗ. | 9 | • | 7. | 8 | ස
• | • | 0 | | | O | ÷ | - | | | _ | 2 | M | 4 | ď. | 6 | 7 | - | 80 | œ | • | 0 | 0 | 0 | 0 | 0 | - | | | | 15.5 | 13.6 | 14.6 | 15.5 | 16.3 | 17.0 | 17.6 | 18.1 | 18.7 | 19.1 | 19.5 | 19.9 | 20.3 | 20.6 | 20.3 | 21.2 | | | | ۶. | M | 4 | 5 | • | · | 7 | 80 | a 0 | · | 6 | 6 | 0 | 0 | 6 | . | | | | 2 | 3 | 4 | J. | 9 | • | ۲. | 8 | œ | 6 | 6 | ٥. | 0 | | C | ÷ | | | 56 | 2 | M | 4 | 5 | • | ç | 7 | 60 | œ | φ. | • | 6 | 0 | 0 | 0 | | | | | 2 | 1 0 | 4 | 5 | 8 | 8 | ~ | 90 | 60 | 0 | 0 | 0 | 0 | S | 0 | _ | | | 31 | 12.0 | 13.3 | 14.3 | 15.3 | 16.1 | 16.8 | 17.5 | 18.0 | 18.5 | 19.0 | 10.5 | 19.3 | 29.2 | 20.6 | 20.9 | 21.2 | | | | c. | ~ | • | 10 | ÷ | ċ | | a 0 | or. | • | | r | | c. | <u>.</u> | ,
+-1 | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.85 THREE . HARNESS WEAVE FABRICS | | 1 | ı | | 1 | (| | | 8
F | | | | (| | í | | 1 | |------|------|----------|------|------|--------|----------|------|----------|------|------|------|------------|--------|----------|------------|----------| | X X | 0.5 | ı. | | 60 | 6.0 | 1.0 | 4.1 | 1.2 | • | | ·•4· | 4 | 1.7 | 00
با | 4.9 | | | 1 60 | | 0 | | 90 | • | 6 • | | | 0. | 0 | 0 | | | | | | | Φ | | | 9. | | | | • | | | | | | | | | • | | | | | | | | | | | | | 0. | 0. | 0 | | | • | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | 6 | • | 3 | | | | | | 0 | | 0. | 0 | 0 | 0 | 0 | 0 | 0 | | 28.0 | 25.7 | • | | 4 | | 0 | 0 | • | 0 | | | | | | 34.4 | | 4 | 3 | . | ,
, | | | | | | | 0 | | | | • | 80 | | ~ | 2 | 2 | N | 2 | | | | | | | | | 0 | 4 | ò | + | - | ~ √ | - | + | -1 | 2 | | | | | | | | 7 | 2 | ¥-i | 0 | 0 | 60 | - | - | - | - | . | | | | 0 | 0 | • | 2 | 20.4 | 19.9 | 19.9 | 20.0 | 20.5 | 20.5 | 20.7 | 21.0 | 21.2 | 21.4 | 21.7 | | | 0 | 0. | 0 | | | 60 | 6 | 6 | 0 | 0 | 0 | 0 | ٠
ت | . | - | + | | 20 | | | •0 | 7 | 7. | ® | • | 60 | - | | 0 | 0 | 0 | + | -4 | *4 | | | 0 | | 16.7 | 16.9 | 17.3 | 17.8 | 18.3 | 18.7 | | | 19.9 | 20.3 | 20.6 | 20.9 | 21.2 | 21.5 | | | 9 | 5 | e. | | 7 | 7 | œ | 60 | 6 | 6 | • | 0 | 0 | 0 | - | + | | | 4 | 4 | 'n. | 9 | ċ | | | Ø | 60 | • | • | | 0 | | •
ল | + | | | 13.4 | • | 3 | 10 | • | | | œ | €C | 6 | O | 0 | 0 | ~.
© | - 4 | ,
4-1 | | | ~ | 1 | 4 | 5 | | | 7. | 80 | 00 | 6 | • | | | 0 | - | - | | | 2 | 3 | 4 | 5 | ,
• | 7. | | 6 | 8 | 6 | • | 0 | 0 | | -4 | . | | | 2 | 3 | 4 | 5 | 9 | 4 | 7. | œ | 60 | 6 | 6 | 0 | 0 | 0 | -1 | + | | | | 13.5 | 14.6 | 15.5 | 16.3 | 17.0 | 17.6 | 18.2 | 18.7 | 19.5 | 19.6 | 20.0 | 20.4 | 20.7 | 21.0 | 21.3 | | | | ė | 4 | 5 | • | 7 | 7 | 80 | 00 | 6 | 6 | 0 | 0 | 0 | •
• | * | | | ~ | 3 | 4 | 5 | 9 | • | | 00 | ٠. | 1, | 0 | 0 | 0 | 0 | grd. | | | 31 | 12.1 | 13.3 | 14.4 | 15.4 | 16.2 | 16.9 | 17.6 | 18.2 | | 2 | 19.6 | 20.0 | 20.4 | 20.7 | 21.0 | | | | Ċ | 3 | 4 | 5 | • | 9 | | œ | œ | 0 | • | 0 | ċ | O | -1 | 7 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA #### YARN BULK DENSITY #0.86 | i | | | 90769 | 48020 | | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 444 | |--------|------------------|---------------------|--|---|--|--|---| | | 6 | | 909 | 0400K | 4 12 12 12 12 12 12 12 12 12 12 12 12 12 | 20004 | ままさ | | | get (| 00 | 20000 | 22222 | # # # # # #
0 0 0 0 0 | 22222 | 222 | | • (| - | ,
, | | 00000
04444
000440 | 40000 | 00000 | 20.08
20.08 | | | 1.7 | 000 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 00000
00000
00000
00000 | 2000
2000
2000
2000
2000 | 00000
0000
0000
0000
0000 | 20.5
20.5
20.5 | | | 4.6 | 00 | 8
90000. | 22223
2222
2022
2023
2034
2034
2034
2034 | 00000
00000
00000 | 20000 | 20.1
20.1
20.1 | | | 1.5 | | 6.000 | 20000000000000000000000000000000000000 | 20044
20040
20040 | 119.8
19.8
19.7
19.7 | 19.7 | | 1 | ₩ | | | 8 7 0 4 0 | 91191
91091
91091
91091 | 44666
44666 | 119.
19.
19. | | | 1 t-1 | | | 23.0
201.0
19.7 | 60.00
60.00
60.00 | 44444
88888
9998 | 13.8
13.8 | | BET | | | | 0000
0000
0000
0000 | 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 4 5 5 5 5 | 18.3
18.3 | | | | | | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 44444
88887
74709 | 117.9
17.8
17.7
17.7 | 17.7
17.7
17.7 | | | 1.0 | | | 122.2
193.2 | 14
14
14
17
19
19
19
19 | 2000
2000
2000
2000 | 17.0
17.0
17.0 | | | 0 . 0 | 00 | | 000040 | 807789 | | 166.3
166.3
166.3 | | | 0 . 0 | | | | 24444
666748
640740 | 44 45 45 45 45 45 45 45 45 45 45 45 45 4 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | | | 0.7 | | | | 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 24444
08773 | 444 | | | 9.0 | | 00000 | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 13.6
13.6
13.6 | E 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | 0.5 | 000 | | | 0044
0044
046 | | 12.2
12.2
12.1 | | 0. W + | A Z | 1
1
1
00 O | | 55 45 45 45 45 45 45 45 45 45 45 45 45 4 | | 2000 | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.87 | C | | | | | | | 1 | 96 | • | • | | 1 | | • | • | 1 | |------|------|----------|----------|------|------|------|------------|------|--------|------|------|------|----------|------|----------|------| | K11 | 0.5 | 9.0 | 9.7 | 8 | 6.0 | 4 | 1.1 | 1.2 | 1.3 | | 2.5 | 1.6 | | 1.8 | | 0 | | , co | 6 | | | | • | | | | | | 6 | | | 6 | | | | • | 0 | | | | | | | | | | | | | | | - | . | 0 | | 13 | 0 | 0 | • | 0 | · • | 6 | ° | • | | | | 0 | ٠
ا ه | 30.5 | 26.8 | • | | _ | | | | | | | | | | | | | | • | • | ? | | | | | | | | | | 0 | ပ | • | * | 3 | ~ | C1 | 2. | 2 | | _ | | | | | | | 0 | | ,
M | 2 | 2 | 8 | ~ | 5 | 2 | 'n | | - | | | | | | • | 5 | - | ** | + | - | - | 4 | - | - | è | | | 9. | 0 | 0 | 0 | 25.8 | 21,2 | 20.5 | 20.3 | 20.4 | 20.6 | 20.8 | 21.0 | 21.3 | 21.5 | 21.7 | 22.0 | | 19 | | | | | • | 0 | 0 | • | 0 | 0 | • | 0 | •
• | + | ÷1 | -4 | | 20 | | | 0 | 80 | • | 80 | 6 0 | 6 | • | 0 | 0 | 0 | 0 | | - | ÷ | | | 0 | • | 17.3 | 17.3 | 17.7 | 18.1 | 18.5 | 19.0 | - | 19.8 | 20.5 | 20.5 | 20.8 | 21.2 | 21.4 | 21.7 | | | 7 | | \$ | • | 7 | | ® | 60 | 6 | • | 0 | 0 | | + | - | | | | 4 | Š | 3 | | 7 | | • | * | • | • | • | 0 | 0 | - | - | +4 | | | - | • | N | • | • | | 80 | 60 | 6 | 0 | • | 0 | 0 | - | =1 | -1 | | 25 | 3 | 4 | | K. | • | | • | | 6 | 0 | 0 | 0 | 0 | + | • | · | | | 12.9 | 14.0 | 14.9 | 15.8 | 16.6 | 17.3 | 17.9 | 18.5
| 19.0 | 19.5 | 19.9 | 20.3 | 20.7 | 21.0 | 21.3 | 21.6 | | | 2 | 3 | | 5 | • | | 7 | 8 | 6 | • | • | 0 | 0 | +4 | | - | | | 2 | F | • | 5 | 9 | | - | 8 | æ | • | 0 | 0 | 0 | - | - | - | | | 2 | M | 4 | 5 | Ġ | | | • | • | 0 | 0 | 0 | 0 | H | - | -1 | | | Š | 2 | 4 | 5 | 9 | 6 | 7 | | | 6 | • | 0 | 0 | - | - | + | | | 12.2 | 13.5 | 14.6 | 15.5 | 16.4 | 17,1 | 17.8 | 18.4 | 18.9 | 19.4 | 19.8 | 20.2 | 20.6 | 20.9 | 21.3 | 21.6 | | e e | 8 | 5 | 4 | 5 | • | 7 | 7. | 60 | 60 | 6 | • | 0 | 0 | 0 | -1 | # MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.88 | | | • • | 0000 | | 0 0 0 0 p | 27.7.7 | , r, r | |--------|------|-----|--|--------------------------------------|--|---|---------------------------| | • | 6 | | 4.1 | 04101 | 60 R R R | 4444 | 444 | | , | | i | NN | できるのの | 42222 | 22222 | 222 | | | - | 00 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 2222
2222
2222
2426
2426 | 21.3
21.3
21.2
21.2 | 21.1
21.1
21.1
21.1 | 24.1
21.1
21.1 | | | 1.7 | 60 | 00.00.00. | 223.2 | 21.1
20.0
20.9
20.9 | 20.08
20.08
20.7 | 20.7
20.7
20.7 | | | - | | | 227.23
221.52
201.52 | 2000
2000
2000
2000
2000
3000
3000
3000 | 00000
44444 | 4.002 | | | .5 | | | 888888
48408
64408 | 000000
00000
40011 | | 20.0
19.9 | | | 1 • | | | 8.000
8.000
8.000 | 119.0
199.0
199.7 | 9999 | 0 0 0 0
0 0 0
0 0 0 | | | . 10 | 00 | 00000 | 2222
2223
234
236
236 | 00000
00000
00000 | 0 0 0 0 0
0 0 0 0 0 | 19.0 | | E E | | | | 0000
0000
0000
0000 | 4 4 0 0 0 k | 44444
88888
68888
6888
6888
6888
6888
6 | ####
####
| | | 1.1 | 000 | | 0.
23.9
20.7 | 19
19
19
19
19
19
19
19 | 11811
11811
1790 | 17.9
17.9 | | | | | | 0.
0.
21.7
19.6 | 18.7
18.7
17.9
17.7 | 7 4 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 | 17.2 | | | 0 | | | 00000 | 81444
81444
81744 | 8 7 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 116.3
16.3
16.3 | | | | | | 2000 | 2444
4664
6664
6664
6664
6664
6664
6664 | 44444
4777
4769
4 | 15.7
15.6
15.6 | | | 10 | 000 | | | | 200444
00088 | 14.7 | | | 9.0 | 000 | | | 19.7
15.3
15.6 | 44 B B B B B B B B B B B B B B B B B B | 13.6
13.6 | | | 0.5 | | | 00000 | | 13.3
12.7
12.6 | | | 0. 111 | X C | 000 | | | | 2222
202
203
203
203
203
203
203
203
203 | | | | | | | 2.02 | | | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.89 | 2 4 | | | | | | | | 96 | 1 | | . 1 | 1 | | . (| | | |---------------------------|--------------------|----------------------|--|--|---|---|--|-------------------------------------|-----------------------------------|--------------------------------------|---|---------------------------------------|---|--------------------------------------|--|--| | FK 10 | 0.5 | 9.0 | 0.7 | | 0.0 | 4.0 | + | 1.2 | ומו | • | 1 | | | 1.8 | 5 | | | 600 | | | • | - | • | | _ | | | • • | | | | | 00 | | | '대'라 러 러 커
O 러 (V P) 4 | | | | 00000 | 00000 | 00000 | 60000 | 00000 | | | | 00000
4 | 2000.
8000.
8000. | N W O O O | 00004 | | | . # # # # # #
10 | 00000 | | 60000 | 00000 | 37.55 | 4000
4000
4000 | 2004.40 | 00000 | 0 4 4 0 0
0 4 4 0 0
0 60 60 | 2022
2022
2022
2036
2036 | 20000
20000
20000
10000
10000 | 22.
22.
21.
21.
21.
1. | 2222
2222
4.4.2
2.1.1
2.1.1 | 2022
2022
2022
2022
2020 | 2000
2000
2000
2000
2000 | 828
828
828
828
828
838
838
838
838
838 | | | 00004
6000 | 0 4 6 4 6 | 22
22
24
26
26
26
26
26 | 10.7.7
17.7
16.6 | 118.0
17.3
17.0 | 9 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.00 H H H H H H H H H H H H H H H H H H | 199.19 | 44444
60000
00000 | 20011 | 00000
00000
04mm | 20.0
20.7
20.7
20.6 | 221.1
221.1
201.0
20.0 | 22222
111111
24488 | 222
222
222
223
24.0
36.0
36.0
36.0
36.0
36.0
36.0
36.0
36 | 222.0
221.0
211.9 | | 0 0 0 0 0
0 0 0 0 | 4467.00
4467.00 | 44433
4000 & | 44444
80844
80006 | 44444
44666
4666 | 1166
1166
1166
1166
1166
1166
1166
116 | 44756
44756 | \$ 40 60 F | 8 7 7 9 9
9 9 9 9 9
9 9 9 9 9 | 80000
80000
80000 | 4444
99999
77779 | 2222 | 00000
0000
00000
00000 | 00000 | 22222 | 90000
9444
9444
9646
9646
9646
9646
9646 | 21.8
21.8
21.8
21.8 | | 8 8 8 8
2 4 6 | 12.5 | 13.7
13.7
13.6 | 14.8
14.8
14.7 | 50 C C C C C C C C C C C C C C C C C C C | 16.6
16.6
16.6 | 17.3
17.3 | 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 18.6
18.6 | 4.00 | 19.6
19.6 | 200 | 200.00 | 20.03 | 21.2
21.2
21.2 | 21.5 | 21.8
21.8 | # MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.90 | | | | | | | | | 9E ₹ | | | | • | !
! | 1
1 | 1 | 5
6
0 | 1 | |-----------|------|---------|------|------|------|------|------------|------|-----------------------|----------|------|------|-------------------|--------|------------|-------------|---| | A N | 0 | 9.0 | 6.7 | 0 | . 0 | 1 🕶 | 1:1 | 1.2 | 1
1
1
1
1 | 4 | 5 | 1.6 | 1.7 | ज्य । | 1.9 | 2.0 | | | 1
00 0 | | • | 6 | | . 0 | | • • | • | 0 | 0 | | | | | | 00 | | | > | | | - | - | | | | | | | | | | | | | | | 6 | 0 | | | - | | | | | | 0 | 0. | 0 | | 0 | 0 | 0 | | 43.6 | | • | | | 4 | 0 | 0 | 6 | 9. | 0 | | | | | | | | 9 | | 4 | • | | | | | | | | 0 | | | • | 0 | - | 5 | 4 | 77 | 2 | P) | 3 | | | | | | | | | | 0 | ċ | S. | ₩ | 2 | 2 | 2 | 2 | 2 | 2 | | | | | | | | | 0 | 8 0 | o | 2 | - | - | 7 | 2 | 2 | ~ | 3 | | | | | 0 | 0 | 0 | | • | 21.3 | 21.0 | 20.9 | 21.1 | 21.2 | 21.5 | 21.7 | 21.9 | 25.5 | 22.4 | | | 19 | 0 | | 0 | 29.1 | 21.0 | 0 | 0 | 0 | 0 | 0 | • | 7 | - | v4 | 2 | 5 | | | | | 0 | 4 | 0 | • | • | • | • | 0 | 0 | 6 | | - | • | • | 2 | | | | | 3 | | 7. | 8 | 60 | • | 6 | ٠.
ص | | | 0 | + |
+1 | - | ò | | | | 4 | . 9 | | 7 | | 8 | © | 6 | • | 0 | • | 0 | + | ٠
ټ | + | 5 | | | | 5. | 15.6 | 16.1 | 16.7 | 17.4 | 18.0 | 18.5 | 19.0 | 19.5 | 20.0 | 20.4 | 20.8 | 21.1 | 21.4 | 21.7 | 22.0 | | | | 14.2 | • | æ. | 9 | | | 60 | • | • | 6 | 9 | 0 | ÷ | vd | ÷ | N. | | | 25 | 3 | - | 80 | • | 7 | | • | 60 | 0, | • | | 0 | - | - | - | è | | | | | 14.3 | 19.3 | 16.1 | 16.9 | • | 18.3 | 18.8 | 19.5 | 19.8 | 20.3 | 20.7 | 21.0 | 21.4 | 21.7 | 22.0 | | | | 0 | 4 | 5 | • | • | 7 | 8 | 60 | • | 6 | | 0 | + | + | - | 3 | | | | 2 | 4 | 5 | • | 9 | | 80 | 80 | • | 6 | 0 | 0 | . | + | - | ; | | | | | 5 | 5 | 'n | 9 | - | 60 | æ, | o. | • | | 0 | • | 1, | 7 | · | | | | 2 | 3 | * | r. | *0 | 7 | 60 | 60 | 6 | • | | 0 | ÷ | + | # 1 | 4-1 | | | 31 | 12.5 | 13.8 | 14.9 | 15.8 | 16.7 | 17.4 | 18.1 | 18.7 | 19.5 | 19.7 | 20.5 | 20.6 | 21.0 | 21.3 | 21.6 | 21.9 | | | | 8 | ,
(M | 4 | M' | • | 7. | 60 | 80 | 6 | • | 6 | | ,
, | + | - | | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.91 | COARP
COVER
FACTOR | 0 | . 0 | | 1 • | . 0 | 10 | 1 4 | 9ET | - | 1 4 | 1 91 | . 0 | ! + | | . 6 | | • | |---|------|------|----------|------|------|------------|------------|----------|----------|------|----------|----------|----------|------|------|----------|---| |) () () () () () () () () () (| 0. | 1 6 | 6 | | 0 | 1 6 | | : . | . 0 | 0 | - | 0 | 0 | - | | 0.0 | • | | 0.05 | | | | | | | | 0. | | | | • | • | | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | • | • | | | | | | 0 | | | | 0 | 0 | | • | | 0 | 0 1 | 01 | 29.9 | | | | * | 0 | | | | | | D | | | | | | | | 4 | 4 | | | | | | | | | | | | 0 | 10 | • | 4 | 4 | 3 | 3 | 1 | | | | | | | | | | • | 0 | F | 3 | 8 | 8 | 2 | 2 | 0 | 'n | | | | | | | | | 0 | 7 | 3 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | ċ | | | | | | | 0 | 0. | • | 21.7 | 21.2 | 21.1 | 21.2 | • | | 21.8 | 8 | 22.3 | 22.5 | | | 13 | 0. | | 0 | 0 | | 20.4 | 0 | | 0 | 0 | -1 | -4 | <u>.</u> | | 2 | 2 | | | | | | | 0 | • | _ | • | 6 | 0 | • | 0 | - | · | + | 2 | Ś | | | | | , vo | • | 8 | æ | 6 0 | 6 | 6 | • | 0 | 0 | + | ÷-4 | • | ė | 5 | | | | 0 | 17.3 | 17.0 | 17.3 | 17.8 | • | 18.8 | 19.3 | 19.8 | 0 | 20.6 | 20.9 | 21.3 | 21.6 | 21.9 | 22.2 | | | | • | ıv. | • | • | 7 | • | 69 | 6 | 6 | 0 | <u>.</u> | 0 | + | ** | + | ċ | | | | 14.4 | • | M | • | 7 | 7 | • | 6 | 6 | • | 0 | 0 | 7 | - | +1 | ÷ | | | 25 | 3 | 4 | 8 | 9 | 7 | 7 | • | 6 | 6 | 0 | 0 | 0 | + | | • | 2 | | | | 3 | 4 | ĸ. | • | 7 | 7 | 6 0 | 8 | 6 | 6 | 0 | 0 | | - | + | 2 | | | | M | 4 | . | • | ò | 7 | €. | 60 | 6 | 6 | 0 | | 7 | • | - | ۲. | | | | 12.9 | 14.1 | 15.1 | 16.1 | 16.9 | 17.6 | 18.3 | 18.9 | 19.4 | 19.9 | 20.3 | 20.7 | 2: .1 | 21.5 | 21.8 | 22.1 | | | | 2 | 4 | S | • | • | | •
• | ٠
20 | • | • | ô | | . 1 | - | -1 | 8 | | | | C) | 100 | | • | | | a | 80 | 6 | 6 |
62 | 0 | - | •-4 | - | 2 | | | 31 | 12.6 | 13.9 | 15.0 | 15.9 | 16.8 | 17.5 | 18.2 | 18.8 | 19.3 | 19.8 | 20.3 | 20.7 | 21.1 | 21.4 | 21.7 | 22.0 | | | | 8 | P) | ₹ | 3 | 9 | 7. | 60 | c | • | 6 | 0 | - | + | - | *** | <u>ن</u> | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =0.92 # THREE-HARNESS WEAVE FABRICS | a w F | | 5 | | • |)
)
)
) | • | • | B . | | | • | 1 | | | | | |--------------------------|--|--------------------|-----------------------|---|------------------------------|---|--|---|---------------------------------------|---|---------------------------------------|--|--|---|---|---| | [X 1] | | • 1 | 6.7 | 0.8 | 0 | 1.0 | #.1 | 1.2 | 10 | + 1 | 1.5 | + ! | | 1.3 | | - | | 60 0 | 00 | | | | | 00 | | 00 | | | | 00 | | 00 | 60 | • • | | 9 4 8 5 4
0 4 8 5 4 | | | 00000 | 00000 | | 00000 | 00000 | | 00000 | | | | 2000.
2000. | 26.2 | 24.
24.
25. | 0
0
0
7
7
8
8 | | ਨ ਨਿ ਨ
ਜਿ ਦੀ ਦੀ ਦੀ ਦੀ | | | 00000 | | 0.
0.
0.
52.1 | 0.00.00.00.00.00.00.00.00.00.00.00.00.0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 22.7
22.6
21.3
20.7 | 0 4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0
5 0 0 0 0
4 6 6 0 | 22.53
22.23
21.28
31.88 | 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 22223
22223
2222
2222
2222
2222
2222
2 | 8 3 7 7 8 8 8 9 7 7 8 8 9 9 7 7 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 223.7
223.2
22.7
22.7
3 | | 04224
04224 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 0.
17.7
16.0 | 0.444 | 0.4444
0.00
4.470
0.00
0.00 | 0 8 8 0 7 7
8 8 0 9 4 | 44444
9889
8989
0000 | ###################################### | 0.000
0.000
0.000
0.000 | 20.3
20.4
19.9
19.8 | 00000000000000000000000000000000000000 | 20000
20000
20000 | 211.0
211.0
21.0
1.0 | 0.0000
0.11000
0.11000
0.11000
0.11000 | 21.9
21.7
21.7
21.7 | 00000
00000
00000 | 22222
2222
448
448
523
533
544
548
548
548
548
548
548
548
548
548 | | 2020
2000
2000 | 44444
88888
9488 | 44444
666664 | ######
#######
 | 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 17.2
17.1
17.0
16.9 | 17.9
17.8
17.7
17.7 | 1111111
80888
80888 | 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 2000 | 00000
0000
0000
0000
0000 | 00000000000000000000000000000000000000 | 21.22
21.22
21.23
21.23 | 00000
11111
2000
0000 | 800000
4444
99999 | 22.52.5 | | 30
32
32 | 12.7
12.6
12.6 | 14.0
13.9 | 13.0 | 16.1
16.0
16.0 | 16.9
16.9
16.8 | 17.6
17.6
17.6 | 13.3
18.3
18.3 | 1
8
1
8
9
9 | 2.61
4.61
4.61 | 20.0
19.9 | 2002 | 20.8
20.8
8.8 | 21.2
21.2
21.2 | 24.46 | 21.9
21.9
21.9 | 22.2 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.93 | - | | | | | | | | 8E1 | | | , | | | , | (| | |------|------|---------|------------|------|----------|------|------|------|--------|----------|----------|------------|------|------------|------|------| | X | | 9.0 | 6.7 | 0 | 0 | 4.0 | • • | 1.2 | ₩
1 | *** | | 1.6 | 1.7 | 60 | 6.4 | | | 60 | | | . 0 | | !
• • | 0. | | | 0 | | | | 0. | . 0 | 0 | 0. | | 0 | | 0. | • | | 0. | • | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | - | | | | | | | | | | • | | - | | | | | | | | | | | | | | | 0 | 0 | | ## · | | 0 | | 0 | | • | | . 0 | | • | | | | • | 32.7 | 28.4 | | - | | | | | | - | | | | | | | | 0 | | 'n | | | - | | | | | | | | 0 | 0 | 7. | 5 | * | 4 | * | 3 | | | - | | | | | 0 | | 0 | 7 | 4 | | m | 3 | 3 | 6.5 | ۲) | | | - | | | | | 0 | 0 | + | 6, | 2 | 2 | 2 | 0 | 0 | 2 | 3 | | | | 0 | | 0 | 0 | | 22.4 | 21.7 | 21.5 | 21.6 | 21.7 | 21.9 | 22.1 | 22.4 | 22.6 | 22.8 | | 10 | 0 | | | | | - | 0 | 0 | • | . | • | + | • | 0 | 2 | 5 | | 20 | | | 6 | | • | | 19.8 | 0 | 0 | 0 | 21.1 | - | • | C | C | 2 | | | 0. | 0 | • | 18.6 | 18.7 | | 6 | 19.8 | • | 20.6 | 6 | • | • | + | 2 | 2 | | | | • | | 7 | 80 | 60 | 6 | • | 0 | 0 | 6 | + | | + | 2 | 5 | | | 7 | | 16.6 | 7 | 7 | œ | • | 6 | 6 | 0 | 0 | ~ i | + | +4 | 2 | 5 | | | 14.9 | ال
• | • | • | | 40 | • | 6 | 0 | 0 | (C) | • | | • | 22.1 | 22.4 | | 25 | 4 | * | | • | 7 | • | • | 6 | • | 6 | | + | - | + | ~ | 0 | | | 3 | 4 | | | 7. | | • | • | • | 0 | 6 | * | + | - | 2 | 2 | | | 3 | 4 | | • | | | 60 | 6 | 6 | 0 | | *4 | + | + | 2 | Ĉ | | _ | 13.1 | 14.3 | 15.3 | 16.3 | 17.1 | 17.8 | 18.5 | 19.1 | 19.6 | 20.1 | 20.6 | 21.0 | 21.3 | 21.7 | 22.0 | 22.3 | | 50 | 2 | ÷ | W | • | 7 | 7 | 60 | ò | • | 0 | • | O | + | v 4 | 5 | 'n | | | 2 | * | 1 0 | 9 | | | • | • | • | 0 | • | 0 | - | ÷ | 2 | 2 | | 0.30 | 2 | 4 | 80 | 16.1 | 17.0 | • | 18.4 | 19.0 | 19.6 | 0 | C | 20.9 | | -0 | 2 | | | 32 | 12.7 | 14.0 | 18.1 | • | • | 17.7 | • | * | • | 20.0 | 20.5 | • | | 21.7 | 22.0 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #6.94 MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =1.00 MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =1.36 | a >
□ m | | | | | | | | E | | | | | | | | | | |------------|------|--------|-----------|----------|------------|------|----------|--------|------|----------|------|------------|------|----------|------|----------|---| | ACT0 | 0.5 | 9.0 | 6.7 | 0.8 | 0.9 | • | - | 1.2 | 1.3 | 1 4 | • | | 1.7 | 1 44 1 | 10 | 2.0 | | | 000 | 1 | • | - | 00 | | 000 | | | 00. | 000 | 00 | | 000 | 00 | | S |) | | | e | 0. | 0. | - | | | | | | | | o ≠ | | | | | | | | • • | | | | | | | | | | | | | | | | .0 | | | | | | | | | 0 | 0 | • | | | | | - | | | 0 | | 0 | ,
C | 0 | 0 | | 0 | | 50.0 | 35.4 | 5 | | | | | 6 | | | 0. | | | | | | | 0 | • | -4 | 0 | • | | | | | - | | | 0 | | | | 0 | 0 | | | O | 6 | • | 6 | | | 49 | 0 | c
C | | | | | | | 43.5 | | • | 6 0 | œ | <u>.</u> | œ | œ | | | | | | | | | | 0 | 4 | 6 | 60 | | 7 | 7 | 7 | 7 | 60 | | | | | | | | | 0 | 0 | 7 | 7 | 9 | • | 9 | r. | 7 | 7. | 7 | | | | | | | | 10 | 40 N | • | . u | r u | u o | . u | · • | 9 | | | ,, | | | 0 4 | | | | 26.2 | 24.2 | 24.0 | 24.1 | 24.4 | 24.8 | 25.2 | 25.6 | 25.9 | 26.3 | 26.6 | 27.0 | 27.3 | | | - | | | K | 1 | ~ | 8 | 1 | 4 | 4 | + | | 5 | 9 | • | • | , | | | | 0 | 25.5 | 22.0 | 21.9 | 22.2 | 22.7 | 23.2 | 23.8 | 24.3 | 24.8 | 23.2 | 25.7 | 26.1 | 26.5 | 26.8 | 27.2 | | | | · | 0 | 0 | : | + | 2 | 3 | 3 | 4 | ÷ | 5 | 5 | 9 | • | • | 7. | | | - | | 0 | 0 | • | ÷ | ċ | ċ | 3 | 4 | ÷ | £. | Š | • | • | • | ~ | | | 50 | œ | 60 | • | 0 | | ò | ? | 3 | m | • | υ. | ľ. | 'n | • | • | , | | | | 7 | œ | 0 | 0 | + | • | 2 | 3 | 3 | + | 5 | 5 | v. | • | 9 | | | | 3.5 | 16.6 | 17.8 | 18.9 | 20.0 | 56.9 | 21.7 | 22.5 | 23.2 | 23.8 | 24.4 | 24.9 | 25.4 | 55.9 | 26.3 | 26.7 | 7 | | | | 9 | 7. | 60 | 6 | c) | - | 0 | M | 3 | 4 | 4 | 5 | 5 | • | 9 | 7 | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #1.48 | | 5 | 340.0
34.1
31.1 | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2288 | 288.11.288.188.1 | |------|-------|---|---
--|---|---| |
 | 6 1 | 34.7 | 0 8 8 8 8 8 4 9 9 4 8 | 11000 | 22.7.5
2.7.6
8.7.6
8.6 | 227.8
227.8
27.7
27.7 | | 1 | 9 1 | 00.00 | 4 00 4 H Q | 27.77 | 00000
00000
00000 | 44 W W W W | | ļ | | 0 | 4.60.60 | 4 E C C C C | 26.9 | 000000 | | | 1.6 | | 7.00 m | | 20000
00000
00000
00000 | 000000
00000
00000
44444
4 | | | 1.5 | 000 4 | 80 K K K | 66666
7 10 4 0 0 | 4.0000 | 2 202035
2 252035
2 2 2 2 2 2 2 | | | 1 4 1 | 0000 | 31.9
29.1
27.8
26.6 | 25.50
25.90
25.90
25.90 | 0.0000
6.0000
6.00044 | 222223
222223
242223
242223
24223
24223
2423
2423
2423
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
2433
243
24 | | | | 0000 | 38.1
30.1
28.0
26.9 | 222
222
25
25
25
25
25
25
25
25
25
25
25 | 0.000
0.000
0.000
0.000 | 87.44
8.4.44
8.4.44
7.4.4 | | 8E | 1.2 | 0000 | 33.7
28.7
27.0
26.1 | 255
255
255
255
255
255
255
255
255
255 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 44444 4
10000 0 | | | | 0000 | 00476 | 2.44.25
2.44.25
2.44.25
2.36.08 | 223.5
23.5
23.5
44.8 | 888888 8
888888 8
888888 8 | | | 1.0 | 0000 | 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 23.0
22.4
22.7
22.6 | 000000 00
000000 00
000444 00 | | | 0 . | 0000 | 0.
0.
28. | | 22.7
22.8
21.8
21.7 | | | | 60 | 0000 | | 27.5 | 221.1 | 00000 0
00000 0
00000 0 | | | r. 7 | | | 27.1
23.2
21.8
20.9 | 000
000
000
000
000
000
000 | 00000
0000
0000
0000
0000
0000
0000
0000 | | | | | | N N N N N N N N N N N N N N N N N N N | 19.0
10.0
118.7
118.7 | 18.0
17.9
17.8
17.8
17.5 | | | | 000 | 00000 | 20
00.00
00.00
01.50 | 19.1
17.4
17.0
16.7 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 5 m | ACTO | 1 4 4 4 4 6 6 7 8 9 9 | | 20000 | | | | | | | | 1.47 | | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =1.50 | BETA | .5 p.6 n.7 p.8 p.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2. | . n. n. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 41.6 35.6 . n. n | 0. 0. 0. 0. 42.8 32.8 30.8 30.1 29.8 29.7 28.4 28.4 28.4 28.4 28.4 28.4 28.6 28.9 29.7 29.7 29.7 26.4 26.4 26.5 26.5 26.8 27.2 27.5 27.5 27.5 27.5 27.5 27.8 28.5 28. | . 0. 28.9 25.9 25.4 25.5 25.7 26.1 26.5 26.9 27.3 27.7 28. 0. 28.9 24.8 24.3 24.5 24.9 25.3 25.8 26.3 26.7 27.1 27.5 27. 22.7 23.8 23.3 23.3 24.0 24.5 25.0 25.6 26.1 26.6 27.0 27.4 27. 22.9 22.1 22.4 23.0 23.6 24.2 24.8 25.4 25.9 26.4 26.9 27.3 27. 22.9 22.1 22.4 23.0 23.3 24.0 24.7 25.3 25.8 26.4 26.8 27.3 27.3 | .6 19.9 20.6 21.5 22.4 23.1 23.9 24.6 25.2 25.8 26.3 26.8 27.2 27.7 28.1 28. .4 19.3 20.5 21.2 22.2 23.0 23.8 24.5 25.1 25.7 26.2 26.7 27.2 27.6 28.0 28. .7 18.9 20.0 21.1 22.0 23.7 24.4 25.0 25.6 26.7 27.2 27.6 28.0 28. .2 18.4 19.8 20.9 21.9 22.8 23.5 24.3 25.0 25.6 26.2 26.7 27.1 27.6 28.0 28. .3 18.4 19.6 20.8 21.8 22.7 23.5 24.3 25.0 25.6 26.1 26.7 27.1 27.6 28.0 28. | .7 18.2 19.5 20.7 21.7 22.7 23.5 24.2 24.9 25.5 26.1 26.6 27.1 27.6 28.0 28. 5 18.1 19.4 20.6 21.7 22.6 23.5 24.2 24.9 25.5 26.1 26.6 27.1 27.5 27.9 28. 4 18.0 19.4 20.6 21.6 22.6 23.4 24.2 24.9 25.5 26.1 26.6 27.1 27.5 27.9 28. 4 18.0 19.4 20.5 21.6 22.5 23.4 24.2 24.7 25.5 26.1 26.6 27.1 27.5 27.9 28. 4 17.9 19.5 20.5 21.6 22.5 23.4 24.1 24.8 25.5 26.1 26.6 27.1 27.5 27.9 28. | |---|---|---|--|---|--
--| | | 0.6 0.7 | | | 0.9 21.2 2 | 0.00 a a 8 6.00 a 4 4 6.00 a 4 4 6.00 a 4 4 6.00 a 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 7.01 10.7 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 | | 0 A C C C C C C C C C C C C C C C C C C | C108
K11 0.5 | 17
17
18
19
19 | 0 H W W 4 | 2000 | 10.
11.
22.
11.
33. | 56
7
7
115.
9 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #1.77 | 0. U. (| | | | | | | | 8ET | | | | | ! | | ļ | 1 | | |---|-------|---------------------------|--|----------------------------|---|---|------------------------------|---|--|--|--|---|------------------------------|---|--------------------------------------|--|--| | A F | 0.5 | . 6 | . 7 | 00 | 0.9 | 1.0 | + | | - | • 1 | 1.5 | 1.6 | • | + + | - 1 | 5: | | | 1 00 0 | | |
 • ·
 c c | | 00 | 100 | | 0 . 0 | 1 | | | .00 | 0.46.3 | | 43.7 | 38.7 | | | | |
 | | | 000 | 000 | 000 | 000 | 000 | 84 50
84 50
86
86
86
86
86
86
86
86
86
86
86
86
86 | | 39.39 | 35.9 | 32.0 | 33.9 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | | | |
c c | | | | | | • • | | 0. | -i C | - 0 | 0 | | | નન | | | | 00000 |
ccccc | 00 C K K K K K K K K K K K K K K K K K K | | | 2000
2000
2000
2000
2000
2000
2000
200 | 30.5
22.7
27.2
26.7 | 29.7
28.0
27.6
27.5 | 22 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 200
200
200
200
200
200
200
200
200
200 | 00000
00000
00000 | 30.2
20.0
20.0
20.0
20.0
4 | 30.5
30.2
30.1
29.9 | 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 3000
3000
3000
4000
5000 | # 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00000 | 6 K V + 0 | 24.6
22.7
22.2
21.9 | 00000
44888
0000 | 0 7 4 4 4 6 C V 4 C C C C C C C C C C C C C C C C C | 22225
2225
2425
2425
2425
2425
2425 | 6 6 6 6 7 7 7 8 4 7 10 0 8 | 27.1
26.9
26.7
26.6
26.5 | 7.72
7.72
7.72
8.72 | 238.0
238.0
27.9 | 22233
2223
2325
2325
2325
2325
2325
232 | 29.3
29.1
29.1
29.1 | 229.7
29.6
29.6
5 | 30.2
30.1
30.0
30.0 | <pre></pre> | 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | | | 20.02
100.01
100.00 | ** ** ** ** | 22222
2222
2226
4 | | 9.44%
8.7.44% | 25.5 |
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000 | 27.2
27.1
27.1
27.1 | 27.8
27.8
27.8
27.7 | 000000
800000
44440 | 00000 | 000000
00000
00000 | 0.0000000000000000000000000000000000000 | WWWWW
00000
44444 | 888888
6000
80000 | | | | | | 21.0
21.0
20.4 | 22.3 | | 4 4 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 25.4
25.4
25.4 | 26.3
26.3 | 27.0
27.0
27.0 | 27.72 | 28.3
28.3
28.3 | 28.9
28.9 | 4.65
4.65 | 29.9 | 8.00
8.00
8.00 | 30.8
30.8 | | YARN BULK DENSITY = 2.00 | | | | | | | | | 8E 1 | | | | • | | | 1 | | |-------|----------|----------------|------------|------|-------|------|------|-------------|------|-------|----------|------|-----------|----------|------|---------------| | XC | | | 1.0 | . 00 | 0 • 0 | 1.0 | 1.1 | 1.2 | ₩. | 1 + 1 | 1.5 | 1.6 | 1.7 | 4.8 | 4.9 | 2.0 | | 1 8 1 | !
! = |
 •
 c | | 2 . | 0 . | 0.0 | . 0 | 0 . | | | . 0 | 0 | 0 | 0 | 0 | 0 | | | | = | | | | | | | | • | | • | • | 0 | · | 2 | | | | · | | | | | | | | | | 0 | 5 | 8 | 0 | 7. | | | | ·
c | | | ပ | | | | | | c | 5. | 6 | 7 | • | 9 | | | | <u>-</u> | | | 0 | | | | ċ | 0 | 0 | 7 | 9 | 5 | 5 | 5. | | | | c | | | 0 | 0 | 0. | 0 | 57.0 | 38.4 | 35.8 | 34.9 | 34.5 | 34.3 | 34.3 | 4.4 | | | ·
0 | ·
c | ċ | 0 | ۰ | | | | • | 4 | ,
M) | 3 | ° | 3 | •) | •
1 | | | 0 | · | | | 0 | • | 4 | 70 | ~ | 2 | c. | 2 | M | M | • | | | | 0 | 0 | | | • | 5 | 4 | 2 | è | + | 2 | 2 | ς. | 2 | 3 | 3 | | | 0 | -
- | | | 50 | 33.3 | 31.5 | 31.1 | • | 31.3 | 31.6 | - | 32.3 | 32.6 | P) | • | | | 0 | <u>.</u> | | | 2 | 0 | 0 | ċ | 0 | 0 | •
• | | 2 | 2 | ò | m | | | 0 | ů. | 0 , | | o. | 6 | 6 | ò | Ċ | 0 | -1 | 31.5 | - | ç. | ò | 3 | | | 0 | c | M 3 | œ | 28.1 | 60 | œ | 0 | 6 | 0 | 0 | +-4 | • | 2 | 2 | 3 | | | 0 | ٠
د | 7. | 7 | r- | 7. | œ | 6 | • | 0 | c | | - | 5 | 2 | 3 | | | 0 | | ·C | ç | \$ | 27.4 | 28.1 | 28.7 | 29.4 | 30.0 | 30.6 | 31.1 | 31.6 | 32.1 | 32.5 | 35.9 | | | = | | 4 | ıc. | ÷ | | 7 | œ | • | 0 | c | · · | • | 2 | 2 | · V | | | 4 | 23.5 | 4 | | • | 9 | 7 | 8 | · | • | C | - | • | Ci | 2 | 2 | | | 22.1 | | • | 4 | S. | 9 | 7. | œ. | • | 0 | • | 0 | - | ÷ | S | 2 | | | + | | m | 4 | S. | 56.5 | 27.4 | 28.5 | 29.0 | 29.7 | 34.3 | 30.9 | 31.4 | 31.9 | 32,4 | 32.8 | | | 3 | | ~ | 4 | 5 | · o | 7 | œ | œ | 0. | ċ | 0 | - | . | 5 | ? | | | ⊙ | | ~ | 4 | 5 | • | 7 | œ | 8 | 0 | c | 0. | •
•• | + | í. | 5 | | | ъ. | • | | 4 | 5. | • | 7 | œ | 80 | 0 | . | 0 | •
•• • | | 2 | $\dot{\circ}$ | | | · | 71.1 | CI | | ľ. | • | 1 | œ | œ | 6 | ć | 0 | •
•-1 | - | 2 | N, | | | 5 | | | ~ | 5. | 26.1 | 27.1 | 28.0 | 28.8 | 29.5 | 30.1 | 30.7 | 31.3 | 31.8 | 32.3 | 32.7 | | | , | | ~ | M. | ٦. | • | 7 | 7. | œ | 0 | c | 0 | | | è | ż | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =2.36 | | | | 40 N 4 M | | rrr00 | 0000n | |------------------|-------|-----------|--|---|--|---| | | 1 (3 | | 37.
36.
36. | 300 day | 3000000000000000000000000000000000000 | 30000
30000 | | | 1.9 | 1 07 40 0 | 8.988
8.98.88
1.98.99 | まままま
ららららら
とのらなる。 | 888888
50000 | 335.11
355.11
357.11 | | | 1 60 | 1 | 37.33
35.1
35.5
35.5 | 888888
8886
8886
8886
8886
8886
8886
8 | 44444
00/// | 44444 | | | 1.7 | 11.7 | 37.4
35.9
35.9
35.2 | 4444
2 V O R 4 | 4 4 4 4 4
wwwww | 44444
44000
88888 | | | 1,6 | | √ ∂ \(\bar{N} \) \(| 4444
70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 888888
66.444
888888 | | | .5. | | 8.68.84
9.07.58. | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | | 1 4 1 | 00000 | 2.44
0.04
0.00
0.00
0.00 | 20000
70000
80000 | 00000
04400
00000 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | . ₩ . | | 0.00 4
0.07 0.0
4 8 8 8 8 8 | 8 6 6 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10 | | BETA | | 0000 | 00004
0101
04000 | 8 6 6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0.000 | 00000
00000
00000
00000 | | | +- | | | 20207 | 4 00 0 0
0 0 0 0 0 | 了 46 46 46 | | l
I | 44 6 | 00000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 88888
80448
1044 | 30. | 200.000.000.000.0000.0000.0000.0000.0000.0000 | | 1 | 1.0 | 00000 | 0.
0.
37.8 | 34.0
31.2
30.5 | 29.0
29.0
29.0
29.0 | 2000
2000
2000
2000
2000
2000
2000
200 | | • | 0.0 | 0000 | | 38.0
33.3
31.3
30.2 | 28.9
28.5
28.7
28.0 | 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7 | | 1
1
1
5 | 80 ! | | | 4887.000 |
28.2
27.6
27.6
26.9 | 00000
00000
00000
00000 | | | / 0 | 0 - 0 - 0 | | 0.
0.
33.1 | 226.9 | 7.4.4.4
1.0.7.0.0 | | | 6.1 | | | n.
n.
0.
37.2 | 266.7 | W W W W W W W W W W W W W W W W W W W | | 1 | 0.5 | | | | 31.11 | 22.2
21.8
21.4
21.1
20.9 | | COVER
FACTOR | (K1) | 0 4 0 8 4 | 2222
2222
2322
2322
2322 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | a a a a a
a a a a
a a a a a
a a a a a
a a a a a | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BILK DENSITY =2.50 | 1 | 2.0 | | · | 6 | M | -4 | 0 | 80 | 00 | 80 | 7. | 7 | ~ | 7 | 7. | 7. | • | • | ò. | • | 9 | 9 | • | • | 9.9 | • | • | |----------|-----|-------------|----|-----|-----|--------|----------|----------|-----|--------|-----|------|--------|-----|----------|----------|----------|----------|----------|-------|--------|------|----------|----------|--------|----------|----------| | 1 | 1.9 | | • | 2.6 | 5.6 | 1.8 4 | 0.0 | 6,8 | 8.2 | 1 | 7.4 | 7.1 | 6.9 | 6.8 | 6.6 3 | 6.5 | 6.5 | 4. | 6.3 | 6.3 3 | 6.2 | 6.2 | 6.2 | 6.2 | 6.1 3 | 6.1 | 6.1 | | 1 | 1.8 | | | ٥. | 2.4 | 3.4 | | 9.1 | 8.2 | 7.5 3 | 7.1 | 8.9 | 6.5 | 6.3 | 9 | 6.1 | 6.0 | 5 | 5.8 | 5.8 | 5.7 | 5.7 | 5.7 | 5.6 | 5.6 3 | 5.6 | 5.6 | | 4 | 1.7 | | | • | .0 | 17.5 4 | 1.8 | 9.5 | 8,2 | 7 | 6.9 | 6.5 | 6.2 | 5.9 | 5.7 3 | 5.6 | 5.5 | 5. | 5.3 | 5.3 | 5.5 | 2.5 | ار.
4 | 5.1 | 5.1 3 | 5.0 | 2.0 | | | 1.6 | 1 | | | | • | 7 | 0.5 | 8.5 | 7.4 | 6.7 | | 5.8 | 5.5 | 35.3 3 | 5.1 | 0 | 00 | 8.4 | 4 | 4.6 | 9.0 | 2.5 | 4.5 | 34.5 3 | 4.4 | 4.4 | | 1 | | ;
 | | | | 6 | 59.7 | 2.8 | 4.0 | s. | 9.9 | 5.9 | 4. | 5.1 | | 4.6 | 4.4 | 10 | 4.2 | 4.1 | 4.0 | 3.9 | 6.8 | 3.8 | 33.8 | 3.8 | 3.7 | | t | 1.4 | !
!
! | | | | • | | 2 | +1 | 8 | • | E | 5.1 | 4.6 | 34.3 | 4.0 | 3.8 | 9 | 3.5 | 3.4 | 3.3 | 3.2 | 3 | ئ | 33.1 | 3 | د | | ļ | 1.3 | 1 | | | | 0 | . 0 | • | • | 0 | 7. | 35.9 | 4 | 4 | 33.8 | ,
M | m | M | ٥. | _ | ٠
د | • | 2 | 5 | 32.3 | 2 | ċ | | 98
Ti | 1.2 | 1 | | | | | . 0 | | 2 | 80 | 0 | | S | 4 | 33.4 | · | 3 | 5 | 5 | • | + | -1 | ÷ | H | 31.4 | -1 | - | | | | 1 | | | | | <u>-</u> | | | c. | æ | 38.5 | R. | 4 | 33.1 | ċ | | | 1. | + | ċ | 30.8 | c | 0 | 30.5 | ċ | c | | | 0.4 | 1 | | 9. | 0 | 0 | 0 | | | | 0 | 53.8 | 60 | 4 | ~ | 2 | 31.4 | 0 | 0 | 0 | c | 8.62 | 6 | φ. | 56.8 | • | · | | | 6.6 | ı | | | | | 0 | | | | | .0 | • | 00 | 4 | 2 | - | 0 | • | 0 | 6 | | | 8 | 8 | 8 | œ | | 1 | . G | ł . | | | | | с
С | | | | | · | | - | <u>.</u> | M | 31.2 | 6 | • | œ | œ | 27.7 | 7. | 7 | 27.1 | ċ | ç | | | 0.7 | !
• | | | | | · C | С | | | | | 0 | | | | | c | œ | , | 7 | 26.5 | ٠, | 5. | 75.1 | ٦. | ı. | | | 9 . | 1
1
1 | | | | | <u>.</u> | <u>-</u> | C | c
C | C | C | ·
C | - | C | ٠. | 0 | α | <u>-</u> | 7 | ć | 25.5 | 4 | 4 | 74.1 | * | M, | | ! | . S | 1 | | | | | = | n. | | | | 0 | | | | | •
C | | J | 5 | ç | | • | ٠
د | N | 2 | • | | | 4 × | 1
1
1 | 20 | 21 | 22 | 53 | 40 | 25 | 90 | 27 | 92 | 56 | 30 | 31 | 32 | 33 | 3.4 | 35 | 36 | 37 | 3.8 | 39 | 0 4 | 41 | 42 | 43 | 4 4 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #2.75 | | | | | | | | | 98 | | | | | | | , | 1 | |------|--------|--------|----------|------|------|------|-------|-------------|----------|--------|------|------|----------|------|-------------|------------| | (K1) | 0.5 | 9.0 | 0.7 | 9 . | 6.0 | 1.0 | 1.1 | 1.2 | 1.3 | 1 4 | 1.5 | 1.6 | | 8 | 6 | 2 | | | l
1 | | !
! |
 | , | |)
 | • | 1 | ;
; | | | |
 |)
)
) | | | | | | | | • | | | | | | | | | | | ٠ | | | | | | | | | | | | | | | | | 0. | • | | | | | | | | | | | | | | | | • | 3 | + | | | 0 | c
c | | 0 | 0 | | 0. | 0 | ů. | 0. | 0 | 0 | 0 | 56.8 | 48.3 | 45.7 | | 4 | 0 | 0. | | 0 | 0. | 0 | 0 | 0 | 0 | .0 | | | 51.2 | 9. | ÷ | 3 | | | 0 | | | | 0 | | | | | • | • | • | 4 | 2 | 2 | ÷ | | | Ü. | | | | 0. | | | | 0 | 8 | 9 | M | - | + | - | 1. | | | 0 | | | | 0 | | | • | 3 | 4 | • | 0 | 0 | 0 | 0 | 0 | | | | 0 | | | 0 | 0 | 0 | 67.0 | 43.8 | 40.9 | 39.9 | 39.5 | 39.5 | 39.8 | 39.7 | 39.9 | | 56 | 0 | | 0. | 0 | 0. | | | • | 0 | \$ | œ | æ | 60 | ٠. | • | 0 | | | 0 | | | | | • | ~ | 0 | œ | 7 | 7 | œ. | 80 | 80 | o | • | | | | | | | | m) | α. | 7 | r. | 7. | L- | ۲, | œ | 60 | 8 | • | | | | ت | _ | ċ | 5. | 37.8 | 36.4 | 36.1 | 36.2 | 36.5 | 36.9 | 37.4 | 37.8 | 38.2 | 38.6 | 39.0 | | | | | | | | r. | 3. | 5 | | • | ÷ | 7 | | œ | ,
00 | 80 | | 4.6 | .0 | | | | 4 | 4 | 4 | 4 | 5. | 10 | Š | • | • | 7 | œ | 60 | | 35 | | | ~ | 4 | 3 | ₩ | 8 | 4 | 5 | 5 | 9 | 9 | 7 | 7 | 6 0 | 80 | | | | | ₩ | ? | 2 | ç, | ٦. | 4 | 4 | 5 | 9 | 9 | 7 | 7. | 6 | æ | | | 0 | 36.0 | 31.3 | 31.1 | 31.6 | 32.3 | 33.0 | 33.8 | 34.5 | 35.2 | 35.9 | 36.5 | 37.1 | 37.6 | 38.1 | 38.6 | | | | C | • | ċ | ţ | + | 2 | 3 | 4 | 5 | 5. | 9 | 7 | 7 | 60 | œ | | Ø. | 32.3 | a | œ | • | 0 | +1 | 3 | 2 | 4 | 5 | 5. | 9 | 7. | 7 | 6 0 | a O | | | 7 | 7 | α | 0 | 0 | + | ~ | الله | 4 | 4 | r. | •C | 9 | 7 | 80 | 60 | | | J. | ÷ | ŕ | 6 | 0 | 1. | ~ | * | 4 | 4 | ٦. | S | 9 | 7 | ® | 60 | | 42 | 24.8 | 76.1 | 27.4 | 28.8 | 30.0 | 31.1 | 32.2 | 33.1 | 34.0 | 34.8 | 35.5 | 36.2 | 36.8 | 37.4 | 38.0 | 38.5 | | | 4, | ٠
س | 7 | α. | • | • | 5 | % | 3 | 4 | 5 | • | • | 7 | 7. | نق | | | ·, | 5. | 9 | œ. | 6 | 0 | ò | ~ ? | <u>س</u> | 4 | 'n. | • | 9 | 7 | ۲. | œ. | MAXIM MA FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =2.95 | | | | | | | | í | BET | | ļ | | | | 4
0
0 | 1 | 0
8
8 | |--------|--------|----------|-------------|----------|------|-------------|--------------|--------|------|----------|-------|-------|-------|-------------|-------|-------------| | X | 0.5 | | - | 60 | 0.0 | 1.0 | | 1.2 | | 4 . | 1.5 | 1.6 | F | 60 | 4.9 | 2.0 | | 1
5 | i
i | ı | ;
;
! | • | 1 | •
•
• | l
l | 1
1 | | |)
 |)
 |)
 | | | | | | | | | C | | | | | | | | | | | | | | | | | | <u>-</u> | | | | | | | | | | | | • | | | | | | | | | | | | | | | | 0 | • | • | | | | | | 0 | 0. | 0 | | | | | 0 | 0. | 0 | 0 | 63.0 | 51.6 | | | S | c
C | <u>-</u> | ·
c | . 0 | | . | · 0 | ٠. | 0 | | | | 5 | • | 9 | | | 0 | c | | | | ,0 | | 0 | .0 | | 0 | | ** | 7 | R. | 4 | | | | | | | | с | | | | 0 | 2 | 0 | 5 | 4 | P) | 3 | | | | | | | | <u>_</u> | | | • | M | 7 | 4 | 3 | 2 | 2 | 3 | | | | | | 0 | | 0 | 0 | 0 | | 46.2 | 43.4 | 42.2 | 41.8 | 41.6 | 41.7 | 41.8 | | | 0. | | | C | 0. | 0. | | 4.69 | • | 5 | *1 | 1. | 0 | 1. | 1. | | | | | ·
c | | | | | | 4 | • | | 0 | 0 | 0 | 0 | 0 | ⊣ | | | | | | | | • | 4 | · | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | 5 | 40.1 | 38.7 | 38.4 | 38.5 | 38.7 | 39.1 | 39.4 | 39.8 | 40.2 | 40.6 | | | | | | | 0 | • | 7 | 7 | 7. | 7. | m | 80 | 6 | 6 | 0 | 5 | | | 0. | . | | | | ~ | ç | 9 | • | 7. | œ | • | 6 | 0 | • | 6 | | 35 | | | | •
•-4 | 9 | 5 | 5 | \$ | • | 7 | 7 | œ | œ | 0, | 6 | 0 | | | | | 2 | \$ | 4 | 4 | r. | 5 | ċ | 9 | 7 | 80 | 00 | 6 | 6 | 0 | | | = | · | 36.4 | 33.8 | 33.6 | 34.1 | 34.7 | 35.4 | 36.0 | 36.7 | 37.4 | 38.0 | 38.5 | 39.1 | 39.65 | 40.1 | | | | ,
مین | 3 | 0 | 2 | 3 | 4 | R. | r. | • | 7 | 7 | 80 | 6 | • | 0 | | | | | | • | 5 | 3 | 4 | 4 | 5 | • | 7. | 7 | œ | 60 | • | 0 | | | œ | Ċ | c | + | 4 | 2 | 100 | 4 | 5 | • | 7 | 7. | 80 | 60 | • | 0 | | | 0 | α. | 0 | 0 | -4 | å | M) | 4 | 5 | 9 | . 9 | 7 | 80 | 80 | 0 | 6 | | 42 | 27.6 | 4.75 | 29.0 | 30.2 | 31.4 | 32.5 | 33.5 | 34.4 | 35.3 | 36.1 | 36.9 | 37.6 | 38.2 | 38.8 | 39,3 | 39.9 | | | 9 | .′ | œ | 0 | | ŝ | , V) | 4 | 5 | 9 | · c | 7 | œ | 60 | 0 | 6 | | 4 | 3 | Ś | αc | 6 | + | ς. | m | 4 | 5 | 9 | ć | ~ | œ | œ | 6 | • | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 3.25 MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =3.54 | BETA | 1.1 1.2 1.3 1.4 1.5 1.6 1.7 | 0. 0. 0. 0. 0. 0. 0. 0. 0 | 0. 0. 6. 0. 0. 0. 0. 87.15 | | | 0. 0. 57.6 50.8 48.5 47.5 47.0 4 | . 0. 0. 56.9 49.8 47.6 46.6 45.2 46.1 4 | 0 | n. 60.6 48.4 45.9 45.0 44.6 44.6 44.7 45.0 4 | 4.4 48.2 45.1 44.1 43.8 43.8 44.0 44.3 44.6 4 | .7 44.5 43.3 43.0 43.0 43.3 43.6 43.9 44.3 4 | 4.0 42.5 42.1 42.2 42.5 42.8 43.2 43.6 44.1 4 | 42.5 4 | 0.4 40.4 40.7 41.2 41.7 42.2 42.7 43.2 43.7 4 | 9.4 39.8 40.3 40.8 41.4 42.0 42.5 43.1 43.6 4 | 8.7 39.3 39.9 40.5 41.2 41.8 42.4 43.0 43.5 4 | 8.2 38.9 39.6 40.3 41.0 41.7 42.3 42.9 43.4 4 | 7.8 38.6 39.4 40.1 40.9 41.5 42.2 42.8 43.3 4 | 7.5 38.4 39.2 40.0 46.7 41.4 42.1 42.7 43.3 4 | 37.2 38.2 39.0 39.9 4n.6 41.3 42.0 42.6 43.2 43 | 7.0 38.0 38.9 39.7 40.5 41.3 42.0 42.6 43.2 4 | 6.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.1 4 | 36.7 37.7 38.7 39.6 40.4 41.2 41.9 42.5 43.1 43 | 6.6 37.6 38.6 39.5 40.3 41.1 41.8 42.5 43.1 4 | 6.5 37.6 38.5 39.5 40.3 41.1 41.8 42.4 43.1 4 | |------|-----------------------------|---------------------------|----------------------------|------------|-----|----------------------------------|---|----------|--|---|--|---|--------|---|---|---|---|---|---|---|---|---|---|---|---| | | 0 8 0 | 0 | | |
, , | | 0 | • | c) | | 0 | . 0 | . 62. | . 44. | 8.9 40. | 1.0 38 | A.fi 37. | 6.3 36. | 5.2 35. | 4.4 35. | 3.9.3 | 3.4 34. | 3.1 34. | 7.8 34. | 2.6 34. | | | 6 11.7 | | C (| C (| = c | | C | 0 | C | U | · | C | | C | <u>-</u> | C | 43,8 | 37.4 | 6 35.4 | 0 | e 33.0 | 5 32.5 | .6 31,0 3 | 9 31.4 | 4 31 0 | | | 1 C | | C: (| <u>ت</u> (| = c | | C . | <i>د</i> | | c
• | C | C | | _ | | | C | с.
• | 46 | n. 55 | 1 52 | 6.7 31 | 36.2 Sn. | 4.8 19 | 0/ 0/ | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =3.75 | | | | | | | | 1 | 99 | | | | 1 | | 1 | | i | |------|--------|--------|--------|-------------|------|------|----------|------|------|-------------------|------|--------|----------|------------|----------|-------| | X (| 0.5 | 0.6 | 0.7 | 0.8 | | 0 1 | 1 • 1 | 1.2 | 1.3 | ੇ ਜ
ਜ | 1.5 | 1.6 | 1.7 | 4 H | 0.1 | , , , | | 4 | | 1 | | 0 | | • | | • | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | | | | | | | 0 | | | | | | | | | • | Ś | | | | C | _
_ | 0 | | 0 | 0 | 9 | 0 | 0 | | 0 | 0 | 0 | 68.5 | 57.7 | | | | | | | | 0 | | | | | | | Ö | 3 | • | 8 | | | | | | | | 0 | | | | | | 0 | | | + | 0 | | | ٠
ت | ٠. | • | | 0. | | | | | | | | 8 | 0 | · | 6 | | | | | | | | | | | | ů | | + | 6 | • | 60 | 80 | | | | | | | | 0 | .0 | | 0 | 6.95 | 50.7 | 48.7 | 47.8 | 47.5 | 47.4 | 47.4 | | | | | | | | | | • | | 0 | - | 7 | • | • | • | 9 | | | | | | | | | C | 0 | 0 | 7 | • | 5 | 5 | • | • | 9 | | | | ŗ. | ů. | c. | | | | • | • | 5 | ĸ. | Š | 5 | 5. | E. | 9 | | 15 E | •
• | | | | | • | - | 5 | 4 | 4 | 4 | 4 | 4 | 30 | 5 | 9 | | | | | | | 0 | 52.6 | 45.4 | 43.8 | 43.4 | 43.4 | 43.7 | 44.1 | 44.5 | 44.9 | 45.4 | 45.8 | | | | | | | œ. | • | 3 | 2 | 2 | 3 | | 3 | 4 | 4 | 5 | 5 | | | | | | \subseteq | | 2 | + | + | + | ò | ~ | 3 | 4 | 4 | v | 5 | | | | ٠
د | | | 2 | 0 | ċ | + | | 5 | ~ | ٠
س | 3 | 4 | 4 | 5 | | | | | • | CU | 0 | 0 | 6 | 0 | · | + | C | ₩) | M | 4 | 4 | 5 | | | | | 47.1 | 39.5 | 38.4 | 38.8 | 39.4 | 40.1 | 40.8 | 41.5 | 42.2 | 42.9 | 43.5 | 44.1 | 44.7 | 45.2 | | | | | 0 | 7 | 7 | | 6 | 0 | 0 | + | 2 | c. | 3 | 4 | 4 | 3 | | | | 4 | | ÷ | 7. | 7 | © | 6 | 0 | - | - | 2 | 3 | 4 | 4 | 15 | | 4 | 0. | • | 7. | 5 | 9 | 7 | œ | 6 | 0 | •
• | - | 2 | M | 3 | • | :0 | | _ | T. | 4 | 4 | 5 | • | 7 | œ | 6 | 0 | - | • | 2 | Ι. | M 2 | • | r. | | 46 | 34.9 | 32.8 | 33.4 | 34.5 | 35.7 | 36.9 | 38.0 | 39.0 | 40.0 | 40.8 | 41.7 | 45.4 | 43.1 | 43.8 | 4.4 | 45.0 | | | • | - | ~ | 4 | 5. | 9 | 7. | 80 | 6 | 0 | + | ς. | M | 3 | 4 | Š | | | ċ | | ò | 3. | 5 | • | 7. | 60 | 6 | 0 | | 5 | 3 | 3 | + | 4 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =4.00 THREE-HARNESS WEAVE FABRICS | α >
σ π | | | | | | | | BET | | | | | 1 | | | | |----------------|-----|----------|----------|----------|------|--------|------|------|--------|--------|----------|---------|--------|----------|------|------------| | FACTOR
[K1] | 7.0 | 9.0 | n.7 | 1 | 0.0 | 1.0 | 1.1 | 1.2 | 1.3 | 1 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 | | 14 | 0 | | * | | | 0 | | | 0 | 0 | | 0. | 9. | 0. | | 0. | | č. | | | | . | | - | | | | | | | | | | 0 | | 50 | 0 | | - | 0 | 0 | 0 | 0. | 0 | | 0. | | 0 | 0. | 0. | 6 | 73.9 | | 27 | | | 0 | c | | - | | | | ٠. | | | | 0 | | . | | 58 | 0. | 0 | 0 | • | | | | | | | | | | | • | 4 (| | 56 | | . | <u>-</u> | _ | | - | | | | | | | | . · | • | Ņ | | | | | c | | | | | | | . 0 | C | 0 | 4 | ~ ~ | - | 0 | | | | : c | | | | • | | | | 0 | 59.0 | 53.2 | 51.2 | 50.5 | 49.8 | 49.7 | | | | | | | | _ | | | | 9 | 2 | 0 | 6 | 6 | 80 | 6 | | | | | | | | | | | 0 | 1 | 6 | 8 | 8 | 8 | 8 | 8 | | . w | | | | | 0. | - | | | + | 80 | 7. | 7 | 7 | 7 | 7 | ∞ ` | | | | | _ | | | | | | 00 | | • | • • | • | 7. | 7. | 7. | | | | | | | | 0 | 2 | | 9 | 5. | 5 | • | • | • | | 7. | | | | | 0 | 6 | • | 57.2 | 47.5 | 45.5 | 45.0 | 45.0 | 45.2 | 45.6 | 46.0 | 46.4 | 46.9 | 47.3 | | | | | 0 | | | 7 | 4 | 4 | 4 | 4 | 4 | | 5 | • | • | : | | 39 | 0. | | | 0 | | 4 | 3 | 3 | ,
M | ,
M | 4. | 4 | 5. | ó | • | : | | | | | | 4 | | 2 | 2 | • | m | 2 | 4 | 4 | 5 | 5. | ċ | • | | 4 4 | | | | 45.9 | 41.9 | 41.3 | 41.5 | 41.9 | 42.6 | 43.2 | 43.9 | 44.5 | 45.1 | 45.7 | 46.3 | 46.8 | | | | | 9 | + | 0 | 6 | ċ | + | 2 | 3 | 5 | ₹. | 5. | Š | • | ġ. | | | | | 2 | 6 | • | 6 | 0 | + | ö | ? | ъ. | 4 | 4 | . | ÷. | ÷. | | 4 | 0. | | • | 8 | 80 | 6 | 0 | • | + | ÷. | κ. | 4. | 4 | 5 | • | • | | 45 | | = | 7 | 7 | 7 | 80 | • | | ÷ | 2 | | 4. | 4. | 5 | • | • | | 4 6 | | 36.6 | 35.8 | 36.4 | 37.4 | 38.5 | 39.5 | 40.5 | 41.4 | 42.3 | 43.2 | 43.9 | 44.6 | 45.3 | 45.0 | 46.5 | | | | 4 | 4 | 7. | 7. | ж
• | 6 | • | + | 2 | ,
M | 3.9 | 4 | v 1 | , n | 0 v | | 4 8 | 4 | ×. | 4 | 5 | 6. | æ | ò | • | + | ۲. | ю. | 5.
B | 4
4 | | • | • | YARN BULK DENSITY =4.13 | | | ;
;
; | 1 | ,
1
,
, | 1 | , | 1
1
1 | ₽- 1
10
11 | 1 | • | | | | , | • | | | |------|------|-------------|----------|------------------|----------------|----------|-------------|------------------|------|----------|----------|--------------|------|------------|------|--------|----------------| | A *~ | 0.5 | 9.0 | 0.7 | 9.0 | 0.9 | 1.0 | + 1 | 1.2 | 1.3 | 4 1 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | | | | 9 | | | | = | 0. | 0 | 0 | 0 | | 0 | | | | 0 | | | • | | | 0. | | 0. | | | | 0. | | 0 | | | | 0 | 6 | | ٠
د | - + | | | | | | | | | | | | | | | | | • | • | ~ | | - | | | | 0. | | | | | | | | | 7 | 6 0 | 5. | ъ | 7 | | | 0 | | | | | | | | | | 0 | 6 | 7 | 4. | 8 | ~ | 0 | | | | | | | | | 0 | 0 | 0 | | 69.3 | 56.5 | 53.3 | 51.9 | 51.2 | | <u> </u> | | | | | | | | | | | 0 | | 5 | 5 | 1. | | | 0 | | | | 0 | | | | | | | | | 5 | - | 0 | 6 | 6 | 6 | ċ | 10 | | 40 | 0 | ů. | 0 | 0. | • | 0. | | | 5 | 1. | • | & | 8 | 80 | 80 | 49.1 | - | | 35 | | | | | | | 0 | 7 | | 80 | 60 | 7. | 7 | 80 | 80 | 20 | _ | | · M | · c | | 0 | 0 | 0 | 0 | 62.2 | 50.4 | 48.0 | 47.2 | 47.0 | 47.1 | 47.4 | 47.7 | 48.0 | 48.4 | _ | | | | | | | | 0 | C | 7. | 9 | 6. | • | 6. | 7. | | 7 | 8 | ٥. | | | | | | | • | | 7. | 5. | 5. | 5. | 5 | 6. | 9 | 7. | 7. | 8 | _ | | 39 | | Ü. | | | | 7. | 4 | 4. | 4. | 4 | 5. | 5. | • | • | 7. | | σ. | | | 0 | | | | ø | 4 | 'n | <u>س</u> | 4. | 4 | 5 | 5 | • | • | , | 7. | | | 41 | 0 | 0 | <u>.</u> | 2 | 44.1 | 42.7 | 42.6 | 43.0 | 43.5 | 44.1 | 44.7 | 45.4 | 46.0 | 46.5 | 47.1 | 47.6 | . ــ | | | 0 | | | | - i | + | + | 8 | ъ. | م | 4. | 5 | 3 | • | 7 | 7. | | | | 0 | | Φ | + | | • | - | ? | 5 | ب | 4 | 5 | | ٠. | • | 7. | | | 4 4 | .0 | | • | 6 | 0 | 9 | 0 | + | 5 | ٠. | 4 | 4 | 5. | • | • | 7. | _ | | _ | | œ | • | 80 | 80 | 6 | | - | ~ | 3 | 4 | 4 | 5. | • | 9 | 7 | | | | | | 7 | 7 | 80 | • | 0 | + | 8 | ъ | m | 4. | 5 | • | • | 7. | | | 47 | Ξ. | 36.6 | 36.1 | 36.9 | 37.9 | 39.0 | 40.1 | 41.1 | 42.1 | 43.0 | 43.8 | 44.6 | 45.3 | 46.0 | 46.7 | 47.3 | | | | | 4 | 5. | ç | , | œ | 0 | + | ÷ | 5 | 'n | 4. | ت | • | • | 7. | • | | | 4. | M. | 4. | 9 | 7 | æ | 6 | • | + | 5 | ъ. | 4 | 5 | 5 | 9 | 7 | | | 50 | 32.1 | 52.R | 34.2 | 35.6 | 37.0 | 38.4 | 39.6 | 40.7 | 41.8 | 42.7 | 43.6 | 44.4 | 45.2 | 45.9 | 46.5 | 47.2 | | YARN BULK DENSITY =4.60 THREE-HARNESS WEAVE FABRICS | A C | | | | | | | | 9.E.1 | | | | | 1 | 9 | | 1 | | |------------|----------|------------|---------------|------|------|--------|--------------|-------|------|-------|------------|---------|----------|------|------|-----------|-----| | | 1. |
 | . · · | 1 60 | 10 | 1.0 | | • | | 1 4 1 | 1.5 | 9: | 1 1 | | 4.9 | N 1 | | | | = | ; .
; C | | | 0 . | | | | .0 | • 0 | 0 | 0. | 0 | 0 | ° c | 0 | | | | | | | | 0 | | | | | | | | | | | Ċ | | | | | | | | | | | | | | | | | | c. | • | a | | | .0 | | · U | | | | | | | | | | | | • | ċ | | | | | | | | | | | | | | | | C | œ | + | æ | ٥. | | | | = | | | | | | | | | | 0 | 9 | • | 1 | 5. | _ | | | | | | | | | | | 0 | 0 | 0 | 56.5 | 5R.9 | 56.3 | 55.1 | 54.5 | | | | | | | | | | | | | 0 | · | œ | 5 | 4 | M | M | | | 7.4 | | . | | 0 | ŋ. | 0 | С | 0 | | | | 4 | ٠. | ċ | ċ | 2 | | | | . | · | | · | | 0 | | | 9 | ^ | 4 | ~ | \sim | ~ | ~ | 2 | • | | | | | | | . 0 | | | 0 | 58.0 | 53.5 | 52.0 | 51.4 | * | * | 51.5 | + | | | | | | | | | | | | 3 | + | 0 | 0 | <u>.</u> | 0 | - | $\vec{+}$ | 24 | | | | | | | | | 5. | 3 | 0 | o. | · | œ. | 0 | ပ | | •
•-1 | | | | | | | · | | ·
: | 53.9 | 0 | 6 | œ | œ. | · | 6 | | 0 | | ~ | | | | | .
C | | | \$ | 0 | ar. | 7. | æ | 6 0 | ος. | ٠
ح | • | • | 0 | | | 41 | | ·
c | 0 | c | 4 | | 47.7 | 47.1 | 47.1 | 41.5 | 47.9 | 48.4 | 49.0 | 49.5 | 50.0 | • | | | | | | | | | 7 | ć | ç | ÷ | 7 | 7 | ж
ЭС | œ. | ۰. | • | 0 | - | | | | | | | ۲. | 5. | 5 | 30 | • | ò | | 7. | œ | ъ | · | 0 | ~ | | | | | | | 4 | 4 | 4 | 5 | 5. | 9 | 7. | 7 | 80 | • | 6 | ن | ٥, | | | | | ~ | 4 | 80 | 8 | ,
(24 | 4 | 5 | • | ć | 7 | 80 | œ | • | .0 | _ 1 | | | | | ċ | ċ | 5 | 2 | 3 | 4 | 5 | s. | ċ | ۲. | 60 | œ | 6 | C | _ 4 | | 47 | U | ٠, | 40.4 | 41.1 | 41,4 | 42.1 | 43.0 | 43.9 | 44.8 | 45.7 | 46.5 | 47.3 | 48.0 | 48.7 | 40.4 | 50.0 | _ | | | | ľ | ċ | ċ | 0 | ·
~ | 2 | 3 | 4 | 5. | · | - | 60 | œ | 6 | Ф | • | | | | • | œ | 0 | 0 | • | ٠. | ~ | 4 | 5 | • | ~ | 7 | œ | • | 6 | _ | | 5 0 | 0.04 | \$7.8 | 37.7 | 38.7 | 39.0 | 41.1 | 42.2 | £ 3.3 | 44.4 | 45.3 | 46.2 | 47.1 | 47.8 | 48.6 | 49.2 | 49.9 | ^ | 4-HARNESS MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =0.54 | a w | | | ļ | | | | | 9E - | ļ | | Ì | | | | | i | | |---------------------------------------|-------------------------|----------------------------------|------------------------------|----------------|-------------------|---|------------------------------|-------------------------------|--------------------------------|-------------------------
--|------------------------------|---|--|--|---------------------------------------|---| | ★ | 0
,5 | 9.0 | 0.7 | 0 | | 1.0 | 4.4 | - | - | 4 | 1.5 | 4.6 | + 1 | +1 | | 2.0 | , | | !
! @ o
! | 0.0 | 00. | 000 | 00. | | | | | 000 | | 000 | 00 | 00. | | 00 | | | | | | | | | | | | | | | | | | • | | • | | | | | | | | | | | | | | | | | 30.4 | 23.4 | 22.0 | | | ਲ ਵ
•ਜ਼ਾ ਵਾਂ | ••• | | | 00 | | | | | | | | | | • 5 | 00 | | | | | | | 000 | 000 | 000 | | 23.8 | 20.0 | 19.7 | 18.9 | 60 60 60
60 60 60 | 80 80 80
80 4 64 | 9.89 | 9.00 | 46.8 | 8.66
8.66
9.66 | | | | 16.9 | | | | 15.6 | 16.0 | 9 9 | 6.7 | ~ ~ | ~~ | 7. | 00 00 | 00 00 | 00 00 | œ œ | 60 60 | | | | 24444
24444
24084 | 13.2
12.9
12.9
12.7 | 1444
1444
1446
1467 | 4444
0 4400 | | 22222
2222
2222
2222
2222
2222
2222
2222 | 16.2
16.1
16.0
16.0 | 44444
6666
6666
6666 | 117
117
116
116
19 | 17.71
17.03
17.03 | 17.7
17.6
17.6
17.5 | 17.9
17.9
17.9
17.8 | 844
846
846
844
844
844
844 | 4 4 4 4 4 | 1111111
8888
8066
6066 | 4 4 4 4 4
8 8 8 8 8 8
8 6 6 8 8 | | | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 444
4444
60444 | 122.6
122.6
122.5
123.5 | 64444
04444 | 4444 | 4444 | 4444
505444 | 94444
97566
99000 | 44444 | 11 | 17.22 | 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 17.8
17.8
17.8
17.8 | #####
8 & 8 & 6
| 44444
600000000000000000000000000000000 | 444444
8888
8666 | 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 | | | | 444 | 12.5
12.5
12.5 | 244
444 | 444 | 4 4 4
80 80 80 | 15.4
4.01
4.61 | 15.9
15.9
15.9 | 4.01 | 16.8
16.8
16.8 | 17.2 | 17.5 | 17.8
17.8
17.8 | 1.88
1.4.4. | 100
100
100
100
100
100
100
100
100
100 | 88 84 4
8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 8 4 4 4
8 8 8
8 8 8 | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA #### YARN BULK DENSITY = 0.56 | а ш н
а с | | | | 1 | | | ! | oo i | | | | 1
1
1 | | | | 1 | |---|--|---|--|---------------------------------------|---|------------------------------|---|--|---|------------------------------|------------------------------|--|--|--|---------------------------------------|------------------------------| | X C | 0.5 | 9.0 | 0.7 | 0.8 | 0 | 0 . 1 | 1.1 | 1.2 | 4.3 | 1.4 | - | 1.6 | | 4.8 | 6 1 | 2.0 | | 000 | - | 1 | i | | 00 | | | | 00 | 00 | 00 | | 00 | | 00 | | | 5 T T T T T T T T T T T T T T T T T T T | | | | | | | 00000 | | | | | 27.52
20.52 | , v & | 00000000000000000000000000000000000000 | 20.0
21.1
20.0 | 2000
2000
2000
2000 | | ************************************** | 00000 | | | | | | | 22 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 440000 | 0 60 60 60 | ဇ-က ေလ ထ ထ | 19.01
18.81
18.7
18.6 | 24444
24444
24444 | 900000
90000
99000 | 20000
20000
70400 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 441
471
100
100
100
100
100
100
100
100
100
1 | 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 4 4 10 10
7 10 10 10 | # # # # # # # # # # # # # # # # # # # | 7
7
7
7
7
7
7
8
7
8
7 | 16.2
115.0
15.9 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 146.90
166.90
166.90 | 4 K C C C C C C C C C C C C C C C C C C | 17.7
17.6
17.6
17.6 | 18.0
17.9
17.9
17.9 | ######
\$0 \$0 \$0 \$0
\$0 \$0 \$0 \$0 | 444444
88888
88888
88888 | 18.7
18.7
18.7
18.7 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 99999 | | | 11111111111111111111111111111111111111 | 12.5.4
12.5.6
12.7.6
12.7.7 | 11 13 13 13 13 13 13 13 13 13 13 13 13 1 | 4 4 4 4 4
N. N. N. 4 4 | 55555 | 15.8
15.7
15.7
15.7 | 1100
1100
1100
1100
1100
1100
1100
110 | 16.7
16.7
16.7
16.7 | 47.2
47.4
47.4 | 5555 | 17.8
17.8
17.8
17.8 | 8 8 8 8 8
8 8 8 8 8 | 44444
44444 | 1188.7
7.081
7.081 | 8 8 8 8 8
8 9 9 9 9 9 | #####
66666
| | | 11.6 | 12.7
12.7
12.7 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 444 | 1.5.5
1.5.1 | 15.7
15.7
15.7 | 16.2
16.2
16.2 | 16.7
16.7
16.7 | 17.1
17.1
17.1 | 17.5
17.5
17.5 | 17.8
17.8
17.8 | 60 FF | 60 00 00 00 00 00 00 00 00 00 00 00 00 0 | 18.7
18.7
18.7 | \$ 60 60
\$ 60 60 | T. 6 T | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BEFA YARN BULK DENSITY =0.58 | COVER
FACTOR
[K1] | | 9 | 1 | 1 00 1 | 0 | 101 | 1 +1 | BETA | ю
Н | 1 4 | - F | 9 | | 1 60 i | 6 | 2 | |-------------------------|-------|--------------------|-----------------------|---------------------------------------|-------------------------|--|------------------------------|--|---|--|--|---|---|--------------------------|---------------------------------------|--| | | | | | | | • • | • • | • • | • • | | • • | • • | | • • | 00 | | | 전 전 전 전 전
O 전 전 전 전 | | | | | | | 00000 | | | | 2000. | 21. | NN 0000 | 0.
0.
22.8
20.7 | 00000
0000
0000
000 | | | | 00000 | 0.
0.
17.7 | 12000
1600
1600 | 10000 | 2000
1700
1700 | 20
11
14
10
10
10
10
10
10
10
10
10
10
10
10
10 | 200.4
117.5
17.2 | 64.00
64.00
67.00
67.00
67.00
67.00 | 22.3
119.2
118.4
17.6 | 2000
000
4 1 000
4 1 000
1 1 000 | 0.0000000000000000000000000000000000000 |
90000
90000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000 | 94.00 | 99999
99499 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10 K 9 9 | | | 44740 | 44888
9 C 0 4 V | 24444
07404 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 44444
46766
46766 | 44444
6666
70004 | 17.0
16.8
16.7
16.7 | 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7.7.1
6.7.1
6.7.7
7.0
8.7.7 | 18.0
17.9
17.9 | 4 4 4 4 4
80 80 80 80
10 10 10 10 10 | 4 4 4 4 4
80 80 80 80
80 80 80 80 | 4444
6060
6060
6060
6060
6060 | 66666 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 2222 | 112.0 | 44000
44000 | 44888 | 4444
0 @ 7 7 7 | 4444
54444 | 16.00
16.00
16.00 | 44444
66666
66666 | 47.0
17.0
17.0 | 7. 7. 1
7. 7. 1
7. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. | 17.8
17.8
17.8
17.8 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 44444
88888
88888 | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | 00000 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 200000
20000
20000
20000
20000 | | | 444 | 12.9
12.9 | 13.9
13.9 | 14.7 | ~ | 16.0
16.0 | 166.57
166.57
166.57 | 17.0
17.0
17.0 | 17.4
17.4
17.4 | 17.8
17.8
17.8 | 1 00 00 00 00 00 00 00 00 00 00 00 00 00 | 8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 18.7
18.7
18.7 | 19.0
19.0 | 19.2 | 10.01 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA #### YARN BULK DENSITY = 0.65 | or min | | | | | | | | 9
E | | | | ı | (| | 4
(| • | |--------------------------|--|---|---|--|---|------------------------------|---|---|---|--|-------------------------------|---|--|-------------------------------|--------------------------------------|------------------------------| | ACTO
(K1) | 0.5 | | 0.7 | 3 | 0.9 | 1.0 | 4.4 | 1.2 | • • | . +1 | 5 | 1 -4 1 | | 6 | 6 | | | 000 | | | • | | | | | | 00 | | 00 | | | | | 00 | | O + 0, 10 *
+ + + + + | | | | | 00000 | | | | | | | 00.00
00.00
00.00 | 00004 | | | 24.0
24.0
34.0 | | 16tr | 00000 | 00000 | N 3 3 3 3 | 00000 | 0
0
0
1
1
1
8
1
4 | 0
26.7
19.7
18.4 | 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.021 | 222.1
200.1
190.5 | 0400
0400
0400
4004 | 233
233
199
29
29 | 22
22
20
20
20
20
4
4
6 | 21.0
20.0
20.0
20.0
20.0
20.0 | 21.7
201.1
20.7
20.5 | 2000
2000
2000
2000
2000 | 21.7
21.3
21.0
20.9 | | 00000
04004 | 4444
07456
00.00 | 0 0 0 0 4 4
0 0 0 0 0 0 0 | 4 C 9 E H H H H H H H H H H H H H H H H H H | 15.00 | 11111
1000
1000
1000
1000
1000
1000
10 | 17.9 | 18.2
18.0
17.8
17.7 | 4 4 4 4 4 4 4 6 8 8 8 8 8 8 8 8 8 8 8 8 | 1118
118
18
18
18
18
18
18 | 9 9 9 9 8
9 9 9 9 9
9 9 9 9 9 | 444
644
844
844 | 19.8
19.7
19.6
19.6 | 2000
2000
1000
2000
2000 | 200.00
200.00
200.00 | 00000
0000
0000
0004 | 20.7
20.7
20.7
20.7 | | | 1152
122
122
122
123
125
125
125
125
125
125
125
125
125
125 | 4 W W W W O O O O O O O O O O O O O O O | 24444
20000 | 21 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 17.1
17.0
17.0
17.0 | 117.6
17.7
17.5
17.5
17.5
17.5 | 4444
888
44000 | 11 11 11 11 11 11 11 11 11 11 11 11 11 | 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1199.3
199.2
199.2 | 19.6
19.6
19.6
19.6 | 19999
19999
19999 | 200.2 | 00000
00000
4444 | 00000 | | 0 4 6 6 | 12.5
12.5
12.5 | 13.7
13.7
13.7 | 14.7
14.7
14.7 | 15.6
15.6 | 16.3
16.3
16.3 | 16.9
16.9
16.9 | 17.5 | 18.0
18.0 | 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 188.9
18.8
18.8 | 19.2
19.2 | 19.5
19.5
19.5 | 19.8
19.8
19.8 | 20.1
20.1
20.1 | 000
000
444 | 20.6 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.66 FOUR-HARNESS WEAVE FABRICS # MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =0.67 | > (| 1 | | | | | | | | | | | 1 | | | | ı | |-------|--------|--------|------|------|--------|------|-----------|------|--------|------|------|------|------|------|----------|------| | K 4 1 | 0.5 | 9.0 | 0.7 | 0.8 | 6.0 | 1.0 | | 1.2 | 1.3 | * | 5.5 | | 1.7 | 1.8 | | 2.0 | | . 60 | 0 | | • | 0 | 0 | 0 | . 0 | . 0 | . 0 | 9. | | • | • | 0 | 0 | 0 | | 0 | | | 0 | ò | | | | | • | | | | | | | | | 0 | | | | | | | | | | | | | | | | 0 | | • | | | | | | | | | | | | | | | | • | | 2 | | | | | | | | | | | | | | | • | Ġ | | 3 | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 34.6 | | | 4 | 0 | • | | 0 | ت
ت | 0. | 0 | 0. | | | 0. | | | | 1 | 2 | | ľ | 0 | | | 0 | | | | | 0 | 0 | * | 1 | ~ | Ci. | Ĉ | 3 | | 9 | 0 | | | | | 0 | • | 0 | M) | ~ | 21.7 | 21.5 | 21.5 | 21.5 | 21.6 | | | 7 | | | | | • | | اريا
• | بہ | 0 | 0. | 0 | 0 | + | + | * | + | | 8 | | | | | 4 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | + | + | | 0 | | c
c | 0. | 4.06 | 19.2 | | 19.1 | 19.3 | | 19.8 | 6 | 0 | 0 | 0 | • | | | 0 | 0 | | 60 | 7 | œ | 8 | ac. | 60 | Ċ, | 6 | 0 | 0 | 0 | 0 | 0 | -4 | | + | ? | 9 | • | 7 | L. | 7 | . | 8 | 6 | 0 | • | 0 | 0 | 0 | 0 | ÷ | | 2 | ď. | 5 | • | 9 | 1 | 7 | œ | 8 | · | 6. | 6 | 0 | 0 | 0 | 0 | + | | ₽ | 4 | 4 | S. | 9 | ٠. | • | œ. | 80 | æ | 6 | • | 0 | 0 | 0 | • | - t | | 4 | 13.5 | 14.5 | 15.4 | 16.1 | 16.8 | 17.4 | 17.9 | 18.4 | \$ 8.6 | 19.5 | 9.6 | 19.9 | 20.5 | 20.5 | 20,7 | 21.0 | | 5 | 3 | 4 | tv. | • | 9 | 7 | 7 | 00 | 8 | 0 | • | 0 | 0 | 0 | 6 | 0 | | 9 | ,
M | 4 | 5 | 9 | 9 | 7 | 7. | æ | 00 | 6 | 0 | 0 | 0 | 0 | • | 0 | | 7 | 2 | 4 | 5 | 3 | . 9 | 7 | 1. | 80 | 8 | 6 | 6 | 6 | 0 | 0 | • | 0 | | 80 | 2 | 4 | 3 | 5 | | 7 | | 80 | 80 | 6 | 6 | 0. | 0 | 0 | 0 | 0 | | 50 | 12.3 | 14.0 | 15.0 | 15.8 | 16,6 | 17.2 | 17.8 | 18.3 | 18.7 | 19.1 | 19.5 | 19.8 | 20.2 | 20.4 | 20.7 | 20.9 | | 0 | 2 | • | 10 | 5 | 9 | 17.2 | 17.8 | 18.3 | 18.7 | 19.1 | 19,5 | 0 | | | | 0 | | ** | C | 13.9 | 4 | J. | 9 | • | 7 | • | • | • | • | • | | | 6 | 20.9 | | | C | - | • | | 16.5 | 7 | 1 | α | 00 | 0 | 0 | 0 | _ | _ | C | c | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.68 | A P P P P P P P P P P P P P P P P P P P | | | | | | | |
8
₽ | | | | | | | | | |---|------|------|----------|------|------|------|-------------|--------|----------|--------------|------|----------|------|--------|----------|---------------------| | K11 | 0 | 9.0 | 0.7 | 0 | 0 | 1.0 | | . 2 | 4.5 | | 4 | | 1.7 | 1 00 (| 1.9 | • | | 000 | , | 0 | | • | | | • | | • | | 6 |)
; ^ | | | 0 | | | • | | | | | | | | | | | | | | | • | | | | | | | | | | | | | 9 | | | | | | .0 | ó | | | 0. | | | 0 | | 0 | 0 | • | 9. | | 0 | 0 | 0 | | • | 27.6 | | | O | | 0 | | 0 | | | | | | | | | | | 3 | | 15 | | | | | | | | | 0 | 0 | 10 | 3 | 2 | ~ | ~ | ~ | | | | | | | | | 0 | • | 4 | 2 | 2 | + | +1 | +4 | -1 | • | | | | | | | • | 0 | - | + | + | - | , | + | + | - | + | - | | | | | | • | 1 | | 20.4 | 20.2 | 20.5 | 20.3 | 20.5 | 20.7 | 20.9 | 21.1 | 21.2 | | | | 0 | | . | 21.5 | | 6 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | <u>.</u> | + | | | | 0 | 0 | œ. | 80 | 80 | ς. | • | • | 6 | 0 | 0 | 0 | | ÷ | + | | | 0 | 17.3 | 17.0 | 17.3 | 17.6 | • | 18.5 | 18.9 | 19.3 | 19.6 | 19.9 | 20.2 | 20.5 | 20.7 | 21.0 | 21.2 | | | 5 | ₹. | • | 6 | 7 | 7. | 8 | 8 | 6 | • | 0 | ċ | 0 | 0 | 0 | + | | | 4 | ď. | 8 | \$ | 7 | | 8 | 90 | 0 | 0 | • | 0 | 0 | 6 | 0 | $\ddot{\mathbf{H}}$ | | | | • | 'n | • | 7. | - | \$ 0 | 8 | ٠
• | 6 | • | 0 | Û. | 9 | 0 | *4 | | | 3 | 4 | 2 | • | 9 | 7 | • | 8 | 6 | 0 | • | 0 | 0 | 0 | 6 | - | | | 13.2 | 14.3 | 15.3 | 16.1 | 16.8 | 17.4 | 18.0 | 18.5 | 18.9 | 19.3 | 19.7 | 20.0 | 20.3 | 20.6 | 50.8 | | | | 3 | 4 | ς. | • | • | | • | œ | € | • | • | 0 | 0 | 0 | 0 | . | | | 3 | 4 | ς. | • | • | | 7 | 8 | 80 | • | • | 0 | 0 | 0 | 0 | - | | 59 | • | 4 | 5 | • | 9 | 7. | 7 | œ | 60 | G. | • | | 0 | 0 | • | ÷ | | 30 | S | 4 | 80 | 5 | • | - | | 8 | 80 | 0 | • | 0 | 0 | 0 | • | 4 | | | 2 | | _ | 15.9 | 16.7 | 17.3 | 17.9 | 18.4 | 18.9 | 19.3 | _ | 20.0 | 0 | 0 | 0 | ÷ | | 32 | 12,8 | | | 5 | • | 7 | 7 | 8 | 60 | • | | • | 20.3 | 20.6 | 20,8 | 21.1 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA #### YARN BULK DENSITY #0.69 | | | | | | | | | 8€1 | | | | ļ | | (| | • | |-------------------|--------|------------|------|----------|------|------------|-------------|----------|-----------------|------|------|------|------|---------------------|--------|-----------------| | ▲ ~
フ 木 (| 1 | . 6 | 0.7 | 0 . | 0.0 | 1.0 | 1.1 | 1.2 | PO
 +- : | 1.4 | 5.1 | 1.6 | 1.7 | ~ | 6 ! | 2.0 | |
 co (| | | 5 | í
I • | | 0 | 0 | !
! • | | | 0 | 00 | 0 | 0 | | 0 | | o | 0 | | | | | | | | | | | | . 0 | | | | | | | 0. | 0 | | ₽ | | 0 | 0 | 0 | | 0 | | • | ë (| | 0 | | 0 | 0 4 | ė. | 29.1 | | च
च | •
• | | | | _ | | | | | | | | | | | • | | | 0 | | | | | | | | 0 | 0 | 4 | 4 | m | 2 | 5 | 2 | | | 0 | 0 | 6 | 0 | .0 | 0. | 0 | 0 | 25.8 | 23.2 | 22.4 | 22.1 | 22.0 | 22.0 | 22.0 | | | | | | | | | • | | | - | + | #1 | + | + | 4 | + | + | | | ث | | | | | | 0 | 0 | . | 0 | | 0 | - | ÷ | -1 | + | | | | | | 23.0 | | • | 0 | 6 | • | 0 | 0 | 0 | 0 | •
• i | •
• | | | 0.0 | | | • | 60 | 60 | 60 | 0 | 6 | 6 | 6 | 0 | 0 | 0 | - | + | + | | | 0 | a o | 17.3 | 17.5 | 17.8 | _ | 18.7 | 19.0 | 19.4 | 19.8 | 20.1 | 20.4 | 20.6 | 20.9 | 21.1 | 21.4 | | | 9 | | 9 | • | 7 | 6 0 | œ | 8 | • | 6 | ć | 0 | 0 | 0 | - | + | | | 4 | 5 | €. | • | 7 | 7 | œ | 8 | 6 | Ċ. | 0 | 0 | 0 | 0 | ÷ | • | | | • | 4 | S. | • | 7. | | 8 | œ | • | 6 | 0 | 0 | 0 | 0 | H | - -1 | | | ₩, | 4 | 70 | 9 | 7. | 7 | œ | 60 | 6 | 6 | 0 | 0 | 0 | 0 | - | +4 | | | 5 | 4 | 5 | • | 9 | 5 | œ | 80 | 6 | 6 | 6 | 0 | 0 | 0 | •
• | + | | | ٠
د | 4 | 5 | • | 9 | 7. | œ | œ | 6 | • | 0 | 0 | 0 | 0 | • | • | | 28 | 13.1 | 14.3 | 15.3 | 16.1 | 16.9 | 17.5 | 18.1 | 18.6 | 19.0 | 19.4 | 19.8 | 20.5 | 20.5 | 20.7 | 21.0 | 21.2 | | 50 | 3 | 4 | S. | • | \$ | | œ | 60 | 6 | o. | 0 | 0 | 0 | 0 | H | + | | | М. | 4 | 5 | • | 9 | ~ | 60 | œ | • | • | • | 0 | 0 | 0 | + | + | | 31 | 12.9 | 14.1 | 15.2 | 16.0 | 16.8 | 17.5 | 18.0 | 18.5 | 19.0 | 19.4 | 19.8 | 20.1 | 20.4 | 20.7 | 21.0 | 21.2 | | | ò | 4 | 5. | • | 9 | 7. | a C) | 8 | • | • | • | 0 | 0 | 0 | -4 | + | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.70 | | | ı | | | | |
 | 8 0 ⊞ | 1 | | 1 | :
(| | 8
1
0 | 1 | • | • | |-------|--------|---------|------|------|------|----------|------|--------------|------|-------------|-----------|--------|------|-------------|----------------|------|---| | K 1 1 | 0.5 | 9.0 | 7.0 | 60 | 6.0 | | 4.4 | 1.5 | 1.3 | 1.4 | 4)
(1) | 1.6 | 1.7 | 1.8 | 4.9 | 2.0 | | | 60 | 0. | 6 | 0 | - | | | . 0 | | .0 | | | | • | • | • | |) | | | | | 0. | | | | | | | | | | | | 0 | ò | | | | | | | | .0 | • | | | | . 0 | | | | | | | | • | | eo « | | | • | 970 | 31.7 | | | | | | | | | | | | | | | | | D | • | • | | | | | | | | | | | | 0 | • | • | 4 | 3 | 10 | 17 | 2 | | | | | | | 0 | 0 | 0 | 0 | 0 | 7 | 1 20 | 22.8 | 22.4 | 22.2 | 22.2 | 22.2 | ċ | | | | | | | | - | • | 0 | 2 | - | 1. | + | 1: | • | + | • | 5 | | | | | | | | | 2 | + | 0 | 0 | 0 | 0 | + | + | + | +1 | + | | | | • | | 0 | 26.0 | 20.6 | 0 | • | | 20.1 | | 0 | 0 | • | • | • | 21.7 | | | | | | | 6 | 80 | 60 | 6 | 6 | 6 | 0 | 0 | 0 | 0 | *** | • • | ÷ | | | | 0 | 60 | 17.6 | 17.7 | 18.1 | 18.4 | 18.8 | 19.2 | 19.6 | 19.9 | 20.2 | 20.5 | 20.8 | 21.1 | 21.3 | 21.5 | | | | | ÷ | • | | 7 | 8 | 60 | 6 | • | 6 | • | | 0 | . | - | - | | | | 4 | K | • | 9 | 7 | ∞ | • | 40 | 6 | 6 | 0 | 0 | | ; | - | · · | | | | 14.1 | • | 5 | • | 7. | 7 | • | 00 | • | 0 | 9 | 0 | 0 | 0 | ·
mi | e-d | | | 25 | 2 | 4 | 5 | 9 | 7. | • | • | 60 | • | 6 | | 0 | | 0 | - | - | | | | - | 14.6 | 15.5 | 16.4 | 17.1 | 17.7 | 18.3 | 18.8 | 19.5 | 19.6 | 20.0 | 20.3 | 20.6 | 20.9 | 21.2 | 21.4 | | | | 3 | •
•ा | 5 | • | 7 | 7 | | 80 | • | 6 | 0 | 0 | | 0 | - | + | | | | 3 | 4 | 5 | • | 7 | | œ | æ | 6 | 6 | | 0 | 0 | 0 | - | 7 | | | | | 4 | 5 | • | 7 | 7 | 80 | 80 | 6 | ô | | 6 | 0 | 62 | - | ; | | | | ₩. | - | S | • | 9 | 7 | œ | 80 | 6 | 6 | • | 0 | 0 | 0 | | + | | | 31 | 13.0 | 14.2 | 15.3 | 16.2 | 16.9 | 17.6 | 18.2 | 18.7 | 19.1 | 19.6 | 19.9 | 20.3 | 20.6 | 20.9 | 21.1 | 21.4 | | | | ٠
س | 4 | 3. | • | • | 7. | œ | 80 | 6 | 0 | • | 0 | 0 | 0 | - | + | | MAXIMUM FILLING COVER FACTORS [KZ] IN TERMS C. WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.71 | \$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1.6 1.7 1.8 1.9 2 | 0.0.0.0.0 | 0. 0. 0. 0
0. 0. 0. 0
0. 0. 0. 0
0. 0. 0. 0 | 25.7 24.2 23.6 23.2 23.1
22.7 22.5 22.4 22.4 22.5
21.7 21.8 21.9 22.0 22.1
21.3 21.4 21.6 21.8 21.9
21.0 21.2 21.4 21,6 21.8 | 20.8 21.1 21.3 21.5 21.7 20.7 20.7 21.0 21.2 21.5 21.7 20.6 20.9 21.2 21.4 21.6 20.5 20.8 21.1 21.4 21.6 | 20.5 20.8 21.1 21.3 21.6 20.5 20.8 21.1 21.3 21.6 20.5 20.8 21.1 21.3 21.6 20.4 20.8 21.0 21.3 21.5 20.4 20.7 21.0 21.3 21.5 | 20.4 20.7 21.0 21.3 21.5
20.4 20.7 21.0 21.3 21.5
20.4 20.7 21.0 21.3 21.5 | |--|-------------------|------------|--|--|--
--|--| | , | 1.5 | 00 | 00000 | 22.4.2
24.7
24.7
24.7 | 00000
04000 | 00000 | 20.1 | | | ; , , | 60 | 00000 | 04440
0.00 | 2000
2000
2000
2000
2000 | 4444
4444
4444
4444
4444
4444
4444
4444
4444 | 19.7
19.7 | | | | 00 | 00000 | 0
20
20
20
20
20
30 | 0.00
0.00
0.00
0.00
0.00 | 7 4 M M M | 19.04
19.04 | | BET | 1.2 | 0 - | 00000 | 0
20
21
20
21
20
21
21 | 20000
00000
04040 | 9 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 41 44 44
80 80 80
80 80 80 | | | ++ | - | | 000,0 | 4 0 & 0 \$\$\text{\$\ext{\$\text{\$\ | 4 4 4 10 10
0 4 4 10 10 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | 1.0 | | 00000 | 233000 | 9 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 17.9
17.8
17.8 | 17°7
17°7
17°7 | | | 6.0 | | 00000 | 24.2 | 19
19
17
17
19
17 | 17.2
17.2
17.2
17.1 | 17.1
17.0
17.0 | | | 0.8 | - | | 00000 | 49
47
47
50
50
70
70 | 444
6044
6044
6044 | 46.4
46.4 | | | 6.7 | 6
1 • • | | 00000 | 9 0 6 H 0 0 | $\begin{array}{c} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ \end{array}$ | 0 5 5 5 4 4 4 4 4 4 | | | 9.0 | | | | 15.00
15.00
15.00 | 44444
0 V O W 4 | 446 | | | 0.5 | | | ••••• | 0 0 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 44444
88888
68480 | 888
888
844 | | رن
ارن | ∢ | 00 0 | | | | 2222
2265
2269 | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.72 | | | | | | | | | 80
₽ | | (| | | | | | | | |-----|------------|-------|---------|-----------|-------------------|------|------|------------|------|------|------|------|------|----------------|--------------|-----------------|--| | A T | 1 K, | 9 . | 0.7 | 0.8 | 0 | 1.0 | • | | 1.3 | 4. | 1.5 | 40 | 1.7 | 44
8 | 4.9 | 2.0 | | | 4.4 | 0 | | 0 | 0 . | . 0 | | 0. | 0. | 0 | 0 | 9 | | 0. | 29. | • | 25. | | | | | | | | | | | C | | 0 | c | 9 | 4 | 3 | n | 3 | | | | | | | | | | | 0 | 0 | 5 | P) | 3 | S | è | 6 | Ċ | | | | 0 | | | | | | 0 | 24.7 | 22.8 | 22.2 | 22.0 | 22.0 | 22.0 | 22,1 | 22.2 | 22.3 | | | | | | | | • | 5 | 2 | quel | * | - | - | - | +- | ; | ÷ | 3 | | | | | | | | 21.9 | | | • | 0 | 0 | 0 | - | + | + | ** | 8 | | | | | | 7 | | 0 | 0 | 6 | 0 | 0 | 0 | 0 | - | -4 | * | - | ÷ | | | | 0 | - | 00 | ac | 80 | 20 | 6 | 6 | • | 0 | 0 | 0 | + | -1 | + | + | | | | x. | 7 | 1 | | 80 | 18.5 | 18.9 | 19.4 | 19.8 | 20.1 | 20.5 | 20.8 | 21.1 | 21.3 | 21.6 | 21.8 | | | | 3. | r. | 6 | 7 | 7. | 60 | 60 | 6 | 0 | 0 | • | 0 | 7 | 1 | -1 | · | | | | 14.5 | 15.3 | 16.1 | | 17.5 | 00 | œ | • | • | ပ် | 0 | 0. | 1. | + | - | - | | | | 4 | 5 | 5 | Ś | _ | 30 | 80 | 6 | Ö | 6 | • | 0 | • | + | - | ÷ | | | | 2 | | 15.8 | C | ~ | 18.0 | 18.5 | 19.0 | 19.5 | 19.9 | 20.3 | 20.6 | 20.9 | 21.2 | 21.5 | | | | | 3 | 4 | 5 | 9 | 7. | 7. | 8 | ó | 6 | 6 | 0 | 0 | 0 | + | ÷ | - | | | | | 4 | 'n | ç | 7 | 7 | œ | 0 | 6 | ф. | Ö | 0 | 0 | + | + | ·. | | | | ? | 14.5 | • | 16.4 | | 7 | œ | 6 | 6 | 5 | C | 0 | 0 | , | 7 | ₊ | | | 30 | • | 4 | 5 | \$ | 7 | 7. | αC | 6 | 6 | 6 | 0 | 0 | 0 | -1 | * | • | | | | - | 14.5 | 15.5 | 16.4 | • | 17.8 | 18.4 | 19.0 | 19.4 | 19.8 | 20.5 | 20.6 | 20.9 | 21.5 | 21.4 | 21.7 | | | | ر پ | 4 | 5 | | 7 | 7. | 80 | œ | 6 | · | 6 | 0 | 0 | + | + | | | | | د | 4 | 5 | • | ~ | 7. | 8 | æ | 6 | • | 0 | 0 | 0 | - | ء
ج | | | | | ∞ | 4 | 5 | ċ | ~ | 7 | œ | œ | 6 | 0 | c · | 0 | 0 | , | . | - -1 | | | | ن.
• | 4 | ري
- | \$ | 7 | 7 | 00 | œ | 6 | • | 0 | 0 | 0 | +1 | - | - | | | | δ, | 4 | Š | 9 | 7 | 7 | aC) | x 0 | ŏ | 6 | c | 0 | 0 | + | • | + | | | 37 | 13.1 | 4 , 4 | 15.4 | 16.3 | 4. 7. 4.
1. 4. | 17,8 | 18.4 | 18.9 | 19.4 | 19.8 | 20.5 | 80.6 | 20.9 | 21.2 | 21.4 | 21.7 | | | | ~
` | 4 | r. | ć | 7. | 7 | œ | oc | • | 0 | | | O | ,
H | - | H | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BILK DENSITY #0.73 | | | | | | : | | | | | 1 | | | (| • | 1 6 | • | |-----|------------|-----------|--------|-------|------|------|--------|------|--------|--------|-----------------------|------|------------|--------------|-----------------|-----------------| | | | ¥ • 0 | 2 • 0 | 0 . 8 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1 . 1 . 5. | 1,6 | 1.7 | 80 : | | 2.0 | | 141 | | ı | | | 0. | | 0.0 | | 0. | | | 0.0 | 0 | • | 26. | R. | | | | | | | | | | | C | ·
C | • | 7 | 3 | 4 | 1 | 3 | | | | | | | | | | • | | , | • | . ~ | , P | C | 0 | C | | | | | | | | | | • | = P | 0 0 | | o c |) (| | . כ | , , | | | | | | | | 0 | | ċ | • | 7 | | , | · | | , | | | | c | ٠
ت | ·
C | · | 0 | 28.9 | 22.7 | 21.8 | 21 .s | 21.4 | 21.5 | 21.6 | 21.8 | 22.0 | 22.1 | 22.5 | | _ | 0 | | | | | H | o | 0 | 0 | 0 | + | ÷ | •
•-i | | 2 | 2 | | | | | | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | - | *** | ~ 1 | -1 | 5 | | | C | 4 | œ | ď | 80 | 6 | 0 | 6 | 0 | 0 | 0 | ; | 1. | 7 | ; | 'n | | | 0 | r- | 7 | 7 | 8 | 90 | 6 | 6 | 6 | 0 | 0 | 50.6 | • | -4 | • | | | | v. | · | vC | 7 | 7 | 00 | 00 | 6 | 6 | 0 | ċ | 0 | H | · | •
•i | + | | 4 | 14.7 | 15.5 | 16.3 | 17.0 | 17.7 | 18.3 | 18.8 | 19.3 | 19.7 | 20.1 | 20.5 | 0 | | 21.4 | -1 | ÷ | | 25 | 4 | r. | ·C | • | 7 | 90 | • | • | 6 | • | • | • | 21.1 | -4 | 21.6 | 21.9 | | | 3 | ις | iv. | Ġ | 7. | 80 | œ | 6 | 6 | 0 | 0 | ° | - | + | + | H | | | ∾, | 7 | 5 | 9 | 7 | œ | œ | 5 | 6 | 0 | 0 | 0 | • | , | | H | | | ~ | 14.7 | r. | 16.6 | 7 | 80 | Œ | | ٠
• | 0 | c | 0 | • | 7 | • | ; | | | 13.4 | • | 15.7 | • | 17.3 | • | œ | 6 | 19.6 | 0 | | 0 | + | | *-1 | •
- ⇒ | | | 8 | 4 | n, | \$ | 7 | œ | œ | 6 | 6 | o, | 0 | 0. | + | 21.3 | | +4 | | | ۶. | 4 | r. | 9 | ~ | 8 | 00 | 6 | 6 | 。
0 | c. | 0 | + | +1 | ٠
ټ | ,
, | | | * | 4 | r. | \$ | 7 | 7 | . 8 | 6 | 6 | 0 | 6 | 0 | •
• | + | + | . | | | ٠, | 4 | | 16.5 | | 7 | 18.0 | 0 | 19.5 | 20.0 | 20.4 | 20.7 | 21.0 | +4 | | | | 44 | 13.2 | 14.5 | | • | | | о
В | • | • | | 0 | 0. | • | -1 | - -1 | - | | | ~` | 4 | ur. | \$ | 7 | 7 | œ | 6 | • | 0 | 0 | 0 | 7 | •
•• | -1 | + | | 16 | 13.2 | 1. 4 · 57 | 15.5 | 16.5 | 17.2 | 17.9 | 18.5 | 19.1 | 19.5 | 20.0 | 20.3 | 20.7 | 21.0 | 21.3 | 21.6 | 21.8 | | | ~) | 4 | ٦. | • | 7. | 7 | œ | 6 | 6 | | 0 | 0 | H | + | ** | ÷ | | | ~ | < | ı. | 4 | 1 | r | , | • | | | , | | | | | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.74 | | (
! | | | | | 1 | 1 | BE 1 | t
1 | 9
1
1 | l
I | | 1 | , | 1 | 1 | | |----------------|---------|------------|------|------|------|------------|------|-------------|--------|-----------------|----------|------|------|----------|------|----------|------------| | ₹ <u>~</u> | 0.5 | 9.0 | 0.7 | 30 | 6.0 | 1 | 4.4 | 1.2 | | 약
- 1
- 1 | | - | 1.7 | 1.8 | | 2 | 6 | | : * | | l
 | 1 | | 0 | 0 | | 0. | . 0 | . 0 | | | 0 | | • | 26. | | | | | | | | | | C | | • | 0 | 6 | 6 | 30 | * | 4 | 2 | 0 | | | 0 | | 0 | | | | | 0 | 0 | | 24.7 | 23.8 | 23.3 | 23.2 | 23.1 | 23 | - | | | | | | | | | 0 | | 3 | 2 | 2 | 2 | ∾ | 2 | 2 | 5 | 2 | | | | | | | C | | 3 | ? | • | ÷ | + | ** | 8 | 2 | ~ | ċ | 10 | | | | | | | | 21.5 | 0 | 0 | 0 | -1 | •1 | + | + | -4 | 5 | 8 | m | | | | | | - | 0 | • | 0 | 0 | | 0 | - | + | + | • | è |
8 | 8 | | | | 0 | 6 | 18.8 | 18.9 | 19.2 | 19.5 | 19.9 | 20.2 | 20.6 | 20.9 | 21.2 | 21.4 | 21.7 | 21.9 | 22. | ~ | | | 8 | 7 | 7 | 7 | œ | 8 | 6 | 6 | 9 | | • | + | • | + | - | 3 | | | | 6. | | 9 | 7 | 8 | 80 | 6 | • | 0 | 0 | | 1 | + | + | + | è | - 4 | | | 14.9 | 5. | • | 7 | 7. | 60 | 6 | 0 | 6 | 0 | 0 | + | - | - | - | 8 | 0 | | 25 | • | • | ς. | • | 7. | - | 18.9 | 19.4 | 19.8 | | 0 | 0 | ÷ | 21.5 | | ŝ | 0 | | | 4 | 15.1 | 16.0 | 16.9 | 17.6 | • | æ | 0 | • | | 0 | G | - | + | 41 | | 0 | | | 3. | 4 | 5 | • | 7 | œ | æ | ò | 6 | 0 | • | 0 | + | + | + | ô | 0 | | | 3 | <i>4</i> . | 3 | ÷ | 7 | œ | œ | · | 6 | Ġ | 0 | 0 | + | . | +1 | çi
Ci | 0 | | | 13.5 | 4 | 5 | ç | 7. | œ | œ | 6 | • | 0 | 20.5 | 50.9 | • | • | 1. | ~ | 0 | | | ~ | 4 | 5 | ¢ | 7 | 9 0 | œ | 6 | 6 | 0 | 0 | 0 | | - | - | 8 | 0 | | | 13.4 | 14.7 | 15.7 | 16.6 | 17.4 | 18.1 | 18.7 | 19.2 | 19.7 | 20.1 | 20.5 | 20.9 | 21.2 | 21.5 | 21.7 | 22. | 0 | | | نم
• | 4 | 'n | ċ | 7 | æ | œ | 6 | ċ. | 0 | 0 | 0 | | +1 | - | 2 | _ | | | ~; | 4 | 5 | \$ | 7 | 8 | œ | 6 | 0 | 0 | 0 | 0 | + | ; | + | Š | 0 | | | .; | 4 | r. | 9 | 7. | 00 | Œ | 6 | · | 0 | C | 0 | |
++ | - | 2 | _ | | | ~ | 4 | 5 | ç | 7 | æ | œ | 0 | • | 0 | 0 | 0 | • | •
•-4 | -1 | 2 | 6 | | | 3. | 4 | 5. | ۶. | 7. | 00 | 80 | • | 6 | 0 | • | 0 | - | + | 1. | 2 | 0 | | 37 | 13.3 | 14.6 | 15.6 | 16.6 | 17.4 | 18.0 | 18.6 | 19.2 | 19.7 | 20.1 | 20.5 | 20.8 | 21.2 | 21.5 | 21.7 | 22. | 0 | | | · · | 4 | r. | ċ | 7. | æ | œ | 6 | 6 | 0 | c | 0. | - | - | 1. | 5 | 6 | # MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.75 | | | | | | | | | BEŢ | ļ | | | , | į. | | 0 | 8 | • | |----------------|-------------|-------|------|------|------|------------|--------|----------|--------|----------|----------|--------------|---|----------|----------|-----|-----| | 4 - | 0
7
1 | 0 - 0 | 0.7 | 6. | 0.9 | 1.0 | -
- | 1.2 | (4 (| 1.4 | 1.5 | | 1.7 | 00 I | 1.9 | 2. | 0 | | । 4
।
। | l • | 1 | | ł | | 0 . | i • | • | 0 | 0. | 1 0 | | • | 0 | 28 | 56 | S | | | | | | | | | | | | c | c | ۲ | 4 | ď | 4 | 7 | | | | | : c | • | • | | o c | | | •
• | | 2 C | . 4 | 0 P P P P P P P P P P P P P P P P P P P | 4 7 6 | 2 2 | 2.4 | 1 1 | | | | | | | | - • | | • | • | •
• | , (| | | •
o c | •
) (| 0 | | | | | | | | | · | 0 | | 4 | ; | | | , | | • | 4 | | | | | | | | 0 | • | • | • | | . | 'n | · | 2 | 2 | 2 | 2 | | | 0 | ٠
ن | 0 | | 0 | 26.2 | - | - | -1 | + | -1 | • | . | · | 2 | · | 2 | | | | | | _ • | ~ | 0 | 0 | ċ | <u>_</u> | | 0 | | - | | • | 2 | ~ | 4 | | | | 0 | | . 0 | 6 | 0 | 0 | 0 | 0 | 0 | - | + | -1 | + | 2 | 0 | - | | | • | 00 | 7 | œ | 8 | 6 | 5 | 6 | 0 | 0 | 0 | + | -1 | - | ~ | 2 | | | | 9 | · • | 7 | 7 . | 00 | 80 | 6 | 6 | 0 | 0 | 0 | + | - | + | 2 | 2 | | | | 15 2 | 15.9 | 16.6 | 17.3 | 19.0 | 18.6 | 19.1 | 19.6 | 20.0 | 20.4 | 20.8 | 21.1 | 21.4 | 21.7 | 22.0 | 23. | | | C | 4 | S. | 9 | 7 | 7 | • | 0 | 0 | 0 | 0 | 0 | | | • | + | C | | | | 4 | r. | 5 | 7 | 7 | 8 | 6 | 0 | 0 | 0 | c | ٠, | -1 | · | • | N | - | | | ~ | 5 | 9 | 9 | 7 | 80 | 00 | 6 | 6 | 20.3 | 20.7 | ۰ | • | 21.6 | 21.9 | 22. | | | | ~ | ır. | ·c | · | 7 | æ | α. | ó | • | 0 | 0 | + | ب | • | - | 2 | - | | | 13.6 | • | 15.9 | 16.8 | 17.6 | 10.3 | 18.8 | 19.4 | 19.8 | \Box | c | 21.0 | 21.3 | | + | 2 | | | 605
247 | ~5 | শ্ব | 5 | • | 7. | 80 | œ | 0. | 6 | 0 | 0 | + | - | - | - | O | ਜ਼ | | | 13.5 | 4 | | 16.7 | 17.5 | • | 18.8 | 19.3 | - | 20.3 | 20.6 | | | 21.6 | 21.9 | 22. | | | | ∾. | 4 | 5 | | 7 | 8 | α | 6 | 6 | 0 | | + | - | -4 | * | 2 | | | | × | 4 | 5 | • | 7 | 80 | 8 | 6 | 6 | 0 | • | ₩. | •
₩ | + | + | 2 | | | | • | 14.7 | | \$ | 7 | 18.2 | • | • | | 0 | • | | •t | • | ÷ | 2 | 4 | | 35 | % | 4 | 5 | • | 7. | • | 60 | 0 | 6 | | c | - | + | + | - | 2 | | | | 3 | 4 | 5. | \$ | 7. | 80 | 80 | 0 | 6 | 0 | න | ·
+1 | + | + | 1. | 2 | | | 37 | 13.4 | 14.7 | 15.8 | 16.7 | 17.5 | 18.2 | 18.8 | 19.3 | 19.8 | 20.5 | 20.6 | 21.0 | 21.3 | 21.6 | 21.9 | 25 | | | | ~ | 4 | S | \$ | 7. | 80 | œ | • | 6 | 0 | 0 | - | + | +4 | - | ~ | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.76 | | 1 | | | i | 1 | Ì | | 9E | | 0
0
0 | | !
! | , | | 0
8
0 | 1 | | |----------------|------------|------|------|------|------|------|----------|------|--------------|-------------|------|--------------|----------|------|-------------|-----|-------------| | 2 X C | 0.5 | 9.0 | 7 | 0.8 | 0.0 | 1.0 | 1.1 | 1.2 | 1.3 | + | 1.5 | 1.6 | |) | | | 0 | | - - | | • | 1 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |) | 0 | | | 1 | | | | | | | | | | | | c | C | 0 | 7 | S | ** | 4 | 10 | | | 0 | | | | . 0 | . 0 | . 0 | 0 | | 37.3 | 26.1 | 24.6 | 24.0 | 23.7 | 23.6 | 23. | 10 | | | | | | | | | | 0 | • | 3 | 3 | M. | 2 | 2 | 3 | 7 | - | | | | | | | | • | • | | N | 5 | ? | 5 | 5 | ~ | 2 | 2 | 6 0 | | | 0 | | | | 31.3 | | ÷ | + | - | ÷ | - | - | 3 | 2 | ~ | C | ^ | | | | | | M2 | 0 | 5 | 0 | 0 | 0 | - | • | - | - | 2 | ~ | N | 10 | | | | C | = | 6 | 6 | • | • | 0 | 0 | 0 | - | + | - | 2 | 2 | ~ | 2 | | | | 0 | œ | 80 | 80 | • | • | 0 | 0 | 0 | - | 4 | + | - | ~ | C | * | | | 7 | 16.9 | 17.3 | 17.8 | • | 18.9 | 19.4 | 19.8 | 20.3 | 20.6 | 21.0 | 21.3 | 21.6 | 21.9 | 22.1 | 22. | * | | | 15.4 | 9 | ć | 7 | œ | 00 | 6 | 0 | ċ | 0 | 0 | + | • | H | 3 | 2 | 4 | | | 4 | Š | • | 7 | 80 | 80 | • | 6 | 0 | c
C | 0 | + | • | | 8 | Š | ۲n | | | 4 | | 16.3 | 17.1 | • | 18.5 | | 19.6 | 20.1 | 0 | 20.9 | 21.2 | | 21.8 | 22.1 | 22. | 1 20 | | | 4 | 'n | | 7. | 7. | 9 | • | 6 | 0 | 0 | 0 | + | . | + | 2 | 2 | m | | | 3 | 5 | ė. | 7 | 7 | 8 | °. | 6 | 0 | 0 | 0 | + | | + | ~ | 2 | ₽ ∕) | | | 13.8 | | 3 | • | Ĺ | 00 | 6 | 6 | 0 | 20.4 | 0 | - | | 7 | 2 | 2 | m | | 30 | 8 | 4 | • | \$ | 7, | 80 | 0 | 6 | 0 | | c | 4-4 | + | + | 2 | c | ĸ | | | 13.6 | 14.9 | 15.9 | 16.9 | 17.6 | 18.3 | 18.9 | 19.5 | 20.0 | 20.4 | 20.8 | 21.1 | 21.5 | 21.8 | 22.0 | 25. | ~ 3 | | | ~· | 4 | S. | . 9 | 7. | 00 | œ | 6 | 0 | 0 | 0 | •
•4 | -4 | , | 3 | ٠ | (M) | | | 3. | 4 | 5 | • | 7 | 8 | œ | 6 | ٠
• | | 0 | . | + | + | 2 | ò | m | | | • | 4 | 5 | . 9 | 7 | 60 | œ | 6 | 6 | 0 | • | | <u>.</u> | + | ~ | 2 | m | | | 3. | 4 | r. | 9 | 7 | Œ. | ď | 6 | 0 | 0 | 0 | <u>.</u> | + | + | 3 | 2 | m | | 36 | 13.5 | 14.8 | 15.9 | 16.8 | 17.6 | 18.3 | 18.0 | 16.4 | 10.0 | 20,4 | 20.8 | 21.1 | 21.4 | 21.7 | 22.0 | 25. | m | | | 8 | 4 | س | ÷ | 7. | œ | œ | • | ф
• | 0 | 0 | - | | ·-i | 5 | 5 | 2 | | | ٠ <u>٠</u> | 4 | ľ. | • | 7. | • | a | • | 6 | 0 | 0 | | + | | 2 | ٥. | M) | # MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA #### YARN BULK DENSITY 20.77 | | | | | | | | | 867 | | | | | | i | | 1 | ! | |----|----------|------|----------|----------|------|------|------|------|-------|------|----------|----------|----------|------|----------|--------|----| | X | 0.5 | 9.0 | 0.7 | 0.8 | | 1.0 | 1.1 | 1.2 | 1 PC) | 1 4 | 4.5 | 1.6 | 1.7 | 4 | 6 | 2 | 6 | | 4 | | ! . | l
I • | 1 | | 0. | 0. | | . 0 | 1 0 | 0 . | | | | 33. | 27 | 0. | | | | | | | | | | | 0 | | C | 0 | © | • | 5 | 4 | | | | | | | | | | | • | 0 | 0 | | 5 | 4 | 4 | P) | 3 | | | | | | | | | 0 | 0 | 0 | 9 | 4 | 5 | 3 | ₩, | 3 | * | 2 | | | | | | _
_ | | | • | 26.8 | 23.5 | 22.7 | | 22.4 | 22.5 | 22.6 | 22.7 | 23.8 | 23. | | | | <u>.</u> | · | · 0 | <u>.</u> | 0. | 3 | 5 | - | - | | + | 8 | ů | 2 | 2 | \sim | | | | | | <u> </u> | 10 | - | 0 | 0 | 0 | - | + | ₩. | +4 | ? | N | ~ | ~ | 7 | | | | · | - | 0 | - | • | 0 | 0 | 20.7 | 21.1 | - | 21.6 | 21.9 | N | 22.4 | 22. | | | | | 6 | Œ | œ | œ | ٥. | ó | 0 | ċ | 0 | • | + | + | 5 | 5 | ~ | | | | Φ | 7 | 7 | 8 | œ | 6 | 0 | 0 | 0 | 0 | - | - | *1 | 'n | 2 | 0 | | | | 15.7 | 16.3 | | • | | 18.9 | 19.4 | 19.9 | 0 | 0 | 21.1 | 1. | | • | 0 | 2 | | | 25 | • | ď | ý | 7 | 00 | 00 | 0 | 0 | | 0 | • | + | + | ~ | C | ~ | ~ | | | 4 | 5 | 9 | ١. | æ | 30 | · | 0 | 0 | 0 | • | + | + | -1 | 2 | \sim | | | | প | - | 16.3 | 17.2 | 1 | • | Š | | 20.2 | 20.6 | 21.0 | | | 21.9 | 22.2 | 22. | | | | 4 | 5 | v. | 7 | 7 | œ. | • | ò | 0 | 0 | • | ٠
۲ | -1 | + | <u>٠</u> | ~ | | | | δ. | | ć | 7. | 17.8 | 18.5 | 19.1 | 0 | 0 | 0. | ċ | | + | 7 | č | 2 | | | | ~)
• | ι. | 9 | 7 | 7 | ω. | 6 | ۰ | 0 | 0 | 0 | +4 | 4 | + | 2 | 2 | | | | ₩. | ς. | \$ | 7 | 7. | • | 19.1 | | 20.1 | 0 | 20.9 | | | | 22.2 | 22. | | | | \$. | 5 | 9 | 7 | 7 | œ | · | 0 | ċ | 0 | ċ | . | . | -+ | 3 | 2 | | | | 5 | 4 | 9 | 9 | 7 | æ | Ġ | 6 | | 0 | | + | ₩ | -4 | 2 | ~ | | | | 13.6 | | 16.0 | 16.9 | 17.7 | 18.4 | • | • | 0 | 20.5 | C | | 4 | | 0 | | | | | ~)· | 4 | \$ | ç | 7 | 90 | 0 | 6 | 0 | 0 | 0 | -4 | 1 | • | ~ | C | | | | ~; | 4 | \$ | \$ | 7, | 00 | 0 | 6 | j. | 0 | 0 | - | + | ·-4 | 2 | 2 | | | 37 | 13.6 | 14.9 | 16.0 | 16.9 | 17.7 | 18.4 | 10.0 | 19.5 | 20.1 | 20.5 | 20.9 | 21.3 | 21.6 | 21.9 | 22.2 | 22. | | | | 3 | 4 | 9 | \$ | 7 | 80 | • | 6 | 0 | 0 | c | - | - | + | 2 | 2 | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.78 | • | 2.0 | • | 6 4 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 000000
00000 | 00000
0000
0000 | 00000
00000 | 9999 | |--------|------|---------------------------------------|---|---
---|---|--| | 1 | 6 | 0 | 6440
80000 | V 0 0 4 4
0 0 0 0 0 | 4 4 4 W W
0 0 0 0 0 0 | 88888
88888 | 0000
0000 | | 1 | - | 4 | 20000
20000 | 2222 | 222 | 222 | 2222 | | | # F | • | 00000
04000
0000 | 00000
00000
40000 | 2222 | 2222
2222
2222
2220
2220 | 222.0 | |)
1 | | 0. | 20 4 | 222.22.22.22.22.22.22.22.22.22.22.22.22 | 21.22
21.38
8.12
8.13
8.13 | 21.7
21.7
21.7
21.7 | 21.7
21.7
21.7
21.7 | | | 1.6 | . 0 | | 222.0
21.3
21.7
21.6 | 21122
21122
21124
2114 | 10000
11000
4444 | 21.2
4.15
4.15
4.15 | | ! | • | 0 | | 21.5
21.5
21.5
21.5 | 24.2
24.1
24.1
24.1
1.1
24.1 | 2221.1.122.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 21.0
21.0
21.0 | | | | | | 2011
2011
2000
2000
2000 | 20.8
20.7
20.7
20.7 | 20.7
20.7
20.7
20.6 | 20.0
20.0
20.6 | | | | 0 | 0.
0.
27.5
23.1
21.8 | 21.3
20.9
20.7
20.6
20.5 | 0000
0000
0000
0000
0000
0000 | 200.02 | 200.50 | | ₽E - | l e1 | | 0.0
0.0
0.1.2
0.1.9 | 21.1
20.6
20.3
20.1 | 19.9
19.9
19.8
19.8 | 19.8
19.7
19.7
19.7 | 19.7
19.7
19.7 | | 1 | 1.1 | 0 | 00000
0000
0000 | 21.0
20.3
19.9
19.7 | 4 | 119.22 | 19.2
19.2
19.1 | | 1 | 1.0 | 0 | | 21.1
20.1
29.5
19.2 | 18.9
18.7
18.7
18.7 | 18.6
18.6
18.6
18.6 | 20 00 00 00 00 00 00 00 00 00 00 00 00 0 | | ! | 0.9 | 0. | •••• | 21,9
20.0
19.1
18,7 | 18.3
18.1
18.1
17.9 | 0,711
0,00
0,71
0,00
8 | 17.8
17.8
17.8 | |
 | 0.0 | . 0 | | 30.1
20.1
18.9
17.8 | 4.7.1
47.3
17.3
17.2 | 17.1
17.1
17.1
17.0 | 17.0
17.0
17.0 | | | 0.7 | | 0.000 | 18.9
17.7
17.1 | 4 1 1 1 1 1 1 1 2 2 3 3 4 3 W | 22.4.4.
9.4.4.4.
22.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4 | 1.65
1.65
1.65
1.1.1 | | | 9.0 | | | 20
20
17
16 | 10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00 | 11.55
11.05
11.05 | 15.0
15.0
15.0 | | | 0.5 | | | 0.
0.
18.9 | 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 | 13.7
13.7 | 13.7
15.7
15.7 | | | A Z | • • • • • • • • • • • • • • • • • • • | | | 20202 | | | # MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.79 | | | | | | | | | BET | | | | | 1 | 1 | | • | |----------|------|---------|----------|----------|---------|---------------|----------|----------|----------|----------|----------|--------------|--------|--------|--------|--------| | XC | | 9 | 0.7 | 0.8 | 0.0 | | 1.1 | 1.2 | 1.3 | 4 | 1.5 | • | 1.7 | 1.8 | | 5 | | 1 4
1 | ý | | !
• • | • | | 0 | | 0 | 0 | 0 | | 0 . | | | • | 0 | | | | | | | | C | | | | | « | C | 2 | 7 | • | 5 | | | | | | | | c | | . | | • | | 9 V | נענ | | | 4 | | | | | | | | > (| 5 | •
• | •
> c | > L | | | , | | • | - | | | | | | | | 0 | • | 0 | | 0 | • | ? | • | 2 | •
• | 2 1 | | | 0 | 0 | ċ | <u>.</u> | 0 | • | 38.0 | 24.7 | 23.4 | 23.0 | 55.9 | 22.9 | 23.0 | 23.1 | 23.5 | 23. | | | | | 0 | | | Ŋ. | 8 | 8 | 5 | O | ? | 2 | 2 | ٠ | • | 2 | | | | | C | | 2 | 24.4 | | ÷ | ÷ | - | - | 2 | 2 | 8 | ò | M | | | | • | 9 | 0 | 0 | 0 | 0 | 0 | + | + | - | 8 | 2 | C | 2 | ~ | | | | ~ | 0 | 0 | 6 | 6 | 0 | 20.5 | 0 | 1. | - | + | | 22.4 | 22.6 | 22. | | | Ē | 7 | 8 | æ | 00 | 6 | 0 | 0 | 0 | ; | + | - | 2 | 0 | 2 | \sim | | | 16.3 | 16.7 | 17.3 | 18.0 | | 6 | 19.7 | • | 20.6 | 21.0 | 4.4 | 21.7 | 22.0 | ò | ~ | | | | 5. | · co | ~ | ~ | • | • | 0 | 0 | 0 | 0 | • | - | 2 | ς. | 2 | N | | | 4 | 5. | 9 | 7. | ф
Ф | 00 | 0 | 0 | | 0, | • | H | | ٠
د | ~ | 2 | | | 4 | r. | 9 | 7. | œ | 0 | • | 0 | 0 | | . | | | | • | 22. | | | 4 | ι. | 9 | 7 | ъ
Э | œ | 5 | 0 |
0 | 0 | . | + | | 8 | 2 | \sim | | | 14.1 | 15.3 | 16.4 | 17.3 | 18.1 | | 19.4 | 19.9 | • | | 21.2 | + | | 2 | C! | 2 | | | 4 | ٠
لا | ¢ | 7 | σο
• | • | о· | 0 | 0 | 0 | • | H | | ç, | 2 | 2 | | | ٤. | r. | 9 | , | œ | œ | 6 | 6 | 0 | 0 | • | -1 | ** | 2 | è | \sim | | | ٠. | | 8 | 7 | 8 | 60 | 6 | 6 | 0 | 0 | -i | e-d | + | 2 | 2 | ~ | | | ~ | 5 | 9 | 7. | 80 | œ | 6 | | 0 | | 21.2 | | ٠
• | 22.2 | 22,5 | 2 | | 4 | 13.8 | 15.1 | 16.2 | 17.1 | 18.0 | | 19.3 | | 20.3 | c) | - | 21.5 | 21.9 | 2 | 2 | 22. | | 35 | M) | 5 | ç | 7. | 7 | æ | 0 | 6 | 0 | 0 | - | 21,5 | -4 | 2 | 2 | 2 | | | ×: | 5 | 9 | 7. | 7 | 00 | • | 0, | ċ | 0 | * | ,
H | 1 | i | (H | 2 | | | M) | r. | 9 | 7. | 7 | æ | 0 | 6 | 0 | 0 | • | - | | 2 | 2 | C | | | 15.7 | 15.1 | 16.2 | 17.1 | 17.9 | 18.6 | 19.3 | 19.8 | 20.3 | 20.8 | 21.2 | - | 21.9 | 22.2 | 22.5 | 22. | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA 1.32 (.52 3.52 2.17 2.14 3.14 YARN BULK DENSITY = 0.80 | | | | | | | | | BEŢ | | | | | | | • | | |--------|------|----------|------|------|------|------|------------|-------|------|------|------|----------|----------|------|------------|-------| | J X | 0.5 | 9.0 | 0.7 | 60 | 0.0 | 1.0 | 1.1 | 1 7 1 | 1.3 | 4 | 1.5 | . 6 | | 1 00 | 1.9 | 2 . 0 | | !
! | 1 | 1 | - | | | 0. | 0 | . 0 | 0 | 0 | . 6 | | | 0 | 0 | • | | | | | | | | | | | | 0 | 6 | 0 | | 60 | • | 5 | | | | | | | | | | | 0 | 0 | 2 | 6 | 5 | + | * | + | | | 0 | 0 | 0 | 0 | 0, | | 0 | 0 | 2 | • | | 4 | 23.9 | 23.8 | 23.8 | 23.9 | | | | | | | | 0 | C 3 | 'n | 3 | 3 | 20 | M | 3 | 2 | 3 | 3 | | 19 | | 0 | | 9. | | • | 23.3 | 22.5 | 22.3 | 2 | 2 | 22.6 | ~ | G | F | 8 | | | | | | 0 | 3 | -1 | | | *4 | ∵-4 | ~ | 2 | 2 | 2 | P 7 | M | | | | <u> </u> | • | * | 0 | 0 | 0 | + | * | -1 | -1 | 2 | 2 | N | • | 3 | | | • | 5 | 6 | 0 | 6 | 6 | • | 0 | | - | - | 2 | 2 | N | 2 | 3 | | | 2 | 00 | 6 | 8 | 6 | 0 | ċ | 0 | 0 | - | + | + | 2 | 'n | 2 | 3 | | | 16.7 | 16.9 | 17.5 | 18.1 | 18.7 | • | 19.8 | 20.3 | • | 21.1 | 21.5 | 21.8 | 22.2 | 22.4 | 22.7 | 22.9 | | 5 | 5. | • | 7 | 7 | 80 | 0 | • | 0 | 0 | - | - | + | N | c. | 2 | 2 | | | 4 | n, | 9 | 7. | დ | • | 6 | 0 | Ċ. | + | H | + | <u>،</u> | Ġ | 0 | 5 | | | 4. | 15.7 | 16.7 | 13.6 | 18.3 | 6 | 6 | 0 | 0 | | • | 4 | 2 | | 2 | C | | | 4 | | · | 7 | 8 | 60 | 6 | 0 | 0 | + | + | 1 | 2 | 8 | 2 | 2 | | | 14.2 | 'n | - | 7 | • | | 0 | 20.0 | | -1 | | 21,7 | 22.0 | | 22.6 | • | | | 4 | ı, | \$ | 7 | 00 | 30 | 6 | 0 | نے | 0 | -1 | -4 | c, | C, | (C) | 2 | | | 4 | 5 | S | 7 | . 69 | 60 | 6 | 0 | 0 | 0 | + | | 2 | 2 | 2 | ? | | | 4 | 5 | ç | 7 | . 69 | 00 | 6 | 0 | 0 | 0 | -1 | + | 2 | 8 | ď | S | | | ~)° | s. | 9 | 7 | 60 | æ | • | ů. | 0 | 0 | • | | 2 | ~ | 2 | · v | | 4. | 13.9 | 15.2 | 16.3 | 17.3 | 18.1 | 18.8 | 19.4 | 20.0 | 20.5 | 20.9 | 21.3 | 21.7 | 22.0 | 22.3 | 22.6 | 22.9 | | | ٠, | 5 | • | 7 | æ | 60 | 6 | 0 | | 0 | • | 21.7 | 8 | ~· | 2 | C | | | 3. | 5 | . 9 | 7. | x | 60 | • | 0 | 0 | 0 | - | •
•= | € | 2 | 2 | 2 | | 37 | 13.8 | 15.2 | 16.3 | 17.2 | 18.0 | • | 19.4 | 20.0 | 20.5 | 20.9 | 21.3 | , | 22.0 | 22.3 | 22.6 | 22.9 | | | • | r. | ç | 7 | 60 | æ | • | 0 | 0 | 0 | - | ** | č | 2 | ~ | Ci | # MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =0.81 | | | 1 | 1 | | | 1 | 1 | 1 1 | | | 1 | | 1 | • | ŧ | • | |-----|----------|------|------|---------|------|------------|------|-------|------|----------------|----------------|----------|------|------------|------|-----------| | | 0.5 | 9.0 | 0.7 | D . A | 0.0 | 1.0 | 1.1 | - | 1.3 | 4. | v. | 4.6 | 1.7 | ÷ ; | | 2.0 | | 4 4 | | 1 = | | | 0 | 0 | | 0. | 0 | 0 | |) | 0 | 0 | | 33 | | | | | | | | | | | | | - | 0 | • | • | 7. | 9 | | | | | | | | C | | | | , _C | - | 1 | | 5 | * | 4 | | | | | |
: c | | 12 | | 0 | . 0 | | K | 4 | 4 | 4 | 24.0 | 24.1 | | | | | | | | 0 | | 9 | 4 | ~ | m) | ~ | m) | 1 2 | | m) | | | 0 | · c | 0 | . 0 | . 0 | _ | 23.8 | 22.9 | 22.6 | 5 | 22.6 | 22.8 | 55.9 | | ÷2 | m | | | c | | | • | 4 | • | | 4 | • | 2 | C | ~ | 2 | 2 | * | رم
رما | | | | | | | · _ | | | • • | • | , , | | | | 2 | P) | m | | | | | . = | 0 0 | | | | | | , , | | . ~ | 2 | 3 | 0 | m | | | 4 | α | 000 | ac | 0 | 0 | | | , , | + | | ~ | ~ | 2 | 2 | 3 | | | 17.1 | 17.2 | 17.7 | 18.3 | 18.9 | 6 | 20.0 | 20.5 | 20.9 | 21.3 | 21.7 | 22,0 | 22.3 | 22.6 | 22.8 | • | | 25 | ر. | ς. | 7 | 90 | œ | 0 | 6 | 0 | G | | • | . | ~ | 2 | • | 3 | | | رب | · C | 7 | 7 | ٠ | 0 | 0 | 0 | 0 | + | - | + | 8 | 8 | 2 | نما
• | | | 4 | 15.8 | 16.8 | 17.7 | Ð | • | 6 | | 0 | 21.1 | 21.5 | 21.9 | 22.2 | 25.5 | 22.8 | • | | | 4 | υ. | ò. | 7. | 80 | 0 | 6 | 0 | 0 | + | + | - | ~ | ٠
ر | 2 | m) | | | 14.3 | 5 | · | | • | 19.0 | 19.6 | 0 | 20.6 | + | - i | + | 2 | 0 | 8 | m | | | 4 | r. | ć | 7 | 80 | • | 6 | 0 | | +-1 | • | ₩. | 2 | ~ | 2 | 3 | | | 4 | ν. | · | 7 | 80 | œ | 6 | 0 | 0 | + | - | - | i | N | 2 | 3 | | | | 15.4 | 16.5 | 17.4 | 18.2 | x: | 19.6 | 20.1 | 20.6 | 21.1 | 21.5 | 21.8 | 22.2 | 22.5 | 22.7 | • | | | 4 | 3 | | 7. | 8 | æ | • | 0 | 0 | + | + | + | Ś | 2 | 5 | m | | | | 5. | è | 7. | 8 | 00 | O | 0 | · | <u>.</u> | - | + | 2 | 8 | 2 | 23.0 | | | 4 | r. | · c | 7 | 00 | • | 0 | 0 | 0 | ÷ | • | + | C | 2 | 2 | رما
د | | | 3 | 2 | · c | 7 | 8 | 8 | 0 | 0 | Ö | -4 | -1 | -: | 2 | 2 | 2 | 3 | | 3.7 | 15.9 | 15.3 | 16.4 | 17.3 | 18.2 | 18.9 | 19.5 | 20.1 | 20.6 | 21.0 | 21.4 | 21.8 | 22.1 | 25.5 | 22.7 | 23.0 | | | * | 5 | \$ | 7 | œ | x 0 | 0 | 0 | 0 | + | | - | 2 | ,
N | 2 | m | #### YARN BULK DENSITY = 0.82 | 0.88.0 | • | , , | ! | | 1.4 | ι. | • | - | • | 0. | • | , | |---|--------------|-----------------------|----------|---------------------------------------|--|---|--|---
--|--|---|---| | 1 1 1 1 | | - 1 | 1 | | 1
1
5 | | | | | | | | | 0 .0 | | .0 | 0 | | . 0 | • | 0. | 0. | . 0 | • | 38.9 | | | 0 | 0 | | • | | | • | 0. | 0 | • | 7.6 | • | | | | 0 | | • | • | • | • | ъ. | ٥, | 5. | 5.1 | • | | | • | 0 | | 0. | | 7. | ₽. | 4. | • | 4 | 24.2 | ٠ | | | | 0 | 6 | 7.8 | 4.8 | 3 | m | ъ | κ, | 3 | 3,7 | • | | | | M | 24.4 | 23.2 | 0 | | 22.8 | 23.0 | 2 | m. | 3.5 | 23.6 | | | 25 | 5 22. | ~ | 6. | 2.0 | 2 | 2 | 2 | 2 | ь. | 5 | 3 | | | 5.7.21 | 200 | , ,
 + | M. | 4.6 | | | ~ | 2 | ~ | 5 | 5 | | | 0.0.0 | 700 | , . | | | ; ; | 2 | 2 | 8 | 8 | P | 3 | | | 9.0 19 | 10. | | 7.0 | 1.1 | * | . | 2 | 2 | 5 | 5 | ъ. | | | 8.5 19 | 1 19. | 6 | 9.0 | 1.0 | + | 7 | 5 | 5 | 5 | 5 | 3 | | | | • | | 1 | • | , | , | (| | c | , | • | | | 8.2 18 | 8 19. | • | 0.5 | 6.0 | ; | | · · | ,
N | i | ;
; | ; | | | 7.9 18 | 7 19. | . | ♦.0 | 6.0 | + | . | 2 | 2 | , i | ,
N | ÷ . | | | 7.8 18 | 6 19. | • | 4.0 | 0.8 | ; | +i | ۲. | 2 | ÷ | N | ن | | | 7.7 18 | 5 19. | Ġ. | 0.3 | 8.0 | + | . | ς. | ۶. | 2 | 2 | ٠
ن | | | 7.6 18 | 4 19. | 6 | 0.3 | 8.0 | | + | 5 | ٥. | 2 | 2 | 8 | | | 7 4 4 8 | 0 | 0 | Y | 4 | • | | 2 | 2 | 2 | ~ | m | | | 7 | 10. | | | 7.0 | - | | 1 | 2 | 2 | ~ | ъ. | | | 7 | 10 | | , , | 7 | 1 - | • | , ¿ | ä | 2 | ~ | 3 | | | 7.5 18 | 0 1 | | | 0.7 | | | 2 | ? | 2 | ~ | 3 | | | 7.5 18 | 3 19. | • | 0.2 | 0.7 | - | + | + | 8 | 5 | ~
∾ | ъ | | | | | | | | | | | | | | | | | 7.5 18 | 3 19. | • | 0.5 | 0.7 | + | + | + | 3 | 8 | 8 | m I | | | 7.5 18 | 3 19. | 6 | 0.5 | 0.7 | + | + | + | 5 | N | 2 | ٠
ا | | | 7.4 18 | 3 19. | 6 | 0.5 | 0.7 | + | + | ; | ٠
ن | ~ · | ÷ (| ,
, | | | 7.4 18 | 3 19. | 6 | 0.5 | 0.7 | + | ; | +4 | <u>ن</u> | 5 | 2 | , | | | | \mathbf{v} | | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 22.0 21.9 22.0 21.3 21.6 20.3 20.6 21.1 21.3 21.6 21.1 21.3 21.6 21.1 21.3 21.6 20.3 20.7 21.1 20.9 22.0 2 20.7 21.1 20.9 20.4 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9 | 6 22.0 21.9 22.0 22.0 22.0 22.0 21.3 21.6 21.3 20.6 21.0 21.3 21.6 21.0 21.3 20.6 20.3 20.6 21.0 21.3 20.6 21.0 21.3 20.6 20.3 20.6 21.0 21.3 20.6 20.3 20.8 21.1 19.7 20.3 20.8 21.1 19.7 20.2 20.3 20.8 21.1 19.7 20.2 20.3 20.8 21.0 19.7 20.2 20.7 21.0 19.6 20.2 20.7 21.0 19.6 20.2 20.7 21.0 19.6 20.2 20.7 21.0 19.6 20.2 20.7 21.0 19.6 20.2 20.7 21.0 19.6 20.2 20.7 21.0 19.6 20.2 20.7 21.0 19.6 20.2 20.7 21.0 19.6 20.2 20.7 21.0 19.6 20.2 20.7 21.0 19.6 20.2 20.7 21.0 19.6 20.2 20.7 21.0 19.6 20.2 20.7 21.0 19.6 20.2 20.7 21.0 19.6 20.2 20.7 21.0 19.6 20.2 20.7 21.0 19.6 20.2 20.7 21.0 20.7 20.7 20.7 21.0 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20 | .6 22.0 21.9 22.0 22.2 22.
.0 21.4 21.3 21.6 21.9 22.
.3 20.6 21.0 21.3 21.7 22.
.9 20.3 20.7 21.1 21.5 21.
.6 20.1 20.6 21.0 21.4 21.
.2 19.8 20.4 20.9 21.4 21.
.2 19.8 20.4 20.9 21.2 21.
.1 19.7 20.3 20.8 21.3 21.
.1 19.7 20.2 20.7 21.2 21.
.0 19.6 20.2 20.7 21.2 21.
.0 19.6 20.2 20.7
21.2 21.
.0 19.6 20.2 20.7 21.2 21. | .6 22.0 21.9 22.0 22.2 22.4 22.3 20.6 21.0 21.9 22.2 22.2 22.2 22.3 20.6 21.0 21.3 21.7 22.0 22.2 22.3 20.6 21.0 21.3 21.7 22.0 22.3 20.3 20.7 21.1 21.5 21.9 22.3 22.3 20.3 20.4 20.9 21.4 21.7 22.3 19.8 20.4 20.9 21.4 21.7 22.3 19.8 20.4 20.9 21.3 21.7 22.3 19.8 20.3 20.8 21.3 21.7 22.3 19.8 20.3 20.8 21.3 21.7 22.3 19.9 20.3 20.8 21.2 21.6 22.3 19.7 20.2 20.7 21.2 21.6 22.3 19.7 20.2 20.7 21.2 21.6 22.3 19.6 20.2 20.7 21.2 21.6 21.0 19.6 20.2 20.7 21.2 21.6 21.0 19.6 20.2 20.7 21.2 21.6 21.0 19.6 20.2 20.7 21.2 21.6 21.0 19.6 20.2 20.7 21.2 21.6 21.0 19.6 20.2 20.7 21.2 21.6 21.0 19.6 20.2 20.7 21.2 21.6 21.0 19.6 20.2 20.7 21.2 21.6 21.0 19.6 20.2 20.7 21.2 21.6 21.0 21.0 19.6 20.2 20.7 21.2 21.6 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 | .6 22.0 21.9 22.0 22.2 22.4 22.6 22.3 20.6 21.0 21.3 21.6 21.9 22.2 22.4 22.5 22.4 22.5 3 22.3 20.5 21.0 21.3 21.7 22.0 22.3 22.2 22.4 22.5 20.3 20.3 20.5 21.0 21.3 21.7 22.0 22.2 22.5 22.5 21.0 20.3 20.5 21.0 21.4 21.8 22.1 22.5 21.6 20.4 20.8 21.3 21.7 22.0 22.3 22.3 19.8 20.4 20.8 21.3 21.7 22.0 22.3 21.9 20.3 20.8 21.2 21.6 22.0 22.0 22.3 19.8 20.3 20.8 21.2 21.6 22.0 22.0 22.0 19.7 20.2 20.7 21.2 21.6 22.0 22.0 22.0 19.7 20.2 20.7 21.2 21.6 22.0 22.0 22.0 19.7 20.2 20.7 21.2 21.6 21.9 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.0 22.0 20.7 21.2 21.6 21.9 22.0 22.0 20.7 21.2 21.6 21.9 22.0 20.7 21.2 21.6 21.9 22.0 20.7 21.2 21.6 21.9 22.0 20.7 21.2 21.6 21.9 22.0 20.7 21.2 21.6 21.9 22.0 20.7 21.2 21.6 21.9 22.0 20.7 21.2 21.6 21.9 22.0 20.7 21.2 21.6 21.9 22.0 20.7 21.2 21.6 21.9 22.0 20.7 21.2 21.6 21.9 22.0 20.7 21.2 21.6 21.9 22.0 20.7 21.2 21.6 21.9 22.0 20.7 21.2 21.6 21.9 22.0 20.7 21.2 21.6 21.9 22.0 20.7 21.2 21.6 21.9 22.0 22.0 20.7 21.2 21.6 21.9 22.0 20.7 21.2 21.6 21.9 22.0 20.7 21.2 21.6 21.9 22.0 20.7 21.2 21.6 21.9 22.0 20.7 21.2 21.6 21.9 22.0 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9 | 6 22.0 21.9 22.0 22.2 22.4 22.6 22.9 23. 20.6 21.0 21.3 21.6 21.9 22.2 22.4 22.7 22.7 22. 3 20.6 21.0 21.3 21.7 22.0 22.3 22.6 22.9 23. 20.6 21.0 21.3 21.7 22.0 22.3 22.6 22.5 22.6 22.3 20.7 21.1 21.5 21.9 22.2 22.2 22.5 22.6 22.3 20.6 20.1 21.4 21.8 22.1 22.4 22. 3 19.9 20.4 20.9 21.4 21.7 22.0 22.3 22.4 22. 2 19.8 20.4 20.9 21.3 21.7 22.0 22.3 22.3 22. 2 19.8 20.3 20.8 21.2 21.6 22.0 22.3 22.3 22. 2 19.8 20.3 20.8 21.2 21.6 22.0 22.3 22.3 22.0 19.7 20.2 20.7 21.2 21.6 22.0 22.3 22.3 22.0 19.7 20.2 20.7 21.2 21.6 22.0 22.3 22.3 22.0 19.7 20.2 20.7 21.2 21.6 22.0 22.3 22.3 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.3 22.3 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.3 22.3 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.3 22.3 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.3 22.3 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.3 22.3 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.3 22.3 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.3 22.3 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.3 22.3 22.0 19.6 20.2 20.7 21.2 21.6 21.9 22.3 22.3 22.3 22.0 20.7 21.2 21.6 21.9 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22 | 6 22.0 21.9 22.0 22.2 22.4 22.6 22.9 23.1 23.3 20.6 21.3 21.6 21.9 22.2 22.2 22.4 22.7 22.9 23.1 23.2 20.5 21.3 21.6 21.9 22.2 22.2 22.4 22.7 22.9 23.2 20.5 21.0 21.3 21.7 22.0 22.3 22.6 22.8 23.0 20.3 20.6 21.0 21.4 21.5 21.9 22.1 22.4 22.7 23.0 22.9 20.4 20.5 20.9 21.4 21.7 22.1 22.4 22.7 23.0 21.9 20.4 20.9 21.4 21.7 22.0 22.3 22.6 22.9 22.9 21.3 21.7 22.0 22.3 22.6 22.9 21.3 21.7 22.0 22.3 22.6 22.9 21.3 21.7 22.0 22.3 22.6 22.9 21.3 21.5 21.6 22.0 22.3 22.6 22.9 21.3 21.5 21.6 22.0 22.3 22.6 22.9 21.3 20.7 21.2 21.6 22.0 22.3 22.6 22.9 21.9 20.7 21.2 21.6 22.0 22.3 22.6 22.9 20.9 20.7 21.2 21.6 22.0 22.3 22.6 22.9 20.9 20.7 21.2 21.6 22.0 22.3 22.6 22.9 20.9 20.7 21.2 21.6 21.9 22.3 22.6 22.9 20.9 20.7 21.2 21.6 21.9 22.3 22.6 22.9 20.9 20.7 21.2 21.6 21.9 22.3 22.6 22.9 20.9 20.7 21.2 21.6 21.9 22.3 22.6 22.9 20.9 20.7 21.2 21.6 21.9 22.3 22.6 22.9 20.9 20.7 21.2 21.6 21.9 22.3 22.6 22.9 20.9 20.7 21.2 21.6 21.9 22.3 22.6 22.9 20.9 20.7 21.2 21.6 21.9 22.3 22.6 22.9 20.9 20.7 21.2 21.6 21.9 22.3 22.6 22.9 20.9 20.9 20.7 21.2 21.6 21.9 22.3 22.6 22.9 22.9 22.9 22.9 22.9 22.9 22.9 | 6 22.0 21.9 22.0 22.2 22.4 22.6 22.9 23.1 23.3 23.0 21.2 21.3 21.5 21.9 22.2 22.4 22.7 22.9 23.1 23.2 23.2 23.2 20.6 21.0 21.3 21.7 22.0 22.3 22.6 22.9 23.1 23.2 23.2 20.6 21.0 21.1 21.5 21.9 22.2 22.5 22.6 22.8 23.1 23.0 20.3 20.3 20.7 21.1 21.5 21.9 22.2 22.5 22.5 22.6 23.0 23.0 23.0 20.3 20.6 21.0 21.4 21.8 22.1 22.4 22.7 23.0 23.0 23.0 20.4 20.9 21.4 21.7 22.0 22.4 22.7 23.0 23.0 23.0 20.4 20.9 21.3 21.7 22.0 22.4 22.7 23.0 23.0 23.0 20.4 20.9 21.3 21.7 22.0 22.3 22.6 22.9 23.0 20.4 20.3 20.8 21.2 21.6 22.0 22.3 22.6 22.9 23.0 19.7 20.2 20.7 21.2 21.6 22.0 22.3 22.6 22.9 23.0 19.7 20.2 20.7 21.2 21.6 22.0 22.3 22.6 22.9 23.0 19.7 20.2 20.7 21.2 21.6 22.0 22.3 22.6 22.9 23.0 19.7 20.2 20.7 21.2 21.6 21.9 22.3 22.6 22.9 23.0 19.6 20.2 20.7 21.2 21.6 21.9 22.3 22.6 22.9 23.0 19.6 20.2 20.7 21.2 21.6 21.9 22.3 22.6 22.9 23.0 19.6 20.2 20.7 21.2 21.6 21.9 22.3 22.6 22.9 23.0 19.6 20.2 20.7 21.2 21.6 21.9 22.3 22.6 22.9 23.0 19.6 20.2 20.7 21.2 21.6 21.9 22.3 22.6 22.9 23.0 19.6 20.2 20.7 21.2 21.6 21.9 22.3 22.6 22.9 23.0 19.6 20.2 20.7 21.2 21.6 21.9 22.3 22.6 22.9 23.0 19.6 20.2 20.7 21.2 21.6 21.9 22.3 22.6 22.9 23.0 23.0 22.9 23.0 20.2 20.7 21.2 21.6 21.9 22.3 22.6 22.9 23.0 23.0 22.9 23.0 22.9 23.0 22.9 23.0 22.9 23.0 22.9 23.0 22.9 23.0 22.9 23.0 22.9 22.9 23.0 22.9 22.9 23.0 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 5.83 | | | | | | | | | 9E
- | | ĺ | | | | 1 | | 1 | | |------|--------|----------|------|-------|------|------|------|----------|--------|--------|----------|------|--------|--------|----------|------------|-----| | スス | 0.5 | 9.0 | 0.7 | 0 . 8 | C) | | 1.1 | 1.2 | 1.3 | 4 | | 1.6 | 1.7 | 1.8 | 6 | 2.0 | , , | | 4 | : = | !
! • | | | 0. | 0. | | 0 | | .0 | 6 | .0 | | 0 | 9 | 0 | | | | | | | | | | | | | | • | 0 | 0 | 2 | 8 | • | | | | | | | | | | | | | 0 | 0 | 6 | 9 | 5 | 5 | 5. | | | | 0 | 0 | 0. | 0 | 0 | 0. | 0. | 0 | 0 | 28.8 | 26.0 | 25.0 | 24.7 | 24.5 | 24.4 | 24.4 | | | | | | | | | | 0 | | | 4 | ,
, | 3 | m) | 2 | 3 | 4 | | | | •
0 | 0 | | 0 | | | 25.1 | 3. | , | 3 | M | 3 | m | m | . | m | | | | | | | | 7 | M) | 8 | <u>۰</u> | ~ | 8 | 2 | · c | 62 | 3 | 3 | 3 | | | | | | ت | 3 | + | - | - | + | + | 2 | 2 | 2 | 2 | 5 | 2 | 3 | | | | | | 4-4 | 0 | | 0 | | 21.1 | 21.5 | | | 22.4 | | 23.0 | 23.5 | • | | | | 0 | • | • | 6 | • | 0 | 0 | 0 | •-I | +4 | 2 | ò | 5 | 2 | 3 | 3 | | | | 18.2 | 17.7 | 18.1 | 18.6 | | 6 | 20.3 | 0 | ÷. | + | • | 0 | | • | * | 3 | | | 25 | 9 | 9 | 7 | 60 | 6 | • | 0 | 0 | ÷ | • | -
- | 2 | 8 | 2 | m | M | | | | 5 | 16.4 | 1 | 18.1 | 18.8 | • | • | 20.5 | 21.0 | 44 | | 22,2 | 22.5 | 25.8 | 23.1 | 23,3 | | | | a, | ċ | 7 | 7 | œ | ò | 0 | ô | ÷ | + | | ? | ~ | 'n | ٠, | N 3 | | | | 4 | ٠. | • | . ' | 8 | • | • | 0 | 。
0 | + | + | 0 | ٠
د | 'n | ٠
درو | 3 | | | | 14.5 | č. | 4 | 7. | • | 19.3 | 19.9 | 0 | • | -4 | | 2 | 8 | ٠
د | M | ы
Н | | | | 4 | 'n | • | 7 | 80 | 0 | 6 | 0 | 0 | - | • | Ç | ~ | ~ | 10 | M | | | | 4 | 15.6 | 16.7 | 17.7 | 18.5 | | 19.8 | 20.4 | 50.9 | 21.3 | | 22.1 | 22.4 | .2.7 | 23.0 | 23.3 | | | | 4 | 1 | 9 | 7. | œ. | 6 | 0 | 0 | • | ,
H | • | 2 | 2 | ? | | 3 | | | | 4 | r. | ¢ | 7 | 80 | 6 | 6 | 0 | 0 | 7 | - | ò | 2 | ٠
ن | M | ٠. | | | 4 10 | | r. | ç | 7 | • | | 0 | 0 | 0 | + | . 4 | 0 | 2 | 5 | P | M | | | | 4 | 5 | ¢ | 7. | 60 | 0 | 6 | 0 | | + | - | ~ | • | N | 20 | 3 | | | | 4 | S. | • | 7 | 8 | 6 | • | | | -1 | + | 2 | N | 2 | 8 | 3 | | | | 14.1 | 15.5 | 16.6 | 17.6 | 18.4 | 19.1 | 19.8 | 20.3 | 20.8 | 21.3 | 21.7 | 22.1 | 22.4 | 22.7 | 23.0 | 23.3 | | | | 4. | ت | ·c | 7. | 8 | 6 | 6 | 0 | • | + | +1 | 8 | 2 | å | • | 3 | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSTTY #0.84 | A S | | | | | | | | P. | | | | | | | | | | |----------------|------|--------|------|------|------|------------|------|----------|------|------|-----------------------|---------|--------|----------|------------|----------|---| | FACTOR
(K1) | | | | - | | 1 + | 1 (4 | 1.2 | 1 🕶 | 4 | 1.5 | 1.6 | 1 🕶 | 1.8 | • | 2.0 | • | | 1 4 | | .0 | 0 | 0 | 0 | 0 | | . 0 | 0 | - | | | | 6 | | . 0 | • | | | | c | | | | | | | | | | | 0. | 5 | 0 | 7 | | | | 0 | 0 | | | 0 | | 0 | 0 | 0 | 0 | | 31.3 | 27.5 | 26.3 | 25.7 | 25.4 | | | | | 0 | | | | | | 0 | 0 | | | S | 4 | * | 4 | ÷ | | | | | c
c | | | | | | | 5 | + | * | 4 | 4 | 4 | 4 | + | | | | 0 | ċ | | | | | | 4 | • | 3 | 3 | ι,
, | ,
M | 3 | 3 | + | | | | | | | | + | M 3 | è | ~ | 2 | CV | ~ | • | 67 | M | • | M | | | | | | 0 | 5 | å | + | • | + | 8 | 2 | ? | 2 | 3 | 3 | 3 | ٠
دم | | | | | C | 2 | | | 0 | | 21.3 | * | | 22.3 | 2 | 2 | 23.1 | M | 3 | | | | 0 | ċ | 0 | 6 | 6 | 0 | 0 | ه
نسپ | - |
+ | 'n | 2 | 2 | 3 | 3 | 3 | | | | 18.9 | 18.0 | 18.3 | 18.8 | | 19.9 | 0 | 0 | 21.3 | - | 3 | 22.4 | 22.7 | 3 | | • | | | | , | 1 | 1 | | (| (| • | (| , | , | • | c | (| | , | ۲ | | | | c : | • | • | xo (| , | | • | o | - | • | | | | ? (| | ,
, | | | | 3 | ċ | 7 | œ | 00 | · | ċ | 0 | | | | 2 | 2 | | 5 | 3 | | | | | ٠, | 1 | œ. | 18.8 | • | 20.1 | 50.6 | 21.1 | _ | 21.9 | 22.3 | ٠
د | 25.9 | 23.5 | ن
• | | | | 4 | \$ | 7 | 8 | æ | • | ċ | 0 | • | H | - | 2 | 2 | 2 | ι. | 3 | | | | 14.6 | 15.9 | 17.0 | 17.9 | • | 19.4 | ċ | 0 | - | | - | 5 | 22.6 | 2 | | 23.4 | | | 3.0 | • | 5 | ¢ | 7 | 90 | • | 0 | 0 | ÷ | + | | 8 | ~ | 2 | * | 160 | | | | 4 | 5 | | 7. | | • | 0 | 0 | - | • | 21.9 | 22.2 | 22.6 | 22.9 | 23.2 | 3 | | | | 4 | 5 | 4 | 7 | 80 | 0 | 0 | | ; | + | ٠
با | 2 | ٥. | 2 | 3 | 3 | | | | 4 | 5 | 6 | 7 | 80 | 6 | 6 | 0 | ; | + | -1 | 2 | 0 | 2 | 3 | ~ | | | | 4 | 15.6 | | 17.7 | | 19.3 | 19.9 | 20.5 | • | 21.4 | - | 5 | • | 8 | 3 | | | | | 4 | ľ | vC | 7 | œ | • | Ċ | () | * | - | • | 2 | 2 | ~ | 1 | M | | | | 4 | 5 | ٠ | 7 | 60 | 6 | CA | - | + | + | •
 ₁ | 2 | ~ | 2 | 3 | 3 | | | 37 | 14,2 | 15.5 | 16.7 | 17.7 | 18.5 | 19.2 | 19.9 | 20.4 | 21.0 | 21.4 | 21.8 | 22.2 | 22.6 | 22.9 | 23.2 | 23.4 | | | | 4 | 5. | \$ | 7. | 8 | • | 6 | 0 | + | + | +1 | 5 | 2 | ci | ≈ > | 3 | | YARN BULK DENSITY = 0.85 | 7 ACTOR
1 ACTOR
1 A L L L L L L L L L L L L L L L L L L | | 1010 | 0 0 0 | | 10100 | 14100 | 1 410 0 | 0 1 4 1 0 0 | 1410 0 | 14100 | 1410 6 | 14100 | 0 0 0 | 1 41 0 0 | 1 4 1 0 0 | 27. | |---|------------------------|-------------------------------|----------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|--|--------------------------------------|--------------------------------|---|------------------------------|--|---------------------------------------|---| | 76780 | | | | | | | 0.
0.
27.1 | 4 | 200. | 33.0
25.0
25.0 | 24.1
24.5
23.5
5 | 24.1
25.8
24.3
5.5
5.5 | 28.2
24.2
23.7 | 25.7
25.0
24.2
23.8 | 0000
0000 | 2000
2000
2000
2000
2000
2000
2000
200 | | 0.0000 | | 0.
0.
11.5
18.3 | 0.
0.
23.6
19.7
18.5 | CV 100 | 04000 | 24.3
20.9
20.9
20.4 | 23.03
20.03
20.03
20.03 | 22.7
21.9
21.5
21.2 | 22.7
22.1
21.8
21.6
21.5 | 222
222
4.222
1.22
1.00 | 0.000
0.000
0.000 | 222.
222.
222.
22.
66.
7.
66.
7.
66.
7.
66.
7.
66.
7.
66.
7.
66.
7.
66.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7. | 2000
2000
40000 | 00000
50000
50000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
500 | 000000
88888
80000 | 0.000
0.000
0.000
0.000
7.000 | | 00 10 0
00 00 | ¢ννι.4 | 7.51
7.61
14.61
16.0 | 17.9
17.6
17.3
17.2 | | | 00000 | 6000
6000
6000
6000
7000 | 20.0
20.8
20.8
20.7 | 4 50 50 50 50 50 50 50 50 50 50 50 50 50 | 21.8
21.7
21.7
21.6
21.6 | 222.2
222.1
22.1
22.0 | 00000
00000
00000 | 2222 | 22222
22222
22222
24442 | 00000
888888
44888 | 2223
2333
2333
233
233
233
233
233
233 | | 2 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 44444
4444
46444 | 15.0
15.8
15.7
15.7 | 17.0
16.9
16.9
16.8 | 17.9
17.9
17.9
17.8 | 18.7
18.7
18.7
13.7 | | 22000 | 000000
00000
00000 |
 | 21.6
21.6
21.6
21.6 | | 00000
00000
44440 | 2222
2222
2222
2227 | 2233
2333
2333
2333
2333
2333
2333
233 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 22223
2223
233
23
23
23
23
23
23
23
23
2 | | 33 93 93 93 93 93 93 93 93 93 93 93 93 9 | 4444 | 15.7
15.7
15.6
15.6 | | 17.8
17.8
17.8 | or or or or | 0000 | 20.0 | 20.6 | 21.1
21.1
21.1 | 21.6
21.5
21.5
21.5 | 222 | 222.3 | 22.7
22.7
22.7
22.7 | 23.0
23.0
23.0 | 0000
0000
0000
0000 | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER
FACTOR AND BETA YARN BULK DENSITY = 0.86 | • | 0 | | 40468 | 40000 | | <i></i> | r | |----|------|-------------------------|--|---|---|--|--| | |) (| 0 | 90000
90044 | 44888 | 89999
89999 | 888888
888888 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 1 | 1.9 | . 0 | 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 00000
00000
00000 | 00000
00000
00000 | 00000
88888
8444 | 80000
80000
4444 | | ĺ | 1.8 | | 0 / 20 / 4 / 4 / 6 / 4 / 6 / 6 / 6 / 6 / 6 / 6 | 2000
2000
2000
2000
2000
2000
2000
200 | 2222
2222
2222
2222 | 22333 | 233.1
23.1
23.1
23.1 | | | 1 | 0 | 2000
2000
2000
2000
2000
2000 | 223.23
23.23
24.25
24.05 | 22.0 | 222.9 | 22.
22.
22.
33.
33.
33. | | | - | 0 | 0466
0466
0466
0466 | 23.3
22.9
22.9 | 222.6
222.6
22.5
32.5
5 | 222.5 | 22.5
22.5
22.5
5 | | | 1.5 | 6 | 0
27.9
24.8 | 22222
22222
18622 | 2222
2222
2222
2022
2022
2022
2022
202 | 222.11.11.12.11.11.11.11.11.11.11.11.11. | 222.1
222.1
22.1
1.1
1.1 | | | 4 . | 0. | | 222.0
222.0
22.136 | 21.9
21.9
21.8
21.8 | 21.7
21.7
21.7
21.7 | 21.7
21.7
21.7
21.7 | | | - | . 0 | | 22.9
22.3
22.1
21.7 | 221.3
221.3
21.3
21.3
21.3 | 21.2 | 21.2
21.2
21.2 | | 96 | 1.2 | 0 | | | 20.0
20.0
20.9
20.8 | 20.7
20.7
20.7
20.7 | 20.7
20.7
20.7
20.7 | | | • | | 00000 | | 22000
2000
2000
2000
2000 | 20.5
20.2
20.2
20.1 | 26.1
20.1
20.1
20.1 | | | 1.0 | 0 | | 22000
2000
2000
2000
2000
2000
2000
20 | 20.0
19.9
19.7
19.7 | 100.00 | | | | 0.0 | • | | 23.0
201.0
19.7 | 4 C + C + C + C + C + C + C + C + C + C | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 18.7
18.7
18.7
18.7 | | | 0.0 | | | 310
210
149
199
209
209
209 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 18.0
18.0
18.0
17.9 | 17.9
17.9
17.9 | | | 0./ | 1 | 00000 | 0
25.5
4
18
7 | 18.1
17.7
17.5
17.3 | 17.1
17.0
17.0
17.0 | 16.9
16.9
15.4 | | | 9.0 | i | | 0.00.00.00.00.00.00.00.00.00.00.00.00.0 | 17.4
16.9
16.3
16.3 | 155.40
157.40
157.80 | 15.8
15.8
15.7
15.7 | | | 1 | | 00000 | 0.
0.
21.0 | 7.00
1.00
1.00
1.00
1.00 | 44444
44444
7 | 4444 | | | [K1] | †
 *
 ** | 11 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 25
25
26
29
29 | | 5 4 7 60
6 4 6 7 60 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.87 | Kii | N V P P C T C T C T C T C T C T C T C T C T | | - | 1 | 1 | | 1 | ! | 8E T | !
! | | : | | 1 | ! | 1 | • | |--|---|-----|-----|-----|------------|----|-----|-----|--------|---------|----------|----------|----------|----------|----------|----------|----------| | 14 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | [K 1] | 0.5 | 9.0 | 0.7 | 0.8 | 0 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 7.5 | 1.6 | 1.7 | 43 I | 7 | | | 0.< | 4 1 | 0 | | 0 | | 0 | 0 . | 0 | 0. | . 0 | . 0 | • | 0. | 0 | 0 | 0 | 0. | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 15 | | | | | | | | | 0 | | | • | 0 | 0 | ~ | • | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 16 | | | | - | | | | | 0 | | 0 | 0 | 6 | 7. | • | • | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 17 | | | | _ | | | | | 0 | 0 | 8 | 9 | ιυ
• | 5 | 5 | 'n | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10 | | | | _ | | | ċ | 0 | œ. | 5. | 5 | 4, | 4 | 4 | 4 | 4 | | 10. 0. 0. 0. 0. 0. 25.9 23.8 23.2 23.1 23.2 23.3 23.5 23.7 23.9 24.1 2 0. 0. 0. 0. 0. 23.6 22.5 22.2 22.3 22.7 23.9 23.0 23.5 23.7 23.9 24.1 2 0. 25.0 20.5 20.1 21.5 21.5 21.5 22.7 23.0 23.3 23.6 23.8 23.0 25.2 20.1 20.2 20.2 20.3 21.5 21.9 22.3 22.3 22.6 22.9 23.7 23.9 24.1 2 0. 25.0 20.0 20.0 20.0 21.3 21.7 22.1 22.3 22.6 22.9 23.7 23.7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 10 | | | | - | | | • | 5. | 4 | 4 | m | ۵. | 4 | 4 | 4 | 4 | | 0. 0. 0. 0. 0. 73.6 22.5 22.3 22.3 22.7 23.0 23.2 23.5 23.7 23.9 23.0 20.0 28.9 21.9 21.3 21.3 21.5 21.8 22.1 22.4 22.8 23.0 23.3 23.6 23.8 23.0 23.2 23.5 23.6 23.8 23.0 23.2 23.5 23.6 23.8 23.0 23.2 23.5 23.6 23.8 23.0 23.2 23.5 23.6 23.8 23.0 23.2 23.5 23.6 23.8 23.7 23.7 23.1 23.5 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7 | 2 G | | | | | | 'n | | 3 | m | M | 3 | m | 12 | 3 | 4 | 4 | | 0. 0. 28.9 21.9 21.3 21.5 21.6 22.1 22.4 22.8 23.0 23.3 23.6 23.8 3 0 23.2 23.8 2 0 23.2 2 0 23.3 2 0 23.2 2 0 23.2 2 0 23.3 2 0 23.2 2 0 23.3 2 0 23.2 2 0 23.3 2 0 23.2 2 0 23.3 2 0 23.2 2 0 23.3 | 21 | | | • | • | m | ? | ? | 2 | 2 | 2 | ы | 3 | 3 | ٠. | 3 | 4 | | 0. 25.0 20.5 20.1 20.4 20.7 21.1 21.5 21.9 22.3 22.6 22.9 23.2 23.5 23.8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 22 | | | œ | Ļ | + | + | | + | ċ | 2 | ~ | <i>ا</i> | <i>ب</i> | 5 | M | 4 | | 25.2 19.0 19.0 19.4 19.0 20.4 20.9 21.3 21.7 22.1 22.5 22.8 23.2 23.4 23.7 2 17.5 17.7 18.3 18.9 19.6 20.1 20.7 21.2 21.6 22.0 22.4 22.8 23.1 23.4 23.7 2 15.2 17.0 17.9 18.6 19.3 20.0 20.6 21.1 21.6 22.0 22.4 22.7 23.1 23.4 23.5 2 15.2 16.4 17.6 18.5 19.2 19.9 20.5 21.0 21.5 21.9 22.3 22.7 23.0 23.3 23.6 2 15.2 16.4 17.4 18.3 19.1 19.9 20.5 21.0 21.5 21.9 22.3 22.7 23.0 23.3 23.6 2 15.0 16.2 17.3 18.2 19.0 19.7 20.4 20.9 21.4 21.9 22.3 22.6 23.0 23.3 23.6 2 14.8 16.1 17.2 18.1 18.9 19.7 20.3 20.9 21.4 21.8 22.2 22.6 23.0 23.3 23.6 2 14.6 16.0 17.1 18.1 18.9 19.6 20.3 20.9 21.4 21.8 22.2 22.6 23.0 23.3 23.6 2 14.6 15.9 17.0 18.0 18.9 19.6 20.3 20.8 21.3 21.8
22.2 22.6 23.0 23.3 23.6 2 14.5 15.9 17.0 18.0 18.9 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 21.8 21.8 22.2 22.6 23.0 23.0 23.3 23.6 2 14.5 15.8 21.8 21.8 21.8 21.8 22.2 22.6 23.0 23.8 23.8 23.8 23.8 23.8 2 | 23 | | 5 | c | ċ | 0 | ů | ** | 1. | • | å | ~ | 2 | 3 | m | 2 | 4 | | 17.5 17.7 18.3 18.9 19.6 20.1 20.7 21.2 21.6 22.0 22.4 22.7 23.1 23.4 23.7 2 16.2 17.0 17.9 18.6 19.3 20.0 20.6 21.1 21.6 22.0 22.4 22.7 23.1 23.4 23.6 2 15.6 16.6 17.6 18.5 19.2 19.9 20.5 21.0 21.5 21.9 22.3 22.7 23.0 23.3 23.6 2 15.2 16.4 17.4 18.3 19.1 19.8 20.4 21.0 21.5 21.9 22.3 22.7 23.0 23.3 23.6 2 15.0 16.2 17.3 18.2 19.1 19.8 20.4 21.0 21.5 21.9 22.3 22.7 23.0 23.3 23.6 2 15.0 16.2 17.3 18.2 19.0 19.7 20.4 20.9 21.4 21.9 22.3 22.7 23.0 23.3 23.6 2 1 14.8 16.1 17.2 18.1 18.9 19.7 20.3 20.9 21.4 21.8 22.2 22.6 23.0 23.3 23.6 2 1 14.5 15.9 17.0 18.0 18.9 19.6 20.3 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 1 14.5 15.9 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 1 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 1 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 1 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 1 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 1 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 1 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 1 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 1 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 1 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 24 | 5 | 0 | 6 | • | • | 0 | | ÷ | ÷ | ò | 0 | 5. | n | m, | 67 | * | | 15.0 17.0 17.9 18.6 19.3 20.0 20.6 21.1 21.6 22.0 22.3 22.7 23.1 23.4 23.6 2 2 15.6 16.6 17.6 18.5 19.2 19.9 20.5 21.0 21.5 21.9 22.3 22.7 23.0 23.3 23.6 2 2 15.0 16.4 17.4 18.3 19.1 19.8 20.4 21.0 21.5 21.9 22.3 22.7 23.0 23.3 23.6 2 2 15.0 16.2 17.3 18.2 19.0 19.7 20.4 20.9 21.4 21.9 22.3 22.7 23.0 23.3 23.6 2 2 14.6 16.2 17.2 18.2 19.0 19.7 20.3 20.9 21.4 21.8 22.3 22.6 23.0 23.3 23.6 2 2 14.6 16.0 17.1 18.0 19.7 20.3 20.9 21.4 21.8 22.2 22.6 23.0 23.3 23.6 2 2 14.6 15.9 17.1 18.0 18.9 19.6 20.3 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 2 14.5 15.9 17.0 18.0 18.9 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 25 | ` | 7 | œ | α. | • | 0 | 0 | • | + | 8 | 2 | 2 | 100 | 3 | 2 | | | 15.6 16.6 17.6 18.5 19.2 19.9 20.5 21.0 21.5 21.9 22.3 22.7 23.0 23.3 23.6 2 2 2 15.2 16.4 17.4 18.3 19.1 19.8 20.4 21.0 21.5 21.9 22.3 22.7 23.0 23.3 23.6 2 2 2 15.0 16.2 17.3 18.2 19.0 19.7 20.4 20.9 21.4 21.9 22.3 22.7 23.0 23.3 23.6 2 2 14.8 16.1 17.2 18.1 18.9 19.7 20.3 20.9 21.4 21.8 22.3 22.6 23.0 23.3 23.6 2 14.6 16.0 17.1 18.0 18.9 19.6 20.3 20.9 21.4 21.8 22.2 22.6 23.0 23.3 23.6 2 14.6 15.9 17.1 18.0 18.9 19.6 20.3 20.9 21.4 21.8 22.2 22.6 23.0 23.3 23.6 2 14.6 15.9 17.1 18.0 18.9 19.6 20.3 20.8 21.4 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.9 17.0 18.0 18.9 19.6 20.3 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.9 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 56 | œ. | 7. | 7. | œ | 6 | 0 | 0 | + | + | ٥. | % | 3 | ,
M | 3 | 3 | 3 | | 15.2 16.4 17.4 18.3 19.1 19.8 20.4 21.0 21.5 21.9 22.3 22.7 23.0 23.3 23.6 29 15.0 16.2 17.3 18.2 19.0 19.7 20.4 20.9 21.4 21.9 22.3 22.7 23.0 23.3 23.6 20 14.8 16.1 17.2 18.2 19.0 19.7 20.3 20.9 21.4 21.8 22.3 22.6 23.0 23.3 23.6 20 14.5 16.0 17.1 18.1 18.9 19.7 20.3 20.9 21.4 21.8 22.2 22.6 23.0 23.3 23.6 20 14.6 15.9 17.1 18.0 18.9 19.6 20.3 20.9 21.4 21.8 22.2 22.6 23.0 23.3 23.6 20 14.6 15.9 17.1 18.0 18.9 19.6 20.3 20.8 21.4 21.8 22.2 22.6 23.0 23.3 23.6 20 14.5 15.9 17.0 18.0 18.9 19.6 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 20 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 20 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 20 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 20 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 20 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 22.0 22.0 23.3 23.6 20 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 22.0 22.0 23.3 23.6 20 14.4 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 22.0 22.0 22.0 22.0 23.3 23.6 20 20.8 21.3 21.8 22.2 22.6 22.0 22.0 22.0 23.3 23.6 20 20.8 21.3 21.8 22.2 22.6 22.0 22.0 22.0 22.0 22.0 23.3 23.6 20 20.8 21.3 21.8 22.2 22.6 22.0 22.0 22.0 22.0 22.0 23.3 23.6 20 20.8 21.3 21.8 22.2 22.6 22.0 22.0 22.0 22.0 22.0 22.0 | 27 | Š | · | 7 | 60 | 6 | 6 | ċ | + | + | + | 2 | ς. | M. | 3 | 3 | ري
ري | | 15.n 16.2 17.3 18.2 19.n 19.7 20.4 20.9 21.4 21.9 22.3 22.7 23.0 23.3 23.6 2 1 14.8 16.1 17.2 18.2 19.n 19.7 20.3 20.9 21.4 21.9 22.3 22.6 23.0 23.3 23.6 2 1 14.5 16.0 17.2 18.1 18.9 19.7 20.3 20.9 21.4 21.8 22.2 22.6 23.0 23.3 23.6 2 2 14.6 15.9 17.1 18.0 18.9 19.6 20.3 20.9 21.4 21.8 22.2 22.6 23.0 23.3 23.6 2 3 14.6 15.9 17.0 18.0 18.9 19.6 20.3 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 1 14.5 15.9 17.0 18.0 18.9 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 1 14.5 15.9 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 1 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 1 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 1 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 1 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 1 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 1 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 28 | 5. | . 9 | 7 | œ | 6 | • | 0. | - | ,
+- | 1. | 2 | ы
Сі | 3 | 3 | 3 | M | | 14.8 16.1 17.2 18.2 19.0 19.7 20.3 20.9 21.4 21.9 22.3 22.6 23.0 23.3 23.6 2 2 1 14.8 15.0 17.2 18.1 18.9 19.7 20.3 20.9 21.4 21.8 22.3 22.6 23.0 23.3 23.6 2 2 1 14.6 16.0 17.1 18.1 18.9 19.6 20.3 20.9 21.4 21.8 22.2 22.6 23.0 23.3 23.6 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 62 | 5 | \$ | 1 | 8 | • | 6 | | 0 | ÷ | 1 | 3 | ci | 3 | 3 | 1 | 3 | | 14.7 16.6 17.2 18.1 18.9 19.7 20.3 20.9 21.4 21.8 22.3 22.6 23.0 23.3 23.6 23.1 14.6 16.0 17.1 18.1 18.9 19.6 20.3 20.9 21.4 21.8 22.2 22.6 23.0 23.3 23.6 23.1 14.6 15.9 17.1 18.0 18.9 19.6 20.3 20.8 21.4 21.8 22.2 22.6 23.0 23.3 23.6 23.1 14.5 15.9 17.0 18.0 18.9 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 23.1 14.5 15.9 17.0 18.0 18.9 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 23.1 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 23.1 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 23.1 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 22.9 23.3 23.6 23.1 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 22.9 23.3 23.6 23.0
23.3 23.6 23.0 23.3 23.2 23.0 23.3 2 | | 4 | • | 7 | 6 0 | 6 | 6 | ċ | 0 | + | + | 8 | C) | 3 | 3 | 3 | 3 | | 14.6 16.0 17.1 18.1 18.9 19.6 20.3 20.9 21.4 21.8 22.2 22.6 23.0 23.3 23.6 2 14.6 15.9 17.1 18.0 18.9 19.5 20.3 21.8 21.4 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.9 17.0 18.0 18.9 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 17.5 15.9 17.0 18.0 18.9 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 22.9 23.3 23.6 2 14.4 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 22.9 23.3 23.6 2 | | 4 | ÷ | | 8 | 80 | 6 | 0 | 0 | + | + | 2 | 0 | 3 | 3 | •
(M | 3 | | 3 14.6 15.9 17.1 18.0 19.6 20.3 20.8 21.4 21.8 22.2 22.6 23.0 23.3 23.6 2 4 14.5 15.9 17.0 18.0 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.5 2 5 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.4 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 | | 4 | . 9 | 7 | œ | 8 | 6 | 0 | 0 | ٠
چا | 1. | ~ | 2 | M | M | 3 | 3 | | 4 14.5 15.9 17.0 18.0 18.9 19.6 20.3 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.9 17.0 18.0 18.9 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 22.9 23.3 23.6 2 14.4 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 22.9 23.3 23.6 2 | | 4 | 5 | 7. | 8 | 8 | • | ċ | Ö | ** | + | ~ | 2 | 3 | 3 | 3 | 3 | | 5 14.5 15.9 17.0 18.0 18.9 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 22.9 23.3 23.6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 4 | | 7. | œ | 8 | 6 | 0 | ٠
ت | ÷ | +4 | ċ | 2 | 3 | 2 | 3 | 3 | | 6 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 7 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 8 14.4 15.8 17.0 18.0 18.8 19.6 20.8 21.3 21.8 22.2 22.6 22.9 23.3 23.6 2 8 14.4 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 22.9 23.3 23.6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 4. | r. | 7. | 8 | 00 | 6 | c | 0 | ** | + | 0 | 2 | 3 | 3 | 3 | 3 | | 7 14.5 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 23.0 23.3 23.6 2 8 14.4 15.8 17.0 18.0 18.8 19.6 20.8 21.3 21.3 21.8 22.2 22.6 22.9 23.3 23.6 2 | | 4 | ر. | 7. | α. | œ | 6 | 6 | 0 | | 1. | ~ | ? | 3 | ,
, | 'n | M | | 8 14.4 15.8 17.0 18.0 18.8 19.6 20.2 20.8 21.3 21.8 22.2 22.6 22.9 23.3 23.6 2 | | 4 | ď | 7 | x | 8 | • | 0 | 0 | ; | + | ~ | ٥. | 3 | 3 | 3 | 3 | | | | 4 | r. | 7. | 8 | 8 | 0 | c | 0 | + | + | 2 | 2 | 2 | 3 | | M | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.88 | | | 1 | Í | | | 1 | 1 | 9E = | 1 | - 1 | | | | | | į.
1 | 1 | |-----|------|---------|------|------|------|------|----------|------|----------|------|------|--------|------------|-------------|------------|---------|---| | 3 X | 0.5 | 9.6 | 0.7 | 60 | 0 | 1.0 | | 1.2 | 1.3 | - | 5.1 | 1.6 | 1.7 | 00 | 1.9 | 2.0 | ì | | 14 | | | | | • | 0 0 | | 0 | 0 | 0 | | | L | 0 | | 0 | | | | | | | | | | | | | | | | | ت | | 6 | | | | 0 | C | 0. | 0 | 0 | | - | 0. | 0 | 0 | • | 0 | 31.0 | 28.1 | 27.1 | 26.5 | | | | | | | | | | | | 0 | 0 | 0 | | 9 | ď. | 5. | 5 | | | | | | | | | | - | • | • | | • | س | + | 4 | 4 | 4 | | | 19 | 0 | | | | | | 39.5 | | 4 | 4 | 4 | 4 | * | 4 | 4 | | | | | | | | | | 7. | 4 | 10 | ь. | • | * | ر. | 10 | * | 4 | 4 | | | | .0 | ċ | 0 | 0 | 4 | | _ | • | 22.7 | 3 | 3 | 23.4 | 23.6 | 3 | 24.1 | • | | | | | | • | • | - | + | • | 2 | 5 | o, | 2 | 3 | 8 | ٠. | * | * | | | | | 0 | 0 | 0 | 0 | 0 | 4 | - | 2 | Š | 2 | ∾. | 3 | 3 | P) | 4 | | | | 29.4 | | • | • | • | 0 | - | - | - | | 22.6 | ,
M | 3 | 23.6 | 3 | 4 | | | 25 | | 7 | œ. | 0 | 6 | 0 | Ô | • | ÷ | 2 | ~ | 8 | M | 1 20 | 3 | 4 | | | | \$ | 17.2 | 18.0 | 18.8 | 19.5 | • | ċ | | 21.7 | 22.1 | 2 | 22.9 | • | ~) | | 4 | | | | 5. | . 9 | 7 | 80 | 0 | 0 | 0 | 4-4 | • | 2 | 2 | 2 | 3 | 3 | 2 | 4 | | | | 5 | 9 | 7 | 8 | 0 | 6 | 0 | ** | + | 2 | ~ | 2 | h) | M | رما
(سا | 4 | | | | 15.1 | • | 7. | α. | 6 | • | 20.5 | 1 | + | 5 | 22.4 | 8 | 3 | • | - | • | | | 30 | 4 | ć | 7 | 60 | 6 | 0 | 0 | • | • | 2 | ~ | 2 | M | 2 | * | 4 | | | | 4 | \$ | 7 | 80 | 6 | • | 9 | + | - | 2 | 2 | 8 | 3 | 3 | P) | 4 | | | | 14.7 | 16.1 | 17.2 | 18.2 | 19.0 | • | 20.4 | 21.0 | 21.5 | 22.0 | 22.4 | 22.8 | 23.1 | 23.4 | 23.7 | 24.0 | | | | 4. | ć | 7 | æ | 6 | • | | + | + | 7 | ~ | 2 | 3 | 3 | ,
n | 4 | | | 34 | • | • | 7. | 8 | 0 | 0 | · | | + | | 2 | 2 | 3 | ان.
• | 3 | 4 | | | | 4 | ċ | 7 | œ | 6 | • | 0 | 0 | * | - | ~ | 2 | M 2 | m | 10 | 4 | | | | 4 | 5 | 7. | a: | 6 | • | <u>c</u> | 0 | + | H | 2 | 2 | 8 | 8 | 3 | 4 | | | 3.7 | 14,5 | 15.9 | 17.1 | 18.1 | 18.9 | 19.7 | 20.3 | 20.9 | 21.5 | 21.9 | 22.3 | 22.7 | 23.1 | 23.4 | 23.7 | 24.0 | | | | 4 | г.
• | 7 | œ | 30 | • | c | 0 | 1. | - | 2 | 2 | ٠
ا | ·
(M | 3 | 4 | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =0.89 | 1 | • 1 | 0. | 0 | o v | 5 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | + | 24.1 | 4 | 4 | 24.1 | 4 | 4 | |--------|-------------------|-------|------|--------------|-----|----------|------------|--------|--------|----------|------|------|------------|--------|-----|----------|----------------|-----|-----|------|-------------|-----|------|----------|-----| | | 6 | • | 00 1 | 7.8.20 | 5.1 | 4.7 | 4 | 24.2.2 | 4.1 | 4.1 | 4.0 | 24.9 | 3.9 | 3.9 | 3.9 | 2 | 3.9 | 3.9 | 3.8 | 23.8 | 3.8 | 3.8 | 23.8 | 3.8 | 3.8 | | 1 | 00 1 | 0 | 0 0 | 7.00 | 5.0 | 4.
T. | (V | 24.0 | 3.0 | 3.8 | 3.7 | 23.7 | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | 23.5 | 5 | 3.5 | 23.5 | 3.5 | 3.5 | | | - | 0 | 0 | 26.6
56.5 | 3 | 4 | 4 | 23.8 | ٠
• | 3 | *2 | 23.4 | 3 | ر
ا | 3 | . | س | (M | 3 | 23.5 | 3 | 3 | 23.5 | M | 3 | | 1 | 1.6 | 0 | | 27.7 | 5 | 4 | 3 | 23.5 | M) | M | 3 | 23.1 | ريا
• | 3 | 2 | 3 | 2 | Ġ | 2 | 22.9 | 2 | 8 | 25.9 | 2 | ċ | | 1 | 4.5 | 9 | | 34.3 | 3 | 4 | M3 | 23.3 | 3 | 3 | 'n | 22.7 | ٥. | ٠. | Ň | 3 | € | ٥. | 2 | 25.5 | 3 | 2 | 25.5 | ~ | ٠. | | 1
1 | 4. | | • | | • | 4 | 3 | 23.1 | 2 | 2 | 8 | 22.3 | ? | 2 | 2 | 3 | 2 | ? | 2 | 22.1 | 2 | 5 | 22.1 | 5 | 2 | | • | 1 . | 0 | | • • | 2 | | ₩) | 22.9 | 0 | Ċ | 5 | + | H | ; | + | | - i | + | +4 | 21.6 | | + | 21.6 | + | ÷ | | 9E1 | 1.2 | 0. | | | 0 | | 3 | 22.7 | 2 | 4-1 | ÷ | | + | • | -1 | 1. | - | • | + | 21.1 | √ −1 | + | 21.1 | | • | | | 1.1 | . 0 | | | | | 4 | 22.8 | - | ÷ | - | ** | | 20.7 | 0 | ÷ | 0 | Û | 0 | 20.5 | 0 | 0 | 20.5 | ċ | 0 | | | 1.0 | • | | | | | 80 | • | | + | 20.7 | | 0 | 0 | 0 | | 6 | 6 | 6 | 10.9 | 6 | 0 | 19.8 | Ċ | 6 | | | 0.0 | | | | | | 0 | 5 | + | | | 19.8 | Ġ. | • | 6 | 0 | 0 | 6 | 6 | 6 | 6 | 5 | • | o. | 6 | | | 8 | | | | | | | ċ | 3 | 0 | 19.8 | 19.2 | 6 0 | ċ | 8 | 80 | œ | æ | œ | œ | | æ. | 18.2 | œ | œ | | | 0.7 | 0 . | | | | ċ | | | 0 | 1. | 0 | • | 60 | 7 | 7 | 17.5 | 7. | 7 | 7. | 1 | 17.2 | 7. | 17.2 | 7. | 7 . | | | 9.0 | . 0 | | | | | | | | <u>.</u> | | œ | 7 | ÷ | ÷ | 16.5 | ς. | ċ | 4 | ç | 16.1 | \$ | | · | ÷ | | 1 | 0.5 | | | •
•
• | | | 0 | | | | | 8 | • | 5 | 3. | | Š | 4 | 4 | 4 | 14.7 | 4 | 14.7 | 4 | 4 | | | 4 <u>~</u>
7 X | 1 4 4 | 15 | 4 T | 60 | 40 | 20 | 21 | 25 | 23 | 24 | 25 | 56 | 27 | 28 | 66 | 3.0 | 31 | 32 | 33 | 4 | 35 | 36 | 37 | 38 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.90 | | | | | | | | | 86 | | ! | | | (| | (| 1 | |------|------|------|------|------|------|------|------|----------|----------|------|-------------|----------|------|------------|----------|------| | (K1) | 0.5 | 9.0 | - | 60 | (C) | 1.0 | | 1 ent 1 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | | 2.0 | | | 4 | | .0 | | 0 | 0 | | 0 | | | 6 | 0 | 0 | | | 0. | | | | | | | 0 | | | | | | | • | 0 | 0 | | +-1 | | | 0 | | ٥. | 0 | 0 | 0. | 0 | 0 | 0 | • | | | 35.2 | 29,4 | | 27.2 | | | | | | | | | | 0 | 0 | 0 | | • | • | • | • | 5 | | | | 0 | | | | | | 0 | • | • | • | 5 | 5 | 5 | E | S. | | | | | | | | | | 27.7 | 5 | 4 | + | 4 | 4 | 4 | + | Š | | | | | | | | - | in | 4 | M | 3 | E | 4 | 4 | 4 | * | 4 | | | | | | • | 9 | 3 | m | 3 | 3 | 3 | 3 | 3 | 3 | 4 | • | | | | 0 | 0 | | 23.8 | | 2 | • | • | 22.6 | 22.9 | 23.2 | ∾, | : 5 | 24.0 | • | + | | | | C | 2 | + | - | + | - | 2 | 2 | 8 | 1 20 | 3 | (م) | 5 | 4 | * | | | 0. | 20.4 | 19.7 | • | | 20.8 | - | + | 2 | 2 | ~ | 23.3 | 23.6 | 3 | 4 | 24.4 | | | ac. | 00 | 60 | 0 | | ی | • | - | • | 2 | 2 | 2 | P) | 6 0 | 4 | * | | | _ | 17.6 | 18.3 | 19.1 | 19.8 | 0 | 21.0 | 21.5 | 22.0 | 22.4 | 22.8 | 23.1 | 3 | 23,8 | 24.1 | 4 | | | .0 | 7 | 80 | ď | 0 | 0 | • | + | + | 2 | ~ | ₩) | 2 | 3 | 4 | 4 | | | 5. | ¢ | ~ | œ | 6 | 0 | 0 | - | - | ~ | ~ | 3 | 3 | 3 | 4 | 4 | | | | • | 7 | æ | 6 | 0 | 0 | ÷ | + | 5 | 2 | 3 | | 3 | 4 | 24.3 | | 30 | r. | • | 7 | 60 | 6 | • | 0 | ÷ | +4 | Ś
 2 | (س | 8 | 3 | 4 | 4 | | | 15.0 | 16.4 | 17.5 | 18.4 | 19.3 | • | 20.7 | 21.2 | 21.8 | 22.2 | 22.6 | 23.0 | 23.4 | 23.7 | 24.0 | | | | 4 | 9 | 7 | 6 | 6 | 0 | 0 | + | + | 2 | ~ | 3 | 3 | 3. | * | * | | | 4 | 9 | 7 | 60 | 6 | 0 | | + | *** | ò | 2، | نا.
• | 3 | 3 | • | 4 | | | 4 | ċ | 7 | 8 | • | 19.9 | 0 | + | -1 | ٥. | <u>٠</u> | 3 | • | 3 | 4 | - | | | 4 | · C | 7 | æ. | o | 6 | ċ | • | ** | 8 | ~ | 2 | P 5 | 3 | • | 4 | | | 4 | ċ | 7. | 80 | 6 | • | c. | + | - | 2 | 2 | 3 | m | 3 | * | 4 | | 3.7 | 14.7 | 16.1 | 17.5 | 18.3 | 19.2 | 19.9 | 20.6 | 21.2 | 21.7 | 22.2 | 22.6 | 23.0 | 23.3 | 23.7 | 24.0 | 24.5 | | | 4 | ċ | 7. | oc: | 6 | • | ċ | + | ; | ~ | 2 | ٠
د | 5 | ٠
س | • | 4 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.91 #### FOUR-HARNESS WEAVE FABRICS | | | | | | | | | BET | 1 | 1 | • | ! | 1 | | • | 1 | |-----|------|------|------|----------------|--------|------|----------|-------|-----------------|------|---------|------------|------------|------------|----------|------| | X | 0.5 | 9.0 | 0.7 | 0.8 | 0.0 | 1.0 | 4.1 | 1.2 | 1.3 | 7 | 1.5 | ₩ 1 | 1 | → 1 | 9 1 | | | 4 4 | 1 | 1 | • | t | | 0 | 0 . | 0 . | 0 | 0 | | | 0 | | | 0 | | | | | | | | | | | | | | | _ | C | C | ď | | | | | | | | | | | | | • | | • | • | • a | 1 1 | | | | | | | | | | | | | | • | | • | • | • , | | | | | | | | | | | | 0 | œ | 8 | 7 | • | • | ç | | | | | | <u>.</u> | | | | 0 | • | 8 | 26.6 | S | S. | 25.5 | 25.5 | Ŋ | | i 9 | 0 | c | . 0 | u· | 0. | 0. | . 0 | 28.8 | 26.0 | 25.2 | • | • | 24.8 | • | r. | 25.1 | | | | | | | C | 5 | r. | 4 | 4 | 4 | ৰ | 4 | 4 | 4 | 4 | 4 | | | | | | ; | , | 4 | ~ | ~ | ~ | ~ | - | ~ | 4 | 4 | 4 | 4 | | | • | : c | | 7 4 7 | | • | | 30.00 | | | 24.6 | 7 20 | 10 | 0.40 | 24.4 | 24.7 | | | | | • | • | • | | | • | | • | : | | • | • | • | • | | | | · | 0 | | | • | | • | 2 | Š | ٠, | · | 3 | 4 | • | • | | | | 21.1 | 0.0 | • | | 21.0 | - | 1. | | C | ٠
ا | m | m) | 4 | . | 4 | | | 6 | α | 6 | • | 0 | ŧ. | . | - | 2 | CJ | 5 | • | M | 4 | 4 | 4 | | | 7 | 7 | 00 | 6 | 0 | 0 | + | + | ς. | 8 | ~ | 3 | 3 | 3 | + | 4 | | | 9 | 7. | œ | 19.0 | ٠
• | 0 | • | + | ò | | 22.9 | 3 | ٠.
س | 23.9 | • | * | | | 5 | | 7 | œ | 0 | 0 | 0 | *** | ? | 2 | <.
⋅ | 3 | 3 | 3 | 4 | 4 | | | 15.5 | 16.7 | 17.8 | • | 19.5 | 20.5 | 50.9 | 71.4 | 21.9 | 2 | | 3 | • | 64 | 4 | 24.4 | | 30 | Ś | ć | 7. | <i>عن</i>
• | 6 | c | C | - | + | 0 | ~ | 3 | (M) | 3 | * | 4 | | | ů. | · | 7 | œ | 6 | 0 | 0 | 1. | · | 2 | 2 | M | 8 | 3 | 4 | 4 | | | | • | 1 | 18.5 | | 0 | Ċ | + | - | N | • | 3 | • | 3 | * | 4 | | | v. | 9 | 7. | œ | • | 0 | 0 | + | + | ~ | 2 | الما
• | 3 | ,
M | 4 | 4 | | | | 16.3 | 17.5 | • | _ | 20.1 | 20.7 | 21,3 | 21.8 | | 0 | 23.1 | 3 | 23.8 | 24.1 | 24.4 | | | <;· | ς. | 7 | æ | 0 | 0 | 0 | - | - -1 | 2 | ~ | w. | 8 | 8 | 4 | 4 | | | 4 | \$ | 7. | 80 | 6 | 0 | | + | + | 2 | ? | 3 | m | ,
M) | 4 | 4 | | 37 | 14.8 | 16.2 | 17.4 | 18.4 | 19.3 | 20.0 | 20.7 | 21.3 | 21.8 | 22.3 | 22.7 | 23.1 | 23.5 | 73.B | 24.1 | 24.4 | | | 4. | Ġ | 7 | œ | • | | 0 | - | ÷ | 2 | ~ | 12 | 3 | 3 | 4 | 4 | | | | | | | | | | | | | | | | | | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.92 | | (| | | 1 | ! | (| (| 8ET | 1 | | | | | | | 1 | | |--------------|----------|-------|------|------|------------|----------|----------|------|----------|------|----------|----------|----------|----------|------------|------|------| | 4 ≈ 1 | 0 | 9 . 6 | 6.7 | 0 .8 | 0 | - | - | 1.2 | 1 1 | 4 | 7.1 | 1.6 | 1.7 | 1.8 | 6.1 | 2. | | | - | 0 | | 0 | | 0 | 0 | | • 0 | 0 | . 0 | | .0 | 0 | • 0 | 0 | 0 |) | | | | | | | | | | | | | | | • | 0 | 0 | 1 | هس | | | -
- | Û. | 0 | 0 | c) | 0 | 0 | 0 | 0 | | | 0 | 0 | 31.0 | - | • | | | | | | | | | | | | | 0 | 0 | | • | | • | è | _ | | | | | | | | | | 0 | | | | • | 5 | v | 10 | ľ. | | | | | | | | | | | | | S. | E | Ś | 5. | S. | K U | 3 | _ | | | | | | | | 0 | • | 4 | - | 4 | 4 | - | 4 | 4 | * | 5 | | | | | 0 | 0. | | 0. | 4 | 23.6 | 23.4 | 23.5 | 23.6 | 23.8 | 24.0 | 24.3 | * | | | _ | | | | | • | 5 | 3 | ċ | ċ | 3 | 3 | 3 | ,
10 | m | 4 | * | * | 4 | _ | | | | | 3 | | 4 | 4 | 5 | 2 | · | 3 | m | 3 | 3 | 4 | * | * | | | | 0. | 21.9 | • | · | • | | 7 | ÷ | cv. | ~ | m | 3 | 3 | | | 4 | | | 25 | 0 | 6 | _ | 19.7 | 0 | 20,9 | • | ÷ | | 22.7 | 10 | M | 100 | 4 | • | 4 | . ** | | | / | 17.9 | | 9 | 0 | 0 | + | 21.7 | - | ci | M | | 23.7 | 4 | | 4 | | | | • | 7 | ď | 6 | 6 | 0 | ; | 1. | 2 | 5 | ,
m | 3 | m | 4 | 4 | 4 | | | | 5 | 7. | 8 | 8 | 6 | 0 | ÷ | 1: | 2 | 2 | m | رم
رم | 3 | * | * | + | | | | 15.6 | • | 7 | 60 | 19.6 | 0 | - | 1. | 2 | 2 | • | 3 | ,
M | 24.0 | 4 | • | | | | 10 | ¢ | ~ | 80 | 6 | 0 | 0 | + | 5 | 2 | ~ | ₹ | m | 4 | 4 | 4 | | | | 15.2 | 16.6 | 17.7 | 18.7 | 19.5 | 20.5 | 50.9 | 21.5 | 22.0 | 22.5 | 22.9 | 23.3 | 23.6 | 24.0 | 24.3 | 24.5 | | | | 3 | 9 | 7. | 90 | • | 0 | <u>.</u> | * | 5 | 0 | ~ | 3 | n
M | 4 | 4 | 4 | | | | 50 | | 7 | 8 | 6 | 0 | ċ | - | 5 | 2 | 2 | ۲) | 3 | ,
m | 4 | 4 | | | 4 | • | ç | 7 | œ | · | 0 | c | | ò | 2 | ĉ | m | 2 | F) | + | 4 | | | _ | 4 | é | 7 | ac. | 6 | 0 | 0 | ** | ć | 2 | n | * | 3 | M) | 4 | 4 | | | 36 | 14.9 | 16.3 | 17.5 | 18.5 | 19.4 | 20.1 | 20.8 | 21.4 | 21.9 | 22.4 | 22.9 | 23.2 | 23.6 | 23.9 | 24.5 | 24.5 | | | | 4 | 9 | -1 | 8 | 0 | 0 | 0 | 1. | 7 | 2 | ~ | 3 | H) | 3 | * | 4 | | | | 4 | ÷ | 7 | œ | 6 | ċ | <u> </u> | 7 | •
پسن | 5 | ~ | י
כיה | . | w) | 4 | 4 | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.9. | | | | | | | | | BET | | | ! | 1 | ! | | • | • | |-----|------|----------------|------|------|-------------|------|------|--------------|--------|-------------------|----------|----------|----------|------|------|------| | A T | 0 . | . 6 | 0.7 | 0 | 0 | 1.0 | | 1 | • 🗝 • | 1 44 1 | 5 . 5 | 1.6 | 1.7 | 41 | 4,9 | 2 | | 4 4 | | . 0 | 0 | 0 . | | 0 | | 0 | | .0 | | 3 | 0 | 0 | | | | _ | | | | | | | | | | | | | • | 0 | 0 | • | | - | | | | | | | | | | | | 0 | 0 | 3 | 6 | 8 | | 17 | . ი | G. | 0 | 0 | 0. | 0 | 0 | 0 | 0 | 0 | <u>.</u> | 30.7 | 28.5 | 27.3 | 26.8 | 26.6 | | _ | | | | | | | | 0 | Ö | | | 9 | 9 | 5 | 5 | 3 | | 19 | 0 | | 0 | | | | | | | 3 | 5 | 5 | 5 | r. | S. | 5 | | | | | | | | C | * | u) | 4 | 4 | 4 | 4 | 4 | 4 | 10 | 5 | | | 0 | 0 | 0. | 0 | • | 5. | 23.9 | 23.6 | 23.7 | 23.8 | 24.0 | 24.2 | 24.4 | 24.6 | 24.8 | 25.1 | | | | | 0 | 7. | 3 | 2 | 2 | 2 | 3 | ~ | 3 | 4 | 4 | 4 | 4 | + | | | | | 4 | 2 | , -i | - | 2 | 3 | 2 | 3 | 3 | 'n | 4 | 4 | 4 | + | | | 0 | | | | | 21.3 | - | 8 | ò | m | ۲) | 1 | 4 | 4 | * | 4 | | (| | (| | (| c | , | | c | c | C | • | .4 | ۲ | | | 4 | | | 4 ~ | 1.0.0
1.0.0 | , a | , 0 | | | | 21.0 | 20.7 | 20.00 | 23.0 | 0 K | 23.9 | 2.40 | 24.5 | | | | 9 | . ~ | α | . 0 | . 0 | | • • | • | , N | 2 | m | , m | 3 | 4 | + | 4 | | | 9 | 1 | 8 | 6 | 6 | 0 | • | · | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | | | 15.7 | 7. | • | Ċ | | 0 | 21.1 | -1 | 8 | o, | 3. | نما
• | m | • | 4 | 4 | | 3.0 | 3. | • | 7. | œ | ò | 0 | ÷ | + | ć | 8 | m | 8 | 8 | 4 | 4 | 4 | | | 15.3 | 16.7 | 17.8 | 18.8 | 19.6 | 20.4 | 21.0 | 21.6 | 22.1 | 25.6 | 23.0 | 23,4 | 23.8 | 24.1 | 24.4 | 24.7 | | | S | • | 7. | œ | 6 | 0 | + | + | 5 | 8 | M | 3 | 3 | 4 | 4 | 4 | | | 'n | | 7. | æ | • | 0 | • | + | ٠
د | 2 | 3 | 3 | M | 4 | 4 | 4 | | | 5. | 9 | 7. | 80 | 6 | 0 | • | • | 0 | 0 | PC: | نم
• | 3 | 4 | 4 | 4 | | | 'n. | ż | 7 | œ | • | 0 | 0 | - | 8 | 8 | 3 | 3 | * | 4 | 4 | 4 | | 36 | 15.0 | 16.4 | 17.6 | 18.6 | 19.5 | 20.3 | 20.9 | 21.5 | 22.1 | 22.5 | 23.0 | 23.4 | 23.7 | 24.1 | 24.4 | 24.6 | | | 3. | ÷ | 7. | œ | 6 | • | ċ | - | ò | 2 | 3 | | 3 | 4 | 4 | 4 | | | 3 | ç | 7. | œ | 6 | 0 | 0 | * | 8 | C1 | 3 | m | M | 4 | 4 | 4 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.94 MARP | OVER | | | | | , | : | | BET | | 1 | !
: | ļ | | • | 1 | | | |-----------|------|------|----------|------|------|--------|------|------|----------|----------|----------|----------|------------|------------|------------|------|------------| | T X 1 0 X | 0.5 | 9.0 | 0.7 | 0 | | 1.0 | 1.1 | 1.2 | וכוו | | 1.5 | 1.6 | 1.7 | 4-1
00 | 4.9 | 2 | | | 4 | 0 | ت | | 0 | | | | 0 | | 0. | | .0 | 0 | 0. | 0 | 0 | ı | | | | | | | | | | | | | | 0 | | 0 | | | r. | | 16 | 0 | 0 | 0 | 0 | 0. | 0 | 0. | 0, | 0 | 0 | • | • | 0 | 33.6 | 29.8 | | 10 | | | | | | | | | | | | Ġ | 9 | -1 | 8 | 7 | 7 | 9 | 60 | | | | | | | | | | 0 | 0 | | | • | | • | • | • | -4 | | 19 | | | | | | | | | | 8 | R. | ري.
د | 1 0 | 1 0 | 1 0 | Š | • | | 20 | | | | | | • | • | 3 | • | 4 | 4 | * | 4 | Š | 10 | Š | 4 | | 21 | | 0 | | | | ĸ. | 4 | 3 | 3 | 4 | 4 | 4 | * | 4 | 5 | 5 | ~ | | 5.5 | | | | 0 | 3 | 3 | 3 | 3 | ,
M | 3 | ₩) | 4 | 4 | • | 4 | 5 | - | | 23 | 0 | · | 9 | 22.4 | 22.0 | 22.0 | 22.3 | 22.6 | 23.0 | 23.3 | 23.5 | 23.9 | 24.2 | 24.5 | 24.8 | | 0 | | 24 | | | | 0. | 1. | + | 1. | 8 | 5 | m | 2 | 3 | 4 | • | 4 | 5 | 0 | | ر
بر | 7 | 0 | 0 | 0 | 0 | • | - | 2 | 2 | M | 1 | 6 | 4 | 4 | 4 | 4 | • | | | | 18.4 | 19.0 | 19.7 | 20.3 | 20.9 | 21.5 | 22.0 | 22.5 | 22.9 | 23.3 | 23.7 | 24.0 | 24.3 | 24.6 | 24. | • | | | 9 | 7 | œ | 6 | 0 | 0 | + | - | 0 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 0 | | | • | 7 | œ | 6 | 0 | 0 | + | - | ò | 3 | 5 | 3 | 3 | 4 | 4 | 4 | 60 | | 66 | | 7. | 8 | 0 | 6 | | 1. | + | 5 | 0 | m | 3 | 3 | 4 | 4 | 4 | 6 0 | | | 5 | • | 8 | 0 | • | 0 | -4 | + | ò | | 3 | 3 | س | 4 | 4 | 4 | 30 | | 31 | 15.4 | 16.8 | 17.9 | 18.9 | 19.7 | 20.5 | 21.1 | 21.7 | 25.2 | - | 23.2 | 23.5 | 23.9 | 24.2 | 24.5 | 24.6 | 6 0 | | | 3. | ç | <u>٠</u> | æ | 6 | 0 | | + | 8 | ° | ,
M | 3 | 3 | 4 | 4 | + | 60 | | | 5 | 3 | 7. | œ | 6 | 0 | + | - | Ĉ | 'n |
m | m) | 3 | 4 | • | 4 | œ | | 3.4 | 5 | • | 7. | œ | 6 | 0 | | + | ċ | 8 | S | | 3 | 4 | 4 | + | 6 0 | | | 5. | ·c | 7. | œ | 0. | 0 | - | 4-4 | 8 | 2 | 2 | 8 | 100 | 4 | + | 4 | 80 | | 36 | 15.1 | 16.5 | 17.7 | 18.7 | 19.4 | 20.4 | 21.0 | 21.6 | 25.2 | 22.7 | 23.1 | 23.5 | 23.9 | 24.2 | 24.5 | 24.8 | 60 | | | 5 | ċ | 7. | 8 | · | с
С | | + | <u>٠</u> | 2 | | ٠
ا | m | 4 | | 4 | യ | | 38 | 5. | é | 7. | 8 | • | 0 | - | • | <u>،</u> | 3 | P) | · | יי
רא | 4 | 4 | 4 | 6 0 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.95 | A P P P P P P P P P P P P P P P P P P P | | | | | | | | ₽-
U | | | | | | | | | | |---|------|------|----------|------|------|------|--------------|---------------|------|----------|------------|----------|------|------|----------------|------|--| | FACTOR
[K1] | 0 | | | 1 00 | 0 | 1.0 | 1 44 | 1.2 | ; · | 1.4 | 1.5 | 1 0 | 1.7 | 1.8 | 1 6 | 2.0 | | | 1 4 - | | | | | .0 | 0 | 0 | 0 | 0 | 0 | | | | 0. | 9 • | • | | | | | | c | | | | | | | | | | | 0 | | • | | | | | | | | | | | . 0 | 0 | | . 0 | 0 | | 35.9 | | 80 | | | | | | <u>.</u> | | | | | | 0 | 0 | 0 | | • | 8 | | • | | | | | | | | | | | | 0 | 4 | • | 7 | 9 | • | • | \$ | | | 19 | 0. | | | . 0 | | | | | | • | 5 | S. | 5 | S. | r. | is. | | | | | | | | | O | 0 | • | r. | 4 | 4 | 4 | 5 | 2 | Š | Š | | | | | | | | | • | 4 | ष | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 3. | | | | | | | 0 | 4 | P) | 2 | 23.3 | 23.5 | 3 | 24.0 | 24.3 | 24.5 | 24.8 | 25.0 | • | | | | | | 0 | 2 | 2 | 3 | 2 | 2 | 3 | ы. | 3 | 4 | 4 | + | 4 | S. | | | | ũ. | 26.9 | 21.5 | 21.1 | 21.3 | 21.7 | 22.1 | \sim | 2 | 23.3 | 3 | 4 | 4 | • | 4 | ľ. | | | 25 | v | · | 0 | (C) | 0 | + | •
• | \sim | 2 | M | 1 0 | M | 4 | 4 | * | 5 | | | | T) | α¢ | 6 | 6 | 0 | - | - | 2 | 2 | M | ~ 2 | 3 | 4 | 4 | * | 5 | | | | - | 17.9 | 18.7 | 19.5 | 20.2 | | - | 22.0 | 22.5 | 23.0 | 23.4 | 23.8 | 24.1 | 24.4 | 24.7 | 25.0 | | | | 9 | 7 | 00 | • | 0 | 0 | + | 2 | 2 | cv. | M | м
М | 4 | 4 | + | r. | | | | 16.0 | 7. | 8 | • | 0. | | | 1. | 5 | 2 | ₩. | 8 | 4 | 4 | 4 | 5 | | | | 3 | 7 | œ | 6 | 6 | 0 | , | -1 | N | 2 | ™) | 3 | 4 | 4 | 4 | 4 | | | 34 | :5:5 | 16.9 | 18.0 | 19.0 | 19.F | 20.6 | 21.3 | 21.8 | 22.4 | 22.8 | 23.3 | 23.7 | 24.0 | 24.4 | 24.7 | 24.9 | | | | 50 | ç | 7 | œ | ٠. | C | + | 7 | 5 | ~ | 3 | ∾. | 4 | 4 | 4. | 4 | | | | 3. | Ś | 7 | œ | 5 | 0 | - | 1. | 2 | 2 | 3 | · · | 4 | 4 | . | 4 | | | | 5 | ċ | 7 | 60 | 6 | 0 | ÷ | 1 | 2 | 2 | 19 | ٠
س | 4 | 4 | -3
▼ | 4 | | | | 5, | ζ. | 7 | oc | 0 | c | 4 | • | ~ | 2 | P) | 3 | 4 | 4 | 4 | * | | | (M) (O) | 15.2 | 16.6 | 17.8 | 18.8 | 19.7 | 20.5 | 21.2 | 21.8 | 22.3 | 22.8 | 23.2 | 23.6 | 24.0 | 24.3 | 24.6 | 24.9 | | | | 5 | 9 | 7 | 100 | 6 | 0 | + | + | 2 | 2 | +3 | 3 | * | 4 | 4 | 4 | | | | Š. | • | / | σC. | 6 | 0 | + 1 | + | 8 | 6 | M) | M | 4 | 4 | • | 4 | | MAXIMUM FILLING COVER FACTO S (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =0.96 | x > 0
x m t | 1 | | | | | 1 | | BET | | | | 1 | | | | | |----------------|------|------|------|------|------|------|------|------|------|------------|---------|----------|------|------------|------|------| | K11 | 0.5 | 0.6 | n.7 | 0.8 | 6,0 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 |) | 1.8 | 1.9 | | | 4
 | • | • | • | | | 8 | • | • | 0 | 0 | 0 | . 0 | 0 | 0 | 1 | 9 | | | | | | | | | | | | | | | | 0 | 0 | • | | | | 0 | | | 0 | 0 | | | | 0 | .0 | 0 | 0 | 40.6 | 31.2 | 6 | | | 0. | | | | | | | | | • | 0 | | | a) | 7 | 7 | | | | | | | | | | | 0 | • | | 7. | ø. | 9 | | • | | 19 | 0 | 0. | 0 | 0 | 0 | 0 | 0 | 0 | 29.5 | • | | ic. | 5 | R. | 5 | | | 20 | 0 | | | | 0. | 0 | ÷ | • | ď. | 5 | NO. | 5 | 'n. | 50 | 2 | 5 | | | 0 | | | | | 7 | S. | 4 | * | 4 | 4 | 4 | + | 5 | 5 | Š | | | | 0 | 0 | 0 | 5 | ٠. | 23.4 | 23.5 | | 3 | 24.2 | 24.4 | 4 | 4 | | 'n | | | | | | 3 | 0 | 2 | å | 3 | 3 | (~) | 3 | 4 | 4 | * | | 5 | | | 0 | 35.7 | 21.9 | 21.4 | • | | 5 | 2 | 3 | 23.4 | 3 | • | • | 24.7 | 25.0 | • | | 25 | | ċ | Û. | 0 | 0 | | ~ | ri | 2 | 3 | 3 | 4 | 4 | 4 | 4 | Š | | | 6 | 8 | ó | - | 0 | -1 | ÷ | 2 | ċ | M) | ,
10 | م | 4 | • | 4 | ů. | | | | 18.0 | 18.9 | 19.7 | 20.4 | - | • | 25.2 | 22.7 | M | _ | 23.9 | 24.2 | 24.6 | 24.8 | | | | 6. | 7. | 80 | | 0 | 0 | • | 5 | 2 | ~) | M | ∾. | 4 | • | 4 | 5 | | | | 7 | œ | 0 | 0 | 0 | 21.5 | 5 | · | • | | ريا
• | • | • | 4 | 5 | | | S | 7 | œ | 6 | 0 | ū. | + | 8 | 2 | 3 | 30 | ₩) | 4 | 4 | 4 | S | | | ٦. | | œ. | 6 | 0 | 0 | | 2 | 2 | ٠
س | 3 | 19 | 4 | 4 | • | 5 | | | 15.5 | 16.9 | 18.1 | 19.1 | 19.9 | 20.7 | 21.3 | 21.9 | 25.5 | 23.0 | 23.4 | 23.8 | 24.1 | 24.5 | 24.8 | 25.1 | | | ۲. | 9 | 30 | 6 | 0. | 0 | - | • | ? | å | 3 | 3 | 4 | 4 | 4 | S. | | 46 | • | \$ | 8 | • | 6 | • | + | + | ò | 8 | | 3 | 4 | 4 | 4 | ŗ. | | _ | 5 | ¢ | 7. | œ | • | 0 | 1 | + | ò | 2 | M | 3 | 4 | 4 | + | Š | | | 'n | ċ | 7 | 80 | 6 | 0 | - | - | iv | å | 3 | 3 | 4 | 4 | 4 | ď\ | | 37 | 15.2 | 16.7 | 17.9 | 18.9 | 19.R | 20.6 | 21.3 | 21.9 | 22.4 | 22.9 | 23.3 | 23.7 | 24.1 | 24.4 | 24.8 | 25.0 | | _ | 5 | \$ | 7 | 0 | ٠. | 0 | • | - | 2 | 6 | 2 | 3. | 4 | 4 | 4 | r. | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =0.97 | | | | | | | | | 8ET | | | | | 1 | | | 6 | |-----|--------------|------|------|------|------|--------|------|------|--------|----------|----------|------|------|------|------------|------| | X | 6 - 5 | 0.6 | 0.7 | 0.8 | | 1.0 | | 1.2 | 1.4 | 4. | 1.5 | 1.6 | 1.7 | 60 | 6.4 | 2 | | 4-1 | | | | | | | | • | • | . 0 | | 0 | | 6 | 0 | | | | | | | | | | | | | | | | | | 0 | 0 | | | | | | | | | | | | | | 0 | 0 | 0 | ~ | • | | | | | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 45.2 | 30.6 | 28.8 | 28.0 | 27.6 | | | | | | | | | | | 0 | • | | 8 | 7 | 9 | 9 | ÷ | | | 0 | c. | 0 | 0 | 0 | | | 0 | | | • | • | • | • | • | . 9 | | 20 | 0 | | | | | 0 | 5 | 7 | נו | r. | 5 | Ŋ. | 5 | 5 | K , | 5 | | | | | | | | 80 | 5 | 4 | 4 | 4 | 4 | 4 | 5 | R. | 3 | Š | | | | | | | 50 | 4 | 3 | M | 3 | 24.1 | 4 | 4 | 24.8 | 5 | 25.3 | 25.5 | | | | | 0 | 3 | 2 | 2 | ~ | 3 | 3 | ~ | 4 | 4 | 4 | 4 | 5 | 5 | | | 0. | c | 22.4 | 21.6 | 21.7 | 22.0 | 22.4 | 22.8 | | 3 | 23.9 | • | 4 | 24.8 | 5 | 5 | | | | c | c | C | • | 4 | C | C | ,
M | M | | 4 | 4 | 4 | 2 | r. | | | 0 | . 0 | . 0 | | | | | | | M. | , M | 4 | 4 | 4 | | 3 | | | | | 19.0 | 40.6 | . 0 | • • | 4 +4 | 22.3 | 22.8 | 23.2 | 23.6 | 24.0 | 24.4 | 24.7 | 25.0 | | | | 9 | | တ | 0 | 0 | - | • | S | 2 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | | | | | | 6 | 20.5 | C | • | 8 | ~ | ريا
• | m | 4 | 4 | * | 4 | 5 | | 30 | 9 | 7 | œ. | 9 | 0 | 0 | ÷ | 5 | 2 | 3 | 10 | 3 | 4 | 4 | 4 | 5 | | | S | 17.1 | - | 19.2 | 0 | • | | 22.1 | 22.6 | 23.1 | 23.5 | 23.9 | 24.3 | 24.6 | 24.9 | 25.5 | | | Š | ۲, | œ | 6 | 0 | с
С | - | Ci. | 2 | 3 | 50 | 3 | 4 | 4 | 4 | 'n. | | | 5 | 6 | ac. | 6 | 9 | 0 | + | 2 | ċ | 5 | | 3 | | * | * | Š | | | 5. | • | | 0 | 20.0 | 0 | + | 5 | è | М. | 3 | 3 | 4 | 4 | 4 | 5 | | SC. | • | ć | œ | 6 | 0 | | • | 2 | 2 | 3 | * | 3 | 4 | 4 | 4 | 5 | | | ر <u>ت</u> . | \$ | 00 | 0 | 0 | 0 | | 2 | 2 | 3 | 10 | 2 | 4 | 4 | 4 | 5 | | | 5 | | 18.0 | 19.0 | 19.9 | 20.7 | 21.4 | 22.0 | 22.5 | 23.0 | 23.5 | 23.9 | 24.5 | 54.6 | 24.9 | S | | | 5. | | • | • | 0 | 0 | - | 8 | ~ | 3 | • | • | 4 | • | * | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.98 | A 50 | | | | | | | | 4 | _ | | | | | | | | | |------------|------|------|------------|------|------|------|------|------|------|------|----------|------|------|------|------|------|---| | FACTOR | 0.5 | 0.6 | 0.7 | 0.8 | 0.0 | 1.0 | 1.1 | 1.2 | 1 | 1.4 | 1.5 | 1 - | 1.7 | 1 00 | 4.9 | 2.0 | • | | 1 4 | 1 | 1 | 0.0 | | 0. | 0. | 0. | 0. | • | 0 | 6 | 0 | 0 . | - | 0 | | î | | | | | | | | | | | | | | | | | 0 | 0 | | | | | · | | ů | 0. | 0 | 0 | 0 | | 0 | 9 | 0 | 0 | • | 33.1 | 30.3 | | | | | | | | | | | | | | 9 | 0 | -1 | • | 8 | | | | | | | | | | | | | 0 | 0 | • | • | ~ | • | | • | | | 19 | Ú, | 0 | 0 | | 0 | | | 0 | 31.6 | | 9 | • | • | • | • | • | | | | | | | | | 0 | • | 7 | • | 5 | 5 | 5 | 2 | 5 | 8 | 40 | | | | 0 | - | 0 | | 0. | 6 | - | 25.0 | 4 | 4 | 4 | 5 | 5 | 5 | 2 | 5 | | | | | | | | 9 | 4 | P) | 3 | 4 | 4 | 4 | 4 | 5. | 5 | 5 | 5 | | | | | | C | 4 | 3 | 2 | 3 | 3 | P) | ∾ | 4 | 4 | 4 | 5 | 50 | S | | | 0 | 0 | 0. | | 21.9 | 21.9 | 25.2 | | 2 | 23.3 | 23.7 | 24.0 | 24.4 | 24.7 | 25.0 | 25.2 | 25.5 | | | ~
25 | | | ċ | ċ | ÷ | | 0 | 0 | P. | • | - | 4 | 4 | 4 | | ď | | | | 0 | 19.3 | 0 | 0 | 0 | | 2 | 2 | M | 5 | , P | 4 | 4 | * | . '0 | , R | | | | 7 | œ. | 6 | 6 | 0 | | - | 2 | 5 | ₩. | P) | 4 | 4 | 4 | 5 | 5. | | | | 9 | 7 | 8 | 6 | 0 | + | -4 | 2 | 5 | 3 | 2 | * | 4 | 4 | 5 | Ŋ. | | | | | 1 | * | 19.5 | • | 21.1 | 21.7 | 22.3 | 28 | | 23.7 | 24.1 | 24.4 | 24.8 | 25.1 | 25.3 | | | U * | ν. | 7 | α | 0 | c | • | • | C | 0 | ~ | , | 4 | 4 | 4 | ~ | ir. | | | | 5 | , ' | 00 | 6 | 0 | 0 | | 2 | | 2 | , m | 4 | | 4 | 2 | | | | | 5 | 17.1 | 18,3 | | 20.1 | 0 | | • | 8 | 8 | 1 | + | 4 | 4 | 5 | S LO | | | | S | 7 | œ | 0 | 0 | 0 | + | è | 2 | m | L | 4 | 4 | 4 | 80 | 5 | | | 46 | 15.5 | 7. | c c | | • | 20.8 | 21.5 | 22.1 | 22.7 | 23.2 | 23.6 | 24.0 | 24.4 | 24.7 | 25.0 | 25.3 | | | - | S. | · | 80 | φ. | 0 | 0 | • | ~ | ~ | • | 1 | 4 | 4 | 4 | 5 | 5 | | | | 3. | ć | α. | 6 | 0 | 0 | - | ~ | 5 | 3 | 3 | 4 | 4 | * | 5 | 5 | | | 37 | 15.4 | 16.8 | 18.1 | 19.1 | 20.0 | 20.8 | 21.5 | 22.1 | 22.7 | 23.1 | 23.6 | 24.0 | 24.4 | 24.7 | 25.0 | 25.3 | | | | r. | ť | œ | • | 0 | 0 | • | 5 | 3 | 3 | 3 | 4 | 4 | ** | 5 | ż. | | MAXIMUM FILLING COVER FICTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.99 | 30 - 1 | | 1 4 1 . | \ C C | 6.00 | 6.0 | F C | 11.10 | 101 | 1.3 | 4 | 21.0 | 1.5 | 1.7 | 14:0 | 1.9 | 2.0 | |-------------|--------
--------------|---|------|----------|-------|--------|------|--------------|-------|------|------|--------------|-------|-------|------------------| | | | | | | | | | • • | | • • | • • | | | • | . 0 | | | | | | | | | | | | | | 00 | 0.0 | 20. | 0 6 | 4 00 | | | | |
c c | | | | 00 | | | 33.5 | 28.4 | 32.0 | 28.9 | 27.8 | 27.4 | 27.1 | 27.1
25.5 | | | | | · · | | • • | 00 | C 43 | 28.5 | 26.6 | 24.9 | 25.7 | S | 25.8
25.4 | 25.9 | 26.0 | 26.2 | | | | | | C U | | 4 4 | 24.2 | 4 4 | 4 4 | 4 4 | 4 4 | 4 4 | ₹. 4 | ro r | 25. | r, r | | | | | | | | | 5 0 | . n | מו מ | | 4 | 4 | 4 | . 10 |) (C) | | | | 00 | 22.2
19.6 | 20.9 | 21.1 | 21.5 | | 22.4 | 22.8 | 23.3 | 23.6 | 24.1 | 24.4 | 24.7 | 25.0 | 25.3 | 25.6 | | | | α α | 0 0 | 00 | 0 0 | + - | ٠ ٠ | 25 | M W | w) w) | W W | 4 4 | 4 4 | ₩. 4 | 25. | . n | | 1 +-1 | | | • • • | . 0 | 0 | 1: | | · · | 8 | , m | M | 4 | 4 | 4 | 25. | 3 | | | · | 7. | oc. | 6 | 0 | | 1. | 0 | 8 | 3 | 3 | 4 | 4 | 4 | 25. | 5 | | | ċ. | 7. | ac 0 | 0 (| 0 | ٠, | •
• | · · | · · | m , | m 1 | 4 . | 4. | 4 . | 200 | ر
ا | | | | 17.2 | 1 X 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 | 40.4 | 20.0 | 21.0 | 21.7 | 200 | 22.8 | 20.00 | 23.7 | 24.7 | 24.5 | 2.4.0 | 25.2 | 25.4 | | | 3 | 7 | 00 | 6 | Ċ. | + | | · | 8 | 3 | P) | 4 | 4 | 4 | 25. | Ę, | | <u>بر</u> ب | υυ
 | 17.0 | 18.2 | 19.3 | 20.1 | 20.9 | 21.6 | 22.2 | 22.8 | 23.3 | 23.7 | 24.1 | 24.5 | 4 4 | 25.1 | 25.
25.
4. | | | · · | ċ. | oc 0 | 0 | <u> </u> | 0 | • | 20 | o o | 3. | m 1 | 4. | 4 . | 4 | 25, | 5 | | | 'n | ċ | α
α | o. | 0 | O | | 5 | $\dot{\sim}$ | ٠, | (A) | 4 | 4 | 4 | 25. | ζ. | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #1.00 | A C | | | | | | | | | | | | | | | | | |------|------------|----------|-----------|--------------|------|----------|----------|----------|------|-------------|---------|------|------|---------|----------|------| | OVER | 1 | | | | 1 | 1 |
 | BET | 1 | 1 | 1 | ı | ı | | 1 | - 1 | | | 0.5 | 9.0 | 0.7 | 0.8 | 0.0 | 1 | 1.1 | 1.2 | וייו | 1.4 | | 1.6 | 1.7 | ₩ . | | 2.0 | | 14 | | 0.0 | | | . 0 | 0. | | 0 | | ,
,
, | ı | 0 . | 0 | | 1 | .0 | | | 0 | | | | | | | | | | | | | | • | • | | | | | | | | 0. | е
• | 0. | | 0 | 0 | 0 | 0. | 0 | 36.3 | + | | | | | | | | | | | | | ċ | 0 | | | • | • | | | | | | | | | | | 0 | 0 | | | 80 | 7 | 7 | 7 | | | 0. | | 0 | C | 0 | | | 0 | 37.2 | | 7 | 9 | • | • | 9 | • | | | | <u>۔</u> | | | | • | • | 6 | 1 | • | 9 | rU. | • | 9 | 9 | • | | | | | | | 0 | 60 | 6 | 5 | r, | 5 | 5 | 5 | r. | 5 | 5 | • | | | | | | • | • | 5. | 24.5 | | 4 | 24.6 | 24.8 | 5 | 5 | 5 | 6 | • | | | | | 0 | 9 | 3 | 3 | ارا
• | 3 | 3 | 4 | • | 4 | 5 | 5 | 5 | 5 | | | 0 | | 24.5 | 22.5 | 22.4 | 25.6 | 2 | | • | 4 | 4 | 24.7 | 25.0 | • | 25.5 | 25.8 | | 25 | 0 | m) | • | - | • | ~ | ~ | m | 3 | 3 | 4 | 4 | 4 | 5 | 5 | ņ | | | • | 0 | \subset | 0 | + | •
•-4 | 22.3 | 22.8 | 23.3 | 23.7 | 24.1 | | • | 25.1 | 25.4 | | | | a . | oc. | • | ċ | 0 | 4 | 2 | 5 | 3 | 3 | 4 | 4 | 4 | 5. | S. | 3 | | | | 60 | 6 | ċ | 0 | ,
,,, | 2 | 2 | 3 | ~ | 4 | 4 | 4 | د | ν. | 5 | | | \$ | 7. | 18.9 | 19.8 | | 21.5 | - | 8 | 3 | 3 | 3 | 4 | 24.7 | in | 3 | | | | 16.3 | • | œ | 6 | - | ,
,-1 | + | 2 | ₩. | 143 | 3 | 4 | 4 | 5 | 5 | 5 | | | 9 | 7. | œ | 0. | 0 | + | 21.8 | 22.4 | 23.0 | 23.5 | 23.9 | | | 5 | - | 5 | | | 5. | 7. | σc | 6 | 0 | + | + | ò | 5 | 3 | PF) | 4 | 4 | 5 | 5 | 5 | | | 5 | 7 | œ | 6 | ċ | | - | ċ | ċ | 3. | 3 | 4 | 4 | 5 | S | r. | | | 5 | 1 | | 19.4 | 0 | 21.1 | - | ċ | • | ~ | 3 | | 4 | | | • | | | S | | | | C | - | - | 8 | • | ~ | (A) | 4 | 4 | 5 | 5 | 5 | | | 5. | ۲. | œ. | 0 | 0 | + | - | ? | 1 | 3 | ٠, | 4. | 4 | 5 | 5 | 5 | | | ·. | 7. | | 5 | 0 | 21.0 | 21.7 | 22.3 | 22.9 | 23.4 | 23.8 | 24.5 | 24.6 | 25.0 | 25.3 | 25.6 | | | ľ. | 7 | œ | 6 | 0 | | . | ς. | 3 | 3 | | 4 | 4 | رم
د | IL. | 5. | # MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA #### YARN BULK DENSITY #1.36 | KARP
COVER
FACTOR | 1
1
1 | 1 | 1 1 | 1 | 1 | ! | 1 | 98 1 | 1 | ;
! | 1
6
1 | 1 | 1 | 1 | b
1 | 1 | i | |-------------------------|----------------|-----|--------|------|------|------|------|------|------|--------|-------------|--------|----------|--------|--------|------|---| | X | : :
:: | 6.1 | 1.1 | | 0 | 1.0 | F | 1.2 | 1.3 | 1.4 | ert 1 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 | i | | 98 | • | | | | | • | . 0 | . 0 | . 0 | 0 | 0 | 0 | 0. | 0 | 0 | 56. | | | 1 6 | | | | | | | • | | • | • | • | • | 0 | 7 | • | 5 | | | 00 | | | | | | | | | | 0 | c | 0 | 7 | 4 | m | 2 | | | 21 | | | | | | 0 | · c | 0 | 0 | 0 | 38.9 | 34.3 | 32.8 | 32.2 | 31,9 | 31.8 | | | 25 | | | | | | | 0 | C | 0 | 4 | | 4 | • | 7 | 4 | - | | | 23 | | | | | | | | | | 4-4 | 0 | 0 | 0 | 0 | 0 | 0 | | | 4 6 | | | 0 | | | | 4 | ; | 0 | 0 | 6 | 0 | 0 | 0 | 0 | • | | | 25 | | ċ | ·
= | | 0 | å | 0 | 6 | 00 | 6 | 0 | 6 | 0 | 6 | | C | | | 26 | | | | 0 | 0. | 60 | œ | 80 | 00 | 80 | œ | φ. | 0 | ٠
د | 0 | 0 | | | 23 | | | 0 | 8 | 7 | 7 | 7. | 7 | 7 | 60 | ac | œ | 6 | 6 | 6 | 0 | | | 28 | | Ċ | œ | 9 | 9 | | 9 | 7 | 7 | 28.0 | ac : | 8 | 0, | 29.4 | • | ċ | | | 62 | 0 | | 5 | 4 | 5 | 25.8 | 26.3 | 26.8 | 27.3 | 1 | • | 28.6 | 29.62 | 0 | 29.7 | 30.0 | | | 30 | 0 | w. | 23.7 | | 24.8 | ĸ | €. | • | 7 | 7 | Œ | 60 | œ | 0 | • | 0 | | | 7.1 | 2 | 2 | 3 | M | 4 | 5 | 25.9 | | 27.1 | 27.6 | • | Ø | 28.9 | 29.3 | _ | | | | 32 | 0 | • | 5 | 8 | 4 | 'n. | 5. | 9 | 7 | 7. | œ | 8 | œ | 6 | • | 6 | | | 33 | 6 | | 2 | * | 4 | 4 | ٦. | 6. | \$ | 7 | æ | æ | . | ٠
6 | • | • | | | 4 | 19.4 | · | · · | ×. | 4 | 24.8 | 5 | 9 | 9 | 1 | 7 | 28.4 | œ | 0 | | 0 | | | iC. | • | | • | 5 | M | 4 | i. | • | | 7 | 7 | 80 | 00 | 6 | • | 6 | | | 36 | æ | ٠ | • | 2 | 3 | 4 | ŗ. | • | \$ | 7 | - | 8 | ж
Э | 6 | 0 | 6 | | | 37 | 3 0 | ċ | • | 5 | 3 | 4 | 25,4 | 26.1 | 26.8 | 27.3 | 27.9 | 28.3 | 28. | 29.1 | 29.5 | • | | | 38 | œ | - | - | ċ | 3 | 4. | 5 | • | 9 | 7. | | ω, | αC | • | • | φ. | | | 39 | OC | c= | - | 22.6 | 8 | 24.6 | 2 | 9 | • | | 7 | ю
Э | œ | 6 | 0 | 0 | | | 4 0 | œ | · | | 2 | 3 | 4 | 5 | ÷ | ¢ | 7 | | 00 | 90 | 0 | 6 | • | | | 41 | \mathfrak{X} | | 21.4 | 25.6 | 23.6 | | 25.3 | 26.1 | 26.7 | 27.3 | 27.8 | 28.3 | 28.7 | 29.1 | 29.5 | 29.8 | | | 42 | • | 0 | | ~ | • | 4 | ٦. | ÷ | 9 | 7 | 7. | œ | 8 | 6 | 6 | 6 | YARN BULK DENSITY =1.48 | | 1 | 1
1
1 | | ;
;
;
; | • | ı | i | <u>⊢</u> | 1 | F | ı | t | | ;
1 | 1
0
1 | 1
1 | |------------|----------|-------------|----------|------------------|------|------|----------|----------|------|----------|------|----------|--|--------------|-------------|----------------| | 3 ¥2 □ | 0.5 | 9.0 | 7.0 | 0 | 6.0 | 1.0 | + 1 | 1.2 | | 1.4 | 4.5 | 1.6 | 1.7 | ₩ I | 4.9 | | | 1 8 T | | | • | 0 | • | . 0 | • | 0.0 | • | • | | . 0 | 0 | | 0 | . 0 | | | • 0 | · | | 0 | | | | • | | | | • | | • | • | • | | 20 | | | | | | | | | | | | • | 0 | ы. | 7 | 9 | | 21 | | | | | | | | | 0. | | 0 | 5. | 7. | 5 | 4. | + | | 22 | | | | | | | | | | 0 | ٠. | ت | 4. | ы | ю
• | ъ. | | 23 | 0 | 0 | ٠ | | 0 | | 0 | 0 | 01 | 35.9 | 33.7 | 32.9 | 32.6 | 32.4 | 32.4 | 32.5 | | 24 | | | | | | 0 | | | | 2 | 2 | | 1. | , | 'n | ċ | | 25 | | | | c | Ċ | | ý | ζ, | ÷ | , | • | - | <u>, </u> | • | - | • | | , ° C | · . | | • • | . 0 | ò | 34.5 | 31.2 | 30.4 | 30.2 | 30.7 | 30.5 | 30.7 | 30.9 | 31.2 | 31.4 | 31.7 | | 27 | | | | | • | | 6 | 6 | Ġ. | 6 | 0 | 0 | | # | - | • | | 5 8 | | | | • | Ø | œ) | æ | 8 | 6 | 6 | • | | 0 | 0 | ij | ÷ | | 56 | | | 31.4 | | 7. | 7. | 7. | 80 | œ | 6 | • | 0. | 0 | 0 | ÷ | | | 30 | | · | ç | 9 | • | 7. | 7 | 80 | φ. | 6 | 6 | 6 | 0 | | + | - | | 31 | 0. | 25.5 | 25.0 | 25.4 | 26.0 | 26.7 | 27.3 | 27.9 | 28.4 | 28.9 | 29.4 | 29.8 | 30.2 | 30.6 | 30.9 | 31.3 | | 32 | 4 | 8 | 4 | 4 | 5. | • | 7 | 7 | 8 | 8 | ٠. | 6 | 0 | | • | $\ddot{\cdot}$ | | 33 | \sim | ÷ | M | 4 | | • | • | 7 | æ | œ | • | ٠
• | • | 0 | 0 | ÷ | | 46 | • | ÷ | m | 4 | v. | ý | . | 7. | 60 | ω | • | 6 | 0 | 0 | • | : | | 35 | 6 | • | ь. | 4 | Ŋ. | -₽. | é | 7 | € | 80 | 6 | • | | 0 | | + | | 36 | • | <u>.</u> | ? | 4 | 5. | ů. | • | , | œ | 80 | • | ٥. | 0 | 。 | • | ; | | 37 | | 21.3 | 22.7 | 23.8 | 24.9 | | 26.6 | 27.3 | 28.0 | 28.6 | 29.1 | 29.6 | 30.0 | 30.4 | 30.8 | 31.1 | | 38 | <u>,</u> | • | 5 | ×. | 4 | ņ. | ç | 7. | | æ | Ġ. | 6 | <u>.</u> | 0 | • | ; | | 39 | | ÷ | 2 | ъ. | 4 | ŗ. | ċ | 7. | 7 | œ | • | 6 | 0 | • | | ; | | | · | <u>.</u> | 2 | κ. | 4 | 5. | • | 7 | 7. | ဆ် | • | ò | 0 | 0 | e. | ÷ | | 41 | 19.2 | 9. ŋ. | 22.3 | 23.6 | 24.7 | 25.6 | 24.5 | 27.2 | 27.9 | 28.5 | 20.0 | 29.5 | 30.0 | 30.4 | 30.8 | 31.1 | | | ٠.
د | ċ | ÷ | 8 | 4 | 5. | ÷ | 7. | 7 | œ | • | 6 | 0 | | 6 | ÷ | # MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA #### YARN BULK DENSITY =1.50 | | | | | | | | | BET | | 1 | 1 | | 1 | | | | - | |-----|--------------|--------|------|----------|------|------|------|------|------|----------|----------|------|------|------|------------|------|---| | X | 0.5 | 9.0 | 0.7 | 0 . 0 | 0.0 | 1.0 | 1.1 | 1.2 | 1.3 | | | 1.6 | 1.7 | 8 1 | 4.9 | 2.0 | 1 | | 181 | | • | 0 | 0 | . 0 | | 0 | 0. | | 0 | 0 | 0 | 0. | 0. | 0 | 0. | | | | | 0 | ċ | 0 | 0 | | | | • | | • | | | • | | • | | | | ٠. | | | | | | | | | | | | 0 | 0 | • | 9 | | | | | c | 0 | | | 0 | ů | 0 | 0. | 0 | c | 0 | 39.3 | 36.3 | 35.1 | 34.5 | | | | .0 | | | | 0. | | | | | 0 | e
eri | 9 | 4 | M | P) | 3 | | | | | | | | | | | • | 0 | | | | M | 2 | ċ | ċ | | | | 0 | c
C | 0 | | 0 | | 0. | | | m | 2 | ٥. | 5 | 2 | 8 | 2 | | | | 0 | | | | | 0 | 0 | 100 | • | | - | - | • | - | | 2 | | | | | | | | | 9 | + | 0 | 0 | 0 | 0 | 0 | | - | - | - | | | | | | | | ď. | 0 | 0. | 6 | 6 |
0 | 6 | 0 | 0 | • | ÷ | ; | | | | 0 | ٠. | 0 | 34.2 | 29.6 | 28.9 | 28.8 | 29.0 | 29.4 | 29:7 | 30.1 | 30.4 | 30.7 | 31.1 | 31.4 | 31.7 | | | | | | | • | 7. | 7 | œ | œ | 6 | 6 | 0 | 0 | 0 | ÷ | + | | | | | | 4 | 7 | , | ç | 7 | 7 | 00 | 60 | 6 | 0 | 0 | 0 | 0 | ** | + | | | | 0 | 26.3 | 25.5 | 25.8 | 26.3 | 56.9 | 27.5 | 28.1 | 28.6 | 29.1 | 29.6 | 30.0 | 30.4 | 30.8 | 31.2 | 31.5 | | | | 3. | 4 | 4 | n, | 5 | 9 | 7 | 7. | 8 | 6 | • | O | Ċ. | 0 | - | + | | | | \mathbf{c} | ~ | 3 | 4 | r. | 9 | 7 | 1 | œ | 60 | 6 | 6 | 0 | 0 | + | | | | 34 | • | · . | 8 | 4 | 5. | • | 7. | 7. | œ | œ | 6 | 6 | 0 | 0 | + | + | | | | 0 | ~ | M) | 4 | 5. | • | ¢ | 7 | œ | 80 | 0 | 0 | 0 | 0 | | | | | | 0. | * | 3 | 4 | ς. | ć | Ġ | - | œ | œ | 6 | ó | 0 | 0. | + | ÷ | | | | 5 | - | 2 | 4 | 50 | 9 | è | 7 | 8 | 80 | 0 | ъ. | 0 | 0 | 1. | + | | | | 19.7 | 21.3 | 22.7 | 23.9 | 25.0 | 55.9 | 26.7 | 27.5 | 28.1 | 28.7 | 29.3 | 29.8 | 30.5 | 30.6 | 31.0 | | | | 39 | • | • | 0. | | 4 | 5 | ċ | 7. | 80 | œ | 0 | 6 | 0 | 0 | | | | | | 3 | | ~ | K | 4 | 7 | • | 7 | 80 | න
න | 6 | 0 | 0 | 0 | -0 | 4-4 | | | 4 1 | | 21.0 | 22.5 | 23.8 | 24.9 | 25.8 | 26.7 | 27.4 | 28.1 | 28.7 | 20.5 | 29.7 | 30.2 | 30.6 | 31.0 | 31.3 | | | | | • | N | * | 4 | ĸ. | ć | 7 | 8 | œ | 0 | 6 | 0 | 0 | * | + | | YARN BULK DENSITY =1.77 | FABRICS | | |--------------|--| | WEAVE | | | FOUR-HARNESS | | | A F B | | | | | | | | BET | | | 1 | | 1 | 1 | 1 | | | |----------------|------|----------|----------|-------------|------|-------------|------------------|-------------------|------|----------------|--------|---------|----------|----------|----------|------------|-----| | FACTOR
[K1] | 0.5 | 9.0 | 0.7 | 0 • 8 | 6.0 | 1.0 | 1.1 | 1.2 | 1.3 | 1 + 1
1 • 1 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 | ! ! | | 1 | 1 | • | ł | l
i
I | 1 | !
!
! | 1
1
1
1 | f
5
F
\$ | |
 | !
! | !
! |
 |]
 |
 |)

 | | | 20 | | | | | 0 | | | • | 0 | | | | | | | | | | 21 | | | | | 0 | | | | | | | | | 0 | 0 | 4 | | | 20 | | | | | 0. | | | | | | | | 0 | 'n | 0 | 6 | | | , C | | | | | 0. | | 0 | | 0. | 0. | 9 | 54.8 | 41.1 | 38.8 | 37.7 | 37.2 | | | 4.5 | 0 | | <u>-</u> | 0 | 0. | 0. | 0. | 0 | | | | 8 | 7. | 9 | • | 9 | | | , | • | , | | | | | | c | | c | - | • | ĸ | Ľ | ĸ | ĸ | | | 25 | | | | | • | | • | | • | • | • | •
• | • | • | • | · | | | 56 | | 0 | | | • | 0 | ċ | ċ | . · | ø, | 'n, | | 64.0 | 7.4. | 55,1 | | | | 27 | | | | | | 0 | ò | è. | 3 | 4 | ₹. | 4. | 4 | 4 | 4 | * | | | 28 | | - | | | 0.0 | 9 | 5 | 8 | 3 | 3 | ₩. | ъ. | δ. | 4. | 4 | 4 | | | 000 | • • | | . 0 | 0 | 7.5 | 34.4 | 32.9 | 32.6 | 32.6 | 32.8 | 33.1 | ъ. | ю
М | 4. | 4. | | | | , | | | | | | | | | | | | | | | | | | | 20 | | | | | 5 | + | + | + | ? | 2 | ٠. | 33.1 | 33.5 | 33.8 | • | • | | |) r | | | | 2 | | | ċ | ; | ÷ | 2 | ~ | ŝ | 3 | ,
M | 4 | 4 | | | | | | 2 | 6 | 6 | | | 0 | ÷ | - | ۲. | 2 | δ. | 3 | 3 | 4 | | |) M | | ς. | 8 | 80 | 8 | 6 | c | ö | + | ; | ò | ς. | 3 | М. | m | 4 | | |) ki | 50.1 | 27.6 | 27.3 | 27.8 | 28.4 | 29.1 | 29.8 | 30.4 | 31.0 | 31.6 | 32.1 | 2 | 3 | ъ | m | 4 | | | • | | | | | | , | (| | | , | | c | • | | | • | | | 35 | \$ | 5. | Ġ | 7 | 8 | æ | 6 | 0 | • | ; | 2 | , | ; | •
• | · | • | | | 36 | 4 | 4 | 5. | • | 7. | 8 | ٠
د | 0 | 0 | ; | ۶. | ٥, | ċ | . | · | 4 | | | 37 | ×; | 4 | 5. | 9 | 7 | æ | 6 | 0 | 0 | 4 | | 32.4 | 32.9 | 33.3 | 33.7 | 34.1 | | | 80 | ~ | ~ | 5 | Š | 7 | 6 | 6 | • | 0 | + | + | ۲, | <u>۰</u> | ,
M | M | 4 | | | 6 6 | 22.0 | 23.6 | 25.0 | 26.2 | 27.3 | 28.3 | 29.2 | 59.9 | 30.6 | 31.3 | 34.8 | ۲, | ۲. | ъ. | 8 | * | | | • | | | | | | | | | | | | | | | | | | | 4 0 | 1. | 5 | 4 | • | 7. | 8 | 6 | 6 | ċ | Η. | | 5 | 2 | m 1 | m 1 | 4 | | | 41 | | ۳. | 4. | ç | | æ | Ġ. | 6 | • | . | + | ٠.
د | ٠. | ٠
• | ,
, | 4 | | | 42 | ۲. | * | 4. | . | 7. | 8 | 6 | • | 0 | ; | | ۲. | <u>٠</u> | ٠, | , | 4 | | | 43 | _ | ۴, | 24.5 | | 27.1 | 28.1 | 29.0 | 8.66 | 30.5 | 31.2 | 31.8 | 32.3 | 32.B | 33.2 | 33.6 | 34.0 | | | 4 | 21.0 | 65.2 | • | 5. | 7. | œ | 6 | ċ | • | | • | ۲. | ۶. | 8 | 8 | 4 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =2.00 | OVER | | | | | | | | BET | | 1 | | 1 | (| (| | | | |-------|----------|--------|----------|----------|---------------|------|--------|---------------------|----------|---------|------------|------|-----------|----------|-----------|----------|--| | X - 1 | | 9 1 | 0.7 | 60 | 6.0 | 0 1 | ₩ . | | 1.3 | 4 1 | 4.5 | 1.6 | 1.7 | 60 I | 1.9 | 2.0 | | | | | 1 | |
 (|)

 (| | | | | c | • | c | c | c | C | ć | | | | | • | | = | • | | | | | | | | | | | | | | | | | | . | 0 | | | | | | | | | | | ت | | | | | | | <u>-</u> | 0 | | | | | | | | | | 0 | 5 | | | | | | | _ | 0 | | | | | | | | 0 | 0 | • | 42.7 | | | 24 | c c | ٠, | U | 0 | 0. | | 0 | 0. | 0. | 0. | 6 | 0. | 48.6 | 43,0 | - | 0 | | | | | • | | | c | | | | | | | 4 | • | o | 0 | ď | | | | | • | | | | | | | | > ı | • | ř | •
-i (| | • | | | | | | | | | | | | | 0 | 3 | ċ | • | 00 | œ | 20 | 10 | | | | | | | | 0 | | | <u>.</u> | 7 | 0 | œ | 7. | 7. | 7. | 7. | 7. | | | | | | | | 0 | | 0 | 4 | 6 | 7 | | 9 | . 9 | 7. | 7. | 7 | | | | 0 | ٠ | <u>.</u> | 0 | 0 | 0 | 43.4 | 37.9 | 35.6 | 36.2 | 36.1 | 36.2 | 36.4 | 36.6 | 36.8 | 37.1 | è | • | Ŋ. | | 5. | K) | 5 | Š | , D | • | · o | | | | | | | • | ,
M | | 4 | 4 | 4 | 4 | v | 3 | ي. | 0 | . 9 | 1 | | | | | | | c, | 5 | 3 | 3 | 8 | _ | | 4 | 5 | 5 | 35.9 | 8 | ò | | | | | | | 4 | 2 | 2 | ? | 3 | 3 | 4 | 4 | 5 | 3 | 'n | • | | | | | . | · | 34.3 | 31.8 | 31.6 | 31.9 | 32.3 | 32.9 | | | • | 34.9 | 35.3 | 5 | | 36.4 | | | ŭ | | u | c | c | c | | c | c | ۲ | ~ | 4 | 4 | LC. | u | × | (| | | | | • | • | • | • | • | | | •
) ? | • | • | • | ٠, | ٠, | • | , | | | | • | ٠
٥ | • | · | 0 | | • | 2 | ٠ | ر.
د | 4 | 4 | ٠ | ŗ | • | • | | | | 6 | 7 | œ | 6 | 6 | 0 | 7 | 2 | è | ~) | 4 | 4 | v. | S | ľ. | • | | | | 9 | ċ | 7 | | 6 | 0 | * | ? | | 33.4 | 34.0 | 34.5 | 35.0 | 35.5 | 35.9 | \$ | | | | 24.0 | 26.0 | 27.2 | 28.4 | 29.4 | 30.4 | 31.2 | 32.0 | | • | m; | 4. | 5 | Š | 5 | | | | | | | | | | | | | | | | | | ł | | | | | 0 4 | 4 | r. | è | æ | 6 | 0 | + | •
• • | ci | 3 | 9 | 4 | N. | N | 2 | • | | | 41 | ٠, | 5 | 9 | 80 | 6 | 0 | ,
, | 1. | 6 | 3 | 3 | 4 | 4 | 'n | S | | | | 42 | 5 | r. | 9 | | ъ | 0 | • | + | 2 | ٠
• | F) | 4, | 4 | <i>ا</i> | r. | . 9 | | | | 2 | 4 | 9 | 7 | 8 | 0 | 0 | • | ~ | 3. | 8 | 4 | 4 | Ŋ. | 5 | . 9 | | | 4 | 22.7 | 24.6 | 26.2 | 27.6 | 28.8 | 56.6 | 30.9 | 31.7 | 32.5 | 33.2 | 33.8 | 34.4 | 34.9 | 35.3 | 35.8 | 36.2 | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =2.36 FOUR-HARNESS WEAVE FABRICS | FACTOR | | | | | | | | | | | | | (| | | • | |--------|------|------|----------|--------|------|------|------|------|------|--------|------|--------|--------|-------|----------|------| | 1 | 0.5 | 9.0 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | 1 1 | 1.5 | 1.6 | 1.7 | 8 | 9 1 | 0 | | 22 | 0 | • | !
! • | • | | | 0 | .0 | | , 0 | 0 | 0 | 0 | 0 | | 0 | | | | | | | | • | | | | | | | • | 4 | | | | | | | | | | | | | | | 0 | 6 | • | \$ | | | | | | | | | | | | | | 0 | 4 | 7 | 4 | N7 | | | | | | | | O | 0 | 0 | 0 | | | 49.8 | 45.3 | 43.6 | 42,8 | | | | | | | | | | | | | 0 | | 3 | 2 | ċ | . | ÷ | | | | | ·
• | | | | | | | | 2 | + | - | + | • | - | | | | | | .0 | 0 | | | 0 | 4 | - | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | • | 0 | 3 | 0 | 6 | 6 | 6 | 6 | 6 | 0. | 0 | | | | | | | • | ů. | 45.6 | 39.9 | 39.1 | 38.8 | 38.9 | 39.1 | 39.3 | 39.65 | 39.9 | 40.5 | | | | | | | · | • | 6 | 8 | œ | ф
Ф | φ | о
О | • | 0 | • | 0 | | | | | 0. | | Ľ | œ | 7. | ۲. | 7. | 7. | 8 | о
О | œ. | ò | • | • | | | | | | 4 | 7 | • | • | • | • | ~ | 7 | 80 | 60 | 0 | 6 | 0 | | | | | C | ÷ | s. | 35.3 | 35.4 | 36.0 | 36.5 | 37.0 | 37.5 | 38.0 | 38.4 | 38.9 | 39.3 | 39.7 | | | | | 9 | 4 | 4 | 4 | 3 | 5 | • | • | | 7 | о
Ф | φ. | • | • | | | | 0.0 | ₩) | × | 3 | 4 | 4 | 5 | • | • | 7 | 7 | 60 | φ | • | • | | | | 5.6 | | | 5 | ×2 | 4 | ŗ. | Ŋ, | • | 7 | ` | 60 | œ | • | 6 | | 0 | 2.9 | 'n | | • | 2 | ₩. | 4 | 5 | 5 | 9 | 7. | 7 | 80 | 80 | 0 | 0 | | | 9.1 | 9.3 | | | 2.2 | 33.2 | 34.1 | 34.9 | 35.6 | 36.3 | 37.0 | 37.5 | 38.1 | 30.5 | 39.0 | 39.4 | | C | 7.5 | 8.5 | 5 | | 2.0 | 3 | 4 | 4 | 'n. | 9 | \$ | | œ | œ (| 0 | • | | ĸ | 6.7 | ٥. ٢ | 6 | ċ | 1.8 | cv | 3 | 4 | Š | 9 | • | 7 | 00 | ص | ි.
ආ | • | | ₩. | 5.0 | 9.7 | • | ·
c | 1.7 | ~ | 3 | 4 | 5 | 9 | • | 7 | 60 | œ | •
• | 0 | | 2 | 5. d | 7.3 | œ. | 0 | | ~ | ь. | 4 | īυ. | 9 | C | 37.4 | 37.9 | 38.4 | 38.9 | 6 | | 2 | ۲. | 0.62 | 28.7 | 30.2 | 31.5 | 32.6 | 33.6 | 34.5 | 35.3 | 36.1 | 36.7 | 7. | 7. | 8 | œC | 39.3 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =2.50 | | | | 1 | 1 | | 1 | 1 | 96 | i
I | 1 | | 1 | 0
1
8
6 | | 1
1 | 1 | |-----|------|--------|----------|------|----------|----------|------|------|--------|------|----------|--------|------------------|------|--------|------| | XX | ۵.5 | 9,0 | 0.7 | C | . 0 | 1.0 | 1.1 | 1.2 | 1.3 | 4 | 5.5 | 1.6 | ~ | 1.8 | 3 | 2.0 | | 22 | | i . | | | 1 • | . 0 | 1 | • | 0 | 0 | • | | 0 | | .0 | 0 | | | | | | | | | | | | | € | | | | | | | | | | | | | | | | ċ | ~ | | | | | | | | | | | | | | | 0 | | 6 | 9 | | | | | | | 0 | | 0 | 0 | 0 | 0 | | 0 | - | 47.3 | 45.5 | 44.7 | | | | | | | | | | | | | | | | 4 | 3 | 3 | | | 0 | · | 0. | .0 | 0. | 0. | 0. | 0. | | | 47.4 | 4 | M | 3 | 2 | · | | | | | | | | | | • | | 9 | 143 | 2 | ~ | 2 | 0 | ~ | | | | | | | | | . 0 | 61.0 | 45.0 | 42.6 | 41.8 | 41.5 | 41.4 | 41.5 | 41.6 | 47.8
| | | | | | | | | | | + | 0 | 0 | 0 | 0 | + | -1 | + | | | | | | | | | 3 | 0 | 0 | 6 | 6 | · | - | 0 | * | + | | | 0 | 0. | 0. | | | 43.5 | 0 | • | 6 | 6 | 6 | 6 | 0. | 0 | 0 | + | | | | | | | س | 6 | æ | 00 | 60 | 80 | 0 | 0 | 6 | 0 | 0 | + | | | · c | · | | \$ | 38.6 | 37.5 | 37.3 | 37.6 | 38.6 | 38.4 | 38.8 | 39.3 | 39.7 | 40.1 | 40,5 | 40.9 | | | | | | | Ś | 9 | 9 | 7. | 7 | 80 | œ. | 6 | 6 | 0 | 0 | 0 | | | | | œ | 5 | رح | 5 | • | 9 | 7 | 7 | 60 | 6 | 6 | 6 | • | • | | | | 42.1 | | 4 | • | S | 5 | ç | 7 | 7. | 80 | 80 | 6 | 6 | 0 | 0 | | 4 0 | | 4 | 5 | 3 | 4 | 4 | 5 | 9 | 7. | 7. | œ | 80 | 0 | 6 | | 0 | | | 3. | • | + | 2 | 3 | 4 | 5 | 9 | 9 | - | a | œ | 0. | • | 0 | 0 | | 24 | 30.5 | 30.3 | 31.2 | 32.2 | 33.2 | 34.2 | 35.1 | 35.9 | 36.7 | 37.4 | 38.0 | 38.6 | 39.5 | 39.7 | 40.1 | 40.6 | | | 80 | 6 | | • | 3 | 4 | 5 | 5 | • | 7. | æ | œ | • | • | • | 0 | | | ~ | œ | <u>-</u> | ÷ | 5 | 3 | 4 | 5 | 9 | 7. | | ю
С | • | 0. | 0 | 0 | | | ç | ac | - | | 2 | ;
;~; | 4 | r. | • | 7 | 7 | œ | 6 | 0 | 6 | ó | | 46 | 26.3 | JA . 2 | 8.62 | 31.2 | 32.5 | 33.7 | 34.7 | 35.6 | 36.4 | 37.2 | 37.9 | 38.5 | 39.0 | 39.6 | 40.0 | 40.5 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #2.75 | | | | | | | | | BET | | | | 1 | 1 | | i
1 | | |----------|------|------|-------|------------|------|----------|------|------|------|------|------|------|----------|------|--------|------| | A X | 0.5 | 9.0 | 0.7 | 9 | 0 | | 1.1 | 1.2 | 1.3 | • | 1.5 | 1.6 | 1.7 | 1.8 | 4.9 | 2.0 | | 2 - | | 0 . | | | 0. | | | | • | 0 | 0 | 0 | 0 | 0 | • | | | | 0 | | | | | | 0 | 0 | | 0. | | | | | | | | | | | | | 0. | | | | | | | 0. | | | | | | | | | | c | | | | | | | | | | | | • | | | 0 | | | | 0 | | | | | | | | | | | 1 | | | 0 | · c | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 50.0 | | | | | | | 0. | | 0 | | | | | 0 | | | | 7. | | | 0 | | 0. | 0. | 0. | | | | | - | | | • | 7 | ·. | • | | 0 | | | | · | 0 | | | | | • | 1 | 60 | • | r. | 80 | 5 | | | | | | _ | | | | | | · • | | 5 | * | * | + | 4 | | | 0 | | | _ | | | | | 0 | • | 4 | 4 | * | 3 | 3 | 4 | | | | C | | c . | 0. | 0 | 0 | 50.4 | 45.2 | 43.8 | 43.2 | 43.1 | 43.1 | 43.3 | 43.5 | 43.7 | | | 0 | · | . 0 | | - | | | 4 | 2 | 2 | 2 | 3 | 2 | 2 | 3 | 3 | | | | | | | 0 | M | 2 | ~ | ÷ | - | • | 0 | à | 2.6 | ~ | 3 | | | 0 | . 0 | | 0 | 0 | 43.5 | 41.3 | 40.8 | 40.8 | 41.0 | 41.3 | 41.6 | 42.0 | 45.4 | 42.7 | 43.1 | | | 0 | | | <u>.</u> | 5 | 0 | • | 0 | 0 | 0 | 0 | 7 | ٠
• | 2.2 | 2 | 3 | | | | | | a, | | • | 6 | 6 | 6 | 0 | 0 | - | + | 2.1 | 8 | è | | | | 9. | 6.0.7 | | 8 | Ф | 00 | | 0 | • | 6 | + | + | 1.9 | ò | ò | | 4 | | | 5 | 7. | • | 7 | 7. | 60 | 6 | 6 | 0 | 0 | ÷. | 1.9 | Ç. | 2 | | 4 | | ~ | Š | 5 | . 9 | • | | 8 | 60 | • | 6 | 0 | 1 | 1.8 | ~ | è | | | 0 | 35.6 | 34.5 | 34.9 | 35.6 | 36.4 | 37.2 | 38.0 | 38.7 | 39.4 | 40.1 | 40.7 | 41.2 | 41.7 | 42.2 | 42.6 | | 43 | 9 | κ, | 3. | 4 | 5 | 6. | ~ | 7. | 80 | 6 | 0 | 0 | + | 1.7 | 2 | ċ | | 4 | | • | ۲. | * | 4 | r. | 9 | 7 ° | 8 | 6 | 6 | 0 | | 1.6 | è | s, | | | = | • | ~ | M. | 4 | 5 | Ó | 7 | 60 | 6 | 0 | • | • | 1.6 | 2 | 2 | | 94 | 20.0 | 30.4 | 31.0 | 33.2 | 34.4 | 35.6 | 36.6 | 37.5 | 38.3 | 39.1 | 39.8 | 40.4 | 41.0 | 41.6 | 42.0 | 42.5 | | | | | | | | | | | | | | | | | | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =2.95 | 75 0.5 0.5 0.6 0.0 | A N C C C C C C C C C C C C C C C C C C | | | | | | | | H | 4 | | | | | | | | |--|---|-------------|----------------|-------------|-------------|----------|-------------|-----------------------------|-------------|----------|-------------|-------------|-------------|-------------|--------------|----------|------| | 75 | ACT0 | 0.5 | 1 6 | 0.7 | 1 60 | 0.0 | 1.0 | | 1.2 | 1 . 1 | 4 | 1.5 | 1.6 | 1.7 | 1 60 | 1 1 | 2.0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1
1
1 | 1
1
1 |
 | 1
1
3 | 1
1
1 | 1 | 1
2
1 | 1 | 1
1
1 | 1 | 1
i
1 | 1
1
1 | 1
1
1 | 1
1
1 | | ;
; | | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 25 | | | | | | | | | | | | | | | | | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 96 | | | | | | | | | | | | | | | | 0 | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 27 | | | | | | | | | | | | | | • | 0 | ò | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 80 | | | | | | | | | | | | | 0 | 9 | | 51.7 | | 6. n. | 60 | | | | | | | | | | | | | 2 | 3 | 0 | 6 | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 54.9 49.1 47.3 46.2 46.2 48.3 49.1 47.3 46.2 46.2 48.3 49.1 47.3 46.3 46.2 46.2 49.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | J. | | ·
- | | | | | | | | | | 60 | | 0 | 00 | ~ | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 54.3 48.2 46.5 46.5 46.2 40.0 0. 0. 54.3 48.2 46.5 46.5 46.2 40.0 0. 0. 0. 54.3 48.2 46.5 45.4 4.9 4.0 0. 0. 0. 0. 0. 54.3 48.2 46.5 45.8 45.9 44.9 40.1 47.3 46.5 45.4 4.9 4.0 0. 0. 0. 0. 0. 54.3 48.2 46.5 45.8 45.9 44.9 44.0 0. 0. 0. 0. 0. 0. 54.3 48.2 44.0 44.1 44.3 44.9 44.2 44.0 0. 0. 0. 0. 0. 0. 0. 46.5 43.4 43.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4 | , , | | | | | | | | | | ,
C | | | , a | 7 | 4 | 4 | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 54.3 48.2 46.5 45.8 45.9 45.9 45.9 40.9 40.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 10 | | = c | | | | | | | | • | | ٠ ٦ د | | | | | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 54.7 47.5 45.6 45.0 44.8 44.9 44.9 40.9 40.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 46.5 44.1 43.4 43.3 43.4 43.2 43.6 43.9 44.2 40.0 0. 0. 0. 0. 46.5 44.1 43.4 43.3 43.4 43.2 43.6 43.9 44.2 40.0 0. 0. 0. 0. 45.6 42.4 42.6 42.4 42.6 42.9 43.2 43.2 43.9 44.2 40.0 0. 0. 0. 0. 47.6 42.7 41.7 41.6 41.8 42.1 42.5 42.9 43.3 43.8 40.0 0. 0. 0. 0. 0. 43.8 39.2 38.7 39.9 40.4 40.9 41.5 42.0 42.7 43.2 43.6 44.0 40.0 0. 0. 43.8 39.2 38.7 38.9 39.0 39.7 40.9 41.5 42.0 42.7 43.2 43.6 43.0 43.5 40.0 0. 0. 43.8 39.2 38.7 38.3 39.0 39.7 40.1 41.1 41.7 42.2 42.7 43.2 43.6 43.3 40.0 0. 40.1 40.9 41.6 42.2 42.7 43.2 43.3 44.0 40.1 40.1 41.1 41.7 42.8 43.3 42.8 | 2 14 | | •
= c | | | | | | | •
> • | • a | | ٠ لا | | | | A 10 | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 0.0 | | = | | | | | | · | | • u | 0 1 | • | | •
| | · u | | 0. n. | 4 | | 0 | | | | | | 4 | • | ٤. | ν. | থ | 4 | 4 | Ċ | | | 0. F. H. O. O. O. 46.5 44.1 43.4 43.3 43.4 43.6 43.9 44.2 4.0 4.0 6 42.4 42.6 42.9 43.2 43.6 43.9 44.2 4.0 4.0 6. H. O. O. 47.6 42.7 41.7 41.6 41.8 42.1 42.5 42.9 43.2 43.8 4.0 4.0 6. H. O. O. O. 47.6 42.7 41.7 41.6 41.8 42.1 42.5 42.9 43.3 43.8 4.0 9. H. O. O. O. A3.8 39.2 38.7 39.9 40.4 40.9 41.5 42.0 42.7 43.2 43.6 4.0 1.0 0. 43.8 39.2 38.7 39.9 40.4 40.9 41.5 42.0 42.7 43.2 43.5 4.0 1.0 0. 43.8 39.2 38.7 39.9 40.0 41.5 42.0 42.2 42.7 43.3 4.0 43.5 4.0 1.0 0. 43.8 35.2 36.3 37.3 38.7 39.5 40.1 40.8 41.5 42.1 42.6 43.1 4.0 1.0 32.2 32.1 35.8 36.3 37.3 38.3 39.1 39.9 40.7 41.4 42.0 42.6 43.1 4.0 1.0 32.2 32.1 32.1 32.1 32.1 32.1 32.1 32.1 | 35 | | c. | | | | | | 9 | 4 | 4 | * | 4 | 4 | 4 | 4 | S | | 0. 0. 0. 0. 0. 46.5 43.4 42.6 42.4 42.6 42.9 43.2 43.8 44.0 4 0. 0. 0. 0. 47.6 42.7 41.7 41.6 41.8 42.1 42.5 42.9 43.2 43.3 43.8 4 0. 0. 0. 0. 43.5 42.2 40.8 40.7 40.9 41.3 41.7 42.2 42.7 43.2 43.6 4 0. 0. 43.8 39.2 38.6 38.9 39.4 40.9 41.5 42.0 42.5 53.0 43.5 4 0. 0. 43.8 39.2 38.6 38.9 39.4 40.0 40. 41.2 41.8 42.4 42.9 43.4 4 0. 0. 43.8 37.5 37.7 38.3 39.0 39.7 40. 41.1 41.7 42.3 42.8 43.3 4 49.1 35.4 35.1 35.8 26.6 37.6 38.4 39.3 40.1 40.8 41.5 42.1 42.6 43.2 4 32.2 32.7 34.3 35.2 36.3 37.3 38.3 39.1 39.9 40.7 41.4 42.0 42.5 43.1 4 32.7 31.8 33.2 34.5 35.8 36.9 38.0 39.8 40.6 41.3 41.9 42.5 43.1 4 22.7 31.3 32.8 34.3 35.6 36.9 38.0 39.8 40.5 41.2 41.9 42.5 43.1 4 22.7 31.3 32.8 34.3 35.6 36.9 38.9 39.8 40.5 41.2 41.9 42.5 43.1 4 22.7 31.3 32.8 34.3 35.6 36.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.0 4 22.7 31.3 32.8 34.3 35.6 36.8 37.9 38.8 40.5 41.2 41.9 42.5 43.1 4 22.7 31.3 32.8 34.3 35.6 36.8 37.9 38.8 40.5 41.2 41.9 42.5 43.1 4 22.7 31.3 32.8 34.3 35.6 36.8 37.9 38.8 40.5 41.2 41.9 42.5 43.0 4 | 3.6 | | د | | | | 0 | 9 | 4 | M | 3 | P) | ~) | M) | 4 | 4 | 4 | | 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6 | 37 | | | | | • | 9 | PS | 2 | 2 | è | 2 | 3 | ***) | 4 | | 44.7 | | 0. 0. 0. 42.2 40.0 40.7 40.9 41.3 41.7 42.2 42.7 43.2 43.6 4 0. 0. 43.8 39.2 38.4 30.4 40.0 40. 41.5 42.0 42.5 43.0 43.5 4 10. 0. 43.8 39.2 38.4 39.0 39.7 40. 41.1 41.7 42.3 42.9 43.4 4 10. 0. 43.8 37.5 37.7 38.3 39.0 40.4 41.9 41.5 42.1 42.6 43.3 4 10. 0. 43.8 35.2 36.3 37.3 38.3 39.1 39.9 40.7 41.4 42.0 42.6 43.1 4 10. 35.2 33.7 34.8 36.0 37.1 38.1 39.9 40.7 41.4 42.0 42.5 43.1 4 10. 37.5 31.8 33.2 34.5 35.4 36.8 37.9 38.8 40.5 41.2 41.9 42.5 43.1 4 10. 0. 20.4 37.1 35.8 36.8 37.9 38.0 39.8 40.5 41.2 41.9 42.5 43.1 4 10. 0. 20.4 37.1 35.8 35.4 36.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.0 4 10. 0. 20.4 37.1 35.8 35.4 35.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.0 4 10. 0. 20.4 37.9 38.7 37.8 38.7 39.8 40.5 41.2 41.9 42.5 43.0 4 10. 0. 20.4 37.9 38.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.0 4 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 4.0 | | c | | C | 7 | 2 | • | + | + | è | 2 | 2 | 5 | m | 4 | 4 | | 0. 0. 0. 42.2 40.0 39.7 39.9 40.4 40.9 41.5 42.0 42.5 £3.0 43.5 4 10. 0. 43.8 39.2 38.6 38.9 39.4 40.0 40. 41.2 41.8 42.9 42.9 43.4 4 20. 0. 0. 38.6 37.5 37.7 38.3 39.0 39.7 40 41.1 41.7 42.3 42.8 43.3 4 3. 6. 59.1 36.4 36.5 £7.1 37.9 38.7 39.5 40.2 40.9 41.6 42.2 42.7 43.2 4 49.1 55.4 35.1 35.8 26.6 37.5 38.3 39.1 39.9 40.7 41.4 42.0 42.6 43.1 4 35.2 52.6 33.7 34.8 36.0 57.1 38.1 39.0 39.8 40.6 41.3 41.9 42.5 43.1 4 29.7 51.8 33.2 34.5 35.6 36.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.0 4 29.7 51.8 33.2 34.5 35.6 36.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.0 4 29.7 51.8 33.8 34.3 35.6 36.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.0 4 | 39 | | <u>-</u> | | M3 | 8 | 0 | ċ | 0 | * | + | ÷ | 5 | • | m | 4 | | | 1. 0. 43.8 39.2 38.4 38.9 39.4 40.0 40. 41.2 41.8 42.4 42.9 43.4 4 2. 6. 10. 38.6 37.5 37.7 38.3 39.0 39.7 40 . 41.1 41.7 42.3 42.8 43.3 4 3. 6. 59.1 36.4 36.5 37.1 37.9 38.7 39.5 40.2 40.9 41.6 42.2 42.7 43.2 4 4. 49.1 55.4 35.1 35.8 26.4 37.6 38.4 39.3 40.1 40.8 41.5 42.1 42.6 43.2 4 35.2 53.7 34.3 35.2 36.3 37.3 38.3 39.1 39.9 40.7 41.4 42.0 42.6 43.1 4 5. 50.7 51.8 33.2 34.5 35.8 36.9 38.0 39.8 40.5 41.2 41.9 42.5 43.1 4 5. 50.7 51.8 33.2 34.5 35.4 36.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.1 4 6. 50.7 51.3 32.8 34.3 35.4 36.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.0 4 6. 50.7 51.3 32.8 34.3 35.4 36.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.0 4 6. 50.7 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 | 0 4 | | ت
• | • | ~ | <u>.</u> | 6 | 0 | 0 | 0 | | 0 | 2 | 1 20 | 3 | P) | 4 | | 0. 0. 38.6 37.5 37.7 38.3 39.0 39.7 40 41.1 41.7 42.3 42.8 43.3 4
6. 59.1 36.4 36.5 27.1 37.9 38.7 39.5 40.9 41.6 42.2 42.7 43.2 4
4 99.1 55.4 35.1 35.8 26.4 37.6 38.4 39.3 40.1 40.8 41.5 42.1 42.6 43.2 4
35.2 52.7 34.3 35.2 36.3 37.3 38.3 39.1 39.9 40.7 41.4 42.0 42.6 43.1 4
37.2 52.6 33.7 34.8 36.0 37.1 38.1 39.0 39.8 40.6 41.3 41.9 42.5 43.1 4
29.7 51.8 33.2 34.5 35.4 36.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.1 4
29.7 51.3 37.8 35.4 36.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.0 4 | 41 | | 0 | M | 0 | 6 | 8 | 0 | 0 | ò | ,-1 | • | 2 | 2 | 3 | m | 4 | | 5 6. 59.1 36.4 36.5 37.1 37.9 38.7 39.5 40.2 40.9 41.6 42.2 42.7 43.2 4 49.1 55.4 35.1 35.8 26.4 37.6 38.4 39.3 40.1 40.8 41.5 42.1 42.6 43.2 4 35.2 35.2 35.2 36.3 37.3 38.3 39.1 39.9 40.7 41.4 42.0 42.6 43.1 4 37.2 37.2 37.3 38.3 39.1 39.9 40.7 41.4 42.0 42.5 43.1 4 37.2 37.2 37.3 38.9 39.8 40.6 41.3 41.9 42.5 43.1 4 2 30.7 51.8 33.2 34.5 35.4 36.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.0 4 37.3 37.4 35.5 37.3 38.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.0 4 37.3 37.4 35.5 37.3 38.7 37.8 38.7 39.6 40.5 41.2 41.9 42.5 43.0 4 37.9 38.8 37.9 38.7 37.8 37.8 | 2 | | · c | œ | 7 | 7. | 8 | 6 | 6 | 0 | | - | 2 | 2 | 3 | | 44. | | 4 49.1 35.4 35.1 35.8 26.4 37.6 38.4 39.3 40.1 40.8 41.5 42.1 42.6 43.2 4 35.2 35.2 35.2 35.2 36.3 37.3 38.3 39.1 39.9 40.7 41.4 42.0 42.6 43.1 4 37.2 37.2 38.1 39.0 39.8 40.6 41.3 41.9 42.5 43.1 4 20.7 31.8 33.2 34.5 35.8 36.9 38.0 38.9 39.8 40.5 41.2 41.9 42.5 43.1 4 20.7 31.3 32.8 34.3 35.4 36.9 38.8 39.7 40.5 41.2 41.9 42.5 43.0 4 20.1 30.0 32.6 34.1 35.5 36.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.0 4 20.1 30.0 32.6 34.1 35.5 36.7 37.8 38.7 39.6 40.5 41.2 41.9 42.5 43.0 4 20.1 30.0 32.6 34.1 35.5 36.7 37.8 38.7 39.6 40.5 41.2 41.9 42.5 43.0 4 20.1 30.0 32.6 34.1 35.5 36.7 37.8 38.7 39.6 40.5 41.2 41.9 42.5 43.0 4 20.1 30.0 32.6 36.0 37.1 37.8 37.9 38.7 37.8 38.7 37.8 38.7 37.8 38.7 37.8 38.7 39.6 40.5 41.2 41.9 42.5 43.0 4 20.1 30.0 30.0 30.0 30.0 30.0 30.0 30.0 3 | 43 | | 0 | Š | ¢ | 7. | 7 | φ | 6 | ċ | 0 | ب | 8 | 2 | × | 3 | 4 | | 35.2 33.7 34.3 35.2 36.3 37.3 38.3 39.1 39.9 40.7 41.4 42.0 42.6 43.1 4 52.2 32.2 34.8 36.0 37.1 38.1 39.0 39.8 40.6 41.3 41.9 42.5 43.1 4 7 30.7 51.8 33.2 34.5 35.8 36.9 38.0 38.9 39.8 40.5 41.2 41.9 42.5 43.1 4 24.7 51.3 32.8 34.3 35.6 36.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.0 4 20.1 30.0 32.6 34.1 35.5 36.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.0 4 20.1 30.0 32.6 34.1 35.5 36.7 37.8 38.7 39.6 40.4 41.2 41.8 42.6 43.0 4 | 4 | · | 5 | 5 | ď | 9 | 7 | 8 | 6 | 0 | 0 | + | 8 | C. | 3 | n | 4 | | 32.2 32.6 33.7 34.8 36.0 37.1 38.1 39.0 39.8 40.6 41.3 41.9 42.5 43.1 4 30.7 51.8 33.2 34.5 35.8 36.9 38.0 38.9 39.8 40.5 41.2 41.9 42.5 43.1 4 24.7 51.8 32.8 34.3 35.4 36.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.0 4 20.1 30.0 32.6 34.1 35.5 34.7 37.8 38.7 39.4 40.5 41.8 42.6 43.0 4 | 4
7 | 3 | M, | 4 | r. | 9 | 7 | 00 | • | 6 | 0 | | 2 | C | 3 | 2 | 4 | | 30.7 31.8 33.2 34.5 35.8 36.9 38.9 39.8 40.5 41.2 41.9 42.5 43.1 4
29.7 31.3 32.8 34.3 35.6 36.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.0 4 | 4 | (| 0 | P. | 4 | \$ | 7 | 00 | 0 | 6 | 0 | | , | 0 | 2 | 2 | 4 | | 8 24.7 31.3 32.8 34.3 35.4 36.8 37.9 38.8 39.7 40.5 41.2 41.9 42.5 43.0 4 | 47 | = | | ~ | 4 | 5 | 4 | α | Œ | 0 | - | , | - | 0 | PAT) | M | 4 | | 0 34 1 50 0 72 6 74 1 35 5 36 7 37 3 38 7 39 6 40 4 41 2 41 8 42 6 43 0 4 | . 00 | | • • | 3 | 4 | 5 | 6 | | 00 | 0 | 0 | | | 2 | ^ب | | 44. | | | 0.4 | · . | , _C | 2 | 4 | 5 | 9 | 7 | 00 | 0 | 0 | - | - | ~ | (A) | m | 4 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =3.25 | | | | ı | | | | | 99 | | 11 | | | | | | | |--------|----------|----------|--------|-------------|------|------------------|----------|--------|----------|----------------|----------|------|------------|----------|------|------| | #C 0 | | 9.6 | ŭ . 7 | 0 | 6 0 | | 1 | 1.2 | 1.3 | 4 | <u> </u> | 1.6 | 1 7 1 | 1.8 | 6.4 | 2.0 | | 1 | 1 | | i
i | 1
1
1 | | 1
1
1
1 | 1 | !
! | 8 | 3 | • | ŧ | 1 | • |) | i | | | | <u>.</u> | | 0 | 0. | | | | | | | | | | | | | | | | | | 0 | | | | | | | | | | | | | | | | | | 0 | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | - | 0 | 0 | 0. | C : | 0 | 0 | 8 | | 59 | 0. | | 0. | | 0. | 0 | | 0. | 0. | | | | | | | | | 0.6 | 0 | | |
· | 0 | | | | | | | | | 0 | 4 | ~ | | | | | | | 0 | | | | | | | | 7 | 2 | | 0 | | | U | · | | - | 0 | 0 | 0 | 0 | 0 | 0. | 0 | 5 | 52.0 | 50.6 | 40.9 | 49.5 | | | | | | | | | | | | | 4 | | 0 | • | 60 | 8 | | 40 | 0 | · | 0 | .0 | 0. | | | | | | | 8 | 00 | 8 | 80 | 8 | | | 0 | | | | 0 | | | • | 3 | • | • | 7 | 7 | 7 | 7 | 7 | | | | | | | 0 | | 0 | 3 | 80 | 7 | . 9 | ٠, | 6 | 7 | 7 | 7. | | | . | C | 0 | 0 | 0. | | 54.8 | 48.3 | 46.6 | 46.1 | 46.0 | 46.1 | 46.3 | 46.6 | 46.9 | 47.2 | | | 0 | | | | 0 | | 7 | 5 | 5. | 5 | 5 | 5 | 9 | 9 | ÷ | 7 | | 39 | | | | | | 7 | Ŗ, | 4 | 4 | 4 | 4 | 5. | 5 | | 9 | • | | | ſ). | | | | 6 | 4 | M | 3 | 3 | 4 | 4 | 5 | 5 | 8 | • | • | | | 0 | C | | 4 | 4 | 2 | 2 | è | M | 3 | 4 | 4 | 5 | 5 | . 9 | 9 | | 42 | • | 0 | 0 | 44.3 | 41.9 | 41.6 | 41.9 | 45.4 | 45.9 | 43.5 | 44.1 | 44.6 | 45.1 | 45.6 | 46.1 | 46.6 | | | = | | | * | 0 | 0 | • | 8 | ٠
د | 3 | 19 | 4 | 5 | | • | . 9 | | 4 | | | 0 | • | 6 | 0 | + | + | ċ | ^{الم} | 2 | 4 | · | ر.
د | 9 | 9 | | | | ÷ | æ | 60 | • | 6 | • | + | 2 | 3 | M | 4 | 4 | 5 | 5 | • | | | | 7 | 7 | - | œ | · | <u>.</u> | + | ? | 2 | | 4 | 4 | 5 | 5 | 9 | | 47 | œ. | 55.7 | 36.1 | 37.1 | 38.2 | 39.5 | 40.2 | 41.1 | 41.9 | 42.7 | 43.4 | 44.1 | 44.7 | 45.3 | 45.8 | 46.3 | | | | 4 | 5. | ÷ | 7 | • | <u>.</u> | 1. | + | 2 | 3 | 4 | 4 | . · | 5 | • | | | ċ | M; | r. | · | 7. | œ | o. | 0 | | 3 | 8 | 4 | 4 | ľ. | τ. | é | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =3.54 | MARP
COVER
FACTOR | | 1 | 1 | 1 | ; | ! | 1 | BETA | ! | | | 1 | 1 | 1 | 1 | | |-------------------------|--------------------------|--------|------|------|--------|---------|--------------|----------|------|------|------|----------|----------|--------|-----------|---------| | X | 0.5 | 9.0 | 0.7 | 0.8 | 6.0 | 1.0 | 1.1 | . 1 | 4.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 4.9 | 2.0 | | 0 | -
- | c | ċ | ċ | | c. | | 0 | | | | | | | +4 | • | | | | | | | | | | | | | | | • | ÷ | œ | 5 | | | | | | | | | | | | | | 0 | رم | • | • | 3 | | | | | | | 0 | 0 | | 0 | 0. | 0 | 0 | 61.9 | 55.7 | 53.6 | 52.6 | 52.1 | | | 0 | ,
O | 0 | 0. | 0 | | 0 | 0 | | | | 4 | ò | + | -1 | + | | | | ċ | | | | | | | | 0 | + | •
••• | - | 0 | 0 | 0 | | | | | | | | | | | -4 | 3 | - | 0 | 0 | 6 | • | 0 | | | | | | | | 0 | 0 | 66.1 | 53.0 | 50.5 | 40.6 | 49.5 | 49.5 | 49.3 | 49.5 | 46.3 | | | | | | | | | 0 | 2 | • | 8 | 60 | | 8 | œ | • | 6 | | | 0 | | | 0 | 0 | | | 0 | œ | 7. | 7. | 7 | . | 9 | 60 | 0 | | | 0 | | | | | S | œ | 7. | 9 | 7 | 7 | 7 | ~ | 80 | 60 | • | | | | | | | 00 | œ | • | \$ | • | • | • | 7. | 7 | ъ
С | 20 | 80 | | | | | | 6 | 6 | • | 45.5 | 45.3 | 45.6 | 46.0 | 46.4 | 46.9 | 47.4 | 47.9 | 48.3 | 48.8 | | | | | | ċ | 5 | 4 | 4 | 4 | u) | 5 | • | 9 | 7. | 7 | œ | œ | | | · n | .0 | | | 43.5 | 43.3 | M) | प | 4 | | 8 | 9 | 7. | ć | • | œ | | | | | 7 | 8 | \sim | ~ | 2 | 3 | 4 | r. | 15 | 9 | 7 | | 80 | -
60 | | | 0 | C | N | 1. | + | ċ | 8 | 3 | 4 | Š | 5 | | . 0 | 7. | 8 | 8 | | | | 2 | C | 40.1 | 0 | 41.5 | 45.4 | 43.3 | 44.4 | 44.8 | 45.5 | 46.2 | 46.B | 47.4 | 47.9 | 48.4 | | | | 6 | 8 | 0 | 0 | +4 | ò | ~ | FC | 4 | Š | 9 | • | 7. | 7. | 8 | | | 40.7 | 37.3 | 37.7 | • | • | 0 | ٠
د | ò | 3 | 4 | 3 | • | • | 7. | | œ | | | · o | Š | 7 | 00 | • | | • | 2 | m | 4 | R. | 9 | • | 7 | 7 | œ | | | 4 | 2. | , | ď | 0 | 0 | + | 2 | 3 | 4 | 3. | 5 | 9 | 7. | 7 | æ | | | 33.1 | 34.6 | 36,2 | 37.7 | 39.1 | 40.4 | 41.5 | 42.6 | 43.5 | 4.4 | 45.2 | 45.9 | 46.5 | 47.1 | 47.7 | 48.2 | | | $\stackrel{\cdot}{\sim}$ | 4 | 5 | 7 | œ | сэ
• | <u>د</u> | 2 | 3 | 4 | 5 | 5 | • | ~ | 7. | 60 | | | •
•-1 | 3 | 5 | 7 | 8 | 0 | ; | 2 | 3 | 4 | Σ. | S. | • | 7 | 7. | о
О | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #3.75 WARE | VER
CTO | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8E | 1 | 1 | | | Ì | 1 | 1 | • | 1 | |------------|--------|--------------|----------|----------|----------|------|-------------|------|------|-------------|------|------------|------|----------|-------------|-----|--------------| | X | 0.5 | 9.1 | 0.7 | 60 | 0.0 | 1.0 | 4.1 | 1.2 | 1.3 | 4 | ₹. | 1.6 | 1.7 | 1.8 | 1.9 | 2. | 0 | | | |)

 - | | 1 | | |)
)
) | | |)
}
} | |)

 | | |)
)
) | |) | | | | | | | | | | | | 0. | | | | | Ġ | 1 | 80 | | | | | | | | | | | | | | | | 0 | 6 | 0 | • | | | | | | | 0 | | | | | | | | 0 | • | • | 9 | 0 | | | 9. | 0 | Ċ | | | 0 | | 0 | 0 | 0 | 0 | 0 | 64.4 | 58.2 | 55.9 | 54. | & | | 34 | 0. | 0 | 0 | • | | .0 | | 0 | | | | | 7 | 5 | * | M | 9 | | | | 6 | | | 0. | | 0. | | | 0 | 8 | • | 4 | 153 | 2 | C | 7 | | | | | | | | | 0 | 0 | 0 | 63.0 | 55.7 | 53.5 | 52.6 | 2 | 52.0 | 52. | 0 | | | | | | | 0 | | | 5 | 4 | 5 | 2 | 1 | , m | +4 | + | - | 9 | | | | 0. | | | - | | | | | 2 | • | 0 | 0 | 0 | + | | 2 | | 39 | 0 | ċ | 0 | 0 | | | | 5 | 7 | 0 | | 0. | 0 | | c | 0 | 0 | | 4 | | | | | | | ÷ | • | • | 0 | 6 | 6 | 6 | 0 | | 0 | 7 | | | 0 | с
С | 0 | · | . 0 | 0 | 50.8 | 49.0 | 48.5 | 48.5 | 48.7 | 49.0 | 49.3 | 49.7 | 50.1 | 50. | S | | | | | | | | - | 8 | 7 | 7 | 1 | œ | 80 | ٥. | 6 | 6 | 0 | M | | | | | | | | 7. | • | 9 | 7 | | 7 | ж
ЭС | 8 | 6 | • | 0 | ~ | | 4 | .0 | ċ | | | 7 | • | 5 | \$ | • | 7 | | œ | 8 | 6 | 6 | 0 | + | | | | | | • | 'n | 4 | 5 | 5 | • | • | | 80 | 80 | 6 | 6 | 0 | 0 | | | 0 | .0 | ~ | 44.7 | 43.8 | 44.0 | 44.5 | 45.5 | 45.9 | 46.5 | 47.2 | 47.8 | 48.4 | 48.9 | 49.5 | .64 | 6 | | | | ċ | | è | <u>٠</u> | 3 | 4 | 4 | 5 | • | 7 | 1 | œ | œ | ô | 0 | • | | | | | -1 | • | Ċ, | ò | 3 | 4 | 5 | | 10 | 7 | 60 | 8 | • | O | හ | | 0 | . Û | 1. | 0 | Ċ | • | ò | · | 4 | 5 | • | • | 7 | 60 | 60 | • | O | 60 | | | 5. | 6 | 6 | <u>-</u> | • | N | M2 | 4 | 5 | 5. | é | 7 | œ | 90 | • | 9 | 7 | | | ж
ж | 7. | c | 6 | 0 | 2 | 3 | 4 | 5 | 5 | 9 | 7 | 8 | ου
• | 6 | 0 | 1 | | 52 | 36.1 | 36.6 | 37.9 | 39.5 | 40.4 | 41.8 | 45.9 | 44.0 | 44.9 | 45.8 | 46.6 | 47.3 | 48.0 | 48.6 | 49.5 | 49. | 7 | | | 4 | 5 | 7 | œ | 0 | - | 2 | 3 | 4 | ů, | • | 7 | 7 | 60 | 6 | 0 | 7 | | | 3 | 5. | 7. | ď | 0 | • | ~ | 3 | 4 | S. | ç | 7. | 7. | o | • | 0 | 9 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #4.00 | | 1.7 1.8 1.9 2.0 | | 0. 0. 19. | 0. 72.6 63. | 0. 69.5 61.6 58. | .7 60.5 58.0 56. | 9.5 57.1 56.0 55. | 6.4 55.3 54.7 54. | 54.5 54.1 53.9 53.8 | 3.4 53.2 53.2 53. | 2,5 52.6 52,7 53. | 52.1 52.4 | 1.4 51.7 52.1 52. | 1.1 51,4 51.8 52. | 0.8 51.2 51.6 52. | 0.5 51.0 51.5 51. | 0.3 50.8 51.3 51. | 0.2 50.7 51.2 51. | 0.0 50.6 51.1 51. | 9.9 50.5 51.0 51. | 8 50.4 51.0 5 | 50.9 51. | 9.7 50.3 50.9 51. | 9.6 50.2 50.8 51. | 9.6 50.2 50.8 51. | 9.5 50.2 50.8 51. | |-----|------------------|-----|-----------|-------------|------------------|------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------|----------|-------------------|-------------------|-------------------|-------------------| | 1 | 1.6 | | | 0 | | | 9 | 8 | 55.7 | 3 | • | 51.8 | - | 0 | 0 | 0 | | 6 | _ | 6 | 6 | 0 | 6 | | œ | œ | | • | | | | . 0 | | | | 7 | 58.3 | | 2 | • | • | | 6 | 0. | G. | 6 | 48.8 | œ | œ | 48.4 | 8 | | • | ٠
60 | | | • | - | | | | | 0 | 0 | 68.5 | 8 | 4 | 52.5 | ب | • | • | 6 | | 8 | | 8 | 7 | 47.6 | 7 | • | / | 7. | | | F. 1 | | | | | | | | 0 | 4 | | 4 | - | 20.4 | 0 | 60 | υĊ | 7 | • | 7 | ~ | 46.8 | • | • | • | · • | | BET | 4,2 | | | | | | | | 0 | | | 80 | 3 | 51.2 | 6 | 00 | 7. | 7 | 9 | 9 | • | 9 | Š | 45.6 | 5 | r, | | | + | . c | | | | • | | | | | | 0 | + | M | 0 | • | 7. | • | 46.3 | ٠. | 5 | | 4 | 44.6 | 4 | 4 | | | 1.0 | : c | | | | | | | 0 | | | | 0 | ě. | 4 | 50.4 | 00 | • | 5 | 5 | 44.6 | _ | 5 | | 3 | F) | | | 0.0 | • | | | | | | | | | 0 | • | | • | • | • | 0 | 7 | 5 | 4 | | | 2 | • | ò | + | | | • | ! c | | | | <u>.</u> | | | | | 0. | 0 | | | | 0 | | 0 | 7 | 5 | 43.6 | CV | + | 41.2 | c | <u>.</u> | | 1 | 0.7 | 1 C | | | | 0. | 0 | <u>-</u> | 0. | 0 | 0 | 0 | | 0 | | | | • | 3 | • | 44.7 | • • | • | | 0 | 6 | | | 9.0 | ! c | | | | | | | | | | 0 | | | | | | | | 0 | 70.8 | 5 | + | 39.8 | œ | 7 | | l i | 0.5 | _ | | | | 0 | | | | | | | | | | 0 | | | | | 0 | | 0 | 43.3 | œ | • | | | 4 - 7 | |) F | 3 0 | 33 | 34 | 35 | 36 | 37 | 3.8 | 39 | 4 | 4.1 | 42 | 40 | 4 | 45 | 46 | 47 | 84 | 64 | 50 | 7.7 | 52 | 53 | ቢ.
4 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #4.13 | | | | | | | | | 8€ T | | | | | | , |]
 | 1 | | |--------|------------------|---------|--------------|----------|--------|-----------|------------|-------------|------|-----------|-------------|----------------|----------|----------------|----------|--------------|-----| | ACT0 | 0.5 | 0.6 | 7.0 | 0.0 | 6.0 | 10.4 | 1:1 | 1.2 | 1.3 | 1 4 | 1.5 | | 1.7 | 1
1 | 1.9 | 2.0 |) (| | l
k | ;
;
;
; | • | | • | e | •
• |
 | 1 |
 | 1
5 | l
l
î | i
I |
 |
 | | | | | | 0. | | | | 0 | | | | | | | | | | | | | | | 0 | | | | 0 | | | | | | | | | | | • | | | | | | | | 0 | | | | | | | | | | 0 | 60 | | | | 0 | 0. | | 0 | 0 | | | | | | | | 0. | 0 | 66.3 | 61.6 | | | 4. | 0. | 0 | 0 | 0. | 0. | 0. | 0. | 0. | 0 | 0 | 0. | 0. | 0. | 64.8 | 0 | 8 | | | | 0 | | | ċ | 0 | | | | | | 6 | 0 | P7 | 6 | , | 7 | | | | | | | | - | | | | | | · c | M. | ac | ~ | 9 | is | | | | | | | | | | | | | • | | 60 | · · · | 3 | | | | | - | - | | | | | | | | | , .
(M | | 2 | 4 | 4 | 4 | 4 | | | 0 O | . 0 |
. c | | | | | | | 64.9 | 57.2 | 55.1 | 54.2 | 53.9 | 53.8 | 53.9 | 54.0 | 4 | 0 | | | | 0. | 0. | | 0 | 7 | 4 | 3 | 5 | 3 | 3 | 2 | ^ر | | | | | | | | 0 | | 0 | 7 | 3 | 8 | <u>.</u> | 2
| ~ | ς. | * | 3 | | | 4 | 0. | | | | | | æ | 3 | Š | - | - | + | 2 | Š | 8 | 3 | | | - | | | | - | 0. | 3 | 3 | + | 0 | 0 | - | - | - | • | 2 | 3 | | | 4 | 0. | 0 | 0 | 0 | 0. | 53.9 | 50.9 | 50.1 | 50.0 | | 50.6 | 51.1 | 51.5 | 52.0 | - | 52.8 | | | | ď | | | | 4 | C | 0 | 0 | 0 | 0 | <u> </u> | _ | • | - | 0 | ~ | | | | | | | | · c | ,
o og | a | q | Œ | . 0 | | . c | • | ,
(+ | | | | | | | | | • • | | , | | | . a | • | | • | 4 c | • | | י נ | | | • • | • | - c | | 47.4 | 4 | 4.4 | 44.0 | 47.7 | 0 4 | . 0 | 40.4 | 70.0 | , מ
י | 5.4.2
5.4.4 | | 10°C | | | | • | | | •
• i | •
• | •
• | • | • | | • | | | | • | • | | | | | | | • | , | ŗ. | 'n | ċ | • | : | D | · | | | ÷ | - | N | | | | 0 | 7 | 4 | 4 | • | 5 | √ C | | 7. | 8 | • | 0 | 6 | + | - | 0 | | | | 0 | 5. | <i>\cdot</i> | M | 3 | 4 | 5 | • | 7 | æ | • | 6 | 0 | • | • | 5 | | | | ~ . | 42.1 | 41.6 | 4.5.4 | 43.4 | 44.5 | 45,5 | 46.5 | 47.4 | 48.3 | 49.1 | 49.8 | 50.5 | 51.1 | | | | | | 43.0 | = | <u>-</u> | • | 3 | 4 | 5 | 9 | 7. | 8 | 0 | о [.] | 0 | - | ** | 3 | | | 54 | , | α, | Ċ | | ~ | 4 | 5 | 9 | 7 | æ | ac. | 6 | • | - | • | 2 | | MAXIMUM FILLING COVER FACTORS (KZ) IN TERMS OF WARP COVER FACTOR AND BETA #### YARN BULK DENSITY #4.60 | 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | A R D C C C C C C C C C C C C C C C C C C | | | | | | | | 8€ | | | ļ | | | • | • | 1 | |---|---|-----|----|-----|------|-----|-----|------------------|-----|-----|-----|----------|----------|----------|-------|------|------| | 352 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | A C C C C C C C C C C C C C C C C C C C | 0.5 | 9 | 0.7 | 80.0 | 6.0 | 1.0 | - - - | 1.2 | 1 1 | 4.4 | 1.5 | 1.6 | 1.7 | 1 . 8 | 4.9 | 2.0 | | 3 U. | 32 | .0 | | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0. | 0. | 0 . | • | 0,0 | | • 0 | 0 | | 9 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | | | | | | | | | | | | | • | • | 0 | 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | • | e | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | | | | | | | | | | | | | | 0 | +1 | • | 4 | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | | | | | | | | | | | | | 0 | + | 7 | | + | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | 6.801 | 6.99 | 62.7 | 51.0 | 60.1 | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | | | | | | | | | | | | 0 | .99 | 2 | 0 | 6 | 6 | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | | | | | | | | | | | | • | 1. | 6 | 60 | 60 | 80 | | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | • | 80 | • | 0. | 80 | 7 | 7 | 7. | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 65.5 57.6 56.1 55.0 0. 0. 62.3 57.6 56.1 55.0 0. 0. 0. 65.5 57.5 57.6 56.1 55.0 0. 0. 0. 0. 0. 0. 65.5 57.5 57.6 56.1 55.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 59.4 54.6 53.4 53.2 53.3 53.4 50.0 0. 0. 0. 0. 0. 0. 0. 55.6 52.1 54.4 54.6 53.4 53.2 53.3 53.4 52.0 0. 0. 0. 0. 0. 0. 55.6 52.1 54.4 51.5 51.9 52.4 52.8 53.3 53.0 0. 0. 0. 0. 52.5 49.8 49.5 49.8 50.4 51.1 51.8 52.0 0. 0. 0. 0. 56.9 49.3 48.4 48.7 49.3 50.0 50.8 51.3 52.0 0. 0. 0. 0. 49.8 47.5 48.1 48.9 49.7 50.3 51.3 52.0 52.0 52.0 52.0 0. 0. 0. 0. 45.3 46.2 45.7 48.2 49.2 50.2 51.0 57.0 50.0 50.0 50.0 50.0 50.0 50.0 50 | | | | | | | | | 0 | | - | 6 | 1 | ~ | • | 9 | 7 | | 0. 0. 0. 0. 0. 0. 0. 0. 65.5 57.6 56.1 55.6 54.9 54.9 54.0 0. 0. 0. 0. 65.5 57.5 55.5 54.9 54.9 54.0 0. 0. 0. 0. 0. 65.5 57.5 55.5 54.9 54.9 54.0 0. 0. 0. 0. 0. 59.4 54.6 53.4 53.2 53.3 53.3 53.0 0. 0. 0. 0. 0. 55.6 52.7 52.7 52.3 53.3 53.3 53.0 0. 0. 0. 0. 55.6 52.1 51.4 51.5 51.9 52.4 52.8 53.3 53.0 0. 0. 0. 56.9 49.8 49.5 49.8 50.4 51.1 51.8 52.0 52.0 0. 0. 0. 49.8 47.5 48.7 48.7 49.3 50.0 50.8 51.5 52.0 0. 0. 0. 49.8 47.5 47.5 48.1 48.9 49.7 50.5 51.3 52.0 0. 0. 0. 49.8 47.5 47.5 48.1 48.9 49.7 50.5 51.3 52.0 0. 0. 0. 0. 49.8 47.5 47.5 48.1 48.9 49.7 50.3 51.2 52.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | | | | | - | | | • | 6 | | 7 | • | 9 | • | .0 | 9 | 9 | | 0. 0. 0. 0. 0. 0. 0. 0. 65.5 57.5 55.5 54.9 54.9 54.0 50.0 0. 0. 0. 0. 0. 66.2 54.6 53.4 53.2 53.3 53.0 0. 0. 0. 0. 59.4 54.6 53.4 53.2 53.3 53.0 0. 0. 0. 0. 0. 55.6 52.7 52.3 52.4 52.8 53.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 55.0 52.7 52.3 53.3 53.3 53.0 0. 0. 0. 0. 55.6 52.1 54.4 51.5 51.9 52.4 52.0 52.0 0. 0. 0. 0. 52.5 49.8 49.5 49.8 50.4 51.1 51.8 52.0 52.0 0. 0. 0. 49.8 47.5 48.7 49.3 50.0 50.8 51.5 52.0 52.0 0. 0. 0. 49.8 47.5 48.1 48.9 49.7 50.5 51.3 52.0 52.0 0. 0. 0. 47.2 45.0 45.2 46.2 46.7 47.6 48.5 49.4 50.3 51.2 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52 | | | | | | | | | 2 | | 6 | S | 5 | | 55.8 | 56.1 | | | 0. 0. 0. 0. 0. 88.3 57.8 55.0 54.1 54.0 54. 54. 55. 53.3 53. 53. 0. 0. 0. 0. 0. 59.4 54.6 53.4 53.2 53.3 53. 53. 0. 0. 0. 0. 0. 66.2 54.6 52.7 52.3 52.4 52.8 53. 53. 0. 0. 0. 0. 0. 66.2 54.6 52.7 52.3 52.4 52.8 53. 0. 0. 0. 0. 0. 52.5 49.8 49.5 49.8 50.4 51.1 51.8 52. 0. 52. 0. 0. 0. 49.8 47.5 47.5 49.3 50.0 50.8 51.1 51.8 52. 0. 0. 0. 49.8 47.5 47.5 48.1 48.9 49.7 50.5 51.3 52. 0. 0. 0. 47.2 45.8 46.2 46.7 47.6 48.5 49.4 50.3 51.2 52. 0. 0. 0. 0. 47.2 45.3 46.2 47.2 47.6 48.5 49.4 50.3 51.2 52. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | | | | | | | | 3 | 7. | 5 | 4 | 4 | 54.9 | • | 5 | • | • | | 0. 0. 0. 0. 0. 66.2 54.6 52.7 52.3 52.4 52.8 53.3 53.0 0. 0. 0. 0. 66.2 54.6 52.7 52.3 52.4 52.8 53.3 53.0 0. 0. 0. 0. 55.6 52.1 51.4 51.5 51.9 52.4 52.8 53.3 53.0 0. 0. 0. 0. 52.5 49.8 49.5 49.8 50.4 51.1 51.8 52.0 52.0 0. 0. 0. 49.8 47.5 47.5 48.7 49.3 50.0 50.8 51.5 52.0 52.0 0. 0. 0. 49.8 47.5 47.5 48.1 48.9 49.7 50.5 51.3 52.0 52.0 0. 0. 0. 45.3 46.2 46.7 47.6 48.5 49.4 50.3 51.2 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52 | | | | | | | æ | 7 | R) | 4 | 4 | 4 | • | 4 | S | 5 | 9 | | 0. n. n. n. 55.6 52.1 51.4 51.5 51.9 52.4 52.8 53.
0. n. n. 55.6 52.1 51.4 51.5 51.9 52.4 52.8 53.
0. n. n. 56.3 51.9 50.6 50.5 50.9 51.4 52.0 52.
1. n. 56.9 49.3 48.4 48.7 49.8 50.4 51.1 51.8 52.
2. n. 56.9 49.3 48.4 48.7 49.3 50.0 50.8 51.5 52.
3. n. 25.3 46.8 46.2 46.7 47.6 48.5 49.4 50.3 51.2 52.
4. n. 47.2 45.0 45.3 46.2 47.2 48.2 49.2 50.2 51.0 55. | | | | | | | 6 | 4 | * | M | 3 | 2 | 4. | 4 | 4 | 2 | 'n | | 0. 0. 0. 0. 52.5 49.8 49.5 49.8 50.4 51.1 51.8 52.0 52.0 52.0 0.0 0. 0. 56.9 49.8 49.5 49.8 50.4 51.1 51.8 52.0 52.0 0.0 0. 0. 49.8 47.5 48.1 48.9 49.7 50.8 51.5 52.0 52.0 0.0 0. 49.8 47.5 47.5 48.1 48.9 49.7 50.5 51.3 52.0 0.0 0.0 0.0 49.8 47.5 47.5 48.1 50.3 50.0 50.8 51.5 52.0 0.0 0.0 0.0 49.8 47.5 46.7 47.6 48.5 49.4 50.3 51.2 52.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | | | | | 9 | 4 | 2 | ~ | 3 | 5 | M | M | 54.2 | 54.7 | 5. | 55.7 | | 0. 0. 0. 52.5 49.8 49.5 49.8 50.4 51.1 51.8 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 | _ | | | | | 5. | 5 | - | + | - | ? | ~ | ~ | 4 | 4 | 5. | iç. | | 0 0. 0. 52.5 49.8 49.5 49.8 50.4 51.1 51.8 52.5 10.0 50.8 51.5 52.5 5.0 49.3 48.7 49.3 50.0 50.8 51.5 52.5 52.0 50.0 50.3 51.5 52.3 52.3 45.8 47.5 47.5 48.1 48.9 49.7 50.5 51.3 52.4 50.5 51.2 52.5 52.5 52.5 52.5 52.5 52.5 52 | | | | | 0 | + | 0 | 0 | 0 | ÷ | 5 | 2 | | ,
M | • | | 5 | | 1 0. n. 56.9 49.3 48.4 48.7 49.3 50.0 50.8 51.5 52.
2 0. 0. 49.8 47.5 47.5 48.1 48.9 49.7 50.5 51.3 52.
3 0. 55.3 45.8 46.2 46.7 47.6 48.5 49.4 50.3 51.2 52.
4 n. 47.2 45.0 45.3 46.2 47.2 48.2 49.2 50.2 51.0 55.
5 58.6 44.1 43.8 44.6 45.7 46.9 48.0 49.0 50.0 50.9 51. | | | | | 5 | 6 | 0 | 0 | 0 | ÷ | | č | 8 | 13 | * | - | 5 | | 2 0. 0. 49.8 47.5 47.5 48.1 48.9 49.7 50.5 51.3 52.3 6.8 46.2 46.7 47.6 48.5 49.4 50.3 51.2 52.4 7.2 45.0 45.3 46.2 47.2 48.2 49.2 50.2 51.0 55.0 58.6 44.6 45.7 46.9 48.0 49.0 50.0 50.9 51.0 55.0 50.7 47.9 48.0 49.0 50.0 50.9 51.0 50.9 51.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 | | | | ç | 6 | 8 | 60 | 0. | ċ | 0 | -1 | Ĉ | 8 | 3 | 4 | 4 | ů. | | 3 0. 25.3 46.8 46.2 46.7 47.6 48.5 49.4 50.3 51.2 52.
4 0. 47.2 45.0 45.3 46.2 47.2 48.2 49.2 50.2 51.0 55.
5 58.6 44.1 43.8 44.6 45.7 46.9 48.0 49.0 50.0 50.9 51. | | | | 6 | 7 | 7 | 80 | 8 | 6 | 0 | 1. | ~ | 3 | 5 | 4 | 4 | ů, | | 5 56.6 44.1 43.8 44.6 45.7 46.9 48.0 49.0 50.0 50.9 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 | | | 'n | 5 | ÷ | 9 | 7 | 00 | 6 | • | + | ~ | 52.7 | 53.4 | 54.0 | 54.6 | 55.3 | | 5 58.6 44.1 43.8 44.6 45.7 46.9 48.0 49.0 50.0 50.9 51. | | | 7. | 5. | 5. | 6 | 7. | œ | 6 | • | + | • | ò | ٠
س | 4 | 4 | 5 | | 2 | | | 4 | * | 4 | 'n | ý | 00 | ô | 0 | ċ | • | Ň | M | 3 | 4 | 5 | | . IC 0.00 4.44 4.04 0.74 0.04 4.04 1.44 4.74 7.74 1.04 | | 3. | ς. | 2 | 4 | 5 | 9 | 7 | 90 | 6 | 0 | • | 52.5 | 53.2 | 53.8 | 54.5 | 55.1 | 5-HARNESS MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.54 | ₹ C : | \$ \square \chi \chi \chi \chi \chi \chi \chi \chi | | | 1 | | | | | BET | | | | | | 1 | 1 | | 1 | |------------|--|--------------|----------------------|--------------|----------------------|--|----------------------|----------------------|----------------------|--|----------------------|--------------|--------------|--------------|----------------------|----------------------|------------|--------------| | | X 1 2 2 | 1 = | 9 | • | 1 6 | | 1 . 0 | 1.1 | 1.2 | | • | 1.5 | 1.6 | 1.7 | 1.89 | 4 | N I | | | ক'ক
 | . W 4 | 0 | - | | | | | | | | | | | 0.92 | 23.3 | 22.4 | 26. | 00 | | ~ · | rv 4 | | | | | | 0 | 0 | 0 N | C + | | m c | ÷ c | ÷
6 | ↔ € | ÷ c | ∺ ∈ | -11 | | | | | | |
 | | 24.9 | 20.7 | 20.0 | 19.8 | 19.8 | 19.0 | 0.0
0.0 | 20.0 | 20.5 | 20.3 | 200 | ~ 4 1 | | 4m 4m | | | | 19.5 | | | 0,00 | 6 6 | o, œ | 0 00 | · · | 00 | 0.0 | 00 | | 0 0 | | 9 N | | <i>∾</i> (| | O (| , u | é u | · · | 2 . 4 | 7. | | 00 00 | 00 00 | co oc | 60 | 00 | 00 | 19°8 | | 00 | 8 - | | · ~ | | , 4 | . 4 | | • • | . 6 | | | 000 | 600 | 600 | . 6 | 6 | 0 | 6 | - | | 1 | | W W | | 13.5 | 14.5 | 15.3
15:1 | 16.0 | 16.5 | 17.1 | 17.6 | | | • • | 19.0 | 19.2 | 19.5
19.5 | | 0.0 | | ਜ ਜ | | C | | ٠, | 4 | 5 | Š | 4 | 7 | 7 | 7. | 80 | 80 | a c | • | 0 | 0 | 0 | 0 | . | | ~ ~ | | ~ | 4 4 | 'n 'n | n n | ÷ • | | | | œ œ |
 | œ æ | 6 6 | 0.0 | 00 | 0 0 | | - | | . ~ ~ | | 12.9 | 14.6 | 15.0 | 15.7 | 16.4 | 16.9 | 17.4 | 17.9 | 18.3 | 18.6
18.6 | 18.9 | 19.2 | 19.4 | 19.7 | 19.9 | 200 | l ed ed | | | | ~ | 4 | 4 | ň | | 9 | 7 | 7. | 60 | 8 | • | 0 | 0 | 6 | 6 | 0 | +4 | | M) P | | · 0 | 4 . | 4 4 | . u | · · | 6 | ~ ~ | 7. | ac a | œ œ | ec a | · 0 | 60 | 60 | 0 0 | 0 | | | 0 KC KC | n w 4 | 12.0 | 1410.410.0 | 4 4 6 9 9 9 | 15.7 | H 46 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 16.0 | 17.4 | 17.9 | 18.2 | 18.6 | 133.9 | 19.2 | 19.4 | 19.7 | 19.9 | 000 | | | m m m | | 0.00
0.00 | 14.0
14.0
14.0 | 14.9
14.9 | 15.7
15.7
15.7 | 16.3
16.3 | 16.9
16.9
16.9 | 17.4
17.4
17.4 | 17.8
17.8
17.8 | 11 13 8 13 13 13 13 13 13 13 13 13 13 13 13 13 | 18.6
18.6
19.6 | 18.9
18.9 | 19.2
19.2 | 19.4 | 19.7
19.7
19.7 | 19.9
19.9
19.9 | 000 | +1 +1 +4 | YARN BULK DENSITY = 0.55 | A & B & C & C & C & C & C & C & C & C & C | | | | | | | | H | | | | | | | 1 | | | |---|------|------|------|------|-------------|------|------|--------|------|-------|------|------|------|------|------------|---------------|-----------| | FACTUR
(K1) | 0.5 | 0.6 | 0.7 | 0.8 | 0 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | - | 1.6 | - | . 49 | + 1 | 5 | | | 13 | | | | | . 0 | . 0 | | 0.0 | | 000 | | | 0 5 | 0 | 0 0 | 31. | ₩. 4 | | <u>.</u> | | | | | | | | | | | • | | • | • | | 1 | | | 15 | | | | | | | | | 0 | 0 | 4 | 2 | + | + | + | + | × / | | 16 | | | | | | | 0 | 0 | · · | | +1 1 | | | o | | > 0 | | | 17 | | | | | 0 0 | دې ر | • (| 0 0 | o | · | E (| - o | = c | > c | - c | > c | | | 1 F | | | 21.6 | 18.6 | , .
. 30 | 18.3 | 14.5 | 18.7 | 19.0 | 19.2 | 10.0 | 19.7 | 19.9 | 20.1 | 20.3 | 20. | • | | | | , | r | , | • | • | 0 | Q | 0 | o | c | o | a | c | • | Ċ | _ | | 2 7 | ⊃ ແ | . u | | | . , | 17.0 | 10.6 | 10 m | 18.7 | 10.61 | 10.0 | , so | 19.9 | 0.0 | 20.2 | 200 | r M | | * 00 | , 4 | | . r | | | | | | | . 60 | | | 6 | • | | 0 | - | | 1 10 | 1 | | | 9 | • | ~ | 7 | 60 | 60 | 80 | 0 | 6 | 6 | 6 | | 9 | - | | 200 | 13.4 | 14.5 | 15.3 | 16.0 | Ś | 7 | 7. | • | œ | 8 | 0 | • | 0 | • | 0 | 0 | 20 | | 25 | • | - | 2 | 6 | 16.6 | 7 | 7 | 60 | 60 | 00 | 0 | • | 0 | 0 | • | 0 | | | 56 | 3 | | 15.2 | 15.9 | • | 17.1 | 17.6 | 18.1 | 18.4 | 18.8 | 19.1 | 19.4 | 19.6 | 19.9 | 20.1 | 20. | m | | 27 | ς. | 4 | 5 | 'n | 9 | 7 | 7. | 80 | 8 | ĝ | 6 | 0 | 6 | 0 | 0 | 6 | - | | 98 | د | 4 | r. | 5 | 9 | 7 | 7. | ф
Ф | • | 8 | 0 | 0 | 0 | • | | 0 | _ | | 20 | | 4 | ις. | 5 | • | 7 | 7 | 8 | œ | œ | • | 0 | 6 | 6 | 0 | 0 | _ | | 0.5 | 54 | • | 5 | 5 | • | 7 | | 80 | Œ | 80 | 6 | 6 | 0 | 0. | ġ. | 0 | _ | | ##
PC | ·, | | 5 | 15.8 | 9 | 17.1 | 17.6 | 18.0 | 18.4 | 18.8 | 19.1 | 19.4 | 19.6 | 19.8 | 20.1 | 20 | M | | 12 | 3 | 4 | 5 | 5 | è. | 7 | 7. | œ | œ | œ | • | 6 | 6 | 0 | 0 | 0 | _ | | £ 5. | | 4 | 5. | S. | 9 | 7 | 7 | 8 | 8 | œ | 6 | 6 | 6 | • | 0 | | ~ | | 3.4 | | 4 | 15.0 | in | • | | 7 | œ | œ | œ | • | 6 | • | • | • | ° | ~ | | 35 | ~ | 4 | ī, | 5 | 9 | 7 | 7. | 80 | œ | 80 | 0 | 6 | 0 | 6 | | 0 | • | | (N) (O) | 13.0 | 14.1 | 15.0 | 15.8 | 16.5 | 17.1 | 17.6 | 18.0 | 18.4 | 18.8 | 19.1 | 19.4 | 19.6 | 19.8 | 20.1 | 20. | M | | 37 | * | 4 | r. | 5. | 9 | 7. | 7. | 8 | 8 | 00 | 0 | 0 | 6 | • | 0 | 0 | * | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.56 | 0 U | | | | | | | | 9₽ | | 1 | | | (| (| (| • | |------------------------------|---|---|---------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---|---|--|---|--|--------------------------------|--|-------------------------|----------------------------------| | A X | | 9.0 | 0.7 | 0.8 | 0 | 1 2-1 | | . + | P) | + | 1.5 | 1.6 | 1.7 | - | . • (| 2 : | | T T T 10 4 1 | | 0.0 | | 0.0 | 00. | | 000 | 0.0 | 00 | | | | 20 | 25.4 | 23.6 | 0.22.9 | | | | | 00000 | | | 2000
2000
3000 | | | 2000
2000
2000
2000
2000
2000
2000
200 | 0.000 | 2445
7445 | 23.02.02.04.04.04.04.04.04.04.04.04.04.04.04.04. | 22.02
20.5
20.5
20.5 | 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 711000 | 21.6
21.1
20.9
20.7 | | 4 00000
7 01004 | | | | 20000 | 66.77 | 8777 | 80 80 80 K K | | 0,00,00,00 | 60000 | 00000 | 00000 | 00000 | 60000 | 00000 | 00000 | | 2222
2222
2322
2322 | 4 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 | 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 16.1
16.1
16.0
16.0 | 16.8
16.7
16.7
16.7 | | 17.8
17.8
17.8
17.8 | 44444
8888
80000 | 118.6
118.6
118.6 | 119
118
118
19
19
19 | 9 9 9 9 9
9 9 9 9 9 | 6 0 0 0 0
6 0 0 0 0
6 0 0 0 0 | 90 80 80 80 | 20.0
20.0
20.0
20.0 | 00000
00000
00000 | 00000
00000
00000
00000 | | |
55255
 | 4 4 4 4 4 4 W W W C C C | 2000
2000
2000
2000 | 16.0
16.0
16.0 | 16.7
16.7
16.7
16.4 | 17.2
17.2
17.2
17.2 | 17.7
17.7
17.7
17.7 | 1 1 1 1 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 18.6
18.6
13.6
13.6 | 118
118
10
10
10
10
10 | 00000 | 1499.55
199.55
199.55 | 911111
9991
9999
9999 | 200000 | | 00000
0000
4444 | | 335 | 13.1
13.1
13.1 | 4 4 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 5.50 | 16.0
16.0 | 16.6
16.6 | 17.2
17.2
17.2 | 17.7
17.7
17.7 | 18.2 | 118
118
18
18
6 | 18.9
18.9 | 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 19.5
19.5
19.5 | 19.8
19.8 | 20.0 | 20.2 | 200.4 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.57 | X X P Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | l | ! | | |
 | 1 | 1
1
1 | 861 | ! | | i | 1 | 1 | 1 | | 1 | • | |--|--|--|--|---|---|---|--|---|--|-----------------------------------|---------------------------------------|--|---|--|---|--------------------------------------|---| | Y | 0.5 | ٠ ب | 7.0 | n. 8 | 6.0 | 1.0 | 4 . 1 | 1.2 | 1.3 | 4 1 | 1.5 | 1.6 | 1.7 | + ! | | • 1 | ŧ | | 2 4 1 | 0.0 | | i | | | | | 0.0 | | | 00 | 60 | | 27.4 | 24.3 | . W | | | | 63303 | | | 00.000.000.000.000.000.000.000.000 | 0
0
0
19
19 | 2000
1900
1900 | 20.02
10.02
10.00 | 44 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 22.7
20.7
20.0
19.7 | 90000 | 447
447
450
450
450
450
450
450
450
450
450
450 | 00000
0000
0000
0000 | 200
200
200
200
200
200
200
200 | 222.422.22.23.23.23.23.23.23.23.23.23.23.23.2 | 0.4.0.0
0.4.0.0 | | | 00000
01004 | 0
1
1
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 21
12
14
15
15
15
15
16
16
16
16
16
16
16
16
16
16
16
16
16 | 18
16
17
15
15
15
16
16 | 2
2
2
3
3
4
4
7
7
8
4
7
7
8
4
7
8
7
8
7
8
8
7
8
7 | 18.0
17.5
17.3
17.1 | 18.3
17.9
17.7
17.6 | 18.18.18.18.18.18.18.18.18.18.18.18.18.1 | 91111
9181
9188
9197 | 19.5
19.0
18.9
18.9 | 0000
0000
0000
0000 | 44444
44644
74644 | 0.0044 | 200.00 | 4 w w w c | 92229
90999
90000 | 200.7
200.7
200.7 | | | | | 4444 | 200444
200444 | 146.23
146.23
146.23 | 11111
1000
1000
1000
1000
1000 | 7
7
7
7
7
7
7
7
7
7 | 18.0
17.9
17.9 | 4 4 4 4 4
4 4 4 4 4 | 21 11 11 11 11 12 12 12 12 12 12 12 12 1 |
6666
11111 | #####
00000
04444 | 19.7
19.7
19.7
19.7 | 000000000000000000000000000000000000000 | 200.00 | 44444 | 2000
2000
2000
2000
2000 | | | | 8 C C C C C C C C C C C C C C C C C C C | 4 4 4 4 4
4 4 4 4 4
 | 2000
2000
2000
2000
2000 | |
0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7
7
7
7
7
7
7
7
7
7
7
7
7 | 17.9
17.9
17.9
17.9 | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 18.7
18.7
18.7
18.7 | 1100.1
100.1
100.1
100.1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 19.7
19.7
19.7
19.7 | 220.00 | 20000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | | | 888
886
886
886
886
886
886
886
886
886 | 13.7 | 4 | 15.3
15.3
15.3 | 9 4 4 4 | 16.8
16.8
16.8 | 17.4
17.4
17.4 | 17.9
17.9
17.9 | 118
138
333 | 18.7
18.7
18.7 | 199.1
199.1 | 19.4
19.4 | 19.7
19.7
19.7 | 20.0 | 2000 | 000 | 20.6
20.6
20.6 | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.58 | A P P P P P P P P P P P P P P P P P P P | | | | | | | | BET | | | | | | | 11 | | | |---|------|------|------|------|------|------|--------------|------|---------|---------|----------|--------|------|------|------|------|---| | A X | 0.5 | . 6 | 0.7 | i | 0 | 1.0 | 1.1 | 1.2 | 1.3 | 4 | • | 9 | 1.7 | 60 | + | 0 | | | 1 10 4 | | | | 0 | 0.0 | | | | 00 | 00 | | | | 37.8 | 0. | 23.9 | | | | | | | | | | | | | 2 | • | ď | P- | 2 | ~ | | | | | | | | | | | | | Ö | 23.5 | 22.3 | 21.8 | 21.7 | 21.6 | 21.6 | 21.6 | | | | | | | | | 0 | ~ | 2 | 44 | - | c | | + | + | ř | - | | | | | | | 0 | 0 | | | | | 0 | • | 0 | 0 | 0 | - | + | | | | | | | | | • | • | 6 | ò | ·
Cr | 0 | 0 | 0 | 0 | 0 | H | | | | | | œ | œ | œ | • | 60 | 0 | • | • | 6 | | 0 | 0 | (2) | 0 | | | | 6 | 7 | 17.0 | 17.3 | | 60 | 18.5 | 18.9 | _ | 6 | • | | 20.3 | 20.5 | 20.7 | 50.9 | _ | | | č. | 5. | 9 | \$ | 7 | 7 | 8 | 80 | • | 0. | • | 0 | 6 | 0 | 0 | 0 | _ | | | 4 | | ç | Č | 7 | 7 | 8 | 80 | 6 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | | | 40 | 14.0 | 5. | 10 | • | | 17.7 | • | 60 | 6 | 9 | 0 | • | 0 | 0 | 0 | 0 | | | | 8 | 4 | 5 | • | 7. | 7. | 80 | 80 | 6 | 6 | O | 0 | 0 | 0 | 0 | 0 | | | | | 14.7 | 15.6 | 16.4 | 17.0 | ~ | 18.1 | 18.6 | 18.9 | 19.3 | 19.6 | 19.9 | 20.5 | 20.4 | 20.6 | 20.8 | | | | ۵, | 4 | ľ, | 9 | 7 | 7 | œ | 8 | 60 | 0 | 0 | 6 | 0 | O | 0 | 0 | _ | | | m) | 4 | | \$ | ۲. | 7 | 8 | 8 | 8 | 6 | 0 | 0 | 0 | 9 | 0 | 0 | | | | | 4 | | 9 | • | | 80 | 80 | 80 | • | • | 6 | 0 | 0 | | 0 | | | | * | 4 | 5 | 6 | 7. | 7 | 00 | 00 | œ | 6 | 0 | 6 | 0 | 0 | 0 | 0 | | | | 3 | 4 | 'n. | ċ | 7 | 7 | æ | 80 | 8 | • | 0 | 6 | 0 | c | c | | | | | 13.4 | 14.5 | 15.5 | 16.3 | 16.9 | 17.5 | 18.1 | 18.5 | 18.9 | . 6.3 | 19.6 | 19.9 | 20.1 | 20.4 | 20.6 | 20.8 | | | | 3. | 4 | 5 | ç | 9 | 7 | œ | 8 | 8 | 6 | 0 | ·
6 | 0 | Ö | | 0 | | | | 8 | 4 | Š | ç | 9 | 7 | œ | 80 | ,
CO | 6 | 0 | 0 | c | 0 | 0 | | | | | 3 | 4 | r. | ¢ | 9 | 7 | œ | 00 | 90 | • | 0 | • | 0 | 0 | c | Ð. | | | 36 | 13.3 | 14.5 | 15.4 | 16.2 | 16.9 | 17.5 | 18.0 | 18.5 | 18.9 | 19.3 | 19.6 | 56.63 | 23.1 | 20.4 | 20.5 | 23.8 | | | | 30) | 4 | S. | ċ | • | / | & | 60 | 60 | • | 6 | 0 | 0 | 0 | 0 | 0 | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA #### YARN BULK DENSITY = 0.59 | | 2 | | | 2222
2222
2122
2123
2123
2123
2123
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
2133
213
21 | 21.0
21.0
21.0
21.0 | 21.0
21.0
21.0
21.0 | 21.0
21.0
21.0 | |---|------------|------|--|---|---|--|---| | | - | 26.5 | 000000 | 00000
00000
00000 | 000000
00000
00000 | 00000
0000
0000
0000 | 20.08 | | (| 6 0 | | 88888
8888
8888
8888
8888
8888
8888
8888 | 200.0
200.7
200.7
200.6 | 220
20
20
20
20
20
20
20
20
20
20
20
20 | 2000
2000
2000
2000
2000
2000 | 20.6 | | | + | 00 | 24.1
22.0
21.2
20.9
20.7 | 20.05 | 20.3 | 200.3 | 20.3 | | | 1.6 | | 27.3
22.2
21.2
20.7 | 200.2
200.2
200.1 | 200.1
200.1
200.1 | 200.0 | 20.0 | | | .5 | | 22.9
23.9
20.6 | H H H B B B B B B B B B B B B B B B B B | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 9 | 19.8
19.8 | | (| # | | 200
200
200
200
200
200
200
200
200
200 | 19.9
19.7
19.6
19.6 | 2000
2000
2000
2000
44 | 4 | 19.4
19.4 | | | . 10 | | 200
200
190
900 | 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 666
666
666
666
666
666
666
666
666
66 | 66666
66666 | 19.1
19.1
19.1 | | 8ET | 1.2 | 0.0 | 23.4
20.6
49.7 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 18.7
18.7
18.7
18.7 | 18.7
18.7
18.7
18.7 | 18.7
18.7
18.7 | | | 1.1 | 0.0 | 0.
0.
21.0 | 0.00 H H H H H H H H H H H H H H H H H H | 8 8 8 8 8
8 8 8 8 8
8 8 8 8 8 | 44444
80 80 80 40
10 10 10 10 10 10 10 10 10 10 10 10 10 1 |
11 8 11 12 12 12 12 12 12 12 12 12 12 12 12 | | | 1 0 1 | | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 17.8
17.8
17.7
17.7 | 17.7
17.7
17.7
17.7 | 17.7
17.7
17.7 | | | 0.0 | | | 4 11 4 00 00 | アストア | | 17.1
17.1
17.1 | | | 1 0 | | 00.00. | 18.6
17.6
17.1
16.9 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 4 4 4 | 64
4 4 4 | | | 0 | | | 1144
144
144
144
144
144
144
144
144
14 | 117.08
117.7
117.7 | 11
11
11
11
11
11
11
11
11
11
11
11
11 | 15.6
15.6 | | | C | i | 00000 | 1106.7 | 15.0
14.3
14.7 | 4 4 4 4 1 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 | 14.6
14.6
14.6 | | 1 | 0 | 0 0 | 00000 | 0
1.65.1
1.67.7
1.64.1 | | ###################################### | 2.5.1
2.5.1
4.4. | | 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × | XC | W 4 | | 0 H () M 4 | | | | | | « - | | | 200 | | | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.60 | | | | | | | | | 8 | | ! | | | Į. | | | | | |-----------|--------|------|------|----------|------|------|------|------|------|----------|------|----------|----------|--------------|---------------------|----------------|--------| | A Z | 0.5 | 9 | ſ.,7 | . 0 | 6.0 | 1.0 | 1:1 | 1.2 |
 | 1.4 | 2.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2 | 0 | |

 | | | | !
! • | 0 | | | | 0 . | 0 | 0 | | | 0 | • | • |)
) | | | • | | | | | | | | • | • | • | • | • | • | 6 0 | | | | | | | | | | | | | • | 0 | 6 | 4 | 5 | 100 | E) | 2 | | | | | ٠ | С | · | 0 | 0 | 0. | 0 | • | 26.4 | 23.5 | 22.7 | 22.3 | 25.2 | 22.1 | 22. | | | | | | | | | 0 | • | 4 | 2 | + | ÷ | ; | - | + | • | Ħ | | | | | | | | 0 | | | | • | 0 | 9 | + | ; | 1 | 7 | -1 | | | | 0 | | | | | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | - | + | - − | | | | | • | 0 | 6 | 8 | • | • | 6 | 0 | 0 | 0 | 0 | | + | - | - | | | | | 18.2 | 17.7 | 17.9 | 8 | 18.6 | 18.9 | | 19.6 | 19.9 | 20.2 | 20.4 | | 20.9 | 21.1 | 21. | | | | • | • | • | 7 | 7 | 8 | 8 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | - | +1 | | | ~ | 4 | 5 | 9 | 7. | 7 | 60 | 60 | 6 | • | 6 | 0 | 0 | 0 | 0 | • | 4 | | | | | 5 | • | • | 17.5 | œ | • | | 6 | • | • | 0 | 0 | 0 | -1 | | | | 25 | 4 | 'n | 9 | \$ | 7 | | 00 | 60 | 6 | 6 | | 0 | 0 | 0 | o-f | *4 | | | | 13.9 | 15.0 | 15.9 | 15.7 | 17.4 | 17.9 | 18.4 | 18.9 | 19.3 | 19.6 | 20.0 | 20.5 | 20.5 | 20.8 | 21.0 | 21. | | | | ~ | 4 | ŗ. | 9 | 7. | 7. | œ | 9 | Ċ. | 6 | 6 | 0 | 0 | 0 | - | -4 | | | | 3. | 4 | R) | \$ | 7 | 7. | æ | 8 | • | 6 | 0 | 0 | 0 | | - | 4 | | | | ~ | 4 | ů. | • | 7. | 7. | œ | œ | 0 | • | 0 | 0 | 0 | 0 | - | -1 | | | | 8 | 4 | 5 | ·c | 7 | | 60 | 80 | 0 | 5 | • | Ö | 0 | 0 | - | +-1 | 2 | | | 13.6 | 14.8 | 15.7 | 16.5 | 17.2 | 17.8 | 18.4 | 18.8 | 19.2 | 19.6 | 19.9 | 20.5 | 20.5 | 20.7 | 21,0 | 21. | 2 | | | 3 | 4 | 5 | 9 | 7 | ۲. | æ | 8 | 6 | 6 | 6 | 0 | 0 | 0 | + | +1 | ~ | | | ~> | 7 | 5. | • | 7. | 7 | 8 | 80 | 6 | 0 | 6 | • | 6 | 0 | + | 4 | 2 | | 4. | ٠
٣ | 4 | 5 | · | 7. | 7. | œ. | œ | 6 | 6 | 6 | 0 | 0 | 0 | •
• 1 | 4 | (V | | 35 | ~ | 4 | 5 | • | 7 | | 60 | αċ | • | 6 | 0 | 0 | | 0 | - | -4 | ~ | | 36 | 13.6 | 14.7 | 15.7 | 16.5 | 17.2 | 17.8 | 18.4 | 13.8 | 19.2 | 19.6 | 19.9 | 20.2 | 20.5 | 20.7 | 21.0 | 21. | ~ | | | ₩. | 4 | 'n. | ÷ | 7 | 7 | 6 | 8 | 6 | • | • | 0 | 0 | 0 | - | -4 | ~ | # MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA #### YARN BULK DENSITY = 0.61 | X < RP = 1 | 1 |
 | | 1 | | 1 | (
1 | BET | | 1 | 0
î | • | | 5 | 1 | 1
1
1 | · · | |------------------|------------|------|-------------|------|------|------|------------|-------|----------|----------------|--------|------|------|----------|----------|----------------|-----| | A F | 0.7 | 9.0 | n.7 | 8.0 | 0.0 | 1.0 | 1.1 | 1.2 | 1 | 4 | | 9 | 1.7 | 1.8 | 4 | 2.0 | 6 | | 4 4
 5 4
 | ı | 1 | | | | 00 | | 1 | | | 1 | 0.0 | 0.0 | | 00 | 0. | | | | | | | | | | | • | | 0 | 0 | Θ. | 9 | 4 | b) | m (| | | 16 | • c | c c | c | | 0 = | - c | | 0.7.5 | 0 M | 30.7 | 24.0 | 23.1 | 22.7 | 22.5 | 22.4 | 22.4 | | | | | | | | | | ~ | • • | | , , | • • | | · · | • • | | | | | | · c | | | | | 0 | • | 0. | 0 | 0 | ċ | 0 | + | •
•-i | + | | | | 20 | | C | (M) | 6 | 6 | 6 | 0 | 6 | 0 | 0. | 0 | 0 | 0 | | . | 1 | | | | | • | αc | æ | 8 | 00 | 6 | • | 6 | 0 | C., | 0 | 0 | • | + | - | | | | ċ | ċ | 7 | r~ | œ | œ | Œ | 6 | 6 | 0 | ċ | 0 | 0 | • | - | ; | | | | | 15.9 | 16.6 | 17.2 | 17.8 | 18.3 | 18.8 | 19.5 | 19.6 | 19.9 | 20.5 | 20.5 | 20.7 | 21.0 | 21.2 | 21.4 | | | | | r. | ċ | 7 | 7 | œ | a C | 6 | 6 | 0 | 6 | 0 | | H | ÷ | ÷ | | | | 4 | r. | è | • | 7. | Œ | œ | 6 | 6 | 6 | c | 0 | 0 | 0 | | | | | | 14.0 | 15.1 | 16.1 | 16.8 | 17.5 | 18.1 | 18.6 | 19.0 | 19.4 | 19.8 | 20.1 | 20.4 | 20.7 | 20.9 | 21.2 | 21.4 | | | | 8 | ٠. | 9 | 9 | 7. | 8 | œ | 6 | • | 6 | 0 | 0 | 0 | 6 | • | + | | | | ن.
• | ĸ. | ŝ | 9 | 7 | 8 | œ | · | 6 | 6 | 6 | 0 | 0 | ີ.
ລ | #4 | ÷ | | | 56 | • | 4 | r. | • | 7 | œ | œ | 6 | ó | 6 | c, | 0 | | ·
• | - | - i | | | 3.0 | 3. | 4 | ī. | 9 | 7 | œ | œ. | 6 | 6 | 6 | 0 | 0 | 0 | 0 | •
• | | | | | 8 | 9 | S. | 9 | 7. | 00 | 8 | 6 | 9 | 6 | 0 | 0 | 0 | 0 | • | - | | | 32 | 13.7 | 14.9 | 15.9 | 16.7 | 17.4 | 00 | 18.5 | 19.0 | 19.4 | 19.8 | 20.1 | 20.4 | 20.7 | 50.8 | 21.1 | | | | | ~ ⊃ | 4 | ĸ. | ċ | 7 | œ | æ | 6 | 6 | 6 | 0 | 0 | 0 | 0 | •
•-1 | ÷ | | | - | 3. | 4 | 5. | • | 7. | • | α | 6 | 6 | • | | 0 | 0 | 0 | •
•⁴ | | | | | ~; | 4 | r. | ¢ | 7 | 20 | ac. | • | 6 | 6 | ċ | 0 | 0 | 0 | • | + | | | 36 | 1.5.7 | 14.9 | 15.8 | 16.7 | 17.4 | 18.0 | 18.5 | 19.0 | 19.4 | 19.8 | 20.1 | 20.4 | 20.7 | 50.0 | 21.1 | 21.3 | | | | 100 | 4 | 3 | • | 7 | œ | ac. | 6 | 0 | 5 | c. | 0 | 0 | 0 | ÷ | . | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.62 | 1 | N I | 27.5 | 23.6
22.6
22.2
21.9
21.9 | 21.7
21.6
21.6
21.6
21.6 | 221.5
221.5
21.5
21.5
3 | 200
4444
500
500
500
500
500 | 21.5 | |------------|-------------|-------|---|--|---|--|---------------------------------------| | | • ।
ज | 00 | 24.0
22.7
22.1
21.8 | 22222
22222
22444 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 22222
2222
2222
2222
2222
2222
2222
2222 | 21.3 | | | 1.8 | 00 | 25.0
22.8
22.0
21.7 | 211.2 | 221.1 | 221.1
221.1
221.1
21.1 | 21.1
21.1
21.1 | | | 1. | 0.0 | 27.9
23.1
22.0
21.5 | 21.1
21.0
21.0
20.9 | 200.00 | 2000 | 20.8
20.8
20.8 | | 1 | 1.5 |) | 233.7
222.1
21.14 | 20.9
20.8
20.7
20.7
20.7 | 20000 | 20.6
20.6
20.6
20.6 | 20.6
20.5
20.5 | | į | r. | 00 | 00000
00000
00000 | 00000
00000
7.000 | 22020
2000
2000
2000
3000
3000 | 2000
2000
2000
2000
2000
2000
2000
200 | 200 | | | 1,4 | . 0 | 0.
22.7
21.3 | 200000000000000000000000000000000000000 | 20.0
20.0
20.0
19.9 | 19.9
19.9
19.9
19.9 | 19.9
19.9 | | | 1.3 | | 0 0 4 0 0 0 4 0 0 4 0 | 20.2
20.0
19.8
19.7 | 1100.6
1100.6
100.6 | 199.6 | 19.5
19.5
19.5 | | ₩ (| 2 | 000 | 20.5 | 20
140
140
140
140 | 19.2
19.2
19.2 | # # # # #
0 0 0 0 0
| 19.1
19.1
19.1 | | | 1.1 | 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8.00 to 10.00 10.0 | 118.8
118.7
12.7 | 18.7
18.7
18.7
18.7 | 18.7
18.7
18.7 | | | 1.0 |) | 0.00.00.00.00.00.00.00.00.00.00.00.00.0 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 18
18
18
18
18
18 | 1.89.1.1.89.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 18.1
18.1
18.1 | | | 0.0 | |
200.0 | 19.7
18.7
17.8
17.8 | 17.7
17.7
17.6
17.6 | 27
27
27
27
27
27
27 | 17.5
17.5
17.5 | | | 0 | | | 20.3
18.5
17.8
17.2 | 17.1
17.0
16.0
16.9 | 146.8
146.8
146.8
146.8 | 16.0
16.0
16.0 | | | 0 | | | 18.6
17.3
16.8 | 16.3
16.1
16.1
16.0 | 4444
444
644
644
644
644
644
644
644
64 | 16.0
16.0
16.0 | | | | | | 20.5
17.0
16.1 | 2.5.5.5.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2 | 15.0
15.0
15.0
15.0 | 15.0
15.0
15.0 | | 1 | 0 | | | 0.
17.7
15.5 | 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 44444
64444 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | \$ 2 C | ★ ~~ | E 4 | | 0.000
0.000
1.000
4 | | | 335 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YAHN BILK DENSITY = 0.63 | 7 PT | | 1 C | 1
1 | 1 1 1 | | 1 | 1 | 1 | | | | 1 | 1 | | | | |---|-----------|---------|--------|-------|------|------|------------|------|----------|--------|----------|----------|--------------|------------|------|-----| | 1 P P P P P P P P P P P P P P P P P P P | | - | J. U | 0.8 | 0.0 | 1.0 | 1.1 | ÷ | 1.3 | 4 | 1.5 | 1.6 | . 7 | # 1
1 | + ! | 2. | | | | | . 6 | | 0 . | 0. | - | 0. | 0 . | | | | 0 | | | 0 | | | | | C | | | | | • | | • | | • | | 0 | • | 0 | | | | | | | | 0 | | | | | 0 | 0 | ~ | 5 | 4 | 4 | | | | c | · c | 0 | | 0 | C | | <u>.</u> | 0 | 26.7 | | 23.5 | 23.1 | 23.0 | 22. | | | | | | | | 0 | Ċ | 0 | 5. | 3. | ~ | ? | ~ | ۶. | 2 | 2 | | | | | | | C | ů. | 4 | • | - | | 1. | ~ | + 4 | - | ċ | 2 | | | .0 | c | | | 25.2 | 21.6 | 21.0 | | • | ·
· | - | ; | - | + | -4 | C | | | | • | | | Ċ | • | C | c | 6 | 0 | | ÷ | ÷ | + | ** | | | | \supset | 8 | 0 | ά | 6 | 0. | 0 | o. | 0 | 0 | C) | + | - | + | + | -1 | | | c | 7 | 1 | a. | 80 | æ | 0 | 19.7 | C | 20.3 | 20.6 | 20.9 | 21.1 | 21.4 | 21.6 | 21. | | | z. | ċ | 7 | 7. | | 80 | 0 | 0 | 6 | 0 | c. | 0 | - | 1. | + | - | | | 15.0 | | • | 17.4 | 18.0 | 18.5 | | o. | 19.8 | 0 | ċ | о
С | • | ÷ | - | - | | | 4 | r. | • | 7 | 7 | • | 19.7 | 6 | 6 | 0 | 0 | 0 | | - | 21.5 | - | | | 4 | 15.4 | 16.4 | 17.1 | • | an) | α. | 10.4 | • | 20.1 | 24.5 | 0 | + | 21.3 | -1 | | | | 4 | 'n | ζ. | 7 | 7 | œ | ď | 6 | 6 | 0 | Ċ. | 0 | | | | 4 | | | 4 | 'n. | ď | 7. | 7. | 8 | .r. | 6 | 0 | S | ċ | 0 | • | - | ; | 4 | | | 14.0 | • | • | 7. | 17.7 | _ | 6 0 | 6 | 19.7 | 0 | C. | 20.7 | • | + | + | | | 3.0 | 4 | R. | ٠, | 7. | 7 | • | œ | 6 | 0 | 0 | <u> </u> | 0 | - | + | - | | | | 4 | Š | | 7. | 1 | œ | œ | 0 | 6 | 0 | - | 0 | | + | - | - | | | ~; | ι, | ν. | 7 | 7 | 80 | œ | 6 | • | د | C | 0 | + | 1 | - | ┥ | | | | | 16.1 | 16.9 | | æ | 18.8 | 19.3 | 6 | 20.1 | 20.4 | 0 | 21.0 | 21.2 | 21.5 | 21. | | | | | ċ | ċ | ~ | | œ | 6 | • | 0 | <u> </u> | 0 | - | | 1. | | | | ·* | ر.
• | ζ. | ć | 7 | • | α. | 0 | 0 | 0 | | 0 | · | • | 21.5 | | | | 15.4 | .5.1 | 16.1 | 16.9 | 17.7 | 18.3 | 18.8 | 19.3 | 19.7 | 20.1 | 20.4 | 20.7 | 21.0 | 21.2 | • | 21. | | | 3. | ι. | ý | ·c | 7 | œ | œ | 0 | 0 | 0 | c | 0 | + | 7 | • | -4 | MAXIMUM FILLING COVER FACTORS [K2] IN THRMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.64 | MARP
COVER
FACTOR | 1 | 1 | 1 | : | | • | ! | BETA | 1
1
1 | • | - | 1 | • | , | : | | |-------------------------|------|------|------|------|------|------|-------|--------|-------------|------|--------------|------|----------|---------|-----------|----------| | (X) | 6.9 | 9.0 | - | C ! | 0.0 | 1.0 | 4 - 1 | 1.2 | 1: | 1.4 | ₹ 1 1 | 1.6 | 1.7 | = : | 6 | 2. | | 13 | | | | | 0 | | | 0.0 | | | · | | 0. | 6 | | 0 0 | | | | | | | | | | | • | | | • | • | • | | • | | | | | | | | | | | • | | 0 | 0 | 0 | 9 | | + | | 1,6 | | | | | | | | | 0 | 0 | 6 | 5 | 3 | 3 | | 3 | | 17 | | | | | | | 0 | ċ | 9 | 3 | 8 | 2 | ۷. | 2 | 2 | ŝ | | 18 | 0 | | 0. | 0 | | 0 | 26.4 | 23.0 | 25.2 | 21.9 | 21.9 | 21.9 | 22.0 | 22.1 | | 22.3 | | 46 | 0 | U | | | • | 22.3 | • | ÷ | ij | + | •
• | H | •
• | · | ~ | ò | | 20 | | | 0 | ~ | 0 | 0 | 0 | ·
5 | 6 | 0 | - | +4 | - | ÷ | | ~ | | 21 | 0 | C | 6 | 6 | ò | 6 | • | 0 | | 0 | 0 | - | + | + | -4 | å | | 22 | + | | 7 | 8 | œ | 6 | • | 6 | 0 | 0 | C | | 1 | + | - | · | | 23 | 9 | 16.6 | 17.2 | | 8 | 18.9 | 19.3 | 16.7 | 20.1 | 20.4 | 20.7 | 21.0 | 21.3 | 21.5 | 21.7 | 21.9 | | 40 | 30 | ċ | • | | • | œ | 6 | 6 | 0 | 0 | 6 | | | | + | H | | 25 | 14.7 | 15.8 | 9 | | 00 | 9.8 | 0 | 19.6 | 0 | 0 | 0 | | - | 21.5 | ÷ | | | 56 | 4 | 5 | 16.5 | 7. | 8 | 8 | • | 0 | 19.0 | 20.3 | 20.6 | | | - | 21.7 | | | 27 | 4 | 5 | ć | 7 | 7. | œ | φ. | 6 | · | ° | 0 | 0 | 1. | + | 40
4-4 | . | | 9.6 | 4 | 5 | · | 7 | 7 | œ | 0 | 6 | 0 | 0 | c | 0 | ; | •
•4 | - | - | | 0 | 4 | 5. | • | 1 | • | œ | • | 0 | • | 0 | 6 | 0 | • † | + | | • | | 30 | 4 | r. | 9 | 7 | 7 | • | 6 | 6 | 6 | | Ċ | 0 | - | +-4 | - | • | | 31 | 4. | 5 | é | 7 | 7 | œ | 6 | 6 | 6 | 0 | Ö | 0. | + | + | - | - | | 32 | 4 | 15.3 | 16.3 | 17.1 | • | 16.4 | 19.0 | 19.4 | 19.9 | 20.5 | 20.6 | 50.9 | 21.2 | 21.4 | 21,6 | 21.9 | | 33 | 4. | ı. | • | 7 | 7 | œ | 6 | 6 | 0 | 0 | . | 0 | H | - | + | + | | 4 | 14.0 | 5 | • | 7 | | 00 | 6 | 0 | 6 | 0 | c | 0 | | + | - | | | 35 | 4 | r. | • | 7 | 7 | 90 | 6 | 3 | • | 0 | 0 | 0 | • | + | - | + | | 36 | 14.0 | 15.2 | 16.5 | 17.1 | 17.A | 18.4 | 10.0 | 19.4 | 19.9 | 20.5 | 50.6 | 50.9 | 21.2 | 21.4 | 21.6 | 51.9 | | | 4 | u'\ | \$ | 7. | 7 | œ | • | 5 | 6 | 0 | 0 | 0 | H | ÷ | | -4 | MAXIMIM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN HILK DENSITY = 0.65 | | | | | | | | | BET | | | | | | | į | , | |----------------------|----------|------------|----------|------|--------------|------------|----------|----------|--------|------|----------|----------------|----------|--------------|--------|----------| | <u>ب</u> په | 5.5 | 9 | n. 7 | 00 | 6.0 | 1.0 | 1.1 | 1.2 | | 1.4 | 1.5 | 1.0 | 1.7 | 1.8 | 6 . 1 | | | | : • | 1 . | | | i
I • | \$
\$ • | l
l " | 0.0 | 0 | 0.0 | | 0.0 |)
 • | | 0 | 0 | | 14 | | | | | | | | • | | | • | | • | • | • | • | | ***
'\mathcal{L}' | | | | | | | | | | | | 0 | C | 60 | 5 | 4 | | 16 | | | | | | | | | • | U | 0 | S. | 4 | m | 3 | 3 | | 17 | | | | | | | 0 | ċ | 0 | 4 | | 3 | c, | <u>ن</u> | 2 | ċ | | 18 | | | c | 0. | | 0. | 33.7 | 23.7 | 25.6 | 22.3 | 22.2 | 22.2 | 22.2 | 22.3 | 22.4 | 22.5 | | 40 | <u>.</u> | | | | | | • | -
+-1 | •
• | • | • | + | • | 2 | · | 2 | | 20 | | | c | ₩. | - | ů. | 0 | • | 0 | + | • | ~4 | - | +4 | 2 | 2 | | 21 | | - | <u>-</u> | 0 | 6 | 0 | 0 | ċ | 0 | 0 | * | , | + | | 5 | 5 | | 22 | | œ. | œ | 8 | 8 | | • | | • | 20.7 | 21.0 | ← f | • | 21.7 | 4 | 22.1 | | 23 | 9 | é | 7 | ď | 8 | 6 | c, | 0 | 0 | 0 | <u> </u> | +-1 | + | + | - | ŝ | | 40 | 15.5 | 16.3 | 17.0 | • | 18.3 | OC. | 0 | 6 | 0 | 0 | 6 | 21.1 | 21.4 | ÷ | | 5 | | 25 | | 5 | • | 1 | œ | 60 | 0 | • | | 0 | | • | - | -4 | • | 3 | | 56 | 4 | 5 | ÷ | 7. | 60 | 8 | • | 6 | ċ | 0 | 0 | ; | 1. | ÷ | *1 | 2 | | 27 | 4 | r. | S | • | æ | œ. | 19.2 | 19.7 | 20.1 | 20.4 | 20.8 | - | 21.4 | 21.6 | -1 | • | | 26 | 4 | u' | · | 7. | æ | œ. | · | 6 | ċ | 0 | c | | | + | 7 | <u>٠</u> | | 20 | 4 | | 16.5 | 7 | œ | 18.6 | 0 | • | 0 | 0 | c | • | •
• | + | -1 | · | | 30 | 4 | ır. | \$ | 7 | ď | • | 5 | 6 | | 0 | c | 4~4 | • | | - | 2 | | 3.1 | 73 | r . | ç | 7 | 8 | 8 | 0 | 6 | 0 | | ċ | • | • | - | - | ? | | 32 | 4, | 5. | · C | 7 | 7 | æ. | • | • | 0 | 0 | c | 7 | • | +4 | -4 | ė | | 33 | V | | 16.4 | 17.2 | 7. | Œ | 19.1 | 10.6 | 20.0 | 20.4 | 20.7 | 21.0 | 21.3 | 21.6 | 21.8 | 22.0 | | 4
4 | 3 | ı. | · | 7 | | œ | • | 0 | Ċ | Ċ | c: | • | | | ÷ | 2 | | 35 | 4 | | | | • | | 3 | • | 0 | 0 | c | +-4 | | ÷ | •
• | CV | | 36 | | | | | | œ | 19.1 | 19.6 | 20.0 | 20.4 | 20.7 | 21.0 | 21.3 | 21.6 | 21.8 | 22.0 | | 37 | 4. | ď. | ċ | 7. | 7. | æ | 0 | • | 0 | 0 | ċ | - , | • | ÷ | • | · | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.66 | | | | | | | | | 8E T | | | | (| | 1 | | 1 | | |-----|------|--------|------|------|--------|------------|----------------|-------------|------|------|----------|----------------------|------|--------------|----------|----------|--| | X | 9.5 | 9 - 0 | 0.7 | 6.0 | • | 1.0 | ; , | 1.2 | 1.1 | 4 | 1.5 | 1.6 | 1.7 | 8 : | | 2,0 | | | 13 | | | | i | | | | | | | |)
i • | | 0. | • | . 0 | | | | | | | | | | | | | • | | | | • | • | • | | | | | | | | | | | | | | | 0. | 0 | ب | 9 | 5 | | | | | | | | | | | • | | 0 | 0 | 7. | 5. | 4 | 3 | 3 | | | | | | | | | | | 0 | 0 | ď, | 4 | 3 | 3 | 3 | M | (ما
• | | | | | | ٠. | | 0. | 0 | 0 | | 23.1 | 22.6 | 22.4 | 22.4 | 25.5 | 22.5 | 25.6 | 22.8 | | | | · n | c
c | 0 | | 0. | 24.4 | | | | H | * | 8 | 5 | 2 | ~ | ò | | | | | | 0 | ď | - | ÷ | 0 | 0 | - | • | • | 1. | • | 8 | 2 | 2 | | | | | c. | + | c | 6 | 0 | 0 | 0 | 0 | - | ÷ | ₩ | + | 2 | 2 | 5 | | | | | 0 | α. | œ | 6 | • | 6 | ċ | 0 | 0 | 4 | ٠
ا | + | - | ~ | 2 | | | | 7. | 1 | ~ | 18.2 | - | • | 6 | | 20.4 | | • | | 21.6 | 4-4 | | 22.3 | | | | 15.7 | • | 7 | 7 | | - | 19.5 | 0 | • | 0 | 21.0 | | • | 21.8 | 8 | 3 | | | 25 | 5. | \$ | • | • | 80 | 60 | 0 | 0 | 0 | | 49-4 | -1 | +4 | *1 | 2 | | | | | 4 | 15.9 | 9 | 1 | 18.3 | 18.9 | | 19.8 | 20.3 | • | - | | 21.5 | 21.8 | 22.0 | ò | | | | 4 | Š | • | 7 | 8 | 80 | • | • | 0 | 0 | c | + | 7 | - | å | 2 | | | | 4 | 5 | \$ | 7 | œ | 80 | 6 | 6 | 0 | 0 | 0 | | • | - | 'n | ċ | | | | 14.4 | • | ç | 1 | 80 | œ | 6 | 6 | 0 | 0 | • | 44 | - | + | 5 | 8 | | | | 4 | 5 | · c | 7 | 80 | 80 | 0 | 0 | 0 | 0 | | - | • | - | 2 | 8 | | | | 4 | 15.5 | 16.5 | 17.4 | 18.1 | 18.7 | 19.3 | 19.8 | 20.5 | 20.6 | 20.9 | 21.2 | 21.5 | 21.7 | 22.0 | | | | | 4 | r. | ć | 7. | 8 | 8 | 0 | œ. | 0 | 0 | 0 | ij | • | , | 2 | ⊹ | | | | 4 | r. | ×c | 7 | œ | œ | 6 | • | • | 0 | ċ | ; | | + | 2 |
ċ | | | 4 6 | 14.7 | • | · · | 7. | œ | x 0 | 6 | c. | 0 | 0 | ċ | + | - | + | 2 | · | | | | 4 | Ţ. | c | 7 | 90 | • | 0 | 6 | ô | 0 | 0 | •
•: 1 | + | | 2 | | | | 90 | 14.2 | 15.5 | 16.5 | 17.3 | 18.1 | 18.7 | 19.3 | 19.7 | 20.2 | 20.5 | 20.9 | 21.2 | 21.5 | 21.7 | 22.0 | 5 | | | | 4 | ir. | 5 | 7. | ф
• | œ | 6 | 6 | ċ | 0 | ċ | + | + | + | 5 | · | | YARN BULK DENSITY = 0.67 | | | | | | | | 1 | BET | 1 | 1 | | 1 | | 1 | 1 | | |--------------------------|-------|----------|------|------|----------|------|------|------|-------|------|---------------|-------------|----------|------|--------|------| | 4 ~
⊃ X | 3. | 9.0 | 0.7 | 6. | 0 | 1.0 | 1.1 | 1.2 | £ . 1 | 1.4 |) | 1.6 | 1.7 | 1.8 | 1,9 | 2.0 | | 13. | | | | | 0. | | | .0 | . 0 | . 0 | • | • | | 0 | 0 | 0. | | | | | | | | | | 0. | | | | • | | | 6 | • | | | | | | | | | | | | | | 0 | 0 | 0 | 7 | 5 | | | | | | | | | | • | | 0 | 6 | 30 | 5. | + | 4 | 4 | | | | | | | | | | 0 | 0 | • | 4 | 2 | 3 | 3 | 3 | 3 | | | | <u>.</u> | · | c. | 0 | 0 | 0 | 25.8 | 23.6 | 23.0 | 22.7 | 22.7 | 22.7 | 25.8 | 22.9 | 23.0 | | | 0. | | 0. | | | | | ċ | ò | 2 | 8 | 2 | 2 | ٥. | Š | ò | | | | | | • | 2 | - | • | | | + | | | 8 | 2 | ~ | 2 | | | | C | , M | 0 | 0 | 0 | | 20.7 | 21.0 | 21.2 | - | 21.7 | 21.9 | 22.2 | 22.4 | | | | 0 | | 6 | 6 | 0 | 6 | 0 | 0 | ċ | 7 | - | - | - | 5 | 5 | 5 | | ~ | | ./ | 7 | œ | 8 | 0 | 6 | 0 | 0 | 0 | 1 | - | ÷ | 2 | 2 | ċ | | | 16.0 | 16.7 | 17.4 | 18.1 | 18.7 | 19.5 | | 0 | 0 | 0 | 21.2 | - | . | • | Č | 5 | | 25 | ις. | 9 | L- | 7 | 60 | 0, | • | 0 | c | 0 | • | + | + | 22.0 | 2 | CV | | | | S | 17.0 | 17.7 | 18.4 | • | 19.5 | 20.0 | 20.4 | 20.8 | 21.1 | 21.4 | 21.7 | +1 | 25.5 | | | | 4 | r. | \$ | 7 | œ | • | 6 | 0 | 0 | 0 | - | - | ÷ | + | 2 | ċ | | | 4. | r. | ζ. | 7 | œ | Œ. | 0 | 0 | 0 | 0 | • | 7 | + | 4 | ٠
د | 5 | | | | 15.7 | S | 7. | . | 18.9 | o. | 6 | 0 | 0 | | + | •
• | + | ~ | 5 | | | 4 | r. | ç | 7 | 6 | œ | 0 | 6 | 0 | 0 | •
• | | + | ·- | 2 | 0 | | | 4.4.4 | 15.6 | 15.7 | 17.5 | 18.2 | 18.9 | 19.4 | 19.9 | 20.3 | 20.7 | 21.1 | 21.4 | 21.7 | 21.9 | 22,1 | 22.4 | | | 4 | R. | 9 | 7 | 8 | œ | 6 | 6 | ċ | 0 | | + | | · | S | ċ | | | 4 | 5 | · c | 7 | 80 | x. | 6 | • | | 0 | 7 | - | ; | + | ċ | ? | | 3.4 | 4 | ٠. | · | 7 | • | œ. | • | 6 | 0 | 0 | ** | + | + | • | 5 | 5 | | | 4 | ζ. | v. | 7 | œ | 30 | 6 | 6 | 0 | 0 | | - | + | - | Š | 0 | | _ | 14.3 | 15.6 | 16.6 | 17.5 | 18.2 | 18.8 | 10.4 | 19.9 | 20.3 | 20.7 | 21.1 | 21.4 | 21.6 | 21.9 | 22.1 | 22.4 | | | • | r. | v. | 7 | ® | 80 | 0 | 6 | | 0 | + | + | + | -4 | 5 | 5 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.68 | a u + | | | I | | | | | BET | ! | 1 | | i | | | • | 9
9
2 | |-------|------|------|----------|------|------------|------------|------|------|------|------|--------------|------|----------|------|----------|-------------| | (K1) | 0.5 | 9.6 | 0.7 | 0.3 | 0.9 | l +-1
l | . 4 | 1.2 | + | 1.4 | | 1.6 | 1.7 | + | 4 | 2 | | 1 | 1 | i | | | 0 0 | 00 | 000 | | | | 90 | 00 | | 00 | 00 | | | | | | | | | | | | | | | 0 | 0 | 0 | 80 | • | | . 40 | . 0 |
 | | | | . 0 | | | • | 0 | | 32.9 | 26.4 | 25.5 | 24.6 | 24.3 | | | | | | | | | | 0 | 0 | 80 | 5 | 4 | 3 | 3 | 3 | 3 | | | | | 0 | | | ú. | ċ | | | | | 2 | 2 | 3 | • | 3 | | | | | | | | 32.3 | | ò | 2 | 2 | ~ | 2 | 2 | 6 | C1 | ~ | | | | | | • | м | +-1 | ÷ | • | + | + | ** | C) | 8 | å | 2 | Ň | | | | C | œ. | *** | 0 | 0 | 0 | Ċ | + | + | + | + | 5 | ò | 2 | 5 | | | | ٠ | 6 | 6 | 6 | 6, | 0 | 0 | 0 | + | -1 | + | ς. | 2 | 2 | 5 | | | 8 | 1 | α | 18.6 | 19.1 | 6 | 0 | 0 | 0 | - | • | -1 | | 25.2 | 22.4 | | | | 16.3 | 16.9 | • | œ | 80 | 19.4 | 19.9 | | • | + | | + | | 3 | ô | 5 | | 25 | 'n. | ÷ | 7 | œ | 60 | 0 | 6 | | Ö | 21.0 | 21.3 | 21.6 | 4-1 | | 22.4 | ~ | | | 15.1 | 16.2 | 17.1 | 17.9 | 18.6 | • | 6 | 0 | 0 | 0 | + | ··4 | -1 | 2 | 2 | • | | | 4 | ċ | 7. | 7 | a 0 | • | • | 0 | 0 | 0 | = | + | + | c, | ċ | ċ | | | 4 | 'n | ċ | 7. | 8 | 6 | ٠. | 0 | ċ | 0 | • | H | + | ŝ | 2 | Ň | | | • | ı, | \$ | 7. | œ | · | 19.6 | · | • | 0 | • | + | 21.8 | 'n | ~ | 2 | | | 4 | ır. | 8 | 7. | œ | • | 6 | 0 | 0 | 0 | • | +- | +4 | N | N | 2 | | | 14.5 | 15.8 | 16.8 | 17.6 | 18.4 | • | 6 | 20.1 | 20.5 | 50.9 | 21.2 | 21.5 | 21.8 | 22.1 | 22.3 | 25.5 | | | 4 | ĸ. | ÷ | 7. | 8 | • | 0 | 0 | - | 0 | -1 | ; | + | 2 | % | 5 | | | 7 | r. | ·C | 7. | œ. | • | 9 | j | C | 0 | . | Ļ | | 'n | 5 | 5 | | | 1 | ٦. | ć | 7. | œ | 0 | 10.5 | • | 0 | 0 | • | 7 | • | 2 | <u>٠</u> | Cu | | | 4 | 7. | • | 7 | œ | • | 0 | 0 | 0 | 0 | • | · | •
• • | ~ | ~ | > | | 0 | 14.4 | 15.7 | 14.1 | 17.6 | 18.3 | 19.0 | 19.5 | 0.00 | 20.5 | 50.9 | 21.2 | 21.5 | <. 1. S | 22,1 | 22.3 | 22.5 | | | ·• | ď | · | 7. | œ | ъ. | • | - | 0 | 0 | <u>.</u> | ਜ | <u>.</u> | 2 | c, | · > | YARN BULK DENSITY = 0.69 | X > 1 | | | | | | | | ET | į | | | 4
1
2 | 1 | | 1 | 1 | | |------------------------|---------------------------------------|---|---|------------------------------|---|----------------------|------------------------------|------------------------|---|---------------------------------------|------------------------------|---------------------------------------|-------------------------|-------------------------|-------------------------|--------------------------------------|--| | ¥ Z | 0 . 5 | | 0.7 | 0.0 | 0.0 | 1 0 | 1.1 | . 2 | PO
 | 4 . | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 | | | 1 | • | | • | ı | • | | | 0.0 | 000 | | 00 | • • | | | | | | | | | | | | 00000 | | | | 000000000000000000000000000000000000000 | | 5 E V V C | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0000
0000
0000 | # 10 00 00 kg | 23.50
23.50
23.50
24.50 | | | 53
00000
5 01004 | | | | | | | . 40000 | | | · · · · · · · · · · · · · · · · · · · | | | | | 00000 | nnnnn c | | | 00000 | v.v. 4 4 | | 17.5
17.3
17.1
17.0 | 18.1
18.1
17.9 | | | 00000 | 00000
0000
40000 | 20.7
20.7
20.7
20.7 | 21.1
21.1
21.1
21.1 | 0.0000
1111111
10.4444 | 21.8
21.7
21.7
21.7 | 22222 | 00000
00000
00000 | 22222
22225
22225 | 22.7
7.22.7
7.22.7
7.22.7 | | | | | 0.00 a a | 4444
6444
6444
6444 | 17.8
17.8
17.8
17.7 | 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 | 199.1 | 19.7
19.7
19.7
19.7 | 22000 | 200.6 | 21.0
21.0
21.0
21.0 | 2222
2222
2444
4444 | 21.7
21.7
21.7
21.7 | 225.0
225.0
225.0 | 2222 | 00000
00000
00000 | 22.7
22.7
22.7
22.7
22.7 | | | 35
35
75 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 3. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 17.7 | 118
188
188
187 | 19.1
19.1
19.1 | 19.7
19.7
19.7 | 20.2 | 20.5
20.6
20.6 | 21.0
21.0
21.0 | 21.2 | 21.7
21.7
21.7 | 22.0
22.0 | 22.2 | 22.5
22.5
22.5 | 22.7
22.7
22.7 | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.70 | | | | | | | | | 9E1 | | | | | | | | | |---------------------------------------|------|--------|------|----------|--------------|---------------|-------------------|------|----------|------------|-------------------|----------------|--------------|---------------------------------------|------------|--------| | A T | 0.5 | 9 - 6 | 0.7 | 0.8 | 0.0 | 1.0 | +4
 •
 +4 | 1.2 | 1.3 | 1 | 1.5 | 1.6 | 1.7 | • • • • • • • • • • • • • • • • • • • | 1,9 | 2.0 | | 13 | | 1 · | | £ | 0.0 | :
: 0
: | | | • | 0 | 0 . | | 0 . | | . 0 | . 0 | | | | | | ÷ | | | 0 | | • | | • | | 0 | • | | • | | | 0 | | | | | | | | • | | | • | 0 | 0 | 0 | ф
Ф | | | 0 | | | | | | C | | • | | e. | 0 | on. | • | Š | Š | | | 0 | | | | | | 0 | | ċ | 0 | 9 | J. | 4 | 4 | • | 4 | | | 0 | | 9. | | | ċ | • | 0. | 25.9 | 24.3 | 23.7 | 23 | 23.4 | 23.5 | 23.5 | 23.6 | | | 0 | ·
C | | | ن. | | S | • | ٠
د | c
N | ς. | ò | 0 | · | · | · | | | | | | - | 7 | ~ | ~ | 2 | N | \sim | ~ | ~ | 8 | • | ~ 5 | 3 | | | | | | N | - | · • | • | + | + | | 2 | 2 | 2 | 22.7 | ° | | | | 0 | | 0 | 0 | 0 | 0 | 0 | - | + | + | . | 2 | 2 | ò | Ŕ | ю
М | | | 2 | α | α | 0 | 6 | | c : | 0 | - | - | • | ~ | 2 | 2 | Ċ | M | | | 17.1 | 17.4 | 18.0 | 18.6 | 19.2 | 19.7 | • | 20.6 | 21.0 | ÷ | 21.7 | 2. | 22.2 | 2 | 22.7 | ٠
د | | 25 | 9 | ¢ | 7. | œ | 6 | • | ċ | 0 | 0 | +-1 | • | | 8 | ~ | • | 8 | | | | × | 17.4 | 18.2 | 18.9 | 6 | 20.0 | 20.5 | 20.9 | 21.3 | | | 22.2 | 22.4 | 3 | 55.9 | | | 5 | 9 | 7 | œ | 8 | 0 | 0 | 0 | • | + | •
- | - | i | ٥. | 2 | 2 | | | 5 | 6 | 7 | œ | œ | 6 | 6 | 0 | • | + | • | - | 2 | ċ | 2 | S. | | | - | • | 7 | œ | c o | 10.3 | 0 | 0 | 0 | ÷ | • | . | 2 | o. | 2 | 2 | | | 4 | • | 7. | 7 | 60 | 0 | • | 0 | 0 | | ÷ | + | 8 | Š | 2 | 5 | | | 4 | • | | 17.9 | | • | 0 | 0 | 20.8 | 21.2 | wi | 4-mg | | 22.4 | 25.6 | 55.9 | | | 4 | ċ | 7. | 7 | œ | 6 | • | ċ | 0 | + | . | - - | 2 | 2 | ė | c, | | | 4 | ċ | 7. | 7 | a () | Ġ. | • | ċ | Ö | ~ 4 | - | + | ? | 'n | ŝ | 2 | | | 14.7 | ľ, | | 7 | | 19.3 | • | 20.3 | 0 | H | 21.5 | 21.8 | | 2 | ° | ~ | | | 4 | ď | 7 | 7 | 90 | 0 | 0 | 0 | 0 | + | • | | <.v | ~
.∨ | ~ | 2 | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 14. | 15.9 | 17.6 | 17.9 | 18.6 | 19.3 | 19.8 | 20.3 | 20.8 | 21.2 | 21.5 | 21.8 | 22.1 | 22.4 | 22.6 | 22.9 | | | 4 | ı, | , | ۲- | . * . | 0 | 0 | 0 | <u>-</u> | + | • | + | $\dot{\sim}$ | 2 | ~ | c, | # MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA #### YAHN BULK DENSITY = 0.71 # FIVE-HARNESS WEAVE FABRICS | 3 2 1 t | 1 | | 1 | | | | | ₽EŢ | ı | | | • | | | 1 | | |---------|------------|-------|------|------|------------|-------
----------|----------|-----------------|-------------|----------|---------------|--------------|------|--------------|------------| | 4 ~ · | | 9. | | £ . | 6.0 | 1 0 . | 1 1 1 | 1.2 | . · | 4. | 1.5 | 1.6 | 1.7 | 80 | 6 F | 2.0 | | 131 | | 1 0 0 | | | • | 0 | | | | | | | | 00 | 00 | .0 | | | | | | | | | | | | | c c | 0.0 | 0 7 | 0 | 50 | o w | | | . . | | | | | 000 | c c | 000 | 0.27.1 | 0.4.8 | 28.1 | 25.7 | 24.9 | 24.5 | 24.4 | 24.3 | | | | | | | | | | • | 3 | ٠ <u>.</u> | M | ·2 | 3 | ٣ | · | 5 | | | | | | - r | 0 | M) + | ~ . | ٥. | · × | 0,0 | 00 | 80 | 00 | m 0 | M) M | M) M | | | | · · | • ↔ | | . 0 | 9. | - C |
 | | | : 2 | | . ~ | | . ה
ה | , m | | W 4 | 17.5 | 19.3 | 19.1 | 19.3 | 19.7 | 20.1 | 20.6 | 20.9 | 21.3 | | • • | 22.2 | 22.5 | 22.7 | 22.9 | 23.1 | | | · | | ~ | α. | 6 | • | · | 0 | + | | - | 8 | ~ | | 5 | M) | | | 1 | · · | r- r | œ o | ٠
0 | • | c c | 0 | •
+4 + | | • | o o | ر.
د | ni n | | w w | | | 15.1 | 16.3 | 17.5 | 18.2 | 18.9 | _ | 20.1 | 20.00 | 21.0 | 4 -4 | • • | 22.3 | 22.3 | 22.6 | 22.8 | 23.0 | | | ζ. | ¢ | 7 | œ | œ | φ. | ć | 0 | - -i | -1 | • | ċ | 2 | ٥. | °. | 3 | | | 4 | v. | 7 | œ. | œ | 0 | 0 | Ċ | 0 | + | - | N | ~ | N. | 2 | M | | | ٠
ج | į, | 7. | ac o | დ d | · · | C (| · · | c | ं
च्लं क | • | ٠, | ~ r | · · | 2 | m ~ | | | 4 4 | 1.4. | 17.1 | . w. | 1 . W | | 20.00 | | 20.9 | 21.3 | 21.7 | 22.0 | 22.3 | 22.6 | 22.8 | • • | | 3.4 | 4 | ċ | 7. | α. | œ | 0 | ċ | 0 | ċ | +-1 | • | $\dot{\circ}$ | 5 | ò | 2 | 3 | | | 4 | · | 7. | σ. | α Ο | o- | <u> </u> | 0 | 6 | | - | ~ | $\dot{\sim}$ | ò | ~ | 3 | | 36 | 4. | 16.0 | 17.1 | 18.0 | 18.7 | 19.4 | 20.0 | 20.5 | 50.9 | 21.3 | 21.7 | 22.0 | 22.3 | 22.6 | 22.8 | 23.0 | | | 4 | · · | 7 | or. | oc. | • | C | <u>-</u> | ċ | + | - | ς. | 2 | ۲. | · | 3 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.72 | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 41 00000 440000 00000 0 | 41 00000 W4400 00000 C | 41 000 4 99999 99999 99999 99999 99999 99999 9999 | +1 00000 NN+++ +++++ | 4 | | 141 00040 00000 00000 0 | 141 60040 60000 00000 0 | 141 67488 88000 00000 0 | - | ІМІ БИДДЫ ВВВВВ ВВВВВ В | |-----|------|--|------|------|-------------------------|------------------------|---|----------------------|------|---------|-------------------------|-------------------------|-------------------------|--------------|-------------------------| | 2 | 16.3 | 17.3 | 18.2 | | 900 | 20.1 | 20.6 | 21.1 | 21.5 | 21.8 | 22.2 | 22.5 | 22.7 | 23.0 | 23.2 | | n u | 16. | 7 | œ œ | œ œ | ٠, O | . c | ٠
د د | <u>.</u> ; - | | | o'c | ~ · | n'n | M . W | W W | | . 4 | | , , | · œ | 00 | . 0 | | | | • • | 4 + | | , , | , , |) P. | מיו כ | | 4 | 16. | 7 | 00 | | | | | • | | 1 + | 5 | 0 | 'n | , P) | m | | 4 4 | 14.2 | 17.2 | 6 4 | | 19.5 | 20.1 | 2000 | 21.1 | 21.5 | 21.8 | 72.1 | 22.4 | 22.7 | 23.0 | | | | | | i œ | 0 00 | . 0 | · · | | : ; | |
H H | · ~ | · ~ | in | , m | , w | | 4 | 16. | 7. | 80 | 8 | 6 | 0 | 0 | | - | - | | | | , ~ | ~ | | 4 | 16. | 1 | ť | (| | | | | | • | 1 | J | ů | • | • | # MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND RETA YARN RULK DENSITY = 0.73 | 1 | 0 | £0 ↔ €0 | - | V & 12 12 4 | **** | 44000 | mmmmm | |-----|----------|------------------|------|--|---|--|---| | 1 | 2 | 800 | 4 W | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00000
00000 | 00000
00000 | 88888 | | 1 | 4.9 | 0 % 4 | 4 10 | 8 8 8 8 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 | さきまちき | 00000
88888
4444 | 223333
233333
233333 | | 1 | 4.8 | 0.00 | | 800
800
800
800
800
800
800
800
800
800 | 22223 | 00000 | 22.9
22.9
22.9 | | 1 | 1.7 | 0 0 N | | 223.0
223.0
223.9
22.9 | 2000
2000
2000
2000
2000 | 00000
00000
00000 | 222.0 | | ı | 9 | 0 | | 2223
2223
2227
2237 | 000000
000000
44400 | 888888
888888 | 88888
88888
88888
88888 | | 1 | 1.5 | 0.
0.
37.1 | | 00000
00000
00000 | 2222
2221
2220
2200 | | 88888
88888
88888 | | (| 1.4 | 0.0 | | 00000
00000
00000
00000 | 221.7 | 221.6
21.6
21.6
21.6 | 21.6
21.6
21.6
21.6 | | | | | | 222.8
221.8
21.6
21.6 | 4 4 10 20 10 4 4 4 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | 221.2 | 221.22 | | BET | | 000 | | 22.9
22.0
21.6
21.4 | 20.0
20.9
20.9
20.8 | 00000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | | | | | | 23.4
21.9
21.3
20.9 | 00000
00000
00000
00000 | 88888
88888
88888
88888 | 220
20
20
20
20
20
20
20
20
20
20
20
20 | | | 1.0 | | | 225.5
201.0
201.0
201.5 | 20.1
19.9
19.9
19.8 | 19.7
19.7
19.7
19.7 | 19.7
19.7
19.7
19.7 | | | 6.0 | | | 22.9
20.9
20.9 | 119.3 | 19.1
19.1
19.0
19.0 | 19.0
19.0
19.0 | | | 1 00 1 | | | 33.0
23.5
29.2
29.2
29.2 | 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | ###################################### | 118.2
118.2
18.2
2.6
118.2 | | | 0.1 | | | 2000
1900
1900
1900 | 18
17.9
17.7
17.6 | 7. C C C C C C C C C C C C C C C C C C C | 17.3
17.5
17.5
17.3 | | | 9.0 | | | 0.00
20.8 | 17.5
17.5
16.8
16.6 | 118
118
118
118
118
118
118
118
118
118 | 16.3
16.3
16.3
16.3 | | | 0.5 | 000 | | 0.
6.
0.
18.7 | 16.8
10.7
10.7
10.8 | 2444
2544
2446
2446
2446 | 0.0.0.0
0.0.0.0
0.0.0.0 | | | A T | # # # P | | | 20205 | | 88465
88465 | | | | | | | 224 | | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =0.74 | | 1 | | | | | 1 | | 9E | 1 | | | • | (| | t | ı | | |---|------|--------|------|------|----------|----------|---------------|------|---------------|-------------|----------|--------|------------|--------------|------------|--------------|--| | 1 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 9.0 | 0.7 | 60 | 6.0 | 1.0 | - | 1.2 | 1.3 | 4 | 1.5 | 1.6 | 1.7 | 1 | 1.9 | 2.0 | | | 4 | | | i c | , c | ,
, c |)
 C |)

 C | 1 | c | ,
,
, | • | | | | • | · | | | | • | | | | | | | | | | | • | • | | •
• | •
5 v | | | - | • | · | | | | | | | | | | :> (| •
• | •
• | • | 0 1 | | | | • | ·
C | | | | | | C | | 0 | <u>.</u> | œ | 9 | 3 | ٠. | | | | | 0 | · | 0 | 0 | | 0 | 0. | 0 | 0 | 27.0 | 25.4 | 24.8 | 24.5 | 24.4 | 24.4 | • | | | 49 | | | | | | | | 26.5 | 24.6 | 4 | m | ъ. | 3 | m | 4 | 4 | | | | | | | | | 7 | 4 | м) | m | ь. | 10 | m | ,
M | ,
(M | 100 | ^ا | | | | | | | | 10 | 2 | ~ | 0 | ~ | 2 | | , m | 1 | 1 | M | 17 | | | | | | · 10 | , ,- | •
• | - | | | | C | ر
د | 2 | , ~ | 3 | 1 | * | | | | | • | 20.5 | 20.1 | 20.4 | 0 | 21.1 | • | + | 2 | | ~ | 10 | ~ | 1 | 8 | | | 4 | 19.5 | | 4 | • | • | 20.4 | • | 21.3 | 21.7 | | 22.3 | 22.6 | 55.9 | 23.2 | 23.4 | 23.6 | | | 25 | 7 | 7 | œ | 6 | 0 | 0 | 0 | • | • | | C) | 2 | ~ | m | * 2 | 8 | | | | \$ | 7 | œ | 8 | 6 | 0 | ô | + | - | • | ~ | 2 | 2 | ъ. | 3 | 3 | | | | 15.8 | 16.9 | 17.9 | 18.7 | 19.4 | 0 | 20.6 | 21.0 | - | - | 22.2 | 22.5 | 22.8 | | 23.3 | 23.5 | | | | ŗ | ċ | L | œ | 6 | 6 | 0 | + | - | + | ? | 3 | 0 | ₩. | 3 | m | | | | • | · · | 7. | 8 | 6 | 19.9 | ċ | + | + | 21.8 | ? | 3 | ~ | m | 3 | Ю | | | 0 % | ζ. | E | 7 | 00 | 6 | • | c | 0 | •
•4 | | 8 | å | ~ | ™) | m | ь. | | | | 15.2 | 16.5 | 17.6 | 4.4 | 19.2 | 0 | 20.4 | 50.9 | • | _ | • | 22.5 | 3 | • | 3 | 3 | | | | 3. | ¢ | - | œ | 6 | 6 | 0 | 0 | + | + | ~ | ~ | 5 | 3 | M | 3 | | | | Š | 9 | 7. | œ | 6 | ٥. | 0 | 0 | ÷ | -1 | ? | 2 | ~ | ٠
س | * | ۵. | | | | • | ά. | 7 | 80 | • | • | C | C | 21.4 | | 22.1 | \sim | 22.8 | 23.0 | | 23.5 | | | | ٦. | · | 7 | 80 | on | 0 | 0 | 0 | - | | ~ | 2 | ~ | м. | ~ | m | | | | 3. | · | 7 | ď | 6 | о· | j | 0 | + | + | ~ | d | 3 | 3 | 10 | m | | | 37 | 15.1 | 16.4 | 17.5 | 18.4 | 19.1 | 19.8 | 20.4 | 50.9 | 21.4 | 21.8 | 22.1 | 25.5 | 22.8 | 23.0 | 23.3 | 23.5 | | | | ζ. | ÷ | ·. | ά | 6 | 6 | 0 | 0 | $\dot{\cdot}$ | 7 | ? | 5 | 2 | 3 | 3 | 3 | | | | | ç | 7 | œ | 6 | φ. | ċ | ċ | √-I | + | ٠. | 8 | ċ | m | 3 | m | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.75 | | | | | | | | | BET | | | | | I | 1.0 | 1 | 1 | |-------------|--------------------|------|------|---------------|------|----------|----------|-------------|---------------|----------|---------------|--------|---------------|------------|-------------|----------| | A M | 5.5 | 9.0 | 0.7 | . 6 | 0.0 | 1.0 | 1.1 | 1.2 | 1.3 | 1 4 | . 5 | 1.6 | 1.7 | i ec i | 6 | 2.0 | | !
!
! | 1 | 1 | ı | ,
,
, c | ŧ | 1
1 c | !
! | !
!
! | 1
1
1 G | 1
1 c |
 -
 C |
 |)

 C |)

 | , c | | | | • | = c | • | = c | • | | | • | | | | > c | > c | | | | | | | | | | | | | | | • | | | • | • | . נ | | | | | | | = 4 | | | | : | • | • | : | • | | 0 5 | • | • | | | • | | | | | | | • | | | 0 | 'n. | | • | • | • | | | | | | | | | | ~ | • | 4 | 4 | 4 | 4 | • | ÷ | 4 | | | | | | | | 0 | 4 | 3 | 2 | 3 | 1 00 | 3 | M | 8 | 3 | 4 | | | 0 | | | | 4 | 2 | 2 | 22.5 | | 22.8 | • | | ь. | 23.6 | 23.8 | 24.0 | | | | | | ~ | + | - | ÷ | 2 | 2 | 2 | 2 | ₩. | 3 | 5 | ₩ | ,
M | | | | M: | ċ | - | 0 | 0 | | * | 0 | 2 | ~ | 5 | 3 | 3 | 1 | 3 | | | 20.6 | 19.1 | 19.5 | 19.6 | 20.1 | 20.6 | 21.0 | - | | 2 |
25.5 | 5 | | 'n | 3 | 3 | | 25 | 7 | 7 | Œ | 5 | 6 | | Ċ | • | • | e. | ~ | ٥. | 6 0 | m | | 3 | | | 9 | 7 | α | 6 | 0 | 0 | | | - | ς. | ~ | 2 | (M | 3 | 2 | ~ | | | _ | 17.1 | 18.0 | 18.8 | 19.5 | 0 | 20.7 | 21.2 | 21.6 | 22.0 | 22.4 | 22.7 | 23.0 | 23.2 | 23.5 | 23.7 | | | 5. | ć | 7. | ď | 0. | 0 | 0 | + | • | ò | 0 | ? | ? | 3 | P | 3 | | | _ | • | 7 | • | 6 | 20.0 | 0 | 7 | * | 2 | ~ | 5 | 2 | 3 | 3 | 3 | | 30 | 3. | • | 7 | œ | 6 | 0 | c | - | - | - | 6 | ~ | ~ | 3 | ₩. | 3 | | | 15.3 | 16.6 | 17.7 | 18.6 | 19.3 | 20.0 | 20.6 | 21.1 | 21.5 | 21.9 | 22.3 | 25.6 | 22.9 | 23.2 | 23.4 | 23.7 | | | 5 | 9 | 7 | æ | 6 | 0 | 0 | . | - | . | ~ | 2 | ? | 3 | 3 | M | | | 'n | ç | 7 | 8 | 6 | 0 | 0 | + | - | ; | 5 | ٠
ن | 2 | ٠, | 3 | 3 | | 4 & | 5. | • | 7 | œ | 6 | · | 0 | • | + | ÷ | 5 | 2 | 0 | M | 1 20 | 3 | | | | v. | 7 | or. | 6 | 6 | ċ | ٠ | - | Ţ, | ٠. | N. | ~ | 1 | ~) | M | | | ζ. | · · | 7 | α | · | σ. | 0 | - | • | 4-1 | ? | 2 | ~ | 3 | 3 | 8 | | 2.83 | 15.2 | 16.5 | 17.0 | 18.5 | 19.3 | 19.9 | 20.5 | 21.0 | 21.5 | 21.9 | 22.3 | 22.6 | 22.9 | 23.2 | 23.4 | 23.7 | | | $\dot{\mathbf{r}}$ | · | · | œ. | 6 | • | Ċ | 1. | + | | ? | ò | <u>.</u> | . | 3 | 3 | | | v. | ċ | 7 | x | • | 6 | ∵ | ÷ | + | | · | ì | Ċ | m | * | ريا
• | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.76 | MARP
COVER
FACTOR | | 0
0
1
1 |
 | | 1
1
1 | ! | | BET | | 1 | | ļ | ! | ! | • | | | |-------------------------|----------|------------------|-------|------------|---|---------------|---------------|---------------|-----------|-------|----------|----------|----------|----------|----------|----------|--| | - X - | 0.5 | 9.6 | D . 7 | 1 | 0.0 | | 1.1 | 1.2 | 1. E. I | 4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 | | | 1
1 U | 1 | !
! | |
 | • |
 -
 c | i
i
i C | !
!
! c | !
! c | | | !
 C |
 | | • | , c | | | | • | | | | | | | | | | | ,
) (| | • | • | •
• • | | | | . | | | | | | | • | | | | 0 | 0 | · | D 1 | | | | | 0 | 0 | | | | | | • | | 0 | 0 | ; | 7 | ŝ | · | 5 | | | 6 0 | <u>-</u> | ·
- | C | <u>-</u> | 0 | 0 | c
C | | 0 | 29.8 | 26.5 | 25.5 | 25.1 | 25.0 | 24.9 | 24.9 | | | - | | ·
C | | | | | | | 25.7 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | | | | | | | 0 | 5 | 4 | 3 | m | 100 | 3 | 10 | 4 | 4 | 4 | | | | | | | | S. | M) | ~ | 2 | 2 | m | 2 | ω. | 3 | 3 | * | 4 | | | | ° ⊃ | | | , m | 22.0 | • | 2 | 22.2 | 22.4 | 22.7 | 22.9 | 23.2 | 23.4 | 23.6 | 23.8 | 4 | | | | | æ | 1. | 0 | 0 | | • | + | 3 | å | ~ | 3 | ۲) | 3 | 12 | 4 | | | 4.5 | 22.5 | 19.5 | 19.5 | • | • | 20.8 | 21.2 | - | ö | 2 | 0 | m | 3 | 3 | M | • | | | | r | o | C | c | c | c | | • | - | 0 | C | C | ۲ | ~ | ~ | ~ | | | ~ | • | 0 1 | | . (| • | | • | • | • | | •
u (| , 0 | · | • | •
) r | ,
) ~ | | | 9 1 | 10.7 | 17.0 | 1 C | 7.61 | × • • • • • • • • • • • • • • • • • • • | | 4.00 | * * * | 0 · T · C | 20.00 | 0.00 | 2000 | 1.02 | 200 | 7.50 | 200 | | | | •
• • | • | C (| • | | | | | • | • | ,
v (| | | •
> r | , P |) r | | | | ζ, | | 00 | 1 0 | • | · | • | | | v (| * | | · · | · | 。
つ | 0 1 | | | 56 | Š | ċ | 7. | œ. | 6 | | C | + | • | ~ | | \sim | 8 | 8 | 3 | 'n | | | | ir. | v. | 7 | ω | o' | 0 | 0 | . | • | 2 | ~ | 2 | 8 | 3 | m | 3 | | | | 'n | \$ | | α | 0 | 0 | C | ÷ | • | 2 | S | å | 3 | 3 | P | 3 | | | | 'n | · ·c | 7 | 9 | 0 | 0 | 0 | + | + | 2 | | 2 | ,
M) | ™ | 3 | 3 | | | | 'n | 16.7 | 17.7 | 18.7 | 19.4 | 20.1 | 20.7 | 21.2 | 21.7 | 22.1 | 22.4 | 22.8 | 23.1 | 23.3 | 23.6 | 23.8 | | | 4 | | ç | 7 | œ | 6 | • | ċ | ₹-1 | ** | • | \sim | 5 | M) | M | M | M | | | | ď | 4 | 7 | ox, | 6 | - | <u></u> | | | ~ | 0 | ~ | Μ, | P) | M | ~ | | | | 15 | | . 1 | | 0 | · c | C | | | 0 | | | , p | ~ | ** | | | | | | . 4 | 17.7 | 8 6 6 | 7.61 | 20.1 | 20.7 | 21.2 | 21.6 | 22.1 | 22.4 | 22.8 | 23.1 | 23.5 | 23.6 | 23.8 | | | | 3 | ċ | 7. | œ | 6 | 0 | c | •
• | • | 2 | ~ | 2 | 8 | 8 | | 3 | | | 3.9 | ζ. | ć | 7. | œ | 6 | ů. | 0 | +4 | •
• | à | 0 | 5 | ~ | 3 | m | 3 | | YARN BULK DENSITY = 0.77 | COVER
FACTOR
(K1) | - C | · · | 0.7 | 6 | 6.0 | 10.0 | 1 - 1 | BETA | 1 . 3 | 1.4 | 1 .5 | 1.6 | 1.7 | 1 60 | 1.9 | 2.0 | |-------------------------|------|----------|----------|---------------------|----------|--------|-------------|----------|----------|----------|----------|--------|----------|----------------|----------|--------| | | ì | 1 | | 1 1 | ě | i
è | t
5
1 |
 | | | 1 | 1 0 | | 1 | | 1 | | _ | | | | | | | | | | | C | • | | • | = | •
• | | _ | | | | | | | | | | | 0 | 0 | 0. | 0 | c. | ю
Ф | | | | | | | | | | 0 | | 0 | . | 7. | œ | 9 | • | 5 | | | 7 | c | ·
C | Ċ. | | 0 | | C | | 33.1 | 27.2 | 26.0 | 25.5 | 25.5 | 25.1 | 25.1 | | 19 | 0 | | | | | 0. | ° | 41.5 | 26.4 | 5 | 4 | 4 | 4 | 4 | 4 | 4 | | c | | | | | | | 4 | 4 | 4 | * | M. | .~; | 4 | 4 | 4 | 4 | | | | | | | •
• a | | · | | مم | ,
, |) M | , ,~ | ~ | ~ | 4 | 4 | | | • | | | •
= 1 | | · | , (| • | •
o c | |) P |) M | •
• | •
• | | 4 | | | | •
= | • | × | 6.77 | . , | 2.77 | 1.00 | 0.77 | ,,,,,, | 1.00 | 200 | 24.0 | 7 7 7 | | 2 4 6 | | | - | C | 4-4 | •
- : | - | | • | · | · · | · | ~ | ٠
١ | • | ٠
د د | · · | · | | 4 | 28.5 | 20.0 | • | • | 0 | 21.0 | | + | ò | 2 | ٠. | ٠, | رم
• | 3 | 2 | •
• | | | x | ac | 0 | 6 | Ċ | 0 | • | | • | 8 | ~ | 3 | 10 | ٠
س | 100 | 4 | | . C | 4. | _ | α | 0 | _ | c | • | - | 0 | 2 | 2 | 3 | ۲, | P) | 3 | 4 | | | | , , | <u>a</u> | 10.1 | | | 21.0 | | | ~ | 22.7 | 23.0 | M) | 23.5 | 23.8 | 4 | | | 9 | , ~ | oc. | 6 | 0 | 0 | | | - | 2 | 3 | 3 | 5 | m | 3 | 4 | | 60 | 15.8 | 17.0 | • | • | | 20.3 | • | | 21.9 | | è | 5 | 23.2 | 3. | 3 | 24.0 | | ŭ. | ζ. | 4 | ď | CIL | 5 | - | c | | • | 2 | ~ | 2 | ,
M | 3 | , | 4 | | | 2 | | 7 | σ. | 0 | | · - | | • | ~ | ~ | 2 | 2 | 12 | 3 | 4 | | | 3 | · · | 1 | 00 | 0 | 0 | C | - | | 2 | | d | 3 | 3 | 2 | 4 | | | | 16.8 | 17.9 | A . B | 19.6 | 0 | 20.8 | 21.3 | 21.8 | 22.2 | 22.6 | 22.9 | 23.2 | 23.5 | 23.7 | 4 | | a. | | \$ | 7 | œ | 0 | 20.5 | C | - | + | 2 | ζ. | cu | 3. | 3 | 5 | 24.0 | | | 7 | 4 | 7 | α | ď | c | · | | | \sim | | ÇU | M) | 3 | * | 4 | | | · d | | | | | | • | | ١, | C | C | · | | - | ~ | 4 | | | 'n. | ċ | • | x (| · (| • | - (| | | v | | | 0 1 | , | 0 6 | • | | 3.7 | 15.4 | 14.7 | 17.8 | 18.7 | 19.5 | 20.5 | 20.8 | 21.3 | 21 · R | 20.00 | 25.6 | 20.00 | 23.2 | 2.5.
C. 10. | 63.1 | 24.0 | | | ζ. | ċ | 7 | ٠
رر | · | 0 | c | | | · · | ٠, | ~ | ٠, | 2 1 | ٠ | •
• | | | 5 | ξ. | ٧. | a C | • | | c | + | | Ċ. | ς. | \sim | , | ٠. | ~ | 4 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 9.78 | | 10 | | | | ! | | 1 | 60
⊞ | | | | | t
1
1 | : | 1 | 1 | • | |----------|------|-----------|------------|------------|------------|-------------------------|----------|-------------|---------------|-------|---------|--------------|-------------|----------|----------|---------|---| | - X | 0.5 | , v | 0.7 | 1 &
1 C | 0 | 1.0 | | 1.2 | F . 1 | 1.4 | ٠.
ت | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 | | | 1
8 L | 4 | 1
2 (| 1
1 (| !
! | 1 | • | i
I (| 6
6
6 | 1
1
1 • |
 | i
 | | | | • | | 1 | | | | | | | | | | | | | | | | | • | • | | | | | | | | | | | | | | | | 0 | - | · | œ | | | | | | | | | | | | | | 0 | 0 | 6 | 7. | • | 9 | | | | 0 | c | c | 0 | c) | 0 | 0 | 0 | 0 | • | 28.0 | 26.4 | 25.8 | 25.5 | 25.4 | 25.3 | | | 19 | | | | | | 0 | | .0 | 27.3 | 25.6 | E) | 4 | 4 | 4 | • | 4 | | | | | | | | | C | 7 | Š | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | | | | | | 7 | 4 | | . ~ | | M. | . 1 | ~ | P. | 4 | 4 | 4 | | | | | | | ır | | 0 | | | ,
, | M7 | , M | | M. | 4 | 4 | 4 | | | | | | ~ | • | | , ,
, , , | . + | 2 | 2 | CU | , M) | · ~ | , m | | 24.1 | 4 | | | 4 | - | 2n.6 | 20.1 | 20.3 | 20.7 | 21,2 | 21.6 | 22.0 | 22.3 | 22.7 | 23.0 | | 23.6 | | 4 | | | | | a | o | c | q | c | c | • | • | C | C | C | ~ | ** | M | 4 | 4 | | | ` ' | 0 1 | •
C: (| • | | • | • | | • | , (| , (| | |) r | • | | | | | | 1/.7 | - LOS | 5 6 | 7.61 | 2007 | · 02 | 7:12 | 61.1 | 22.1 | 20.00 | 22.9 | 2.50 | ۲۰۲۶ | 7.00 | 24.0 | 7, 4, 0 | | | | ċ | • | • | • |) (| | • | • | ,
, | u c | | •
) r | ,
, |) r | •
) F | • | | | | Ċ | • | c | • | | • | | - | | • | | · | 0 | ٠
٢٠ | ٠
١٠ | • | | | 56 | ٦. | 7 | œ | 6 | 6 | Ċ | + | • | 2 | CV | Ċ | ~ | · | ~ | יי | 4 | | | 0 10 | 3 | 7 | ac | 6 | 6 | 0 | • | • | 2 | 2 | ~ | 8 | M | W | 3 | 4 | | | | ٠. | 7 | ď | 0 | 6 | 0 | - | 7-1 | ? | 2 | °. | 8 | 3 | (א | 3 | 4 | | | | 37 | 5 | Œ | œ. | 0 | 0 | | - | 8 | 2 | 2 | 3 | 8 | 3 | ,
M | 4 | | | | 15.4 | 16.9 | 18.0 | 18.0 | 13.7 | 0 | 21.0 | 21.5 | 21.9 | 22.4 | 22.7 | 23.1 | 23.4 | 23.6 | 23,9 | 24.1 | | | 4 | ζ. | Ġ | о <u>с</u> | œ. | 6 | 20.4 | 0 | + | ** | 5 | , | 3 | 3 | m | 3 | 4 | | | | r. | · | 7 | œ | 6 | 0 | Ċ | · | | 2 | 2 | 8 | 100 | М. | 80 | 4 | | | | J. | 4 | 7 | α | 6 | <u>_</u> | _ | | | 2 | 5 | ~7 | M. | ~ | ~ | 4 | | | | | | _ | or, | | | · c | • • | | 2 | | ٠
* | , m | · M | 8 | 4 | | | 33 | 15.4 | ٦٤.٩ | 17.9 | 18.9 | 19.4 | 20.3 | 20.9 | 21.5 | 21.9 | 22.3 | 22.7 | 23.1 | 23.4 | 23.6 | 23.9 | 24.1 | | | | • | ζ. | 7. | ď. | 6 | 0 | 0 | | + | ~ | · | , | ب | 8 | * | 4 | | # MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.79 | • | 2.0 | .0 | · | • | n | ŗ. | 24.9 | 4 | 4 | 4 | 4 | 4 | 7 | 4 · 4 · 4 | 4 | • | 4 | 4 | 4 | 4 | • | 24.3 | 4 | 4 | 24.3 | 4 | 4 | |-------------|----------------|---------------------------------------|-----|----------|-----|--------
------------|-----------|----------|------------|----------|--------|----------|-------------------|------------|-----|----------|-----|-----|----------|------|------|-----|--------------|-------|------------|----------| | 1 | 1.9 | | 5.0 | 0 4 | 0.0 | 5.0 | 24.7 | . J | 4 | 4.5 | 4.2 | 4 | • | 1.40 | . 4 | • | • | 4.1 | 4.1 | 4.1 | 24.1 | 4.1 | 4.0 | 0.4 | 24.0 | 4.0 | 4.0 | | •
• | 1.8 | | ċ | 27.9 | v 1 | 'n | 24.6 | 4 | 4 | 4 | 4 | 100 | . ~ | 200 | •
) M |) 1 | ٠
د | 8 | 3 | ₩. | 23.8 | 3 | 8 | ~ | 23.8 | 3 | 3 | | | 1.7 | . 0 | Ġ | 30.5 | • | N. | • | 4, | M | ∵ > | <u>س</u> | ~ | | 0.5.0
A | •
> M | 9 | 3 | m) | M) | 3 | 23.5 | 3 | w. | | 23.5 | * | M | | • | 1.6 | . 0 | | ٠ | | ٠. | | ۲, | ۵. | _ | m | H7 | | 0. K |) M | ? ! | 8 | ₩. | 8 | ~)· | 23.2 | ₩. | w) | ~ | 23.2 | ₩, | <i>ۍ</i> | | 1 1 1 | 34 | | • | | • | | | ۳, | 3 | | | P. | | 0.50 | | • | C | 0 | 2 | ~ | 22.9 | ~ | ζ. | c. | 22.9 | ~ | ~ | | 1 | 1.4 | · · · · · · · · · · · · · · · · · · · | | 0 | 0 | | • | ∾. | ۵. | M | 5 | C | | , , , , | , c | | cv. | 2 | 2 | 5 | 22.5 | 0 | 2 | S | 22.5 | ~ | · | | | بنة
دما | | | 0 | • | හ | 4 | 3 | ~
~ | 22.7 | 2 | C | J (| ָ
מַנְ
מַנְ | | , | 5 | ~ | è | 5 | 22.1 | ò | 2 | C | 22.1 | Š | 2 | | 8 I | 1.2 | 0 | | | | | 5. | ان | ċ | • | 0 | c | •
J • | 21.0 | •
- ; • | + | • | • | • | - | 21.6 | | • | , | 21.6 | • | -4 | | | 1.1 | 0.0 | | | | | 0 | ~ | 5 | i | • | | • | 4.12 | | ; | ~ | ÷ | • | <u>.</u> | • | • | | | 21.1 | | - | | 1 | 1.0 | 0 | | | | | c | ħ. | °. | • | 21.5 | | • | 200 | D (| • | 0 | 0 | 0 | _ | 20.5 | ċ | 0 | _ | 00.00 | · c | 0 | | !
!
! | 0.0 | | | | | 0. | | ٠ | 3 | • | 0 | с
с | • | = c | , | 0 | 0 | 6 | 0 | 0 | 6 | 19.8 | 9 | 0 | ۵. | 6 | • | | 1 | 0.8 | 0 | | | | ·
C | . : | C. | 7. | *** | | c | • | 40.0 | • | · | · | 0 | 0 | 5 | | | 0 | 0 | 0 0 | 0. | 6 | | • | 0.7 | | | ·
c | | | | | Ċ | ~ | 20.4 | O | • | 4.00
5.4 | | œ | œ | œ | 30 | ď | œ | 18.1 | œ | α | 18.0 | . ac | œ. | | • | c | | | <u>.</u> | | ć | | | | • | 21.5 | c | • | | | 7. | 7 | 7 | , | 7 | 17.0 | 7 | 7 | 4 | 0.4 | ć | ·T. | | 1
3 | 0.5 | == | | | | 0 | с
• | | | | 9 | 3 | • ! | | •
0 | ċ | 9 | | 5 | r. | v. | | ι. | ٠, | 1, c | <i>'</i> . | τ. | | | , , | 15 | 3.5 | | | | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR IND BETA YARN BULK DENSITY = 0.80 | SYTE C | | | | | | 1 | 1 | 90
EE | | 1 | (|
 | 1 | 1 | 1 | 1 | |---|-----------------|----------|--------|------|--------|------|--------|--------------|------|---------|--------------|------------|----------|--------|------|------| | - AC - CX | ا
. د | | 0.7 | 0.0 | 6.0 | 1.0 | 1.1 | 1.2 | 1.3 | 4.1 | 1.5 | 1.6 | 1.7 | 60 | 4.9 | 2.0 | | !
!
! ४ | : <u>=</u>
1 | | | | |
 | |
 | | |
 | | | | | . 0 | | | | | | | | | | | | | | • | 0 | 0 | | 0 | | | | | | | | | | | | | c | 0 | ~ | 0 | 7. | • | | | 0 | ·
c | 0 | 0 | 0. | | | | 0 | 0 | 30.4 | 27.5 | 26.5 | 26.1 | 55.9 | 25.8 | | 19 | | | о
С | • 0 | | | | 0. | 30.1 | 26.7 | r. | S. | 5 | 5 | 5 | 5 | | 20 | | | | | | 0 | 3 | ÷ | ů. | 4 | 4 | 4 | 4 | 4 | 4 | T) | | | 0 | | 0 | ت د | 0 | 26.2 | 24.4 | 23.9 | 23.8 | 23.9 | 24.0 | 24,1 | 24.3 | 24.5 | 24.7 | 24.8 | | | | | C | 5 | M; | ~ | 2 | ₩) | 3 | 3 | m) | 8 | 4 | 4 | 4 | 4 | | | | | | | | ċ | ~ | 0 | ċ | Š | 3 | 3 | 4 | 4 | 4 | 4 | | | | | 6 | 0 | + | | •
• | 5 | 2 | ن.
• | 8 | رم
• | M | 4 | 4 | 4 | | 25 | 0 | • | 0 | - | 0 | | + | 8 | 2 | \sim | 10 | M | ₩ | 4 | 4 | 4 | | | 17.7 | 18.4 | 19.1 | 19.8 | 20.5 | | 21.5 | 22.0 | 22.4 | 22.8 | 23.5 | 23.5 | 23.8 | 24.0 | 24.3 | 24.5 | | | ċ | 7 | œ | • | 0 | - | | H | 5 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | | | \$ | 7 | œ | 4 | 0 | 0 | ; | + | 5 | ٥. | | ٠ <u>٠</u> | 3 | 4 | * | 4 | | | • | 7 | 60 | 6 | 0. | o. | • | + | ò | Ci | M | 3 | 3 | 4 | 4 | 4 | | 3.0 | • | 7 | œ | 0 | | 0 | 7 | +-4 | 5 | 5 | M3 | 8 | 3 | 4 | 4 | 4 | | | 3 | 7. | œ | 6 | င် | ů. | • | , | ÷ | ? | · | · · | ,
, | 4 | 4 | 4 | | | 15.8 | 17.2 | 18.5 | 19.5 | 20.0 | 20.6 | 21.5 | 21.8 | 22.2 | 22.7 | 23.0 | 23.4 | 23.7 | 24.0 | 24.2 | | | | ŗ. | <u>.</u> | œ | · | 6 | 0 | • | + | 2 | 2 | ς, | ٠. | ٠, | ٠
• | 4 | 4 | | | s. | 7. | 60 | 0 | 0 | | 1. | - | Ċ. | 2 | ~ | • | M | 5 | 4 | | | | 5. | 7 | α. | • | 0 | 0 | • | + | 8 | 2 | ارمة
• | ٠×. | 3 | 2 | 4 | 4 | | | 3. | 7 | œ | 6 | 6 | 0 | • | | 5 | ٠
ا | | 3 | 3 | ٤, | 4 | 4 | | | · v | 7 | œ | Ġ | о
О | 0 | ; | ÷. | ÷ | ~ | M) (| رم
د | ٠
ا | י נא | ÷ . | 4 . | | 00 C | 15.7 | 17.0 | 18.2 | | 9 0 | 0.02 | 21.2 | 21.7 | 22.2 | 22.6 | 23.0 | 23.3 | 23.7 | 23.9 | 24.2 | 4.40 | | | • | • | c
C | • | • | • | • | • | v | · | • | " | • | • | • | • | MAXIMIM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.81 #### FIVE-HARNESS WEAVE FABRICS | 307
424
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
1207
12 | | 0 | 6 | 0 0 0 0 0 0 4 5 5 5 5 5 5 5 5 5 5 5 5 5 | 74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 141 CCCC C4W00 | m - 00000 04 W W C C | 4 | 4 0000 N N N N N N N N N N N N N N N N N | - | 4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 800 0000
11 0000 4444 | 0000 0000
0000 0000
000 0000
000 0000 | 0000 00000
 41 0000 04444 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
--|--|---|---|---|--|----------------|---------------------------------------|---|--|---|---|--------------------------|--|-------------------------------|---------------------------------------| | 0 00000 BEERE ESERE
4 100000 04004 100000 | | \rightarrow \bigcirc | | | | | · · · · · · · · · · · · · · · · · · · | | | | | |
१ वक्षक विवयंत्र विवयं | | . 44444 44444 44444 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.82 | | | !
!
! |
 | | 1 | !
! |
 | BET | | | | 1
1 | 1 | 1 | ; | 1 | 1 | |-------|--------------|-------------|----------|----------|--------|--------|------|------------|---------------|------------|----------|------------|------------|------|------|------|---| | 4 m 1 | | , v, i | 0.7 | C | 6.0 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 | 1 | | 5 | • | | | | | | | 0 | ت | | | 0 | | | 0 | | | | _ | 0 | · c | · C | | c. | | 0 | C | 0 | | · c | 0 | С | 0 | ů. | 33.2 | | | | | | | | | | | | | | | 0 | 0 | 0 | • | 7. | | | | | | | | | | | | | 0 | 0 | | • | 9 | • | • | | | | • | | | | | | ċ | | | 28.1 | | 9 | 5 | ĸ, | 5. | S | | | | | C. | | | | 0 | 6 | ~ | 5 | 5, | * | ις, | 5 | N. | r. | 5 | | | | | | | | | Ġ | 5 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | | | | 0 | c | 0 | 0 | رn . | • | 23.5 | 23.5 | 23.6 | 23.8 | 24.0 | 24.2 | 24.5 | 24.7 | 24.9 | 25.0 | | | | | c. | | | | c, | ? | * | 8 | ٠, | 3 | 4 | 4 | 4 | 4 | 3 | | | | | 25.7 | | . | | +1 | 2 | Ċ | ю. | m | M | ,
M | 4 | 4 | 4 | 4 | | | | $\dot{\sim}$ | c. | c | c | ~~·4 | w-4 | 2 | 2 | <i>⊘</i> | M 3 | M | ~ | 4 | 4 | * | 4 | | | | | 1 a d | 19.5 | 20.5 | 20.P | • | - | 22.3 | 2 | 25.1 | 23.5 | 23.8 | 4 | 24.3 | 24.6 | 4 | | | | | å | ٠
د | 6 | = | - | | ? | ? | 3. | ₩. | m | 4 | 4 | 4 | 4 | | | | ė | 7. | α. | 6 | c: | + | - | 2 | 2 | δ. | * | ~ ⊃ | 4 | 4 | 4 | 4 | | | | | ` ` | • | ·
• | ۰ | 7 | 21.6 | \sim | • | ٠
دري | 3 | м
М | 24.0 | 4 | 4 | 24.8 | | | 0 | ç | 7 | α | • | e. | • | • | ~ | $\dot{\circ}$ | *> | PC | ~ ⊃ | 4 | 4 | 4 | 4 | | | | 16.2 | 17.5 | 18.6 | 49.5 | 20.3 | 20.9 | 21.5 | 22.1 | 55.5 | 55.9 | 23.3 | 23.7 | 24.0 | 24.3 | 24.5 | 24.8 | | | | ċ | 7. | α. | 0 | с | ć | | 2 | 5 | 2 | ™ | ۵. | 4 | 4 | 4 | 4 | | | | ç | ١, | α. | œ. | 0 | c. | - | ? | 5 | ر.
ح | ь. | ٠
س | ₹ 7 | ₹. | • | 4 | | | | • | ٠, | œ | • | c. | c | ** | ,
, | ò | ∴ | P . | 3. | 4 | 4 | 4 | 4 | | | 45 | | 7 | • | 0 | c. | - | • | \sim | O. | \sim | m | (۳ | 4 | 4 | 4 | 4 | | | | ľ. | 6 | αC) | ٠
ۍ | _
_ | 0 | | $^{\circ}$ | ċ | CV | م | ~ | 4 | 4 | 4 | | | | | ٠
۲
٠ | . 7 . 4 | 1α.
4 | 19.3 | 20.2 | 50.9 | 21.5 | 22.0 | 55.2 | 55.9 | 23.3 | 23.6 | 24.0 | 24.2 | 24.5 | 24.7 | | | | · · | ` | α. | 0 | 0 | 0 | | ? | ċ | ~ | 3 | ~ | ~ | 4 | 4 | 4 | | | | 1. | 7 | ٠
م | 0 | Ċ | Ċ | | ς. | Ċ | \sim | ~ | ~> | (۲۰ | 4 | 4 | ₹. | | # MAXIMUM FILLING COVER FACTORS (42) IN TERMS OF WARP COVER FACTOR AND BETA YARN RILK DENSITY = 0.83 | | 1.3 1.4 1.5 1.6 1.7 1.8 1 | • | . 0. 0. 0. 0. | . 0. 0. 0. 31.4 2 | . 0. 0. 29.8 27.9 27. | . 29.0 27.1 26.3 26.0 25.9 2 | 4 25.6 25.4 25.3 25.3 25.4 2 | .6 24.6 24.6 24.7 24.9 25.0 2 | .8 24.0 24.2 24.4 24.6 24.8 2 | .4 23.7 24.0 24.2 24.5 24.7 2 | .2 23.5 23.8 24.1 24.4 24. | .0 23.4 23.7 24.0 24.3 24 | .9 23.3 23.6 23.9 24.2 24.5 2 | 2 23.6 23.9 24.2 24.5 2 | .8 23.2 23.5 23.9 24.2 24.4 2 | .7 23.1 23.5 23.8 24.1 24.4 2 | .7 23.1 23.5 23.8 24:1 21.4 2 | .7 23.1 23.5 23.8 24.1 24.4 2 | 7 23.1 23.5 23.8 24.1 24.4 | .6 25.1 23.5 23.8 24.1 24.4 2 | .6 23.1 23.4 23.8 24.1 24.4 2 | .6 23.1 23.4 23.8 24.1 24.4 2 | .6 23.1 23.4 23.8 24.1 24.4 2 | 0 23.4 23.8 24.1 24.4 | .6 23.0 23.4 23.8 24.1 24.4 2 | |------|---------------------------|---|---------------|-------------------|-----------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------------|---------------------------|-------------------------------|-------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-----------------------|-------------------------------| | BETA | 9 1.0 1.1 1.2 | • 0 • 11 | 0.0.0 | 0.0.0 | 0. 0. | 0.0.0 | 0. 0. 29.1 2 | 34.8 24.0 24.9 2 | 5 24.3 23.8 23.7 2 | 9 22.8 22.9 23.2 2 | R 22.1 22.5 22.8 2 | 3 21.7 22.2 22.6 2 | 0 21.5 22.0 22.5 2 | 7 21.3 21.9 22.4 2 | 6 21.2 21.8 22.3 2 | 5 21.2 21.7 22.3 2 | 4 21.1 21.7 22.2 2 | 4 21.1 21.7 22.2 2 | 4 21.0 21.6 22.2 2 | 3 21.0 21.6 22.2 2 | 21.6 22.2 2 | 3 21.0 21.6 22.1 2 | 3 21.0 21.6 22.1 2 | 3 21.0 21.6 22.1 2 | 3 21.0 21.6 22.1 2 | | | n.6 0.7 | - | . 7. | 0 | 0 | . u . 0. | 0,000 | 0 0 0 | 0. 0. 26 | n. n. 24.n 22 | .9 22.2 21.7 2 | 0.5 20.5 20.8 21 | 9.1 19.7 20.3 20 | R.4 19.3 20.1 20 | R.1 19.0 19.9 20 | .8 18.9 19.7 2 | 7.7 18.8 19.7 20 | 7.4 18.7 19.6 20 | 7.5 18.6 19.6 20 | 7.5 18.6 19.5 20 | .4 18.6 19.5 20 | 7.4 18.5 19.5 20 | 7.4 18.5 19.5 20 | 7.4 18.5 10.5 24 | 7.4 18.5 19.5 20 | | | K1 | 0 | 9 | 7 | 30 | 6 | 0 | 9 | - C | ري
د | 4 | 25. | 14. | 7 17. | 8 17. | 9 1 | 0 16. | 1 16. | 2 16. | 3 16. | 4 | 15. | 14. | 7 14 | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.84 | 9 | | | | | | | | | | | | | | | | | |---------|------|------|----------|--------|---------|-------------|--------|----------|----------|-------------|----------|----------|-------|----------|-------|----------| | O S E R | | | | | | | 1 | 96 | (| | (| 1 | 1 | 1 | | | | (K1) | 0.5 | 9.0 | 0.7 | 0 | 6,0 | 1.0 | • | 1.2 | 1 | 4 | 1.5 | 40 | 1.7 | ↔ | 1.9 | 2.0 | | 1 | 6 | ŧ | • | • | • | 6
6
6 | !
! | l
1 | !
! (| 1
 -
 | i
! | ı |
 | 1
1 | |)
 (| | | | | 0 | | | | | | | | | | | • | | • | | | | | - | | | | | | | | | | | 0 | ° | • | | | | | <u>-</u> | | | | | | | 0 | | 0 | 0 | m | 6 | φ. | | | | | | | | | | | | | | - | α | 1 | 1 | ¥ | | | • | | | • | | • | | | | × 0 × | 27.6 | 26.7 | 26.20 | 26.00 | 26.40 | 26.00 | | | | | • | | | • | | | | • | • | • | • | • | • | • | | | | | | 6 | | | 0 | | 7 | 9 | 5 | ľ. | 5 | 5 | 3 | S. | | | | | | | | 0 | 9 | 5 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | | | | | | | 00 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | in. | S. | r. | | | | | | 4 | , M | P7 | M. | | 1 | رما | 4 | 4 | 4 | 4 | ic. | R. | | | | | 22.8 | 22.0 | 22.1 | 22.3 | 22.7 | 23.0 | 23.3 | 23.7 | 24,0 | 24.3 | 24.5 | 24.8 | 25.0 | 25.5 | | | | |)
 | | | | | | | | | | | | | | | | • | ÷ | 0 | + | · | • | 3 | 2 | ň | 3 | 3 | 4 | 4 | _ | • | Š | | | 6 | 0 | 6 | 0 | + | 1 | 3 | 2 | м
• |
3. | 3 | 4 | 4 | 4 | • | 5 | | | 7 | œ | 0 | 0 | 0 | +4 | 2 | 2 | 3 | 3 | ,
(M | 4 | 4 | 4 | 4 | r, | | | 7 | σc | 0 | - | 0 | + | • | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | Š | | | 16.8 | 18.0 | 19.0 | 19.9 | 20.0 | 21.3 | 21.9 | 22.4 | 22.9 | | 23.7 | 24.0 | 24.3 | | 24.8 | 25.1 | | C P | 4 | - | α | 0 | 2 | | | , | , | (| • | 4 | 4 | 4 | 4 | S | | | 16.4 | 17.7 | 00 | 19.7 | 00.5 | 21.2 | 21.8 | 22.3 | 22.8 | 23.2 | 23.6 | 24.0 | 24. | 24.6 | 24.8 | 25.1 | | | | | σ | 0 | <u></u> | , ,
 | - | ,
 (| , | ~ | ~ | M | 4 | 4 | 4 | u. | | | • | | • a | . 0 | | | 1 + | . 0 | | ,
,
, |) M | , M | | | 4 | , tr | | | • | • | • | • | • | | • | J (| u c | •
• | | •
> r | • | • | | | | | · | 7 | œ | ·
• | • | •
-1 | | · | · | • | • | • > | 4 | 4 | 4 | ,
, | | 35 | • | • | œ | 0 | 0 | + | • | 2 | 2 | ₩, | 3 | | 4 | 4 | 4 | 3. | | | 9 | r. | a | 6 | 0 | | + | | 2 | ,
M | m | ~ | 4 | 4 | 4 | 5 | | | ¢ | 7 | œ. | 0 | Ç, | . | ÷ | ċ | 5 | ~) | W | <i>ي</i> | 4 | 4 | 4 | Ŋ | | 3.8 | 16.1 | 17.5 | 18.6 | 19.6 | 20.4 | 21.1 | - | 22.3 | 22.8 | 23.2 | 23.6 | | 24.5 | 24.5 | 24.8 | • | | _ | ċ | 7 | œ | 6 | 0 | + | | 5 | 2 | 3 | 3 | .×> | 4 | 4 | 4 | 'n | # MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.85 #### FIVE HARNESS WEAVE FABRICS | BETA | U.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 | | . n. | . f, a. n. o. n. a. o. o. a. n. o. o. o. o. | . r. n. n. n. n. n. n. 0. 0. n. 0. 0. 36.7 30.2 28. | . n. n. 0. n. 0. 0. 0. 0. 0. 0. 32.8 29.0 27.9 27.3 27. | 0. 0. 0. 0. 0. 0. 0. 0. 32.2 28.1 27.1 26.6 26.4 26.3 26. | . 0. 0. 0. 0. 0. 35.7 27.6 26.4 25.9 25.8 25.7 25.8 25.8 2 | . 0. 0. 0. 0. 27.6 25.7 25.2 25.0 25.1 25.1 25.3 25.4 25.5 25. | . n. n. 31.2 25.3 24.5 24.3 24.4 24.6 24.8 25.0 25.2 25.4 25. | . 0. 26.0 23.7 23.4 23.4 23.6 23.8 24.1 24.3 24.6 24.8 25.0 25.2 25. | . 0. 23.6 22.4 22.3 22.5 22.9 23.2 23.5 23.8 24.1 24.4 24.7 24.9 25.2 25. | 21.6 21.1 21.3 21.7 22.1 22.5 22.9 23.3 23.7 24.0 24.3 24.6 24.9 25.1 25. | 0 0 10 4 30 1 30 7 31 4 31 8 32 4 32 9 33 6 34 9 34 3 34 8 35 1 35 | 8.1 18.8 10.6 20.4 21.0 21.0 22.0 22.1 23.1 23.5 23.9 24.2 24.5 24.8 25.0 25. | 7.3 18.4 19.3 20.2 20.9 21.5 22.1 22.6 23.0 23.5 23.8 24.2 24.5 24.7 25.0 25. | R 21.4 22.0 22.5 23.0 23.4 23.8 24.1 24.4 24.7 25.0 2 | 6.7 18.0 19.0 19.9 20.7 21.4 22.0 22.5 23.0 23.4 23.8 24.1 24.4 24.7 25.0 25. | 6.5 17.8 18.9 19.9 20.6 21.3 21.9 22.5 22.9 23.4 23.8 24.1 24.4 24.7 25.0 25. | 6.4 17.8 18.9 19.8 20.6 21.3 21.9 22.5 22.9 23.4 23.7 24.1 24.4 24.7 25.0 25. | 6.3 17.7 18.8 19.8 20.6 21.3 21.9 22.4 22.9 23.3 23.7 24.1 24.4 24.7 25.0 25. | 17.6 18.8 19.7 20.6 21.3 21.0 22.4 22.9 23.3 23.7 24.1 24.4 24.7 25.0 25 | 4 0 17 4 48 H 10 7 00 E 01 3 01 0 00 4 00 03 3 01 7 04 1 04 4 04 7 04 9 05. | 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 6.2 17.6 18.7 19.7 20.5 21.2 71.9 22.4 22.9 23.3 23.7 24.1 24.4 24.7 24.9 23. | 16.2 17.6 18.7 19.7 20.5 21.2 21.9 22.4 22.9 23.3 23.7 74.1 24.4 24.7 24.9 23.2 | 6.2 17.6 18.7 19.7 20.5 21.9 22.4 22.9 23.3 23.7 24.1 24.4 24.7 24.9 23. | 6.2 17.6 18.7 19.7 20.5 71.2 21.9 22.4 22.9 23.3 23.7 24.1 24.4 24.7 24.9 25. | |------|---------------------------------|---|--|---|---|---|---|--|--|---|--|---|---|--|---|---|---|---|---|---|---|--|---|--|---|---|--|---| | | (K1) | 1 | | | | | | 20 | | | | | | | | | | 0 | | | | | | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.86 | | ;
1 | : | (| | | | !
! | BET | | | 1
1 | 1 | 1 | | • | ! | ! | |--------|-------------|----------|--------|--------|----------|----------|---------|------|------------|----------|-----------|------|------|-------|------|------|---| | 4 - 1 | .5 | 9 | 0.7 | 80 | 6.0 | T 0 | 1.1 | 1.2 | 1.3 | 4.4 | 1.5 | 1.6 | 1.7 | 1 1 1 | 1.9 | 2.0 | 1 | | i
i | ;
!
! | 8
1 : | i
I | ;
; | • | l
I | | | | |)
) ; | | | | • | c | | | | | | | | | | | | | | | | | | • | • | | | | | | | | | | | | | | | | | | • | 0 | | | | | | | | | | | | | | | • | • | U | + | · | | | _ | | | | | | | | | | 0 | 0 | 36.6 | 0 | œ | 27.7 | | | | - | · | C | 0. | 0. | 0. | 0 | 0. | .0 | . 0 | 36.3 | 28.8 | * | 56.9 | | 9 | 9 | | | | | c | | | | | c | | QC. | 9 | × | 9 | 9 | • | • | 40 | | | | | | | | | C | α | | , R | 5 | 3 | 5 | 5 | 5 | 2 | 5 | | | | | | | | | , L | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | .0 | 5 | | | | | | | 7 | 4 | 7 | M) | 10 | 4 | 4 | 4 | 4 | 'n. | Š | 4) | Ŋ. | | | | 0 | 0 | 24.5 | 22.8 | 22.6 | 22.8 | 23.0 | 23.4 | 23.7 | | 24.3 | 24.6 | 24.8 | | 25.3 | 25.5 | | | č, | | ٥. | | | - | 2 | 0 | i, | 3 | 3 | 4 | 4 | 4 | 'n | S | 5. | | | | 0 | 0 | · c | 0 | 7 | 2 | 2 | ò | 3 | F) | 4 | 4 | 4 | S. | 5 | 5 | | | | · œ | 19.0 | 19.8 | 20.5 | 21.2 | - | 22.3 | 22.8 | 23.3 | 23.7 | 24.0 | 4 | 24.6 | 24.9 | 25.2 | 25.4 | | | | , | œ. | 0 | 0 | + | ** | 2 | 2 | 3 | 3 | + | 4 | 4 | 4 | 5 | 5 | | | | 17.1 | ά | • | Ċ | 0. | • | 0 | ? | 3 | m | 3 | 24.3 | 4 | 4 | S. | 5 | | | | 9 | σc | 6 | 0 | 0 | • | c | ò | 100 | 80 | (M | 4 | 4 | 4 | 5 | 5 | | | | 16.6 | 18.0 | 19.1 | 20.0 | 20.8 | + | 22.1 | 22.6 | 23.1 | 23.5 | 23.9 | 24.2 | 24.6 | 24.8 | 25.1 | 25.4 | | | _ | · | 7 | 6 | 6 | - | v=4 | 2 | ~ | ار.
• | ٠. | 3 | 4 | 4 | 4 | 5 | 3 | | | | \$ | ۲. | σ; | 6 | 0 | - | 0 | ~ | 3 | ~ | (ما | 4 | 4 | 4 | 5 | 3 | | | | • | 7 | • | • | • | 21.4 | ς. | 2 | • | 3 | 3 | 4 | 4 | 4 | 5 | u\ | | | | 9 | 7 | οc | C | c | - | ~ | 0 | ₩) | , so | P . | 4 | 4 | 4 | 5 | 5 | | | | | í | | | | | ,
ור | | ~ | ~ | ~ | 4 | 4 | ٧ | ur | 4 | | | - | | | c α | , 0 | | • • | | | , M | . n | . M | 4 | 4 | 4 | , 10 | 5 | | | , x | × .0 | 17.7 | x . | 20. | 20.6 | 21.4 | 20.0 | 22.5 | 23.0 | 23.5 | 23.9 | 24.2 | 24.5 | 24.8 | 25.1 | 25.3 | | | | 9 | 7 ° | a. | 0 | <u>.</u> | · | ~ | ~ | m | <i>ي</i> | 3 | 4 | 4 | 4 | S. | رة | | # MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.87 | • | 0 1 | • | • | | • | • | • | • | • | • | • | | • | | | • | • | • | 'n | • | • | • | • | • | • | • | ĸ | • | |-------------|------------|----------------|-----|----------|------------|----------|----------|--------|----------|----|------------|------|----------|-----------------|----------------|-----|----------|---|---------------|----|------------|------|----------|----|----|---------|-------|--------------| | ì | 0 1 | | | C | u (| 2 | V | 2 | ~ | N | 25 | 2 | 2 | C | 20,0 | ~ | 0 | J | 25 | ~ | 2 | C | (V | 2 | ~ | ~ | 25 | C | | 0
3
0 | | · • | C | | Ja | 0.07 | ċ | \$ | 3 | 3 | 25.6 | 5 | 5 | ď | 25.3 | S | u. | ١ | 25.3 | S. | r. | رى | ĸ. | 5. | Š | 3. | 25.5 | 5 | | 1 | 1.8 | | · C | | | / . 20 | J | ć | م | ŗ. | 25.4 | 5 | 5 | ď | 75.7 | 5 | ır | • | 25.0 | J. | د | 5. | 5. | 5 | 5 | 5 | 25.0 | น่ำ | | 1 | 1.7 | | | •
> c | 5 c | c.00 | • | 9 | 5 | 5 | | ŗ. | 4 | 4 | 24.8 | 4 | 4 | • | 24.7 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 24.7 | 4 | | 1 | 1.6 | · · | | | • | | • | • | ς. | 5. | 4 | | 4 | 4 | 1. 4.
T. T. | 4 | 4 | • | 24.4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 24.3 | 4 | | • | 1.5 | !
! c | | | | | · | ¢ | r. | ٠. | 4 | | 4 | 4 | 24.0 | ঝ | 4 | • | • | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 24.0 | 4 | | | 1.4 | | | | | | | 7 | 5 | 4 | 24.4 | 4 | 4 | ~ | 23.30 | h-7 | 14 | • | 23.7 | 3 | 3 | ω. | ~ | ۶. | 7 | ۵. | 23.6 | ۶. | | 1 | . ± | 1 0 | | | | | | 6 | 5 | 4 | 4 | 53.9 | ₩ | ~ | 2.50 | , M | , M | • | | M | ,
M | | 3. | ~ | 3 | ,
M, | 23.2 | ۵. | | 8ET | 1.2 |

 c | | | | | | | ċ | 4 | 4 | 23.5 | M | P- | 7.50 | | , | • | ~ | ~ | 2 | 22.7 | ċ | ~ | ς. | 2 | 25.3 | 'n | | !
! | , i |

 c | | | | 0 | | Ċ | <u>-</u> | م | ~) | 23.2 | ~ | 2 | 22.5 | , , | | • | ? | Ċ | ? | 25.2 | 2 | ~ | 2 | ` ∼ | 22.1 | $\dot{\sim}$ | | 1 | 1.0 | i c | | | | . | | | 0 | ø. | 4 | 23.0 | ~ | | 21.0 | • • | • | • | *** | ÷ | I | + | 21.5 | | , | • | 21.5 | H | | | 0 |
 | | | | | | 0 | • | 6 | 4 | ò | | • | | | • | 1 | 1 | œ. | • | Ċ | 0. | 0 | C | · c | 80.0S | ů. | | | 0 . 8 | 1 | | | | - | | 0 | | C | ċ | 23.2 | - | ,
1 T | 2007 | | | _ | 0 | Ċ. | ċ | C | • | · | 0 | 5 | 10.0 | 0 | | ı | n . 7 | !
! | | | | | · | | | | \subset | 25.8 | • | ,
, c | 0 - 0 | . 0 | • 0 | • | 6 | 0 | 6 | 0 |
10.0 | 6 | 0 | 5 | 18.9 | ac. | | , | |
 | | | | | • | ·
c | | | | c | ~ | | 2 2 2 | • a | •
: a | ċ | α | œ | a , | | _ | 7 | 7 | | 17.8 | 7 | | | ι (
ι ⊂ | 1
1 ==
1 | | | | - | . | | | | | ٠. | | | | , ~ | | | 7 | ċ | c | ċ | 16.5 | • | v. | • | 16.4 | 4 | | | 4 F | 1 4
1 R | · • | 2.5 | · (| 0 | 0 | 0 0 | 21 | 22 | 23 | 40 | 25 | | 0 7 0 | , c | | | 3.0 | 71 | 32 | 33 | 4 | 35 | | | 38 | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.88 | | 0 | 30. | 22200 | • • • • | | | |-------------------------|---------|--|--|---|---|--| | | 0 | | 1010101010 | 2222
2323
2323
2323
2323
2323
2323
232 | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | ~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2000
2000
2000
4000
2000
2000
2000
2000 | 000000
000000
000004 | 000000
000000
44444 | 000000
000000
0000000
0000000000000000 | | 1
1
1
1 | 1.8 | 2000 | 000000
00000
00000
00000 | 25.53 | 22.52.2
22.52.2
23.11.2
23.11.2
23.11.2 | 255.11 | | | 1.7 | 0.
0.
31.6
27.6 | 2000
2000
2000
2000
2000
2000
2000
200 | 22 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 | 0.00000
44444
0.000000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 1.6 | 00000 | 000000
00000
00000
00000 | 00000
4444
0 7 9 9 9 | 00000
4444
00000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | ;
! | U` 1 | | 00000
00044
0000 | 00000
4444
04000 | 00000
44444
00000 | 44444 | | 1 | 4.1 | 00000 | 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 00000
44000
00000 | 0000000
0000000 | 23.7
23.7
23.7
7.82
7.82 | | 1 | 1.3 | 00000 | 0 0 0 0 4 4
0 0 0 4 6 | ろろころろ
333333
87654 | できるのの
おきちちき
4 4 5 5 5 | $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} $ | | 8ET/ | 1.2 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 888888
48400 | 00000
00000 | 000000
00000
00000 | | 1 | 1:1 | 00000 | 8000
041048
0044 | と さん さる で し ひ し し り ら ろ ろ ろ ろ ろ ろ ろ ろ ろ み | 00000
00000
40000 | 22222 | | 1 1 | 1.0 | | 0
0
7
7
8
8 | 2000
2000
2000
2000
2000 | 21.7
21.7
21.7
21.7 | 21.6
21.6
21.6
21.6
21.6 | | | 0.0 | | 2000
2000
2000
2000 | 8000
8000
8000
8000
8000
8000 | 21.1 | 20000 | | | 0 . 8 | 00000 | 0000 | 00000
01000
0000 | 2000
2000
2000
2000
1100 | 200.0 | | | ŋ.7 | | 28.0 | 2000
2000
1000
1000
1000 | 91
91
91
91
91
91
91
91 | 1.00
1.00
1.00
1.00
1.00
1.00 | | | 9.0 | 00000 | 00000 | 24.6
20.6
10.6
18.6 | 4 0 4 6 6 6 7 6 7 6 9 9 9 9 9 9 9 9 9 9 9 9 9 | 17.9
17.9
17.9
17.9 | | 1 | 0.5 | 00000 | 00000 | 222.3
19.01
17.00 | 7 7 7 7 7 9 1 1 4 4 7 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 100
100
100
100
100
100
100
100
100
100 | | WARP
COVER
FACTOR | [X 1] | 11 11 11 11 11 11 11 11 11 11 11 11 11 | 01000 | | | 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.89 | 1 | 2.0 | 10101 | , ,,,,, | 000000
00000
00000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 22 22 22 22 22 23 23 23 23 23 23 23 23 2 | |--------|---|----------------------|---------------------------------------|--|---|--| | • | 6.1 | 4 / 1 | , 0,000 | ~~~~
~~~~ | r v v v v v
o o v v v v | α α α α α α α | | • | | , wo | v 64976
v 64979 | N 4 4 . W | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 88888
88888
88888 | | t
I | 4 | ~ : | ~ ~~~~ | | 00000
00000 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | | | 1.7 | 00000 | | 25.2
25.1
25.1
25.1
25.1 | 25.0
25.0
25.0
25.0 | 22.0
20.0
20.0
20.0 | | | 1.6 | | | 0.0000
4.444
0.000
0.000
0.000 | 4444
4444
74 | 00000
4444
00000 | | | ₹.5 | 6000 | ~ veru4 | 000000
4444
20044 | 00000
4444
wwwww | 000000
4444
888888888888888888888888888 | | | 4.4 | 0000 | | 22200
4444
8.244
0.00 | 223.9
23.9
23.9
23.9 | 00000000000000000000000000000000000000 | | • | 1.3 | C C C C C | | 223.0
233.0
23.0
6.0
6.0 | 22222
22222
22222 | 000000
000000
44444 | | BET | 4.2 | | | 2222
2223
4.822
5.83
1.83 | 23.0
23.0
23.0
23.0 | 00000 | | | 1.1 | | | 223.2
223.2
22.7
22.7 | 222
222
222
324
444 | 00000
0000
4 4 4 4 4 | | 1 | 1.0 | 0000 | | 22.8
22.5
22.5
22.1 | 21.9
21.9
21.8
21.8 | 21.8
21.7
21.7
21.7 | | | 6.0 | 0000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ~~~ | · · · · · | 221.
221.
20.
1.
20. | | | 0.8 | 0000 | C C C C C C V | 000 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 00000 | | ! | 0.7 | 0000 | | | 119
119
119
12
12
13 | 110000 | | | j.6 | | | | 8 1 1 1 1 8 1 | 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | , | 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = | | | | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | 4 A | 21 27 20 1 20 1 20 1 | + 00000
• 04084 | | | | | | | | | 250 | | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.93 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | |---| | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 2.7.
.0.
.0.
.0.
.0.
.0.
.0.
.0. | | • | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.91 | | | | | | | | | BET | | | | | | | ! | 1 | | |------------|--------------|----------|--------|----------|-------------|------|----------|-------------|----------|------
----------|--------|-------------|------|--------|----------|---| | A X | | 9.6 | 0.7 | 3.6 | 0.0 | 1.0 | 1.1 | 1.2 | 1.3 |
 | 4.5 | 1.6 | 1.7 | 1.8 |) + I | 2.0 | , | | 1 | • | 1 1 | l
1 | • | !
!
! |
 | l
I | t
1
1 | 1 | ı |
 | i
i | !
!
! | | 1 | | | | 25 | | | | | | | | | | | | | | | | • | | | 16 | | | | œ. | | | | 0 | | 0 | 9 | 0 | | 0 | | 0 | | | 17 | | | | | | | | | | | C | | 0. | 0 | 0 | ÷. | | | 3 0 | | | | | | | | | | | <u>.</u> | 0 | | | | • | | | 19 | · c | <u>-</u> | | | 0 | 0. | c | C C | 0 | | 38.8 | | a 0 | œ | 7 | _ | | | 00 | tu | c | c | | | | | _ | • | 6 | 60 | 7 | | 7 | | 7 | | | , C | | | | | | • | • | 0 | 7 | 9 | | 9 | 9 | 9 | 9 | • | | | 100 | • , | | | | | 7 | | | , r | 7 | , IC | J. | • | 9 | • | • | | |). (c | | | | | 00 | | | 4 | , iv | 5 | 2 | 5 | 5 | 26.0 | 26.2 | Š | | | 4 | = | | | 25.5 | 24.2 | 24.6 | 24.1 | 24.3 | 24.6 | 24.8 | 25.1 | 25.4 | 25.6 | 5 | | 26.3 | 25 | | | 3. | 2 | ٠
ن | 2 | 3 | 3 | 4 | - | 24.9 | 25.5 | 25.5 | 25.8 | 26.0 | 26.2 | | | 26 | | ~ | - | • | 2 | 3 | 3 | M | £, | 4. | 4. | ľ. | r. | 'n | • | • | | | 27 | <u>-</u> | = | - | - | 'n | 2 | 3 | 8 | 4 | 4 | 4 | 5 | S | 5 | Š | • | | | 28 | \mathbf{x} | 6 | C | • | +1 | 2 | 6.22 | 23.5 | 3 | | 4 | 5 | r. | S | S. | ý | | | 58 | 17.9 | 19.0 | 20.0 | 50.9 | 21.6 | 22.3 | 5 | ₩. | • | 4 | 4 | 5. | 5 | 5 | 5 | · | | | V ** | ~ | a | 0 | c | 4- | C | C | M | M. | 4 | 4 | 7 | 3 | 5 | 5 | ~ | | | O 4 | • ^ | | • | •
: c | • | נו | | | ,
, | | | | ı | i. | Ľ | · • | | | 3. | • | • | | = 1 | · , | i | | 0 1 | 0 6 | • | | • | | | \ | | | | 35 | • | oc. | · | | | · | 1.77 | | 1.07 | 7.57 | 0. 27 | 6.47 | 62.5 | 0.62 | 67.0 | 1.02 | | | 33 | 7. | α | • | ċ | -! | å | 0 | · | 3. | • | 4 | 4 | 5 | v. | | ò | | | 3.4 | 14.9 | 14.3 | 19.5 | 20.5 | 21.3 | 22.0 | 2 | 3 | • | 4 | 4 | 4 | 'n | 5 | N. | • | | | ı lı u | V | 5 | C | (| • | c | C | ۲ | ~ | 4 | < | 4 | ď | u | Γ | × | | | 5 | • | τ. | • | = | • | | V (| •
) I | •
> 1 | • | • | • | • | ٠, ١ | •
• | , | | | 36 | ċ | ά | • | ċ | • | 2 | 2 | 3 | ٠, | ÷ . | 4 | 4 | v 1 | v 1 | · · | · • | | | 37 | ė | α. | o. | ت | ; | 2 | · | ~
• | M | 4 | 4 | 4 | ر
• | ٠. | , i | • | | | 3.8 | 16. R | 18.2 | 40. | 7.0.4 | 21.2 | 25.0 | 25.4 | 23.5 | 23.7 | 24.1 | 24.5 | 24.9 | 25.2 | 25.5 | 25. B | 26.1 | | | 62 | ć | ά | o | ·
- | . | ? | <u>٠</u> | M | · | 4 | 4 | 4 | r. | 5. | 5 | ÷ | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.92 | | | | | | | | 1 | BET | | 1 | 1 | | (| 1 | | 1 | |----------|------------|---------------|------|----------|------|-------|------|------------|------|------|------------|------|------|------|----------|----------| | <u> </u> | : :
: : | 9.0 | | | 6.0 | 1 0 0 | | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 6 1 | 2.0 | | 1 | 1 |)

 C | , | · c | | , c | · c | | | _ | ć | c. | c | | c | <u>-</u> | | | | | | •
> • | • | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | • | | | | | | <u>.</u> | | | | | | | | | | 0 | • | 4 | | | | | | ٥. | 0 | | | | | | | 0 | 0. | 2 | | 6 | | | 0. | · | 0. | ·
c | 0. | 0. | 0. | .0 | 0 | | c | 31.0 | 26.5 | 28.4 | 28.1 | 27.9 | | | | | | | • | | | | | , | | r | r | r | P | ٢ | | | | | | | 0 | 0 | | °
0 | 0 | • | | • | , | • | | • | | | | | | | 0 | C | 0 | - | 8 | 7. | • | • | • | • | • | · | | | | | | | | 0 | 7 | • | 9 | Š | 9 | • | 9 | ٠, | • | • 9 | | | | | | • | 6 | • | S. | 5 | 5 | 5 | 5 | 5. | 9 | | ċ | • | | | 0, | 0 | 0. | 56.5 | 24.5 | 24.2 | 24.3 | 24.5 | 24.7 | 25.0 | 25.3 | 25.5 | 25.8 | 26.0 | 26.3 | 26.5 | | | | C | 4 | 100 | 3 | P) | w. | 4 | 4 | 4 | E | 5 | in | 5. | • | 9 | | | • | ~ | 1. | 2 | 0 | 3 | m | 3 | 4 | 4 | r V | 5 | r. | 5 | • | ø, | | | 0 | <u>-</u> | 1. | • | · | 2 | 3 | 8 | 24.1 | 4 | | 5 | 5 | 25.8 | 26.1 | 26.3 | | | ac | 0 | 0 | • | *** | 2 | M: | 3 | 4 | 4 | 4 | 5 | 5 | 5 | • | 9 | | | 14.1 | 10.5 | 20.1 | 21.0 | 21.7 | 22.4 | | | • | 24.4 | | 25.1 | 25.5 | 5 | \$ | • | | | 7 | oc. | 0 | _ | + | • | 8 | M) | 20 | 4 | * | 5 | 5. | 5. | • | 9 | | | 7. | ď | 0 | 0 | *4 | 2 | ? | ~ | 3 | 4 | 4 | ت | 5 | 'n | 9 | . 9 | | | , | · oc | O | · | 1. | 2 | 22.8 | 23.4 | 3 | 24.3 | 4 | • | _ | | 26.0 | 26.2 | | | ~ | α. | 0 | - | 1. | ò | 0 | K | 3 | 4 | 4 | 5 | 5 | ď. | 9 | 3 | | | 17.0 | 4. | 10.6 | 9.02 | 21.4 | 22.1 | • | 3 | • | 4 | 24.7 | 5 | | 5 | • | • | | | ~ | • | | c. | 1. | 2 | 2 | K | P3 | 4 | | 24.1 | 5. | 25.7 | | • | | | 9 | ď | 6 | <u>-</u> | 1. | 2 | (J | •
™ | ×. | 4 | 4 | 5. | 5. | 3 | ÷ | ò | | | 16.9 | 18.3 | | 20.5 | | 22.1 | 22.8 | 23.3 | 23.8 | 24.3 | | • | 25.4 | • | | 26.2 | | | 6 | ď. | 0 | • | 1. | 2 | 2 | 3 | 3 | 4 | 4 | 5 | Ŋ | 5 | 9 | . 9 | | | 9 | ď. | 0 | ċ | + | 2 | 5 | ~ ; | 3 | 4. | 4 | 5 | 5. | 'n | . | • | MIXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.93 | | 2.0 | 0 | 7.7.5
6.7.5
6.7.6 | 00000
nnvv44 | 4 4 4 4 4 | 6 0 0 0 0 0
4 4 4 W W | |-----|---|---|---|--|--|---------------------------------------| | | 0 | 6 4 | らって 5
るる 2 0 0 0 0 0 | | 00000
HHHHH | 2222 | | i | जन ।
जन | 00000 | 286. | 00000 | 2866 | 22.56
25.66
25.66 | | | 1 | 98 | 00000
00000
00000 | 0 0 0 W W | 2222
2323
2000
2000
2000 | 255.8
255.8
255.8
8 | | 1 | 1.7 | 00.00.7 | 26.9
26.9
4.9
25.9 | 255
255.7
255.7
255.7
25.6 | 2255
255
255
255
255
255
255
255
255
25 | 25.55
25.55
25.55
25.55 | | | 1.6 | 00000 | 28.1
26.9
26.3
25.9 | 00000
5055
5044
50 | 2000
2000
2000
2000
2000 | 22222 | | | £. | | 29.0
26.0
25.7
25.7 | nnnna | 00000
00000 | 00000
4444
000000 | | 1 | 4.1 | 0000 | 31.8
27.5
26.2
25.5
25.2 | 00000
44444
00000 | 00000
44444
00044 | 44444 | | | 4.3 | 60000 | 00000000000000000000000000000000000000 | 00000
44444
64801 | 44444 | 00000
44400
0000 | | BET | 1.2 | 00000 | | 8.488
8.488
8.09
7.00
7.00 | 22222 | 0.0000
888888
506444 | | | 1 - 1 | 00000 | | 888888
888888
88886 | 223.0 | 00000 | | | 1.0 | | 0000
40000
70000 | 22233 | 2222
2222
2222
248
868 | 22222
22222
22222 | | | 0.0 | 1 | 0.
0.
33.0 | | 21.8
21.7
21.6
21.6 | ਜਜਜਜਜ | | | n . 8 | 1 | 00.00.7.7 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 21.0 | 7000 | | | - | | | 22.02
20.02
20.03
20.03 | 199.00 | 10.7 | | | 0.6 | | | 23.3
20.8
19.9 | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | 0.5 | | | | 17.8
117.5
117.7
11.7 | | | | K 1 | U 0 T E D | 0 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0000
0000 | 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.94 MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =0.95 #### FIVE-LARNESS WEAVE FABRICS | CORP
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR | | | 1 | ! | | | : | BE | i
I | | 1 | | • | | 1 | 1 | | |--|----------|------------|--------|----------|-------|------|----------|--------|--------|------|------------|------|-------------|------|------|------|--| | A | 0.5 | 9 1 | | 80 | 1 6 1 | | | 1.2 | 1 1 1 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 | | | ž. | c | | ,
C | _ | | | | , c | c | c | c | | | ċ | • | | | | _ | . 0 | | | | | | | | | | | | 0 | 0 | (C) | 0 | | | | | | | | | | | | | | | | | 0 | 0, | 0 | | | | | | | | | | | | | | | 0 | 0 | | | • | | | 49 | | 0 | | | | | | | | | | | | 0 | 8 | 00 | | | | 0 | | | | | | | | | • | 0 | œ | 00 | 80 | 7. | 7. | | | | 0 | | | | | | 9 | 0 | 6 | 60 | 7 | 7. | 7 | 7. | 7. | 7 | | | | 0. | 0 | 0 | | | 0 | 31.1 | 27.8 | 26.9 | 26.7 | 26.6 | 26.7 | 26.8 | 56.9 | 27.1 | 27.2 | | | | 0 | | | | | ~ | • | 5 | Š | 3 | • | 9 | • | • | • | 7 | | | | 0 | | 0 | 33.7 | | 25.1 | Š | 5 | 5 | 5 | 5 | • | • | 9 | 9 | ò. | | | 0.00 | | ċ | 00 | 4 | 4 | 4 | 4 | 4 | 4 | • | 8 | 5 | .0 | 8 | 9 | 9 | | | 1 ~ | | R. | 2 | 2 | 6 | 3 | P) | 4 | 4 | S. | R. | 5 | • | • | • | | | | | 2 | | 21.6 | 22.1 | 22.7 | 23.2 | 150 | 24.5 | 24.6 | | 25.3 | 25.7 | 26.0 | 26.2 | 26.5 | 26.7 | | | | • | 0 | 1 | * | 2 | 3 | M) | 4 | + | 4 | K | 5 | Š | • | • | 6. | | | | | 19.7 | • | + | • | 2 | | 3 | 4 | 4 | 3 | 5 | L (1 | ø | • | 9 | | | 30 | 80 | 0 | 0 | | 2 | 2 | P) | m | 4 | 4 | 5 | R. | r. | • | • | • | | | | ~ | 0 | Ü | | 1 | 2 | | כא | 4 | 4 | W. | S | S. | 9 | 9 | • | | | | ′ | 00 | 0 | • | 7 | 2 | m | ~ | 4 | 4 | R . | 5 | iv. | Ü | • | 6. | | | | ~ | a C | 20.0 | - | - | 2 | 3 | 23.8 | 4 | 24.7 | • | 25.5 | 25.8 | 26.1 | 26.4 | 26.6 | | | 4 8 | 17.3 | 18.8 | • | | 21.8 | 22.5 | 23.2 | 2 | | • | S | 5 | ج | • | 9 | 9 | | | | 7 | α | 0 | <u>-</u> | - | 2 | M. | M. | 4 | 4 | r. | 7 | 5 | • | .0 | 9 | | | | . ~ | | | | | , (| ,
, M | ,
P | | | · | ı | · | 4 | 4 | 4 | | | | | . a | . 0 | | • • | | . M | מא כ | 4 | 4 | · rc | , 5 | , rc | 9 | 9 | | | | . 60
. E | 17.1 | 18.0 | 19.8 | 20.8 | 21.7 | 22.5 | 23.1 | 23.7 | 24.2 | 24.7 | 25.1 | 25.4 | 25.8 | 26.1 | 26.4 | 56.6 | | | 39 | ' | x | 6 | 0 | - | 2 | 3 | 3. | 4 | 4 | | 5. | S. | | 9 | Ġ. | | MAXIMUM FILLING COVER FACTORS 1K2! IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.96 | | | !
! | | ì | | 1 | 1 | 8E7 | | | 1 | | 1 | | | | |--------|----------|---------
----------|------|------|----------|-------------|------------|------|------------|------|------|------|-------|------|------| | A TO I | 0.5 | \$ | 0.7 | 8 | 0 1 | 1 H | ਜ : | 1.2 | 1.3 | 4 . 1 | 7.5 | 1.6 | 1.7 | 1.8 | 0 | 2.0 | | 2 | <u>.</u> | c. | Ċ | · | 0 | 0 | c | | | | | | | | | 0 | | 7 | | | | | | | | | | | | | | | | • | | 17 | | | | | | | | | | | | | | | C | • | | · 00 | | | | | | | | | | | | > C | • | | | | | 6 | . 0 |
o c | | | | | | | | | | 40.0 | 31.5 | 29.9 | 29,3 | 28.9 | | ÜĆ | | | | | 0 | | | | C | 0 | 6 | • | 60 | 60 | 00 | 80 | | 21 | | | | | 0 | 0 | 0 | 0 | 0 | 80 | 7 | 7 | 7. | ١,- | 7 | 7. | | 2 | | | | | | 0 | M | 00 | 7 | 9 | | 9 | 7 | 7 | | 7 | | 0 | | | | | 0 | 00 | \$ | 9 | 9 | 9 | • | • | 9 | 9 | 7 | 7 | | 24 | 0 | С | U | 0 | 26.5 | 25.4 | 25.5 | 25.3 | 25.5 | 25.7 | 25.9 | 26.2 | 26.4 | 26.7 | 26.9 | 27.1 | | r
u | | | | 4 | 4 | 4 | 4 | 4 | Z. | ď | V. | < | · · | < | 4 | 7 | | , .c | | | , , | | M. | M | 4 | 4 | 4 | 5 | , r | , L | • | · · · | • | 9 | | , C | 4 | _ | - | ~ | 2 | 2 | اران
د | 4 | 4 | S | | 5 | 9 | • | 9 | 9 | | 00 | 0 | c | ٠, | | 2 | 8 | 3 | 4 | 4 | S. | 1 | 3 | 9 | 9 | 9 | 9 | | 5. | 18.9 | 19.9 | 20.8 | 21.6 | 22.3 | 23.0 | 23.5 | 24.1 | 24.5 | 25.0 | 25.4 | 25.7 | 26.0 | 26.3 | | 26.8 | | 3.0 | ac. | 0 | | | (V | ~ | 1 00 | 4 | 4 | 4 | 5 | r. | 9 | • | • | . 9 | | 31 | , | 0 | 0 | + | 'n | · | ٠
س | 3 | 4 | 4 | ٠. | υ. | . 9 | . 9 | 9 | • | | 32 | <i>'</i> | 6 | C | | 2 | 2 | 23.4 | 23.9 | 24.4 | 24.9 | | 25.6 | | 26.3 | 26.5 | 9 | | 33 | ' | œ | _ | • | 1. | 3 | 8 | 8 | 4 | 4 | Γ. | 5 | 5 | . 0 | 9 | | | 34 | | 18.9 | <u>-</u> | 21.0 | | 22.6 | • | 3 | • | 4 | | Z, | | 9 | 9 | 26.8 | | 5 | | œ | 20.0 | | | • | 8 | M) | 4 | 4 | r. | 5. | 5 | ÷ | Š | 9 | | 36 | 7. | α | - | - | 1 | ~ | ~ | 3 | 4 | 4 | σ. | 5. | 5. | . 9 | • | . 9 | | 37 | , | œ. | 0 | | • | 2 | 23.2 | M ; | 24.3 | 4 | r | 25.6 | u": | | 26.5 | | | X | ' | ac | 6 | - | + | ċ | * | 8 | 4 | ₹ } | 5 | 5. | ٦. | Ŷ. | \$ | . 9 | | 62 | | 18.7 | 9 | 20.9 | | | ٠ | 23.8 | • | 24.8 | 25.2 | 5. | 25.9 | | • | 26.8 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK BENSITY = 0.97 | | | | 1 | 1 | | | | 9ET | 1
1
1 | 1 | | 1 | 1 | • | • | : | |------|------------|------|--------|--------------|------|----------|------------|------|-------------|------|------|--------|----------|------|----------|------| | 4 m | 0.5 | ς. | 0.7 | 60.0 | 6.0 | 0 5 | + | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | + | 1.8 | | 2.0 | | , ic | | | | · - |) (| | | - | ,
c | | ć | 0 | | | 0 | | | 9 | | | | | | | | | | . 0 | | . 0 | 0 | 0 | 0 | 0. | | | | | | | | | | | | | | | | | : | 0. | | | | | | | | | | | | | | | · | 0 | | | | | 0 | · | 0. | 0 | 0. | | | 0 | | | | | | | • | • | | | | E | c
C | 0 | 0 | | | • | 0 | 0 | •- | 6 | œ | 00 | 60 | ď | | | | | | | | | • | • | 2 | 6 | 60 | 7 | | 7. | - | 7. | | | | | | | | 0 | 6 | œ | 7 | • | 7 | 27.1 | 27.2 | 27.3 | 27.4 | 27.5 | | | | | | | | 6 | 7 | è | • | . 9 | 9 | 9 | 9 | 7 | 7 | 7 . | | ~ | 0 | · | ٥. | 0. | 27.2 | 25.8 | 25.5 | 25.5 | | 5 | | 9 | 9 | 9 | 7. | 7. | | | | • | | r. | 4 | 4 | 4 | 5 | 70 | S | r. | • | 9 | • | • | 7. | | י ני | | - | , M | . 1 | M. | P | 4 | 4 | R. | 5 | r. | 6 | 9 | 9 | 9 | 7 | | | a c | | S | 2 | M | 23.5 | - | - | 4 | 25.3 | 25.6 | 26.0 | 26.3 | 26.5 | 26.8 | 27.0 | | | - | | - | 2 | 0 | 3 | M) | 4 | 4 | 5 | 5 | 5 | • | • | • | 7 | | | 19.2 | 20.0 | • | 21.7 | 22.5 | 3. | | | | • | • | 5 | 9 | • | • | 7. | | 30 | ÷ | 0 | _ | • | 2 | M | 100 | 4 | 4 | r. | R. | 5 | . 9 | 9 | 9 | ~ | | | ж
• | 6 | - | - | 2 | C) | 3 | 4 | 4 | 5 | 5 | S. | 9 | 9 | • | 9 | | | 1 | 19.2 | 0 | 21.3 | 2 | 22.8 | 23.5 | 24.0 | 24.5 | 25.0 | 25.4 | 25.8 | 26.1 | 26.4 | 26.7 | 56.9 | | | 7 | • | c | ر | 5 | 2 | ₩. | 4 | 4 | 5 | R. | 'n | 9 | • | • | • | | | 17.5 | • | • | • | • | ċ | 3 | 4 | 4 | 3 | 5 | K, | • | • | 9 | 9 | | | 7 | a. | c. | • | 8 | N. | 3 | 4 | 4 | 4 | 5 | 5 | • | • | 9 | 9 | | | | α. | - | • | 2 | 2 | 3 | 4 | 4 | 4 | 5 | 5 | 9 | ç | Ś | • | | 37 | 17.4 | 14.8 | 20.02 | 21.1 | 22.0 | 22.7 | 23.4 | 24.0 | 24.5 | 24.9 | 25.3 | 25.7 | 26.1 | 26.4 | 26. | 56.9 | | | ~ | α. | ċ | 1. | ; | 2 | · • | 3 | 4 | 4 | Š | 5 | 9 | 9 | 9 | 9 | | | ~ | œ. | ċ | •
•- | ; | Ċ. | ~ ⊃ | 3 | 4 | 4 | r. | ٠
د | 9 | ٠. | . | ÷ | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.98 | + 0 | 2.0 | 0 | • | 31.8 | • | 00 | 8 | 7 | 7 | 7 | 7. | 7 | 7 | 7 | 7 | 7 | 7 | 7. | 7 | 7 | | 7 | 7 | 7 | 7 | |-----|---|-----|---|------------|----------|----------|----------|-------|------|------|------|----------|--------------|------------------|------|----------|------------|--------|-----------|----------|------|------|---------|-------|--------| | 1 | 5 • | • | | 4.7 3 | 6. | • | 6. | 7.5 2 | ņ | .2 | ٠. | c. | 6.9 2 | 0. | • | « | 6 0 | 80 | 6.8 2 | • | œ | ထ | æ | 6.8 2 | œ | | 1 | က္ | | | . · | .3 2 | .8 | .9 | . 4 | .2 2 | .0 2 | .8 | .7 2 | .7 2 | .6 2 | .6 | .6 2 | .6 2 | .5 2 | .5 2 | .5 | .5 2 | .5.2 | .5.2 | .5 2 | .5 2 | | | 1 (| 1 | 0 | 0 | M | 2 | ~ | 121 | N | N | 2 | N | ~ | ~ | 30 | ~ | CU | Ň | | N | N | ~ | ~ | 26 | ~ | | | | • | | | | 0 | 8 | 27.3 | 7. | ė | 9 | . 9 | 9 | 9 | | 9 | ý | • | 9 | | 9 | 9 | ò | 26.2 | ç | | | 1.6 | . 0 | | | | 0. | 8 | 27.3 | 9 | • | • | Ø | 25.1 | | • | 5 | 5 | 5 | 25.9 | Ŋ. | δ. | S. | S. | 25.8 | ٠. | | | 1.5 | | | | c | 2.8 | 8.6 | 27.3 | 6.7 | 6.3 | 6.0 | 5.9 | 5.8 | 5.7 | 25.6 | 5.6 | 5.6 | 5.5 | 5.5 | Ŋ | 5.5 | 5.5 | 5.5 | 25.5 | 5.5 | | 1 | 1.4 | .0 | | | | 0. | 6 | 51.5 | • | 9 | 25.7 | 5 | 5 | 5 | 5 | 5 | 3 | S. | 25.1 | 5 | 5 | 5. | ٠. | 25.1 | | | l | + + 1
+ + 1 | 0 | | | | 0 | ٠
ريا | 28.0 | • | 5 | 5 | 5 | 25.0 | 4 | 4 | 4 | च | 44 | 4 | | 4 | 4 | 4 | 24.6 | 4 | | RET | 1.2 | • | | . 0 | 0 | | Ů, | 59.6 | • | 5 | Ŋ. | 4 | 24.6 | 4 | 4 | 4 | 4 | 4 | | 4 | 4 | 4 | 4 | 24.1 | 4 | | | 1.1 | | | | ٠
د | | | 0 | | Š | 4 | 4 | 4 | 4 | 23.8 | • | 10 | 3 | 3 | M | 80 | M | ٠.
د | 23.5 | ~ | | | 10.1 | • | | | | | | 0 | | • | 24.8 | 4 | 3 | 3 | »>> | 23.1 | 3 | 3 | è | 2 | 2 | 3 | · | 25.8 | \sim | | 1 | 6.0 | 9. | | | 0. | 0 | | | 0 | 28.1 | 4 | ~ | 2 | 2 | • | 5 | ċ | 2 | ò | | 2 | 'n | 2 | | O. | | 1 | (S) | · - | | | | 0 | | | | | | * | • | 5 | * | | • | - | • | + | | + | •
•→ | 21.5 | • | | | , | | | · - | | ٥. | | | | | 0 | 4 | 5 | • | 21.1 | 0 | · | 9 | \subset | • | ٦. | ċ | Ċ | 20.1 | ·
- | | | 9.0 | - | | · · | | <u>.</u> | | | | | | ċ | $\dot{\sim}$ | <u>.</u> | | • | • | ÷ | 6 | 16.1 | o | ()· | ac · | 18.0 | œ. | | (| را
د د د د د د د د د د د د د د د د د د د | 0 | | • •
• • | | 0. | | | | 0. | | | | •
 | | ж
ж | œ | ه
ح | 7 | | | • | • | 1/.4 | • | | | 4 - 1 | 15 | | | | 20 | | | | | | | | | | | | | | | 35 | | | | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.99 WARP | 元
田
シ
こ
っ
て | | | | | | | | BET | | | | | | | | • | • | |--|------|----------|-----------|------------------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|------|------|------|---| | - AC - C - C - C - C - C - C - C - C - C | | | 7.0 | 1 00 | 0.0 | 1.0 | 1.1 | 1.2 | . M | | 4.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 | • | | 1
1
† | 1 | 1
1 | l
 | l
i | 1 | 6
6
1 | i
1
1 | !
!
! | 1
5
1 | l
l
l | t
1
1 | l
l
l | C | 0 | c· | 0 | · | 0 | | | | | | | | | | | | | | | | 0 | C | | • | | | | Ċ | ·
c | | 0 | n | 9. | c. | .0 | | • 0 | c
c | | 34.5 | | 0 | 6 | | | | | c | <u>.</u> | | | | 0 | 0 | 0 | | 4 | 0 | 0 | 6 | 00 | an. | | | | | | | | | | | | | 0 | œ | σο. | 00 | 80 | 8 | 8 | | | | | | | | | - | 0 | | 60 | 7 | 7 | 7. | 7. | 7 | 7. | 7. | | | | | | | | | 4 | ac. | ~ | 9 | • | ٠, | 7. | - | • | 27.5 | 7. | | | | Û | · c | | 9. | 29.5 | 26.6 | 26.0 | 26.0 | 26.1 | 26.2 | 26.5 | | • | 27.1 | 7. | • | | | 25 | 0 | | C | • | 3 | 5 | ic. | in. | r. | 3. | 9 | 9 | • | 7 | 7. | 7 | | | | | <u>-</u> | 2 | 4 | 4 | 4 | 4 | ıv. | 5 | 3 | . 9 | 6. | 9 | 9 | 7. | 7 | | | | | ۳. | ~ | 2 | | 3 | 24.3 | 24.8 | 5 | 25.6 | 25.9 | 9 | 26.5 | 26.8 | 27.1 | | | | | - | + | - | 2 | 3 | ~ | 4 | 4 | 5. | 5 | 5 | 9 | | • | 7 | 7. | | | | 19.7 | 20.4 | 21.2 | 22.0 | | 3 | 4 | 4 | 25.0 | 'n | 'n | 26.1 | • | • | 7. | 7 | | | | X. | 0 | · | | ~ | • | ~ | 4 | 4 | S. | 5 | 6 | • | 9 | 7 | 7. | | | | x | 0 | \subset | 4-4 | 22.5 | 3 | 23.3 | 24.3 | 24.8 | 25.3 | 25.7 | 26.1 | 26.4 | 26.7 | 27.0 | 27.2 | | | | x | 0 | = | , | ~ | 3 | 8 | 4 | 4 | 5. | r. | 9 | \$ | • | 7 | 7 | | | | , | 0 | - | •
• | ò | ٠
س | ₩, | 4 | 4 | 5. | ۍ. | • | ÷. | 9 | Ś | 7 | | | | 17.H | 19.2 | 70.4 | 21.4 | ċ | · (M | ~ | 4 | 4 | 5 | χ. | ò | , o | • | • | / | | | | • | 0 | | •
 | ∾. | 3 | * ; | 4 | 4 | r. | r. | • | • | 9 | 9 | 7. | | | | \ | 6 | - | * | 2 | 3. | * | 4 | 4 | r. | ĸ. | 6 | 9 | 9 | • | 7. | | | | 17.4 | 10.0 | | 21.3 | 22.2 | 22.9 | 23.6 | 24.5 | 24.7 | 25.5 | 25.6 | 26.0 | 26.3 | 26.5 | 56.9 | 27.2 | | | | ' | 0 | _ | + | 8 | ς. | 3. | 4 | 4 | 5 | 'n | • | • | 9 | | 7 | | | | | o | <u>-</u> | | ~ | 2 | ۳, | 4 | 4 | ۶. | 'n | 9 | Ś | ç | • | 7. | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =1.00 | | | | | | | | | BET | (| | | | ; | i | | 1 | |-------------------|------------|----------|--------------|----------|------|------------|-----------|--------|-----------------------------------|------------------|------|------|----------|------|------|------| | 4 ~
7 ★ | 0.5 | | 0.7 | 1 6 | 0.9 | 1 0 0 | 1:1 | | PO
 •

 • | 1 1 1 | 1.5 | 1.6 | 1.7 | 00 1 | 1.9 | 2.0 | | 1
1
1 : |
 | l
1 | 1 | 1
1 - |
 |)
 |
 | l
I | 1
1
0 (|
 | |
 | |
 | • | 0 | • | | | | ٠
ت | ٦. | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | ů, | 39.4 | 3 | | 19 | ο, | C | Ů. | 0. | | С | 0 | 0. | 0. | 0. | , | 0. | | | 0 | | | | | | | | | | | | | • | 4 | - | 0 | 6 | | œ | | | | | | | | | | | • (| , , | 0 | 00 | Œ | • | • | 00 | | | | | | | • | | | • | o a | • | | , , | | , , | |) ox | | | | | | | | > c | •
ο α | 1 - | | . ~ | | | | | | , | | | • •
• • | | | | 30.7 | 27.0 | 26.3 | 26.2 | 26.3 | 4.90 | 26.6 | 26.8 | 27.1 | 27.3 | 27.5 | 27.7 | | J | | | | | | | | 1 | | | | | | | | | | | | | • | 1 | | 25.3 | 25.3 | 25.5 | 8.52 | 26.1 | 26.4 | 56.6 | 56.9 | 27.1 | 27.4 | 27.6 | | | | Ė | 5 | 4 | 4 | 4 | 4 | 5 | 5 | υ. | • | • | • | | 7 | 7. | | | | 23.9 | 23.0 | 23.2 | | 4 | 4 | 4 | د | ς. | 9 | • | 9 | 7 | 7 | 7 | | | 2 | ڼ | 5 | 2 | 3 | ,
M | 4 | 4 | 'n | S. | ÷ | ٠. | • | | 7. | 7. | | | 19.9 | C | · | <u>۰</u> | 5 | 3 | 7 | 4 | 5 | ľ. | 5 | 9 | , | 9 | 7. | 7. | | ço
M | · | c. | ب
سپ | • | C1 | 3 | 4 | 4 | ď. | Ď. | R. | 9 | • | .0 | 7 | 7 | | | | 10.8 | 20.0 | 21.8 | 22.6 | 23.3 | 23.9 | 24.5 | 25.0 | 25.4 | 25.8 | 26.2 | 26.5 | 26.8 | 27.1 | | | | 8 | • | ċ | • | ~ | 3. | 8 | 4 | 4 | 5 | S. | 9 | 9 | • | 7 | 7 | | | r | 0 | _ | •
سم. | ò | 3 | 3 | 4 | 4 | 5 | 5 | 9 | 9 | 9 | 7. | 7 | | | - | ٠
5 | • | • | 8 | 10 | 3 | 4 | 4 | S. | 'n | • | . 9 | • | 7 | 7 | | | | C | _ | - | C | ~ | ~ | 4 | 4 | u | ľ | • | ~ | · | 7 | 7 | | | • | , | • | • | . (| •
) r |) | • | • | ٠, | • | • | • | • | . , | . r | | | • | • | <u>.</u> | • | · · | ۵. | ÷. 1 | 4 | 4 | ٠, | ٠. | ė. | ć. | 0 | • | | | | 11.7 | 19.1 | 2 . 4 | 21.4 | 22.3 | 23.1 | 23.7 | 24.3 | 24.8 | 25.3 | 25.7 | 26.1 | 26.5 | 26.8 | 27.1 | 27.3 | | | • | • | <u>-</u> | - | ٠, | \$ | •
No 1 | 4 | 4 | ζ, | r : | ø. | ç | • | · / | , | | | • | · | · | • | 2 | *; | * | 4 | • | Š | | ò | • | ó | • | • | YARN BULK DENSITY = 1.36 | 1
1 | 2.0 | | • | ю
• | S. | 4.0 | 3 | 5 | ٠
د | ċ | ċ | 2 | ~ | ò | ? | ·
2 | ò | + | | + | — | -4 | •
•−1 | <u>.</u> | 1.9 | - | +-1 | |--------|--------------|-------------|-----|--------|----|-------|----------|----------|----------|-----|------|--------------|--------|-----|------|----------|------------|----------|----------|-----|------|----------|----------|----------|-------|-----|----------| | 1 | 6 |)

 | • | 9. | ~ | 1.3 3 | m | 00 | יט | 2 | .13 | 0. | 80 | 80 | • | .7 | 7. | 9. | 9. | 9. | 6 3 | • | • | S. | . 6 3 | 9. | ç | | , | 9 |)
 | | 4 | M | 8 34 | M | M | M | M | 8 32 | 3 | | M | 4 31 | M | M | (4) | M | M | 3 31 | M | M | M | 2 31 | 2 | M | | 1 | → |)
 (| • | 0 | 8 | 34.8 | ~ | ~ | 2 | ٥. | 31.8 | - | + | - | 31.4 | + | + | | + | ÷ | 71. | + | - | H | | • | · | | 8
(| 1.7 |
 | | 0 | 0 | 35.8 | 3 | 8 | 2 | + | 31.6 | + | - | - | 31.1 | | + | • | <u>.</u> | 0 | 30.6 | ٠
ن | 0 | 0 | 30.9 | ċ | <u>.</u> | | | 1.6 | 1 | • | • | 0 | 38,5 | 4 | 2 | 'n | | 31.3 | . | 0 | 0 | 30.7 | 0 | 0 | 0 | 0 | O | 30.5 | 0 | 0 | 0 | 30.5 | 0 | с
С | | I | 1.5 | 1 | | | • | . 0 | 7 | 3.2 | 2.1 | 1.4 | 31.0 | n.8 | 9.0 | 4.0 | 0.3 | 0.3 | .2 | 2.0 | n.1 | 0.1 | - | 0 . 1 | 0. | 0.0 | 30.05 | 0.0 | 0.0 | | 1 | 1.4 | 1
1
t | | | | 0 | 41.4 | 4 | 2 | - | 30.8 | 0 | 0 | 0 | 59.9 | 6 | 6 | 6 | 6 | 6 | 9.62 | 6 | 6 | 6 | 56.6 | 6 | 6 | | | 1.3 | 1
8
1 | | | | | 0 | 9 | ? | * | 30.6 | 0 | 0 | 6 | 29.4 | 0 | 6 | 6 | • | • | 29.1 | ò | 6 | 6 | 29.0 | 6 | 6 | | 8ET | 1.2 | ! | | | | 0 | | • | 4 | - | 30.5 | 6 | 6 | 6 | 28.9 | 80 | œ | œ | 8 | œ | 28.5 | œ | œ | ac. | 28.4 | œ | œ | | 1 | 1.1 | 1
1
1 | | | | | <u>د</u> | | 0 | ~ | 30.7 | • | 0 | 80 | 28.4 | œ | 6 0 | œ | 7. | 7. | 27.8 | 7 | 7. | 7 | 27.7 | 7. | 7 | | | 1.0 | • | | | | | 0 | | 0. | 6 | - | 29.7 | 10 | 60 | 27.8 | ~ | 7. | 7. | 7. | 7 | 27.0 | 7 | .' | 9 | 6.90 | · | ć | | | • | ! | | 0 | 0 | 0 | 0. | 0 | 0 | ٠. | S | C | 28.6 | 7 | / | 9 | 0 | • | 9 | 8 | Æ | | S | • | | S | 8 | | | 9.6 | !
! | | | | | 0 | | | | C | 33.7 | 0 | , | 6 | Ś | 25.8 | r. | 5. | 7. | ιc. | 25.1 | 30 | S | 25.0 | ic | 5 | | | 0.7 | 1 | | | | | ů. | <u>.</u> | | | | · | \sim | 7 | C | ٠. | 24.9 | 4 | 4 | 4 | 24.0 | 4 | M, | M, | 23.6 | · | ۲, | | | 9.0 | 1 | | | | | <u>.</u> | | | | | د | | - | \$ | 4 | 53.9 | M | M | ~ | | 3 | 0 | ~ | 4.17 | ~ | · . | | | 0.0 | †
 | | | | | . | | | | | 0 | | 0 | 19 | 4 | 25.0 | | - | 1 | | | ċ | <u>.</u> | 20.0 | = | · | | | ★ ← ↑ | | 000 | 21 | 22 | . €. | 4 | 25 | 96 | 75 | 96 | 00 | 0 % | 3.1 | 3.5 | 33 | 3.4 | 35 | 36 | 37 | €. | 65 | 4 0 | 41 | 4 | 43 | 4 4 | MAXIMUM FILLING COVER FACTOPS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =1.48 | | 1 | | 1 | 1 | 1 | 1 | 1 | 0C 1 | 1 | 1 | 1 | 1 | | 1 | | i
!
• | : | |---------------|--------------------------|------------|------|-------|----------|---------|------|------|------|------|--------|------|----------|--------|----------|-------------|---| | . ج
۲ | | 9.1 | | 8 : 1 | 6 • 0 | 10.11 | 1.1 | 1.2 | 1.3 | 1.4 | 4.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2 . 0 | 1 | | 1
1
1 C | : | | c | |)
 C | | | | c | c | c | c | c | _ | ć | Ċ | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | | 4 | • | | | | | | · . | | | | | | | | | | 48.7 | 39.5 | 37.6 | 36.7 | | | 0.4 | | | | | 0 | 0 | | 0 | .0 | | | 40.1 | 7. | • | 5 | 5 | | | | | | | | | | | | c | 4 | 7 | 5 | 5 | 4 | 4 | 4 | | | | | | | | | | | • | 0 | 5 | 4 | 4 | 4 | 4 | 4 | • | | | | | | | | | | | | 34.5 | 33.8 | 33.6 | 33.5 | 33.6 | 33.7 | 6.8 | 34.1 | | | | | | | | | 7 | | • | 2 | 5 | ~ | ~ | 3 | 5 | 5 | 3 | | | 000 | 0 | 0 | 0 | 0 | 42.3 | 33.5 | | 5 | 2 | 2 | 2 | 2 | 8 | 3 | 5 | 5 | | | C P | | | | - | ~ | ** | | + | | | 2 | 2 | 2 | 3 | 5 | 10 | | | | | | | | 0 | 0 | 0 | 0 | • | 74 | • | 8 | 2 | 2 | 3 | 3 | | | | . 0 | · c | 29.8 | 29.0 | 26.5 | 29.6 | 30.0 | 30.5 | 31.0 | 31.4 | 31.8 | 32.2 | 32.5 | 32.9 | 33.2 | 33.5 | | | | | oc. | 7 | 60 | 8 | 6 | • | 0 | 0 | ** | + | 2 | ~ | ò | 3 | ٠, | | | 4 | 27.3 | | è | 7 | • | r | 0 | 0 | 0 | -1 | - | 5 | · | 5 | 5 | 3 | | | | 4 | 5 | • | 7 | 7 | œ | 0 | 0 | 0 | - | • | ò | 8 | 2 | P) | 3 | | | | 23.5 | 24.7 | 25.8 | 9.96 | 27.7 | 28.5 | 29.5 | 6.66 | 30.5 | 31.0 | 31.5 | 31.8 | 32.3 | 32.7 | 33.0 | 33.3 | | | | ~ | 4 | 5 | \$ | 7. | 8 | 0 | 0 | 0 | 0 | • | + | 5 | 3 | 2 | 3 | | | | ~ | 4 | 5 | ÷ | 7 | œ. | • | 6 | 0 | 0 | •
• | * | ۶. | ٠
د | ~ | m | | | 39 | $\stackrel{\cdot}{\sim}$ | w. | 3. | ċ | 7 | 8 | 6 | 6 | ċ | 0 | +7 | · | ٠. | 5 | M | ,
כא | | | | | ~ : | 5. | ×c | 7 | σc | • | Š | 0 | ů | • | · | o, | 8 | 3 | 3 | | | | - | ~ | 5. | ÷ | 7. | 8 | 6 | • | ċ | 0 | H | | <u>٠</u> | ? | ~ | 3 | | | | • | • | 4 | · | 7 | ос
• | œ. | • | 0 | 0 | - | | ? | ċ | 2 | ٠
رم | | | 43 | 21.6 | 4.57 | 24.9 | 26.1 | 27.2 | 28.1 | 28.0 | 9.62 | 30.2 | 30.8 | 31.3 | 31,8 | 32.2 | 32.6 | 32.9 | 33.3 | | | | • | ~ | 4 | • | 7. | œ. | oc. | 0 | ċ | | | | Ċ. | | · N | ÷, | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA VARN BULK DENSITY =1.50 | | | | | | | | | BET | | | | | | ı | | | |------|------|-------------|----------|----------|--------|-------------|-------------|-------------|----------------|---------------------|--------|-------------|------|----------|--------------------|------------| | A X | 5.5 | 9 . | 0.7 | 1 00 | 0.0 | 1.0 | 1.1 | 1.2 | | | 1.5 | 1.6 | 1.7 | - | 1.9 | 2.0 | |
 | ł | 1
1
1 | l
l | 3 | !
! | 1
1
1 | !
!
! | •
•
• | ŀ | !
! | t
L | !
!
! | • | |)

 -
 - | | | | | | | | | | | | | 0. | | | | 0 | 0 | . 0 | | | | | | | | | | | | | | | | | | 0 | | | | ·
c | | | | | ċ | 0 | ű. | | 0 | 0 | 0 | | 51:3 | | | | | | | | | | | | | | | 0 | 0 | 0 | œ | 7. | | | | · | ů | ٠
ت | 0. | °, | .0 | | ٠. | 0. | | | | • | · | 5 | | | | | c | . | | | | | • | | ď | • | 5 | S | 5 | 5 | | | | | | | | | 0 | 0 | 41.4 | 9 | 35.3 | 34.8 | 34.6 | 34.5 | 34.6 | 34.6 | | | | | | | | | 6 | | • | | 4 | د | 3 | 4 | 4 | 4 | | | | | | | | = | C | 4 | 3 | 3. | ~ | ٠
(م | 3 | رما
• | ™ | 4 | | | · | 0 | | с
С | 0 | 34.5 | • | ~ | ? | ò | ς. | ~ | 3 | 3 | M | 4 | | | | | | | | | - | • | - | ~ | C | C. | M) | ₩. | (A) | 10 | | | | | · C | | | | | | | - | . ~ | · cu | 2 | 8 | 3 | 8 | | | | · c | | 29.5 | 0 | 29.9 | 30.3 | 30.8 | 31.2 | 31.6 | 32.0 | 32.4 | 32.8 | 33.1 | 33.4 | 33.7 | | | | 0 | α. | æ | 60 | 6 | <u>-</u> | 0 | ₽ -4 | + | • | à | 2 | 3 | 3 | 3 | | | 28.7 | | | 7. | 28.4 | • | 6 | 0 | 0 | • | • | 2 | 0 | 'n | 3 | ·
(4 | | 35 | 5. | ų. | ç | 7. | 60 | oc. | 6 | 0 | 0 | 7 | • | 5 | ~ | 2 | 3 | (A) | | | 3. | ر.
• | ×. | 7 | 7 | ac | 0 | 0 | 0 | ; | • | CI. | ~ | 8 | | 3. | | | 3. | 4 | 25.7 | 9.92 | 7. | 28.6 | 29.4 | 30.0 | 30.6 | 31.2 | 31.7 | 32.1 | 32.5 | 32.9 | 33.2 | 33.5 | | | ~ | 4 | 5 | · | 7 | œ | • | 0 | ٠
ن | | - | 2 | è | ci | 3 | 3 | | | 22.4 | 74.0 | ιι. | \$ | 27.4 | oc | ò | • | 0 | • | • | oi. | 2 | 2 | · | ٠
٣ | | | | ~ | 5 | 8 | 1 | x. | • | C | 0 | +4 | - | ~ | ς. | 2 | 8 | 8 | | | • | ٧. | 5. | φ. | 7. | æ | 0 | 6 | Ċ | -4 | - | 2 | ~ | ζ, | 3 | 3 | | | - | 3.5 | 25.1 | 26.3 | 7 | 2 x . 3 | 29.1 | 90.6 | 30.5 | 31.0 | 31.5 | 32.0 | 32.4 | 32.8 | 33.2 | 33.5 | | | | ~ | ь
⊔^ | • | 7. | x. | 6 | 6 | ċ | •
~ i | • | 5. | | ? | ₩ | ۵. | | | • | ۳, | <u>ر</u> | 6 | 7 | x. | 0 | • | ċ | + | • | 2 | C | ٠. | 3 | رم
• | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 1.77 |) | | | | | | | | | | | | | | | (| • | |---------|------------|------|------
----------|------|----------------|----------|------|------|------------|------|--------|------|------|------|------| | [K 1] | 0.5 | 9.0 | 6.7 | 0.8 | 1 | 0 | | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 | | • | | 1 | Ĺ | ì | | .0. | | | 0. | | 9 | • | | | 4 | • | | | 0 | | | | | | | | | | • | Ö | 0 | 4 | • | 0 | | | | | | | | | | | | | · c | 4 | | | 0 | 0 | | | | | | | | | | | | | 43.0 | 400 | 39.0 | 38.5 | 38.3 | | | | . 0 | | | | | | | 0 | 5 | 0 | Œ | œ | 7 | 7 | | 7. | | 56 | 0 | 0 | | | | | <u>-</u> | 45.8 | | • | 7. | 7 | 7. | 7 | 7. | | | 3.0 | 0 | c | | | | • | ~ | 60 | • | 9 | Ś | 9 | • | • | • | 7. | | | 0 | | | | | + | • | 5 | 'n. | 5 | R. | 9 | 9 | 9 | • | 7. | | | 0 | | | | 0 | 'n. | | 4 | 4 | 5 | 35.4 | • | 9 | _ | \$ | • | | | C | _ | | 6 | 4 | 3 | 3 | 4 | 4 | 4 | ĸ. | ر
ا | 'n. | | 9 | • | | 4 | 0. | · | 41.6 | 33.6 | 32.9 | 33.0 | | | 34.1 | | 4 | 35.3 | 35.7 | | | 36.7 | | | | | C | • | _ | 0 | C | ~ | | 4 | 4 | ď | u | Ľ | 4 | ζ, | | | • | | | | 31.3 | • | 32.5 | 33.1 | 33.7 | 4 | 34.7 | 35.1 | 35.5 | 35.9 | 36. | 36.5 | | | 0 | | 0 | | 0 | - | N | 2 | 3 | 4 | 4 | 'n | 5 | เก | 9 | 9 | | | 7 | 1 | œ | 0 | 0 | - | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 5 | 9 | 9 | | 36 | 26.0 | 27.2 | | | 0 | 31.2 | 5 | 2 | 3. | | 4 | 4 | 50 | 5 | • | ô | | | r. | • | 90 | 0 | 0 | | ÷ | 2 | ₩. | ~ | 4 | 4 | 5 | 5 | 9 | 9 | | | 4 | | 7. | 6 | 0 | ~ 4 | - | 2 | 3 | ∾ | 4 | 4 | 5 | 5 | • | .9 | | | | | | 28.9 | 30.0 | 0 | 1. | 32.5 | 33.2 | 33.8 | | 34.8 | 5 | 35.7 | 36.1 | 16.4 | | | 4 | ά. | 7 | œ | 6 | 0 | + | 2 | 3. | ~ > | 4 | 4 | 5 | 5 | 9 | 9 | | | | | | œ | • | • | 31.7 | 2 | M | ∾ | | 4 | | r. | • | • | | | <i>د</i> . | 3. | , | σc | 0 | 0 | • | 2 | ~ | ۵. | 4 | 4 | 5 | 5 | • | • | | | 25.7 | 75.6 | 27.2 | 28.6 | 29.7 | 30.8 | 31.6 | 32.4 | 33.1 | 33.7 | 34.3 | 34.8 | 35.2 | 35.6 | 36.0 | 36.4 | | | 5. | 5 | 7. | c | 0. | 0 | - | ? | 3 | ۵. | 4 | 4 | 5. | 5 | • | • | | 69 | • | ĸ. | 7 | ď | 6 | | - | ~ | 5 | 3 | 4 | 4 | u. | 5. | Ś | 9 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 2.00 | | | | | | | | | 9 | | | | | 1 | | | ı | |----------------|---------------------------------------|--------|---------------|----------|------|------------|----------|------|------|------|----------|------|------------|----------|------------|------------| | A | : : : : : : : : : : : : : : : : : : : | | 0. | 8 . | 0 | 1.0 | 1.1 | 1.2 | F | 1 4 | | 9.1 | 1.7 | 1 00 1 | 1 | 2.0 | | 40 | | 6 | | | i • | 0 | •
 C | . 0 | • | 0 | | • | 0 | 0 | | ů. | | 25 | | | | | | | | | | | | | | 0 | 0 | | | 90 | | | | | | | | | | | | | • | 60 | 9 | 4 | | 70 | | | | | | | | | 0 | 0 | c | 0 | 49.2 | 44.6 | 43.0 | 42.3 | | 30.0 | | | | | | | | | | 0 | c | | 6 | 2 | ÷ | -4 | | 60 | . 0 | · | | ·
c | | | | | | | | | • | 0 | 0 | 0 | | 30 | | | ·
~ | | 0 | | | 0 | œ | 2 | c | 5 | 0 | 0 | • | 0 | | 3.1 | | | | | | | Ċ | S | + | 6 | 0 | 0 | 6 | 6 | 0 | 6 | | 32 | .0 | | | | | 0 | 44.2 | 40.0 | 39.0 | 38.6 | 38.8 | 33.7 | 38.8 | 39.0 | 39.2 | 39.5 | | 33 | | | | | • | | 0 | œ | 7. | 7. | ά | 8 | o C | 8 | 6 | 6 | | W. 4 | | د | | | 42.7 | 60 | 7. | 7 . | 7. | 7. | 7. | 7 | œ | œ | œ | 6 | | 35 | | | C | * | 7 | ٠, | • | • | 9 | 7 | 7 | 7 | a O | 00 | 60 | 0 | | 36 | | | 0 | 9 | 3 | S. | S. | 5 | \$ | 9 | 7 | 7 | 7 | 5 | ď | 6 | | 3.7 | | ·
c | \mathcal{L} | 34.0 | | 34.5 | 35.0 | 35.5 | 36.0 | 36.5 | 37.0 | 37.4 | 37.8 | 38.2 | 38.6 | 38.9 | | 82 | C | 7 | ~ | ċ | 3 | 4 | 4 | ι. | 5. | • | Š | ۲. | 7 | œ | a n | ô | | 0 | 35.4 | 51.5 | 31.6 | • | | • | 4 | S. | 5 | 9 | · | 7 | 7. | œ | œ | a) | | . 4 | .= | ·
= | Ċ | • | C) | ~) | 4 | 4 | 5 | • | ć | 7 | 7 | 80 | œ | φ. | | 41 | τ. | | 30.3 | 31.4 | 32.4 | 33.3 | 34.1 | 34.8 | 35.5 | 36.1 | 36.6 | 37.1 | 37.6 | 38.0 | 38.4 | 33.8 | | 42 | | L | 6 | • | د | ∞ | 4 | 4 | 5 | • | ç | 7. | 7. | о
ЭС | œ | Ө | | 4 (4 | ç | œ. | • | <u>-</u> | 5 | 3 | 3 | 4 | J. | • | ý | 7 | 7 | œ | ď | œ | | 4 | • | | 6 | - | • | ò | 8 | 4 | 5 | 5 | ç | 7. | 7 | 7 | œ | 80 | | 45 | 'n | 7 | • | <u>_</u> | -4 | ~ | 2 | 4 , | Š | Ś | • | 7 | 7 | 7 | αc | 8 | | | 3. | , | ż | ·
_ | + | ? | | 4 | 5. | 3 | 8 | 7 | 7 | 7. | 20 | ·
& | | | • | 71.4 | 29,1 | 30.5 | 31.7 | 32.8 | 33.7 | 34.5 | 35.2 | 35.9 | 36.4 | 37.0 | 37.5 | 37.9 | 38.3 | 36.7 | | | ٠
• | 7. | · | ·
C | - | Ċ. | ~; | 4 | 5 | υ, | ż | 7 | 7. | 7 | oc. | œ | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =2.36 | FOOVER I TAIL | 0 1 | | | 0 1 | 6. | 1.0 | | BETA
1.2 | 11. | 4 | | 1.6 | 1.7 | 1 00 1 | 6 | 101 | 101 | |---|---|----------------------------------|---|--|--|-----------------------------------|-------------------------------------|---|-------------------------------------|---------------------------------------|---|--|---|---------------------------------------|-------------------------------------|----------------|---------------------| | 0000
0000
0000 | 0.000 | | | | | | | | | | | | 0.
0.
0.
0.
65.7 | 50.0 | 533. | 00004 | ₽ ← ₽ | | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | •••• | | | | | | 03330 | 00004 | 0 0 0 4 4
0 0 0 0 W | 0 4 4 4
0 0 4 5
E V 3 | 0 1 2 4 4 4 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 | 04444
40489
40704 | 4 4 4 4 4 | 4444
64 W W W
4 V V H O | 4444
74 4 4 4 4
10 4 4 7 7 8 | 04444
04696 | HMPMO | | 10 0 K 8 0
10 10 K 8 0
10 | | | | 000 4 %
000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 4 4 W
0 0 0 0 C
0 0 C C C C C C C C C C C C C | 0 4 4 8 8
0 7 4 9 8
0 7 9 8 | 4 4 4 W W
0 0 0 0 0
0 0 0 0 0 | 44488
9400
94440 | 4 4 4 W W
0 0 0 0 0
0 0 0 0 4 | 7.14
7.10
7.04
3.00
3.00 | 44444
44660
70004 | 4 4 4 4 4
6 | 4 4 4 4 4
0 4 4 4 4
4 6 7 4 6 | 24444
201111
201111 | 4444
00000
04010 | 4444 | 0 r n 4 m | | 4 4 4 4
0 4 0 M 4 | 0
0
0.68
0.04
0.04
4 | 59.8
55.0
53.1 | 3.50
3.40
3.80
3.80
4.80 | K K K K K K K K K K K K K K K K K K K | 8886
886
886
886
886
886
886
886
886
88 | 37.6
3.6.7
3.6.2 | 38.1
37.7
37.5
37.3 | 8 8 8 8 8 8 8 9 7 8 9 9 9 9 9 9 9 9 9 9 | 39.2
39.0
38.8
38.7 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 444 W W C C C C C C C C C C C C C C C C | 0444
000
000
000
000
000
000
000
000
00 | 4 4 4 4 4
4 4 4 4
4 0 0 0 0 0 0 0 0 0 0 | 4 4 4 4 4
4 4 4 4 4
6 6 7 4 8 8 | 4 4 4 4 4
4 4 4 4 4
9 9 8 8 7 | 4 - 4 4 4 | | | 4 4 4 4 4
7 0 V 30 0 | 2000
2000
2000
2000
2000
2000
2000
200 | 4, 18
80.08
80.08
80.08 | 2000
2000
2000
2000
2000
2000
2000
200 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 |
00000000000000000000000000000000000000 | 36.1
35.9
35.8
35.8 | 34.4
34.7
34.7 | 37.7
37.6
37.6 | 888888
88888
84488
86888 | 39.2
39.1
39.1
39.0 | 30.7
30.7
30.7
30.7 | 2.04
2.04
2.04
2.04
2.04 | 8.04
8.04
7.04
7.04 | £ 1.14
2.114
5.114
5.117 | 7 | 4444 | 44400 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA #### YARN BULK DENSITY =2.50 | 3 | 0 ! | | • | • | • | • | • | 5.3 | • | • | • | • | • | 6.5 | 4 | • | • | • | 3.5 | • | 3 | • | • | ٠.
د | • | • | |-------------|-----------------------|----------------|----|----|-----|----|----|------|----|-----|-----|-----|-------------|----------|----------|--------------|----------|---------|------|--------|--------|----------|--------|---------|------------|------------| | • | 9 6 | 1 | 0 | 0 | ð | | 4 | 7 46 | 4 | 4 | 4 | 4 | 4 | 6 43 | * | 4 | 4 | ₹ | 1 43 | 4 | 4 | * | 4 | 9 43 | 4 | * † | |]
!
i | - I | • | | 6 | 0 | • | 00 | 48. | 3. | 4 | 4 | 4 | * | 43. | M | m | 8 | 3 | 4 | 3 | 8 | 3 | ċ | 42. | · · | ` | | 1 | 1 | | | 0 | | | 0 | 47.5 | S. | S. | 4 | ∾. | 8 | 43.3 | 5 | m | ò | 2 | 42.7 | ci | ċ | ~ | ċ | 45.8 | ٠. | • | | 1 | 1.7 |
 •
 • | | c | | | 00 | 49.5 | 9 | S. | 4 | ₩) | M | 43.0 | à | $\hat{\sim}$ | \sim | 2 | 45.2 | (J) | ٠
« | 5 | \sim | 42.0 | · | ·
 | | 1
 | 1.6 |)
 | | 0 | | | 0 | 4.5 | 7. | S. | 4 | 8 | 3 | 42.7 | 2 | 8 | 2 | + | 41.3 | | + | · | | 41.5 | ~
~-1 · | | | | 1.5 |
 | | | | | • | ٠. | æ | 4.3 | 4.9 | 3.7 | 3.0 | 42.5 | 2.1 | 1.8 | 1.6 | 1.4 | 41.3 | 1.2 | 1.1 | 1.0 | 6.0 | 40.0 | 0 | ж
С | | ;
; | 4 | ;
;
; c | | 0 | | | | 0 | 0 | | 5 | 4 | 3. | 42.3 | - | + | + | 0 | 40.7 | 0 | 0 | 0. | ů. | 40.3 | 0 | 0 | | | 1.3 | | | 0 | | | | 0 | | • | | u) | 64) | 42.2 | <u>.</u> | ÷ | 0 | 0 | 40.1 | 0 | 6 | • | ó | 30.6 | 6 | Ć | | ar
m | 1.2 | ; c | | | | 0. | | 0 | | | | ت | 4 | 45.4 | + | 0 | 0 | 6 | 36.8 | ٥, | 6 | 6 | œ | 38.8 | œ | œ | | ! | 1.1 | | | | | | | ů. | | | | • | 7 | 43.4 | . | ċ | 0 | 6 | 38.9 | œ | œ | a | £ | 3 P. J | 7 | 7 | | 1.1 | 1.0 | 1 . | | | | | | | | | 0. | | • | 47.2 | • | 0 | 6 | œ | 38.5 | 7. | 7 | 7 | 7 | 37.0 | 0 | Ċ | | | 0.0 | ; = | | | | 0. | 0. | | | | | 0 | | • | 7 | | 0 | 8 | | 7 | • | 9 | ç | • | ر.
دی | ·. | | | 0.8 | | | | | | 0 | | | | 0 ° | | | 0 | | | *** | œ | 37.3 | 4 | 5. | | S. | | ₹ | 4 | | | 0.7 | | | | | | | | | | 0. | c | | c | | | | - | 37.6 | ٠
س | 4 | 4 | 8 | 33.4 | ~ . | ٠, | | | \(\cup \) | 1 c | | | | · | | | | | c | | | C | | | | <u></u> | ~ | ÷ | 54.5 | | 0 | 52.0 | <u>.</u> | | | | | i 2 | | | | 0 | 9. | 6 | | | | | | | | 0. | | | | | 36.4 | | | 36.1 | ъ. | · | | | 4 7
3 X | . C. | 20 | 70 | 8 % | 60 | 30 | 31 | 32 | 33 | 34 | 340 | 1 | 27 | 3.8 | 39 | 4 | | | | 4 | 4 | | | | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 2.75 | | | | | | | | | LL: | | | | 1 | | i | | 4 | |---------------------------------------|--------|--------|----------|------|------|-------------|----------|----------|------|----------------|----------|------------|------|------|------|------| | K C C C C C C C C C | | \chi | | 60 | | 1.0 | 1.1 | | 1.3 | 1 to 1 | 1.5 | 1.6 | 1.7 | 80 | 6 1 | 2.0 | | ı
L | 1 | 1 |)
 C |) | 1 |)
)
• | |)
) (| 1 | l
I j | | 1 | , c | | • | | | | | | | | • | 0 | | | | | | | | | | | | | | 0 | · | 0 | 0. | 0 | с. | ٠
ن | 0 | 0. | | 0 | 0. | 0. | • | 0 | 0. | | 59 | 0 | . 0 | ċ | c. | 0. | 0 | | | | | _ | | | - | | | | | | | | | | | | | | | | | | • | 0 | 4 | | | | C | | | 0 | | | | | | | | | 9 | 2 | 0 | | | | | | | | | | | | | | | 4 | + | 6 | • | | | | ·
c | | | 0 | 0 | ć | 0 | 0 | 0 | -1 | 52.7 | 50.0 | 48.9 | 48.4 | 48.1 | | 3.4 | 0. | 0. | 0 | · | ٥. | 0. | | 0. | | | 51.4 | 0 | 80 | 7. | 7 | _ | | is in | | ć | | · | 0 | | | • | | 0 | œ | 7 | 7 | • | • | 7 | | | | | | | · c | | | | 0 | 1 | ~ | • | • | • | × | 4 | | | | · · | | | | • • | 82.3 | 48.8 | 46.6 | 45.8 | 45.6 | 45.6 | 45.7 | 45.9 | 46.1 | 4.0 | | | | | | | 0 | | • | 5 | 5 | 4 | 4 | 5, | ec. | 5 | 5 | • | | 39 | 0 | c c | | | 0 | | 5 | 4 | 4 | 4 | 4 | 4. | r. | رى | 3 | • | | | | | | | œ | 4 | 3 | 8 | 3 | ۲) | 4 | 4 | 4 | 3 | 5 | 5 | | | о
С | C | . | • | 43.6 | 42.5 | 45.4 | 42.6 | 43.0 | 43.4 | 43.8 | 44.2 | 44.7 | 45.1 | 45.4 | 45.8 | | | | | | | + | + | + | 0 | 2 | ^ر . | 3 | 4. | 4. | 4 | r. | 5 | | | | | M | - | 0 | <u> </u> | . | + | ċ | ~ | ~ | ۵. | 4 | 4 | ŗ. | 5. | | 4 | | 46.1 | • | 6 | 6 | 0 | c, | + | ć | 5 | 3 | 3 | 4 | 4 | 5. | ů. | | | | σc | 7 | œ | 80 | 0 | c | + | ÷ | 2 | M | 3. | 4 | 4 | ŗ. | 5 | | | 5 | · | ď. | 7 | œ | 6 | c) | 1. | • | 2 | 3 | 3 | 4 | 4 | ۍ. | 10 | | 74 | 35.0 | 35.1 | 36.1 | 37.1 | 38.2 | 39.2 | 40.1 | 40.9 | 41.7 | 45.4 | 43.0 | 43.6 | 44.1 | 44.6 | 45.1 | 45.5 | | | ~, | 4 | 5 | • | œ | 6 | ċ | 0 | ÷ | 2 | | 3. | 4 | 4 | r. | 5. | | | | , · | ٦. | · | 7 | œ | 0 | ċ | ÷ | ~ | ` | ٠ <u>٠</u> | 4 | 4 | 5 | r. | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =2.95 | | | 1 | 0.0 | | | | 1 | 9E | | 1 | 1 | 1
1
1 | ! | 1 | 1 | í | |------|------|------------|--------------|----------|--------|------|------------|--------|----------|---------------|-----------|-------------|---------|-------|------|------| | 4 m | | 9.0 | 0.7 | 0 0 | 6.0 | 1.0 | + | 1.2 | | 1 . 4 | 1.5 | 1.6 | 1.7 | 4 : 8 | | 2.0 | |
 |
 |
 | 1 |
 |)
(| 1 |
 C |)
 | |)

 C | | _ | · c | _ | c | | | | | | | | | | | | | | | | | | , | | | | | | | | | | | | | | | | | - | • | 0 | | | | | | | | | | | | | | | 0 | • | 4 | 2 | | | | | | | | 0 | C | 0 | 0 | | C | 0 | 57.4 | 53.4 | 51.8 | 51.1 | | | | c | ° u | n. | 0. | 0. | 0. | 0. | | | | | ċ | | į | 0 | | | c | c | | | c | | | | | | 4 | , | | 0 | 0 | 6 | | | | | | | | | | | 0 | 3 | 0 | 6 | 00 | œ | œ | 80 | | | | | | | | | | | 2 | 6 | ac | 00 | ආ | 8 | 60 | 00 | | | | | | | | | | ~ | • | 47.9 | 47.5 | 47.4 | 47.5 | 47.7 | 47.9 | 48.1 | | | 0 | 0. | 0. | <u>-</u> | | 0 | 52.4 | 48.3 | ~ | 9 | ·¢ | 9 | 7. | 7 | 7. | 7 | | | | | | c | | ۲ | _ | 4 | ý | 4 | 40 | 9 | \$ | 7 | 7 | 7 | | | | | | | | 7 | · L | , L | , r | 5 | T. | 9 | 6 | 9 | | 7. | | | | | | | 9 | 44.7 | 44.3 | 4.4 | 44.7 | 45.1 | 45.5 | 45.9 | 46.3 | 46.7 | 47.1 | 47.5 | | | | | | | × | 3. | 3 | 3 | 4 | 4 | 5 | r. | • | • | 7. | 7. | | | C | c | 50.8 | 43.1 | | 2 | 2 | ~ | 4 | 4 | ς. | 5. | 9 | ý | 9 | 7. | | 45 | | | $\dot{\sim}$ | • | • | • | ~ | M | M | 4 | 4 | Š | r. | • | 9 | 7. | | | | M ; | _ | 0 | 0 | +4 | ? | 5 | · | 4. | 4 | 5. | ٠. | • | • | 7 | | | 4 | 0 | | 39.3 | • | 41.0 | 41.9 | 42.7 | 43.4 | 44.1 | 44.7 | 45.3 | 45.8 | 46.3 | 46.7 | 47.2 | | | œ | 7 | 7. | œ | 0 | 0 | 7 | ٠
د | M | 4 | •
বা | S. | ن | 9 | • | • | | | 35.5 | • | 7 | œ | 39.5 | 0 | *** | 5 | 3 | 8 | 4 | Š. | r. | 9 | • | 7. | | J. | 4 | 3. | Š | oc. | 0, | 0 | - | 8 | 3 | ~ | 4 | 5 | δ. | • | • | | | | ٠, | 4 | 9 | 7 | 0. | 0 | ٠ <u>-</u> | 5 | 3 | ,
M | 4 | 5. | n. | 9 | • | 7. | | | 32.4 | 34.3 | 36.1 | 37.6 | 38.9 | 40.1 | 41.2 | 42.1 | 42.9 | 43.7 | 44.4 | 45.0 | 45.6 | 46.1 | 46.6 | 47.0 | | | - | 4 | r. | 7 | œ | • | • | è | ÷ | ۵. | 4 | ς. | S. | ç | è | 7 | | | - | ₩, | 5 | 7 | œ | 0 | 7. | ~ | 2 | ~; | 4 | S. | ر.
د | ç | ç | , | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =3.25 | MARP
COVFR
FACTOR | C . | · | 7.0 | 1 00 1 | 6.0 | 1.0 | 1 1 1 | BET | ₩ ; | 4 | 2 | 1 | 1.7 | 1 00 1 | 1.9 | 1 0 1 | |-------------------------|------|----------|--------|--------|--------|------|----------|------|------|------|------|---|------|------------|----------|-------| | 3.0 | J | | | • | ·
C | 0 | | | 0 | | | | | | | 0 | | | | | | - | | 0 | | | | | | | | | | 0 | | | | | | _ | | ٠. | | | | | | | | | 0 | | | | | | | 0 | 0. | 0 | | 0 | ŋ, | | . 0 | 0. | 0 | 0 | 6.09 | 57 | | | ē | . | | - | | | | 0 | 0 | 0 | | | | | 'n | | | | U | | · | | | | | | | | • | 0 | 7 | 5 | 3 | | | | | | | | | | | | | 0 | 7. | 9 | 4 | 8 | ? | | | | 0. | | | C. | 0. | 0 | 0 | 0 | 0 | 67.2 | 55.7 | 53.3 | 52.3 | 51.8 | 51.6 | 51 | | | | | | | | | | | | 5. | ~ | ÷ | - | | . | | | M C | . 0 | | ·
- | | 0. | 0. | | | 4 | + | C | 0 | 0 | ٠
د | 0 | | | | | | | | | | 0 | 4 | ↔ | 0 | 0 | 6 | o. | 0 | 6 | | | | . () | | 0 | 0 | 0 | 0 | 54.5 | 50.5 | 40.4 | 46.0 | 49.0 | 49.5 | 48.4 | 49.7 | 50.0 | 50 | | | | | | | Ð. | | 6 | æ | œ | 80 | œ | 80 | 6 | · | · | | | | | | | | | • | 7 | 7 | 7 | 7 | · | œ | œ | 6 | 6 | | | | | | | | | 7 | ÷ | ÷ | | 7 | 7 | æ | œ | • | 6 | | | | | | | c | æ | | 3 | • | • | 7 | 7 | 20 | œ | 60 | • | | | | = | | 7. | • | 4 | | 45.1 | 45.6 | 46.2 | 46.8 | 47.3 | 6.74 | 48.4 | 48.8 | 40.0 | 4 | | | | = | 3 | 3 | ٠
س | 4 | 4 | 5 | 9 | • | 7 | 7 | œ | œ | 0, | | | | | 7 | c. | 2 | 5 | ~ | 4 | 5 | 5. | • | 7 | 7 | œ | œ | · | | | | | | 41.0 | 4-1 | | 3 | 4 | 4 | 5 | • | ċ | 7 | œ | œ | • | | | 5.0 | 3 | 0 | Ċ | - | -1 | 2 | 3 | 4 | 5 | ç | 9 | 7 | œ | œ, | 6 | _ | | | ď. | α | 0 | _ | 1. | ~ | M | 4 | 5 | • | · | ۲. | œ | œ | Ġ | - | | | ζ. | 7. | œ | · | + | ⊘i | M. | 4 | 5. | 6. | ć | 7 | · / | ос
ЭС | 6 | 0 | | | 35.1 | 36.7 | 38.5 | 30.8 | 41.1 | 42.3 | 43.4 | 44.3 | 45.5 | 46.0 | 46.7 | 47.3 | 47.9 | 48.4 | 4 A O | 49. | | | 4 | ÷ | œ | 6 | C | S. | Μ, | 4 | 5 | c | ċ | • | | 1 0 | T. | O. | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =3.54 | | | | | | | | | in
T | | | | | | | | 6
1
8 | |----------|----------------|----------|----------|----------|----------|------|------|---------|------|----------|----------|----------|----------|----------|------------|---------------|
| A T | | 9 . | 1.1 | 0 | 0.0 | 1.0 | 1.1 | 1.2 | 1.3 | | 1.5 | 1.6 | 1,7 | | 0 1 | 2.0 | | 32 |
 ~
 ~ | 4 | |
 c | . 0 | 0 | | | | 0 | •
 C | 0 | 0 | 0.0 | C | 0. | | | | | | | | | | | | | | | | | C | • | | | | | · | | | | | | | | | | | | 0 | 1, | | | | | | | | | | | | | | | | • | Ċ | æ | | | | | | | | | | | | | | 0 | 4 | 0, | 7 | ٠
ن | | | | | | | 0 | | | ٠
ت | · | • | C | • | 58.1 | 56.3 | 55.4 | 55.0 | | | | | | | | | | | | 4,5 | | 1 | 5. | 4 | 4 | 4 | | 39 | .0 | . | 0 | | 0 | 0 | 0 | | | | | 4 | Ÿ | 3 | · | 3 | | C | C | | _ | <u>.</u> | | | | • | 0 | 9 | 4 | رم.
د | 6 | 8 | رم
دم | 3 | | | | | | | | | 0 | S. | 5 | 3 | 2 | 2 | ~ | 2 | 2 | 2 | | 4 | | | | | 0 | | • | 55.3 | | 5 | 51.7 | | | 52.1 | 52.4 | 52.6 | | | | | | | | 0 | Ś | ? | + | . | • | 4 | - | ~· | ? | 5 | | 4 | .0 | 0 | 0. | | | 56.5 | | 0 | | 50.3 | ċ | 0 | | : | ; | · · | | | · 6 | | | | 0 | • | 0 | 6 | 6 | 6 | C | 0 | · | + | • | · Cu | | | | | | | 51.3 | 0 | 48.5 | 48.6 | 49.0 | 40.4 | • | 50.3 | 50.8 | 51.2 | 51.6 | 52.0 | | | E | | | c, | 8 | 7 | 7, | œ | ď | 6 | 0 | | 0 | +4 | -4 | ÷ | | | | | 0. | | 9 | ċ | 7 | 7 | œ | œ | • | . | Ċ. | -4 | • | | | | 9. | | 48.0 | 5. | 5. | • | C | 7 . | œ | 20 | ó | 6 | 0 | 0 | ÷ | + | | c:
tr | Ξ. | • | 4 | 4 | 4 | S | · | 7 | 7 | œ | O | 6 | Ċ | 0 | • | ~-1 | | | •
ت | . 4 | ~ | ~ | ・す | ĸ. | \$ | ć. | 7. | œ | 0 | 6 | 0 | 0 | - | , | | | 0 | 4-1-1 | 41.9 | 42. R | 43.8 | 44.8 | 45.8 | 46.5 | 47.5 | 48.2 | 48.9 | 49.5 | 50.1 | 20.1 | 51.2 | 51.6 | | | = | ٠. | • | ς. | نما
• | 4 | ູ້ | \$ | 7 | 8 | σ. | 6 | 0 | 0 | ÷ | $\dot{\cdot}$ | | | • | · | C | • | M) | 4 | 5 | ç | 7. | œ | α: | 6 | ċ | 0. | + | - | | | | α | = | • | 1 | 4 | 7. | 6 | 7 | 80 | α | 6 | <u>-</u> | 0 | 6-4 | + | | 56 | 3 | . T | 30.8 | 41.4 | 42.8 | 44.1 | 45.2 | 46.2 | 47.1 | 47.9 | 48.7 | 49.3 | 50.03 | 50.5 | 51.0 | 51.5 | | | | | | | | | | | | | | | | | | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =3.75 | | | | | | | | | B
E | | | 1 | 1 | 1 | 1 | Ģ | 1 | | |---------|-------------|--------|----------|----------|----------|------|------|----------|--------|----------|---------------|----------|----------|--------|------------|------------|------------| | A Z | 1 | 9 | 0.7 | • | | 1.0 | | 1.2 | | 1.4 | 1.5 | 1.6 | 1.7 | 1 . 0 | 6 1 | 2 | 0 1 | |
 | | | •
 C | 0 . | | | | 0. | 0 | 0 | ,
,
, c | • | . 0 | 0 | 0 | رن | | | | | | | | | | | | | | | | | 0 | . | M | ₩) | | | | | | | | | | | | | | | 0 | æ | ~ | 6 | 7 | | | | | ė | | | 0 | | | 0. | 0 | č | 0 | | 61.0 | 58.9 | 57. | 3 0 | | | | | | | | | | | | | 0 | | 0 | 60 | 7 | • | 7 | | | .0 | c
c | | ċ | 0. | | | 0. | | | | ٠
ۍ | 7 | • | • | S | 0 | | 0 7 | c. | | | C | | | | • | 0 | 5 | ac. | 9 | 5, | 5. | 5 | 5 | ₩) | | | | | | | | | 0 | 0 | 67.7 | 58.3 | 56.0 | 55.1 | 54.8 | 54.7 | 54.7 | 54. | 80 | | | | | | | | | | | 8 | 5 | 4 | ۲. | 4 | 4 | • | 4 | Š | | | | | | | | | C | 80 | 4 | m | 3 | ,
M | m | m | M | 4 | 2 | | | ت. | Ċ | . 0 | 0 | 0. | 0. | | 4 | 3 | 5 | , | e, | 3 | 3 | ₩. | 4 | 0 | | | | ·
- | Ċ | | | • | 4 | C | 2 | • | \sim | 2 | ~ | 3 | M) | m | ØC. | | | | C | c | ·
c | ٥. | 3 | 51.7 | 51.2 | 51.2 | 51.4 | 51.7 | 52.1 | 55.5 | 52.9 | 53,3 | 53. | 7 | | | | | | | • | - | 0 | 0 | ٠
ن | • | * | -4 | ċ | 3 | ~ | 3 | 9 | | | | | | œ | C | • | o, | 6 | ċ | <u>-</u> | •4 | | ~ | 2 | ک | 3 | J. | | | 0 | | | | œ | 48.4 | œ | 6 | 0 | 0 | C D | | 5 | 'n | · N | 3 | 4 | | ις
O | | • | ~ | 7. | 7. | 7 | α | ස
• | 6 | 0 | c | . | - | ٥. | ~ | 3 | m | | | | 81.2 | 47.2 | 46.1 | 46.4 | | 47.B | 48.5 | 49.3 | 50.0 | 50.6 | 51.2 | 51.8 | 52.3 | 52.8 | 53. | M | | | \Box | 7. | 5. | ۳. | 5 | • | 7 | . | • | • | c. | ; | . | · | · | M | 2 | | | 5 | 4 | 3 | 4 | 5 | 9 | 7 | œ | œ | 6 | 0 | | ; | 5 | · | 3 | ~ | | | 4 4. | • | ٠.
• | M | 4 | • | 7. | 7 | œ | • | ċ | + | ÷ | \sim | 2 | ٠. | e4 | | | 0 | 0 | ~ | K | 4 | 5 | ·c | 7 | œ | 0 | c | 0 | • | 8 | 0 | ₹. | | | 56 | 34.R | 40.0 | 41.5 | 43.0 | 44.3 | 45.6 | 46.7 | 47.7 | 48.6 | 40.4 | 50.5 | 6.04 | 51.5 | 52.1 | 52.6 | 53. | _ | | | | ó | • | <u>٠</u> | 4. | 5 | • | 7. | æ | 0 | ċ | 0 | H | 2 | ~ | ~ ; | 0 | | | ç | œ | c | ~ | 4 | ž. | Ċ | ۲- | 60 | • | ċ | | • | 2 | ٥. | ~ | 0 | YARN BULK DENSITY =4.00 | | 7 1.8 1.9 2.0 | 0. 0. 123 | 0. 78.8 66. | 74.8 64.9 62. | 63.9 61.3 60. | 0.5 59.4 58. | 58.7 58.1 57. | 3 57. | 56.7 56.7 56. | 56.1 55.2 56. | 55.6 55.8 56. | 55.3 55.6 55 | 55.0 55.3 55. | 4.7 55.1 55. | 54.6 55.0 55. | 54.4 54.8 55. | 8 54.3 54.7 55.2 | 54.2 54.6 55. | 54.1 54.6 55. | 54.0 54.5 55. | 53.9 54.5 54 | 53.9 54.4 54 | 53.8 54.4 54. | .8 54.3 54. | 53.8 54.5 54. | 53.7 54.3 54. | |-----------|---------------|-----------------|-------------|---------------|---------------|--------------|---------------|----------|---------------|---------------|---------------|--------------|---------------|--------------|---------------|---------------|------------------|---------------|---------------|---------------|--------------|--------------|---------------|-------------|---------------|---------------| |

 | 1.6 1. | 0 . 0 | 0 | 0 | 0. 72. | .3 63. | 2.5 59. | 59 / 58. | 7.4 56. | 6.2 56. | 5.4 55. | 8.8 | 4.3 54 | 4.0 54 | 3.7 54 | . 4 53 | 3 53 | 3.1 53 | 3.0 5 | 2.9 53 | 2.8 53 | 2.7 5 | 2.6 53 | 6 53 | 2.5 53 | 2.5 53 | | | 4 1.5 | c | | | | ë. | 73. | 8 62.0 | 58. | 56. | 55. | 54. | 54. | 3 53.6 | 53. | 53. | 2 52.7 | 55. | 55. | 55. | 55. | 52. | 51. | 1 51.9 | 51. | 51. | |
 | | 0 | 0 | 0 | 0 | .0 | 0 | . 76. | 61. | 0 58. | 7 56. | .5 54. | 1 54. | 2 53. | 5 52. | 0 52. | .6 52. | 3 51. | 0 51. | 8 51. | 6 51. | 5 51. | 4 51. | .3 51. | 2 51. | 1 51. | | BETA | 1.2 1 | | | | | | | 0 . 0 | | 0 . 6 | .0 5 | 7.4 5 | 4.9 5 | 53.4 53 | 2.4 5 | 1.6 5 | 1.1 5 | 0.6 5 | 0.3 | 0.0 | 8 2 | 9.6 5 | 9.5 5 | 49.3 50 | 9.2 5 | 9.1 5 | | | 1 7 7 | !
! . | | | | | | | | | 0 | 0.9 | 7.5 | 54.4 | 5.6 | 1.5 | .7 | 0.1 | 9.6 | 5.6 | 6.0 | 7.8 | 8.5 | 48.3 | 2.5 | 8.1 | | | | | | | | 0 | 0 | | | | 0 | | 0 | 58. | 54. | 51.9 | 50. | 49. | 48. | 48. | 4 8 | 7. | 47. | 47 | 47. | 46. | | | 6 0 8 | | | | 0 | | | | | | 0 | 0 | | • | ** | • | 51. | 40 | 4
8 | 47. | • | 40 | 46. | • | 45. | 45. | | ı | - | C

 | · c | C | c | | 0 | 0 | 0 | C | | C | 0 | | 0 | 0 | ቪ | 7 50 | 4 48 | 9 47 | 0 46. | 8 45 | 9 45 | 3 44. | 8 44 | 4 4 4 | | | 9 | 1 | · C | | | | | 0 | | Û. | | , | | 0 | | | · | 64 | . 5 | .9 47 | | .8 44 | .1 43 | .0 43. | .2 42 | .6 42 | | | 0.5 | | | | | | • | | | | | 0.0 | | | | | | | | · . | 4 | 7.7 | 4.4.4 | 1.5 4 | 9.0 4 | α.
α. | | a w (| TK10K | | | | | | 0 4 | | | | | | 4 | | | | | | | | | | ó | | 60 | 0 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =4.13 ## FIVE-HARNESS WEAVE FABRICS | 0. 0. 0. 0. 0. 68.8 61.6 59.5 58.5 58.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 00000000000000000000000000000000000000 | 000 000 000 000 000 000 000 000 000 00 | 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | |--|--|--|---|--|-----|--| | 9 40.4 41.8 43.5 45.1 46.5 47.8 49.0 50.0 51.0 51.8 52.6 53.4 54.0 54
0 49.4 41.3 43.1 44.8 46.3 47.6 48.9 49.9 50.9 51.8 52.6 53.3 54.0 54 | . 5 47.8 49.
. 4 47.6 48. | 50.0 51. | 51.8 52. | 55.4
7 5.3
7 7 | . 4 | 5.2 55. | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =4.60 ## FIVE-HARNESS WEAVE FABRICS | > C | | | 1 | | | | | | | 1 | 1 | | (| • | 1 | | |-----------|----------|---------|----------|----------|----------|----------|------|----------|----------|------|----------|------|------|------------|------------|--------| | AC | | 9 | 0.7 | C | | . 0 . | | 1.2 | 1.3 | 1.4 | 1.5 | | | 1.8 | 1.9 | 2 0 | | !
! 00 | | | | 0 0 | | | 0 0 | 0 . | 1 • | | | 1 • | | • | • | 9 | | | 0. | | C | | | | | | | | | | • | • | 5 | 80 | | | | | | | <u>.</u> | | | | | | | | C | 4 | œ | 5 | | | | | | | | | | | | | 0 | . 0 | 73.9 | 67.4 | 65.2 | 64.0 | | | | | | | 0 | | | | | | C | | 9 | 4 | ~ | 2 | | | | | | | 0 | | | | | | • | • | 4 | ċ | 0 | 5 | | 4 4 | • 9 | c. | · c | 0. | 0 | 0 | ċ | 0 | | | · c | 3 | ? | + | • | - | | | | | | | | | | | 0 | • | M | -+ | - | 0 | | 0 | | | | | | | 0 | 0 | 0 | 0 | 67.3 | 62.6 | 61.0 | 60.4 | 6.09 | | 60.3 | | | | | | | | | | - | | · | 0 | 0, | 6 | 6 | 0 | • | 0 | | | | | | | | | œ | C | 0 | • | œ | 8 | 6 | 6 | 0 | 0 | | Q. 4. | C | ċ | | <u>.</u> | | | 63.3 | 0 | œ | • | 00 | 80 | oc. | | • | 6 | | | | | | | | 5 | 0 | 7 | 7 | 7 | 7 | 00 | ٠ | စ် | 0 | 6 | | | | | | | 9 | • | 7 | 56.6 | 56.6 | 56.9 | 57.3 | 57.7 | 58.1 | 58.5 | 59.0 | ٠ | | | | | | | 0 | ÷ | 5 | 5 | ċ | • | \$ | 7 | 7. | о
С | 30 | 6 | | | | | | 7 | 9 | 5 | 4 | 5. | 5 | • | ď. | 7 | 7 | 8 | 0 | 6 | | | <u>.</u> | ·
c | 0 | 57.2 | 54.2 | 53.8 | 54.1 | 4 | 5. | 5. | • | - | ۲. | œ | 6 0 | 6 | | | | | | 8 | 2 | M | 8 | 4. | 4 | 5 | ¢ | • | 7 | 6 0 | 90 | 0 | | | ·
C | c | 54.0 | 51.8 | 51.R | • | 53.1 | 53.9 | 54.7 | 55.4 | 56.1 | 56.8 | 57.4 | 58.0 | 58.5 | 26. | | | | α, | - | <u>-</u> | • | + | ς. | 3 | 4 | Š | . | 9 | ۲. | 7 | œ | ٠. | | | | | 0 | 0 | 0 | - | ~ | 3 | 4 | 5 | 5 | . 9 | ۲. | 7 | œ | œ | | 49 | | αC · | α; | α. | 0 | • | • | 3 | 4 | 5. | r. | 9 | 7. | 7 | o 0 | φ
0 | | | • | Š | 7 | 8 | 0 | c c | 2 | * |
4 | 4 | n, | • | ~ | 7. | æ | 00 | | | 4 4 A | 45.2 | 46.5 | 48.0 | 49.4 | 50.7 | 51.9 | 52.9 | 53.9 | 54.8 | 55.6 | 56.4 | 57.1 | 57.7 | 58.3 | 58. | | | ~ | ٠
تا | · | 7 | · | _ | • | ς. | M | 4 | ٦. | • | 7 | 7. | œ | œ | OXFORD * 1977.7v MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.54 | 0.10 | ! | į | | 1 | | ! | (| BET | (| | | ;
(| | . (| | 1 | |-----------|---|---|---------------------------------|-------|---|--|--|--|---|---|---|---|--|---|---|------------------------------| | XX | 0.5 | 9.6 | 0.7 | . 0 | 0.0 | 1.0 | 1.1 | 1.2 | 4.3 | 1.4 | 1.5 | 1.6 | 1.7 | 40 | 1.9 | 2.0 | | 1 60 0 | 0 | 00. | | i | | 1 | | | 00 | | • | | ì | | | | | 0 H Q B 4 | | | | 00000 | 00000 | | 00000 | | | 40000 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | M M G G G G | 0 0 4 4 4 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 | 2 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 444
00000
00000
040 | | 50000 | 0.
0.
12.2 | 0.00.00.00.00.00.00.00.00.00.00.00.00.0 | 4
4
4
4
6
7
7 | 00440 | 290
112.7
10.4 | 04544
7.444
8.44 | 45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45.55
45
45
45
45
45
45
45
45
45
45
45
45
4 | 120.55
120.55
120.55
120.55 | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 4 4 5 5 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 4 M M M M M M M M M M M M M M M M M M M | ままままま
4 まちちち
4 み ア 50 4 | 44555
74555
74567 | 44444
30000 | 4 4 4 4 4
- 5 5 6 6 7 | 44444
87.054 | | 0 4 0 0 4 | 80 80 V V V V V V V V V V V V V V V V V | 9 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 66000 | 0.000 | 00000
0000
0000
0000 | 110.01 | 4 4 4 5
6 6 4 4 5 | 0.000000000000000000000000000000000000 | 4 E C C C | 22222 | 00000
00000 | 4 8 8 8 8 8 | #####
######
| 20000
20000 | 4444 | 44444 | | | 22.23 | 8 8 8 8 8 8
7 4 4 4 4 | | 00000 | 0 | 110
110
100
100
100
100
100
100
100
100 | | ###################################### | 00000
0000
0000
0000 | 44444
666666
666666 | 20000
20000 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4 4 4 4 4
5 5 5 5 6
6 6 6 6 6 6
6 6 6 6 6 6 | # # # # # # # # # # # # # # # # # # # | +++++ | 888888
888888
888888 | | 331 | 7.2 | 60 60 60
T T T T | 80 80 80
0, 0, 80 | 900 | 10.2 | 10.7
10.7
10.7 | 111.23 | 41.7
41.7 | 122
122
123
143
153 | 122.
122.
123.
13. | 12.9
12.9 | 13.5 | 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | नित्त
• • •
• • • | 4 4 4
9 6 6 6 | # MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA ### YARN BULK DENSITY = 0.56 | A | | | | | | | | | | | | | | | | | |--------|--------|------|------|------|------|--------|------|------|----------|--------|-----------|----------|--------|----------|----------|------| | OVER | i
1 | 1 | 1 | | | | ı | BET | 1 | (| | (| | | • | • | | Z - 44 | 0.5 | 9.0 | 0.7 | | 6.0 | 1.0 | 1:1 | - | 4.5 | 4. | • | 1.6 | 1.7 | 60 | 1.9 | 2.0 | | 1 60 | 0. | 0 . | • | | | | | 0. | 0 | | | | • | | . | • | | ٥ | | | | | | | | | | | | | | | - | • | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | • | 0 | | | | | | | | | | | | | | • | 0 | 0 | r. | 0 | | | | 0 | ė | • | 00 | | | 0. | 0 | | | 26.6 | 19.0 | 17.7 | 17.0 | 16.7 | | 4 | 5 | E | | | | | | | | | • | • | | 'n |
Ċ | 'n | | 15 | 0 | | | | | 0 | • | 7 | 5 | RJ. | 4 | 4 | 4 | 80 | 5 | | | 16 | | | | • | • | 7 | + | 4 | 4 | 4 | 4 | 4 | 4 | * | * | Š | | 17 | | | • | • | 3 | ن
ا | 3 | 5 | 3 | P) | F | 4 | 4 | • | + | + | | 4-4 | | • | 13.4 | 12.0 | 11.9 | 12.1 | 12.4 | 12.6 | 15.9 | 13.2 | 13,5 | 13.8 | 14.1 | 14.3 | 14.5 | 4 | | 19 | 0 | 11.1 | • | 0 | - | - | 2 | 8 | 2 | ,
M | | ,
M | • | . | * | 4 | | 20 | • | • | • | 0 | 0 | - | +1 | 5 | 2 | ١٠) | 5 | M | 2 | 4 | 4 | 4 | | 21 | • | | 0 | 10,2 | 10.7 | 11.2 | 11.7 | 12.1 | 12.5 | 12.9 | 13.3 | 13.6 | 13.9 | 14.1 | 14.4 | 14.6 | | 22 | • | • | • | 0 | 0 | - | 1 | è | 2 | ·. | m | 3 | 3 | + | * | 4 | | 23 | E | • | • | • | 0 | + | • | ċ | 5 | 2 | ر
ا | 2 | m | • | 4 | 4 | | 24 | 7.6 | 4. | 9.5 | | • | - | • | 5 | ò | 2 | · | m | m | | 4 | 4 | | 25 | • | | | • | 0 | • | ** | 8 | 8 | ~ | | 1 | 5 | 4 | 4 | 4 | | 26 | • | • | • | • | 0 | ; | - | ċ | 5 | 2 | ы. | M | ,
M | • | + | 4 | | 27 | • | • | • | • | 0 | * | - | ? | <u>ن</u> | 3 | ,
m | 3 | M | + | 4 | • | | 28 | • | 9.3 | 9.1 | 9.8 | 10.4 | 11.0 | 11.5 | 11.9 | 12.4 | 12,8 | 13.1 | 13.5 | 13.8 | 14.1 | 14.3 | 14.6 | | 58 | 7.3 | • | | • | 0 | ; | + | ; | 5 | 2 | 57 | m | · | 4 | 4 | • | | | • | • | • | • | 0 | 0 | -1 | - | 2 | 2 | 100 | 10 | 3 | 4 | 4 | 4 | | 31 | 7.3 | 8.2 | 0.6 | 6.7 | 10.4 | 10.9 | 11.5 | 11.9 | 12.4 | 12.8 | 13.1 | 13.5 | 13.8 | 14.1 | 14.3 | 14.6 | | | • | • | • | • | 0 | 0 | + | • | 5 | 2 | n | m | 2 | + | + | 4 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.58 | 1 | | | 00 M H H O O O O O O O O O O O O O O O O O | & E C C C C C C C C C C C C C C C C C C | 4444 | 44444 | 4 4 4 | |-------|------------|-------------|--|--|--|---------------------------------------|----------------------| | | 6 | | 200 | € 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 4444 | 4 4 4 4 4 | 4.4.6 | | | ₩.
1.09 | 66 | 60000 | 407.00 | 4 4 4 4 4 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4 4 4
W W W | | | 1.7 | | 12000. | 24444
200000000000000000000000000000000 | 4444 | 4444 | 444 | | 1 | 1.6 | | 0.
0.
17.2 | 24444
47646 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 143.7 | 43.7
13.7 | | | 1.5 | • • | 90000 | 54455
54455
55467 | 44444
888888
88884 | 4 4 4 4 4
8 8 8 8 8 8
4 4 4 4 4 | 4 4 M | | ! | 4.4 | 00 | 32.7 | # 4 m m m
• • • • • • • • • • • • • • • • • • • | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 44444
88888
90000 | 13.0 | | | | 00 | | 44444
74844
4.086 | 115
125
125
125
125
125
125
125
125
125 | 4444 | 12.6
12.6
12.6 | | 8 | 1.2 | 00 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4444
66666 | 122.1 | | | 1.1 | 00 | | 2000
2000
2000
2000 | 1122.1 | 111.7 | 11.7
11.7
11.7 | | 1 | 0 | 00 | 00000 | 11180
1225
1235
125
125
125
125
125
125
125
125
125
12 | 44444
44444
78488 | 22224 | | | | 0.0 | | | 005011 | 1111
11011
1000
1000
1000 | 44444
0000
0000
00004 | 10.6
10.6
10.5 | | • | 0.0 | • | | | 8 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | 000 | | | 0.7 | | | 4 4 | 40000 | 6666 | 000 | | | 9.0 | | | 12.9 | 10.6
9.0
8.8
8.8 | 0000000
000000
000444 | 00 0° 00
4 4 4 | | | 0.5 | !
! • • | 00000 | 00000 | 10.00
00.00
00.00
00.00 | 7.7.7.
7.0.7.7. | V V V V | | d m 6 | A F | 1
0
0 | | | 0 4 0 5 6 6
0 4 0 5 4 | 00000
00000 | | # MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA ### YARN BULK BENSITY = 0.65 | | | | | | | | | BET | | | | | | | | • | , | |---------|-----|------|------|------|------|------|------------|----------|----------|----------|------|------|------|----------|------|----------|---| | A X | 0.5 | 0.6 | 0.7 | 6.0 | 0.9 | 1.0 | | 1.2 | • 🗝 | प | 7 | - | | 60 | | 2.0 | | | ec
1 | • | | ı | • | | 0 | 1 | | . 0 | 1 2 | t • | 0 | 0 | • | | ì | , | | ው | .0 | | | | | | | | | | | | | | | | | | | 0 | | | | | | | | | | • | . | | | M 4 | | . 0 | | 0 | | | c | | | | | 00 | .00 | - 0 | 25.2 | 21.2 | | | | | | | | • | | | | | | | | • | • | • | 3 | | | 15 | | | 0 | | | | | • | 0 | 5 | | 7 | 7 | 7. | | 7. | | | 16 | 0 | | .0 | 0 | 0. | • | • | 21.5 | 17.6 | 16.6 | 16.2 | 16.1 | 16.2 | 16.2 | 16.3 | 16.5 | | | 17 | | | | | | | | • | 5 | 5 | 5 | 5 | ĸ. | 5 | • | • | | | • | | | • | 0 | 9 | 4 | 41 | 4 | 4 | ÷ | ¥ | 'n | ξ. | 5 | 5 | | | | 19 | | | | | • | 3 | ,
m | 5 | 4 | 4 | | 4 | r. | ľ. | r. | 5 | | | 02 | | 4 | ~ | 2 | 2 | (V | * > | 3 | m | * | • | 4 | 3 | 5 | 5 | 3 | | | 21 | • | 10.9 | 11.1 | 11.5 | 12.9 | 12.4 | 12,8 | 13.3 | 13.7 | 14.0 | 14.4 | 14.7 | 15.0 | 15.3 | 15.6 | 15.8 | | | 8 | • | 0 | | - | - | 2 | ۶. | 3 | 3 | m | ₹. | 4 | 3 | 5 | · | 5 | | | 23 | • | • | | 0 | ; | ċ | ٠
ن | m | | m | ₩. | 4 | 4 | 1 | 5 | | | | 4 | 8.5 | • | 0 | 0 | + | S | ò | | · | 9 | ₹. | 4 | 4 | ٠ | 2 | | | | 25 | • | • | • | 0 | - | - | 2 | m | | 3 | 4 | 4 | | 5 | 5 | 5 | | | 26 | • | • | 6 | 0 | + | + | 2 | 8 | 3 | ,
M) | 4 | 4 | 4 | S. | ı. | S | | | 27 | • | • | 9.6 | 10.6 | 11.3 | 11.9 | 12.4 | 12.9 | 13.4 | 13.8 | 14.2 | 14.5 | 14.9 | 15.2 | 15.4 | 15.7 | | | a c | • | • | • | 0 | + | + | 2 | 0 | 3 | 3 | 4 | 4 | 4 | v. | 'n | ľ. | | | à | B.n | 8.9 | _ | 0 | 1. | + | 0 | 2 | ٠
س | m | • | ₹ | 4 | w. | 5 | 5 | | | 30 | • | • | • | 0 | + | • | 2 | 8 | 5 | 5 | 4 | 4 | 4 | 5 | 5 | S. | | | 31 | 7.9 | 6.8 | 4.7 | 10.5 | 11.0 | 11.8 | 12.4 | 12.9 | 13.3 | 13.7 | 14.1 | 14.5 | 14.8 | 15.1 | 15.4 | 15.7 | | | | • | • | • | 0 | 1. | - | 2 | 8 | E | ,
M | 4 | 4 | 4 | υ. | 5 | | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =0.65 | 0. 111 | | | | | | | | E | | | | | (| 1 | | • | | |-----------|--------------|----------------|--------------------------------------|-------------------------------------|--------------------------|---|---|----------------|--|---------------------------------------|---------------------------------------|-----------------|-------------------------------|---------------------------------|--|---------------------------------------|--| | Y Y | 0.5 | 9.0 | | 0 | • | 4.0 | 1:1 | • | + H | • | • | | 1 | 1.8 | 6 | 2.0 | | | 1 60 0 | | 000 | | 00 | | • | _ | • | | | 600 | 00 | 00 | | 00 | 00 | | | 0 A 0 B 7 | | | | | | | | | | | | | 00000 | 00000 | | 00000 | | | | | | | | | | | | | | | | | | 20000 | 66667 | | | 0 1 0 E 4 | | | 7.00
5.00
7.00
7.00
7.00 | 4 7 % 0 6 | | 00000
0000
0000
0000 | 2000
2000
2000
2000 | 94505
94505 | 44444
88888
9869 | 44444
80400 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4444 | 115.11 | សស្តាត្រ
ស្តាស់
ស្នង។ ម៉ា | 80 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 44444
65665
6666 | | | | | 00000
WW100 | 00000 | 1000
1000
1000
1000 | 44000 | 1122
1122
1122
123
123
123
123
123
123
1 | 1122
122
122
123
135
136 | 40000
40000 | 111111
111111
111111111111111111111111 | 44444
66666 | 888888
888888
888888 | 44444
7.0000 | 1175.00
1175.00
1175.00 | 44444
44444
44444 | 44444
550000
50000 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 30
32 | 00 00 00
 | 000 | 0 0 0
0 0 0 | \$ 9 9
4 0 0
4 0 0 | 111
111
111
111 | ###################################### | 12.5
12.5
12.4 | 13.0
13.0 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 444
800 | 444 | 0.44
0.9.0 | 15.3 | 45.0
45.0
45.0
75.0 | 17.17.17.15.00
00.00 | | YARN BULK DENSITY = 0.67 | ₩ C | ()
() | | 1 | | 1 | | | E | (| | | | | | | 1 1 | Ĺ | |------------|------------|-----|------|-------|--------|------|----------|------------|------|----------|----------|------|----------|-------|----------|------|---| | « — | 0.5 | 9.0 | 0.7 | 0 . 0 | 6.0 | 1.0 | . | 1.2 | - | 4 | 1.5 | 1.6 | 1.7 | (C) (| स्त्री (| 2.0 | | | 000 | 0 0 | | i | • | - | | | • | | | 000 | 00. | 000 | 00 | 00 | • | | | | | | | | | | | | | | | | | = | | | 5 M | | | 4 | 00 | | | | | | | | | | | | 23.6 | 20.3 | 19.2 | 18.6 | | | | 0 | | | | | | | | | • | 6 | 60 | ~ | 7 | | 1 | | | | | | | | | | | | 0 | | 6 | 9 | 9 | 40 | 9 | 9 | | | | 0 | | | | 0 | | 18.5 | 16.5 | 15.9 | 15.7 | 15.8 | 15.9 | 16.3 | 16.2 | 16.3 | 16.5 | | | | | | | | 6 | | 4 | 4 | 4 | 5 | K | 5 | 5 | 4 | 9 | 9 | | | 40 | | | | 15.4 | | 9 | 3 | 4 | 4 | 4 | + | 5 | ľ. | 5 | • | • | | | | | • | 2 | 0 | 8 | ю. | ю.
• | M | 4 | 4 | 4 | 5 | 5 | 10 | 5 | • | | | | 7 | • | + | + | ò | 2 | 3 | 5 | 3 | + | 4 | ů. | | 5 | 5 | 9 | | | | | | 10.9 | 11.4 | 11.9 | 12.4 | 12.9 | 13.4 | 13.8 | 14.2 | 14.5 | 14.9 | 15.5 | 15.5 | 15.8 | 16.0 | | | | • | • | 6 | · | 7 | è | cu. | 9 | 3 | 4 | 4 | 4 | 5 | 5 | | • | | | 4 | 8.7 | | 0 | • | • | 5 | è | 3 | M | 4 | 4 | 4 | | ľ. | S. | 9 | | | 25 | • | • | 0 | 0 |
-4 | 60 | N | 10 | м. | 4 | 4 | 4 | 5. | r. | r. | vo. | | | | • | • | 0 | 0 | ٠, | 2 | 2 | ,
M | 5 | 4 | 4 | 4 | S. | ŝ | iv. | • | | | | • | • | j. | 0 | + | ~ | 2 | 3 | 3 | 4 | * | 4 | 5 | 'n | 5 | • | | | | • | • | • | | -1 | 12.0 | 12.6 | 13.1 | 13.6 | 14.0 | 14.4 | 14.7 | 15.1 | 15.4 | 15.7 | 16.0 | | | 56 | 8.1 | 9.1 | 0 | - | 11.4 | 6 | 5 | ы. | 5 | . | 4 | 4 | 'n |
ŝ | | 5 | | | | • | • | • | 0 | + | 2 | 2 | 1 0 | 3 | 4 | • | 4 | K. | S | 5 | 5 | | | 31 | 8.0 | 0.6 | 6.6 | 10.7 | 11.4 | 12.0 | 12.5 | 13.4 | 13.5 | 14.0 | 14.4 | 14.7 | 15.1 | 15.4 | 15.7 | 15.9 | | | | • | • | | | + | 2 | 2 | ь. | 3 | 4 | 4 | 4 | 5. | 5 | ٠. | S. | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.68 | | 1.8 1.9 | 0 | 0. 0. 0.
0. 0. 0.
0. 0. 25.1
21.1 19.7 19.0 | 17.9 17.7 17.6
16.8 16.9 17.0
16.3 16.5 16.7
16.0 16.3 16.5
15.9 16.1 16.3 | 15.8 16.0 16.3
15.7 15.9 16.2
15.6 15.9 16.2
15.6 15.9 16.1
15.6 15.8 16.1 | 15.5 15.8 16.1
15.5 15.8 16.1
15.5 15.8 16.1
15.5 15.8 16.1 | 15.5 15.8 16.1
15.5 15.8 16.1
15.5 15.8 16.1 | |--------|---------|---|--|--|--|--|--| | 1 | - 1 | | 26.2 | 44444
600000
000000 | 2100
2100
2100
2100
2100
2100
2100
2100 | 15.00.00 | 15.2 | | 1
1 | - | 00 | 00000 | 44444
94444
94466 | 44444
5656 | 44444 | 4 4 4 | | 1 | - | 60 | 00000 | 21
21
21
21
21
21
21
21
21
21
21
21
21
2 | 4444 | 44444
0.0000 | 444 | | 1 | | 00 | 00000 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4444 | | 444 | | | - | 00 | 00000 | 000
400
400
400
100
100 | 4 4 M M M
4 4 M M M
4 4 M M M | 88888
88888
88888 | 44.64
6.66 | | 80 | 1 | | 00000 | 17.0
15.0 | 44444
88888
89648 | ************************************** | 443.2 | | | + | 1 | 00000 | 00004
4 NG 0 | 2000
2000
2000
2000
2000 | 12.7
12.7
12.7 | 12.7
12.6
12.6 | | | 1.0 |) | 00000 | 0000
44
0000 | 2 2 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 22222 | 12.1 | | i | 0.0 | | 00000 | 0000
44
73 | 200000
20000
20000
20000 | | 11.5 | | | | - | | 40000
60000 | 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 10.8
10.8 | | , | 0.7 | • | | | 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 80000
80000
80000 | 16.0
10.0 | | 1 | 9 . 0 | | | | 1100 | 00000
00000 | 9.1 | | | 0.5 | 0 | 0000 | | | | 8 8 8 | | 0 W F | K11 | 000 | | | | 00000
00000 | | YARN BULK DENSITY #0.69 | a. w. f | | | | | | | | 96 | | | | | | ii. | | | |--------------------------|--|-------------------------------|---|---|---|---|---|---|---|---|------------------------|--|--|---|---------------------------|---| | *K11 | • | 0.6 | 0.7 | 0.8 | • | 1.0 | 1.1 | . 2 | 1,3 | 4. |) 44
 | 1.6 | 1.7 | 60 | | 2.0 | | ;
;
;
;
; | | | | 1 | | • | 1 | 0.0 | | 00 | | | | | 60 | 0 | ~ ~ ~
01 ko 4 | | 000 | 000 | 000 | 000 | | | | 000 | | | | 31.6 | 0.
22.1 | 20.5 | 27.6 | | | | | | 00000 | 0 0 0 4 | 14.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 | 15000
1500
1500
1500 | 00744
450
660 | 200
1150
1150
1150
1150
1150 | 0 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 211114
4 | 9.7.96.7.6
5.7.60.7.6 | 118
146
15
15
15 | 118
17.0
16.0
16.0
16.0 | 0.1.91
0.1.30
1.4.5 | 1177
1177
116.20
116.30 | | 0 0 0 0 0 0
0 4 0 0 4 | 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 12.7
110.8
110.1
9.8 | 144
112.0
110.0
10.0
10.5 | 8 0 C - 4 C | 13
12
12
11
11
13
13
14 | 13.7
122.7
123.5
12.5 | ########
P # # # # # # # # # # # # # # # | 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 44466
46000 | 4444
4444
75488 | 14444
74444
0000 | 11115
1515
1516
1516
1516
1516
1516
151 | 44444
66644 | 2000
2000
2000
2000
2000
2000
2000
200 | 4444
6666
14000 | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | | 00000
04000 | 4 5 0 0 0 0 0 0 4 5 0 0 0 0 0 0 0 0 0 0 | 111111111111111111111111111111111111111 | 2
2
2
3
3
4
3
5
5
6
6
7
7 | 122.23 | 1152.9
122.8
12.9
12.9 | 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8 8 8 8 8 8
8 8 8 8 8 8 | 44444
84444
84444 | 4444 | 2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | ###################################### | 7.0.0.0
7.0.0.0
7.0.0.0 | 0.0.0.0.0
0.0.0.0 | 116.2
16.2
16.2
2.2 | | | 00 00 00
00 00 00 | 000 | 10.1 | 10.0
10.0
10.0
10.0 | 11.5 | 12.2 | 12.7 | 13.3
13.3 | 13.7
13.7
13.7 | 444 | 14.6
14.6
14.6 | 14.9
14.9 | 15.3
15.3 | 15.6 | N N N N | 16.2
16.2 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.70 | OVER | | | | | | 1 | | BET | 1
1 | 9 | (| | | | | ! | |-------------------|-----|------|------|------|------|--------|-----------------|----------|---------|----------|------------|----------|---------------|------------|------|----------| | (K1) | 0.5 | 9.0 | 0.7 | | 6.0 | 4.0 | 1.1 | 1.2 | 1.3 | 4.4 | 4.5 | 1.6 | 1.7 | 1.8 | 6. | 2.0 | | 1
1
2
00 | | 0 | 1 6 | 0. | 9. | 1 . | 0 | ! . | 0 | : 0 | 0 | 0 | !
!
! • | | | | | o | | | 0 | | 0 | | | • | • | 0 | | | | | | | | | | | | 0 | 0 | | 0 | • | | | | | | | | | | | | | | _ | | | | | | | | | | 0 | | - | | | | | | _ | | | | | | | | | 9 | | | _ | 0. | .0 | 0 | 0 | | | | | | | | | • | | | 0 | | 5 | | | | | 0 | | | | 0 | 0 | | 0 | 9.5 | 6 0 | • | 8 | | _ | | | | | | | Ċ | | 80 | 6 | • | ~ | 7.3 | | | | | | | | 0 | 0 | 0 | •
• | 28.5 | 19.3 | 17.0 | 16.5 | 16.4 | 16.4 | 16.5 | 16.7 | 16.8 | 17.0 | | | | | | 0 | 0 | | • | 'n | . · | W | S | 5 | 6.1 | • | • | • | | _ | | | • | | | 41 | 4 | 4 | • | 'n | K U | 5 | 2.0 | • | • | • | | | | | • | 3 | 3 | 5 | 3 | + | 4 | * | 5 | 5 | 5.7 | · | • | • | | | • | P) | 2 | N | ċ | 3 | 2 | ,
PO | • | 4 | 5 | Ľ. | 5.6 | | • | • | | | • | 11.0 | 7 | + | 0 | 12.8 | 13.3 | 13.7 | 14.5 | 14.5 | 14.9 | 15.5 | 15.6 | 15.9 | 16.1 | 16.4 | | | 0 | c | • | - | 2 | 2 | ل ى
م | 3 | • | • | • | | 5.5 | 5 | • | • | | 24 | 9.1 | _ | 10.6 | 11.3 | 11.9 | 2 | • | m | • | • | 4 | 3 | ς.
Σ. | เก | • | • | | | | • | 0 | - | • | è | 1 | 100 | 10 | * | 4 | 5 | 5.5 | 5 | • | • | | | • | • | | + | 7 | 2 | 2 | m | is
M | 4 | 4 | w | 5.4 | ľ. | 6. | ø. | | | • | • | | ÷ | + | ċ | 2 | 3 | m | 4 | • | ت | 5.4 | 5 | 9 | 9 | | | | | 10.5 | 11.0 | 11.7 | 12.3 | 15.9 | 13.4 | 13.9 | 14.3 | 14.7 | 15.1 | 15.4 | 15.7 | 16.0 | 16.3 | | 59 | • | 9.3 | 9 | ÷ | - | 5 | 0 | (A) | m | + | * | 5 | 4 | ر.
د | • | • | | | • | • | 0 | • | + | N | ~ | 1 | 100 | * | | ĸ. | 5.4 | 5 | • | 16.3 | | | | • | | 10.9 | 11.6 | 12.3 | 12.8 | 13.4 | 13.8 | 14.3 | 14.7 | 15.1 | * | 15.7 | 16.0 | ø | | 32 | 8.2 | 9.5 | • - | 0 | ÷ | è | 2 | m | 3 | * | • | 5 | 4 | 5 | \$ | 9 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY #0.71 | 1
1
1
1 | .4 1.5 1.6 1.7 1.8 1.9 | 0. 0. 0. 0. 0. 0. 0. | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 0. 41.2 21.8 19.7 18.9 18.5 18.3 0.1 18.4 17.8 17.6 17.5 17.5 17.5 17.5 5.8 16.7 16.8 17.0 17.1 5.8 15.9 16.1 16.3 16.5 16.7 16.9 5.3 15.5 15.8 16.0 16.3 16.5 16.7 | 5.0 15.3 15.6 15.9 16.1 16.4 16.6
4.8 15.1 15.5 15.8 16.0 16.3 16.6
4.7 15.0 15.4 15.7 16.0 16.3 16.5
4.6 15.0 15.3 15.6 15.9 10.2 16.5
4.5 14.9 15.3 15.6 15.9 16.2 16.5 | 4.5 14.9 15.2 15.6 15.9 16.2 16.5
4.4 14.8 15.2 15.6 15.9 16.2 16.4
4.4 14.8 15.2 15.5 15.9 16.2 16.4
4.4 14.8 15.2 15.5 15.8 16.1 16.4
4.4 14.8 15.2 15.5 15.8 16.1 16.4 | 4.4 14.8 15.2 15.5 15.8 16.1 16.4 4.4 14.8 15.2 15.5 15.8 16.1 16.4 4.4 14.8 15.2 15.5 15.8 16.1 16.4 | |------------------|------------------------|----------------------|--|---|---|---|---| | < ! | 1.5 | .0 | | 00
00
00
00
00
00
00
00
00
00
00
00
00 | 44444
94004 | 44444
00000 | 6.88
6.88
4.99 | | 99
FF | , | 000 | 00000 | 0 0 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 44556 | 44444
88888
9868 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | ₩

 | . 0 | 00000 | 00004 | 4 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | ######
| 12.9 | | | 4.0 | | | 0001 | 2 1 1 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |
#####
| 4.2.4 | | ! | | 100 | | 10000 | 00000 | 러 # # #
| · · · | | 1 | 0 | | 0,000 | | 5 42.0 | संसम्म
सम्मन् | · · · | | | • 1 | 66 |
| 00000 | 800000 | | 000 | | | c | 000 | | 00000 | • • • • • • • • • • • • • • • • • • • | 00000 | 000 | | i
! | 0 | 000 | | 00000 | | 80 80 80 80 to | | | ス ン に | X (| 00 0 | 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 204
204
204
204
204
204
204
204
204
204 | 00000 | 00000
00000 | 0 H C | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK BENSITY = 0.72 | | | _ | 0 N M O O | 0 ~ ~ ~ 0 0 | 000mm | n in in in in | SSSS | |------------|-------|------|---|---|--|--|--| | | 2 | 0 | 44 47 7 | 99999 | 99999 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 9 | | • | 4.9 | ₩. | 11118 | 34455
64455 | 11116
1666
1666
1666
1666
1666
1666
16 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 16.2
16.2
16.2 | | (| 1,8 | 27.7 | 19.3
17.7
17.0
16.6 | 16.2
16.2
16.1
16.1 | 16.0
16.0
16.0 | 20000
00000 | 15.9
15.9
15.9 | | 1 | 1.7 | 0 | 20
17
16
16
16
16
16
16 | 15.0
15.0
15.8
15.0 | 15.7
15.6
15.6
15.6 | 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | 15.6
15.6
15.6 | | 1 | 1.6 | 0 | 1183
156.01
156.01 | 7.5.5.1
7.6.7.7
7.6.7.4 | 2444
2000
2000
2000
2000
2000
2000
2000 | ###################################### | 4444
6666
6888 | | | 2.5 | | 118.9
15.9 | #####
\$\$\$\$\$\$
\$\$\$##\$ | 25444
00000 | 44444 | 444 | | 1 | 1.4 | • | 21.2
17.1
16.0 | C 4 4 4 4 4 4 4 6 6 6 7 6 6 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 9 7 6 9 9 9 9 | 44446
66666 | 4 4 4 4 4 | 4444
60000 | | | 1 1 1 | , , | 0.
17.9
15.2 | 4 4 4 4 4
6 8 4 5 6 | 44444 | 44444 | 44.0
44.0
4.0 | | 0 2 | 1.2 | 0 | 0
20
10
10
10
10
10
10
10
10
10
10
10
10
10 | 1 4 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 111111
1211111111111111111111111111111 | 44444
88888
8888 | ************************************** | | | - | 0 | 0.00.17.11.15.0 | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 113.5 | | 13.0
13.0 | | | t · | | 12000 | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 60000
6000
6000
6000 | 4 4 4 4 4 | 4444 | | | 0 | 0 | 0 | 4 W W W W | 111111111111111111111111111111111111111 | | 11.8
11.7
11.7 | | | 1 | | 0000 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 45000 | | 1111 | | | 1 | · · | 0000 | 23.5
11.7
11.2 | 4445
7.1445 | 101
101
101
101
101
101
101
101
101
101 | 11000 | | | 1 | | 00000 | 16.0
10.0
10.6 | 00000 | 00000
44400 | 0000 | | | | 0 1 | | 0
13
13
10
10
10
10 | Q C C C C C C C C C C C C C C C C C C C | 20 20 20 20 20
4 4 12 12 12 13 | 20 20 20 00
w | | | K 1 0 | 1 4 | 77 7 7 8 6 7 8 6 7 8 6 9 6 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 01000
01004 | 00000 | | 50 50 50 50 50 50 50 50 50 50 50 50 50 5 | YARN BULK DENSITY = 0.73 MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.74 | | 6 | • | | 00000 | & & & & & & & & & & & & & & & & & & & | 00 00 00 00 00 | 80 1 1 1 | |----------|----------------|-----|---|---|--|---|---| | | 2 | · ~ | 9
9
9
7
7
7 | 2
2
2
3
3
3
3
3 | 99994 | 99999 | 4 6 6 | | 1 | 4.9 | - | 4 1 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 84444
8444
8444
8444 | 44444
44444
44444
44444 | 4444
6466
6666 | 4444
4444
4444
4444 | | [] | 1.8 | | 1.081
1.081
1.04.01 |
0.911
0.911
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915
0.915 | 11000 | 20000 | 16.2 | | | 1.7 | 0 | 24.7
116.3
16.8
4.6 | 116.00
116.00
116.00 | 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. | ###################################### | 15.8
15.8
15.8 | | | 1.6 | 0 | 27.0
118.0
16.6
16.6 | 115
115
115
115
115
115
115
115
115
115 | | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 221
221
22.02
20.02 | | ! | | 0 | 1200 | 22 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | |
 | | | | 4 | | 0 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 00044
40000 | 44444
8.6.7.7. | 4 4 4 4 4 4 1 L L L L L L L L L L L L L | 7.41
7.44
7.7.7 | | | 1 1 1 | 0 | 1100
1100
1100
1000
1000
1000
1000
100 | 74444
48674 | 44444 | 4 4 4 4 4
0 0 0 0 0 0 | 4444 | | 9. | 1.2 | 0 | 0 0 4 4 4 0 0 0 0 4 4 4 6 0 0 0 0 0 0 0 | 4 4 4 4 4
0 4 0 4 0 | 44444444444444444444444444444444444444 | 13.7
13.7
13.7 | 13.7
13.7
13.7 | | | 1 + 1
1 + 1 | • | 44
5000
5000
5000 | 44888
44888
64860 | 4 m m m m | 44444
88888
88888 | 2000
2000
2000 | | | | | | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 112.4
112.7
112.7 | 12.00
12.00
12.00
12.00
12.00 | 12.6
12.6
12.6 | | | 0.9 | 0 | 00000 | | 00000 | 22444 | | | | 0.0 | | | 44444
68664
0460 | | | • • • • | | | 0.7 | 0. | | 04044 | | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | 0 | 0. | | | 1.0
0.0
0.0
7.0 | | | | | 0.5 | | 00000 | | 22000
4500
600 | | | | 2 LII 10 | A X | 1 4 | 59786 | 04284 | 00000
50000 | 0 # 0 M 4 | 2 9 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | _ | - | | 204 | | | | YARN BULK DENSITY = 0.75 | ı | • | • | 4 W | • | | • | | • | • | • | o . | • | • | ٥. | • | • | • | • | • | ٠ | • | • | 6. | • | • | |-------|--------------------------|----------|------------|--------|----|----|----------------|------------|-----|-----------|----------------|-------------|-----|-------|--------|------|--------|-------|-----|--------|-----|--------|-------|----------|----------| | | 2 | ~ | 44 | ابيو ا | ₩. | 7 | - | ~ 1 | | 4 | - 1 | ⊕ →) | *1 | 16 | +1 | •4 | ** | 16 | #1 | | - | - | 40 | -1 | | | | 9.9 | • | 8.00 | | • | • | 6.9 | | • | • | • | • | • | 6.6 | ě | • | • | 9.9 | • | • | • | • | 6.6 | • | • | | 1 | 60 | CV | 4 4 | | | | 7 1 | 5 | | | | | | 3 | | | | 3 | | | | | 3 1 | | | | | - | * | 20. | ~ | 1 | \$ | • | 16. | • | ø. | ç | Q, | 9 | 16. | • | \$ | 9 | 16. | V | Ø | 9 | • | 16. | ·C | 9 | | | 1.7 | 1
1 • | 22.7 | | 9 | • | 9 | 16.3 | ÷ | ç. | • | 6 | | 16.0 | • | • | 'n | 15.9 | ٠. | | 5 | 5 | 15.9 | u` | ŗ. | | | | | 4 0
0 H | 'n | œ. | 4 | Η. | 5.0 | æ | ac) | .7 | 7. | 9. | 5.6 | 9. | 9. | ۰ | 5.6 | 9. | 9. | 9 | • | 5.6 | 9. | • | | | . 5 | | • | | .7 | • | œ | 5.6 1 | 'n | 4 | m. | M) | ٣. | 5,2 1 | ٥. | .2 | ~ | 5.2 1 | ۶. | 2. | ٠. | ۲. | 5.2 1 | CJ. | · | | | | | |) | -1 | | + 4 | 15 | + | +1 | +1 | ~ 4 | ** | 15 | ** | - | ++ | - | 4-4 | īH | + | +1 | 15 | 4 | ₩ | | | 4. | 0 | 0 0 | | • | | ŝ | 15.3 | Š | 5 | ů. | 4 | 4 | 14.8 | ্
ব | 4 | 4 | 14.8 | * | 4 | 4 | 4 | 14.8 | 4 | 4 | | | • | 0 | c = | | 9 | ŝ | 5 | 14.9 | 4 | 4 | 4 | 4 | 4 | 14.4 | 4 | 4 | 4 | 14.3 | 4 | 4 | 4 | 4 | 14.3 | 4 | 4 | | u: | 1.2 | | 0 | 31.6 | 7 | 3. | Š | 14.6 | 4. | 4 | 4 | 4 | 4 | 13.9 | 3 | 8 | 8 | 13.8 | 3 | ٠
س | 3 | 85 | 13.8 | 3 | ×; | | | | | | • • | 0 | 3 | 4 | 4.2 | M | M | 3 | m | m | 3.4 | ×. | 3 | M | 3.3 | m | 3 | 8 | 3 | 3.3 | • | ۲, | | | . 0 | | | | | 7 | 7 | 9 | 5 | ~ | 1 | • | 5 | 8 1 | 90 | ~ | 7 | 7 1 | 7 | / | 7 | 7 | 7 1 | 7 | 7 | | | 1. | | 0 0 | | 0 | | 4 | 13 | M | PO | 3 | ~ | 2 | 12. | ~ | 2 | \sim | 12. | 2 | ~ | ~ | \sim | 12. | \sim | \sim | | | 0 | | 0 0 | | | • | | 3. | 3 | ċ | s. | | ò | 2 | 8 | 2 | 12.1 | 2 | ~ | 2 | 2 | ~ | 2 | 5 | ~ | | | 8.0 | | | | | | 7.0 | 3.6 | 5.6 | 2.2 | 1.9 | 1.7 | 1.6 | 1.5 | 1.4 | 1.4 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | M. | | | _ ~ | 1 | | | | | | 9 | 4 | 9 | \sim | 0 | æ | / | 9 | | S | | ν | S | Ω | 4 | 4 | 4 | 4 | | | | | c: c | · c | | c | C | | 2 | - | 11 | - | C | 10. | C | | | 10. | C | \Box | | C | 10 | C | C | | | | 1 | | · . | | | | ċ | • | + | C | - | • | 6 | • | 6.7 | • | * | • | • | 0.5 | • | 0.5 | • | • | | | ! ທີ່
! =
! = | :
: = | | . c | | • | | | • | • | 6.6 | • | • | • | • | ×. , | • | • | • | • | • | x
v | • | • | • | | | Υ Y | CONT. | 4 ←
7 x | 1 4 | | | | | | | | | | | | | | | 3.0 | 00 | | | | | | | | | | | | | | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.76 | | 0 | 4 | VW0.04 | namm | 00000 | 00000 | 0000 | |---|----------|----------|---|--|---|--|---| | | 2 | | ひきまままり スプアン | まままま | まままま | こう シア | ファファ | | | 6.1 | • | 00777 | 6 6 6 6 6 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 00000
VVVV | 66.77 | | (| 80 | | 0
0
0
0
0
0
0
0
0 | 8 T 9 S S | 04444 | 44444 | नेनेनेन | | | + | 0 | 22
12
17
17 | 99999 | 6 | 99999 | 666. | | (| 1.7 | 0 | 23.9
19.0
17.7
17.1 | 6.45.00
6.45.00
7.45.00 | | 16.0
16.0
16.0
16.0 | 16.0
16.0
16.0 | | 1 | 5 1.6 | • | 190
17.8
16.9
16.9 | 44444
6664
6664
6664 | 8 8 7 | 15.7
15.7
15.7
15.7 | 15.7
15.7
15.7
15.7 | | | ٠
- | 6 | 2444
4669
6669
6669
6669 | #####
\$0.50.50.50
\$0.50.50.50 | 4 4 4 10 10
4 4 4 10 10 | $\begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet &$ | 15
15
15
15
15
15
15
15
15
15
15
15
15
1 | | 1 | 1.4 | . 0 | 0 4 4 0 1 1 4 4 0 1 1 4 6 | 24 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0.0444
0.000 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 4 4
0 0 0 0 | | | * | 1 | 0.
20.8
17.4 | 20444
20444
44070 | 4 4 4 4 4
4 8 8 8 8 8 9 | 4 4 4 4 4 | 4444 | | 9E ₹ | 1.2 | 0. | 0.00
17.00
15.00 | 4 4 4 4 4 4 4 4 5 6 5 6 5 6 6 6 6 6 6 6 | 44444 | 9.6.6
9.6.6
9.6.6 | 4444
444
966
966
966 | | | 4.4 | • | 0.00.00.00.00.00.00.00.00.00.00.00.00.0 | 44444
54488
04067 | 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 44444
66666666666666666666666666666666 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | 1.0 | | 0.
0.
0. | 0.4 m m m | 113.0
123.0
123.0
123.0 | 112222
12222
12223
1223
1223
1233
1233 |
12.7
12.7
12.7 | | | 0.0 | 1 | 0.00.3 | 55000 | | | 0000 | | | 0.0 | | | æ 4 0 0 m | 111111111111111111111111111111111111111 | • • • • • • • • • • • • • • • • • • • | 111.
111.
11.
11. | | 1 | 0.7 | | 00000 | 0000111 | 11.1
10.9
10.8
10.7 | 110000000000000000000000000000000000000 | 011
010
010
010
010 | | , | 9. | t
i • | | 13.4
111.4 | C C O O O | 20000 | | | | 0.5 | i
 • | | | σσσπα | | | | A P P P P P P P P P P P P P P P P P P P | A Z | 4 4 | | 01000 | | | | # MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.77 | | 1 | | | | | 1 | 1 | B F ₹ | (| | \ (| | | [(| 1 | 1 | | |----------------|----------|----------|----------|----------|----------|------|----------|----------|------|------|------|---------|------|------|------|---------|---| | 4 - | י ב | . 6 | 0.7 | 0.0 | C | 1.0 | 1.1 | | | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | | 2.0 | 1 | | 1 4 |
 | | | | | | ı • | 0. | • | 0 | 9 9 | | 0. | 0. | 33.7 | 24. | | | 5 | | | | | | | | | | | 0 | 0 | 5 | +- | • | 0 | | | 16 | | u
L | c | · c | | 0 | c | 0 | c | 0 | 23.0 | 20.3 | 19.4 | 19.0 | 18.8 | 18.7 | | | 17 | | | | | | | • | • | | • | œ | 8 | 7. | 7 | or. | 9 | | | 18 | | | | | | 9 | | © | 7. | ~ | 7. | 7 | 7. | | 7 | 7 . | | | 19 | . | | | 0 | 0 | | • 9 | • | Ġ | . 9 | • | 9 | • | 7. | 7. | 7 . | | | 0 0 | | | • | c | r, | 70 | 5 | | 5 | 5 | é | 9 | • | é | 7 | 1 | | | 21 | | | | 14.3 | 14.1 | 14.3 | 14.5 | 14.9 | 15.2 | 15.5 | 15.9 | 16.2 | 16.5 | 16.8 | 17.1 | 17.3 | | | 22 | | 4 | • | PV) | 3 | 3 | 4 | 4 | 5 | r. | 5 | 9 | 9 | 9 | 7 | 7. | | | 23 | 2 | <u>.</u> | <u>٠</u> | 2 | 3 | 8 | 4 | 4 | 4 | 5 | 5. | 9 | • | 9 | \$ | r-
• | | | 500
4 | 16.3 | • | + | 2 | • | 3 | • | 4 | 4 | r, | 5 | ι. | • | • | • | 7 | | | C | • | c | | *** | 2 | 3. | رم
د | 4 | 4 | 'n. | 5 | r. | • | 9 | • | 7 | | | 56 | | 10.2 | 11.0 | 11.8 | 12.4 | 13.1 | 13.6 | 14.2 | 14.6 | 15.1 | 15.5 | 15.9 | 16.2 | 16.5 | 16.9 | | | | 27 | | <u>.</u> | - | * | 2 | 3 | 3 | 4 | 4 | 'n | 5 | Ŋ. | | • | \$ | 7 | | | 28 | • | • | <u>-</u> | ٠. | 2 | 3 | M) | 4 | 4 | Š, | 5 | ν. | 9 | . 9 | 5. | 7. | | | 00 | T
CL | • | · | - | Ċ | 0 | 8 | 4 | 4 | 5 | ٦. | م | 9 | · · | · | 7 | | | 30 | • | • | c | + | 2 | N. | 3 | 4 | 4 | 5 | r. | 3 | 9 | • | • | 7 | | | | | 6.7 | 10. | 11.5 | 12.2 | 12.9 | 13.5 | 14.0 | 14.5 | 15.0 | 15.4 | 15.8 | 16.2 | 16.5 | 16.8 | 17.1 | | | | • | • | ċ | <u>_</u> | <u>د</u> | ? | M3 | 4 | 4 | 5. | 5 | 5. | Ġ | 9 | 5. | 7 . | | | | • | • | ċ | <u>+</u> | ė | ~ | κ, | 4 | 4 | v. | S. | ر.
• | 9 | • | • | ۲. | | | 4 % | x
.v | • | ·
C | <u>.</u> | 8 | 3 | m | 4 | 4 | ν. | ٦. | 5 | ç | • | ç | 7. | | | 3.5 | • | • | -
- | | \sim | ~ | •
כיא | 4 | 4 | r. | r. | 5. | • | Ś | ý | ۲. | | | | • | • | c | | ~ | 2 | 3 | 4 | 4 | 3. | Ľ. | n. | | . 9 | ć | 7 | | | | X. | 0 | 10.6 | 11.4 | 12.2 | 12.8 | 13.4 | 14.0 | 14.5 | 15.0 | 15.4 | 15.8 | 16.1 | 16.5 | 15.8 | 17.1 | | | | | • | c | - | 2 | 2 | 3. | 4 | 4 | Ŋ. | 5 | ς. | ç | | • | 7 | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.78 WARP | | 2.0 | 9 | 20 . 3
18 . 9
17 . 7 | 24400
24400 | 117.3 | 17.52 | 17.52 | |-------------|-----|-----|----------------------------------|--|--|--|---| | 5 | 1.9 | 62. | 21.0
19.0
18.2
17.7 | 4444
447.3
447.0 | 17.0
17.0
15.9
16.9 | 44444
4444
4444
4444
4444
4444
4444
4444 | 16.9
16.9
16.9 | | • | 1.8 | • | 22.6
19.2
18.1
17.6 | 17.0
16.9
16.8
16.8 | 16.7
16.7
16.6
16.6 | 16.6
16.6
16.6 | 16.6
16.6
16.6 | | | 1.7 | • | 27.9
19.8
18.1
17.4 | 20 11 11 10 10 10 10 10 10 10 10 10 10 10 | 4 8 8 8 8 8 | 1116
166
166
166
166
166
166
166
166
16 | 16.2
16.2
16.2
16.2 | | (| 1.6 | • | 0.
20.9
18.3
17.3 | 44444446464646464646464646464646464646 | 146
146
15
15
16
16
16
16
16
16
16
16
16
16
16
16
16 | 4444
6000
6000
6000 | # # # # #
#
| | (| 1.5 | 0 | 18.7
17.3
16.6 | 11862
11862
11879
11879 | 44444
88688
88688 | ######
######
######################## | 11 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15 | | 2
2
0 | 4 | • | 0
19
17
16
16 | 16.0
15.7
15.5
15.4 | 15.5.2 | | 15.1
15.1
15.1 | | | 1.3 | • | 0.
0.
17.8
16.4 | 7
7
7
7
7
8
1
9
1
9 | 4444
6.7.7.8 | 44444
00000 | 4 4 4 4
• • • • • • • • • • • • • • • • • • • | | BET | 1.2 | | 0.0
190.0
16.0 | 10.4
14.0
14.0
14.0
14.0
14.0 | 44444
80004 | | 4 4 4 4
4 4 4 4 | | | 1.1 | 0 | 00
00
17
17
10
10 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1133.7
133.7
133.7 | 11111
133
133
133
133
133
133
133
133
1 | 2.50
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1 | | (| 1.0 | | 0.
0.
19.0 | 74 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 88888
88888
88888 | 133.0
123.0
123.9 | 12.9
12.9
12.9 | | (|) | 0 | 00000 | 4 8 6 4 6 4 6 4 6 4 6 4 6 4 6 6 6 6 6 6 | 122.5
122.5
122.5
123.5
4.4 | 120.3 | 12.2
12.2
12.2 | | | 0.8 | 0 | 00000 | 27.8
13.2
12.6
12.2 | 12.0
11.8
11.7
11.7 | 111111
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11.5
111.5
111.5 | | 1 | 0.7 | | | 18.5
13.3
11.6 | 111.3
111.0
110.9 | 10.8
10.7
10.7
10.7 | 10.7
10.6
10.6 | | (

 | 0.6 | | | 0.
0.
15.3
11.9 | 10.5
10.3
10.1
10.0 | 00000 | 00 0 0
7 0 | | I | U.5 | 0 | | 0.00
13.00
10.50 | 000000
040 | \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$ | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | | OVER S | | 144 | | | ~~~~ | 0 H O B 4 | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA ### YARN BULK DENSITY = 0.79 | BETA | 0,5 0.6 9.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 | | . n. n. 0, 0. 0. 0. 0. 0. 0. 0. 0. 0. 32.3 23.5 2 | . 0. 0. 0. 0. 0. 0. 27.0 21 | . n. n. n. o. o. o. o. 26.4 20.4 19.1 18.6 18.4 18.3 18 | . n. n. n. 0. 0. 44.8 19.8 18.2 17.7 17.5 17.5 17.6 17.7 17 | . n. g. n. 0. 29.3 17.4 16.7 16.6 16.6 16.8 17.0 17.2 17.4 17 | . n. n. n. 17.1 15.8 15.5 15.7 15.9 16.1 16.4 16.5 15.9 17.2 17 | . n. 21./ 15.2 14.4 14.6 14.9 15.2 15.5 15.8 16.1 16.4 16.7 17.0 17 | . 16.9 13.6 13.4 13.7 14.0 14.4 14.8 15.2 15.6 16.0 16.3 16.6 16.9 17 | 4.5 12.2 12.3 12.7 13.2 | 0.8 11.2 11.7 12.3 12.9 13.5 14.0 14.5 15.0 15.4 15.8 16.2 16.5 16.8 17 | .9 10.7 11.4 12.1 12.8 13.4 13.9 14.4 14.9 15.3 15.7 16.1 16.5 16.8 | .5 10.4 11.2 11.9 12.6 13.3 13.8 14.4 14.8 15.3 15.7 16.1 16.4 16.8 17 | 10.2 11.1 11.8 12.5 13.2 13.8 14.3 14.8 15.2 15.7 16.1 16.4 16.7 17 | .1 10.1 11.0 11.8 12.5 13.1 13.7 14.3 14.8 15.2 15.6 16.0 16.4 16.7 17 | .0 10.0 10.9 11.7 12.4 13.1 13.7 14.2 14.7 15.2 15.6 16.0 16.4 16.7 17 | .9 9.9 10.8 11.7 12.4 13.1 13.7 14.2 14.7 15.2 15.6 16.0 16.4 16.7 17 | . H 9.9 10.8 11.6 12.4 13.0 13.7 14.2 14.7 15.2 15.6 16.0 16.4 16.7 1 | н 9.8 10.9 11.6 12.4 13.0 13.6 14.2 14.7 15.2 15.6 16.0 16.4 16.7 17 | . 7 9.8 10.8 11.6 12.3 13.0 13.6 14.2 14.7 15.2 15.6 16.0 16.4 16.7 17 | ,7 9.8 19.7 11.6 12.3 13.0 13.6 14.2 14.7 15.2 15.6 16.0 16.4 16.7 1 | .7 9.8 10./ 11.6 12.3 13.0 13.6 14.2 14.7 15.2 15.6 16.0 16.4 16.7 1 | d.7 9.8 10./ 11.6 12.3 13.0 13.6 14.2 14.7 15.2 15.6 16.0 16.3 16.7 17 | .7 9.8 10.7 11.6 12.3 13.0 13.6 14.2 14.7 15.1 15.6 16.0 16.3 16.7 1 | |------|---|-----|---|-----------------------------|---|---|---|---|---|---|-------------------------|---|---|--|---|--|--|---|---|--|--|--|--|--|--| | | 0 50 | 0.0 | c. | c. | с
, | с
• | | c.
• | · | . 4. E. | 4.5 12. | α:
! | .0 10. | .5 1n. | .2 10. | .1 1.0. | .0 10. | 6. | 0 1. | σ | 6 . | . 9 . | . 7 9. | .7 9. | .7 0. | ### YARN BULK DENSITY = 0.80 to sugge by their sections which | | 1 | 1
!
! | †
1 | 1 | í | ! |
 | BET | 1 | !
! | | | | | | | |------------------|----------|-------------|--------------|----------|--------|------------|------------|------|----------|----------|--------|----------|----------|----------|------|----------| | 4 - - | 0.5 |
0.0 | 7.0 | 8 . | | 1.0 | 4 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 4.9 | _ | | 4 | • 0 | · · | 0 | 0 | 0 | | .0 | • | • | 0 | .0 | l
1 • | ;
! • | i
1 • | . 0 | t • | | | 0 | | 0 | | 0 | | | | | | 0 | 0 | + | 4 | Ċ. | • | | | | | ŋ. | | | | | • | 0 | 0 | · · | 2 | 0 | 6 | • | | | | | | 0. | | | | | • | <u>ن</u> | + | • | ж
• | œ | 8 | œ. | ٠
ص | | | . | 0 | 0 | 0 | 0 | • | 0 | 20.7 | 18.6 | 17.9 | 17.7 | 17.7 | 17.8 | 17.9 | 18.0 | 18.2 | | 19 | 0 | | 0 | | | | | 7. | • | • | ç | 7 | 7 | 7 | 7. | . | | | 0 | 0 | | | 7. | • | 3 | 5 | • | • | • | • | i~ | 7 | 7 | 7 | | | 0 | | | 5 | 4 | 4 | 5 | δ. | ŗ. | 3 | Ś | 9 | 9 | 7 | | | | | 0 | 0 | 4 | 13.7 | • | 14.2 | 14.6 | 15.0 | 15.4 | 15.7 | 16.1 | 16.4 | 16.8 | 17.1 | 17.3 | | | | 7. | | | ۲. | ٠ | ₩, | 4 | 4. | 5 | 5 | • | 9 | • | 7. | 7 | | | 24 | | 1. | • | | M | 3 | 4 | 4 | 5. | 5 | ر
ت | 9 | 9 | • | • | 17.5 | | | • | 0 | بہ | ~ | ٥. | ₩, | 4 | 4 | 5 | r. | 5. | • | 9 | 9 | 7 | 7 | | | 9.6 | 10.5 | 11.5 | 12.0 | 12.7 | 13.4 | 13.9 | 14.5 | 14.9 | 15.4 | 15.8 | 16.2 | 16.5 | 16.9 | 17.2 | 7 | | | • | ċ | | - | ? | 8 | ₩, | 4 | 4 | 5 | 5. | 9 | 9 | 9 | 7 | 7. | | | • | 9 | 1. | 7 | ⊹ | ∾. | ~ | 4 | 4. | <i>ا</i> | ٦. | 9 | 9 | • | 7 | 7 | | 56 | • ' | · | - | + | ė | 3. | 5 | 4. | 4 | 5. | r. | 6. | • | • | 7. | 17.4 | | 3.0 | • | • | _ | <u>.</u> | ۲. | ₩. | M; | 4 | 4 | 5 | 5. | 9 | 9 | • | 7 | 7 | | 3.1 | э
Т | 0 | 10.3 | 11.7 | • | 13.1 | 13.7 | 14.3 | 14.8 | | ٦. | • | ý | 16.8 | • | 7 | | | • | • | ċ | + | 2 | ∾. | رسم | 4 | 4 | 3. | 5 | ģ | 9 | Ŷ. | 7. | 7. | | | • | • | Ċ. | 1. | c.i | M 3 | ≈ | 4 | 4 | ις.
• | ı, | 6. | ÷ | 9 | 7 | 7 | | | • | • | ·
c | | \sim | ج | • | 4. | 4 | | 15.7 | 16.1 | 16.5 | • | 7 | 17.4 | | | • | • | <u>-</u> | • | 2. | κ. | ~ | 4 | 4. | ٠. | r. | 9 | v. | ý | * | ~ | | | • | • | - | • | 2 | κ.; | ~ > | 4 | 4 | 5. | 10 | 9 | 0 | ò. | 7. | 7 | | ۲۲ | 1. | и
О | 10.3 | 11.6 | 12.4 | 13.1 | 13.7 | 14.3 | 14.8 | 15.2 | 15.7 | 16.1 | 16.5 | 16.8 | 17.1 | 17.4 | | | • | • | - | • | ~ | M) | M | 4 | 4 | л
• | ĸ. | 9 | 9 | 9 | 7. | 7. | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY *0.81 | | 6 | ^ | 4 0 00 M H | 00110 | 00000 | ម្រាស មា មា | տոտո | |--------|----------|--------|--|---|--|--|--| | | 2 | | 7 + + + +
+ 0 0 0 0 | てててて | ひりてりて | 7744 | 17.
17.
17. | | 1 | 0 | | \[\text{var. va} \] | V 0 R 4 4 | 500000 | 00000 | ~~~~ | | | | | 20000 | てててて | まてまする | ナナナナナ | 7777 | | ,
(| 8 . | | 0.00 | 4 E C C C C C C C C C C C C C C C C C C | 0.0000 | 00000 | 0000 | | | | !
! | 2000 | HHHHH
2000 | HHHHH
10000 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 9 9 9 9 | | | 1 - | 0 | 0
221
13
17
17 | 17.5 | 116.6 | 16.6
16.6
16.6 | 4 | | 1 | . 6 | | 4 00 m | 0 L 0 N 4 | mmmnn | 00000 | ~~~~ | | ı | 3 | 0 | 1000 | 9999 | 99999 | 9 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1001 | | | | i • | 0.00 | V 4 0 1 1 0 | $ \frac{1}{2} $ | n n n n n n
a a a a a a | ກະທຸກ
ລາວເວັດ | | | | 1 | 0000 | 4 1 6 7 6 | 00044 | 4 4 4 4 4 | e e e e e
e e e e e | | | 1. | 0 | 11000 | 99555 | 2 4 4 4 4
2 5 5 5 5 | n n n n n | 4 4 4 4
7 7 7 7 7 | | | (M 8 | | | U O IC M C | 40000 | 00000 | 0000 | | 4 | i | 1 | 1900 | 44444
60000 | 1 | 4444 | 4444 | | 8 | | 0. | 0.000.000.000.000.0000.0000.0000.0000.0000 | 1.6
1.7
1.7
1.4
1.6
1.6 | 4 4 4 4 4
0 0 0 0 0 4 | 4 4 4 4 4 | 4 4 4 4
4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | 1.1 | 1 • | | HUV 4 V | 40000 | | ααααα | | | • | 1 | Ħ | 96444 | 44466 | ののののののできませせ | ************************************** | | | 1.0 | | 00.00.00. | 0.441
0.44
0.44
0.7. | 60000000000000000000000000000000000000 | 13.2
13.2
13.2
13.2 | 13.2
13.2
13.2 | | | 6 | | | chern | carre | cunn u | nunn | | | 1 | _ | 00000 | 4444
95488 | B 6 6 6 6 6 | 4444 | 122 | | | 1 80 | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0000 m m o o o | 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7.1 | | | 1 | ! | | 0 7 0 | 64844 | | | | | 1 0 | | - | 00404 | | 111111111111111111111111111111111111111 | | | | c | | | c w | 0.040.4 | 45530 | 0000 | | | 1 | - | | 00014 | | 111000 | 0000 | | | | | | 0.
0.
7.4.8 | 2.00 | $\mathbf{p} \propto \mathbf{x} \propto \mathbf{x}$ | x c r r | | | | i | | 2 41 | • | | | | | œ. | | | | | | | | Q > C | N | 4 | | | norma | | nonz | | A C | | | का का का का का | 200 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | ммммм | 10 11 11 11 11 11 11 11 11 11 11 11 11 1 | YARN BULK DENSITY = 0.82 | | • | !_ | | | | | ٠ | | | | | | | | | | | | | | | | | | |---|--------------|-------------|----------|-----|---|--------|---------------|-------|------------|---------------------|------|-------|-------------|--------------|---------------|----------|------------|------------|------------|-------|-----|--------------------|------------|------------------| | | 2 : | 1 9 | • | • | 8.5 | • | | • (| | 7.8 | • | 4 | • | • | ., | | • | • | • | 9 | • | | | 9 9 | | | 1 | 4 | ~ | - | 0 M | -1 | • | H + | 4 +4 | 94 9 | 4 | wi | +1 | ┥ | 34 ÷ | 4 | 17 | 17 | 17 | 17 | 4 | | | 17 | | | 1 | 0 | 100 | 0. | 4 8 4 8 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 30 | • | | | 17.5 | • | 7. | 7 | | 17.4 | | 7. | 7. | 7. | 17.3 | • | 7 | ~ | 17.3 | | | 1 =1 | 0. | 7 | 0 | 19.0 | 7 | | 7 | 7 | 17.2 | | 7 | | | 17.1 | | 7 | 7 | 7 | 17.0 | • | 7.0 | 7.0 | 7.0 | | | 1.7 | 0. | 0 | ÷ (| 19
19
19 | | 7 | | 7 | 16.9 | • | 8.9 | 80 1 | 6.7 | 16.7 | | 6.7 | 6.7 | 6.7 | 6.7 | | 6.7 | 4.7 | 6.7 16.7 1 | | | 1.6 | | <u>ပ</u> | 4. | 189.7 | • | 7.1 | . 90 | 6.7 | 16.6 | | 4. | 4 . | 4.0 |
 | | י כייו | ٠;٠ | س ا | 6.3 1 | | ۳) | m ! | 6.3 1 | | | 1.5 | 1 0 | | | 0 00 1 | 7.3 | 8.9 | 6.5 | 6.3 | 16.2
16.1 | | 6.1 | 0.0 |) u | 5.9 1 | | <u>ه</u> . | • | o. (| 5.9.1 | | .9 | o. 0 | 5.0 | | | 1.4 | 1 . | 0 | | 000 | 7. | 9.9 | 6.5 | 0.9 | ν, υ
ω ν | , | ٠ u | . ע | טיני | 5.5 | į | , u | n u | U n | 7.4 | • | 4 | + +
+ • | 4 | | | 1.3 | 1 . | | | 40 | 0.1 | 4.9 | 2.9 | 2.6 | 4.0
4.0
1.4.1 | • | 7.6 | | , r. | 5.0 1 | • | r . | |
 | 5.0 1 | • | - d - d
- d - d | | 3.00 | | BET | 1.2 | | | • (| 23.0 | | 6.3 | 5.6 | 2.5 | 14.8 1 | 7 | 1.4 | 4 | . 4 | 4.5 1 | u | . 4
U R | \ u | . 4 | 4.5.1 | • | - · | * * | 4 | | | | •
 C | | | | • | 4.4 | 5.4 | 4 4 | 14.4 | 0 | 7 - | 4.1 | 4 | 4 | O | . 0 | 0 | 0 | 3.9 1 | Ċ | 7 . | . 0 | 3.9 | | | 10.1 | • | | | ດ +
ເ | \
• | 7.0 | 5.3 | 4 4
U 4 | 3.6 | 7 | 3.5 | 3.5 | 3.4 | M | M | , M | M. | 2 10 | 3.3 1 | ~ | · · | 1 - | 3.2.1 | | i | 0 1 | 0 | | | | • | 0.5 | v. 2 | | 3.3.1 | F . | 2 | 2.8 | 2.7 | 2.7 | 7 1 | · • | . 4 | 4 | 2.6 1 | 4 | | ָר
ה | 2.5 | | | 0.8 | | | | .00 | | 0 ; | , . | • • | 2.7 1 | • | 2.2 | 4 | 0. | ٥. | 0. | 0 | .8 | 60 | 1.8 1 | 90 | 1 + | 60. | . 89 | | 1 | | . 0 | | | 0 | | • | ٠, | | 2.2 1 | 00 | 1.5 1 | ۳. | ~ | -1 | | .0 1 | .01 | | .0 . | 6 | 9 | .9 11 | 9 1 | | ! | | • | | | ٠. | | | • | 4 | 1.7 1 | .1.1 | 0.7 1 | .5.1 | .3 1 | .2 1 | | .1. | .0.1 | .0 1 | . 0 1 | . 0 | | .0 10 | .9 | | 1 | 0.5 | | | • | | | | • • | | . 6 | .4 | α. |
 | .3 1 | .2 | 1 1 | 1 | _
_ | .9 1n | 9 1 | 5 | 9 | 9 10 | α | | į | 1 | | J 0 | Û | © O | (|) ¢ | o e | 0 | 11 | | 0 | | | | 0 | 5 | o | œ | æ | | | 8 | | | 2 × ₽ C + ₽
C + ₽ | Y I | 4 | 15 | 7 | 20 0 - | | > • | 4 (\) | m | 4 | EU. | vc ∣ | ~ | aro <i>i</i> | • | _ | _ 4 | ~ · | • | _ | | | | | | A C A | - 1 | 3 -4 | ₩ ₩ | - | | • | ~ c | 0 | N | à | 2 | ~ | ~ | ~ | ~ | 10 | 31 | 60 | % | 4 | 35 | 36 | 37 | 0 0
₩7 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA VARN BULK DENSITY = 0.83 #### DXFORD FARRICS | | 2.0 | . 0 | 4 11 0 0 1 1 4 4 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 | 270000 | 17.8 | 17.8
17.8
17.7
17.7 | 17.7
17.7
17.7
17.7 | |---------|---------|----------|---|---|---|---|--| | 1 | 1.9 | • | 4 C O C C C | 44.4 | ~~~~~
~~~~~ | 2 K K K K K K K K K K K K K K K K K K K | 4444 | | 9
1 | | • | 0.10
0.00
0.00
0.40
0.41 | 7.7.7.
7.8.8.
4.4.4.4. | 20001 | 11.7.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 444. | |
 | | | W4 W 00 | 40.00 | 00000 | | च च च च
© © © © © | |)
[] | |)
 | 000 B T | 44444
77779 | \$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 44444
44444 | 6 6 6 4 4 | | | | 0 | 0
100
100
100
100
100
100
100
100
100
1 | 17.2
17.0
16.8
16.7 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 4 4 4 4 4 | 16.4
4.61
4.61
4.61 | | | 1.5 | 0 | 21.0
118.5
17.5 | 17.0
16.7
16.5
16.3 | 1100
140
140
140
140
140
140
140
140
140 | 20000
20000
20000 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | | | 0
2
1
1
1
7
. 4 | 16.7
16.3
15.9 | 111111
111111
1111111 | 11
15
15
15
15
15
15
15
15
15
15
15
15
1 | 21
21
22
23
24
25
25
25
25
25
25
25
25
25
25
25
25
25 | | | 1.3 | · · | 0.
0.
20.2
17.6 | 16.6
115.7
15.7
15.5 | 2000
2000
2000
2000
2000 | | 15.1
15.1
15.0 | | BETA | 1.2 | . 0 | 0.
0.
26.4 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 441144
44144
7.44 | 44444
60000 | 4 4 4 4
R. N. N. R. | | |
 | | 000000 | 16.7
15.6
15.0
14.7 | 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 44444 | 14.0
14.0
13.0 | | | 1.0 | l
 • | 00000 | 2. 441
2. 441
2. 441 | 8 9 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | ###################################### | 13.3
13.3
13.3 | | | 0 | | | | ちょうらら | 00000 | 0000
6444 | | | 1 C | •
 = | | C 4 4 6 7 7 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1122.3 | 111.9
111.9
111.9 | 1111 | | | , · · · | | | 0.
15.6
13.2 | | | 4444
4444
6000 | | | 1 C | | | | 111.2
111.8
111.4
11.3 | 10.2 | 10.01
10.01
10.01 | | | 1 = | l
I • | | | 01
00
00
00
00
00
00
00
00
00
00
00
00
0 | , | 0000
x x x x | | | î
 | | | | | | | | 1 U. | - X | 1 4 | | | <i>u u u u u</i> . <i>u</i> . | 8 8 8 8 8
8 8 8 8 8
8 8 8 8 8
8 8 8 8 8 | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.84 | A R P | | | | | | | | in in | | | | | | | | | |---------|--------|-----------|-------------|----------|---------|------------|----------------|-------|------|---------|-------|------|------|------|------|------| | FAC-108 | 0.5 | 9.0 | 0.7 | 0.8 | 0.0 | 0 . | | 1.2 | 1.3 | 1 4 1 | 1.5 | 1.6 | 1.7 | 80 | 4.9 | | | 14 | 0 | | | | | | 0 | 0 | . 0 | 0 | | 0 | 0 | 0. | | • | | | | | | | | | | | | | | • | C | 7. | 5 | 2 | | | | | | | | 0 | 0. | 0 | 0 | 0 | 0 | 29.0 | 23.0 | 21.4 | 20.7 | 20.3 | | | | | | | | | C | 0 | | | • | • | 0 | 6 | • | 0 | | | | | | | | | • | | • | 6 | 90 | છ | αΩ | 90 | 80 | ъ | | | •
• | | | 0 . | | | - | 8 | 7. | 7. | 7. | 7. | 7 | 8 | œ | 8 | | | 0 | c | 0 | | 80 | -
30 | 7 | • | • | • | | 7 | 7 | 7 | «C | œ | | | | | 0 | ô | 5 | 3 | R. | 5 | 9 | 9 | 4 | 7. | | 7. | 7 | 80 | | | | C | 4 | 4 | 4 | 14.8 | 15,2 | 15.5 | 15.9 | 16.2 | 16.6 | 16.9 | 17.2 | 17.5 | • | 18.1 | | | 0 | 4 | ~ | ~ | 8 | 4 | 4 | 5. | 5 | | | 9 | 7. | ~ | 7 | 8 | | | 13.0 | ~ | 12.5 | M | 8 | 4 | 4 | 5. | 3 | 5 | ç | 6. | 7. | 7. | _ | 8 | | | 0 | • | ~ | | | M | 4 | 4 | 5 | iv. | · | 9 | 7 | 7 | | i~ | | | ٠ | · c | •
بـــا | 0 | M) | 13.7 | 14.3 | 14.9 | 15.3 | 15.8 | 16.2 | 16.6 | 17.0 | 17.3 | 17.6 | 17.9 | | | ъ. | د | 4 -4 | ò | 8 | 8 | 4 | 4 | 'n | 3 | 9 | 9 | 9 | !~ | 7. | 7. | | | • | <u>.</u> | 1 | ? | i, | ₩. | 4 | 4 | Š | 5 | • | 9 | | 7. | 7 | 7. | | | • o | c | 11.3 | ~ | ? | ₩. | 4 | 4 | 5 | 5 | • | | ç | 7 | 7. | 7 | | | • | ٠
د | *** | 0 | ~ | M) | 4 | 4 | 5 | ٽ.
• | ¢ | • | é | 7 | 7 | 7, | | | • | \subset | 1. | 2 | 2 | 13.5 | 14.1 | 14.7 | 15.2 | 15.7 | 16.1 | 16.5 | 16.9 | 17.2 | 17.6 | 17.9 | | | • | c: | | <u>`</u> | ر.
• | ٠. | 4 | 4 | Ľ. | s. | • | 9 | 6 | 7. | 7. | : . | | | • | ċ | • | <u>ر</u> | ? | 3 | 4 | 4 | 5 | S. | ć. | e | 9 | 7 | • | 7 | | | • | - | 11.1 | | | ٠. | 4 | 4 | 5. | 5. | 9 | \$ | • | 7 | | 7 | | | 0.6 | | • | | 12.7 | (A) | 4 | 4 | 5 | 5 | · | 9 | • | 7. | | ۲. | | | • | ć | 1. | + | 2 | 3 | 4 | 4 | 5 | 5 | 9 | 9 | · · | 7 | | ` | | | • | | 11.1 | | ? | 13.4 | 14.0 | 14.6 | 15.1 | 15.6 | 1.6.1 | 16.5 | 16.9 | 17.2 | 17.5 | 17.8 | | | • | - | + | • | 5 | M | 4 | 4 | Š | ζ. | è | • | .0 | 7 | 7 | 7. | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =0.85 | | 2.9 | 0 | N 0 0 0 | 3 0 | 8 8 8 8 8 8
4 8 8 4 4 | ****** | 0 0 0 0 0 0
0 0 0 0 0 | 8888 | |------------|----------------|----------|---|------------|--|---|--|--| | | 1.9 | | 22.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4. | 4 | 0.000
0.000
0.000
0.000 | 117.7
127.7
127.7
127.7
127.7 | 17.7
17.7
17.7
17.7
17.7 | 17.6
17.6
17.6
17.6 | | | . 8 |)
 | 21.9 | 69 | 118.0 | 4444 | 17.
17.
17.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19 | 17.3 | | | 1.7 | | 23.9 | 00 | 17.5 | 17.1
17.1
17.0
17.0 | 117,0
17,0
17,0
17,0 | 17.0
17.0
17.0 | | | 1.6 | 0 | 0.34.0
24.0
20.7 | | 17.5
17.5
17.0
16.9 | 16.8
16.7
16.7
16.7 | 444
466
666
666 | 16.6
16.6
16.6 | | | 1.5 | 6 | 0 C C C C C C C C C C C C C C C C C C C | | 1111
1101
100
100
100
100
100
100
100
1 | 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 66.000
66.000
60.000 | 16.2
16.2
16.2
16.2 | | | 4.4 | | 0000 | | 17.1
16.6
16.3
16.2 | 11 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 15.08
15.77
15.77 | 7.54
7.7.7. | | | 4.4 | t
 • | 000 | 00 | 44444
456
466
466
466
466
466
466
466
46 | 24 4 12 12
5 4 4 12 12 | ままままま
あらららら
まきする | 15.2 | | LU | 1.2 | | 0000 | | 24
24
26
26
26
26
26
26
26
26
26
26
26
26
26 | 200000
00000 | 4 4 4 4 4 6 8 6 7 7 7 7 | 444
7.44
7.74 | | | 1.1 | . 0 | | | 17.3
16.0
14.9 | 4444
6444
64560 | 4444 | + + + + + + + + + + + + + + + + + + + | | | 1.0 | !
: • | 0066 | | 8.91
1.00
1.41
1.00
1.00
1.00
1.00
1.00
1.0 | 144
144
144
16
16
16
16
16
16
16
16
16
16
16
16
16 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 1133
133
133
133
133
133
133
133
133
13 | | | 1 6 | | 0000 | | 144.0
24.4
24.0
2.4 | 40.000
40.000 | 000000
00000 | 22.22 | | | 10
| | | | 22.3
15.2
15.1 | 000000
00000
00000 | 27 2 2 4 4 4 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 | 12.0
12.0 | | | 0.7 | 1 | | | 18.0
13.8 | 489954
20004 | 88200
 | | | | 0.6 | | | | 15.7
12.7 | 4.00.00 4.00 4.00 4.00 4.00 4.00 4.00 4 | 4 m c c c c | 10.2 | | | 0.5 | i | | | 0.
0.
0.
13.9 | 111
101
10.3
10.9
10.0 | 3336G | 7000 | | 8 >
0 U | FACTOR
[K1] | 4 | | | 0 11 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | N T T T T T T T T T T T T T T T T T T T | | | | | | | 30 | 0 | | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.86 | BETA | 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 | 0. 0. 0. 0. 0. 0. 0. 0. | . 0. 0. 0. 0. 67.3 24.9 22.4 21.3 20.9 . 0. 0. 28.0 24.1 . 0. 0. 0. 86.3 23.4 21.1 20.3 19.9 19.7 19.7 . 0. 22.9 20.2 19.3 19.0 18.9 18.9 19.0 19.1 . 6 19.5 18.5 18.1 18.1 18.2 18.4 18.6 18.8 | .7 17.2 17.1 17.2 17.4 17.6 17.9 18.1 18.3 18.6 .2 16.3 16.5 16.8 17.0 17.3 17.6 17.9 18.2 18.4 .5 15.8 16.1 16.5 16.8 17.1 17.5 17.8 18.0 18.3 .1 15.5 15.9 16.3 16.7 17.0 17.4 17.7 18.0 18.3 .8 15.3 15.7 16.2 16.6 16.9 17.3 17.6 17.9 18.2 | .6 15.1 15.6 16.1 16.5 16.9 17.2 17.6 17.9 18.2
.5 15.1 15.5 16.0 16.4 16.8 17.2 17.5 17.8 18.1
.4 15.0 15.5 16.0 16.4 16.8 17.1 17.5 17.8 18.1
.4 14.9 15.4 15.9 16.3 16.8 17.1 17.5 17.8 18.1
.3 14.9 15.4 15.9 16.3 16.7 17.1 17.5 17.8 18.1 | .3 14.9 15.4 15.9 16.3 16.7 17.1 17.4 17.8 18.1 .3 14.8 15.4 15.9 16.3 16.7 17.1 17.4 17.8 18.1 .3 14.8 15.4 15.9 16.3 16.7 17.1 17.4 17.8 18.1 .2 14.8 15.3 15.8 16.3 16.7 17.1 17.4 17.8 18.1 .2 14.8 15.3 15.8 16.3 16.7 17.1 17.4 17.8 18.1 .2 14.8 15.3 15.8 16.3 16.7 17.1 17.4 17.8 18.1 | .2 14.8 15.3 15.8 16.3 16.7 17.1 17.4 17.8 18.1 .2 14.8 15.3 15.8 16.3 16.7 17.1 17.4 17.8 18.1 .2 14.8 15.3 15.8 16.3 16.7 17.1 17.4 17.7 18.1 .2 14.8 15.3 15.8 16.3 16.7 17.1 17.4 17.7 18.1 | |------|--|-------------------------|---|---|---|---|---| | | 7 0.8 0.9 | .0.0 | | 0. 0. 19
29.2 17.3 16
1 15.6 15.1 15
1 14.0 14.3 14
9 13.3 13.8 14 | 3 12.9 13.5 14
9 12.6 13.3 13
7 12.5 13.2 13
6 12.4 13.1 13
5 12.3 13.0 13 | 4 12.2 13.0 13
3 12.2 12.9 13
5 12.1 12.9 13
5 12.1 12.9 13
2 12.1 12.9 13 | 2 12.1 12.9 13
2 12.1 12.9 13
2 12.1 12.9 13
2 12.1 12.8 13 | | | 0.5 0.6 | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 6. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 17.0 14. 15.1 12.8 12. | 11.4 11.7 12.
10.4 11.2 11.
9.9 10.9 11.
9.7 10.7 11.
9.5 10.5 11. | 9.4 10.4 11.
9.5 10.4 11.
9.2 10.3 11.
9.2 10.3 11. | 9.1 10.2 11.
9.1 10.2 11.
9.1 10.2 11. | | | AC 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 14 | 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 30
0 tt 0 to 4 | 00000 | 8 8 8 8 8 8
0 4 8 8 4 | 50 60 60 60
10 60 7 60 | YARN BULK DENSITY = 0.87. T T T | OVER
CHR | ! | 1 | 1 | | (
(| | | 9 E | | | i | 1 | | | | | | |-------------|--------|-----------|--------------------|--------------|--------------|------------|--------|------------|------|----------|------------|------|----------|------|------------|-------------|--| | X | | . A |) · U | 0C | 0 . | 1.0 | 4.4 | 1.2 | 1.3 | 4. | 1 | 1.6 | 1.7 | ₩. | 1.9 | | | | 4 | = | C | _ | = | - | 0 . |
 | · | 0. | 0 | 0 | 0. | 0 | 0 | c. | 0 | | | 3 | | | | | | | | | | | | | c | C | 0 | 4 | | | 9 | | | | | | | | | | C | | · · | · · | Cu. | -1 | ,
,,,,-4 | | | 7 | | | | | | | | | 0 | 0 | 4 | - | 0 | 0 | | 0 | | | 16 | | | | | | C | | 0 | 24.3 | 23.7 | 19.7 | 19.3 | 19.1 | 19.1 | 19.2 | 19.3 | | | 40 | · c | ċ | •
C | Ċ | c c | | | | œ | œ | œ. | or. | ac. | œ | 00 | ος)
Ο() | | | 2.0 | c | | • | | 0 | • | α. | <u>۲</u> . | 7. | 1. | , | 7. | œ | 00 | œ. | a) | | | 21 | | | C | ċ | 7 | Ġ | • | \$ | , o | • | 7 | 7 | 7 | 8 | 8 | œ | | | 25 | | • | 4 | ·O | ιυ | ic. | 5 | 5 | 9 | ó | • | 7 | 7. | 7 | œ | ယ | | | 23 | C | 0 | 4 | • | 4 | 14.8 | 15.2 | 15.6 | 16.0 | 16.4 | 16.8 | 17.1 | 17.5 | 17.8 | 18.1 | 18.4 | | | 4 | 11.4 | 13.1 | • | M | 13.9 | 4 | 4 | 5 | 5 | ·c | ď | 7 . | ~ | 7 | c 0 | œ | | | 5.5 | • | • | 0 | 1 | * | 4 | 4 | ic. | 'n | | ć | 1 | 7 | 7. | 8 | 80 | | | 26 | • | - | • | · | M | 14.0 | 14.6 | 15.2 | 15.6 | 16.1 | 16.5 | 16.9 | 17.3 | 17.6 | 17.9 | 18.2 | | | 27 | _ | _ | , | $\dot{\sim}$ | κ, | 3. | 4 | 5. | 'n | 9 | ·¢ | 9. | • | 7 | 1 | 00 | | | 33 | ·
• | c
C | . | $\dot{\sim}$ | ~ | 3 | 4 | ٠ | r. | Š | į | ċ | ۲. | 7. | 7 | œ. | | | 90 | , r | y • [] | 1.0 | 10.4 | 13. | ,
N°, | .1 | ď, | 'n. | \$ | ·c | v) | ۲- | 7 | 7. | œ | | | (C) | • | ·
- 12 | • | 0 | ₩. | ~; | ্
ব | ٠,,` | r. | . | ·c | 0 | ۲, | ۲. | , | a) | | | 11 | • | 10.4 | 11.4 | 12.3 | ۳, | 13.7 | 14.4 | 14.9 | 15.5 | 15,9 | 16.4 | 15.8 | 17.2 | 17.5 | 17.9 | 18.2 | | | 32 | • | 17 | ٠, | å | 3 | ۶. | 4 | •
प | 5 | ır. | ٠
٧. | ď. | ۲. | • | 7 | 'n | | | 33 | • | <u>.</u> | | ς. | ٠, | <u>ن</u> م | .1 | 4 | 5. | ď | 4 . | (D | ۲. | 7 | 7. | 20 | | | 3.4 | • | · | •
-1 | | 13.5 | ~ | 4 | 41 | s. | (n) | · | ·C | ۲. | | 7. | in
Cu | | | i,C | • | Ç. | • | ~ | (\. | ~; | 4 | 4 | 5. | 10 | ¢ | Ċ | 7 | ~ | 7 | a | | | | • | <u>.</u> | • | ~ | \sim | ~ ∋ | 4 | 4 | 5. | ر.
د | ν. | ç. | <u>٠</u> | 1. | 7. | ф
• | | | | | 10.3 | 11.5 | 12.1 | 12.9 | 13.6 | 14.7 | 14.9 | 15.4 | 35.9 | 16.4 | 15.3 | 17.2 | 17.5 | 17.9 | 18.2 | | | | • | (- | • | ·. | $\dot{\sim}$ | ~) | ₹7 | ্
ব | ٦. | ٠. | ٠. | 5. | • | , | · | · 1 | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND RETA YARN BULK DENSITY #0.88 | | 1 0 | | ~ | 4 44 | H 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | 4 44000 | C | | |------------------------|-------|--------|-----|-----------|---|---------------------------------------|---|---| | | 2 | 10 | 'n, | 20. | 0 00 00 00 00 | | (C) | 8 8 8 8 8
8 8 8 8 8 | | | 6. | | œ , | - a m | 0 04MU. | 4 44000 | 99996 | 9000 | | | 1 2-1 | - 0 | M E | 190 | ഇത്തെന്ന | | 60 60 60 60 60 | σαααα | | | 1 00 | 1 | • | 0 4 W | | | | 9 9 9 9 9 1 1 1 1 1 1 | | | | i i | C | 200 | न नेनेनेन | | 77777 | 17.
17. | | | | 0. | 0 1 | 21.0 | | ~~~~ | ~~~~ | V V V V V V V V V V V V V V V V V V V | | | .6 | 1 . | | 200 | 0 0 10 10 10 | 40000 | 99999 | 0000 | | | | . J | 0 | 200 | 0 1111 | 01111 | 16.
16. | 16. | | | 1.5 | | 0 | 40. | o nnnoc | 00000 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | ww 4 4 | | I | 4 | l
F | | ~ W W | n - 0 - 1 - 0 - 0 | नलननन | ਜਜਜਜਜ | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | | 0 | 00 | 27.0 | 000077 | 2222 | 16.1
16.0
16.0
16.0 | 18.0
16.0
16.0
16.0 | | } ' | 1.3 | • | | . 200 | | | e ou n u | n n n n | | < □ | | | | 0+ | ਾ ਜਜੰਜੰਜੰ | | 4 4 4 4 4
0 0 0 0 0 | 15
15
15
15 | | 38 | + | 0. | | 000 | 70000 | 15.15.44
4.5.15.14 | 15.0
15.0
15.0
15.0 | 15.0
15.0
15.0 | | j , | 1.1 | | | | | σισου | R 4 4 4 4 | 4444 | | ! | | | | 00 E | | 44444 | 44444 | च च च च
च च च च | | i
1 | 1 1 | 0 | | 000 | | 14.1
14.0
13.9 | 13.8
13.8
13.8
13.8 | W B B B B B B B B B B B B B B B B B B B | | ; | 6 | | ٠. | | *** | V W 4 W V | ~ = = = = | | | 1 | 0 | | 00 | 200 | 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 8 8 8 8 8
H H H H H | 44444
4444 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | 0.8 | | | | | 40 V W W | 4 w w w w | 2222 | | ; | 7 | | | | ਦੇ ਜ਼ਿਲ੍ਹ
ਦੇ ਜ਼ਿਲ੍ਹ
ਨੇ ਲ | # # # # # # # # # # # # # # # # # # # | \$ 1 H H H H | 2224 | | | c | | | 000 | 0 C O 4 W | 12.5
111.9
111.9
111.0 | 11111
7.1111
7.144 | 11,3
11,3
11,3 | | | 0.6 | | | • • • | | 04467 | c n n 4 4 | 4 m m m | | | 1 | _ | C 0 | c o o | いいいいいいいいいいい | 2111 | 100 | 10.
10.
10. | | 1 | 0.5 | Û | | 000 | | 10.7
10.7
90.8 | 00000
04000 | 0000 | | Oz. | | | | | | | | | | MARP
COVER
FACTO | X | - | 100 | 1 H H O O | | 00000
00000 | | 5 5 7 8
5 5 7 8 | | | • | | | | | 73 | 7 117 | ਦਾਨ ਜਾਂਹ ਦਾ ਹੈ | # MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA #### OXTORD FABRICS VARN BULK DENSITY = 0.89 | 0 | | 1 | 1
1
1 | | | i | 1 | 8 E | : | | ! | i | 1 | | | 1 | |---------|--------|----------|-------------|----------|------------|----------|----------|------|--------|------|------|------|------|---------|-------------------|----------| | K 4 1 2 | 5.5 | · · | 7.0 | 0.8 | 0.0 | 1.0 | 1.1 | 1.2 | £ . 1 | 1.4 | ÷ ; | 1.6 | 1.7 | 4 . 1 | 6 1 | 2.0 | | 4 4 | 1 | i | | 0 | 0 | | · · | C | 0 | 0 | 0 | 0 | 0 | | . 0 | 0 | | | = | | | | | | | | | | | | • | • | c, | 9 | | 16 | - | ·
c | -
- | 0 | Û. | 0 | 0 | 0 | 0 | 0 | ċ | 0 | 30.5 | 24.3 | 22.5 | 21.8 | | | · E) | | | | | | | | ċ | 0 | œ | 2 | | 0 | c
 0 | | | | | ·
- | | | | | 0 | | | | | • | • | 0 | 0 | | | | | | | | | | | ٠
• | 30 | œ | œ | œ | œ | • | 6 | | | | | | | | 4 | c, | œ | 7. | 7 | 7 | 70 | æ | œ | 8 | 80 | | | . Û | с
С | ·
C | | 6 | 17.3 | 14.8 | 16.8 | 17.0 | 17.2 | 17.5 | 17.7 | 18,0 | 18.3 | 18.5 | 18.8 | | | | | | ′° | 5 | in | 5. | ÷ | • | \$ | 7 | 7. | 7. | œ | 80 | 80 | | | = | | R | | | 3 | 5 | 5. | • | 9 | 7. | 7 | 7. | œ | 8 | 00 | | 40 | | | • | ~. | 4 | 4 | 5 | 5. | ç | 9 | ÷ | 7 . | 7. | 7. | œ | αυ | | | ~ | ~ | \sim | 1 | ~ | 4 | 5 | 5 | 5 | 9 | ċ | 7 | 7. | 2 | ar. | 00 | | _ | = | - | <u>ر.</u> | ۲, | 8 | 4 | 4 | 5. | 5 | 9 | • | 7 | 7 | 7. | an
O | •
• | | | 10.3 | 11.2 | 12.0 | 12.8 | 13.5 | 14.1 | 14.7 | 15.3 | 15.8 | 16.2 | 16.7 | 17.1 | 17.5 | 17.4 | 18.1 | • | | | ·
5 | <u>.</u> | . | · | 3. | 4 | 4 | 5 | 5 | • | ċ | 7 | 7 | 7 | nc. | о
О | | - | • | <u>.</u> | + | ~ | 3 | 4 | 4 | 5 | υ. | • | ç | ۲. | • | ۲. | 60 | 00 | | 3.0 | • | <u>.</u> | - | ~
 | M) | M | 4 | 5 | 5. | • | v. | 7 | 7. | 7. | orc. | 10 | | | 2.5 | 10.6 | 11.5 | 12.4 | 13.2 | 13.9 | 14.5 | 15.1 | 15.6 | 16.1 | 16.6 | 17.0 | 17.4 | 17.7 | 18.1 | 18.4 | | | • | <u>.</u> | - | 0 | 3 | M3 | 4 | 5. | 5 | • | ς. | 7 | 7. | 7 | oc | œ | | | • | · | - | Ċ | ₩; | 3 | 4 | 5. | 5 | • | ċ | , | 7 | 7 | φ | œ | | | • | C | - | °. | m | m | ٠
ته: | 5. | 5 | • | • | 7 | ۲. | 7 | •
• X . | α. | | | • | ·
C | - | ζ. | M | (A) | 4 | e. | 5 | . 9 | · c | ` | , | 7. | σ <u>c</u> | œ | | 46 | · . | 10.4 | 11.4 | 12.3 | 13.1 | 13.8 | 14.5 | 15.1 | 15.6 | 16.1 | 14.5 | 17.9 | 17.4 | 17.7 | 18.1 | 18.4 | | | 6 | · | | | ~ ; | ۳. | 4 | ů, | 5 | ÷ | į | 7 | | 7 | α. | œ
œ | | | • | Ċ | , | ċ | 33 | ·, | 4 | r. | 'n | Ċ | 4 | ۲ | | ٠.
• | æ. | an
On | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =0.90 | | | | | | | , , | | | | | | | | | | | |---------------------------------------|----------|-----------|------------|----------------|------------|------|----------------|------|-------|------|----------|--------|-------|------------------|----------|------------| | | | | | | | | | Œ | 1 | 1 | 1 | | | , | 1 | ! | | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | | V2
 C | | 8 . | 0.0 | 1.0 | 1.1 | 1.2 | # # P | 1 | . 5 | 1 7 1 | 1.7 | 1 1 1 | 5 1 | | | 4 | 1 | | ; •
! C |
 •
 • | 0 1 | • |
 •
 • | | 0 | . 0 | | 1
1 | · | • | | | | | <u>~</u> | | | c | | | | | | | | | C | | | α | | · • | | | • | | | | | | | | • | • | کا د | | | | | | | | | | | | | | | | • | , ~ | • | ٠, - | | , – | | | | | | | | | | | • • | · ~ | 20.8 | 20.1 | 19.8 | 19.7 | 19.7 | 49.8 | | 10 | 0 | | · c | · c | | | c | | | | ac | ò | 00 | 0. | • | 6 | | c | | | | | | œ | 0 | αc | œ | 20 | α | 60 | αc | 90 | Œ | • | | | | | | | · · | 7 | 7 | | , | 7 | 7 | 7 | oc oc | 00 | oc. | 00 | | | | | | α | · · · | · • | · • | | · • | 7 | , | 7 | | . 60 | 00 | 00 | | | | | · · · | 15.0 | • | 15.2 | 15.6 | 16.0 | 16.4 | 16.8 | 17.1 | 17.5 | 17.8 | 18.1 | 18.4 | 18.7 | | | 0 | 14.4 | | 8 | 14.3 | • | 5 | 5 | ċ | 9 | 7. | 7. | 7. | 60 | 60 | œ | | ~ | ί. | ~ | ζ. | ۲, | 4 | 4 | 5 | 5 | • | 9 | Ψ. | 7 | 7 | 60 | nc. | න
• | | | · | · - | ~ | ~ | 3 | 4 | 4 | N. | 7. | 9 | ć | 7 | 7 | 7 | 00 | φ, | | | 0 | | ~ | ~ | 3 | 4 | ₹ | 5 | 5. | • | 9 | 7 | 7. | 7 | œ. | a) | | | 16.0 | 11.0 | 11.9 | 12.7 | 13.5 | 14.1 | 14.7 | 15.3 | 15.8 | 16.3 | 16.7 | 17.2 | 17.5 | 17.9 | 18.2 | 18.5 | | | ъ. | · | - | ~ | ~ | 4 | 4 | Š | ŗ. | 9 | • | 7 | 7. | 7 | • | . 60 | | 30 | | ·
c | + | ~ | • | 4 | 4 | 5 | 3 | • | ć | 7 | 7 | 7 | œ | ω | | | • | = | | 0 | 3 | 4 | 4 | 5 | 5 | 9 | ζ. | 7 | 7 | 7 | ď | œ | | | 0. | 10.6 | 11.6 | 12.5 | • | 13.9 | 14.6 | 15.2 | 15.7 | 16.2 | 16.7 | 17.1 | 17.5 | 17.8 | 18.2 | 18.5 | | | • | · | - | ~ | M) | 3 | 4 | 5. | 5 | • | • | 7. | 7 | 7 | œ: | ф
ф | | | • | c. | • | ċ | 3 | 3 | 4 | 5 | 5. | ç | • | ۲. | 7 | 7 | 80 | o O | | | • | | - | ~ | 3 | ارم | 4 | 5 | 5 | 9 | v. | 7 | 7 | 7 | Œ | œ | | | • | | . | ~ | • | P.5 | 4 | ŗ. | 5 | | ć | 7 | 7 | 7 | <u>.</u> | 10 | | 2 | ~ . 7 | 10.4 | 11.5 | 12.4 | H) | 13.9 | 14.5 | 15.1 | 15.7 | 16,2 | 16.6 | 17.1 | 17.5 | 17.8 | 18.2 | 18.5 | | | • | ċ | : | ~ | • | 3. | 4 | 5 | 5. | • | ċ | 7 | 7 | 7 | x | ю
Э | MAXIMUM FILLING COVER (ACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =0.91 #### NYFORD FARRICS | 1 | 0 | | 20 5 | s / | 0 | 10 | ٠ | 0 | 0 | ന | on. | Γ. | 7 | 7 | 9 | 9 | 9 | 9 | 9 0 | • | •0 | 9 | v O : | . | 6 | |------------|--|---------------------------------|--------------|---------|-----|-----|-----|------|-----|-----|---------------|----------|------|----|----------|-------------|------------|-------|------------|----------|----------|----------|--------------|----------|----------| | 1 | 01 | 0 | 0 0 | 200 | 6 | 6 | 6 | 16. | () | œ | 6 0 | œ | 18. | 80 | w | œ | 00 | 18. | œ | о
Ф | œ | 00 | ÷ 99 | 10 | œ. | | ;

 | 1.9 | 0 | | 20.0 | 6.6 | 9.3 | 0.6 | 18.₺ | 8.6 | 8.5 | 80 | œ | 18.4 | 60 | œ | œ | œ | 18.3 | ю
Ф | . | œ | 8.3 | 18.3 | 30 · 00 | •
• | | | 9 1 | 0 | | 21.3 | 0. | 6 | 00 | 18.5 | œ | æ | œ | 80 | 18.0 | œ | œ | œ
œ | 8 | 17.9 | 7 | 7 | 7. | 7 | 17.9 | . 1 | | | 1 | 1.7 | 0. | 0 | 22.2 | 0 | 5 | 60 | 18.3 | 00 | 7 | 7. | 7 | 17.7 | 7 | 7 | 7 | 7. | 17.6 | 7 | 7 | 7 | 7 | 17.6 | . 1 | 7 | | l
Li | 1.6 | | | 24.5 | O | 6 | 00 | 18.0 | 7 | 7 | ` | 7 | 17.3 | 7 | 7 | 7 | 7 | 17.2 | ٠, | 7 | 7 | 7 | 17.2 | · · | ` | | 1 | 1.5 | | | 4.0 | • | 0 | œ | 17.7 | 7 | 7. | 7 | 7 | 16.9 | v. | 9 | • | ç | 16.8 | ď. | ċ | ç | • | 16.7 | · | ċ | | 1 | + + + + + + + + + + + + + + + + + + + | • | • | | • | 0 | 80 | 17.5 | 7 | 9 | • | · o | 16.5 | 9 | • | • | v 0 | 16.3 | • | ė. | • | • | 16.3 | 9 | • | | | 1 | | |
c c | • | | œ | 17.3 | • | ċ | • | é | 16.0 | ċ | 5. | 5. | 5 | 15.8 | 5 | 5 | 5. | 5 | 15.8 | · | ic. | | e
m | 2 6 | | |
c c | C | | 60 | 17.2 | ç | ò | <u>.</u>
ប | 5 | 15.5 | 5 | 5. | 5 | 5 | 15.3 | 5. | ۍ | 5. | 5. | 15.2 | ŗ. | ŗ. | | | 1 1 1 | 0 | |
c c | | | 0 | 17.4 | × | 50 | ıv. | r. | 15.0 | 4 | 4 | 4 | 4 | 14.7 | 4 | 4 | 4 | 4 | 14.6 | 4 | 4 | | | | • | |
c c | | | 4 | 18.1 | • | 10 | 4 | 4 | 14.4 | 4 | 4 | 4 | 4 | 14.1 | 4 | 4 | 4 | 4 | 14.0 | 4 | 4 | | | 1 0 | . 0 | | | | | | 2 | • | | ₹9 | 4 | . €. | ۲. | M | 3 | 3 | 13.4 | 3 | ,
M | | m | 13.2 | ٠
رس | ~ | | | |
 •
 C | |
c c | | | | 0 | 0 | | 4 | | 13.2 | 8 | · | ά. | o. | 12.6 | ~ | i | · | ~ | 12.4 | Ċ | ς, | | | 1 | | |
c c | | | | · | | ÷C | • | * | 12.5 | ~ | ~ | ∀ -4 | - | 11. | - | + | • | | 11.5 | · · | • | | | . c | | , | -
- | | | | C | | ٠ | | C | 11.8 | • | • | с.
С | - | 10.7 | c | c c | <u> </u> | · |
€
₩ | ·
C | ,
C | | |
 | | | c = | | | | | | | | ~ | 11.3 | 0 | _ | · | • | A. C. | • | • | • | • | 4.4 | ٠ | • | | | N X | 1
1
1 13
1 | | 16 | | | | | | | | ر
م | | | | | | | | | 4 5 | | ¥\$ | | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.92 WARP | ; | 2.0 | • | ? | ċ | 0 | 20.1 | 6 | 6 | • | • | 18.9 | 90 | 00 | 9 | 18.8 | 80 | 80 | œ | 8 | · | 18.7 | ထ် | 30 | 18.7 | œ | ·
∞ | |---------------|------------|-----------|----|----|---|------|----------|-----|----|----------|------|-----|----|----|--------|--------|------|--------|----|----------|------|-----|----------|------|----------|--------| | 9 | 1.9 | | 0 | 4 | + | 20.0 | . | • | φ. | œ | 18.6 | 80 | 90 | 8 | 18.5 | •
• | œ | ac. | œ | 10 | 18.4 | œ | œ | 18.4 | 00 | œ | | | 1.8 | | 60 | 7. | • | 20.1 | • | 80 | œ | œ | 18.3 | œ | œ | 8 | 18.1 | 8 | 60 | 80 | œ. | œ
• | 18.0 | œ. | 8 | 18.0 | œ. | œ | | • | 1.7 | .0 | • | • | · | 20.3 | • | on: | 00 | 8 | 18.0 | 7 | 7 | 7 | 17.8 | 7. | | 7 | ۲- | 7. | 17.7 | 7. | 7 | 17.6 | 7 | 7 | | 1 | 1.6 | | | 0 | 5 | 20.7 | 9 | 00 | œ | 7 | 17.7 | 7 | ~ | 7 | 17.4 | 7. | 7. | 7. | 7 | 7. | 17.3 | 7 | 7 | 17.3 | `. | 7 | | | #
 * | | | | 0 | 21.7 | • | ac. | 7. | ~ | 17.3 | r. | 7 | 7 | 47.0 | 9 | · | • | ¢ | \$ | 16.8 | ¢ | • | 16.8 | · | ç | | 1 | 4 . | • 0 | | • | 0 | 24.8 | 6 | 80 | 7. | 7 | 17.0 | 9 | 9 | 9 | 16.5 | • | • | 9 | 9 | 6. | 16.4 | • | • | 16.4 | • | • | | 1 | 1.3 | . 0 | | | | 0 | | œ | 7 | . 9 | 16.6 | 9 | • | ÷ | 16.1 | ÷ | 9 | 5 | Š | | 15.9 | 5 | Š | 15.9 | ı. | ٠. | | BET | 1.2 | 0 | | | 0 | 0 | 9 | 6 | 7. | • | 16.2 | . 9 | 5 | 5 | 15.6 | 'n | 5 | r. | 5 | 5 | 15.3 | 5. | 3 | 15.3 | S. | 'n | | 1 | - | | | | | 0 | | - | · | 9 | 15.9 | 5, | ĸ. | S. | 15.0 | 4 | 4 | 4 | 4 | 4 | 14.7 | 4 | 4 | 14.7 | 4 | ਾ
ਯ | | 1 | 0. | | | | | 0 | | • | œ | • | 15.5 | 5. | 4 | 4 | 14.4 | 4 | 47 | 4 | 4 | 4 | 14.1 | 4 | 4 | 14.0 | 4 | 4 | | | 0.0 | | | | | | | • | 9 | 7. | | 4 | | · | 3 | 3 | 3 | 3 | 3 | ۵. | | 3 | M | 13.7 | M | m, | | 1 | 0 .0 | | | | | | 0 | | ċ | ċ | 15.6 | 4 | 1 | 3 | 13.1 | Ĉ | • | \sim | ċ | ċ | 12. | ċ | ~ | 12.5 | ċ | c. | | 1 | 0.7 | | | | | | | · | | <u>.</u> | 1 | • | 3 | ? | \sim | ~ | 11.9 | • | - | + | - | | | 11.6 | • | • | | 1 | Q . U | | | | | | 0. | | | | ċ | | à | ς. | | + | 11.0 | | ċ | <u>-</u> | 0 | ċ | Ċ, | 10.6 | <u>-</u> | · | |
 | 0.5 | 1 | | | | | 0 | | | | | .0 | 4 | • | = | c | 10.0 | | • | | • | 9.5 | • | 4. | ٠ | • | | OVER
STEEN | |

 | | | | | | | | | | | ~ | | | | | | | | | | (A) | | | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.93 | 15 | 0 < X C = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = | 1
1
1 | 1 | 1 | 1 | 1 | 1 | 1 | 86 T | 1 | | 1 | 1 | 1 1 | 1 | 1 | 1 |
---|---|-------------|----------|---------------------|--------------------------|--------|-----|------------|------|-----|-----|----------|------|-----|-------------|---------------------|------------| | 14 | 7. 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 0.5 | 9.0 | 0.7 | 0 | • (| = ! | 1.1 | 1.2 | • I | 1.4 | 2.5 | 1.6 | 1.7 | 00 1 | 8 | 2.5 | | 6 0.0 | 1 4
1 4 | | | | , c | • | • | c : | . 0 | 0 | • 0 | 0 | . 0 | | | 0 | 0 | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | | | | | | 0 | | | | | | | | | • | c | 9 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | ت | | | | | | • | ပ် | - | 5 | - | 23.5 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | 0 | | | | | 0 | . | • | M | ċ | ه
د ا | • | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 30.0 21.7 20.2 19.6 19.6 19.4 19.4 19.5 19.0 10. 0. 0. 0. 37.2 19.2 18.0 19.5 18.8 18.6 18.6 18.6 18.6 18.9 19.0 10. 0. 0. 0. 37.2 19.2 18.0 17.7 17.7 17.7 17.7 18.0 18.3 18.5 18.8 18.6 10. 0. 0. 0. 22.5 17.4 16.7 16.7 17.7 17.7 17.7 18.0 18.3 18.5 18.8 18.5 18.8 19.0 19.0 15.9 15.4 15.7 17.7 17.7 17.7 18.0 18.3 18.5 18.8 18.5 18.8 19.1 18.5 18.8 18.5 18.8 18.5 18.8 18.5 18.8 18.5 18.8 18.5 18.8 18.5 18.8 18.5 18.8 18.5 18.8 18.5 18.8 18.5 18.8 18.5 18.8 18.5 18.8 18.5 18.8 18.5 18.8 18.5 18.8 18.5 18.8 18.8 | | | С | | | C | | | 0 | 9 | 9 | ٠. | - | 0 | ٠
د ر | · | 0 | | 0. 0. 0. 0. 0. 37.2 19.2 18.0 18.6 18.6 18.6 18.7 18.9 19.0 19.0 19.0 10. 0. 0. 37.2 19.2 18.0 17.7 17.7 17.8 18.0 18.3 18.5 18.8 18.6 18.0 18.3 18.5 18.8 18.5 18.8 19.0 17.9 17.4 17.7 17.7 17.4 17.7 18.0 18.3 18.5 18.8 19.0 17.9 17.9 17.4 17.7 17.7 17.1 17.5 17.8 18.1 18.5 18.8 19.0 17.8 17.2 17.6 16.1 16.5 16.9 17.3 17.7 18.0 18.3 18.6 11.8 17.8 17.8 17.8 17.8 17.8 18.1 18.5 17.8 17.8 17.8 17.8 17.8 17.8 18.8 17.8 17 | | | ·
c | | | . 0 | | | 0 | | ċ | • | · · | 0 | a. | 0 | •
• | | 0. 0. 0. 37.2 19.2 18.0 17.7 17.8 18.0 16.3 18.5 18.8 18.5 19.8 19. 0. 0. 0. 72.5 17.4 16.7 16.8 17.1 17.4 17.7 18.0 18.3 18.5 18.8 1.3 1.5 17.4 16.7 16.8 17.1 17.4 17.7 18.0 18.3 18.6 1.4 10. 16.9 14.5 14.5 14.6 15.7 16.0 16.4 16.7 17.1 17.5 17.8 18.0 18.3 18.6 1.5 11.8 12.1 12.8 13.4 14.0 14.6 15.2 15.8 16.4 16.8 17.2 17.7 18.0 18.0 18.3 1.5 10.4 11.5 12.2 13.0 13.7 14.9 15.4 15.9 16.4 16.8 17.2 17.6 18.0 18.3 1.5 10.4 11.3 12.2 13.9 14.5 15.1 15.7 16.2 16.6 17.1 17.5 17.9 18.2 1.5 10.4 11.3 12.0 12.9 13.7 14.3 15.0 15.5 16.1 16.6 17.1 17.5 17.9 18.2 1.5 10.4 11.0 11.9 12.8 13.6 14.3 15.0 15.5 16.0 16.5 17.0 17.4 17.8 18.2 1.5 10.0 11.9 12.8 13.6 14.2 14.9 15.5 16.0 16.5 17.0 17.4 17.8 18.2 1.5 10.7 11.7 12.6 13.4 14.2 14.8 15.4 16.0 16.5 17.0 17.4 17.8 18.1 1.5 17.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1.5 17.0 17.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1.5 17.0 17.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1.5 17.0 17.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1.5 17.0 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 | | | | | | 0 | • | ô | 0 | œ | 00 | œ. | œ. | œ | 6 | 0 | 0 | | 0. 0. 0. 0. 0. 72.5 17.4 16.7 16.7 16.8 17.1 17.4 17.7 18.0 18.3 18.6 1.4 10. 16.9 14.5 14.5 17.4 15.7 16.0 16.4 16.7 17.1 17.5 17.8 18.1 18.5 1.4 10. 16.9 14.5 14.8 15.2 15.6 16.1 16.5 16.9 17.3 17.7 18.0 18.4 18.5 11.8 17.1 12.8 13.4 14.0 14.6 15.2 15.8 16.2 16.7 17.1 17.5 17.7 18.0 18.3 1 10.4 11.8 12.1 12.0 13.2 13.9 14.5 15.1 15.7 16.2 16.6 17.1 17.5 17.9 18.3 1 10.1 11.9 12.8 13.7 14.4 15.0 15.6 16.1 16.6 17.1 17.5 17.9 18.2 1 10.1 11.1 12.0 17.9 13.7 14.4 15.0 15.6 16.1 16.6 17.0 17.4 17.8 18.2 1 10.1 11.9 12.8 13.7 14.9 15.5 16.0 16.5 17.0 17.4 17.8 18.2 1 10.9 11.8 12.7 13.5 14.2 14.9 15.5 16.0 16.5 17.0 17.4 17.8 18.2 1 11.8 17.7 11.7 12.6 13.4 14.2 14.8 15.4 16.0 16.5 17.0 17.4 17.8 18.1 1 1.8 17.1 17.1 17.8 18.1 1 1.8 17.1 17.1 | | | | | C | 7 | • | œ | 7 | 7 . | 7 | 80 | œ | œ | æ | • | • | | 9 15.3 13.2 13.3 13.8 14.7 14.9 15.4 16.7 17.1 17.5 17.8 18.1 18.5 1.4 11.8 15.2 15.6 16.1 16.5 16.9 17.2 17.7 18.0 18.4 1.8 11.8 12.1 12.8 13.4 14.9 15.4 15.9 16.4 16.8 17.2 17.5 17.7 18.0 18.3 1.9 18.4 11.8 12.1 12.8 13.4 14.0 14.5 15.8 16.2 16.7 17.1 17.5 17.9 18.3 1.0 18.4 11.3 12.2 13.9 14.4 15.0 15.5 16.2 16.0 17.1 17.5 17.9 18.3 1.0 1.0 11.3 12.2 13.9 13.7 14.4 15.0 15.5 16.1 16.6 17.0 17.5 17.9 18.3 1.0 1.0 11.9 12.8 13.7 14.3 15.0 15.5 16.0 16.5 17.0 17.4 17.8 18.2 1.0 9.9 11.0 11.9 12.8 13.7 14.2 14.9 15.5 16.0 16.5 17.0 17.4 17.8 18.2 1.0 9.7 10.9 11.8 12.7 13.5 14.2 14.9 15.5 16.0 16.5 17.0 17.4 17.8 18.1 1.3 9.5 10.7 11.7 12.6 13.4 14.2 14.8 15.4 16.0 16.5 17.0 17.4 17.8 18.1 1.3 9.5 10.7 11.7 12.6 13.4 14.2 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1.3 9.5 10.5 11.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.3 17.7 18.1 1.3 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 16.9 16.5 16.9 17.3 17.7 18.1 1.3 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.9 17.3 17.7 18.1 1.3 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.9 17.3 17.7 18.1 1.3 17.7 17.8 18.1 1.3 17.3 17.7 17.1 18.1 1.3 17.3 17.7 17.1 17.1 18.1 17.8 15.4 15.9 16.9 16.9 17.3 17.7 17.1 17.1 17.8 18.1 17.8 15.4 15.9 16.9 16.9 17.3 17.7 17.1 17.1 17.8 18.1 17.8 17.8 17.8 | | | | | è | 7 | • | 9 | 9 | 7 | 7. | 7 | œ | œ | œ. | œ | 0 | | 0. 16.9 14.5 14.5 14.8 15.2 15.6 16.1 16.5 16.9 17.3 17.7 18.0 18.4 1 15.3 13.2 13.3 13.8 14.3 14.9 15.4 15.9 16.2 16.2 17.2 17.6 18.0 18.3 1 10.8 11.8 12.4 14.0 15.2 15.8 16.2 16.2 16.7 17.1 17.5 17.9 18.3 1 10.8 11.5 12.2 13.9 14.5 15.1 15.7 16.2 16.6 17.1 17.5 17.9 18.3 1 10.4 11.3 12.2 13.9 14.5 15.1 15.7 16.2 16.6 17.1 17.5 17.9 18.3 1 10.4 11.3 12.2 13.9 14.5 15.1 15.7 16.2 16.6 17.1 17.5 17.9 18.2 1 10.4 11.1 12.0 12.9 13.5 14.3 15.0 15.5 16.1 16.6 17.0 17.4 17.8 18.2 1 1 10.1 11.9 12.8 13.5 14.2 14.9 15.5 16.0 16.5 17.0 17.4 17.8 18.1 1 1 2.0 17.1 17.2 12.6 13.4 14.2 14.8 15.4 16.0 16.5 17.0 17.4 17.8 18.1 1 2 2 1 1.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 1 2 1 1.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 1 2 1 1.6 17.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 1 2 1 1.6 17.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | C | 6 | 5 | 'n | 3. | \$ | 9 | • | 7 | 7 | 7 | œ | œ | œ | · | | 15.3 13.2 13.3 13.8 14.3 14.9 15.4 15.9 16.4 16.8 17.2 17.6 18.0 18.3 1 11.8 12.1 12.8 13.4 14.0 14.6 15.2 15.8 16.2 16.7 17.1 17.5 17.9 18.3 1 10.8 11.6 12.4 13.2 13.9 14.5 15.1 15.7 16.2 16.6 17.1 17.5 17.9 18.3 1 10.4 11.3 12.2 13.9 14.5 15.1 15.6 16.1 16.6 17.0 17.5 17.9 18.2 1 1 10.1 11.1 12.0 12.9 13.6 14.4 15.0 15.6 16.1 16.6 17.0 17.5 17.8 18.2 1 1 10.1 11.9 12.8 13.6 14.3 15.0 15.5 16.1 16.6 17.0 17.4 17.8 18.2 1 1 9.8 10.7 10.8 11.8 12.7 13.5 14.2 14.9 15.5 16.0 16.5 17.0 17.4 17.8 18.1 1 2 9.6 10.7 11.7 12.6 13.4 14.2 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 1 4.2 11.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 | | | ć | 4 | 4 | 4 | 3. | r. | ÷ | • | 8 | 7. | 7. | œ | o c | 0 0 | • | | 11.8 12.1 12.8 13.4 14.0 14.6 15.2 15.8 16.7 17.1 17.5 17.9 18.3 1 10.8 11.6 12.4 13.2 13.9 14.5 15.1 15.7 16.2 16.6 17.1 17.5 17.9 18.3 1 10.4 11.3 12.2 13.9 14.5 15.1 15.7 16.2 16.6 17.1 17.5 17.9 18.2 1 1 10.4 11.3 12.2 13.0 13.7 14.4 15.0 15.6 16.1 16.6 17.0 17.5 17.8 18.2 1 1 10.1 11.1 12.0 12.9 13.6 14.3 15.0 15.5 16.1 16.6 17.0 17.4 17.8 18.2 1 1 9.8 10.9 11.8 12.7 13.5 14.9 15.5 16.0 16.5 17.0 17.4 17.8 18.2 1 2 9.7 10.8 11.8 12.7 13.5 14.9 15.5 16.0 16.5 17.0 17.4 17.8 18.1 1 2 9.6 10.7 11.7 12.6 13.4 14.2 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 4 9.5 10.7 11.7 12.6 13.4 14.2 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 1 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.3 17.7 18.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | ·. | * | M : | ۳. | 4 | 4 | 5 | 5 | • | • | 7. | . 1. | œ | 00 | | 18.9 | | 10.8 11.6 12.4 13.2 13.9 14.5 15.1 15.7 16.2 16.6 17.1 17.5 17.9 18.2 1 10.4 11.3 12.2 13.0 13.7 14.4 15.0 15.6 16.1 16.6 17.0 17.5 17.9 18.2 1 10.1 11.1 12.0 12.9 13.6 14.3 15.0 15.5 16.1 16.6 17.0 17.5 17.8 18.2 1 1 0.9 11.0 11.9 12.8 13.6 14.3 14.9 15.5 16.0 16.5 17.0 17.4 17.8 18.2 1 0.7 10.8 11.8 12.7 13.5 14.2 14.9 15.5 16.0 16.5 17.0 17.4 17.8 18.1 1 0.7 11.7 12.6 13.4 14.2 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 0.7 11.7 12.6 13.4 14.2 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 1 0.7 11.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 1 0.8 11.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 1 0.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.3 17.7 18.1 1 1 0.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 1 0.5 11.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 1 0.5 11.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 1 0.5 11.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 1 0.5 11.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 1 0.5 11.6 11.8 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 1 0.5 11.6 11.8 17.8 17.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 1 0.5 11.6 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 | | - | 'n | å | · | 4 | 4 | 5 | 5 | \$ | • | 7 | / | 7 | æ | о
О | ·
60 | | 8 10.4 11.3 12.2 13.0 13.7 14.4 15.0 15.6 16.1 16.6 17.0 17.5 17.8 18.2 1 9 10.1 11.1 12.0 12.9 13.6 14.3 15.0 15.5 16.1 16.6 17.0 17.4 17.8 18.2 1 10.9 11.0 11.9 12.8 13.6 14.2 14.9 15.5 16.0 16.5 17.0 17.4 17.8 18.2 1 9.8 10.9 11.8 12.7 13.5 14.2 14.9 15.5 16.0 16.5 17.0 17.4 17.8 18.1 1 9.7 10.8 11.8 12.7 13.5 14.2 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 9.6 10.7 11.7 12.6 13.4 14.2 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 9.5 10.7 11.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.3 17.7 18.1 1 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.4 16.9 17.3 17.7 18.1 1 | | Ĵ. | • | 5 | · | · | 4 | 'n | 'n | • | • | 7 | 7 | 7 | œ · | 00 | 00 | | 9 10.1 11.1 12.0 12.9 13.6 14.3 15.0 15.5 16.1 16.6 17.0 17.4 17.8 18.2 1 9 9.9 11.0 11.9 12.8 13.6 14.2 14.9 15.5 16.0 16.5 17.0 17.4 17.8 18.2 1 9 9.8 10.9 11.8 12.7 13.5 14.2 14.9 15.5 16.0 16.5 17.0 17.4 17.8 18.1 1 2 9.7 10.8 11.8 12.7 13.5 14.2 14.9 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 3 9.6 10.7 11.7 12.6 13.4 14.2 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 4 9.5 10.7 11.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 5 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.3 17.7 18.1 1 7 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 8 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 9 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 9 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 9 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 9 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 9 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 | | _ | | <u>.</u> | · | 3. | ₹. | 3. | | • | • | | - | 7 | 00 | a 0 | 00 | | 9.9 11.0 11.9 12.8 13.6 14.3 14.9 15.5 16.0 16.5 17.0 17.4 17.8 18.2 1 9.8 10.9 11.8 12.7 13.5 14.2 14.9 15.5 16.0 16.5 17.0 17.4 17.8 18.1 1 9.7 10.8 11.8 12.7 13.5 14.2 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 9.6 10.7 11.7 12.6 13.4 14.2 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 9.5 10.7 11.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 5 9.5 10.7 11.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.3 17.7 18.1 1 4.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 7 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 7 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 7 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 7 9.5 10.6 11.6 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 | | <u>.</u> | | \sim | ċ | m | 4 | r. | υ. | • | • | 7. | | | œ | o | x 0 | | 9.8 10.9 11.8 12.7 13.5 14.2 14.9 15.5 16.0 16.5 17.0 17.4 17.8 18.1 1 9.7 10.8 11.8 12.7 13.5 14.2 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 9.5 10.7 11.7 12.6 13.4 14.2 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 4.9 1.7 11.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 9.5 10.7 11.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 7 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 7 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 7 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 7 9.5 10.6 11.7 12.8 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 7 9.5 10.6 11.8 17.3 17.7 18.1 1 7 9.5 10.6 17.3 17.7 18.1 1 7 9.5 10.6 17.8 15.4 15.9 16.4 16.9 17.3 17.7 18.1 1 9.5 10.5 10.5 10.5 17.3 17.7 18.1 1 9.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10 | | • | • | | ~ | 3 | 4 | 4 | 5 | ¢ | • | 7. | ŗ. | 7 | α (; | œ | 8 | | 9.7 10.8 11.8 12.7 13.5 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 3.4 10.7 11.7 12.6 13.4 14.2 14.8 15.4 16.0 15.5 16.9 17.4 17.8 18.1 1 4.5 10.7 11.7 12.5 13.4 14.2 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 5.5 10.7 11.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 5.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 7 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 7 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.4 16.9 17.3 17.7 18.1 1 9.5 10.6 11.8 17.8 18.1 1 9.5 10.6 17.3 17.7 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 | | • | <u>_</u> | 7 | <i>\</i> : | | 4 | 4 | 5 | • | • | 7. | 7 | 7 | œ | œ | 18.8 | | 9.6 in.7 11.7 12.6 13.4 14.2 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1
9.6 in.7 11.7 12.6 13.4 14.2 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1
9.5 in.7 11.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1
9.5 in.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1
9.5 in.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1
9.5 in.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.4 16.9 17.3 17.7 18.1 1 | | • | · | - | ~ | · | 4 | 4 | 5 | ç | • | ċ | 7 | | œ | ac. | 00 | | 9.6 10.7 11.7 12.6 13.4 14.2 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 9.5 10.7 11.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 16.9 17.4 17.8 18.1 1 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1 7 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.4 16.9 17.3 17.7 18.1 1 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.4 16.9 17.3 17.7 18.1 1 9.5 10.6 11.6 12.6 13.4 14.1 14.8 15.4 15.9 16.4 16.9 17.3 17.7 18.1 1 9.5 10.6 11.8 18.1 1 9.5 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 18.4 18.9 16.4 16.9 17.3 17.7 18.1 1 9.5 10.6 17.8 18.1 1 9.5 17.8 18.1 1 9.5 10.6 17.8 18.1 1 9.5 18.1 1 9.5 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 10.6 17.8 18.1 1 9.5 10.6 17.8 18.1 1 9.5 10.6 17.8 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 18.1 1 9.5 10.6 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 | | • | <u>_</u> | 1. | ς. | ,
M | 4 | 4 | ŝ | • | \$ | ċ | 7 | | ж
Ж | a D | 00 | | 5 9.5 10.7 11.7 12.6 13.4 14.1 14.8 15.4 16.0 16.5 14.9 17.4 17.8 18.1 1.6 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 1.7 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.4 16.9 17.3 17.7 18.1 1.8 9.5 10.6 11.6 17.6 13.4 14.1 14.8 15.4 15.9 16.4 16.9 17.3 17.7 18.1 1.8 9.5 10.6 11.6 17.6 13.4 14.1 14.8 15.4 15.9 16.4 16.9 17.3 17.7 18.1 | | • | C | 1, | ċ | * | 4 | 4 | 5 | • | • | Ġ | 7. | 7 | φ | | œ | | 6 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.5 16.9 17.3 17.7 18.1 17.7 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.4 16.9 17.3 17.7 18.1 1.8 4.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1 | | • | 0 | • | $\stackrel{\cdot}{\sim}$ | ~ | 4 | 4 | 'n. | • | • | · | 7. | 7. | ac. | Œ | 60 | | 7 9.5 10.6 11.7 12.6 13.4 14.1 14.8 15.4 15.9 16.4 16.9 17.3 17.7 18.1 1 H | | • | ċ | + | ς. | 3 | 4 | 4 | 5 | 5 | • | ċ | 7 | | œ | œ. | 18.8 | | H 4.4 10.6 11.6 12.6 13.4 14.1 14.8 15.4 15.9 16.4 16.9 17.3 17.7 18.1 | | • | 0 | •
• • | ٥. | 3 | 4 | 7 | r. | 5 | • | Ċ | 7 | 7 | aL | α. | •
00 | | | | • | · | | ά. | ۲. | 4 | 4 | 5 | 3. | • | | r . | ۲. | r. | α . | თ | MANAMENT AND COURT BACK OF THE TO COURT IN TOTAL CONTRACT PART FACTOR AND DRIVE YARN BULK DENSITY = 0.94 | 1 | 2.0 | • | 0 M H D 0 | 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 | 0.0.0.0 | 000000
00000 | 0 0 0 0
0 0 0 0 | |--------|------------|----------------|---|---|---|--|---| | 1 | | | 2 V 4 8 | 4 4 0 0 8 | 777.00 | 99999 | 5 6 6 6
5 5 5 5 | | 1 | - (| (C) | 1000 | 9 9 9 8 8
4 4 4 4 4 | & & & & & & & & & & & & & & & & & & & | & & & & & & & & & & & & & & & & & & & | 60 00 00
61 61 61 61 | | | 1.8 | | 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 146.7
186.7
186.7
186.5 | 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 11881188 | 18.2
18.2
18.2 | | | 1.7 | ٠
١ | 0.
23.9
20.8
19.6 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 18.1
18.0
18.0
17.9 | 17.9
17.9
17.9
17.9 | 17.8
17.8
17.8
17.8 | | 1 | 1.6 | | 0
0
28.7
21.4
19.7 | 18.9
18.4
17.9
17.8 | 17.7
17.6
17.6
17.5
17.5 | 2, 71
2, 71
2, 71
2, 71 | 4444 | | | | | | 4.7.4
4.7.8
7.6 | 17.2 | 17.1
17.0
17.0
17.0 | 17.0
17.0
17.0 | | | 4 | 0 | 0
0
0
0
0
0
0
0
0
0
0 | 18.8
17.5
17.2
17.0 | 16.9
16.7
16.7 | 111166 | 16.5
16.5
16.5
16.5 | | | 1.3 | • | C C C C C C C C C C C C C C C C C C C | 19.0
17.8
17.2
16.9 | 116.3
16.3
16.2
16.2
16.2 | 44446 | 16.0 | | 3.E | 1.2 | | | 19.9
17.9
17.0
16.5 | 15.0
15.9
15.7
15.7 | 15.6
15.6
15.5
15.5
15.5
15.5 | ~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | 1 | • | | | 01 11 11 11
12 12 12 12
14 12 12 12 12
14 12 12 12 12 12 12 12 12 12 12 12 12 12 | 24444
2000
2000
2000
2000 | 0.44
0.000 | 4444 | | | 1.0 | | | 190.
17.0
15.9 | 04444
08604 | 44444 | 2.41
2.44
2.24
1.25 | | (| 0 | | 00000 | | 4 4 4 8 8
4 0 5 6 7 | ************************************** | | | | · C | | | 0.
0.
26.8
14.7 | 44444
4444
4444
6444 | 2000 | 12.7 | | i | 0.0 | •
 c | | 0.7
1.0
1.0 | 120.00 | 1111000 | 2 | | 1 | . · |
 •
 • | | | 200000000000000000000000000000000000000 | 11111111111111111111111111111111111111 | 16.7
10.7
10.7
10.7 | | 1 | υ υ | | | | 17.01
111.01
10.55 | 0 3 3 9 3 |
 | | a il F | 4 F | 1 4 1 | | 0 C C C C C C C C C C C C C C C C C C C | | | | | | | | | 0.0 | _ | | | MAXIMUM FILLING COVER FACTORS (KZ) IN TERMS OF WARP COVER FACTOR AND BETA # YARN BULK DENSITY = 0.95 # NYFORD FARRICS | | | | | | | | | #± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± | | i
I | | | 1 | |)
)
(| i | |-------------|----------|----------|---------------|--------------|----------|------|------|--|------|--------|----------|------|------------|------------|-------------|--------| | Α ~.
Ω Χ | 0.5 | 9.0 | | 6.0 | 0.0 | 1.0 | 1.1 | 1.2 | 1.3 | 4.4 | 1.5 | 1.6 | 1.7 | 1 44 1 | 1.9 | 2.0 | | 1 4 | . 0 | | | | : C | 0. | . 0 | | 0 | 0 | | 0 | . 0 | . 0 | | 9. | | | | c | | | | | | | | | | | | C | · | 3 | | | | | | | • | | | | | | | 0 | • | · | | 4 | | | | | | | | | | | |) C | | -4 ن | •
ভ | | 0 | • • | | | | | | | | | | | · - | , | ~ | • • | • • | 0 | 6 | 0 | | | | · . | · . | C | 0 | . 0 | | | 23.3 | 20.9 | 20.2 | 19.9 | 19.8 | 19.8 | • | 20.1 | | | | | | | | 0 | 5. | - | 6 | Ġ | α | 0 | 0 | 6 | 0 | 6 | | | ·
C | | | 0 | 0. | 20.8 | 18.6 | 18.1 | 18.0 | 18.1 | 18.3 | 18.5 | 18.8 | 19.0 | 19.3 | 19.5 | | | | | | • | œ | 7 | 7. | 7 | 7 | 7 | 7 | 8 | œ | œ | 6 | 6 | | (V | | C | 5 | 9 | • | • | • | 9 | 7 | 7 | 7. | œ | œ | œ | • | 6 | | 310
4 | 0 | | | • | 5 | 5 | r. | • | • | 7 | 7. | 7 | 80 | 6 0 | œ | 6 | | | 0 | m | | 4 | • | 5 | 'n | 9 | • | 17.0 | 17.4 | 17.8 | 18.2 | 18.5 | 18.8 | 19.1 | | | ? | ċ | 8 | M | 4 | 4 | 'n | 9 | \$ | 9 | 7 | 7 | ю
Э | œ | oc. | 0. | | | | 11.9 | | 13.4 | | • | 15.3 | 15.8 | 16.4 | • | 7. | 7 | œ | œ | œ | 6 | | | 0 | | $\dot{\circ}$ | M | % | 4 | ٠. | 5. | · | · | ۲. | ` | œ | о
Ф | ď | · | | | • | • | · . | ~ | 8 | 4 | 'n. | ر.
• | ċ | • | 7. | 7 | œ | no
on | oc. | · | | | • | • | ~ | ~ | m | 4 | 5 | 5. | Ġ | 9 | 7 | 7. | œ | x 0 | œ | 0 | | | o.
0. | 11.0 | 12.0 | 15.9 | 13.7 | 14.4 | 15.0 | 15.6 | 16.2 | 16.7 | 17.1 | 17.6 | 18.0 | 18.3 | 18.7 | 19.0 | | | • | <u>-</u> | • | ~ | M. | प्र | 5 | 5. | | . 9 | 7 | - | α. | 00 | 80 | ٠
• | | | • | · | •
• | ~ | 3. | 4 | 5 | 5 | · | . 9 | | 7 | 6 0 | œ | œ | 6 | | | • | • | - | Ċ | ~ | 4 | 5. | 5 | 9 | 9 | 7 | | 7 | œ. | œ | · | | 35 | • | ċ | • | $\dot{\sim}$ | ъ. | 4 | 5. | 5 | ç | 9 | 7 | | ١ | 00 | 8 | 6 | | | • | <u>_</u> | ~ | ċ | ∾ | 4 | 4 | 3 | • | 6. | · | 7 | 7 | œ | œ. | 6 | | | 4.0 | 10.7 | 11.8 | 12.7 | 13.5 | 14.3 | 14.9 | 15.6 | 16.1 | 16.6 | 17.1 | 17.5 | 17.9 | 18.3 | 18.7 | 19.0 | | | • | Ċ | • | ς. | ~ | 4 | 4 | ٠. | ç | 9 | 7 | • | ′ | œ | ص
ص | · | YARN BULK DENSITY = 0.96 WARD | という | ! | | | | | 1 | (
(| 9E | 1 | 1 | i | 1 | | 1 | | 1 | |---|--------|--------------|--------------|--------------------------|----------|------|--------|------|------|------|------|----------|---------|----------|------------|--------| | 7 X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 0.5 | 9.0 | 6.7 | 0.8 | 0. | 0 | | 1.2 | 1.3 | 1.4 | 4.5 | | 1.7 | 1.8 | 1.9 | | | 4 | | · · | | | | | 0 | | • | 0 | 0 | .0 | 0 | o
° | ć | 0. | | | | | | | | | | | | | | | | 0 | C | 0 | | | | | | | | | | | | | | 0 | • | Š | 7 | 4 | | | O | C | | | | 0 | C | 0. | 0. | 0 | 0 | 36.4 | 25.4 | 23.5 | 22.3 | 21.9 | | | | | | | | | | | 0 | | | 8 | • | ; | 0 | 0 | | | | | 0 | .0 | 0. | | | | | - | ċ | 0 | 0 | 0 | 0 | 0 | | | 0. | · | | | c: | • | 8 | + | 6 | 6 | • | 6 | 0 | 0. | 0 | • | | | | | | | | + | 6 | 8 | œ | 80 | 8 | <u>.</u> | 00 | Ç, | 6 | • | | | | | | • | 6 | 7. | 7 | 7. | 7. | 7 | œ | 8 | 8 | 8 | 0 | 6 | | | | | 0 | 7. | | 16.3 | 16.5 | 16.8 | 17.1 | 17.5 | 17.8 | 18.2 | 18.5 | 18.8 | 19.1 | 19.4 | | | .0 | | 15.7 | | • | ις\ | ċ | • | ÷ | 7. | 7 | œ | œ | œ | 6 | 0 | | 25 | | 4 | K | 4 | 4 | 5. | Ś | 9 | • | 7 | 7. | 7 | œ | 80 | ac | 6 | | | \sim | Ċ | 13,2 | 13.8 | 14.4 | 15.0 | 15.5 | 16.1 | 16.5 | 17.0 | 17.4 | 17.8 | 18.2 | 18.6 | 10.9 | 19.5 | | | • | ~ | \sim | ~ | 4 | 4. | 5. | 5. | ċ | 9 | 7 | 7 • | 8 | œ | 6 0 | 6 | | | = | ÷ | ~ | 3 | 4. | 4 | υ. | r. | • | 9 | 7. | 7. | œ | œ | œ | 6 | | | 10.4 | 11.4 | ` | | ₩. | 4 | 5. | 5 | · | • | 7 | | œ | ď | œ | 6 | | | C | - | · | M: | ~ | 4 | 5 | 5 | • | • | 7 | 7. | 30 | 30 | αC. | 0 | | | 10.0 | 11.1 | 12.1 | 13.0 | 13.P | 14.5 | 15.1 | 15.7 | 16.3 | 16.8 | 17.2 | 17.7 | , A . 1 | 18.4 | 18.8 | 19.1 | | | ż | | $\dot{\sim}$ | 'n | 3 | 4 | 'n | 5 | • | ŝ | ٠. | ۲, | œ | œ, | œ | ·
• | | | ٠ | · | ċ | | (M | • | 5 | 5 | ċ | • | 7 | ~ | œ | œ | ď | 6 | | | • | ċ | • | $\stackrel{\circ}{\sim}$ | , · | 4 | 5 | 5 | 9 | 9 | 7 | | œ | no
On | œ. | • | | 35 | • | ·
C | - | ~ | ₩; | 4 | r. | 5 | • | • | | ~ | ac | L. | ar. | · | | 92 | 3 | . n | 11.9 | 12.A | 13.6 | 14.4 | 15.0 | 15.6 | 16.2 | 16.7 | 17.2 | 17.6 | 18.3 | 18.4 | 18.8 | 19.1 | | | • | ٠ | - | c· | ×; | 4 | 5 | 5 | • | • | 7 | ~ | œ | œ (| an i | 6 | | | • | <u>-</u> | | į. | ٠, | ٠ | ٦. | ις. | ç | ç | ۲. | ` | œ | or. | œ. | · | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN RULK DENSITY = 0.97 | 1
3
0
1 | 1.9 | 0.0 | 0 | 8.5 | 2.7 22 | 1.0 21 | 0.2 20 | 9.8 20 | 9.5 19. | 6.3 19 | 9.2 19 | 9.1 19 | 9.0 19 | .9.0 19. | 9.0 19 | 8.9 19 | 8.9 19 | 8.9 19 | .8.9 19. | 8.9 19 | 8.9 19 | 8.9 19 | 8.9 19 | 8.9 19. | 8.9 19 | 8.9.19 | |------------------|-------------------------|----------------|---|-----|--------|--------|----------|--------|---------|--------|--------|--------|--------|------------|----------|----------|----------|-------------|-----------|----------|------------|------------|--------|---------|--------------|------------| | (

 | 80 | 0 | | . 0 | 3.7 | | 0.5 | 9.6 | 19,3 1 | 9.1 | 8.9 | 8.8 | 8.7 | 18.7 1 | 8,6 | 8.6 | 9.6 | 9.6 | 18.5 1 | 8.5 | ф. | 8.5 | 6.5 | 18.5 1 | 8.5 | 8.5 | | | | . 0 | | | 9 | | 0 | 0 | 19.0 | œ | œ | œ | 00 | 18.3 | . | αĈ | σc· | œ | 18.2 | œ | 3 0 | x 0 | œ. | 18.1 | œ | œ | | • | 9 1 | 0 . | | 0 | 6 | | | 6 | 18.8 | 9 | ж
Э | ග | 00 | 17.9 | 7 | 7 | 7 | 7 | 17.8 | 7 | 7 | 7. | 7 | 17.7 | 7 | 7. | | 1 | . 5 | | | · C | C | | c | 6 | 18.6 | 80 | - | 7 | | 17.5 | | 1 | 7 | 7 | 17.3 | 7 | 7 | 7 | 7 | 17.3 | 7 | ۲. | | | 6 | 0 | | | | 0 | | 6 | 18.2 | 7. | 7 | 7 | 7 | 17.1 | 7. | 7 | v | • | 16.9 | Ġ, | . | Ġ | 9 | 16.8 | | ç | | | i P°)
 •
 • | 0 | | ٠. | | 0 | | 0 | 18.4 | | 7 | 7 | • | 16.6 | ç | Š | • | · | 16.4 | • | Ġ | 9 | \$ | 16.3 | 9 | • | | 96 | 1.2 | 0 | | | | | | +→ | 18.6 | 7 | • | · | 9 | 16.2 | 9 | \$ | S. | 5. | 15.8 | z, | 5. | 5 | ŗ. | 15.7 | ů. | 5 | | | ;
; • ;
; • ; | 0 | | c. | | | | 4 | 19.4 | 1 | \$ | ė | 5 | 15.6 | υ. | r. | 5. | r. | 15.2 | 5. | ιζ. | r. | Ŗ. | 15.1 | 5. | 5 | | | 1.0 | | | 0 | | | ŋ. | ပ | 23.2 | 7. | • | 5 | 5. | 15.1 | ্
ব | 4 | 4 | 4 | 14.6 | 4 | 4 | 4 | 4 | 14.4 | 4 | 4 | | | 0.0 | 1 | | | | | | | • | 0 | 9 | • | 4 | 4 | 4 | 4 | 14.0 | 8 | ∞ | 3 | 3 | 13,7 | 3 | 13.7 | ۵. | ~ ; | | | 80 | | | | | | <u>-</u> | | • | • | • | | 14.4 | M | ×. | * | ı.c | 1 00 | 13.0 | ۴, | ٠. | ~ | ~ | 12.9 | $\dot{\sim}$ | ċ | | | | | | | | | <u>.</u> | | ŋ. | | - | | 4 | 13.5 | ς. | ? | - | C) | 12.1 | ζ. | 5 | ~ | ~ | 11.9 | | - | | | |
 •
 = | | | | | ٠
ت | | ٠. | | | | 4 | 0. | ά. | <u>.</u> | 7. | • | 11.2 | <u>,</u> | <u>.</u> | ÷ | ċ | 10.9 | c. | ٠
د | | | 0.5 | | | | | | = | | <u></u> | | | = | • | ₹ : | ·
 | • | 111.4 | - | \subset | , | • | т
• | • | ~ . 5 | • | • | |
| Y Y | 1 4 | | | | | | | | | | | | | | | | 4.0 | | | | | | 36 | | | MAXIMIM FILLING COVER FACTORS [KZ] IN TERMS OF WARP JOVER FACTOR AND BETA YARN BULK DENSITY = 0.98 # NAFORD FABRICS | | 1 | 1 | | 1 | | 1 | | | | | | | | | 1 | 1 | |------------|--------------|----------------|--------------|------------|------------|----------|----------------|------|------|-------|------|---------|---------|-------------|----------|--------| | X - 1 - x | = . | 0.0 | n . 7 | 6 0 | 0.0 | 1.0 | | 1 | | 1 . 4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 | | • | •
 =
 |
 •
 • | • | •
 C | 0 | 0 . |
 •
 C | | · · | 0. | | | | 6 | . 0 | 0 | | ď | | | | | | | | | | | | | | | | • | | ١ ٧ | | | | | - | | | | | | | | | | · c | , u | | 0 - | | | | | - | | | | | | - (| • | | • | •
• M | ` c | | , | | | | | | | | | | | = | ,
5, | . (| | · . | · | | ac d | .a. 6 | c (| c | | . 0 | | | | 100 | | 26.6 | 28.5 | 22.00 | 21.5 | 21.2 | 21.1 | | . | | | c | | | | | | _ | • | • | ·
- | | · | • | | | 0 | 0. | | | | | c | | ς. | 0 | φ. | c. | 0 | 0 | ò | • | D | | - | | | | | | Ď. | 0 | α. | œ | 00 | σc | · | 0 | 6 | 0 | 6 | | ~ | | | | • | 0 | æ | ~ | 7. | 7 | æ | α: | 00 | 80 | 6 | 0 | 6 | | 8 | | | C | œ | • | 6 | ×C. | 7 | 7. | 7 | œ | 80 | 60 | 0 | • | · | | • | · c | C | 16.7 | 15.6 | 15.4 | 15.9 | 16.3 | 16.7 | 17.1 | 17.5 | 17.9 | 18.2 | 18.6 | 18.9 | 19.2 | 19.5 | | 0 | | ٠. | 4 | 4 | 5 | 3 | 5 | ¢ | • | 7. | - | 00 | αΩ
• | 00 | 0 | • | | .0 | • | ٨. | 8 | 4 | 4 | ñ. | 5 | • | • | 7. | ۲. | හ | œ. | œ | • | ٠
م | | 7 | 11.7 | | 13.1 | 13.7 | 4 | 15.0 | 15.6 | 16.1 | • | 17.1 | 17.6 | 18.0 | 18.4 | 18.7 | 19.1 | · | | • | • | - | ٠
د | ₩ | 4 | •
च | 5 | • | | 7. | 7 | 7 . | œ | 9 | • | • | | • | e | | ò | • | 14.1 | 4 | ĸ. | · · | • | 7 | 1 | 7 | œ | 80 | 6 | 19.3 | | - | • | - | ~ | M | 4 | • | 5 | 5 | 6 | 7 | 7 | , | ac. | œ | • | 6 | | 1 | • | | ζ. | ~ | ~ | 4 | 5 | 5 | ç | 7. | 7 | 7 | φ | œ | 6 | • | | ~ | Ç | - | 0 | ۲. | ₩. | 4 | r. | ٠. | \$ | | 7 | 7. | α. | a Ci | • | 0. | | ~) | | | 12.1 | 13.0 | 13.8 | 14.6 | 15.2 | 15.8 | 16.4 | 16.9 | 17.4 | 17.8 | 18.2 | 18.6 | 19.0 | 6 | | 4 | | • | ÷ | M | ن.
• | 4 | 5 | 5 | ·c | • | 7 | 7 | œ. | œ | • | | | r. | • | - | ~ | | M) | 4 | 5. | 'n | ć | • | 7 | 7 | σc. | ж
Э | • | 6 | | c | a. | 0.0 | 12.0 | 12.9 | 13.8 | 14.5 | 15.2 | 15.8 | 16.4 | 16.9 | 17.4 | 17.8 | 18.2 | 18.6 | 10.0 | 19.3 | | 7 | • | Ċ | $\dot{\sim}$ | å | · ~ | 4 | ۲. | 5, | • | 9 | 7 | 7 | oc. | . | Ċ | · · | | 3 0 | • | c. | ? | · | • | 4 | 5 | 5. | œ. | | ۲. | 7 | œ. | •
• | œ. | 6 | MAZIMUM FILLING COVER FACTORS [KZ] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 0.99 | | | | | | | <u> </u> | OXFORI | D FAR | R I CS | | | | | | | | | |---------------------|---|------------|-------------|------------|------------|----------|------------|-----------|--------|-----------------------------|--------------|--------------|--------|------------|------|------------|---| | | | | | | | | | 8E7 | | | | ı | | (| | | • | | A F | 1 =
1 • | C | 0.7 | 9. | 0.9 | 1.0 | 1.1 | 1.2 | 1 to 1 | 47
 •
 • | 2 . 5 | 1.6 | | 1 . 1 | 4.9 | 2.0 | • | | 1 4 4 |
 •
 ================================ | | | 1 | I - | | · - | | | | | | • | | | 0. | | | | | | | | | | | | | | | | | | • | • | | | 16 | | | | | | | | | | | | | ċ | ċ | ċ | 9 | | | 17 | | | | | | | | | | | c. | 0 | • | 4 | · | · 2 | | | & & | : :
:: c |
c c | | | | |
c c | | 30.7 | 23.1 | 28.2
21.5 | 23.7
20.8 | 20.3 | 21.7 | 21.4 | 21.3 | | | 0.0 | | C | | | | • | • | ام | · | 0 | 0 | 6 | 0 | 6 | 0 | 0 | | | 2 7 | | | | | 0 | 28.7 | 20.5 | 19.2 | 18.9 | 18.8 | 18.9 | 19.1 | 19.3 | 19.5 | 19.8 | 20.0 | | | 25 | | | | | ~ | 00 | ď | 7. | æ | a 0 | œ | 8 | 6 | 6 | • | 6 | | | C | | | c | | | • | • | 7 | 7 | 7. | œ. | œ | œ | 6 | 6 | 0 | | | 7
314 | | | | 5. | Ċ. | • | • | ċ | 7. | / | α. | œ | œ | œ. | • | · | | | 70 | | 3 | 4 | 4 | 5. | 5. | Ġ | ć | 7. | 7 | ~ | 30 | œ | ъ | • | 0 | | | 90 | 4 | » ; | 3 | 4 | 4 | S. | ٠. | 9 | ç | 7 | 7 | 80 | œ | œ (| • | ٠
ن | | | 70 | ~ | ά. | ا
د
د | ٠
ا | 4. | ۳. | ι. | Ġ, | ė. | ~ , | , P | න ා | 00 0 | œ a | · · |)
) | | | w 0. | 10. | 11.6 | 12,0 | 12.0 | 14.4 | 14.8 | 15.5 | 16.1 | 16.6 | 17.1 | 17.6 | 18.0 | 18.4 | 90 0 | 19.1 | 4.6 | | | 0 | = | | , | 1 2 | 4 | 4 | r. | \$ | \$ | 7 | 7 | න
• | σc | æ. | 0 | ٠, | | | , ~ ; | <u> </u> | | ~ | M, | 4 | 4 | r. | ć | ·ċ | ~ | 7 | œ | œ | ó | 6 | 0. | | | 32 | 10.1 | 11.2 | 12.2 | 13.1 | 13.9 | 14.7 | 15.3 | 16.0 | 16.5 | 0 • / 🔭 | 17.5 | 17.9 | 18.3 | 18.7 | 19.1 | 19.4 | | | ٦. | = | ÷ | ? | ۲. | * | 4 | Š | 5 | ć | ` | 7 | ~ | œ | o | • | 6 | | | 4. | * | | ς. | ۴, | % | 4 | r. | 'n | ç | , | 7. | | •
© | 0 0 | • | 3 ^ | | | 45 | ٠ | • | ~ | | ₩; | 4 | <u>د</u> ي | 7. | • | 7 | 7 | 7 | œ | œ | 0 | 9. | | | 36 | т
Э | , | 12.1 | 13.0 | 13.R | 14.6 | 15.3 | 15.9 | 16.5 | 17.0 | 17.5 | 17.9 | 18.3 | 18,7 | 19,1 | 19.4 | | | | • | <u>.</u> . | ? | ~ | ~ 1 | 4 | <u>.</u> | 5 | • | i~ r | ۲. | ۲. | œ i | ٠
د | 0 | · · | | | | • | | ۲. | M , | ~ | 4 | · | ٦. | ċ | 7 | • | ۲. | α. | ν.
γ | c. | · | | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF JAMP COVER FACTOR AND BETA YARN BULK DENSITY = 1,00 OXFORD FARRICS | | 1 = | t | 1 | 30 | | 0.7 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1 +-4 | 1.7 | 1.8 | 6.1 | - | |---|---------------------------------------|----------|--------------|----------|-------------|------|------|------|--------|------|----------|----------|-------------|--------|----------|--------| | 1 | 1 : : | i . | | 1 | .0 | • | | 0. | | 0 | • | 0 . | | | | • | | | | | | | | | | | | | | | | | c | • | | | | | | | | | · C | 0 | | 0 | | 0 | 0 | 0 | 35.5 | 1 | | | | | · c | | | | | | | | | 0 | - | 5 | M | • | | | | | | | | | | | 0 | | 0 | | • | • | - | ,
H | | | . 0 | · | 0 | c | ე. | 0 | | 0 | 37.2 | 23.8 | 21.8 | | ပ | 0 | • | 0 | | | | c | | | | | • | 4 | | 0 | 0 | 0 | 0 | ŋ. | C | 0 | | | | | | | | 0 | • | 0 | 0 | 0 | 0 | 0 | 0 | · | 6 | 0 | | | | | | | 4 | 19.1 | 90 | 18,1 | 18.2 | 18.4 | 18.6 | 18.9 | 10.1 | 19.4 | 19.7 | 19. | | | | | | - | 7. | 7 | ~ | 7 | 7. | 8 | αC | 80 | 8 | 0 | o. | 0 | | | 0 | c | 18.3 | 16.2 | 16.0 | • | | • | 7 | 7 | œ | œ | œ | 0 | 0 | 0 | | | | ¢ | 4 | 4 | n, | 5 | ć | 9 | 7. | ŕ | ~ | :າ | c C) | 0 | 0 | 0, | | | 5. | K | 8 | 4 | 4 | iC. | Š | • | ç | 7. | 7. | о
О | 8 | · | • | ٠
ه | | | 2,1 | ς. | 13.2 | 13.9 | 14.6 | 15.2 | 15.8 | 16.3 | 16.8 | 17.3 | 17.8 | 18.2 | 18.6 | 18.9 | 19.3 | 19.6 | | | • | ς. | ? | ~ | 4 | 5 | ς, | • | • | 7. | 7. | œ | œ | œ | • | 6 | | | 7.0.x | 11.7 | ζ. | % | • | 4 | • | • | vc. | 7 | 7. | av | or, | າເ | 6 | · | | | · | ,,, | ~ | P3 | 4 | 4 | 5. | ć | • | 7 | | 30 | œ | 90 | 0 | 6 | | | | | 2 | ۲, | 4 | 4 | ٠. | • | • | 7. | 7. | æ | œ | ъ | 6 | 6 | | | | | 7 | ٠, | 4 | 4 | 5 | • | 6. | , | <u>,</u> | œ, | œ | œ | • | Φ, | | | <u>-</u> | _ | | ٠, | 4 | 14.7 | 15.4 | 16.9 | 16.6 | 17.1 | 17.6 | 18.0 | 18.4 | 4.8 | 19.2 | 19. | | | · · · · · · · · · · · · · · · · · · · | | | 13.1 | • | 4 | r. | ć | ·
v | 7 | | •
• | œ | œ | • | 0 | | | • | • | ~ | ~ | ~ | 4 | 5 | • | ć | ` | 7 | c | ar: | or. | 0 | () | | | J. | - | 12.1 | 13.1 | 13.9 | 14.7 | 7. | 16.0 | 16.5 | 17.1 | 17.5 | 18.0 | 1 D , L. | 1.30 x | 19.1 | 19.5 | | | • | | $\dot{\sim}$ | * | \$. | 4 | · | ċ | ç | 7 | 7 | o. | a. | æ. | · | ው | | | | | | | | | | | | | | | | , | | | # MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARF COVER FACTOR AND BETA # YARN BULK DENSITY =1.36 MAXIMUM FILLING COVER FACTORS (KZ) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY = 1.48 # CIXFORD FABRICS TAPP | | 2 | 6.1.8 |
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0
0,000
0 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 6 6 6 8 8 8 9 9 9 9 8 9 8 9 9 9 9 9 9 9 | 80.800
80.800
80.700
80.700 | 23.7
23.7
23.7 | |--------|-------------------------|-----------------|---|--|---|---|----------------------| | | 4.9 | | 8888
888
888
888
888
888
888
888
888
8 | 0.0000
4.4888
4.4987 | <i></i> | 6 0 0 0 0 0
6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 23.3 | | 1 | 4.0 | 00 | 40000
6000
7000
7000
7000 | くののののようぎょうよるらずらはるるする | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00000
00000
00000 | 22.0 | | (| "
 | | 2222
2223
2533
2533 | | 22222
22223
2223
3223
323
333
333
333
3 | 00000
00000
00000 | 4 4 4 | | 1 | 1.6 | | 0.02.0
20.0
25.0
25.0 | 2223
2223
223
223
223
233
233
233
233
2 | 22222 | 2222
2220
2220
2220
21.9 | 21.9
21.9
21.9 | | | 4.5 | | 888
888
86.4
86.4 | 00000
00000
00000 |
221.9
221.9
21.7
21.5 | 00000
4444
77444 | 21.4 | | (| | | 00000 | 22222 | 4.0.1.0. | 00000
00000
00000 | 20.8
20.8
20.8 | | | 1.3 | 90 | | 2222
2422
2422
2422
2432
2432
2432
2432 | 000000 | 88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
88.00
80
80
80
80
80
80
80
80
80
80
80
80
8 | 20.2 | | RET | | 000 | | 25.3
22.9
221.8
201.1 | 200.00 | 19.7
19.6
19.6
19.5 | 10.5 | | ! | | | 00000 | 30.73
20.73
20.88 | 10000
10000
10000
10000 | | 18.7
18.7
18.7 | | 1 | v=1
 | | 00000 | 22.5
22.5
20.8
19.8 | 19.3
18.6
18.6
18.4 | 181
181
181
180
181
180 | 17.9 | | | ・ 少
: つ
: ご ! | | | 0.
26.0
21.3 | 18.8
18.3
17.9
17.7 | 4.71
17.0
1.71
1.71 | 17.r
17.n
17.n | | | 0 . 8 | | | 0000 | 18.77
17.77
18.99 | 4 K C H H H | 14.0
14.0 | | (| C |) | 60000 | 0.00
0.4
0.1 | 18.7
15.5
15.0 | 4 % 4 5 E | 4 4 4
2 X T | | ! | 9.1 | ı | | | 25.4
17.8
16.0
15.7 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 6 4 5 K | | | | | | | 0 C 4 4 C | 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7.7.7.
7.7.7. | | 1 to 1 | 4 |

 00 3 | 00000
01084 | | | | 4 4 4
0 44 57 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA # YARN BULK DENSITY = 1.50 ## OXFORD FABRICS WARP | 12.4 14.1 15.5 16.3 17.3 18.2 19.0 19.7 12.4 13.9 15.2 16.2 17.2 18.1 18.9 19.7 | |---| |---| MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =2.00 | 1 | 0 : | | • | • | • | 0 | • | | • | • | . 6 | • | • | • | • | | • | • | • | • | | • | • | • | 9 | • | |---|------|------------|----------|------------|-------|------|------|----|---|------|------|------|----------|----------|-----|------|---|----|----------|----------------|------|----|--------------|----------|------|---| | • | 2 | | | u | L 16. | 32 | ₩) | M | ~ | 28 | N | ~ | N | 28 | N | ~ | 2 | 2 | 27 | 2 | 2 | ~ | ~ | ~ | 20, | V | | • | 1.9 | ¢ | • | • | | 33.8 | - | | 0 | •0 | 28.3 | • | | ~ | 7 | 7 | 7 | 7. | 27.3 | 7 | 7. | 7. | 7. | 7. | 27.1 | • | | i | 4.8 | | | | | 36.3 | 2 | 0 | 0 | 28.5 | 00 | | 7 | | 7 | 7 | | 9 | 26.8 | 9 | • | 9 | 9 | 9 | 26.6 | C | | 1 | 1.7 | | C | o c | > c | 45.2 | (برا | | 6 | 28.4 | 7. | 7. | 7 | 56.9 | . 9 | 9 | 9 | 9 | 26.3 | . 9 | 9 | 9 | 9 | • | 26.1 | ċ | | | 1.6 | 1 | | | | | œ | 2 | 6 | 28.4 | 7. | | • | | | Ġ | 9 | 5 | 25.8 | 5. | 3 | 5. | Š | S. | 25.5 | | | | 1.5 | | | | | | 0 | L. | 0 | 28.6 | 7. | 26.8 | \$ | • | ς. | 5 | 5 | 5 | 25.2 | 5 | 5 | r. | π. | 5 | 24.9 | 4 | | | 4 1 | | | | | | 0 | 00 | 2 | 29.5 | 7 | | • | _ | ic. | 5 | 4 | 4 | 24.6 | 4 | 4 | 4 | 4 | 4 | 24.3 | t | | | 1.3 | i e | | | | | | | 3 | 31.1 | 60 | | 5 | | 4 | 4 | 4 | 4 | 23.9 | 3 | 3 | ₩. | 8 | ٠
س | 23.5 | · | | 9 ET | 1.2 |)

 | | | | | C | | 0 | • | 0 | 7 | 5 | 24.8 | 4 | 3 | | × | 23.5 | 3 | 8 | ~ | d | ~ | 22.8 | · | | 1 | 4 | | | | | | | | | 6 | | σc. | • | | 3 | 113 | 3 | ~ | 25.5 | 2 | 5 | ~ | ċ | ~ | 21.0 | • | | (| 1.0 | | | | | | 0 | | | | ٠. | | 7 | • | (م | 2 | 2 | ~ | | - ! | - | | - | •
₁-ŧ | 21.0 | - | | | 6.0 | i | | | | | 0 | | | | | 0. | 7 | 9 | 3 | • | | + | 0. | 0 | • | 0 | 0 | 0 | 20.0 | | | | | | | | | | | | | | 0 | | <u>.</u> | œ | 5 | 25.8 | | · | <u>.</u> | ° | 19.4 | 6 | · | ~ | | · | | 1 | 0.7 | i c | | | | | | | | | 0. | 0 | | | 0 | | + | = | 19.3 | œ | • | œ. | 7. | 7 | 17.6 | • | | !
! | 9.6 | !
! c | | | | | | | | | | ٠ | | | | | 7 | ċ | œ. | 7 | 17.3 | · | ċ | ÷. | 16.2 | · | |
 | 6.0 | ;
; | | | | · · | | | | | 0. | 0. | | | | 0. | | 0 | 0 | ~ | 10.4 | ·. | č. | 4 | 14.7 | t | | C A P P P P P P P P P P P P P P P P P P | ו צנ | | | | | | | | | | | 30 | | * | | | | | | | | | | | | | YARN BULK DENSITY =2,36 | 4.5 6.5 <th>2 u</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>RE→</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> | 2 u | | | | | | | | RE→ | | | | | | | | | |--|-------|----|---------|----------------|--------|--------------|----------|----------|-----|-----|-----|-----|----------|----------|--------|----------|------| | 4 | AC 10 | | 9 - 1 | | 0.8 | 0.0 | . 0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1 4 6 | 1 5 | | | 10 | 240 | = |
 C | | ;
! | | |
 • | | 9 . | 0 . | | 0. | . 0 | | 9 | 52.5 | | 1. 1. 1. 1. 1. 1. 1. 1. | | | | | | | | | | | 0 | C | | C | 0 | ₩. | 0 | | 10 | | | | | | | | | | | C | | C | ← | 0 | • | 3 | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | | | | | | | | | | | 0 | c | 4 | 7 | Š | 4 | 3 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | 0 | - | 3 | 4 | 3 | ~ | 5 | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | | | | | | | | | | 80 | 4 | ò | 2 | i | 8 | ? | | 1 | | | | | | | | | 0 | ç | 2 | • | - | - | - | | +4 | | 2 0. 0. 0. 0. 0. 0. 0. 33.8 29.6 28.7 28.4 29.5 29.7 30.0 30.3 30.6 31. 3. 0. 0. 0. 0. 33.8 28.7 27.7 27.6 27.8 28.9 29.3 29.6 30.0 30.4 30.
0. 0. 0. 35.9 27.8 28.7 27.7 27.6 27.8 28.9 29.9 29.4 29.8 30.2 30. 0. 0. 36.9 27.8 28.7 28.8 27.2 27.7 28.9 28.9 29.4 29.8 30.2 30. 0. 0. 27.2 25.6 25.5 25.9 26.3 27.9 28.5 29.0 29.4 29.9 30. 0. 0. 27.2 25.6 25.5 25.9 26.3 27.9 28.5 29.0 29.4 29.9 30. 0. 0. 27.2 25.6 23.7 24.8 25.7 26.3 27.9 28.5 29.0 29.4 29.9 30. 0. 27.2 27.8 28.8 25.7 24.8 25.7 26.3 27.0 27.8 28.3 29.8 30.3 30. 0. 27.2 27.8 28.8 23.7 24.7 25.4 26.2 27.8 28.3 28.8 29.3 29.8 30. 0. 27.2 27.8 28.8 23.7 24.7 25.4 26.2 26.9 27.5 28.1 28.7 29.2 29.7 30. 23.1 20.8 21.1 21.2 22.8 23.4 24.3 25.1 25.9 26.6 27.3 28.1 28.7 29.2 29.7 30. 14.1 19.7 20.5 21.5 22.5 23.2 24.7 25.1 25.9 26.6 27.3 28.8 29.1 29.6 30. 16.1 14.1 19.7 20.8 21.9 23.1 24.1 24.9 25.8 26.5 27.2 27.9 28.5 29.1 29.6 30. 16.1 14.1 17.7 19.2 20.6 21.8 23.8 24.8 25.8 26.5 27.2 27.9 28.8 29.1 29.6 30. 16.1 11.1 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 29.5 30. 17.4 17.5 19.1 20.2 20.5 21.7 22.8 23.8 24.8 25.6 26.3 27.1 27.8 28.4 29.0 29.5 30. 17.4 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.3 27.1 27.7 28.4 28.9 29.5 30. 17.4 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.3 27.1 27.7 28.3 28.9 29.5 30. 17.4 17.7 17.4 19.1 20.4 21.7 22.8 23.8 24.8 25.6 26.3 27.1 27.7 28.3 28.9 29.5 30. 17.4 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.3 27.1 27.7 28.3 28.9 29.5 30. 18.1 17.7 17.4 19.1 20.2 20.5 21.7 22.7 23.7 24.7 25.6 26.3 27.1 27.7 28.3 28.9 29.5 30. 19.2 17.4 19.7 20.8 23.8 24.8 25.6 26.3 27.1 27.7 28.3 28.9 29.5 30. 20.2 20.2 20.2 20.2 20.2 20.2 20.2 | | | | | | | | ć | 4 | + | 0 | 6 | 0 | 0 | 0 | 0 | - | | 9 0. 0. 0. 0. 0. 33.8 28.7 27.7 27.6 27.8 28.9 29.3 29.6 30.0 30.4 30.0 0. 0. 0. 0. 33.8 28.7 27.7 27.6 27.8 28.1 28.5 28.9 29.4 29.8 30.2 30.2 30.0 0. 0. 0. 0. 36.9 27.8 28.7 27.7 28.2 28.7 29.4 29.6 30.2 30.2 30.0 0. 0. 0. 0. 37.2 25.6 25.5 25.9 26.3 26.9 27.7 28.2 28.7 29.1 29.6 30.1 30.0 27.0 0. 0. 0. 27.2 24.5 24.4 24.8 25.3 25.9 26.6 27.2 27.8 28.3 28.9 29.1 29.6 30.1 30.0 0. 29.7 23.6 23.3 23.7 24.3 25.0 26.6 27.2 27.8 28.3 28.9 29.1 29.6 30.1 30.0 0. 29.9 20.0 29.4 29.9 30.0 0. 29.7 20.0 27.6 28.2 26.9 27.4 28.0 28.5 29.0 29.9 30.0 0. 29.7 20.0 27.6 28.2 28.8 28.8 29.3 29.8 30.0 0. 29.7 20.0 27.4 24.8 25.3 25.0 25.7 26.3 27.0 27.6 28.2 28.8 29.3 29.8 30.0 0. 29.9 27.0 27.6 28.2 28.8 29.1 29.9 30.0 29.1 29.2 29.1 29.2 29.1 29.2 29.1 29.2 29.1 29.2 29.2 | | | | | | | 0 | 4 | 0 | 6 | C- | 0 | ·
• | c | 0 | | + | | 10. 0. 0. 0. a. 33.8 28.7 27.7 27.6 27.8 28.1 28.5 28.9 29.4 29.8 30.2 30.3 30.8 10. 0. a. 36.9 27.8 26.7 26.6 26.8 27.2 27.7 28.2 28.7 29.1 29.6 30.1 30.2 27.8 26.7 26.5 26.9 27.4 27.9 28.5 29.0 29.4 29.9 30.1 30.2 a. a. 27.2 24.5 24.4 24.8 25.3 26.9 27.4 27.9 28.3 28.9 29.4 29.9 30.1 a. a. a. 27.2 24.5 24.4 24.8 25.3 26.9 27.4 27.8 28.3 28.9 29.4 29.9 30.1 a. | | | | | | | 3 | 0 | œ | 8 | 30 | Œ | 6 | 6 | 0 | 0 | 0 | | 10. 10. 10. 36.9 27.8 26.7 26.6 26.8 27.2 27.7 28.2 28.7 29.1 29.6 30.1 30.2 20.0 10. 10. 27.2 25.6 25.5 25.9 26.3 26.9 27.4 27.9 28.5 29.0 29.5 29.9 30.0 10. 27.2 24.5 24.4 24.8 25.3 25.9 26.5 27.2 27.8 28.3 28.9 29.4 29.9 30.0 10. 27.2 24.5 24.4 24.8 25.3 25.9 26.3 27.0 27.6 28.3 28.9 29.4 29.9 30.0 10. 29.7 23.6 23.3 23.7 24.3 25.0 25.7 26.3 27.0 27.6 28.2 28.8 29.3 29.8 30.0 10. 29.7 23.6 23.1 23.9 24.7 25.4 26.2 26.9 27.5 28.1 28.7 29.2 29.7 30.0 10. 20.9 27.1 20.9 22.8 23.6 24.5 25.3 26.0 26.7 27.4 28.0 28.6 29.1 29.7 30.0 11.5 19.7 20.5 21.5 22.5 23.4 24.3 25.1 25.9 26.6 27.3 28.0 28.6 29.1 29.7 30.0 29.1 14.1 14.5 19.9 21.0 22.1 23.1 24.1 24.9 25.8 26.6 27.3 27.9 28.5 29.1 29.6 30.0 29.6 30.0 29.6 30.0 29.6 30.0 29.6 30.0 29.6 30.0 29.6 30.0 29.6 20.0 29.6 30.0 29.6 20.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 | | | | | | 3 | œ | 7. | 7 | 7 | • | Œ. | œ | 6 | 0 | 0 | 0 | | 6 (i) (ii) (iii) (iii) (iiii) (iiiiiiiiii | | | | | ć | 7. | 9 | 6 | • | | 7 | σ. | œ | 6 | • | c | 0 | | 0. 0. 7.2 24.5 24.4 24.8 25.3 25.9 26.6 27.2 27.8 28.3 28.9 29.4 29.9 30. 0. 29.7 23.6 23.3 23.7 24.3 25.0 25.7 26.3 27.0 27.6 28.2 28.8 29.3 29.8 30. 0. 29.7 23.6 23.1 23.9 24.7 25.4 26.2 26.9 27.5 28.1 28.7 29.2 29.7 30. 25.1 20.8 21.1 21.9 22.8 23.6 24.5 25.3 26.0 26.7 27.4 28.0 28.6 29.1 29.7 30. 19.6 19.7 20.5 21.5 22.5 23.4 24.3 25.1 25.9 26.6 27.3 28.0 28.6 29.1 29.7 30. 21.1 19.0 20.1 21.9 22.8 23.6 24.2 25.0 25.8 26.6 27.3 27.9 28.5 29.1 29.5 30. 20.1 21.0 20.1 21.9 22.9 23.2 24.2 25.0 25.8 26.6 27.3 27.9 28.5 29.1 29.6 30. 20.1 21.4 12.9 19.3 20.6 21.2 21.9 23.0 24.8 25.5 26.4 27.1 27.8 28.4 29.0 29.5 30. 29.5 21.1 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 29.5 30. 29.5 30. 29.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20 | | | | | 7 | 5 | 5 | Š | 9 | \$ | 7. | r. | œ | 6 | 6 | 0 | 0 | | 0. 29.7 23.6 23.3 23.7 24.3 25.0 25.7 26.3 27.0 27.6 28.2 28.8 29.3 29.8 30.0 20.0 22.9 23.1 23.9 24.7 25.4 26.2 26.9 27.5 28.1 28.7 29.2 29.7 30.0 20.0 22.0 22.4 23.1 23.9 24.7 25.4 26.2 26.9 27.5 28.1 28.7 29.2 29.7 30.0 23.1 20.8 21.1 21.9 22.8 23.6 24.5 25.3 26.0 26.7 27.4 28.0 28.6 29.1 29.7 30.1 29.6 19.7 20.5 21.5 22.5 23.4 24.3 25.1 25.9 26.6 27.3 27.9 28.5 29.1 29.6 30.3 27.1 27.8 29.0 29.6 30.0 20.1 29.2 20.2 23.2 24.2 25.0 25.8 26.6 27.3 27.9 28.5 29.1 29.6 30.0 20.2 20.2 20.2 20.2 20.2 20.2 20.2 | | | | 7. | 4 | 4 | 4 | 5. | 5 | • | 7 • | 7. | 80 | œ | • | • | 0 | | 0. 25.9 27.0 27.4 23.1 23.9 24.7 25.4 26.2 26.9 27.5 28.1 28.7 29.2 29.7 30.1 25.1 20.8 21.1 21.9 22.8 23.6 24.5 25.3 26.0 26.8 27.3 28.0 28.6 29.1 29.7 30.1 19.0 20.1 21.2 22.5 23.4 24.3 25.1 25.9 26.6 27.3 28.0 28.5 29.1 29.6 30.3 17.4 18.5 19.8 21.0 22.1 23.1 24.2 25.0 25.8 26.6 27.3 27.9 28.5 29.1 29.6 30.3 17.4 18.5 19.9 21.9 23.1 24.1 24.9 25.8 26.5 27.2 27.9 28.5 29.1 29.6 30.4 16.7 18.2 19.5 20.6 21.9 23.0 24.0 24.8 25.6 26.4 27.1 27.8 28.4 29.0 29.5 30.4 16.1 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 29.5 30.4 15.9 17.5 19.1 20.4 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 29.5 30.4 15.9 17.5 19.1 20.4 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.4 28.9 29.5 30.4 15.7 17.4 19.0 20.4 21.4 22.7 23.7 24.7 25.5 26.3 27.0 27.7 28.3 28.9 29.5 30.4 15.7 17.4 19.0 20.4 21.4 22.7 23.7 24.7 25.5 26.3 27.0 27.7 28.3 28.9 29.5 30.4 29.7 17.7 28.3 28.9 29.5 30.4 29.7 27.7 28.3 28.9 29.5 30.4 29.7 27.7 28.3 28.9 29.5 30.4 29.7 27.7 28.3 27.0 27.7 28.3 28.9 29.5 30.4 29.5 30.4 29.7 27.7 28.3 27.0 27.7 28.3 27.0 27.7 28.3 27.0 27.7 28.3 27.0 27.7 28.3 27.0 27.7 28.3 27.0 27.7 28.3 27.0 27.7 28.3 27.0 27.7 28.3 27.0 27.5 27.5 27.5 27.7 28.3 27.0 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 | | | ·
• | 3 | M | 3 | 4 | 5 | 5 | • | ~ | 7. | 80 | 8 | 6 | • | 0 | | 23.1 20.8 21.1 21.9 22.8 23.6 24.5 25.3 26.0 26.7 27.4 28.0 28.6 29.1 29.7 30.1 19.6 19.7 20.5 21.5 22.5 23.4 24.3 25.1 25.9 26.6 27.3 28.0 28.5 29.1 29.6 30.1 18.1 19.0 20.1 21.2 22.2 23.2 24.2 25.0 25.8 26.6 27.3 27.9 28.5 29.1 29.6 30.1 17.4 18.5 19.8 21.0 22.1 23.1 24.1 24.9 25.8 26.5 27.2 27.9 28.5 29.0 29.6 30.1 14.4 17.9 19.2 20.8 21.9 23.0 24.0 24.9 25.7 26.5 27.2 27.8 28.4 29.0 29.5 30.1 14.4 17.9 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 29.5 30.1 15.4 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.7 28.4 28.9 29.5 30.1 15.4 17.7 19.1 20.4 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.4 28.9 29.5 30.1 15.4 17.7 17.4 19.0 20.4 21.7 22.7 23.7 24.7 25.5 26.3 27.0 27.7 28.3 28.9 29.5 30.1 19.7 17.4 19.0 20.4 21.7 22.7 23.7 24.7 25.5 26.3 27.0 27.7 28.3 28.9 29.5 30.1 | | | ċ | ~ | ~ | 3 | € | 4 | 5 | • | • | - | œ | œ | • | 0 | 0 | | 1 19.6 19.7 20.5 21.5 22.5 23.4 24.3 25.1 25.9 26.6 27.3 28.0 28.5 29.1 29.6 30. 28.1 19.0 20.1 21.2 22.2 23.2 24.2 25.0 25.8 26.6 27.3 27.9 28.5 29.1 29.6 30. 31.1 19.0 20.1 21.0 22.1 23.1 24.1 24.9 25.8 26.5 27.2 27.9 28.5 29.0 29.6 30. 4 17.1 18.2 19.2 20.8 21.9 23.0 24.0 24.9 25.7 26.5 27.2 27.9 28.4 29.0 29.5 30. 29.5 30. 20.1 17.7 19.2 20.6 21.8 23.9 24.8 25.6 26.4 27.1 27.8 28.4 29.0 29.5 30. 29.5 15.0 17.6 19.1 20.4 21.7 22.8 23.8 24.7 25.6 26.4 27.1 27.7 28.4 29.0 29.5 30. 29.5 30. 29.7 17.4 19.0 20.4 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.4 28.9 29.5 30. 29.5 30. 20.7 17.4 19.0 20.4 21.7 22.8 23.7 24.7 25.6 26.3 27.0 27.7 28.3 28.9 29.5 30. | | 8 | · | * • | + | 2 | ₩) | 4 | 5. | • | 9 | 7 | 80 | œ | • | • | 0 | | 2 18.1 19.0 20.1 21.2 22.2 23.2 24.2 25.8 26.6 27.3 27.9 28.5 29.1 29.6 30. 17.4 18.5 19.8 21.0 22.1 23.1 24.1 24.9 25.8 26.5 27.2 27.9 28.5 29.0 29.6 30. 17.4 18.2 19.5 20.8 21.9 23.3 24.0 24.9 25.7 26.5 27.2 27.9 28.4 29.0 29.5 30. 16.4 17.9 19.3 20.6 21.8 22.9 23.9 24.8 25.6 26.4 27.1 27.8 28.4 29.0 29.5 30. 15.1 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 29.5 30. 15.9 17.6 19.1 20.4 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.4 28.9 29.5 30. 15.9 17.6 19.1 20.4 21.6 22.7 23.7 24.7 25.5 26.3 27.0 27.7 28.3 28.9 29.5 30. 15.7 17.4 19.0 20.4 21.6 22.7 23.7 24.7 25.5 26.3 27.0 27.7 28.3 28.9 29.5 30. | | , | 6 | <u>-</u> | | 2 | ~ | 4 | Š | 5 | . 9 | 7 | œ | œ | 6 | 0 | 0 | | 3 17. x 18.5 19.8 21.0 22.1 23.1 24.1 24.9 25.8 26.5 27.2 27.9 28.5 29.0 29.6 30. | | r) | 0 | - | | ~ | 3 | 4 | 5 | 5. | 9 | 7 | 7 | œ | 6 | • | 0 | | 4 16.7 18.2 19.5 20.8 21.9
23.3 24.0 24.9 25.7 26.5 27.2 27.8 28.4 29.0 29.5 30. 16.4 17.9 19.3 20.6 21.8 22.9 24.8 25.5 26.4 27.1 27.8 28.4 29.0 29.5 30. 16.1 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 29.5 30. 15.9 17.6 19.1 20.4 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.4 28.9 29.5 30. 15.9 17.6 19.0 20.4 21.7 22.7 23.7 24.7 25.5 26.3 27.0 27.7 28.3 28.9 29.5 30. | | ; | a | 0 | | ? | ~ | 4 | 4 | 5 | 9 | 7 | 7 | 80 | 6 | • | 0 | | 5 16.4 17.9 19.3 20.6 21.8 23.9 24.8 25.5 26.4 27.1 27.8 28.4 29.0 29.5 30.6 16.1 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 29.5 30.7 15.9 17.6 19.1 20.4 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.4 28.9 29.5 30.8 15.9 17.6 19.0 20.4 21.7 22.7 23.7 24.7 25.5 26.3 27.0 27.7 28.3 28.9 29.5 30.8 15.7 17.4 19.0 20.4 21.6 22.7 23.7 24.7 25.5 26.3 27.0 27.7 28.3 28.9 29.5 30.8 | | · | oc. | 0 | ċ | - | ~. | 4 | 4 | č. | 9 | 7 | 7 | œ | 6 | • | 0 | | 6 14.1 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 29.5 33 7 15.9 17.6 19.1 20.4 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.4 28.9 29.5 30 8 15.9 17.6 19.0 20.4 21.6 22.7 23.7 24.7 25.5 26.3 27.0 27.7 28.3 28.9 29.5 30 | | € | 7 | • | Ċ | | 0 | M | 4 | 10 | 9 | 7. | _ | αú | 0 | 0 | 0 | | 7 15.9 17.6 19.1 20.4 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.4 28.9 29.5 30 8 15.7 17.4 19.0 20.4 21.4 22.7 23.7 24.7 25.5 26.3 27.0 27.7 28.3 28.9 29.5 30 | | • | ′. | 6 | c | - | \sim | ٦, | 4 | 5 | • | 7. | 7 | œ | ٠
0 | 0 | Ü | | 8 15.7 17.4 19.0 20.4 21.6 22.7 23.7 24.7 25.5 26.3 27.0 27.7 28.3 28.9 29.5 30 | | ۲. | 7. | 0 | ċ | . | ~ | ~ | 4 | 5 | ç | 7 | <u>′</u> | æ. | œ | • | 0 | | | | ·. | 7 | • | ·
- | •
•== | \sim | ·. | 4 | 5 | • | 7 | 7. | σc) | œ | · | 0 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARM BULK DENSITY =2.36 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 3 > 0 | ;
; | | ! | | ; | | | RET | !
! | | | | ! | 1
1 | (
(
(| ;
; | |--|-----------|--------|-----|------------|----------|-----|--|----------------|-----------------|--------|--------|----------|--------------|--------------|------------|-------------|--------| | 25 | - K 1 - C | = . | 9.0 | | c . | 0.0 | 3.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 6.1 | 2.0 | | 1. 1. 1. 1. 1. 1. 1. 1. | 24 | = | | | | | |
 •
 • | !
! •
! C | | 0 | | 0 | 0. | | | 5.5 | | 0 | | | | د | | | | | | | 0 | C | | C | 0 | M) | 6 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | 0 | | | - | | 36.9 | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | ٠. | | 0 | | | | | 0 | C | 4 | | Š | * | 3 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | 0 | - | 3. | 4 | 3 | 2 | 2 | | 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. | | | | 0 | | | | | | | 8 | 4 | ò | 2 | i | 5 | 5 | | 1 | | | | 0 | | | | | 0 | ç | 2 | • | - | - | - 4 | - | - | | 0. 0. 0. 34.0 30.6 29.7 29.4 29.5 29.7 30.0 30.3 30.0 33.5 29.6 28.7 28.5 28.6 28.9 29.7 30.0< | | | | <u>.</u> | | | | ć | 4 | - | 0 | 6 | 0 | 0 | 0 | 30.9 | • | | 0. 0. 0. 0. 0. 33.8 29.6 28.7 28.5 28.6 28.9 29.3 29.6 30.0 4 0. 0. 0. 33.8 28.7 27.7 27.6 27.8 28.1 28.5 28.9 29.3 29.6 30.0 5 0. 0. 0. 36.9 27.8 26.7 26.6 26.8 27.2 27.7 28.2 28.7 29.1 29.6 6 0. 0. 0. 27.2 25.6 25.5 25.9 26.3 26.9 27.4 27.9 28.5 29.0 29.5 10. 0. 27.2 24.3 25.6 25.5 25.9 26.5 27.2 27.8 28.3 28.9 29.3 10. 29.7 23.6 23.3 23.7 24.3 25.0 25.7 26.3 27.0 27.6 28.2 28.8 29.3 10. 29.7 23.6 23.3 23.7 24.3 25.0 25.7 26.3 27.0 27.6 28.2 28.8 29.3 10. 29.7 23.6 23.3 23.7 24.3 25.0 25.7 26.3 27.0 27.6 28.2 28.8 29.3 10. 20. 20. 20. 20.4 23.1 23.9 24.7 25.4 26.2 26.9 27.5 28.1 28.7 29.2 11. 19. 19. 17. 17. 19. 22. 22. 23.2 24.2 25.3 26.0 26.6 27.3 28.0 28.5 29.1 14. 1 19. 1 20. 20. 1 21.9 22.8 23.6 24.5 25.7 26.3 27.6 27.3 27.9 28.5 29.1 14. 1 19. 1 20. 20. 1 2 | | | | 0 | | | 0. | 4 | 0 | 6 | G. | 0 | 6 | c | 0 | c | 1. | | 10. 0. 0. 0. 35.8 28.7 27.7 27.6 27.8 28.1 28.5 28.9 29.4 29.8 10. 0. 0. 35.9 27.8 26.7 26.6 26.8 27.2 27.7 28.2 28.7 29.1 29.6 10. 0. 0. 35.9 27.8 26.7 26.8 27.2 27.7 28.2 28.7 29.1 29.6 10. 0. 27.2 24.5 25.6 25.5 25.9 26.3 26.9 27.4 27.9 28.5 29.0 29.4 24.8 25.3 25.9 26.5 27.4 27.9 28.5 29.0 29.4 10. 27.2 24.5 24.8 25.5 25.9 26.3 27.9 27.8 28.3 28.9 29.4 10. 27.2 24.5 24.3 27.7 25.9 26.3 27.0 27.6 27.8 28.3 28.9 29.4 10. 27.9 23.7 24.3 25.0 26.3 27.0 27.6 27.8 28.2 28.7 29.2 29.4 10. 27.9 22.8 23.1 24.7 25.4 26.2 26.9 27.5 28.1 28.7 29.2 11. 21.9 22.8 23.6 24.5 25.3 26.0 26.7 27.4 28.0 28.6 29.1 119.6 19.7 20.5 22.5 23.4 24.3 25.1 25.9 26.6 27.3 27.9 28.5 29.1 119.1 19.0 27.1 27.8 22.7 27.9 28.5 29.0 27.1 19.0 27.1 27.9 28.7 27.9 28.5 29.0 27.1 27.9 29.0 27.1 27.9 28.7 29.0 27.1 27.9 28.7 29.0 27.1 27.1 27.8 28.4 29.0 27.1 17.7 19.2 27.5 27.7 22.8 23.8 24.8 25.6 26.3 27.1 27.8 28.4 29.0 27.1 17.7 19.2 27.5 27.7 22.8 23.8 24.8 25.6 26.3 27.1 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 27.1 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 27.7 27.7 28.3 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.3 27.0 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 27.0 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 27.0 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 27.7 27.7 28.3 28.9 27.7 27.7 28.3 28.9 27.7 27.7 28.3 28.9 27.7 27.7 27.7 28.3 28.9 27.7 27.7 27.7 28.3 28.9 27.7 27.7 27.7 27.7 28.3 28.9 27.7 27.7 27.7 28.3 28.9 27.7 27.7 27.7 27.7 27.7 28.3 | | | | 0 | | | 3 | 0 | œ | œ | ъ
Э | œ. | ·
• | 6 | 0 | 0 | | | 0. 0. 36.9 27.8 26.5 26.6 8 27.2 27.7 28.2 28.3 27.9 28.5 29.6 97.2 27.9 28.5 29.0 29.4 29.6 97.2 27.9 28.5 29.0 29.4 29.9 29.4 29.9 29.4 29.6 97.2 27.9 28.5 29.0 29.4 29.9 29.9 29.9 29.0 29.9 29.9 29.0 29.9 29.9 29.9 29.9 29.9 29.9 29.9 29.9 29.9 29.9 29.9 29.9 29.9 29.9 29.9
29.9 < | | | | 0. | | 3 | œ. | 7 | 7. | 7. | æ | œ | 80 | 6 | • | 0 | 0 | | 6 0. 0. 0. 07.2 25.6 25.5 25.9 26.3 26.9 27.4 27.9 28.5 29.0 29.5 0. 0. 0. 07.2 24.5 24.4 24.8 25.3 25.9 26.6 27.2 27.8 28.3 28.9 29.4 0. 29.7 23.6 23.3 23.7 24.3 25.0 25.7 26.3 27.0 27.6 28.2 28.8 29.3 29.4 0. 29.9 22.0 29.4 23.1 23.9 24.7 25.4 26.2 26.9 27.5 28.1 28.7 29.2 0. 23.1 20.8 21.1 21.9 22.8 23.6 24.7 25.4 26.2 26.9 27.5 28.1 28.7 29.2 1 19.4 19.7 20.5 21.5 22.5 23.4 24.5 25.3 26.0 26.7 27.4 28.0 28.6 29.1 22 14.1 19.0 20.1 21.2 22.2 23.2 24.2 25.0 25.8 26.6 27.3 28.0 28.5 29.1 14.1 19.0 20.1 21.2 22.2 23.2 24.2 25.0 25.8 26.6 27.3 27.9 28.5 29.1 14.1 19.0 20.1 21.9 22.1 23.1 24.1 24.9 25.8 26.6 27.3 27.9 28.5 29.0 14.1 19.0 20.8 21.9 23.0 24.8 25.5 26.4 27.1 27.8 28.4 29.0 26.1 19.0 20.5 21.8 20.8 23.9 24.8 25.5 26.4 27.1 27.8 28.4 29.0 26.1 19.0 20.5 21.7 22.8 23.8 24.8 25.5 26.4 27.1 27.8 28.4 29.0 27.1 17.7 19.2 20.5 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.4 28.9 28.5 29.1 27.7 17.4 19.1 20.4 21.7 22.8 23.8 24.7 25.5 26.3 27.1 27.7 28.3 28.9 28.9 28.9 28.9 28.9 28.5 26.3 27.1 27.7 28.3 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.3 27.1 27.7 28.3 28.9 28.9 28.9 28.9 28.9 28.9 28.3 27.1 27.7 28.3 28.9 28.9 28.9 28.9 28.3 27.1 27.7 28.3 28.9 28.9 28.9 28.9 28.3 27.1 27.7 28.3 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.3 27.1 27.7 28.3 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 | | | | | ċ | 7 | 9 | \$ | \$ | | 7. | σ. | 80 | 6 | 0 | 0 | 0 | | 0. n. 27.2 24.5 24.4 24.8 25.3 25.9 26.6 27.2 27.8 28.3 28.9 29.4 8 0. 29.7 23.6 23.3 23.7 24.3 25.0 25.7 26.3 27.0 27.6 28.2 28.8 29.3 9 0. 29.7 23.6 23.3 23.7 24.3 25.0 25.7 26.3 27.0 27.5 28.1 28.7 29.2 1 19.6 19.7 20.8 21.1 21.9 22.8 23.6 24.5 25.3 26.0 27.5 28.1 28.7 29.2 1 19.6 19.7 20.5 21.5 22.5 23.4 24.3 25.1 25.9 26.6 27.3 28.0 28.5 29.1 1 18.1 19.0 20.1 21.2 22.2 23.2 24.2 25.0 25.8 26.6 27.3 27.9 28.5 29.1 1 14.1 19.0 20.1 22.1 23.1 24.1 24.9 25.8 26.5 27.2 27.9 28.5 29.0 1 15.4 17.9 19.3 20.6 21.8 23.9 24.8 25.6 26.4 27.1 27.8 28.4 29.0 1 15.9 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 1 15.9 17.6 19.1 20.4 21.7 22.8 23.8 24.7 25.6 26.4 27.1 27.7 28.4 28.9 | | | | • | 7. | 3 | 5. | 5 | 9 | 9 | 7 | r. | 80 | 6 | 0 | 29.9 | 30.4 | | 0. 29.7 23.6 23.3 23.7 24.3 25.0 25.7 26.3 27.0 27.6 28.2 28.8 29.3 9.0 27.9 22.0 22.4 23.1 23.9 24.7 25.4 26.2 26.9 27.5 28.1 28.7 29.2 1 19.6 19.7 20.5 21.5 22.5 23.4 24.5 25.3 26.0 26.7 27.4 28.0 28.6 29.1 19.6 19.7 20.5 21.5 22.5 23.4 24.3 25.1 25.9 26.6 27.3 28.0 28.5 29.1 19.6 19.7 20.1 21.2 22.2 23.2 24.2 25.0 25.8 26.6 27.3 27.9 28.5 29.1 17.4 18.5 19.8 21.0 22.1 23.1 24.1 24.9 25.8 26.6 27.3 27.9 28.5 29.0 24.0 16.7 19.2 20.8 21.9 23.0 24.8 25.6 26.6 27.3 27.9 28.5 29.0 24.0 16.7 19.2 20.6 21.8 23.9 24.8 25.6 26.4 27.1 27.8 28.4 29.0 25.1 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 27.1 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 27.1 17.7 19.2 20.5 21.7 22.8 23.8 24.7 25.6 26.4 27.1 27.7 28.3 28.9 27.1 17.7 27.8 28.4 28.9 27.1 27.7 28.3 28.9 27.1 27.7 28.3 28.9 27.1 27.7 28.3 28.9 27.1 27.7 28.3 28.9 27.7 27.7 28.3 27.0 27.7 28.3 28.9 | | | | 7 | 4 | 4 | 4 | 5. | 5 | • | 7 | 7 | 3 0 | æ | 6 | 0 | 0 | | 0. 72.9 22.0 22.4 23.1 23.9 24.7 25.4 26.2 26.9 27.5 28.1 28.7 29.2 1 23.1 21.8 21.1 21.9 22.8 23.6 24.5 25.3 26.0 26.7 27.4 28.0 28.6 29.1 19.4 19.7 20.5 21.5 22.5 23.4 24.3 25.1 25.9 26.6 27.3 28.0 28.5 29.1 18.1 19.0 20.1 21.2 22.5 23.2 24.2 25.0 25.8 26.6 27.3 27.9 28.5 29.1 17.4 18.5 19.8 21.0 22.1 23.1 24.1 24.9 25.8 26.6 27.3 27.9 28.5 29.0 14.7 18.2 19.5 20.8 23.0 24.0 24.9 25.7 26.5 27.2 27.9 28.4 29.0 16.7 17.9 19.3 20.6 21.9 23.9 24.8 25.6 26.4 27.1 27.8 28.4 29.0 15.9 17.5 19.1 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 17.9 17.5 19.1 20.4 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.4 28.9 17.7 17.4 19.1 20.4 21.7 22.8 23.8 24.7 25.5 26.3 27.1 27.7 28.3 28.9 17.7 17.7 19.1 20.4 21.7 22.8 23.7 24.7 25.5 26.3 27.1 27.7 28.3 28.9 | | | • | 3 | 3 | 3 | 4 | 5 | 5. | | | 7. | 8 | æ | 6 | 0 | 0 | | 23.1 20.8 21.1 21.9 22.8 23.6 24.5 25.3 26.0 26.7 27.4 28.0 28.6 29.1 19.6 19.7 20.5 21.5 22.5 23.4 24.3 25.1 25.9 26.6 27.3 28.0 28.5 29.1 21.5 19.0 20.1 21.2 22.5 23.2 24.2 25.0 25.8 26.6 27.3 27.9 28.5 29.1 17.4 18.5 19.8 21.0 22.1 23.1 24.1 24.9 25.8 26.5 27.2 27.9 28.5 29.0 4 16.7 19.5 20.6 21.8 23.0 24.0 25.7 26.5 27.2 27.9 28.5 29.0 24.7 17.9 19.5 20.6 21.8 22.9 23.9 24.8 25.5 26.4 27.1 27.8 28.4 29.0 25.1 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 27.1 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.3 27.1 27.7 28.4 28.9 27.1 17.7 19.1 20.4 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.4 28.9 28.9 27.1 27.7 28.4 28.9 28.9 27.1 27.7 28.3 28.9 28.9 28.9 27.1 27.7 28.3 28.9 28.9 27.1 27.7 28.3 28.9 28.9 27.1 27.7 28.3 28.9 28.9 27.1 27.7 28.3 28.9 28.9 27.1 27.7 28.3 28.9 28.9 27.1 27.7 28.3 28.9 28.9 27.1 27.7 28.3 28.9 28.9 27.1 27.7 28.3 28.9 28.9 27.1 27.7 28.3 28.9 28.9 27.1 27.7 28.3 28.9 28.9 28.9 27.1 27.7 28.3 27.1 27.7 28.3 28.9 28.9 27.1 27.7 28.3 28.9 28.9 27.1 27.7 28.3 28.9 28.9 27.1 27.7 28.3 27.1 27.7 28.3 28.9 28.9 28.9 27.1 27.7 28.3 27.1 27.7 28.3 28.9 28.9 28.9 28.9 27.1 27.7 28.3 27.1 27.7 28.3 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 | | | ċ | ٠. | ` | 3 | € | 4 | 5 | • | • | ~ | 80 | œ. | 6 | 0 | 0 | | 19.6 19.7 20.5 21.5 22.5 23.4 24.3 25.1 25.9 26.6 27.3 28.0 28.5 29.1 21.1 19.0 20.1 21.2 22.2 23.2 24.2 25.0 25.8 26.6 27.3 27.9 28.5 29.1 217.4 18.5 19.8 21.0 22.1 23.1 24.1 24.9 25.8 26.5 27.2 27.9 28.5 29.0 24.1 24.1 24.9 25.8 26.5 27.2 27.9 28.5 29.0 24.1 24.1 24.9 25.7 26.5 27.2 27.9 28.5 29.0 24.1 27.1 12.2 27.9 28.4 29.0 25.1 24.1 27.8 28.4 29.0 25.1 27.1 27.1 27.8 28.4 29.0 25.1 12.1 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 27.1 17.7 19.2 20.5 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.4 28.9 27.7 27.7 28.4 28.9 27.7 27.7 27.7 28.4 28.9 28.9 27.7 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 28.9 28.9 27.7 27.7 28.3 27.0 27.7 28.3 28.9 | | 8 | _ | ← , | - | 2 | M) | 4 | Š | • | 9 | , | 80 | œ | 6 | • | 0 | | 2 18.1 19.0 20.1 21.2 22.2 23.2 24.2 25.8 26.6 27.3 27.9 28.5 29.1 3 17.8 18.5 19.8 21.0 22.1 23.1 24.1 24.9 25.8 26.5 27.2 27.9 28.5 29.0 4 16.7 19.5 20.8 21.9 23.0 24.0 24.9 25.7 26.5 27.2 27.8 28.4 29.0 2 16.4 17.9 19.3 20.6 21.8 22.9 23.9 24.8 25.6 26.4 27.1 27.8 28.4 29.0 2 15.9 17.5 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 2 15.9 17.6 19.1 20.4 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.4 28.9 2 15.9 17.6 19.1 20.4 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.3 28.9 28.9 27.7 27.8 28.4 28.9 27.7 27.8 28.8 28.9 28.9 28.9 28.9 28.9 28.9 28 | | ٠
ح | 6 | _ | - | 3 | ۵. | 4 | 3 | 5 | 9 | 7 | 80 | œ. | 6 | 29.6 | • | | 3 17.4 18.5 19.8 21.0 22.1 23.1 24.1 24.9 25.8 26.5 27.2 27.9 28.5 29.0 4 16.7 18.2 19.5 20.8 23.0 24.0 24.9 25.7 26.5 27.2 27.8 28.4 29.0 5 16.4 17.9 19.3 20.6 21.8 22.9 23.9 24.8 25.6 26.4 27.1 27.8 28.4 29.0 5 15.0 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 5 15.0 17.6 19.1 20.4 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.4 28.9 2 15.0 17.6 19.1 20.4 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.3 28.9 28.9 27.7 27.8 28.4 28.9 | | r) | 0 | <u>-</u> | | 8 | 3 | 4 | رى | 5 | . 9 | 7 | 7. | . 60 | 6 | 0 | 0 | | 4 16.7 18.2 19.5 20.8 21.9 23.0 24.0 24.9 25.7 26.5 27.2 27.8 28.4 29.0 5 16.4 17.9 19.5 20.6 21.8 22.9 23.9 24.8 25.5 26.4 27.1 27.8 28.4 29.0 5 16.1 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 7 15.9 17.6 19.1 20.4 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.4 28.9 8 15.9 17.6 19.0 20.4 21.6 22.7 23.7 24.7 25.5 26.3 27.0 27.7 28.3 28.9 8 15.7 17.4 19.0 20.4 21.6 22.7 23.7 24.7 25.5 26.3 27.0 27.7 28.3 28.9 | | | ά | • | 1. | ? | 3 | 4 | 4 | ب | 9 | . | 7 | 80 | 0 | 6 | 0 | | 5 16.4 17.9 19.3 20.6 21.8 22.9 23.9 24.8 25.5 26.4 27.1 27.8 28.4 29.0 6 15.1 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 7 15.9 17.6 19.1 20.4 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.4 28.9 8 15.9 17.6 19.0 20.4 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.3 28.9 8 | | Ĺ | σc. | 0 | <u>-</u> | | ٠. | 4 | 4 | 5 | • | , | 7 | 00 | 6 | • | 0 | | 6 15.0 17.7 19.2 20.5 21.7 22.8 23.8 24.8 25.6 26.4 27.1 27.8 28.4 29.0 7 15.0 17.6 19.1 20.4 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.4 28.9 8 15.7 17.4 19.0 20.4 21.4 22.7 23.7 24.7 25.5 26.3 27.0 27.7 28.3 28.9 | | €. | / | 5 | · | + | ~ | M | 4 | 10 | 9 | 7 | 7. | Œ | 6 | 0 | 0 | | 7 15.9 17.6 19.1 20.4 21.7 22.8 23.8 24.7 25.6 26.3 27.1 27.7 28.4 28.9 8 15.7 17.4 19.0 20.4 21.4 22.7 23.7 24.7 25.5 26.3 27.0 27.7 28.3 28.9 | | • | | 0 | <u> </u> | | \sim | κ. | 4 | 5 | 9 | 7. | 7 | œ | ٠. | 29.5 | 30.0 | | 8 15.7 17.4 19.0 20.4 21.4 22.7 23.7 24.7 25.5 26.3 27.0 27.7 28.3 28.9 | | `. | 7 | 6 | <u>-</u> | 1. | ς. | ~ | 4 | 5 | ç | | <u>ر</u> | ď | œ | • | 0 | | | | · | 7 | 0 | ċ | • | $\stackrel{{}_{\hspace{1em} \circ}}{\sim}$ | κ. | 4 | Š. | 9 | 7 | 7 . | œ | œ | 6 | 0 | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =2.50 | | | | | | | | | BET | | | | | | | (| | |------------|-----------|--------|------------|----------|------|------|------|------|------|---------|------------|------------|--------|---------|------|----------| | ▼ ← | 0.5 | ; C | | 8 . | 0 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 5.5 | 1.6 | 1.7 | 1.8 | 1.9 | C) | | 24 | | | | | | | | 0 | 0 | 0. | 9 | 0 | 0 | • 0 | 9. | 0 | | | | | | | | | | | | | | | | 0 | 0 | 9 | | | 0 | | | · | 0. | 0. | 6 | C | 0 | 0 | 0. | 0. | 0 | 55.5 | 42.3 | 38.9 | | | | | | | | | | | | | | 0 | | φ. | 7 | 9 | | | | | | | | | | | | 0 | 0 | | 7. | v. | 4 | 4 | | | | L | С | | | | 0 | | | | | 9 | 4 | m | • | ٠
(۲۲ | | | | | c | | | | | | 5 |
- | 4 | 12 | 3 | 0 | 2 | 8 | | | | | | ,
_ | 0 | | 0 | 63.5 | 36.4 | 33.5 | 32.4 | 32.0 | 32.0 | 32.1 | 32.2 | • | | | | | | | | • | | 5 | 2 | ٠, | - | + | + | - | ÷ | ò | | 10 | | | | | | • | 34. | + | 0 | 0 | | 0 | 0 | - | ÷ | + | | | = | | · | | | | c | 6 | 6 | 6 | 0 | • | 0 | 0. | -1 | 31.7 | | ۲ | | c | | • | 4 | 0 | OK. | α | oc | 80 | 0 | 0 | 0 | 0 | • | + | | | | | | 00 | 60 | 7 | 7 | 7 | 60 | 60 | 6 | 6 | 0 | 0 | 0 | + | | | 0 | | . 0 | œ | • | 9 | 26.6 | 27.1 | 27.7 | 28.5 | 28.8 | 29.3 | 29.8 | 30.3 | 36.8 | 31.3 | | | | C | α. | 5 | 5 | 5 | ċ | 9 | 7 | 80 | α. | 6 | 0. | 0 | 0 | - | | | | 32.8 | 24.6 | 24.1 | 24.4 | 25.0 | 5 | 9 | 7. | 7 | α. | 6 | • | ċ | ċ | - | | | \subset | 4 | ~ | M | 8 | 4 | 5 | 9 | 7 | 7. | œ | 00 | 6 | 0 | 0 | • | | | ۲. | | 21.5 | 22.6 | 3. | 24.4 | 25.2 | 26.0 | 26.8 | 51.5 | 28.2 | 58.9 | 29.5 | 30.0 | 30.5 | 31.0 | | | ċ | c
c | * 4 | ċ | M.) | 4 | 5 | 5. | ŝ | 7 | œ | 80 | 6 | с
С | 0 | | | | J. | 0 | - | • | 2 | 4 | 4 | ır. | • | ·
'` | œ | 8 | · | о.
О | c | . | | | œ | • | ċ | • | | 3 | 4 | 5. | 9 | 7. | œ. | œ | ·
• | ò | 0 | 0 | | | 1/.4 | | | • | | 8 | 4 | ď. | • | 7. | ac | 6 0 | 6 | 0 | 0 | 0 | | | ` | œ | - | 1 | 5 | 3. | 4 | 5. | 9 | 7 | . . | .03 | 0 | 5 | 0 | 0 | | | ٠.
• | | | 21.2 | | 23.5 | 24.6 | 25.5 | 26.4 | 27.2 | 27.9 | 28.6 | 29.5 | 8.62 | 50.4 | • | | | ċ | à | 6 | • | 5 | 3 | 4 | 5. | è | 7. | ,
, | œ | 0 | 6 | ċ | ٠. | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =2.75 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | | | | | | | | BET | | 1 | ! | | 1 | | | 1 | |--|--------|----------|--------------|----------|-----|-----|--------|--------|---------|-----|------------|--------------|------|---------|----------|--------| | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | ر
د | 9.0 | 0.7 | 0.8 | 0.0 | 1.0 | 4 1 | 1.2 | 4.4 | 4 . | 1.5 | 1.6 | 1.7 | 8.1 | 6 | 2.0 | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 0 | | 0 | C | 0 | 0. | | 0 | | 0 | 0 | 0. | 0. | | | | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | | <u>-</u> | | | | | | | | | | | | 0 | | 0. | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | | | | | | | | | | | 0. | 0 | 0 | • | 0 | 53.7 | | 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | • | 0 | | ٠
ن | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | | | | | | | | | | | | 0 | | M | | 80 | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | | | | | | | | | | | | | - | 60 | 7 | 9 | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 44. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 43.2 36. 0. 0. 0. 0. 0. 0. 0. 0. 43.4 34.8 33.0 32.3 0. 0. 0. 0. 0. 33.8 34.1 32.0 31.4 31.0 0. 0. 35.6 29.4 28.5 28.5 29.8 30.5 30.0 0. 0. 35.6 29.4 28.5 28.5 29.8 29.3 29.0 0. 0. 35.4 25.5 25.1 25.6 26.7 27.3 28.0 28.7 29.0 0. 57.4 25.5 25.1 25.6 26.7 27.3 28.0 28.7 29.0 0. 32.4 25.5 25.1 25.6 26.7 27.3 28.1 28.4 29.0 0. 32.4 25.5 25.1 25.6 26.7 27.3 28.1 28.4 29.0 0. 32.4 25.5 25.1 25.6 26.7 27.3 28.1 28.9 29.0 20.0 20.0 20.0 20.0 20.0 20.0 20 | | | | | 0 | | | | | 0 | 7 | 6 | 7 | • | 5 | 5 | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 43.2 36.0 0. 0. 0. 0. 43.2 35.0 0. 0. 0. 0. 0. 0. 43.4 34.8 33.0 32.0 0. 0. 0. 0. 43.4 34.8 33.0 32.3 32.0 0. 0. 0. 33.8 30.2 29.5 29.5 29.8 30.0 0. 0. 35.6 29.4 28.5 28.8 29.5 29.8 30.0 0. 0. 35.6 29.4 28.5 28.8 29.3 29.0 0. 0. 35.6 29.4 28.5 28.8 29.3 29.0 0. 0. 35.6 29.4 28.5 28.8 29.3 29.0 0. 0. 35.9 27.5 27.4 27.8 28.4 29.3 29.0 0. 32.4 25.5 25.1 25.6 26.2 27.0 27.7 28.4 29.0 0. 32.9 24.3 25.0 25.6 26.5 27.3 28.1 28.4 29.0 0. 33.8 29.3 29.0 25.1 25.6 26.5 27.1 27.9 28.1 28.1 21.5 22.3 23.3 24.3 25.1 25.1 26.1 27.1 27.9 28.9 29.0 20.2 21.5 22.7 23.9 25.0 26.9 27.0 27.8 28.8 26.7 27.9 28.8 21.2 22.1 22.1 22.1 22.1 27.9 28.9 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 | | | | | | | | | 0 | + | • | 9 | Š | • | 4 | 4 | | 0. 0. 0. 0. 0. 0. 0. 0. 43.4 34.8 35.7 33.0. 0. 0. 0. 0. 43.4 34.8 35.7 33.0. 0. 0. 0. 47.8 34.1 32.0 31.4 31.0. 0. 0. 35.6 29.4 28.5 29.5 29.5 29.8 30.0. 0. 0. 35.6 29.4 28.5 28.5 28.8 29.3 29.8 30.0. 0. 59.7 28.9 27.5 27.4 27.8 28.4 28.9 29.3 29.0. 0. 59.7 28.9 27.5 27.4 27.8 28.4 28.9 29.3 29.0. 0. 32.4 25.5 25.1 25.6 26.7 27.3 28.0 28.7 29.0. 0. 32.4 25.5 25.1 25.6 26.7 27.3 28.1 28.4 29.9 27.7 21.8 23.0 24.3 25.6 26.5 27.3 28.1 28.1 28.1 21.5 22.3 23.3 24.3 25.3 26.3 27.2 28.1 28.1 28.9 29.0 20.7 21.8 23.0 24.1 25.1 26.1 27.1 27.9 28.9 20.0 20.2 21.5 22.7 23.9 25.0 26.0 27.7 28.8 28.8 21.2 22.5 22.5 23.7 21.9 25.9 26.9 27.7 28.8 23.6 23.6 26.8 27.7 28.8 28.8 23.6 23.6 26.8 25.8 26.8 27.7 28.8 28.8 23.6 24.8 25.8 26.8 27.7 28.8 28.8 23.6 24.8 25.8 26.8 27.7 28.8 28.8 23.6 24.8 25.8 26.8 27.7 28.8 28.8 23.6 24.8 25.8 26.8 27.7 28.8 28.8 23.6 24.8 25.8 26.8 27.7 28.8 28.8 23.6 23.7 21.9 25.8 25.8 26.8 27.7 28.8 28.8 23.6 23.6 26.8 27.7 28.8 23.6 23.6 26.8 27.7 28.8 28.8 23.6 23.6 26.8 27.7 28.8 28.8 23.6 23.6 26.8 27.7 28.8 28.8 23.6 23.6 26.8 27.7 28.8 28.8 23.6 23.6 26.8 27.7 28.8 28.8 23.6 23.6 26.8 27.7 28.8 28.8 23.6 23.6 26.8 27.7 28.8 28.8 23.6 23.6 26.8 27.7 28.8 28.8 23.6 23.7 27.8 28.8 25.8 26.8 25.8 26.8 27.7 28.8 28.8 23.6 23.7 27.8 28.8 25.8 26.8 27.7 28.8 28.8 27.7 28.8 28.8 27.7 28.8 28.8 | | | | | | | 0 | 0 | m | 9 | 35.0 | 34.2 | 34.0 | 34.0 | 34.1 | 34.3 | | 0. 0. 0. 0. 0. 0. 47.8 34.1 32.0 31.4 31.0 0. 0. 47.8 34.1 32.0 31.4 31.0 0. 0. 33.8 30.2 29.5 29.5 29.8 30.0 0. 0. 35.6 29.4 28.5 28.5 29.5 29.8 30.0 0. 0. 35.6 29.4 28.5 28.5 28.8 29.3 29.0 0. 0. 35.6 29.4 28.5 28.5 28.8 29.3 29.0 0. 0. 59.7 28.9 27.5 27.4 27.8 28.4 28.9 29.0 0. 32.4 25.5 25.1 25.6 26.7 27.3 28.0 28.7 29.0 0. 32.4 25.5 25.1 25.6 26.7 27.7 28.4 29.0 0. 32.4 25.5 25.1 25.6 26.5 27.7 28.4 29.0 0. 32.4 25.5 25.1 25.6 26.5 27.7 28.4 29.0 28.7 29.0 28.7 29.0 28.7 29.0 28.7 29.0 28.7 29.0 28.7 29.0 28.7 29.0 28.7 29.0 28.7 29.0 28.7 29.0 28.7 29.0 28.7 29.8 29.0 20.0 20.0 22.7 23.9 25.9 25.9 26.9 27.7 28.8 28.7 29.9 28.7 29.9 28.7 20.0 22.7 22.5 22.5 23.7 24.8 25.8 25.9 26.9 27.7 28.2 28.2 22.5 23.7 24.8 25.8 25.8 26.8 27.7 28.2 28.2 27.7 28.2 20.0 22.4 25.5 25.7 27.8 28.2 28.2 22.5 23.7 24.8 25.8 25.8 26.8 27.7 28.2 28.2 27.7 28.2 28.2 27.2 28.2 28 | | | | | | | ċ | 2 | S. | 3 | M 3 | 3 | ₩) | P) | 5 | 3 | | 0. 0. 0. 0. 0. 47.8 34.1 32.0 31.4 31.0. 0. 0. 33.8 34.1 32.0 31.4 31.0. 0. 0. 33.8 30.2 29.5 29.5 29.8 30.0. 0. 0. 35.8 30.2 29.5 29.5 29.8 30.0. 0. 0. 35.6 29.4 28.5 28.5 28.8 29.3 29.0. 0. 59.7 28.9 27.5 27.4 27.8 28.4 28.9 29.0. 0. 32.4 25.5 25.1 25.6 26.2 27.0 27.7 28.4 29.0. 0. 32.4 25.5 25.1 25.6 26.7 27.3 28.1 28.1 28.1 27.5 22.7 22.9 23.3 24.3 25.0 26.3 27.2 28.0 28.1 28.1 27.5 21.5 22.3 23.3 24.3 25.1 26.1 27.1 27.9 28.9 29.0 20.2 21.5 22.7 23.9 25.0 26.0 26.0 27.9 28.8 3 19.8 21.2 22.5 23.7 21.9 25.9 26.9 27.7 28.8 28.5 19.8 21.2 22.5 23.7 21.9 25.9 26.9 27.7 28.8 28.8 3 19.8 21.2 22.5 23.7 21.9 25.9 26.9 27.7 28.8 28.9 25.0 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 20.9 26.9 27.7 28.8 28.8 27.7 28.8 28.8 28.8 27.7 28.8 28.8 | | | | | | | 3 | 4 | M | 5 | 2 | 'n | 5 | 5 | 8 | 3 | | 0. 0. 0. 0. 0. 33.8 30.2 29.5 29.5 29.8 30.0 0. 0. 35.6 29.4 28.5 29.5 29.5 29.8 30.0 0. 0. 35.6 29.4 28.5 29.5 29.5 29.8 30.0 0. 0. 35.6 29.4 28.5 28.5 28.8 29.3 25.0 0. 32.4 25.5 25.1 25.6 26.2 27.0 27.7 28.4 29.0 0. 32.4 25.5 25.1 25.6 26.2 27.0 27.7 28.4 29.0 0. 32.9 24.3 25.0 25.8 26.7 27.5 28.3 29.0 25.0 23.7 24.6 25.6 26.5 27.3 28.1 28.1 1.7 21.5 22.3 23.3 24.3 25.3 26.3 27.2 28.0 28.7 29.9 20.7 21.8 23.0 24.1 25.1 26.1 27.1 27.9 28.9 29.0 20.2 21.5 22.7 23.9 25.0 26.0 27.0 27.8 28.8 3 19.8 21.2 22.5 23.7 11.9 25.9 26.9 27.7 28.8 28.5 29.5 29.5 25.0 26.8 27.7 28.8 28.8 27.7 28.8 28.8 27.7 28.8 28.8 | | | | | | 7 | 4 | 8 | | + | • | Ä | ò | ~ | ~ | 8 | | 0. 0. 0. 0. 33.8 30.2 29.5 29.5 29.8 30.0. 0. 0. 35.6 29.4 28.5 28.5 28.8 29.3 25.0. 0. 0. 35.6 29.4 28.5 28.5 28.8
29.3 25.0. 0. 59.7 28.9 27.5 27.4 27.8 28.4 28.9 29.3 25.0 25.0 23.9 24.3 25.6 26.2 27.0 27.7 28.4 29.0 25.0 23.9 24.3 25.0 25.8 26.7 27.5 28.3 29.6 25.0 25.7 22.9 23.7 24.6 25.6 26.5 27.3 28.1 28.1 1.7 21.5 22.3 23.3 24.3 25.3 26.3 27.2 28.0 28.7 27.9 28.9 27.0 27.5 22.5 22.5 23.7 24.9 25.0 26.0 27.0 27.8 28.8 27.7 29.9 20.2 21.2 22.5 23.7 27.9 25.0 26.0 27.0 27.8 28.8 27.7 29.9 29.9 25.0 26.8 27.7 28.8 28.8 27.7 28.8 29.9 25.9 25.8 25.8 27.7 28.8 28.8 27.7 28.8 28.8 27.7 28.8 28.8 | | | | | | 3 | -3
 | 0 | 0 | 0 | • | . | - | 8 | 2 | 3 | | 0. 0. 35.6 29.4 28.5 28.8 28.8 29.3 29.0 0. 0. 35.6 29.4 28.5 27.4 27.8 28.8 29.3 29.0 20.7 28.9 27.5 27.4 27.8 28.0 28.7 29.0 32.4 25.5 25.1 25.6 26.2 27.0 27.7 28.4 29.0 0. 32.4 25.5 25.1 25.6 26.2 27.0 27.7 28.4 29.0 25.0 23.9 24.3 25.0 25.8 26.7 27.5 28.3 29.4 29.9 20.7 21.5 22.3 23.7 24.6 25.6 26.5 27.3 28.1 28.9 29.9 20.7 21.8 23.0 24.1 25.1 26.1 27.1 27.9 28.9 20.0 20.2 21.5 22.7 23.9 25.0 26.0 27.0 27.8 28.8 20.2 20.5 21.5 22.5 23.7 21.9 25.9 26.9 27.7 28.8 20.9 25.9 25.9 25.9 25.9 25.9 25.9 25.9 25 | | | | • | 3 | 0 | 6 | 9 | 0. | 0. | 50.7 | 31.1 | 31.6 | 32.1 | 32.6 | 33.0 | | 0. | | | 0 | Š | 6 | œ | 80 | ъ
Ф | 0 | Ċ. | 0 | 0 | 4 | · | 2 | 5 | | 0. 52.4 25.5 25.1 25.6 26.2 27.0 27.7 28.4 29.0. 25.0 23.9 24.3 25.0 25.8 26.7 27.5 28.0 28.7 29.0. 25.0 23.9 24.3 25.0 25.8 26.7 27.5 28.3 29.4 29.0 22.7 22.9 23.7 24.6 25.6 26.5 27.3 28.1 28.1 1.7 21.5 22.3 23.3 24.3 25.3 26.3 27.2 28.0 28.9 9.9 20.7 21.8 23.0 24.1 25.1 26.1 27.1 27.9 28.9 0.0 20.2 21.5 22.7 23.9 25.0 26.0 27.0 27.8 28.8 21.2 22.5 23.7 23.6 24.8 25.9 26.9 27.7 28.3 29.5 29.5 25.0 26.9 27.7 28.3 29.5 29.5 25.8 25.8 25.8 25.8 26.8 27.7 28.3 28.3 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.8 | | | 6 | œ | 7 | 7 | 7 | 60 | • | ٥. | 0 | 0 | - | ,
-1 | 2 | 3 | | 0. 32.4 25.5 25.1 25.6 26.2 27.0 27.7 28.4 29.
0. 25.0 23.9 24.3 25.0 25.8 26.7 27.5 28.3 29.
6.3 22.7 22.9 23.7 24.6 25.6 26.5 27.3 28.1 28.
1.7 21.5 22.3 23.3 24.3 25.3 26.3 27.2 28.0 28.
9.9 20.7 21.8 23.0 24.1 25.1 26.1 27.1 27.9 28.
9.0 20.2 21.5 22.7 23.9 25.0 26.0 27.0 27.8 28.
8.3 19.8 21.2 22.5 23.7 11.9 25.9 26.9 27.7 28. | | | 0 | • | 9 | • | | 80 | 00 | • | 0 | Ċ, | • | | 0 | 2 | | 0. 25.0 23.9 24.3 25.0 25.8 26.7 27.5 28.3 29.6.3 22.7 22.9 23.7 24.6 25.6 26.5 27.3 28.1 28.1.7 21.5 22.3 23.3 24.3 25.3 26.3 27.2 28.0 28.9 9.9 20.7 21.8 23.0 24.1 25.1 26.1 27.1 27.9 28.9 9.0 20.2 21.5 22.7 23.9 25.0 26.0 27.0 27.8 28.8 3 19.8 21.2 22.5 23.7 11.9 25.9 26.9 27.8 28.7 7.9 19.5 21.0 22.4 23.6 24.8 25.8 26.8 27.7 28. | | · | 5. | 5 | 5 | . 9 | | 7 | ુ.
α | 6 | 29.8 | 30.4 | 31.0 | 31.6 | 32.1 | 32.6 | | 6.3 22.7 22.9 23.7 24.6 25.6 26.5 27.3 28.1 28.1 1.7 21.5 22.3 23.3 24.3 25.3 26.3 27.2 28.0 28.1 9.9 20.7 21.8 23.0 24.1 25.1 26.1 27.1 27.9 28.9 0.0 20.2 21.5 22.7 23.9 25.0 26.0 27.0 27.8 28.8 3 19.8 21.2 22.5 23.7 21.9 25.9 26.9 27.8 28.7 20.9 19.5 21.0 22.4 23.6 24.8 25.8 26.8 27.7 28. | | r. | 3. | 4 | 5 | 5 | . 9 | 7. | 8 | 6 | 0 | 0 | + | + | 2 | 3 | | 1.7 21.5 22.3 23.3 24.3 25.3 26.3 27.2 28.0 28.0 9.9 20.7 21.8 23.0 24.1 25.1 26.1 27.1 27.9 28. 9.0 20.2 21.5 22.7 23.9 25.0 26.0 27.0 27.8 28. 8.5 19.8 21.2 22.5 23.7 21.9 25.9 26.9 27.8 28. 7.9 19.5 21.0 22.4 23.6 24.8 25.8 26.8 27.7 28. | 9 | ? | 61 | M: | 4 | 5 | • | 7 | 8 | တ | • | 0 | 0 | | 2 | 8 | | 9.9 20.7 21.8 23.0 24.1 25.1 26.1 27.1 27.9 28.
9.0 20.2 21.5 22.7 23.9 25.0 26.0 27.0 27.8 28.
8.3 19.8 21.2 22.5 23.7 21.9 25.9 26.9 27.8 28.
7.9 19.5 21.0 22.4 23.6 24.8 25.8 26.8 27.7 28. | 1 | • | 2. | 3 | 4 | 5 | ¢ | 7. | 60 | œ | 0 | 0 | 0 | ** | 5 | 2 | | 9.n 2n.2 21.5 22.7 23.9 25.0 26.n 27.0 27.8 28.8.5 19.8 21.2 22.5 23.7 11.9 25.9 26.9 27.8 28.7.9 19.5 21.0 22.4 23.6 24.8 25.8 26.8 27.7 28. | 6 | Ċ | - | 100 | 4 | 5 | 6. | 7. | 7. | 60 | 6 | 0 | 0 | - | - | 5 | | 8.3 19.8 21.2 22.5 23.7 ; 1.9 25.9 26.9 27.8 28.7.9 19.5 21.0 22.4 23.6 24.8 25.8 26.8 27.7 28. | 6 | ċ | - | <i>ن</i> | 3 | 5. | ċ | 7. | | 80 | 29.4 | 30.1 | 30.7 | 31.3 | 31.9 | 32.5 | | 7.9 19.5 21.0 22.4 23.6 24.8 25.8 26.8 27.7 28. | œ. | • | 1. | 5 | · | | S. | • | | 80 | 0 | 0 | C | + | - | Ġ | | | 1. | ,
0 | • 4 | ċ | 3 | 4 | 5 | . 9 | 7 | 00 | 0 | | 0 | | - | Ċ | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA # YARN BULK DENSITY =2.95 | 324
307 30000 EEEEE BEEEE SEEEE SEEE SEEEE SEEE SEEE SEEEE SEEE SEEE SEEE SEEE SEEE SEEE SEEE SEEEE SEEE S | i r . i | 1 *C 1 | | | c c c c c c c c c c | 141 00000 00000 00000 | H CCCCC CCCC 46040 0 | BIMI COCOC CCOCK KWHOO C | 4W WWWWW 1 1 0 0 0 0 0 0 0 0 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 141 BCBBH BFBN4 444WW M | 101 00000 00000 44444 4 | |--|--|---|---|--------------------------------------|---|---|------------------------------|---|---|------------------------------|--|--|--|---|--|--| | | 0
0
0.0 | 5 C C C C C C C C C C C C C C C C C C C | 23.7
25.7
25.7
25.2 | 2003
2003
2005
2005
2005 | 2000
2000
2000
2000
2000
2000
2000
200 | 8000
8000
8000
8000
8000
8000
8000
800 | 20.1
28.5
27.8
27.5 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 30.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00 | 30.7
30.5
30.3
36.1 | 31.1
31.1
30.9
30.8 | 31.9
31.7
31.6
31.5 | 22.22
22.22
22.23
22.23 | 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | ************************************** | | | 400
410
400
400
400
400
400
400
400
400 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 888888
88888
88888
88888
88888
88888
8888 | 00000
448000
00000 | 2222
2244
24.0
24.0 | 26.4
26.0
25.0
25.8 | 27.3
27.1
27.0
26.9 | 28.2
28.1
28.1
27.9 | 29.1
28.9
28.8
28.8 | 229.9 | 88888
6088
6088
6088
6088
6088
6088
608 | 31.2
31.2
31.1
31.1 | 32.0
31.9
31.8
31.8 | 88888
88888
88888 | 88888
88888
8888
8888
8888
8888
8888
8888 | 8 8 8 8 8 8
8 8 8 8 8 8 | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =3.25 NXFORD FABRICS | | | • | | | | | 4 0 | 4 0 | 1 1 0 | E | | 1.7 | 0 | | • • • | |------------|----------|------|--------|------|------|---------|----------|------------|--------------|----------|----------|--------|------|------|-------| | • •
© D |
c. c | c c | | | |
c c | | | | , , | . 0 | | | | | | | | | | | | | | | | • | • | | | <u>.</u> | | 0 | | | | | | | | | | | | 8 | | | 0. | - | | | | | | | | | | 0 | 2 | 5 | 3 | | | <u>.</u> | - | | | | | | | | | 0 | • | *> | - | 0 | | 0 | | 0 | • | 0. | 0. | | | 0 | 0 | 0 | 47.5 | 42.5 | 40.6 | 30.7 | 39.3 | | | ٠. | | | | | | | | 0 4 | | : | 0 r | 60 r | 00 r | | | • 0 | • | - | | • | | | | | | . | D | • | • | • | • | | 0 | | ŋ. | ·
c | 0. | 0. | | 0 | 4 | _ | | • | | 9 | • | 7. | | | <u>-</u> | 0 | | | 0 | 0 | 44.6 | 38.4 | | ċ | 5 | 36.0 | 36.5 | 36.5 | 36.8 | | | | | | | 0 | | 7 | S. | 5 | 5 | 5 | S. | S. | 9 | •
 | | | | | | | 7 | 4 | 4 | 4 | 4 | 4 | 5. | r. | ٠. | • | | 6. | | | | | | 4 | 3 | 3 | ٠, | • | 4. | 4 | J. | 'n | Ý | | .0 | | | | 00 | 3 | ċ | ~ | ? | 5 | 100 | ₩. | 4 | 4 | 5 | 5 | | 0 | ·
c | 0. | 5 | 32.9 | 31.4 | 31.3 | 31.5 | 32.0 | 32.5 | 33.1 | 33.7 | 34.2 | 34.8 | 35.3 | 35.8 | | 0 | | | | 0 | 0 | ċ | ٠, | - | 5 | 4 | W | 4 | 4 | 5 | 'n | | | | 5. | 6 | 6 | • | • | 0 | - | 5 | 2 | . | ,
M | | 80 | 5 | | | | 20.3 | ά | 00 | 80 | 6 | <u>-</u> | <u>.</u> . | 7 | ~ | 3 | 3 | 4 | 5. | 5 | | | ·
= | · | ċ | 7 | Œ | 6 | - | 0 | + | ~ | ~ | 3 | 4 | 4 | 10 | | | ť. | 33. | ٠, | 7 | œ | œ | 6 | c
C | . | ? | 3 | ٠
ا | 4 | 4 | 3 | | · | 24.3 | 24.1 | 75.7 | 26.7 | 27.7 | 28.7 | 29.7 | 30.5 | 31.4 | 32.1 | 32.9 | 33.6 | 34.2 | 34.8 | 35.4 | | | ~ | 4 | 5. | 9 | | œ. | • | ċ | - | ς. | 2 | 3. | 4 | 4 | 3 | | • | ~ | ×; | ₹ | 9 | 7. | 8 | 6 | - | + | ۲. | ٠. | M | 4 | 4 | Š | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA # YARN BULK NEWSITY =3.54 | × | | | | | | | | | | | | | | | | | | |---------|------|----------|------|----------|--------|-------|------|------|--------------|----------|------------|------|----------|--------|-------------|----------|-------------| | 2 C | | 1 | 1 | (| | (| (| BE I | 1 | • | , | | 9 | | 1
1
1 | | 1
P
1 | | [X 1] | | 9. | n./ | 9.0 | _ | 1.0 | 1.1 | 1.2 | • | 1.4 | 1.5 | 1.6 | 1.7 | | 1.9 | 2. | 0 | | 1 | • | f
I | 1 | 1
1 | !
! | 1 | 1 | ş | 1
1 | • | • | 1 | 1 | 1 |) | |)
} | | | . 0 | C | | | | | | | | | | | | 0 | 2 | S | | | | 0. | c | | | | | | | | | | | | ,
M | 0 | 9 | | | | 0 | . | | | | | | | | | | 0 | 80 | 7 | 4 | M | | | | U | c. | ٠. | | Ċ, | | | | 0 | 0 | c | 55.5 | 46.3 | 43.4 | 42.1 | 41. | | | 3.4 | 0 | <u>.</u> | u | c | | 0 | | 0 | | | | 5 | ? | ÷ | 0 | 0 | 4 | | | 0 | c
C | | | 0 | | | | 0 | رما
• | 4 | + | 0 | 0 | • | 0 | 9 | | | 0. | | | | | | | • | 5 | 3 | 0 | 6 | 60 | 60 | 00 | 0 | | | | 0 | | | 0 | | | | 2 | 2 | 6 | 80 | 80 | 8 | a) | 8 | 8 | | | | 0 | | | | 0. | | | 42.8 | 38.7 | 37.5 | 37.1 | 37.1 | 37.3 | 37.6 | 37.9 | 38. | | | 39 | 0 | <u>.</u> | 0. | 0 | | 0 | 43.2 | Œ | 9 | • | 9 | 9 | 9 | 7 | 7. | © | | | | (| | | | , | , | f | Ł | i | U | ı | , | , | , | r | r | | | 4 | • 0 | · | | | 0 | 0 | | • | 55.5 | 4.00 | 62.0 | 30.0 | 20.4 | | 0.10 | | | | | | : | | | ċ | | 'n | 4 | 4 | 4 | ņ | | 0 | • | | - | | | | | o
o | | | о
О | 4 | 3 | 3 | M | 4 | 4 | r. | J. | • | • | ~ | | | | | <u>.</u> | | 5 | 3 | 2 | ? | 5 | δ, | ~)
• | 4 | 'n. | 5 | 9 | • | 1 | | | 4 | 0 | ċ | | 33.7 | 31.6 | 31.4 | 31.7 | 2 | ò | 3 | 4 | 4 | ٠.
دي | _ | • | 1 | 2 | | - | | | r. | 0 | 0 | 0 | | • | 2 | 3 | 4 | 4 | 5 | • | Ś | 1 | ₩. | | | | | - | 6 | 0 | - | c | | 2 | 3 | m | 4 | 5 | 5 | • | ~ | | | | 0 | | 28.1 | 28.1 | 28.7 | 29.62 | 30.4 | 31.3 | 32.2 | 33.0 | 33.8 | 34.5 | 35.2 | 35.8 | 36.4 | 37. | | | | | 1 | ć | 7 | 00 | 0 | - | ÷ | 2 | 2 | M | 4. | 5 | 5 | % | ~ | | | _ | 28.2 | • | 5. | • | 7. | • | 0 | ÷ | - | ۶. | 8 | 4 | 5. | 'n | | 9 | | | r
O | 4 | 4 | īζ. | Ś | 7 | Œ | 0 | - | | ~ | M | 4 | 7 | 5 | ć | 9 | 0 | | | ` | Μ. | 4 | ζ. | 7 | cc. | 0 | _ | • | N. | 2 | 4 | 4 | J. | \$ | 9 | _ | | | · - | . M. | 4 | 5 | 7 | 00 | 0 | _ | | 2 | 8 | 4 | 4 | 3 | ¢ | 40 | - | | | | ~ | 4 | 2. | 7 | 20 | 0 | 0 | ٠, | ~ | M : | 4 | 4 | | • | S | | | | 20.5 | 22.2 | 23.9 | 25.4 | 26.9 | 28.8 | 29.3 | 30.4 | 31.5 | 32.4 | 33.3 | 34.1 | 34.8 | | 36.2 | 36. | | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =3.75 MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARG COVER FACTOR AND BETA YARN BULK DENS:TY =4.00 | 1. 1. 1. 1. 1. 1. 1. 1. | 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 | | | | | | 1 | 1 | (A) | 1 | • | | | | | • | 1 6 | |---|---|----------|------------------|-------------|--------|-------|------------|---------------------|------------|------|----------|--------------|----------|-----|--------|------|----------| | 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. | 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. | 0.0 | | • | | 0 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 0 1 | - t | | | n. n.< | n. n.< | 1 | 5
6
8
1 | 1
1
1 | 1 | 1 |)

 | | | c | C | | | | | | 0 | | n. n.< | n. n.< | = | | с
С | c | | | | • • | | | | | | | | ٠
د | | n. n.< | n. n.< | = | • | | . 0 | | | | | | | | | | 0 | | • a | | n. n.< | 0. 0. 0. 0. 0. 60.8 49.7 46.4 4. 0. 0. 0. 0. 0. 60.8 49.7 46.4 4.0 0. 0. 0. 0. 0. 0. 48.7 45.4 44.0 48.7 45.4 44.0 0. 0. 0. 0. 0. 0. 48.7 42.2 44.0 48.7 45.2 44.0 0. 0. 0. 0. 0. 0. 47.6 42.9 41.4 40.8 40.6 40.7 40.7 0. 0. 0. 0. 0. 48.7 42.9 41.4 40.8 40.6 40.7 40.7 0. 0. 0. 0. 0. 48.7 42.0 39.8 39.0 38.9 39.0 38.9 39.0 38.9 39.0 38.9 39.0 38.9 39.0 38.9 38.7 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 | | ت | · | ·
c | | | | | | | | | ċ | 'n, | | טע | | n. n.< | n. n. n. n. n. 60.8 49.7 46.4 46.0 n. | <u> </u> | ·
c | - 0 | | | | | | | | | | è | - | • | • | | n. n.< | n. n.< | •
:2 | · | •
= | • | • | | | | | ı | | | c | < | 4 | * | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 63. 47.9 46.5 43.1 42.5 42.2 42.2 0. 0. 0. 0. 0. 0. 47.6 42.9 41.4 40.8 40.6 40.7 40.9 41.4 0. 0. 0. 0. 0. 0. 0. 0. 47.6 42.9 41.4 40.8 40.6 40.7 40.9 41.4 0. 0. 0. 0. 0. 0. 0. 0. 47.6 42.9 41.4 40.8 40.6 40.7 40.9 41.4 0. 0. 0. 0. 0. 0. 0. 0. 48.7 42.9 41.4 40.8 40.6 40.7 40.8 40.8 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 0. 0. 0. 0. 0. 0. 0. 0. 0. 63.5 47.9 44.5 43.1 42.5 0. 0. 0. 0. 0. 63.5 47.9 44.5 43.1 42.5 0. 0. 0. 0. 0. 0. 0. 47.6 42.9 41.4 40.8 40.6 41.4 0. 0. 0. 0. 0. 0. 0. 47.6 42.9 41.4 40.8 40.6 40.7 0. 0. 0. 0. 0. 0. 48.7 42.2 41.4 40.8 40.6 40.7 0. 0. 0. 0. 0. 48.7 42.0 39.8 39.9 39.8 39.9 40.1 0. 0. 0. 0. 0. 48.7 42.0 39.8 39.0 38.9 39.3 39.7 0. 0. 0. 0. 48.3 38.5 37.3 37.1 37.3 37.6 38.9 39.3 39.3 0. 0. 0. 0. 48.2 38.1 37.3 37.1 37.3 37.6 38.1 38.6 39.3 0. 0. 0. 0. 48.2 38.1 37.3 37.1 37.3 37.6 38.1 38.6 39.1 0. 0. 0. 48.2 38.1 36.4 36.1 36.3 36.9 37.2 37.7 38.3 38.8 0. 0. 0. 0. 48.2 38.1 35.4 36.1 36.3 36.9 37.2 37.7 38.3 38.8 0. 0. 0. 0. 48.2 38.1 38.4 36.1 36.3 36.9 37.2 37.9 38.8 0. 0. 0. 0. 0. 48.2 38.1 33.8 34.7 35.3 35.9 36.6 37.2 37.9 38.8 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | c | | | ·
C | | | | | .0 | | | _ a | > u | • • | P. | M | | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 744 47.5 43.7 42.2 41.6 41.4 41.5 41.4 1.0. 1.1. 0. 0. 0. 0. 0. 0. 744 47.5 43.7 42.2 41.6 41.4 41.5 41.4 11.6 11.4 11.6 11.4 11.6 11.4 11.6 11.4 11.6 11.4 11.6 11.4 11.6 11.4
11.6 11.4 11.6 11.4 11.6 11.4 11.6 11.4 11.6 11.4 11.6 11.4 11.6 11.4 11.6 11.4 11.6 11.4 11.6 11.4 11.6 11.4 11.6 11.4 11.6 11.6 | n. n.< | •
o c |
: c | | | 0. | | | | • | 0 . | 10 | D 4 | . M | . ~ | ~ | 2 | | 0. 0. 0. 0. 0. 0. 0. 0. 47.4 42.9 41.4 40.8 40.7 40.7 40.9 41.11 0. 0. 0. 0. 0. 0. 48.7 42.4 40.5 39.9 39.8 39.9 40.1 40.4 40.8 40.8 0.0 0. 0. 0. 0. 48.7 42.4 40.5 39.9 39.8 39.9 40.1 40.4 40.8 40.8 0.0 0. 0. 0. 52.5 42.0 39.8 39.0 38.9 39.3 39.7 40.1 40.4 40.8 0.0 0. 0. 78.7 42.1 37.0 38.2 38.9 39.3 39.7 40.1 40.4 40.8 0.0 0. 0. 43.3 38.5 37.3 37.4 37.2 37.6 38.9 39.3 39.8 40.2 0.0 0. 0. 43.3 38.5 37.3 37.3 37.5 37.6 38.9 39.3 39.8 40.2 0.0 0. 0. 48.2 38.1 36.4 36.7 37.2 37.7 38.3 38.8 39.4 39.9 99.9 0.0 0. 48.2 38.1 36.4 36.7 37.2 37.7 38.3 38.8 39.4 39.9 99.9 0.0 0. 40.9 35.1 34.2 34.7 35.3 35.9 36.6 37.2 37.7 38.3 38.8 39.4 39.9 0.0 0. 40.9 35.1 34.2 34.7 35.3 35.9 36.9 37.2 37.9 38.5 39.1 39.6 0.0 0. 40.9 35.1 34.2 34.2 34.9 35.6 36.4 37.0 37.7 38.4 39.1 39.9 0.0 0.0 37.8 31.1 31.8 32.7 33.8 34.6 35.2 36.9 37.5 38.9 38.9 39.9 39.9 37.6 31.9 37.8 31.1 31.8 32.7 33.5 34.2 35.1 35.9 36.9 37.5 38.0 38.7 39.1 39.7 57.9 38.7 38.0 38.7 39.1 57.7 57.9 38.7 39.1 39.7 57.7 57.7 57.8 37.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 | 0. 0. 0. 0. 0. 0. 0. 0. 47.6 42.9 41.4 40.8 40.6 40.7 4.7 6 42.9 41.4 40.8 40.6 40.7 4.7 6 42.9 41.4 40.8 40.6 40.7 4.7 6 42.9 41.4 40.8 40.6 40.7 40.8 40.8 40.8 41.4 40.8 40.8 40.8 41.4 40.8 40.8 40.8 41.4 40.8 40.8 41.4 40.8 40.8 41.4 40.8 40.8 41.4 40.8 40.8 41.4 41.8 41.8 41.4 41.8 41.8 41.8 41 | | | | 0 | 0. | | | | | ٠ ر
ب | . ~ | | • | + | * | •
•=1 | | n. n.< | n. n. n. n. n. 48.7 42.4 40.5 39.9 39.8 39.0 38.9 39.3 39.7 n. n. n. n. n. n. 48.7 42.4 40.5 39.9 39.8 39.1 39.3 39.7 n. n. n. n. n. n. n. 22.5 42.0 39.8 39.0 38.9 38.5 38.9 38.5 38.9 n. n. n. n. 78.7 42.1 37.3 37.1 37.3 37.6 38.1 38.6 39.1 38.6 37.2 37.7 38.3 38.8 n. n. n. 48.2 38.1 36.4 37.3 35.7 35.7 35.7 35.7 35.3 35.7 35.9 36.6 37.2 37.7 38.3 38.8 n. n. n. n. 38.5 35.7 35.1 35.3 35.7 35.3 35.9 36.9 37.2 37.9 38.5 n. n. n. 38.5 35.7 35.1 35.3 35.3 35.9 36.9 37.2 37.9 38.2 n. 36.5 32.4 33.1 33.8 34.6 35.2 36.9 36.2 36.9 37.0 37.7 38.2 n. 36.5 32.4 33.1 33.8 34.6 35.2 36.9 36.0 36.8 37.5 38.1 n. 36.5 37.2 37.9 38.2 n. 36.5 37.2 37.9 38.2 n. 36.5 37.2 37.9 38.2 n. 36.5 37.2 37.9 36.8 37.9 36.8 37.9 35.9 36.8 37.9 35.9 36.8 37.7 35.8 36.8 37.7 35.8 36.8 37.7 35.8 36.8 37.7 35.9 36.8 37.7 35.9 36.8 37.7 35.9 36.8 37.7 35.9 36.8 37.7 35.9 36.8 37.7 35.9 36.8 37.7 35.9 36.8 37.7 35.9 36.8 37.7 35.8 36.8 37.7 35.8 36.8 37.7 35.9 36.8 3 | 0 | 0 | <u>.</u> | | | | | | 1 . | 0 | | 0 | | Ö | ô | ÷ | | 0. 0. 0. 0. 0. 48.7 42.4 40.5 39.9 39.8 39.9 40.1 40.4 40.5 40.0 0. 0. 0. 0. 52.5 42.0 39.8 39.0 38.9 39.1 39.3 39.7 40.1 40.6 0. 0. 0. 0. 78.7 42.1 37.0 38.2 38.0 38.5 38.9 39.3 39.7 40.1 40.5 0. 0. 0. 0. 0. 43.3 38.5 37.3 37.1 37.3 37.5 38.1 38.6 39.1 39.6 40.0 0. 0. 0. 48.2 38.1 36.4 37.3 37.1 37.3 37.2 37.7 38.3 38.8 39.4 39.9 40.0 0. 0. 0. 0. 48.2 38.1 36.4 37.2 37.7 38.3 38.8 39.4 39.9 6 40.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 0. 0. 0. 0. 0. 0. 0. 48.7 42.4 40.5 39.9 39.8 39.9 40.1 0. 0. 0. 0. 52.5 42.0 39.8 39.0 38.9 39.1 39.3 39.7 0. 0. 0. 0. 78.7 42.1 37.0 38.2 38.2 38.5 38.9 39.3 0. 0. 0. 43.3 38.5 37.3 37.1 37.3 37.6 38.1 38.6 39.1 0. 0. 48.2 38.1 36.4 36.1 36.3 36.9 37.2 37.7 38.3 38.8 0. 0. 0. 48.2 38.1 36.4 36.1 36.3 36.9 37.5 38.1 38.6 0. 0. 40.9 35.1 34.2 34.2 34.7 35.3 35.9 36.9 37.5 38.1 38.5 0. 36.9 32.4 32.1 33.6 34.2 34.9 35.6 36.4 37.0 37.7 38.4 0. 36.9 32.4 32.1 33.6 34.2 34.9 35.6 36.4 37.0 37.7 38.4 0. 36.9 37.9 30.8 31.1 31.8 32.7 33.5 34.4 35.2 36.0 36.8 37.5 38.1 0. 57.2 27.5 28.5 28.7 35.8 31.9 36.8 35.7 36.8 36.6 37.3 38.0 0. 57.2 27.5 28.5 28.7 35.8 31.9 30.0 31.1 32.1 33.1 33.1 34.0 34.9 35.7 36.5 37.2 38.0 0. 57.2 27.5 28.5 28.7 35.8 31.9 30.0 31.1 32.1 33.1 33.1 34.0 34.9 35.7 36.5 37.2 38.0 0. 57.2 27.5 28.5 29.7 35.8 31.9 32.9 33.9 34.8 35.7 36.5 37.2 38.0 0. 57.2 27.5 28.5 28.7 35.8 31.9 32.9 33.9 34.8 35.7 36.5 37.2 38.0 0. 57.2 27.5 28.5 29.7 35.8 31.9 32.9 33.9 34.8 35.7 36.5 37.7 37.9 37.9 37.9 37.9 37.9 37.9 37.9 | 0 | c | 0. | | | | | | • | | 4 | | | | | | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 1. | | | ē | c | | ,
C | 6 | 8 | 3 | 0 | 0 | ر
ص ر | 0 0 | o o | 0 6 |
 | | 1. | 1. | | E C | • G | | | | 5 | 3 | 6 | 0 0 | & | > a | · α | | • | 0 | | 1. n. n. n. n. 43.3 58.5 57.2 57.2 57.7 58.3 38.8 39.4 39.9 10. n. n. n. n. 48.2 38.1 36.4 36.1 36.3 36.7 37.2 37.7 38.3 38.8 39.4 39.9 10. n. n. 38.5 38.1 36.4 36.1 36.3 36.9 37.5 38.1 38.5 39.2 39.8 10. n. n. 38.5 35.7 35.1 35.3 35.7 35.9 36.6 37.2 37.9 38.5 39.1 39.6 10. n. 94.7 35.0 37.2 34.7 35.3 35.9 36.4 37.0 37.7 38.4 39.0 39.9 10. n. 36.5 32.4 35.1 33.8 34.2 34.9 35.6 36.4 37.0 37.7 38.4 39.0 39.9 10. n. 36.5 37.9 30.8 37.5 38.2 38.9 39.9 10. n. 36.5 37.9 30.8 37.5 38.2 38.8 39.1 10. n. 36.5 37.5 38.1 38.7 39.1 10. n. 20.1 28.4 29.1 30.0 31.1 31.8 32.1 33.1 34.8 35.1 35.9 35.6 35.2 36.0 38.5 39.8 10. 20.1 28.4 29.1 30.0 31.1 32.1 32.1 34.8 35.7 35.8 35.6 37.2 38.0 38.5 39.8 10. 20.1 28.4 29.1 30.0 31.1 32.1 37.9 32.9 33.8 34.7 35.6 35.4 37.2 38.0 38.6 39.8 10. 20.1 28.4 27.5 27.5 27.9 38.6 31.7 32.8 33.8 34.7 35.6 35.4 37.1 37.9 38.5 39. | 1. |
 | | | 0 | | 18.7 | 0 | ~ r | 00 r | ח מ | 0 - | | | 6 | • | 0 | | 1. n. n. n. 38.5 35.7 35.1 35.3 35.7 36.3 36.9 37.5 38.1 38.5 39.2 39.8 0. n. n. n. 38.5 35.7 35.1 35.3 35.9 36.6 37.2 37.9 38.5 39.1 39.6 0. n. n. 36.9 35.1 34.2 34.7 35.3 35.9 36.6 37.2 37.9 38.5 39.1 39.6 0. n. 0. 4n.9 35.1 33.6 34.2 34.9 35.6 36.4 37.0 37.7 38.4 39.0 39.9 0. n. 36.5 32.4 32.1 33.8 34.6 35.4 36.2 36.9 37.6 38.2 38.9 39.9 0. n. 36.5 37.9 30.8 31.1 31.8 32.7 33.5 34.4 35.2 36.9 36.7 57.6 38.2 38.8 39.0 0. n. 5.2 29.8 29.8 31.1 31.8 32.7 33.5 34.4 35.2 36.9 36.7 57.4 38.1 38.7 39.0 0. n. 29.1 28.4 29.1 30.0 31.1 32.1 33.1 34.0 34.9 35.8 35.6 37.2 38.0 38.6 39.6 39.7 27.5 27.5 28.5 29.7 30.8 31.9 32.9 33.9 34.8 35.6 36.4 37.2 38.0 38.6 39.6 39.7 27.7 26.9 27.8 30.6 31.7 32.8 33.8 34.7 35.6 36.4 37.2 37.9 38.6 39.7 27.7 26.9 27.8 30.6 31.7 32.8 33.7 34.6 35.5 36.4 37.1 37.9 38.5 39. | 1. n. n. n. 38.5 35.7 35.1 35.3 35.7 36.9 37.5 38.1 38.6 0. n. n. n. 38.5 35.7 35.3 35.9 36.6 37.2 37.9 38.5 0. n. n. n. 38.5 35.7 34.2 34.7 35.3 35.9 36.6 37.2 37.9 38.5 0. n. 0. 4n.9 35.1 34.2 34.2 34.9 35.6 36.4 37.0 37.7 38.5 0. n. 36.5 32.4 32.1 33.6 34.6 35.4 36.2 36.9 37.6 38.5 0. n. 36.5 32.4 32.1 33.8 34.6 35.4 36.2 36.9 37.6 38.5 0. n. 36.5 31.9 30.8 31.1 31.8 32.7 33.5 34.4 35.2 36.0 36.8 37.5 38.0 0. n. 24.1 28.4 29.1 30.8 31.4 32.4 33.3 34.2 35.1 35.9 36.7 35.6 37.3 38.0 0. 24.1 28.4 29.1 30.8 31.1 32.1 33.1 34.0 34.9 35.8 36.6 37.2 38.6 16.4 27.2 27.5 28.5 29.7 30.8 31.7 32.8 33.8 34.7 35.6 36.4 37.7 37.6 4.4 25.1 26.4 27.7 30.8 31.6 32.7 33.7 34.6 35.5 36.4 37.1 37.4 25.1 26.1 26.4 27.8 29.1 30.4 31.6 32.7 33.7 34.6 35.5 36.4 37.1 37.4 25.1 26.1 26.4 27.8 29.1 30.4 31.6 32.7 33.7 34.6 35.5 36.4 37.1 37. | 0 | C | 0 | | 0 | ა.
ლი | · 0 | | | | 7 | 7 | 80 | 60 | • | ٠. | | 0. n. n. n. 38.5 35.7 35.1 35.3 35.7 36.9 37.5 38.1 30.3 37.2 37.9 38.5 39.1 39.6 0. n. n. n. n. 34.2 34.2 34.7 35.3 35.9 36.6 37.2 37.9 38.5 39.1 39.6 0. n. 0. 4n.9 35.1 33.2 34.7 35.3 35.9 36.6 37.2 37.9 38.5 39.1 39.0 0. n. 94.7 35.0 33.1 33.6 34.2 34.9 35.6 36.4 37.0 37.7 38.4 39.0 39.0 0. n. 36.5 32.4 32.1 33.6 34.6 35.4 36.2 36.9 37.6 38.2 38.9 39.0 0. n. 36.5 37.9 30.8 31.1 31.8 32.7 33.5 34.4 35.2 36.0 36.8 37.5 38.2 38.8 39.0 0. n. 20.1 28.4 29.1 31.4 32.4 33.3 34.2 35.1 35.9 36.7 37.4 38.1 38.7 39.0 0. n. 20.1 28.4 29.1 30.0 31.1 32.1 33.1 34.0 34.9 35.8 35.6 37.2 38.0 38.5 39.6 39.6 27.2 27.5 28.5 31.7 32.9 33.9 34.8 35.7 36.5 37.2 38.0 38.6 39.6 39.6 27.2 27.9 28.7 30.6 31.7 32.9 33.8 34.7 35.6 36.4 37.2 37.9 38.5 39.6 29.7 26.4 37.7 37.9 38.5 39.7 27.9 38.5 39.6 27.7 27.9 38.5 39.7 27.9 38.5 39.7 27.8 37.7 27.8 37.7 35.5 36.4 37.7 37.9 38.5 39.6 39.7 27.8 37.7 37.9 38.5 39.8 39.8 37.7 35.8 37.1 37.9 38.5 39.8 39.8 37.7 35.8 37.1 37.9 38.5 39.8 39.8 37.1 37.9 38.5 39.8 39.8 37.1 37.9 38.5 39.8 39.8 37.1 37.9 38.5 39.8 39.8 39.8 37.1 37.9 38.5 39.8 39.8 37.1 37.9 38.5 39.8 39.8 37.1 37.9 38.5 39.8 39.8 37.1 37.9 38.5 39.8 39.8 37.1 37.9 38.5 39.8 39.8 37.1 37.9 38.5 39.8 39.8 37.1 37.9 38.5 39.8 39.8 39.8 37.1 37.9 38.5 39.8 39.8 37.1 37.9 38.5 39.8 39.8 39.8 37.1 37.9 38.5 39.8 39.8 37.1 37.9 38.5 39.8 39.8 39.8 37.1 37.9 38.5 39.8 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 37.7 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.9 38.5 39.8 37.1 37.1 37.9 38.5 37.1 37.9 38.5 39.8 37.1 37.1 37.9 38.5 39.8 37.1 37.1 37.9 38.5 37.1 37.1 | 0. n. n. n. 38.5 35.7 35.1 35.3 35.7 36.3 36.9 37.5 38.1 30.8 10. n. 0. 4n.9 35.1 34.2 34.2 34.7 35.3 35.9 36.6 37.2 37.9 38.9 0. n. 94.7 35.0 33.2 33.1 33.6 34.2 34.9 35.6 36.4 37.0 37.7 38.9 0. n. 36.5 32.4 32.1 33.8 34.2 34.9 35.6 36.4 37.0 37.7 38.9 0. n. 36.5 32.4 32.1 33.8 34.2 34.6 35.4 36.2 36.9 37.6 38.9 0. n. 36.5 31.9 30.8 31.1 31.8 32.7 33.5 34.4 35.2 36.0 36.8 37.5 38.0 0. n. 29.1 28.4
29.1 30.0 31.1 32.1 33.1 34.0 34.2 35.1 35.9 36.7 37.4 38.0 0. 29.1 28.4 29.1 30.0 31.1 32.1 33.1 34.0 34.9 35.7 36.5 37.2 38.0 0. 29.1 26.9 28.7 30.8 31.9 32.9 33.9 34.8 35.7 36.5 37.2 38.0 0. 20.1 26.9 28.1 30.6 31.7 32.8 33.8 34.7 35.6 36.4 37.1 37.4 25.1 26.5 37.8 31.6 32.7 33.7 34.6 35.5 36.4 37.1 37.8 25.1 25.1 26.5 37.1 37.1 37.1 25.1 25.1 26.1 27.8 27.1 37.1 37.1 37.1 37.1 37.1 37.1 37.1 3 | ٥. | ·
c | ċ | | 20 | 7 · 0 | Ċ | • | | | | | | 0 | 0 | a | | 0. 0. 40.9 35.1 34.2 34.2 34.9 35.6 36.4 37.7 38.4 39.0 39.9 0.0 0. 0. 40.9 35.2 33.1 33.6 34.9 35.6 36.4 37.0 37.7 38.4 39.0 39.9 0.0 0. 0. 36.5 32.4 32.1 33.8 34.2 34.9 35.2 36.9 37.6 38.2 38.9 39.9 0. 0. 36.5 32.4 32.1 31.8 32.7 33.5 34.4 35.2 36.0 36.8 37.5 38.2 38.8 39.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 0. | <u></u> | | | | 00 | 5 | ις. | | r. 1 | , u | . v | | 7 0 | | 9 | | | 0. n. 94./ 35.0 33.2 33.1 53.8 34.6 35.4 36.2 36.9 37.6 38.2 38.9 39.8 n. 36.5 31.9 30.8 32.4 33.1 33.8 34.6 35.4 36.2 36.9 37.6 38.2 38.8 39.8 n. 36.5 31.9 30.8 31.1 31.8 32.7 33.5 34.4 35.2 36.0 36.8 37.5 38.2 38.8 39.8 n. 5 31.9 30.8 31.1 31.8 32.7 33.5 34.2 35.1 35.9 36.7 57.4 38.1 38.7 39.8 n. 5 57.2 29.8 59.8 59.8 59.8 59.8 59.8 59.1 50.0 31.1 32.1 33.1 34.0 34.9 35.8 36.6 37.3 38.0 38.7 39.8 n. 5 57.5 27.5 58.0 38.6 39.8 n. 5 57.0 57.9 38.6 39.8 n. 5 57.0 57.9 58.5 59.8 57.0 57.9 58.5 59.8 57.0 57.9 58.5 59.8 57.0 57.9 58.5 59.8 57.0 57.9 58.5 59.8 57.0 57.9 58.5 59.8 57.0 57.9 58.5 59.8 57.0 57.9 58.5 59.8 57.0 57.9 58.5 59.8 57.0 57.9 58.5 59.8 57.0 57.9 58.5 59.8 57.0 57.9 58.5 59.8 57.0 57.9 57.9 58.5 59.8 57.0 57.9 57.9 57.9 57.9 57.9 57.9 57.9 57.9 | 0. n. 94./ 35.0 33.2 33.1 53.5 54.6 35.4 36.2 36.9 37.6 38.6 n. 36.5 32.4 32.1 33.8 34.6 35.4 36.2 36.9 37.6 38.6 n. 36.5 32.4 32.1 33.8 34.2 35.2 36.0 36.8 37.5 38.6 n. 57.6 31.9 30.8 31.1 31.8 32.7 33.5 34.2 35.1 35.9 36.7 57.4 38.0 n. 52.2 29.8 29.8 31.4 32.4 33.3 34.2 35.1 35.9 36.7 57.4 38.0 n. 59.1 28.4 29.1 30.0 31.1 32.1 33.1 34.0 34.9 35.8 35.6 37.3 38.6 1.4 27.2 27.5 27.5 28.5 29.7 35.8 31.9 32.9 33.9 34.8 35.7 36.5 37.2 38.6 5.2 24.0 26.9 28.1 29.4 30.6 31.7 32.8 33.8 34.6 35.5 36.4 37.1 37.4 55.1 26.4 27.8 29.1 30.4 31.6 32.7 33.7 34.6 35.5 36.4 37.1 37.8 | | · | 0 | ċ | 5 | 4 | er i | • | . 4 | י ע | | 7 | 7. | ω
• | 39. | • | | 0. 57.5 31.9 30.8 31.1 31.8 32.7 33.5 34.4 35.2 36.0 36.8 37.5 38.2 38.8 59.9 0. 57.6 31.9 30.8 31.1 31.8 32.7 33.5 34.2 35.1 35.9 36.7 37.4 38.1 38.7 39.0 0. 52.2 29.8 29.8 20.8 31.4 32.4 33.3 34.2 35.1 35.9 36.7 37.3 38.0 38.7 39.0 0. 52.2 29.8 29.1 30.0 31.1 32.1 33.1 34.0 34.9 55.8 36.6 37.3 38.0 38.5 39.0 0. 59.1 20.1 28.5 29.7 30.8 31.9 32.9 33.9 34.8 35.7 36.5 37.2 38.0 38.6 39.6 37.2 27.5 27.5 28.1 29.4 30.6 31.7 32.8 33.8 34.7 35.6 36.4 37.7 37.9 38.5 39.6 5.2 26.0 26.4 37.1 37.9 38.5 39.6 39.6 37.7 37.8 37.7 33.7 34.6 35.5 36.4 37.1 37.9 38.5 39.6 39.6 39.6 37.7 37.8 37.7 37.8 38.7 34.6 35.5 36.4 37.1 37.9 38.5 39.6 39.6 39.6 39.7 36.8 37.7 37.8 37.7 37.9 38.5 39.8 39.8 37.7 37.8 37.7 37.8 38.7 34.6 35.5 36.4 37.1 37.9 38.5 39.8 39.8 37.7 37.8 37.7 37.8 38.5 39.8 37.7 37.8 37.7 37.8 37.7 37.8 38.7 34.6 35.5 36.4 37.1 37.9 38.5 39.8 39.8 37.7 37.8 37.7 37.8 38.5 39.8 37.7 37.8 37.7 37.8 37.7 37.8 37.7 37.8 37.7 37.8 37.7 37.8 38.5 38.8 38.8 37.7 37.8 37.7 37.8 37.7 37.8 37.7 37.8 38.8 37.7 37.8 38.5 38.8 37.7 37.7 37.8 37.7 37.8 38.8 38.8 | 0. 56.5 52.4 52.7 53.5 54.4 55.2 36.0 36.8 37.5 38.3 0. 57.6 31.9 31.4 32.4 53.3 34.2 35.1 36.9 36.7 57.4 38. 0. 57.2 29.8 29.8 31.4 32.4 33.1 34.2 35.9 36.5 37.3 38. 0. 59.1 20.0 31.1 32.9 33.9 34.8 35.7 36.5 37.2 38. 10. 57.2 27.5 28.4 37.7 37.2 38. 10. 56.9 28.1 29.7 30.6 31.7 32.8 34.7 35.6 36.4 37.2 37.2 10. 26.9 27.8 29.1 31.7 32.7 33.7 34.6 35.5 36.4 37.1 37.1 37.1 10. 26.9 27.8 29.1 31.6 32.7 33.7 34.6 35.5 36.4 37.1 37.1 37.1 37.1 37.1 37.1 37.1 <t< td=""><td>0</td><td>٥.</td><td>4</td><td>it.</td><td>m) (m</td><td>٠
•</td><td>٠
ا</td><td>. ~</td><td>4</td><td>5</td><td></td><td>9</td><td>7.</td><td>8</td><td>38.</td><td>0 0</td></t<> | 0 | ٥. | 4 | it. | m) (m | ٠
• | ٠
ا | . ~ | 4 | 5 | | 9 | 7. | 8 | 38. | 0 0 | | 0. 57.6 31.9 30.8 31.1 31.0 32.4 33.3 34.2 35.1 35.9 36.7 57.4 38.1 38.7 39.0 5.2 29.8 29.8 29.8 20.8 31.4 32.4 33.1 34.0 34.9 55.8 36.6 37.3 38.0 38.7 39.0 5.1 28.1 28.1 32.1 32.1 33.1 34.0 34.9 55.8 36.6 37.3 38.0 38.7 39.0 5.1 27.2 27.5 28.5 29.7 30.8 31.9 32.9 33.9 34.8 35.7 36.5 35.2 37.2 38.0 38.6 39.6 5.2 24.0 26.9 28.1 29.4 30.6 31.7 32.8 33.8 34.7 35.6 36.4 37.2 37.9 38.5 39.6 5.4 37.1 37.9 38.5 39.6 32.7 33.7 34.6 35.5 36.4 37.1 37.9 38.5 39.6 | 0. 57.5 29.8 29.8 30.5 31.4 32.4 33.3 34.2 35.1 35.9 36.7 57.4 38.0. 57.2 29.8 29.8 29.8 31.4 32.4 33.3 34.2 35.1 35.9 36.5 37.3 38.0. 29.1 28.4 29.1 30.0 31.1 32.1 33.1 34.0 34.9 35.8 35.6 37.3 38.6 5.4 27.2 27.5 27.5 28.5 29.7 30.8 31.9 32.9 33.9 34.8 35.7 36.5 37.2 38.6 5.1 26.9 28.1 29.4 30.6 31.7 32.8 33.8 34.7 35.6 36.4 37.2 37.4 4.4 25.1 26.4 27.8 29.1 30.4 31.6 32.7 33.7 34.6 35.5 36.4 37.1 37. | <u>.</u> | • | 'n. | ċ | · v | · v | , , |
. M | | 5 | 4 | 9 | 7 | တ | 38. | • | | 0. 52.2 29.8 29.8 30.5 31.4 32.4 33.3 34.2 35.1 35.9 36.7 57.3 38.0 38.7 39.8 59.1 28.4 29.1 30.0 31.1 32.1 33.1 34.0 34.9 55.8 36.6 37.3 38.0 38.7 39.8 5.4 27.2 27.5 28.5 29.7 35.8 31.9 32.9 33.9 34.8 35.7 36.5 37.2 38.0 38.6 39.6 57.2 27.9 28.1 29.4 30.6 31.7 32.8 33.8 34.7 35.6 36.4 37.2 37.9 38.5 39.6 5.4 27.1 37.9 38.5 39.6 5.4 37.1 37.9 38.5 39.6 5.4 37.1 37.9 38.5 39.6 5.4 37.1 37.9 38.5 39.6 5.4 37.1 37.9 38.5 39.6 5.4 37.1 37.9 38.5 39.6 5.4 37.1 37.9 38.5 39.6 5.4 37.1 37.9 38.5 39.6 5.4 37.1 37.9 38.5 39.6 5.4 37.1 37.9 38.5 39.6 5.4 37.1 37.9 38.5 39.6 5.4 37.1 37.9 38.5 39.6 5.4 37.1 37.9 38.5 39.6 35.5 36.4 37.1 37.9 38.5 39.6 38.5 38.5 38.5 39.6 37.8 37.1 37.9 38.5 38.5 39.6 37.8 37.1 37.9 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5 | 0. 53.2 29.8 29.8 30.5 31.4 32.4 33.3 34.2 35.1 35.9 36.7 37.4 38.8 29.1 28.4 29.1 30.0 31.1 32.1 33.1 34.8 34.9 35.8 36.6 37.3 38.8 27.2 27.5 27.5 28.5 29.7 30.8 31.9 32.9 33.9 34.8 35.7 36.5 37.2 38.6 57.2 27.5 27.5 28.1 29.4 30.6 31.7 32.8 33.8 34.7 35.6 36.4 37.7 37.4 4.4 25.1 26.4 27.8 29.1 30.4 31.6 32.7 33.7 34.6 35.5 36.4 37.1 37.8 | 0 | 7. | - | ċ | ÷ | •
- | • | > | | | | , | ٢ | a | a r | 2 | | 0. 29.1 28.4 29.1 30.0 31.1 32.1 33.1 34.8 35.7 36.5 37.2 38.0 38.6 39.8 6.4 27.2 27.2 28.0 38.6 39.8 6.4 27.2 27.5 28.5 29.7 30.8 31.9 32.9 33.8 34.7 35.6 36.4 37.2 37.2 37.9 38.6 39.6 37.2 26.9 28.1 29.4 30.6 31.7 32.8 33.8 34.7 35.6 36.4 37.1 37.9 38.5 39.6 37.1 26.9 28.1 30.4 31.6 32.7 33.7 34.6 35.5 36.4 37.1 37.9 38.5 39. | n. 29.1 28.4 29.1 30.0 31.1 32.1 33.1 34.8 35.7 36.5 37.2 38.8 6.7 27.2 27.5 28.5 57.2 38.6 57.2 27.5 27.5 27.5 28.5 29.7 30.8 31.9 32.9 33.8 34.7 35.6 36.4 37.2 37.5 6.3 24.6 26.9 28.1 29.4 30.6 31.7 32.8 33.8 34.6 35.5 36.4 37.1 37.4 24.5 25.1 26.4 27.8 29.1 30.4 31.6 32.7 33.7 34.6 35.5 36.4 37.1 37. | C | ~ | 20. | 0 | - | | ? | W 1 | 4. | ν. < | Մ Մ | · « | , , | | 0 00 | 30 | | 6.4 27.2 27.5 28.5 29.7 36.8 31.7 32.8 33.8 34.7 35.6 36.4 37.2 37.9 38.6 39.
6.1 24.8 26.9 28.1 29.4 38.6 31.7 32.8 33.7 34.6 35.5 36.4 37.1 37.9 38.5 39. | 6.4 27.2 27.5 28.5 29.7 36.8 31.9 32.8 33.8 34.7 35.6 36.4 37.2 37.6 5.1 24.1 26.9 28.1 29.4 30.6 31.7 32.8 33.8 34.7 35.6 36.4 37.1 37.4 31.6 32.7 33.7 34.6 35.5 36.4 37.1 37.4 4.4 25.1 26.4 27.8 29.1 30.4 31.6 32.7 33.7 34.6 35.5 36.4 37.1 37. | | · · | 28. | 6 | 0 | • | ς. | m (| 4 h | \$ 4 | | | 7 | œ | 38. | 39. | | 6. 2 26.0 26.3 78.1 27.2 30.4 31.6 32.7 33.7 34.6 35.5 36.4 37.1 37.3 36.2 37. | 4.4 25.1 26.4 27.8 29.1 30.4 31.6 32.7 33.7 34.6 35.5 36.4 37.1 3/. | ·
:: | . 67 | 27. | œ c | 6 0 | 5 0 | •
س پ اسم | · ~ | , w | 4 | 5 | 9 | ۲. | 7. | 3 30 | | | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | ė. | | 200 | c r | . 0 | | | · C | 3 | 4 | ľ. | 9 | 7 | • | 000 | • • • • | MAXIMUM FILLING COVER FACTORS (K2) IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =4.13 WARP | COVER
FACTOR
(K1) | | 1 0 | 1 0 | 10 | | í • | 1.1 | 1.2 | 1.3 | 1 4 | 1.5 | 1 • | | | 4.9 | 6 | |-------------------------|------|----------|------|----------|------|----------|------|-------|------|----------|------|------|----------|------|------|---| | | | | 1 | | | | | 1 | | 1 | 1 | | - | | • | • | | | | | | | | 0 | 0. | 0 | | | | | | | | | 0 | | | | | | | | | 0 | | | | | | | 0 | 0 | 59.1 | | | 34 | .0 | 0 | | <u>-</u> | | • | 0 | 0 | | . | 0 | | 0 | | 0 | | | _ | | | | | C | | | | | | | | 5 | 0 | • | | | | | | | 0 | 0 | | | | | | 0 | 4 | 8 | 5 | * | | | | | | | | 0 | <u>د</u> | | | 0 | • | 4 | • | 5 | * | 3 | | | - | | | | | 0. | | | | | 4 | • | 4 | 3 | 2 | 2 | - | | 36 | 0 | . | ٠. | C | 0 | 0 | 0. | 0. | 6.95 | 46.1 | 43.3 | 42.3 | 41.9 | 41.8 | 41.9 | 4 | | | | | | | c | | | 5 | r. | 0 | | • | • | - | - | | | | | | | | | | • | | | | | | ,
I C | | | | | | | | | | | | | 4 4 5 | 40 | 40.4 | 40.5 | 0 0 | | | | 1 | | | | | | | | • | • | • | | | • | | | • | • | | | | | | | | | 4 | ; | • | 0 | ,
D | SC. | · | · | • | ò | | | 4 | 0 | 0 | 0. | | | 41.9 | • | 7 | 7 | 7 | ċ | 90 | 0 | • | 0 | | | | | | | | 4 | 7 | | 9 | • | 7. | | 80 | 60 | 6 | • | | | | | | | . 9 | 7 | Š | 5 | 5 | \$ | • | 7 | 8 | 80 | 6 | 6 | | | | | | | 0 | 5 | 4 | 4 | 5 | 5 | Ġ. | 7. | 7 | 00 | 6 | • | 4 | | | | | - | 4 | 3 | جى . | 4 | 4 | 5. | | c | 7 | 80 | 8 | • | _ | | 6 | = | <u>.</u> | 35.7 | 35.5 | 32.3 | 32.8 | 33.5 | 34.3 | 35.1 | 5 | 36.7 | 37.5 | 38.2 | 38.8 | 39.5 | | | | = | · | • | • | · | 2 | 8 | 4 | 4 | 5 | • | 7 | • | 90 | • | | | | • | 0 | 0 | <u>-</u> | 0 | + | ? | 3 | 4 | υ. | | 7 | 6 | 8 | 0 | | | | 54.0 | 2.67 | 28.7 | 4.66 | 30.4 | 31.5 | 32.6 | 33.6 | 34.6 | 35.5 | 36.3 | 37.1 | 37.9 | 38.6 | 39.3 | | | | • | 7 | 7 | 8 | 0 | | 2 | 3 | 4 | 5 | • | / | 7. | 8 | 0 | | | | 9 | ¢ | 7 | α, | 6 | • | 2 | 3 | 4 | ξ, | ć | 7 | 7. | 8 | 0 | M | MAXIMUM FILLING COVER FACTORS [K2] IN TERMS OF WARP COVER FACTOR AND BETA YARN BULK DENSITY =4.60 | マドン | : | | • |
 | (| (| BET | (| | | ŀ | 1 | • | 1 | 1 | |-----|----------|-------|----------|------|------|----------|----------|------|------|--------|------|------|------|--------------|------------|----------| | < | 0.5 | C | n.7 | 00 | 1 | 1.0 | - | + | 1.3 | 1.4 | 1.5 | 1.5 | 1.7 | 1.8 | 1.9 | 2.0 | | 1 4 | | | ı | | 0 | 0. | | 0 | 0 . | 0 | 0 | | 0 | | + | • | | 35 | | | | | | . | | | | | | | 0 | 07. | 0 | 4 | | | | | | | | | | | | | | | 16.4 | 58 | 2 | 0 | | | | | | | | | | | | | | 6.69 | 57. | + | • | 60 | | | | | | | | 0 | 0. | 0. | 0 | 0 | | 57.2 | 50.9 | 48.5 | 47.4 | 46.8 | | 39 | ٠
ن | ٠, | <u>.</u> | 0 | 0. | | | | | | | 0 | 7. | • | • | r. | | | | | | | 0 | | | | | 6 | 0 | • | 5 | 5 | 5 | 5 | | 41 | | | | | | | | • | 4 | 6 | ÷ | 4 | 4 | 4 | 4 | 4 | | | | | | | | | | 00 | 6 | 5. | 4 | 21 | 3 | ~ | * | 4 | | | | | | | | 0 | | 51.1 | 45.1 | 43.3 | 42.7 | 42.6 | 42.7 | 43.0 | 43,3 | 43.7 | | 4 4 | 0. | | c | 0 | 0 | | | 4 | 2 | + | 7 | + | 5 | 2 | 3 | 3 | | | ပ | c. | | c | | 6 | 40 | ò | ÷ | 0 | • | + | + | 2 | 2 | M | | | | | | | | 7. | - | 0 | 6 | 0 | ċ | 0 | - | + | 2 | 3 | | | | | 0 | 0 | 9 | 41.6 | 39.4 | 38.9 | 39.1 | 39.5 | 40.0 | 40.5 | 41.1 | 41.7 | 42.2 | 45.8 | | | | | | | 8 | œ | œ | œ | œ | 6 | ò | 0 | 0 | - | ċ | ò | | 64 | | C | | | | 7. | 7. | 7 | 9 | 80 | • | 0 | 0 | - | - i | ò | | 5.0 | <u>.</u> | | C | 6 | 9 | 5 | ý | Ġ | 7. | 00 | o, | , | 0 | + | | 2 | | | | | ₹ | ŗ. | 4 | 5 | 5 | • | 7 | ю
• | œ | 6 | 0 | • | + | ċ | | | | | ÷ | 3 | 3 | 4 | 5 | 9 | 7 | 7 | œ | о́. | 0 | H | • | <u>.</u> | | | С | ò | | 32.5 | 33.1 | 53.8 | 34.9 | 35.8 | 36.8 | 37.7 | 38.6 | 0 | 40.5 | 40.9 | - | • | | 54 | | 53.6 | | • | ò | 3 | 4 | 5 | ÷ | 7 | oc. | ٥. | 0 | 0 | | ċ | | _ | £) | - | - | + | ~ | ~> | 4 | u's | • | 7 | 00 | · | ċ | 0 | - | ò | | 56 | 51.4 | < x > | 29.4 | 30.5 | 31.7 | 33.0 | 34.1 | 35.3 | 36.3 | 37.3 | 38.2 | 39.1 | 30.9 | 40.7 | 41.4 | 42.1 | | | / | 7. | · | Ċ | - | ċ | 4 | S. | • | 7. | œ | o. | 0 | 0 | ÷ | iv | | | · | · c | α. | 6 | · | 2 | ۲. | 5 | ÷ | 7. | a. | 6 | 0 | | + | Š | | DOCUMENT CO (Security classification of title, body of abstract and indexi | NTROL DATA - R&D | | he overall report is classified: | | |---|---------------------|------------|---|--| | 1 ORIGINATING ACTIVITY (Corporate author) | | | T SECURITY CLASSIFICATION | | | U. S. Army Natick Laboratories | | Unc | classified | | | C. S. AIMY NACICE LADORSCOPLES | ļ | 26 GROUP | | | | | | | | | | 3 PEPORT TITLE | | | | | | Design tables for textile fabrics: | Tables of sol | utions | of equations for | | | maximum weavability fabrics made f | | | | | | • | | | | | | 4 DESCRIPTIVE NOTES (Type of report and inclusive dates) | | | | | | 5 AUTHOR(S) (Last name, first name, initial) | | | | | | Weiner, Louis I. | | | | | | | | | | | | | | | | | | 6 REPORT DATE | 74 TOTAL NO OF PA | GE5 | 76 NO OF REFS | | | August 1966 | 330 | | 6 | | | 84 CONTRACT OR GRANT NO. | 98 ORIGINATOR'S RE | PORT NUM | BER(S) | | | | 67-20-CM | | | | | b PROJECT NO | 0/=20=0F1 | | | | | c 1013001A91A | AP OTHER REPORT N | (S) (A mir | other numbers that may be provided | | | 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report) TS_144 | | | | | | đ | TS-144 | | | | | 10 AVAILABILITY LIMITATION NOTICES | <u> </u> | | N. C. | | | Distribution of this document is w | mlimited. Rele | asa to | CFSTI is authorized. | | | | • | | | | | | | | | | | 11 SUPPLEMENTARY NOTES | 12 SPONSORING MILIT | ARY ACTI | VITY | | | | U. S. Army N | atick I | aboratories | | | | Natick, Mass | achuset | ts 01760 | | | 12 ADSTRACT | | | | | | 13 ABSTRACT | | | | | This report contains in tabular form the solutions of the maximum weavability equations for the plain, exford, 3- and 4-harness twills, and 5-harness sateen in terms of warp and filling cover factors and yarn number ratio (Beta) for fabrics made from any fiber species and from blends. The tables are set up for yarn bulk densities ranging from 0.54 to 4.6; this includes fibers as light as polyethylene and as heavy as stainless steel. Supplementary tables are provided giving yarn bulk densities (assuming a standard packing coefficient of 0.59) for all of the commercial fibers and for blends of the most important commercial. Tibers in increments of 5% ranging from 5% to 95% blend composition. | 14 KEY WORDS | | LINKA | LINK B | LINK | |--|--------------|----------------------------|-------------|--------| | · · | | HOLE AT | ROLE | HOLE A | | Meaving Equations Fibers (Natural) Fibers (Synthetic) Twills Sateen Tables | | 8
8
1
2
2
0 | | • • | | | | | | | | | | | | | | | INSTRUCTIONS | , | | | - I. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report. - 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. It dicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations. - 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized. - 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title. - 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered. - 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement. - 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication. - 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information. - 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report. - 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written. - 8b, 8c, 8c, 8c, 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc. - 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report. - 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s). - 10. AVAILABILITY/LIMITATION NOTICES. Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as: - "Qualified requesters may obtain copies of this report from DDC." - (2) "Foreign announcement and dissemination of this report by DDC is not authorized." - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through - (5) "All distribution of this report is controlled. Qualified DDC users shall request through If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known - 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes. - 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address. - 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached. It is highly desirable that the abstract of classified reports he unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS) (S), (C), or (U). There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words. 14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Idenfiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.