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SUMMARY 

* 

11 

A conventional solution of the Helmholtz or time-reduced wave equation is 
a simple product of functions that contain one coordinate variable in each. 
An unbounded set of solutions that are not separable into simple products 
of single-variable functions has been partially examined for applicability 
to vibrational problems.    Applications to scalar usage have been found, 
and illustrations including shapes and frequencies for membranes and an 
acoustic cavity are reported.    Efforts to make application to vector usage 
are described, as are numerous mathematical properties that have been dis- 
covered in the course of the wrk.    It is concluded that vibration on or 
within some new shapes can now be calculated exactly with functions formed 
of the nonseparable solutions added to separable solutions.    It is also 
concluded that simplifications in the mathematics and additional appli- 
cations await the effort» 

iii 
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FOREWORD 

This is a comprehensive report of an investigation which has led more 
deeply into mathematics than was originally planned.    In order that the 
reader Wie has not the time to dwell upon the mathematical side may oh- 
tain a qualitative description of the work, the report has been organized 
in such a way as to give comprehensive coverage without formulas in the 
Summary, the Introduction, the Course of the Work Covered by Contract, 
the Conclusions and the Recommendations.    Fundamental mathematics that 
is the essential groundwork for the positive findings is then given and 
it leads into the sections which give details of the applications.    Other 
properties of the nonseparable solutions were discovered which do not lead 
directly to the reported applications, and these are detailed in Appendixes 
I through VII. 

Principal personnel in this investigation have been Dr. D. S. Moseley as 
Project Leader and James M. Render.   Mr. Render calculated the patterns, 
led in the vector effort and has contributed importantly to the present 
level of understanding and to the preparation and editing of this report. 
This report was typed by Mrs. G. J. Fowler, 

The work period covered by contract was 28 June 196$ to 28 April 1966, 
The contract was DA UU-177-AMC-3li2(T) between the U. S, Army Aviation 
Materiel Laboratories, Fort Eustis, Virginia, and Vitro Laboratories, 
Silver Spring, Maryland.    Title of the contract was "Application of 
Nonseparable Wave Equation Solutions,,, 
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INTRODUCTION 

VIBRATION AS WAVES 

Vibration is oscillatory motion of matter in response to a transient or a 
periodic disturbance.    Oftentimes the disturbance that is perceived by a 
particular portion of matter has originated at considerable distance and 
has been propagated to that point as a wave.    In these cases, provided am- 
plitudes are sufficiently anall, the propagation through the connecting 
medium is described by the wave equation written for fluids and by the 
wave and flexural wave equations written for solids.    These are partial 
differential equations, one or both of which permit prediction of depend- 
ent variables such as pressure, stress, stress moment, strain, displace- 
ment, particle velocity, and acceleration anywhere in the medium and at 
any moment of time. 

For ease in handling these equations, one usually introduces the assumption 
that the dependent variable is a sinusoidal function of time.    This changes 
wave and flexural wave equations into second and fourth order partial dif- 
ferential equations, respectively, in position coordinates only, with fre- 
quency appearing as an arbitrary parameter.    The wave equation so reduced 
is called the Helmholtz wave equation. 

SEPARABLE AND NONSEPARABLE SOLUTIONS 

Functions which are solutions of the Helmholtz wave equation have been 
known for a century and more.    They are derived by separation of vari- 
ables, a method taught to engineering and science students in colleges 
everywhere.    The method assumes that the solution is a function that is 
itself a simple product of functions each containing one independent vari- 
able,    fy this method the derivation is converted from one of solving a 
partial differential equation in two or three dimensions to one of solving 
two or three ordinary differential equations.    In view of the nature of 
this solution and to make a distinction between it and those to follow, 
we have called it the separable solution of the Helmholtz wave equation. 

The nonseparable solutions of the Helmholtz wave equation with which this 
report is concerned are mathematical functions which have appeared in the 
past h years.    They arose during the course of an attempt to formulate 
in closed form the natural modes of an isotropic right circular solid 
cylinder.    No useful role for them was found during that work, but they 
were later gathered up and submitted for publication (reference U), 

Preparation was then made for the effort that is being reported here, 

PREPARATION FOR THIS CONTRACT 

It was reasoned that new solutions of an equation that is used in mechanics, 
acoustics, radio, microwaves, and light would have utility.    It was postu- 
lated that these solutions in mechanics,  for example, might legitimatize 
experimentally observed modes which theoreticians dismiss as originating 



in poorly controlled homogeneity of medium and poorly known boundary con- 
ditions. 

It was decided to change from circular cylindrical coordinates of the pub- 
lished paper to rectangular coordinates.    The aptness of the two-dimensional 
nonseparables to membrane vibration was then apparent, since the motion 
being predicted was in a single  direction, namely, normal to the plane of 
the membrane, and the dependent variables were the minimum number, namely, 
two, that were required for the existence of the nonseparable solution. 
Nodal patterns for two of the new functions were quickly generated, and 
certain features of these patterns were noted as being identical with 
certain features of Chladni figures republished by Waller (reference 7), 
Chladni figures are sand patterns formed on vibrating, free-edged plates. 
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Figure 1,    Selected Chladni Figures on Square Plates (reference 7). 

A program was then outlined that would successively investigate «ppli- 
cations in four models, namely, membranes, acoustic cavities, electro- 
magnetic cavities,  and elastic solids.    These were so ordered because it 
was felt that this was their order of difficulty and because it was 
thought unwise to undertake only the first and last without the experi- 
ence to be gained in executing the intermediate ones.    First attention 
in each was to be given to finding if new modes for shapes already known 
would be given by the nonseparables.    For each model there were guides 
proposed as to number of frequencies, number of regular shapes, highest 
order of solution to be considered, etc. 

Between proposal and contract, a factor of considerable importance was 
discovered.    There was found a generative operator* by which the simplest 
nonseparable could be obtained from the known separable, and this operator 
proved capable of generating ever higher orders of nonseparable through 
successive application. 

Credit for recognizing this operator belongs to Dr. B. R, Levy, Mathematics 
Branch, Office of Naval Research, Washington, D. C, 
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COURSE OF THE WORK COVERED BY CONTRACY 

THE SEARCH FOR APPLICATIONS 

Under Contract DA Ui-177-AMC-3U2(T) entitled "Applications of Nonseparable 
Wave Equation Solutions", the U, S. Array Aviation Materiel Laboratories has 
been supporting a research effort that began as ar. effort to discover if 
applications exist.    The initial model was a membrane. 

It was soon apparent that nonseparable solutions for membranes were not 
producing new modes in old shapes, for calculated nodal lines on membranes 
bore no resemblance to regularly bounded patterns.    Therefore, that goal 
was shelved in favor of achieving a nodal pattern of any shape that would 
demonstrate one or more closed areas.   Nodal lines that do not close on an 
infinite membrane are interesting but not practical. 

When the schedule called for it, the program moved from membranes to 
acoustical cavities, that is, from two to three dimensions.   More patterns 
were evaluated.    At length an x-y pattern in a z-plane did demonstrate 
closed areas, and study of the solution which had produced them revealed 
the secret:    in effect the plot was of a function very similar to a mem- 
brane function compounded of a nonseparable added bo a strong proportion 
of separable.    A return to membranes was made, and closed areas were im- 
mediately demonstrated.    Applied to accuätical cavities, the principle of 
using a nonseparable  to perturb a separable solution was successful in 
generating closed volumes. 

In preparation for the third model, examination was made of nonseparable 
solutions as scalar potentials from which vectors could be derived.    These 
were then studied in relation to boundary conditions on the cavity walls, 
and this included a return to acoustical cavities with normal particle 
velocity to be zero on the wall.    The mathematical meaning of two boundary 
conditions, electric and magnetic, needing to be met on the same wall was 
investigated, and electric and magnetic potentials were constructed. 

Attention then turned to elastic solids where two conditions are required 
on each'surface or edge.    ExtenaLonal and flexural vibration in thin plates 
was examined. 

SUMMARY OF RESULTS 

Application to vibrating membranes has been found.   With the aid of the new 
solutions, frequency and anplltude distribution on shapes never before ana- 
lyzed have been found exactly and without recourse to representation ty 
Fourier series.    It appears that the exact solution of any shape that is a 
continuous distortion of a square or rectangle is within grasp. 

Application to an acoustic cavity with pressure-node walls has been demon- 
strated.    Frequency and amplitude distribution of pressure within the volume 
can new be calculated.    Wall shape in this demonstration is a smoothly dis- 
torted cube. 
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Application to an electromagnetic cavity of perfectly conducting walls was 
discovered during the preparation of this report and has not been well con- 
firmed.    It appears that nonseparables of first order can serve as electric 
and magnetic potentials from which are obtained electric and magnetic fields 
that predict fields within a hollow rectangular parallelepiped.   Dimensions 
of the cavity must be proportional to ary set of three integers. 

There has been no success with the acoustic cavity under the condition of 
a rigid wall and only the foregoing success with the electromagnetic cavity. 
These models have in common the boundary conditions that tangential and/or 
normal components of vector field quantities are specified, and much effort 
has been expended in trying to use nonseparable solutions to represent suit- 
able vector fields. 

The fourth model is the elastic solid.    Two modes of motion in a thin 
rectangular plate were examined in the last weeks of the contract.   The 
first was axtensional vibration, which is motion parallel to the surface 
of the plate,    Nonseparables appear unable to satisfy the pair of stress 
conditions that apply at each edge.    It may be noted that separables do 
not satisfy them either.   The second was flexural vibration, or motion 
normal to the plane of the plate.    Thir examination was cut short by 
schedule, but it appears that nonseparables in trigonometric and hyperbolic 
forms can be taken together to satisfy boundary conditions along a plate 
edge.    The prediction is that the edge shape will in general be a distorted 
rectangle, Just as the edge shape of the membrane has been found to be« 

r-i-5-*^JW5«a»-»w-   .,...      .' iJU-^J.'     ■ iäf^fe-'- 



MATHEMATICAL FOUNDATIONS 

THE HEIMHOLTZ WAVE EQUATION 

For amplitudes sufficiently small, the vector differential equation for 
wave motion is 

vr-^g . a) 
0    ot 

where the vector A is the dependent variable, 7 is the vector differential 
operator, c is the phase propagation velocity, and t is time.    The V op- 
erator taken twice is the Laplacian, which in rectangular coordinates is 

a     -    -    a
3      Ö3      d2 

V   -y.y-—r* — + — 
ox*     aya      dza 

The velocity c is that velocity which is appropriate to wave type and 
medium, examples being velocities of sound pressure in a gas, dilatational 
or shear stress and strain waves in a solid, and electromagnetic wave 
components in a vacuum. 

The Helmholtz wav.j equation follows immediately from Equation (1) if A is 
assumed to be a vector function which varies sinusoidally in time. Thus, 
let 

A-Aoeiu,t (2) 

in which A   is the amplitude of vector Xf i is -v^T, and w is the angular 

frequency of the time variation.   Then Equation (1) becomes 

(Va + ka)Ao - 0       , (3) 

in which k ■ u)/c. 

Since the amplitude A is a vector, in component form it is 

xo - ^ * JV K    • 
and upon substitution in Equation (3) there arise three independent scalar 
Helmholtz equations which are 

(V3 ♦ k8)Ax - 0 

(V3 +ka)Ay- 0 

(Va ♦ ka)A - 0   . (U) 
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SEPARABLE SOLUTIONS 

Separable solutions of scalar Helmholtz wave equation are those which con- 
sist of single, simple products of functions containing one variable each. 
For example, the separable solutions of the last of Equation (U) are, in 
three dimensions, 

rsin a»   rsin by-i   rsin dz 

* 

where 

A   . r»"» «I f»" W p dz, ^ 
z      Leos axf   <coa byJ   '•cos dzJ 

k    ^a   + b   + d . (6) 

Each brace contains two functions which may be summed in any proportion but 
which depend upon one coordinate variable only. The function A is the 
product of the three braces. 

An alternative way of writing Equation (5) is with the use of arbitrary 
phase constants, as 

A,, - sin (ax + a) sin (by + 0) sin (dz + 6) . (7) 
z 

NONSEPARABLE SOLUTIONS IN TWO DIMENSIONS 

Let us consider the scalar Helmholtz wave equation 

(73 + ka)W- 0, (8) 

in which W is a function of x and y and not of z. 

This will be recognized as the wave equation for motion on a membrane when 
W is the amplitude of transverse displacement (or velocity or acceleration) 
everywhere on the membrane. 

The separable solution of Equation (8) is 

v/0^ - sin (ax + a) sin (by + ß), (9) 

for which the frequency equation is 

ka - a3 + b3, (10) 

In addition to the separable solution, there is a set, infinite in number, 
of nonseparable solutions of Equation (8), for each of which the frequency 
equation is the same as Equation (10).   Each nonseparable contains the co- 
ordinate variables as explicit multiplying factors, and since the highest 
exponent or power that is present on such factor is a unique characteristic 
of that solution, it has been used to declare the order of the solution. 

'-^ LT-:3tr^<~x.~.\ +     n 11j'"   . itt-'_■'.-■-'.isr^fe-'— '■""T'i..'",.C / >■- l-'.1'» '   '' »* i 



Nonseparable solutions of the first three orders in two dimensions are 

>r ' « bx cos (ax + ») sin (by + P) - ay sin (ax + er) cos (by + B),    (11) 

W^2) . - {[(bx)2 + (ay)2] sin (ax + or) sin (by + ß) + 

by sin (ax + o») cos (by + 0) + 

ax cos (ax + a) sin (by + B) + 

2abxy cos (ax + or) cos (by -f B)|,      (12) 

v/3) « [3(t>x)2 + (ay)2 + l] ay sin (ax + a) cos (by + B) + 

3ab (x   - y ) sin (ax + a) sin (by + B) + 

2 2 
3xy (a   - b ) cos (ax + or) cos (by + B) - 

[3(ay)2 + (bx)2 + l] bx cos (ax + cr) sin (by + B).       (13) 

A nonseparable solution of order n + 1 can be obtained from that of order n 
by employing the generative operator Opvj.    The relationship is 

W(n+1)-02DW(n), n^O (1U) 

where 

It is easily verified that the separable solution may be considered a non- 
separable solution of order zero and hence a member of the set.    This is 
also clear in Appendix I and Appendix II, which present exponential and 
variant forms of two-dimensional solutions. 

i ■ •:.-T_/r*Ä i-- -J- 



APPLICATION TO MEMBRANES 

Motion at right angles to the plane of a membrane is the simplest two- 
dimensional application of the Helmholtz wave equation.   This is true 
because (1) the motion can be treated as a scalar, and (2) a single con^ 
dition of zero displacement at the boundary completes the problem.    Sep- 
arable solutions of Equation (8) in appropriate coordinates have long 
been known to satisfy this condition for simple shapes such as rectangles, 
circles, ellipses, etc., yielding a spectrum of resonant frequencies for 
each shape and the amplitude distribution for each frequency. 

Out of respect for this background, nonseparable solutions (ITn' in rec- 
tangular coordinates with n - 1, 2, 3) were first studied in relation to 
membranes.    This has resulted in three findings, of which two are negative 
and one is positive.    The negative findings are (1) that nonseparable 
solutions have yielded no new modes for the rectangular shape that is 
already solved by the separable solution, and (2) that nonseparable solu- 
tions taken singly do not describe the vibration of a membrane of any 
finite shape.    By the latter we are saying that nodal patterns of non- 
separables of first and higher order contain no closed areas.    A col- 
lection of nodal patterns for various nonseparables having a = b and 
taken singly is presented in Appendix III, 

DISCOVERY OF CLOSED AREAS 

The positive finding is that a nonseparable of second order can be added 
to a separable to yield frequency and amplitude within a closed boundary 
that is a smooth distortion of the boundary given by the separable alone. 
If T) be defined as the oscillatory displacement of any point of the mem- 
brane, then we may write 

Tl - [w(0) + cv/2)] cos vt, (16) 

where G is a constant and the bracket is the amplitude of the displacement. 
The amplitude is thus given for all values of x and y.    Zero amplitude 
occurs at all points (x., y.) which solve the two-dimensional transcendental 
equation 

w(0) + cw(2) B 0< (17) 

Plot of all points (xi, yi) in x-y space is the nodal pattern of the dis- 

placement T],   As would be expected, each nodal line separates displacements 
that differ from each other by 180° in phase. 

Closed areas have been found in three evaluations of Equation (1?) using 

cr - B » 0, and a - b - 1, and C - (^.^TT
2
)"

1
  « .0081, C = (O.^TT

2
)"

1
  = .01^6, 

and C ■ (2.5TT )" ■ .0li05. These patterns together with the one for C = 0 
are presented as Figure 2, 



c = o 

C=0.008l 
n = 2 

C = 0.0lft6 C = 0.0405 
n = 2 

Fig\ire 2.    Nodal Patterns on Infinite Membrane for Sums of Separable 
and Nonseparable Solutions.    (Note Closed Areas.    Function 
is W^0^ + CVr2Vwith a - b - 1 and a - B - 0.) 
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Several features of these patterns may be noted.    The outermost closed bound- 
aries are not similar in the geometric sense of the word.    The number of 
closed areas decreases as the proportion of nonseparable to separable in- 
creases, until it is zero at a value of C little larger than C = ,0h05.    The 
distortion of the square that is the building block for 0*0 increases with 
distance from the origin in each of the lower patterns.    The distortion of 
the square that corners at the  orn ^in increases as C increases,    A character- 
istic of the three patterns formed by the addition of nonseparable solution 
to separable solution is that most of the nodal lines of the pattern do not 
close on themselves to enclose finite areas of membrane, 

PRACTICAL USE OF THESE PATTERNS 

Any nodal line in the patterns of Figure 2 can become the edge of a mem- 
brane by supposing that a clamp conforming to the line is impressed there. 
If a closed contour is selected,   it can serve as the boundary of a membrane 
of finite extent.   Displacement at any instant within and on that boundary 
is given by Equation (16), and frequency is given by 

a3 « ca(a3 + ba) - 2ca, (18) 

for every pattern since a ■ b » 1 throughout Figure 2, 

The following procedure, illustrated by Figure 3, may be used to compute 
frequency of membrane vibration within any closed contour shown in Figure 2# 
First, we remove the requirement that the propagation constants are equal 
to unity. Second, the nodal patterns are considered to be points (ax., ay.) 

plotted in X-Y space, where X ■ ax and Y « ay. Third, the pattern for 
C ■ 0 is superposed upon the one containing the selected pattern by causing 
the axes to coincide. Frequencies of the two patterns are identical in 
accordance with Equation (18), and that of the square pattern is the refer- 
ence «> given by 

\ - ^4", (19) 

where L is the side of the square. Fourth, with aL the X-side of the square, 
let aS be the X-side of the desired contour. Note that aL = TT and aS ■ Mn, 
Fifth, convert axes from X-Y to x-y and convert square of side L into square 
of side S, Propagation constant a ■ TT/L then becomes a' ■ TT/S ■ T05L, Thus 
frequency of the desired contour is given by 

Figure 3 has been prepared to illustrate this procedure. The upper and 
lower left diagrams are superpositions of the square pattern upon the de- 
sired contour in X-Y space. The upper and lower right diagrams show tho 
square converted to side S. 

10 
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3.4577r 

Figure 3.    Examples of Construction Used To Compute Frequency of 
Contoured Membrane« 
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Frequency ratio M has been computed for all patterns of Figure 2,    These 
are displayed in Figure U, where side lengths of contours chosen from 
Figure 2 have been made equal to clarify the prerentation. 

Also included in Figure 1| are six contours which are predicted for an 
isosceles right triangle, solutions for which have long been known (refer- 
ence ^, page 80, and reference 3, page 7^5) and require no nonseparable 
solutions.    They were chosen for presentation because of their resemblance 
to patterns generated in this program.    Values of M have also been calcu- 
lated for them, and these are presented beneath each triangle.    The multi- 
ple values beneath the triangles correspond to the different contours in 
each   and are to be compared as directed by the  arrows. 

It should also be noted that the M-ratios for the in-triangle contours are 
greater in every case than those of the corresponding contours derived fron 
nonseparables.    However,  the difference is perhaps too small to be of en- 
gineering significance,  which suggests that the triangle model with a cor- 
rection factor might be useful where applicable in design work. 

It is expected that patterns within modified rectangles, i.e., for a / b, 
can be evaluated with the aid of nonseparables, whereas the only triangle 
solution of which we know corresponds to a = b. 

Note snould also be taken of the fact that none of the higher frequencies 
found for patterns of this contract may properly be called overtones since 
the outermost contours are not similar in the geometric sense to those of 
the lowest frequency.    How to make them similar remains a challenge. 
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C:0 
M = l.000 

C = 0.008l C=0.0I56 C=0.0405 C=0 
M = l.028 M = l.060 v M = l.405 M=l.58l 

n-.Z     V n = 2          \ n-2 

C = 0.008l            \ C=0.0I56 c=o 
M = 2.077  v \              M = 2.440 M = l.069,2.550 

n = 2            \ \            0=2 

c=o 
M:|.032,2.081,3.536 

Figure h.    Closed Contours and Their Frequencies in Ratio to That 
of Square of Same Side Length, 
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APPLICATION TO ACOUSTICAL CAVITIES 

DISCOVERY OF CLOSED FLUMES 

The ability of nonseparable solutions to generate nodal surfaces which en- 
closed finite volumes was in doubt for some time.    It was at length demon- 
strated that the addition of a small portion of nonseparable to a separable 
was at least one way to produce closed nodal surfaces, just as had been 
found for the two-dimensional case of the membrane. 

Contributing to the perplexity was the discovery that in three dimensions 
more than one nonseparable solution of each order exists.   At least three 
appear to have been isolated.   Via a three-dimensional generative operator 
(see Appendix IV) discovered early in the contract, nonseparable solutions 
of first and second order can be written,   A symmetric nonseparable of 
second order was synthesized after study of results with the operator, yet 
it appears distinct from its progenitor.    The third was a nonseparable of 
first order which was synthesized directly from study of properties that a 
function must have to be a solution of the Helmholtz wave equation,  and it 
seems unrelated to the first two. 

The first and third of these are presented in Appendix IV, and nodal 
patterns of the former are presented in Appendix V,    The second was chosen 
for addition to zero order and is given here. 

The chosen function is a symmetric function when a ■ b » d = 1 and when 
a ■ B ■ 8 ■ 0, since it then transforms into itself when its variables are 
interchanged in pairs.    It is 

W^' ■ (x   + y   + za) sin x sin y sin z + 

x cos x sin y sin z + y sin x cos y sin z + 

z sin x sin y cos z + yz sin x cos y cos z + 

xz cos x sin y cos z + xy cos x cos y sin z,   (21) 

Closed nodal surfaces were discovered to exist in the function 

<P Hv+ ^lcos ^ (22) 
when C - (18^rr3)"1  - ,005ii0, and v/0^ and VT2^ are given by Equations (7) 
and (21), respectively, with a ■ to ■ d • 1 and or « B ■ 6 ■ 0, 

These surfaces are formed by the three planes which contain the coordinate 
axes and by curved surfaces which meet these planes at right angles.    The 
curved surfaces are those non-zero points (x., y., z.) which make the 

bracket of Equation (22) equal to zero.    The intersection of curved surfaces 
with the planes was found ty evaluating points (x., y.) for z •= e with e 
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allowed to approach zero closely enough to Justify the approximations 
sin c - c and cos e - 1,    The nodal pattern in the x-y plane given by 
z » c is presented in Figure 5(a).    The pattern which is Figure 5(b) 
lies in the plane z - TT and is repeated for z - IntrT with m / 0. 

(a) (b) 

Figure 5.    Nodal Patterns in z-Planes Passed Through Nodal Surfaces, 
(a)    Z ■ e with «-♦ 0;  (b)    z ■ imrr with m / 0,    Function 
is w: (0) 

3D .005U0W (2) 
3D 0, 

Since Vr  ' and Vr  ' are symmetrical to cyclic rotation of coordinates, the 
patterns of Figure 5 are equally applicable with coordinates cycled.   Based 
upon this property, a three-dimensional model has been constructed of these 
patterns as an aid to visualization of the volumes enclosed by the nodal 
surfaces.    Tliree photographs of thic model are presented.    Figure 6(a) rep- 
resents the anallest enclosed volume.    Figure 6(b) represents the volume of 
intermediate size enclosing the first.    Figure 6(c) allows one to visualize 
all three nodal surfaces and their enclosed volumes.   Other surfaces, appar- 
ent from Figure 5, are not closed and only their intersections with the 
principal planes are shown. 

SIGNIFICANCE OF DISCOVERY OF CLOSED VOLUMES 

In the theory of acoustics the boundary condition of an acoustic cavity is 
a specified wall impedance, given by rms sound pressure in ratio to rms 
particle velocity noxmal to the wall.    In symbols this is 

Z - rms 
( n)rms 

(23) 

where p is a scalar and v is one component of the vector particle velocity. 
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Figure 6. Three-Dimensional Model Constructed from Patterns 
(a) Innermost Surface Represented 
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Figure 6(b)„ Inner Two Surfaces Represented. 





Kost frequently the assumed condition is that Z is infinite through the 
vanishing of the normal component of particle velocity upon the wall.    The 
other two of the three mutually orthogonal components of particle velocity 
are not necessarily zero at the wall    and are not determined by that portion 
of wall. 

It  has not proved possible during the time of this contract to discover a 
nonseparable velocity potential from which to obtain v    = 0 on a closed 
surface.    There is,  however,  a mathematical meaning for the alternate con- 
dition of zerc  impedance upon the walls.     It is that the pressure there is 
zero,    Tnus we can say from Equation  (22)  that ep = p, or that (p is itself 
a velocity potential from which we may derive p according to 

P--P3f. (21*) 

where p is the mean mass density of the medium within the cavity. 

One may compute frequency of resonance of the volumes of Figure 6 by re- 
ferring those volumes to the cubes which would enclose them. The method 
is essentially that described for membrane patterns. If the frequencies 
of the reference cube and of the distorted cube be «)   and u) , respectively, 

the ratio M « <" A"    is as follows:    for innermost volume, M ■ 0.983}  inner 

two volumes, M ■ 2,0U2; all three volumes, M ■ 3»103.    In each case, the 
reference cube is one whose side length is equal to the side length of the 
desired volume. 

While enclosing a volume with walls of zero impedance is ma thematic ally- 
justified, it is nonetheless physically impossible.    To produce a pressure- 
release boundary would require an enclosing wall of no mass or stiffness, 
yet a wall which would be capable of confining a liquid or gas without 
escape of matter. 

Therefore it is acknowledged that the significance of the discovery of 
closed volumes is its contribution to progress in understanding the problem 
of applying nonseparables to acoustic cavities. 
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APPLICATION TO ELECTROMAGNETIC CAVITIES 

An electromagnetic field is characterized by field vectors E and H. Within 
a lossless cavity these vectors must individually satisfy the vector Helm-
holtz wave equation which is Equation (1), and on the walls these vectors 
must satisfy specif".? conditions. The conditions considered in this work 
were that the tangential components of the electric field E and the normal 
conponent of the magnetic field H be zero. 

Auxiliary functions known as the electric scalar potential and the magnetic 
vector potential are related to E and H everywhere through the relationships 
(reference 6, page 86) 

g«-v<p-§£, (25) 

H - J V X A , " (26) 

and 

7 . A + ue|| « 0, (27) 

where 

<p is the electric potential 
I is the magnetic potential 
M>,c are permittivity and permeability, respectively, within the cavity. 

These potentials satisfy the scalar and vector Helmholtz wave equations, 
respectively, wherein 

k a«~-«o aue. (28) 
c 

Equation (2?) relates the electric potential and all the components of A. 
In an exercise detailed in Appendix VI, the electric potential was equated 
to a nonseparable, after which the three terms of the divergence of A were 
assumed to be equal to one another. Components of A were then found by 
integration, whereupon field vectors E and H follow from Equations (25) and 
(26). 

In a specific case the electric potential was chosen to be 

cp « 2aVQ(x cos ax sin ay - y sin ax cos ay) sin az e*Jlt, (29) 

where aV has the dimensions of volts per meter. This leads to £ and H o 
components which are 
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J||Mk 

E ■ - UaV cos ax sin ay sin az e  , 

E„ ■  UaVÄ sin ax cos ay sin az e  , y o ^ ' 

Er -     0, (30) 

and 

z 

iljc   ,,      . iurt H    « - r^    V   sin ax cos ay cos az e      . 
x        3uu     o ' 

ilik   „ . iurt; H    ■ - ^       V   cos ax sin ay cos az e      > y        3"^     o ' 

i8k8 iwt H„ ■     -irrr- v« cos ax cos ay sin az e      . /-, x z 3^     o " ' (31} 

where 
a 

k   m —3a  • 
lie 

These satisfy the reduced Maxwell equations for the region within the 
cavity, namely, 

7 • H • 0, 

V • E - 0, (32) 

and they satisfy the boundary conditions on a cavity having sides L, L and 

L  which obey the relationship 

L : L » L  - n : n : n (33) 

for n-values that are any set of three positive integers* 

Frequency is given by 

'' - htf^  • (31.) 
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STUDY OF EIASTIC SOLIDS 

Investigation of application to elastic solids has grappled vith two ex- 
amples of two boundary conditions at each edge.    In an effort to simplify 
the elastic problem as much as possible, an example of plane stress or 
plane strain was first sought. 

Consideration was given to extensional vibration in a thin rectangular 
plate, a problem viiich is posed and formulated by Love (reference 1, page 
li97)»    One shear and one normal stress are specified along every edge. 
Study soon showed, however, that this problem is mathematically similar to 
the problem of the right circular solid cylinder with symmetry about the 
axis (reference li).    Nonseparable solutions had already proved of no avail 
in solving the cylinder problem, and a review confirmed the previous find- 
ing.    The conclusion drawn from consideration of the extensional vibration 
in thin rectangular plates is that the inability of nonseparable solutions 
to meet the required pair of conditions is other than a deficiency of non- 
separable solutions, since separable solutions do not meet them either. 

Consideration was later given to flexural vibration of a thin plate.   A 
rectangular outline was chosen because all fruitful experience under the 
contract had been in rectangular coordinates and because it had recently 
been fairly well established that one cannot have nonseparable solutions 
in polar coordinates r and ß (see Appendix VII),    The flexural wave 
equation is (reference 2, page 209) 

3v xa. 

Eh       at 

where the independent variables are x, y and t. 

Upon assuming that 

Tl - Ye-iu,t, (36) 

one can write the reduced flexural wave equation in factored form as 

(ya - Ya)(va + /)!- 0, (37) 

where 
4      _ a) a E 

P(l - va) ' 

and 

Y is the amplitude of displacement at right angles to the plate, 
h is the half thickness of the plate, 
E is Young's modulus. 
0 is the density of plate material. 
v is Poisson's ratio, 
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The second factor in Equation (37) is the  Helmholtz wave equation for which 
separable and nonseparable solutions are icnown.    The first factor is a 
Helmholtz wave equation but for the negative sign.    Solutions of this 
equation are the same separable and nonseparable solutions that are already 
known, except that propagation constants a and b are replaced by ia and ib. 

Thus the total solution of Equation (37) is 

Y-^W^ +^*M (38) 

where H       are W    ' with each a and b replaced by ia and ib. 

It is concluded that, since the reduced flexural wave equation is a scalar 
equation, functions of the form 

Y-W^ + CW(n) + H(0) + DH(n), n-2 (39) 

should be capable of satisfying the two conditions at every part of the 
edge, and closed nodal patterns should be derivable in the same manner as 
for the membrane. 
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CONCLUSIONS 

Conclusions from this program are: 

(1) There are applications for nonseparable solutions of the Helmholtz 
wave equation.    They have been demonstrated for membranes, for an acoustic 
cavity vdth pressure-release walls, and for an  electromagnetic cavity. 
They have been forecast for a thin elastic plate in flexural vibration, 

(2) Vibration on or within some new shapes can now be calculated exactly 
with functions formed of the nonseparable solutions added to separable 
solutions.    Separable solutions taken alone predict frequency and dis- 
tribution of amplitude on squares and rectangles and in cubes.    The new 
shapes are smooth distortions of the squares and cubes, 

(3) The applicable mathematics is difficult to  handle.    The mathematics 
proceeds from assumed function to resulting shape; if the user specifies 
the shape and asks the  resonant frequency and amplitude distribution, a 
cut-and-try effort must be mounted, 

(U)    Simplifications and additional applications await the effort.    Insight 
gained with respect to scalar and vector fields that use nonseparables 
singly and with separables reveals no inherent matnematical property which 
would reject this conclusion. 
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RECOMMENDATIONS 

It is recommended that this work continue with the objectives of (1) demon- 
strating more applications and (2)  simplifying the mathematics involved. 

Application to flexural vibration of plates and to resonant cavities with 
vector conditions on the walls is considered attainable.    Application to 
new modes in old shapes and to prediction of overtones in new shapes should 
be given attention. 

Simplification will result from improved organization of mathematical prop- 
erties which are recorded in this report.    More properties await discovery, 
among them being relationships which express integrals of nonseparables, 
conditions for orthogonality, other effects of summing variants, and gen- 
erative operators in three dimensions.    These new properties will also con- 
tribute to simülification. 
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APPENDIX I, TWD-DD1SNSI0NAL SOLUTIONS IN EXPONENTIAL FOHM 

In two dbnensions an alternative form of writing the nonseparable solutions 

is through use of the imaginary i ■ t-J-l, 

.    Let 

r = ax + by (Uo) 

and 

s = bx + ay, (Ul) 

whereupon the generative operator OpQ previously written in a and b may be 
rewritten in r and s, as 

02D " ^ " a^ " 4 - ^ ^2) 

The first five nonseparable solutions, derivable through successive appli- 
cation of OpQ, are 

W^ - eir 

W(1) = iseir 

W(2) = [(is)3 - ir]eir 

W(3) - is[(is)9 - 3ir - lie11* 

W(li) - [(is)4 - 6ir(is)a + 3(ir)2 - li(is)a + irle^ 

W(5) - is[(is)4  - 10ir(is)3 + l5(ir)3 - 10(is)a + l5ir + lie11*.        (U3) 
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APPENDIX 11, VARIANTS 

In Equation (9) the nonseparable two-dimensional solution of order zero was 
written in compact fom by introducing phase constants a and ß to represent 
an arbitrary combination of the factors in 

rsin ax^   rsin by-, 
W - | N k (Uli) 

Leos axJ   Leos byJ 

It is sometimes convenient to write out explicitly all possible forms of 
the solution, which in two dimensions are four variants.    Using numerical 
subscripts to distinguish one variant from another, we may write 

W^0^ = sin ax sin by 

wi ' = cos ax cos by 

W^ ' = sin ax cos ty 

wf   ' = cos ax sin by, (U5) 

The two-dimensional generative operator may then be applied to each of these 
with the result that four variants of first order are evolved.    Application 
of 0«^ to each of these produces four variants of second order, and so on. 

Variants of first, second and third orders derived from Equation (U5>) are 

w1 (1) 

bx cos ax sin by - ay sin ax cos ty 

(-l)(bx sin ax cos by - ay cos ax sin ty) 

bx cos ax cos by + ay sin ax sin by 

(-l)(bx sin ax sin by + ay cos ax cos by)^        (1»6) 

[(bx) + (ay) ] sin ax sin by + by sin ax cos ty 
+ ax cos ax sin by + 2abxy cos ax cos by 

[(bx) + (ay) ] cos ax cos by - by cos ax sin by 
(o\ I       - ax sin ax cos by + 2abxy sin ax sin by 
W^ - (-1) ( 

[(bx) + (ay) ] sin ax cos by - by sin ax sin by 
+ ax cos ax cos by - 2abxy cos ax sin by 

[(bx) + (ay) ] cos ax sin ty + by cos ax cos by 
- ax sin ax sin ty - 2abxy sin ax cos by, (h7) 
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wP' ■ C3(fcx)a + (ay)2 + l] ay sin ax cos by + 

3ab(x   - ya) sin ax sin by + 

3xy(a   - b ) cos ax cos by - 

t3(ay)    + (bx)    + l] bx cos ax sin by 

1*2     " ^(aya) + (bx)3 + l] bx sin ax cos by + 

3ab(x - y ) cos ax cos by + 

3xy(a - b ) sin ax sin by - 

[3(bx) + (ay) + l] ay cos ax sin by 

Vfc3' - - [3(ay)a + (bx)a + l] bx cos ax cos by + 

3ab(x - y ) sin ax cos by - 

3xy(a - b ) cos ax sin by - 

[3(bx) + (ay) + l] ay sin ax sin by 

VT^ . [3(ay)a + (bx)a + l] bx sin ax sin by + 

3ab(x - y ) cos ax sin by - 

3xy(a - b ) sin ax cos ly + 

[3(bx) + (ay) + l] ay cos as cos by, (U8) 

An interesting property of the variants is that the oddness or evenness of a 
given variant with respect to any of the coordinates is preserved through 

all orders.    For example, the variant w\ ' is odd in x and even in y.    It 
(n) is found that W^ ' is likewise odd in x and even in y. 

It is also interesting to note that closed nodal lines have been found only 
with sums containing like variants, namely, for 

W^0) + CW^ - 0, (U9) 

and for one experimental thrust with second variants.    The last was the 
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function 

+ 
(a - b - ^/57?) 

^([^l      2h     r+m, }.0.       (50) 
(a - 2b - 2)     L ^    J(b - 2a » 2) 
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APPENDIX III, OTHER TWO-DIMENSIONAL PATTERNS 

This section presents a collection of nodal patterns in which closed areas 
are not found.    One therefore must imagine a membrane of infinite extent 
upon which dLsplacement T] is distributed in accordance with the expression 

Tl-w]n)eiu,t, n-1, 2, 3... W 

where J ■ 1, 2, 3, U designates the variant, and the patterns are the curves 
upon which T) ■ 0 for all t. Propagation constants in all cases but the last 
are a ■ b ■ 1 so that for them frequency is given by the frequency equation 

a)a - cV - 2ca . (52) 

Patterns of VK  ^ - 0 are presented in Figure 7, in which variant is varied 

horizontally and order is varied vertically.    The figure omits the pattern 
for J ■ U, since it is that of j - 3 under a 90* rotation of axes.    The same 
scale is used throughout. 

Pattern similarities exist by row and by column, particularly in patterns 
of the same variant.    It may also be noted that the straight-line diagonals 
vanish in second order, which may indicate that all even orders do not con- 
tain them. 

Patterns of W^n' + W£n^ « 0 are presented in Figure 8,   The upper pair is 

for n a 1, and the lower is for n » 2,    The distinctive feature of the pair 
is that it consists of straight lines inclined at +1x5° to the horizontal 
axis and cut by one line at ~k$',   The equations of the left and right 
patterns are, respectively, 

wj1) ♦ W^ - - (x + y) sin (x - y) (53) 

and 

W^ - W^ - (x + y) cos (x - y). 

These patterns are a particularly good example of the value of changing 
variables in the expressions for nonseparables when a ■ b - 1,    If we let 

p-x + y, q-x-y, 

the variants can be written 
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w/^-o W3<'>:0 

w.^^o W3(2^0 

Figure 7.   Patterna of W^n' • 0 on an Infinite Membrane, 
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w/'Uv^'U W3(l)-W4
(l) = 0 

w3
(2)+w4

(:2, = o 

m Figur« 8.    Patterns of W^ + W^ - 0 

on an Infinite Membrane« 
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W^1) - I (q sin p - p sin q) 

wi ' » ^ (q sin p + p sin q) 

wi ' ■ IT (p cos q + q cos p 

WU  " ? (P cos 1 " «1 co8 P)* ' ^^ 

w| ' • » [p sin p - q sin q + p cos q - q cos p] 

wi ' • i [q cos p + p cos q - p sin p - q sin q] 

W^  - i Cq3 sin p + p3 sin q + q cos q + p cos p] 

wf ' - 4 Cq sin p - p3 sin q - q cos q + p cos p],        (56) 

and 

wi ' ■ - i [(q3 + q) sin p - (p3 + p) sin q + 3pq (cos p - cos q)] 

wP' » i C(q3 + q) sin p + (p3 + p) sin q + 3pq (cos p + cos q)] 

W^' ■ - ^ [(q3 + q) cos p + (p3 ■•■ p) cos q - 3pq (sin p *  sin q)] 

W^3^ - - ^ C(q3 ♦ q) cos p - (p3 ♦ p) cos q - 3T  sin p - sin q)] . (57) 

This change of variable has made easier the task of calculating patterns; 
however, the coordinates of x and y have been used for all patterns. 

Patterns resulting from sums of first and zero order have been explored to 
a small extent. Closed areas were found in two cases displayed in Figure 
2» Figure 9  presents five more patterns of which the umer two are of 
the function 

w^) + CW^ - 0, 

with C ■ (^TT)'1 and C ■ (O.Wflr)"1  on the left and right respectively.   The 
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(b) 

m 
r~i 

(dl 

Qjo\o 

o\0/o 

(«) 

(a) \i[0) * (^OOOTT)-
1
 W^ . o 

(b) w(0) + (O.blin)"1 W^ - 0 

(c) W(0) +W^ + irr)'1^ -V^h-O 

(d) vi0) * (2TT)-1  vP - 0 

a ■ b ■ 1 

a - b • 1 

a - b - 1 

a - b - 1 

Figure 9. Nodal Patterns on Membranes for Various Suns of First and 
Zero Order Functions, (Scales are the same; different 
portions of field have been evaluated in the five cases.) 
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lower three are of functions of three different compositions, one of which 
exhibits closed, egg-shaped areas at some distance from the origin. 

Many directions for fliture exploration suggest themselves after study of 
Figure 9.    One wonders, for example, if the combination of second variants ■ 
lower, center - could produce closed areas with the appropriate value of Cj 
or again, one wonders what has been opened by the use of different propa- 
gation constants which still satisfy the frequency equation. 
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APPENDIX IV, OPERATORS 

A distinction will be made between two types of operators encountered in 
this work.    One type is the generative operator used to obtain solutions 
of higher order, and the other is the customary partial differential op- 
erator like ö/äx, 3/^7» etc«    of t*ie "two* the generative operator has played 
a greater role in the stucty- of nonseparable solutions. 

Generative Operators 

These operators contain the propagation constants as variables and, when 
applied to an nth order nonseparable solution in rectangular coordinates, 
yield a solution of order n + 1,    The two- and three-dimensional operators 
have the forms 

02D = ^ - a?b 

031,-4-4-^ m 

and 

respectively, 

where 

f « b + d, g = a+d, h ■ a - b. 

With the help of these operators, a one-to-one correspondence can be es- 
tablished between variants of different orders.    If a variant number is 
assigned to a zero order solution, the  same number can be assigned to the 
highest order solutions obtained by successive application of the operator. 
This correspondence is also preserved when phase angles or translations of 
coordinates are introduced. 

Zero, first and second order solutions that are related through 0-n are, in 
compact form, 

w'0^ - sin u sin v sin w, (59) 

VT ' ■ fx cos u sin v sin w - 

gy sin u cos v sin w - hz sin u sin v cos w,      (60) 

l/2^ - [(fx)a + (gy)a + (hz)3] sin u sin v sin w + 

(g + h) x cos u sin v sin w - 2ghyz sin u cos v cos w + 

(f - h) y sin u cos v sin w + 2fhxz cos u sin v cos w + 

(f + g) z sin u sin v cos w + 2fgxy cos u cos v sin w,      (61) 
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where 

u^ax+rc, v»by+B, w«dz+6. 

A three-dimensional nonseparable of first order, apparently not related to 
those already described, was also synthesized from study of properties that 
a function must have to be a solution of the Helmholtz wave equation.    This 
is 

Vr   ' = x sin ax(b cos by sin dz - d sin by cos dz) + 

y sin by(d sin ax cos dz - a cos ax sin dz) + 

z sin dz(a cos ax sin by - b sin ax cos by), (62) 

No generative operator to derive Equation (62) from Equation (59) with 
rycPBO-Ois yet known. 

Differential Operators 

It was found during the work that, in all the cases tried, the result of 
taking the partial derivative of a nonseparable solution with respect to 
X

J y> z> or a combination of these, is a solution of the wave equation. 

Exarples are given below to illustrate the effects of differential oper- 
ators on various solutions.    In two dimensions, the following relations 
hold for zero order and first order solutions: 

Dxwi0) - *i0) v40) - H0) 

D    W(0) = - a3W(0) DxxWl      " " a wi vi0) - - ^ 
D   W(0) uxywl 

- abW<0) 

) - - aW*1) + bW<0) DW(1) ' - bwW - aW<0) 

(63) 

x 1 

D   W*1) - - aV*1) - 2abw(0) D   W^1) - - b^1) + 2abw(0) xxl 1 l yyl 11 

Vi1) "^ * (^-a3)*^ 

^^ - - ^ - 3a3H0)      ^i^ ■ - ^+ 3abaw30) 

D^1) - - a3«^ - (2aba - a3)w(0> xxy 1 3 3 
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Dw   Wn
(1) - a3l)aW.(1) - 2ab(a< - b')W- yxyy 1 1 v 1 

yyyy i i      u     i 

(o) 
(6a) 

For the examples in three dimensions, it is convenient to drop the variant 
notation and to assign values to the phase angles rv, B, and 60    The zero- 
order solution from which solutions of higher order are derived is 

VP ' = sin (ax + a) sin (by + ß) sin (dz + 6), 

Unless otherwise indicated, the phase angles are to be assumed equal to 
zero in the following functions: 

D t/0) - raW^l X L J TT 

"'7 

V (o'. [vt°y 

D   W<0) . . aV0' 
XX 

yy 

D^) - [dwW]       „ D   w'0' - - d3w(0>, zz J 

(65) 

D W«1' - faW«1) * (b t i^y D   vM - - a2W(1) - 2a(b + d)w(0> 
«v^ 

D W(1) - rbW(1) - (a + d)W(0)]       v   D   W(1) « - b2W(1) + 2b(a + d)W (0) 

J0-7 

D/1) - [dW^) - (a - b)w(0)] TT   DzzW(1) - - d2W(1) + 2d(a - b)W(0), 

(66) 

Dxw(2) * [ aW(2) + 2(b + d)W(1) - (2a - b + d)W(0)] 
cc 

D W(2) - [bW(2) - 2(a + d)W(1) - (2b + d - a)W(0)] 
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DzW(^ - [dW(2) - 2(a - b)W(1) - (2d + a + b)W(0)] 

D^W^ = - a2W(2) - Ua(b + d)W(1) - [2(b + d)3 - 2a(2a - b + d)JW(0) 

D   W(2) - - b3W(2) + Ub(a + d)W(1) - r2(a + d)3 - 2b(2b + d - a)V0) 

D   W(2) - - d3W(2) + ^d(a - b)W(1) - [2(a - b)3 - 2d(2d + a + b)^0^ (67) 

Thus in general the partial differential operator of any degree will, when 
operating upon a nonseparable of order n, produce a sum of nonseparables 
which contains order n plus all lesser orders. 
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APPENDIX V, OTHER THREE-DIMENSIONAL PATTERNS 

The function VT   ' is derived fron Vr  ' with two applications of the operator 
O^r. defined in Appendix IV,    The first variant  (a ■ fl ■ 6 » 0) with a = b 

■ 1 has been investigated for nodal patterns in several x-y planes. When 
this is written in a manner to illustrate most clearly the influence of z 
upon the nodal pattern, 

W^   ' = 2 sin z i2{x   + y   + z cot z) sin x sin y + x cos x sin y + 

y sin x cos y + hxy cos x cos y] « 0« (68) 

(2) 
From this it can be seen that Vr   ' = 0 at z ■ 0 for all x and y and that 
a grid pattern of sin x sin y = 0 appears at z «» TT.    Intermediate patterns 
can be found by finding the  (x, y) roots which make the square bracket equal 
to zero for each value of z and hence of z cot z.    The following table shows 
the substitution to be made. 

VALUES OF Z COT Z FOR SELECTED VALUES OF Z  

z cot z z z cot z 

Approaching 0 1 

±TTA TTA 

±n/2 0 

±3TTA -3TTA 

±TT +88 

±5TTA Wh 

±i.ia7TT 1 

±3TT/2 0 

±0.8TT -0.8TT cot 0,2TT « -3.U6 

±0.85TT -0.85TT cot 0.15TT - -S.2h 

±0,9TT -0.9TT cot O.lOn « -8,70 

±0.95TT -0.95TT cot 0.0^ « -18.8U 

tl.O^TT +1.05TT cot 0.05TT » +20.83 

±1.1TT +l.ln cot O.lOn ■ +10.61i 

In approaching the selection of z values to display transition, there were 
few guidelines.   As a consequence, the procedure was to select a value, 
evaluate a pattern, gauge its probable interpolative position, and choose 
another value.    Therefore the z values actually used only partially cor- 
respond to those of the preceding table. 
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Nodal patterns which have been calculated are presented in Figure 10(a) and 
(2) Figure 10(b).   Each pattern is for Wv   ' » 0 in an x-y plane at a particular 

value of z between 0 and n, and the x and y values of each pattern range 
from -3.5" to +3«5rf.    The x-y plane through z = 0 is a nodal surface,  as 
are the y-z and z-x planes through x = 0 and y = 0, respectively.    Wavy 
nodal surfaces rise wall-like from the floor, i.e., from the x-y plane 
through z » 0, change but little in reaching z « 3^/h, and then alter 
drastically in finally connecting with the grid pattern of z = TT, 

REPEATED PATTERNS 

Consideration of Equation (68) and the table of values of z cot z which are 
inserted into Equation (68) shows that a pattern at a given value of z will 
be repeated for all other values of z which give the same value of z cot z. 
From the table, the locations of two duplicate patterns are shown to be at 
z approaching 0 and at z «= Lhl?", where z cot z ■ 1, and at z «= TT/2 and 
z « 3^/2j where z cot z = 0. 

A general curve which may be used to locate all identical patterns is pre- 
sented in Figure 11,    This is a plot of z cot z versus z which enables one 
to generalize the z-scale through the use of the parameter n « 1, 2, 3a.a    • 
For example, let the z-location near z « 13.5 " U.3TT of a pattern identical 
with the pattern at z « U.O ■ l,27n be desired.    In the organization of 
Figure 11, z = 1,27TT lies between z ■ TT and 2TT so that n ■ 2, and z « U.3Tr 

lies between z » Urr and ^TT SO that n ■ 5»    It is then a simple matter to 
read from Figure U that the intersection of z = U,1;2TT gives the same value 
of z cot z on the curve of n ■ 5 that the intersection of z - 1.27TT gives on 
the curve of n • 2, 

Historically, it was the pattern of z ■ .9919" in Figure 10(b) which led to 
the production of closed areas on membranes, for from it came recognition 
that Equation (68) consisted of second and zero order two-dimensional non- 
separables (plus a residual of secondary importance at lew values of x and 
y) in a proportion which depended upon the value of z.   Rewritten to em- 
phasize this. Equation (68) is 

L *üz - const L    ^ •L   2D 

w (y sin x cos y + x cos x sin y)J ■ 0   (69) 

where K - 2 sin z and 0 = •» z cot z is a number which at z ■ .99" has grown 

large enough to allow the pattern of VT  ' to dominate that of the sum. 
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2 = 0 

2=0.50 TT 

z:0.78l77r 

Figure 10.    Nodal Patterns in Selected 
z-Planes for the Three-Dimensional. 
Operator-Generated Wv  ',    (Conditions 
are a ■ b > d ■ 1 and or • R ■ 6 - 0. 
The entire x-y plane f or z - 0 is a 
nodal plane.) 

2 = 0.78207r 

2 = 0.7863 TT 
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z=0.78767r 

z=0.907r 

Figure 10 - contd. 

z=0.987r 

z:0.99l97r 

z=i.007r 
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Figure 11,    Generalized Graph of z cot z versus z for Values of z Between 0 
and ±10TT.    (A horizontal line corresponding to a given value of 
z cot z intersects the curves at values of z where the nodal 
patterns are identical.) 
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APPENDIX VI,  VECTOR EFFORTS 

Boundary conditions for electromagnetic cavities are restraints upon the 
electric and magnetic fields which are vectors,   A common boundary con- 
dition for a gas-or-liquid-filled acoustic cavity it that the particle ve- 
locity normal to the walls be zero, and particle velocity is a vector. 
Therefore the investigation of nonseparable solutions in respect to cavi- 
ties required a study of the nonseparables in relation to vectors. 

ACOUSTIC CAVITIES 

This study began by treating honseparables as velocity potentials. Par- 
ticle velocity is obtained by taking the gradient of the potential. For 
rigid wall the requirement is that a closed surface exist upon which the 
gradient is zero, and hence each component of the gradient must simulta- 
neously be zero.   The x-components of particle velocity for three cases are 

V ox 

wiVia,B$b) 

a |w(0)(«',B) - W^Cor'.P)] - ZbW^C*',*), (70) 

vx -     3D H'"'"' - awW((/,ß,6) + (b + d)W<0)(cr',8,6), (71) 

Vx.||. (72) 

The velocity potentials wiD'(Qr,3) and wii'(fy,8,6) are operator-derived from 

zero order in two and three dimensions, respectively.   Application of the 

partial derivative changes or to or   ■ « . •»•   The propagation constants a, 

b, d are related through the frequency equation OJ/C   »a   +b   +d,    (The 
constant d is zero in Equation (70),) 

The velocity potential « is the symmetric function given in Equation (22), 

Nodal patterns of Equations (70) and (72) were evaluated, the former under 
the conditions that or ■ 6 ■ 0 and a > b > 1, and are presented as Figures 
12(a) and 12(b), respectively«   In Figure 12(a) no closed areas are present. 
The pattern is symmetrical about the x and y axes but not about the ±hS% 

lines through the origin.    In Figure 12(b) every nodal line is closed. 
This x-y pattern repeats for z ■ irarr with m / 0,   At m ■ 0 the entire x-y 
plane is a nodal surface.    The pattern is symmetrical about the x and y 
axes but not about the ±h5* lines through the origin.   Nodal patterns of 
v   and v   at z - lurn differ from Figure 12(b), and no surface has been 

found which satisfies the requirement that the gradient be zero upon it. 
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(0) (b) 

Figure 12. Nodal Patterns of x-Component of 
Velocity. 

(a) ▼x given by Equation (70); 

(b) rx given by Equation (72) in 

x-y planes given by z ■ tmrr, m / 0, 

ELECTROMAGNETIC CAVITIES 

The development by which E and H field components turned out to be separable 
solutions when the electric potential was nonseparable is given in general 
form. 

I* 
i 

We let 

<p - vW"*, (73) 

r(n) where W   / is the operator-derived nonseparable of nth order, and choose to 
examine a special case, one in which 

dA x 
"3x oy       dz * Oh) 
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Equation (27) may then be written 

öA       ÖA       bk . /  \ 4  . x      y z iujte „(n) i«)t ,-,,. 

Therefore, 

Ax- J^eiwt$W<n)dx, (76) T 

and similarly lor A   and A^,    (Constants of integration, including functions 

of variables other than the variable of integration, are dropped as incap- 
able of satisfying the same Helmholtz wave equation that w(n) obeys.) 

Then, by Equation (2$), the electric field components are 

(n)      va 

iwt e 

and, by Equation (26), the magnetic field components are 

^■-^USwW-lrWM iu»t 6 

H 
2 

U9 

(77) 

-^{4^(nW4Sw^}^.        (78) 



APPENDIX VII, NONSEPARABLE SOLUTIONS IN POLAR COORDINATES 

Nonseparable solutions were first found in circular cylindrical coordinates 
during work in which symmetry about the axis was assumed.    During this con- 

H tract nonseparable solutions in two and three dimensions in rectangular co- 
ordinates have been explored.    Since sane model configurations would be 
best expressed in polar coordinates, e.g., thin circular plates, it was de- 
cided to seek nonseparable solutions in r and 0,, 

The form of the separable solution in r and 8, i.e., cos (m8)J (pr), 

suggests that a nonseparable solution would consist of a sum of products of 
functions with r to some power and 9 to some power appearing explicitly in 
the various products. 

In an exploratory effort, the two-dimensional W^  ' in rectangular coordi- 
nates was transformed directly into polar coordinates.    It was then of the 
form 

W^- '  ■ br cos 9 cos (ar cos 9) sin (br sin 9) - 

ar sin 9 sin (ar cos 9) cos (br sin 9) 
CD 

- br cos 9 [j0(ar) + 2 ^ (-l)nJ2n(ar) cos 2n9] • 

n-1 

L2 I J2iHl(br) sin (2n+ 1)e]- 

n-0 

ar sin 9 [2 ^ (-l)^^^) cos (2n ♦ 1)9] 

n-O 

[jo(br) + 2 £ ^(br) cos 2n9]. (79) 

re-1 

This function was verified as a solution of the wave equation in polar co- 
ordinates. 

However, all efforts to synthesize a polar nonseparable solution of two 
terms in analogy to the first order in rectangular coordinates have failed. 
The difficulty may stem from the fact that the functions which would possess 
the characteristics suggested in the second paragraph would be multivalued 
at every part in the r, 9 plane because of the cyclical nature of 9, 
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