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FOREWORD

This report was preparsi by Syrscuse University, Electrical Engineer-
ing Departzant, Syracuse, New York under Contract No. AF3G({602)-372h;
Project 922 4519, Task No. k51901, covering the peried March 1965 through
March I .

RADC Projact Engineer was John J. Patti. (EMCRR):

Chzpters I, II and III, orn Basic Concepts, Formulstion of Electro-
megnetic Problems, and Wire Aztennas and Scattersrs of Arbitrary Shape,
were written by Roger F. Harringion. Chapter IV, on Calculations for
Linear ¥Wires vas writiza by Joseph Mautz and R. P. Harringicn. Chapter
¥, on Scattering by Conducting Cylinders, was written by Robert Wallenterg,
and Chapter VI, on Scattering Yw Dialectric Cylinders, was written by
Arlon Adams. Thz next chuspier on Scattering by Bedies of Revolution is
by Thomas Bristol, and the final chapter on Mstriz Inversion is by Long-
Fei Chang. The material in esch chapter is nut necessarily the sole vork
of the author, since the project vas a coordinsted effort of all persons
vorking on it.
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ABSTRACT ©

This report presents general procedures for solving field problems

of enginezring iuterest using cigiti:l computer techniques. The basic

concept is 10 represent a boundery-value problem by & superposition

integral, approximeve the integral cecouation by a matrix equation, snd
nvert the matrix for a solution. The theory is de seribed in terms ¢f

the method of moments, waich is eguivalent to the variational method.

For electromzgnetic zntenna and scatiering problems, the rethod
gives a mabtrix whose 2lements can be interpreted zs generalized impedances.
These impedances zare closely related io fthose used in the theory of
loeded antennas ana scatterers, and hence such loaded structures can alsc
be treated. A sciution for wire antennas and scatierers of arbitrary
shape is formulated in deteail, and calculations for linecar wire antennss
and scatterers, both loaded and unlozded, have been made.

Additional problems treated by these procedures are twc-dimensional
scattering by conducting cylinders and by dieleciric cylinders, znd
three-dimensional scatiering by bodies of revoluticn. These problems
are used to show the effect of various approximations in the sclution,
in an attempt to draw some general conclusions as to the nest approxi-
mations. Special procedures for inveriing matrices have also been corsidered,
to take in3c account any symmetry properties present in the matrices.

A considerable saving in computation time can often be made by properly

utilizing these symmetries.
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MATRIX METHODS FOR SOLVING FIELD PROBLEMS

I. BASIC CONCEPTS

A. Introduction. The object of this projectiis to develop practical

techniques for solving electromagnetic scattering problems using digital
computers. The general approach is to approximate the integro-differential
equations describing the boundary value problem by matrix equations and
to invert the matrix equetions.

The theory is conveniently discussed using the concepts of linear
spaces. The equations of interest are of the general type

L{f) =g (1-1)

-4

where L is a known linear operator, g is & known function, and f is the
unknown to be determined. The general precedure will be to take an
equation involving functicns, such as (3i-1), and to approximate it by
% a matrix equaticn. The solution to an inlomogeneous matrix equation is
found by matrix inversion. Most computer libraries have subroutines for

matrix inversion, and hence a problem will be considered solved once the

i A o st ot

elements of a well conditioned matrix are evgluated.

IR ,(.‘.::..“... e, s

BE. Formulation of Problems. General procedures for solutions will

et

be discussed in the language of linear spaces and operators. Hence, the
problems to be considered should be formulated in this notation. Given

a deterministic problem, we wish to put it into the form L{f) = g,

AT it

identifying the opcrator L, its domain (the functions f on which it

operates), and its range (the functions g resulting from the operation).




Furthermore, we usually need an inner product <f,g>, definel to se.tisfyl

£, = <g,> (1-2)
<of + pg,h> = o<f,h> + p<g,h> (1-3)
<f*,£> > 0 if £ 40

= 0 iff=0 (1-4)

where @ and B are scelars, and * denotes complex conjugate. We some=-

times need the adjoint cperator L? and its domain, defined by

- <Uf,g> = <6,Lg> (1-5)

for all £ in the domain of L. An operator is self adjoint if L* = L and

i

the domain of L* is that of L.
Properties of the solution depend upon properties of the operator.

. An operator is real if Lf is real whenever f is resl. An operator is

positive definite if

<f%,LE> >0 {1-6)

for all T % O in its domain. It is positive semidefinite if > is replaced

by > in (1-6), negative definite if > is replaced by < in (i-5), etc.
We shall identify other properties of operatcrs as we need them.
If the solution to L(f) = g exists and is unique for all g, then

. . -1 . v e
. the inverse operator L = exists such that

£ =1 Hg) (1-7)

If g is known, then (1-7) represents the solution to the original problienm.
However, (1-7) is itself an inhomogeneous equation for g if f is known,

and its solution is IL(f) = g.

The usual definition of inner product in Hilbert space corresponds to
<f#*,g> in our notation. TFor this report it is more convenient to show
the conjugate operation explicitly wherever it occurs, and to define
the adjoint operator without conjugation.

|
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In general, it is desirable {0 think of L and 1™l as a pair of operators,
each one of which is the inverse of the other. The choice in any parti-

cular problem is cne of convenience.

C. Exampie; ZXlectrostatics. Consider a volume density of charge

o{x%,¥,2) in unbcunded Euclidean space of constant permittivity e, and
its associsgted electrostatic potential $(x,y,z). The differential

equation for the problem is Poisson's equation

e Vg = p (1-8)

subject to the boundary ccndition that r¢—o~c} as r—»ow for every p of

finite extent and where i
W €, is a constant. In operator motation, (1-8) is

¥=p (1-9)

whers
L ==V {1‘10)

subject to the above boundary condition. The well-known solution to

{1-8) is
t 1 1y
g(x,y,2) ___-[[J’__r__p(x‘;yg,z L dx' dy' dz! {(1-11)

)

where R = .;(x—x')g + (y-y‘)2 + (2-»2’}2 is the distance from a source

point {x',y',2') to & field point (x,y,z). Hence, the inverse operator
is

-1 [ t Ayt ¢ L
L =jf]dx ay' a2 i (1-12)

It is important %o realize that (1-12) is inverse to (1-10) only fo:r the
stated boundary conditions. The boundary conditions of a differentizl

operator should be considered an integral part of the operator, and :f

===

bl{". !




they are changed the operator is changed. Hence, rlan also te

different if the boundary conditions of I ars chansed,

e N e - -

A suiteble inner product for electrostatic problems is
<¢l’¢2> =‘/I/‘¢1{x:¥;2} ¢2(x,y,z) dx dy dz {1-13)

Thet (1-13) satisfies (1-2}, (1-3), and (1-1) is easily verified. The
choice of inner product is not unique. For example, the integrand of
(1-13) could be multiplied by an arbitrary positive function (weighting
function) w{x, y, z} > 0 and it would still be an acceptable scalar

product. However, the particular choice (1-13) makes the operators L

"!“"ll

end I°L self adjoint, as we shall now show.
Let ¢, and ¢2 represent arbitrary functions in the domain of L,

and form the left-hend side of {1-5)
qﬁlf ¢2> =]] (-E V2¢1) ¢2 dr (}-’}-h)
where dr = dx dy dz. Green's identity is

Jrﬁwz¢-9v2$)ﬂf=ﬁ—($%'¢§§)ds (1-15)
v S

where S5 is the surface bounding the volume V. Ve consider S to be =2

sphere of radius r, such that in the limit r-—o the volume V includes

a1l space. ILet § = , end ¥ = ¢2. The boundary condition is 1~¢-—+cl
. . 2x .
as r—wo; which reguires r cgl(/én—a—cl as r—»w. Since ds varies only as

2 o . s e f = .
r~, the surface integral in (1-15) vanishes, and we have

ff 9’2‘72;51 dr =,[j ¢1v2 5 dt (1-156)

{
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Since € is constant, (1l-14) is symmetrical in @, and ¢2 , &nd
1 {

\1‘501’?9 '5‘}‘51in> {l-l’?)

We required (;‘52 to satisfy the same boundary conditions as ¢ hence L
. (s " . .. . =1 .
is self adjoint. If L is self adjoint, so is L 7, since

W8> = <pys L

3
..'-

(1-18)

The mathemaiicnl concept of self adjoiantness of an operator corresponds
to the physical principle of reciprocity.

It is evideat from (1-10) and (1-12) that L and L™t are real
operstors. We shall show that they are also positive definite, that is,
they sasisfy {1-5). Again we need %o show it only for L er L’l, since
= ¢2. (The cenjugate operation is not needzd

since L is real.}) Form

Pan)
pot
'
ot
N\
Npgon?

St = [[[ 9(-¢ Poer

and use the vector identity
PG =V o -7 (1-20)

znd the divergence theorem. %The result is

<¢;I¢>=ﬂev¢'v¢dq-ﬁew¢'® (1-21)
v s

Pl

where § bounds V. Again take S & sphere of infinite radius, and the last

term of (1-21) vanishes because of the boundary condition r¢-+-cl 88 Y —iw.

<¢,18> = f ffe(‘?sﬂe dr {1-22)

and, since € > 0, I is positive definite. The mathematical concep® of

il

- e i e T T s S T e = ===
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positive definiteness is often related to the physical concepts of work
or enérgy. In {1-19), the right-hand side is proportionsal to the slectro-

stati~s energy.

We now discuss & general procedure for solv-
Congider the inhomo-

D. Method of Momenis.
ing linear equeations,; called the method of moments.

(1-23)

geneopus equation
L(f) =g
where L is a linear operator, g is known and f is to be deiermined.
in a series of functions f, f2 » £z, +.. in the domain
_—

Let £ be expanded

.7
i"i

of L, as
expansion functions

i=
A
i
-]
i .
EA

where the &, are constants. We shall call the
L
or basis functions. For exact solutions, {1-24) is normally en infinite

summation and the fi form a complete set of basis functions. TFor
Substituting

approximate solutions, (1-2%) is a finite summation.
(1-2k) into (1-23), and using the linearity of L, we have

by
]
o

g, L(f.

=
H
-

N

N It is um
for the problem.
functions, w,, Wos Wz e in the range of L, and take the inner product
< 7
; of {1-25) with each w_. The result i
L
N, <, I£> = <w_,> (1-25)
.=z L—- = < = 3
i
J=1,2, 3, ... This set of equations can be written in matrix fomm
as




,;1!;

(2,3 (@ ={g] e (1-27)

Ji i d
vhere
T Il e <y B> s
<w§ ,Lfl> <32,I;{‘2> .
. s a * s - 4 = = & = = - ) - o - (1’28)
lo.]= [ les] = [,
@, e I
- TR (1-29)

If the matrix [£] is nonsingular its inverse {.8'1} exists. The @, are

then given by
-1
1= -
[z, = iiié} {gj} (1-20)

and the solution for f is given by (1-2k). For concise expression of this

rasult, define the matrix of functions

{’i‘i} = {fl £5 f3 | {1-31)
and write
£ 0 log] = %1 [213] e, (1-32)

This solution may be exact or approximate, depending upon the choice of
the £, and w..

i i

If the matrix [£] is of infinite order, it can be inverted only in
speciai cuses, for example, if it is disgonal. The classical eigen-
function method leads to a diagonal matrix, and can be thought of as &

special case of the method of moments. If the sets f}'. and ¥, are finite,

the matrix iz of finite order and can be inverted by known methcds.




4 principal task in the solution of any particalar problem is the

he . should be chosen so that they are relative-

i

choice of ¥, and w,.

x s
1 i

(21

1y independent functions snd so that some superposition {1-24)} can approx-
imate [ reasonably well., The ﬁi should be chosen so that they are also
selatively independent aud so that the products <wi,g> test relatively

independent properties of g. We shall say more about this in Section

when we discuss the siationary nature of the solution.

matrix elements, {3) the size of the matrix that can be inverted, and

e

(%) the realizztion of a well conditioned matrix [£].

<
. i

Charged Conducting Plate.” Figure 1-1 represenis a

»

sguuare conduciing plate, 2z metfers on a side, lying in the plane z = 0

et

with center at the origin. Let o{x,y) represent the surface charge

i

el o e e e gus
density on ih be, assumed infin

e h)

tely thin. The electrostabic potential

-t

TR . ooolxt,y0) =
Pla,y,n) = ux a3 ey (1-33)
-3 -3
- .\ ] . e i surs 2 s -
wioree K = {x-x'}) + (g-y i+ » . The boundary condition is ¢

i §oeipyi . ] R i, [YUUR e . gz 3 s -
{vonsiani} on the pinble.  The inlegral equation for the problem is there-

2:5.
[
&

Ve o odx' dyt oy y) (1-34)

— T
i .t"' % 'i."? Ty 2
-2t -2 Bus {K=-x']} (y—

x' <u, |y N u. The charge density o{x,y) is the unknown to be determined.

A parumeber of inbterest is the capacitance

34
i
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h

conducting plate

Fig.i1-1 A square conducting plate.
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gives the capacitance o piate.
To pat the above solubion inio the notation of the meithsd of

zoments, let

(x,y) = o(x,7) {(1-41)
gyl =v {1-%2}
2 a2
Ke) - [ ax f dy" oy (2-53)
J , ! )
-z -5 hze Hx-x')" = {717+
Then {1-23} is ecuivaient $o {1-3%). Define the inner product as

a 2
<, = f ax [ &y f{x;!r?} g{x::?'} {}-‘%’%
- -

a
The unknown ¥ = g is approxizated by {3-37) where the £, are defined by
{1-36}. Th= weignting functions are defined by

2

0= [ f ay ¥ (x.3) 2(x,¥) = 2lx,,¥.) (3-15)
= =F =F

4

These ¥, G0 not exisi as ordinary fonciions, but are sy=bolic functions.

X7

LE gz ¥} = 5{3‘333 5{3’”33} {}-35}

where 5{x) is the Birac delils funciion. BHow the ele=ents of tke =airix

{1-28) are given by {3-35), and tbose of {1-23) are

o
(-1

[

il

¥
- ¥

p;"“«
}
‘I::“‘




Hence, (1-27) is equivalent to (1-38), and (1-30) represents the sclution.

For numerical results, the £,, of (1-39) must be evaluated. Let

ab

2b = 2a/fif denote the side length of each As,. The potential at the

g

center'ofibsi due to unit charge density over its own surtace is

b b
2 =f ixf dy =
ii ——
-b -b he jxg + y2
2b
=5 fn (1 +2) = g_‘% (0.88137) (1-48)

This derivation used Dwight2 200.01 and T731.2. The potential at the
center of Asj due to unit chirge density over As 4 can be similarly
evaluated, but for most purposes need not be. Usually it is sufficiently

accurate to consider the charge on.Asi as g point charg . and use

4 b2

by = FreR, == > 3 (1-49)
e ‘/(XJ = Xi) + (yj - yi)

This approximation is 3.8 percent in error for adjacent subareas, and
has even less error for nonadjacent ones. Table 1-1 shows calculations
solving (1-38) and (1-39) for various numbers of subareas. The second
column uses approximation (1-49), the third column evaluates zji more
precisely. A good cstimate of the exact capacitance is C/2a = 400C
micremicrofarads. Figure 1-2 shows a plot of the charge density along
the subareas nearest the center line of the sguare plate. Note that’
o exhibits the well-known sguare rcot singularity at the edges of the
plate.

This example illustrates two simple but useful approximations, (1)

the use of expansion functions fi each of which exists over only a
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Table l-1. Capacitance of & unit square plate
(micromicrofarad/meter)

No. of c/2a - C/za

subareas {approx. £..) {exact £..)
Ji 3i
t

1 3150 3130

9 3750 3680

16 3820 3770

36 3920 3870

100 3930

restricted region of space (method of subsections), and (2) the satis-
faction of the approximate eguation at specific points in the space
{(point matching method). These approximations, tbough crude, give

acceplable results for many purposes.

F. Variational Interpretaticn. The special case of the method of

moments for which the approximating functions fi are egual to the weight-

ing funclions wi is known as Galerkin's method. That Galerkin's method

3,4

is equivalent to the Rayleipgh-Riiz varistional method is well known.

That the :;eneral method of momenis is also a variationsal method is usually

W,. The method of moments, Egs. (1-26), eguates the projection of Lf

rojection of the approximate Lf on .“(w,). Figure

o]
L4
-
o
%,
L—
[
o}
o
o
uad
o
ol

1<% represenis Lhis piciorally (fa denotes approximetion to f). 1In the

specizl case ol Galerkin's method, (w.) = ;(fi). Because the process
3 :

-~




Fig. |

4 (LF)

F

exﬂ{ﬁ I

approx, LF__1f error 4 (LF,)
H

projectign —>——u_ (wp)

=3 Pictoral representation of the method
of moments in function space.

-1




i

of cobtaining projections minimizes the error, the method of moments is
an error minimizing procedure. Because the error term is orthogonal to
the projections, it is of second order. This same conclusion is obtain-
ed by mesns of the calculus of varie.t.ions.h The derivation will not

be given here, but we shall summarize the results.

Given an operator equation Lf = g, it is desired t0 determine a

functional of ¢
p{f) = <f,g'> (1-30)

. . . as . . . a
This functional may be f iifself if g' is an impulse function. let L

be the adjoint operator to L, and define an associsted function f' by
o b

& 1+ =
LT =g’ {1-51)
h
It can then be shown that
_<f,g™> <L,g> (1-52)
= TGZF, TS e

is a variational formula with stationary value {1-30) when f is a
colution to Lf = g and f* a solution to {1-51)}. TFor an epproximate

evaluation of (1-50), let

S S P (1-

"
-

Jot
7
WM
Yot

I et dak s £ = ; . . N s ST

and substitute into (1-32). It can then be shown that the necessary
and sufficient equations for p %o pe stationary are those of (1-26),
tihat is, The method of moments. This veriational procedure is known

as the Rayleigh-Ritz method, and hence the method of moments is ident

The second egquation of (1-53) gives us some additional insight into

how to choose the weighting functions. For good results they should

be chosen so that some lincar combinstion cen closely represent the

a4 W Al
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for only a few special body shapes, and are oftea ddfficult to calculate.
If the network matrix can be spproximated by a well-conditioned matrix of
finite order, the inversion is readily accomplished by known algoritims.
For example, & high speed computer can invert & matrix of the order one
hundred by one hundred in a few minutes. The reaiization of a well-behaved
network matrix of resasonsble order therefore constitutes an engineering

solution to the prcblem. This Chapter deals primarily with the formulation

of the desired matrix equations and their network interpretation.

B. Conducting Bodies. Figure 2-1 represents the general problem

of a me.terla.l body in the presence of sn eleciromagnetic source. For

e

this section, it is assumed that the body is a perfect electric conducter.

Iet g be the impressed elecirie field, that is, the field produced by the

C"l"

source when the body is ebsent. 3‘,_ be the scatterea field, that is,

- the field produced by currents on the body. The scattered fisl

related tc the conduction current J on the body S according to

E =L (J) =) T (zz') ds’ {2-1)

where T {r,r') is ths tensor Green's function rzlating & current element

&
8-
ol
oF
n
4
[ d
P
)
ot
Lk
Juts
¢}
by
Yt

z eld at r. The totel field at any point in space
3

is E + E and the boundary condition is that the tangential componenis

)} =0 on S, where u is the unit normal to S. Hence, the

appropriate eguation for determining J is

exL{gl=-uxE on S {(2-2)

where I is the operator defined by {2-1). 4 suitable inner product

e e F— — p—— = = = T i Ry

. [ - __ __ o - - et L il A
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Fig.2-1 A material body excited by on external source.




M

{‘ -
ge=-@i -z (2-3)

4

which is the guantity defined zs reacticn.g’} ¥ote that {2-3) involves

only the tangential componentis of E, since J must be tangential tc S.

The method of moments is now applied to {2-2). Iet the current J

be expanded in s series of functions il’ 52 3 ;[3, ..., defined on S, as

1=y L (2-%)
n

where the In are complex constanis. A substitution of {2-%) inic {2-2},

and an application of the linesrity of L, yiselds

How define a set of testing funciions W., 3‘2, ¥, - w¥hich zre veciors
tangential to S, i.e., they sre current-ityne vectors. The method of

moments requires that {2-3) be valid for the inner product with ezch u % &

=
that is .
- — - 3 Fd
I <M ,Li>=-<¢¥,E> {2-5}
T e n m? i
=3 iis
n
for a3l m The unit n 1 u nas heen dronned from { D4 incs W 3
for ali m. The unii normal uy nas been dropped from {2-5) since and
J  are all tengeniial fo S.
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= and wavelength
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Fig.2-2 Network analogue for a conducting body in
an arbitrary impressed field.
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C. Dielectric Bodies. Now let the boay or Fig. 2-1 be a dielectric

of permittivity €, which may be a fumetior of nci:iiosn or even a tensor.
. . . . . i
Again the impressed electric field is denoted by E~, and the scattered

field by E?. The scattered field is produced by the polarization currents

J over the body according to
£ = 1@ = [[[se) rex) ar (2-11)
A

which differs from (2-1) only in that the integral is over a volume V
instead of the surface S. The total field at any point is given by_ﬁf + EF,
and within V the polarization current is given by

1= (e - e )(E +E) (2-15)

where £ is the permittivity of free space. Using {2-14) for E?, one

can rearrange (2-15) into the form

L i .
Le(,[) ~ Jope = -E inV (2-16)

where A€ = € - €, This is the appropriate equation for determining J.
The left-hand side of (2-16) could he redefined as a single operation on
J, but it is more convenient to consider it as the sum of two operations.

A suitable inner product for this problem is
1
<J,E> =ijJ - E dt (2-17)
A

which is again a reaction.
For the method of moments, let the polarization current J be expanded

in a series of functions li’ QZ, 15, .+., Gefined over V, as

I= Z 4 (2-18)
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vhere the In are complex constants. Subatituting (2-13) into (2-16}),

| by -al_ g _19)
}: In-{ae(.zn) 3%} E (2-19)
n
Define a set of testing functions Ei’ Eé, Eé, .+.5 Over V, and require
the equality (2-19) to hold for the imner products with each 2&- Hence

J )
- 1
- = - 2201
E I {<w B TR I <wm,E’> (2-20

it ¢
n

for all m. Now define matrices [In] and [Vi] as in (2-7), and two

= impedance matrices, one [Zmn} as in (2-8), and the other

-

Fa$ ’l _
[z 1= <wl,Jl/Ae> W0, 0> ..

mn” © @
<W2,Jl/£\€> <, 2/@ ... (2-21)
Equation (2-20) can then be written in matrix form as
lz  +2z, 3[E)=1[0] (2-22)

The solution for the expansion coefficients In is again given by (2-10)
where . Y

(v, )=z, +2,)7"] (2-23)
Tn terms of the matrix (2-12) of expansion functions, the polarization
current is given by (2-13). Again the solution is approximate or ékact,
depending upon the in and.ﬂﬁ.

In terms of generalized network parameters, one can interpret this

= sclution as two impedance matrices connected in series as shown in Fig. 2-3.

One matrix, [2], depends only on the geometry of the body and the wavelength,

~26~
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Fig.2-3 Network analogue for a dielectric body in an
arbitrary impressed field.
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and the othe

b ol 3 ndo 2o
o

matrix, [2], depends alsc on the dislectiic permittivity.
The impressed electric fieid determines the voltage excitation of the
networks connected in series. The resultent terminal currents thea‘
detemine the coefficients In of the polarization current. HNote that as
€—sw, the network analogy of Fig. 2-3 reduces to that for the conduct-~
ing body, Fig. 2-2.
D. Magnetic Bodies.

w

If the body of Fig. 2-1 is magnetic but not

dielectric, the problem is dual to that for the dielectric vody, discussed

above. To be 3specific, let Ei denote the impressed magnetic field, and
gs the scattered field, produced by the magnetization current M over the
case, that is,

body. The relationship of H° %o M is tke dual to (2-14) for the dielectric

E =5 - J ,[, [ W(x') Tp(ex') ar
v

{2-2k)
Let y denote the permeability of the body, and by that of free space.
The magnetic current of magnetization is then dual to (2-15), or

M=guly - p )E +E)
M

(2-25)
Finally, combining {2-24) and (2-25), one has the equation for determining
Lhﬂﬂ) " JoAn T -E

in V

{2-26)
which is dual to (2-16). Define an inner product

we - [ffu-me
v

(2-27)

The minus sign is certainly not necessary in (2-27), but is used so ithat

-28-

the inner product ccorresponds to that defined in the reaction concept.




To apply the method of moments, let the magnetization current K be

expanded in a series of functions ﬁl’ ga 3 ,15_5, s.., 3efined over V¥, as

M= Z v (2-28)

i

where the V_ are complex constants. Frem (2-28) and (2-26), it follows

that

z v, {Lmiﬁn) - ;‘;—} = - (2-29)

n

Again define & set of testing functions El’ HQ s 5,% s ~--3 Over V, and teke

inner products of {2-29) with each L Then, dual to (2-20), one has

¢ o
i _ i \
Z v {<§«zm,z,mgn> ~ 55 W &_15} = - <HHD> (2-30)

m
n

for all m. The following generglized network matrices are now defined

wvil=[v, ix,1=[- l,H‘>
v, - <w2,31> (2-31)
r 1_r S 4
{Ymn d - <Hl ;L E’il> @l;j—lm}‘lg - -
q ’L ﬁ > Cﬂ ’L - * & -
22ty 27 iy (2-32)
B 1= M /a> < M ja T
mn © 3@ 1M 1Mo -
QUM [as <M A .
amd 2% (2-33)
The matrix equation for {2-30) is then
b +Y JIv]=1Ig] (2-3%)

L




which iz dval to (2-22). The solution for the {?n} is the inverse of
(2-3%). The magnetic current of the msgnetization is given by {2-28) once

the In are found.
The network representation of this solution shown in Fig. 2-4

is the dual case of Fig. 2-3. The matrix [Y mn} depends only on the geometry

of the body and the wavelength, and the matrix ﬁmn] depends on the
permeability. The impressed magnetic field determines the current excitation
The resultant terminel voliages

of the networks connected in shunt.
then correspond to the expansion coefficients Vn for the magnetic current.

If the bhody has both € and

E. Bodies both Dielectric and Magnetic.
yu different from their free-space values, a combination of the preceding
¥or this purpose, in addition to the relation-

two analyses must be used.
ship between electric current and electric field, (2-.1), and megnetic

=~

current and magnetic field, {2-2k}, one needs the relutionship between

1
"

electric current and magnetic field

frr ~
H=xg) = [[]adz') Nzx
7
v
where ’I\'(_z;_ L'} is the tensor Green's function which relates an element

] 1
2
of J a2t r' to its magnetic field at r, and the corresponding relationship

) 4’ (2-33)

(2-36)

between magnetic current and electric fieid
E = -N(M)
same operator defined in (2-35). The minus sign difference

where K is the sa
between (2-35) and {2-36) reflects the minus sign difference between the
The integral equation for the problem

two curl equations of Maxwell
is now a matrix of (2-16) and (2-2€), with the appropriate interaciion

terms added. To be explicit




flln
It

Ol
[?’mn ] <> TIz V;‘
dependent

on F’ <
& <>IIB Vag‘

-1t

[Yna]

independent
of 7

Fig.2-4 Neiwork anclogue for o magnetic body

arbitrary impressed field.
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3
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is the equation to be scived for J end M when the body is both dielectric
and magnetic.
Bquation (2-37) is just a more ccmplicated case of an operator equation.

This is evident 1f the following matrices are defined

(2-38)

et

&
—

[r— m.-n-.-n-|

5 ~ - o
i 2 ,}wae . -z
x -1 : o 1 (2 3/}

| g T4 L 3&} i

end {2-37) rewritten as

: £(1) + 7(2) =g 2-10)

Of course, J and 7% could be combined into a single operator, and (2-L0)

written as {1-1). The appropriaie inner product for $his problem is

(5 o [11
& ire . fa
<,z = _lj Tgdr = !;(d - B~ M- H) dr (2-81)
oy
v v
) PR . . . 2.3
which is precisely the generzl definition of reacdicn.” 7

- f=] -— F=)
E..e = {J W = w1
n N, o nt
: : :
% i P Loy
10 | E (2-B2
L — el —

and “"magnetic" expansion and weighting functions as




il
0 itk

-
n
" =

o | o
{2-43)
n

The expansion for f is then of the form

n

2-[o]
4

nn na

T = (z.£°5 + v.&5) (2-kk)
)

where the I and ‘In correspond to the ¢ of {(1-2k). Following the method
of mcments, one obtains the metrix equation

3

Tl Bl [ [0 3] [l

mn I
, i + I - ) = 1,4 (2-45)
[ Dad] [ ¥! { Mpad V] (]

Here the various matrices have the same definitioas as in sections II-C and
II-D. The itional matrices [B_J and [c_,] describe the interaction
between electric and magnetic currents, and the superscript I has been
added to the source terms {right hand side} fo distinguish them fromi
the response terms.

The generalized nebwork representation of Eg. {2-%3) is shown in
Fig. 2-5. The network denoted {Lm} again depends only on geometry
and wavelength, not on € or p. The network {%m} in geries with the
voltage sources depends on €, and the network {?m} in shunt with the
current sources depends on u. The impressed eleciric field determines
the vcltage sources according to {2-7), and the impressed magnetic field

determines the current scurces according to (2-31}).

F. Measurement. Figure 2-6 represents a general problem of electro-

magnetic engineering, one consisting of a source; a receiver, and materisl

bodies. Explicitly, Fig. 2-6 sbows a source connected to s transmitting

-33-
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Fig.2-5 Network analogue for o body having both
dielectric and magnetic properties.
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A typical eleciromagnelic engmeering probiem .




antenne, a measurement device connected to & receiving antenns, and &
scattering ctject. However, any of the material bodies msy be absents
herce a general problem includes the transmitiing antenna, the receiving
antenns, and free-space scattering as special cases. The source and
receiver may, of course, be at the same point in space, as, for example,
in an input impedance problen.

The voltage at the receiver terminals due to a currant source at
the transmitter terminals can be expressed in terms of the transfer
impedance Zrt between the two sets of terminals.l’3 In terms of reaction,

this transfer impedance is given by

7y = .i:%_jﬂiﬁ" e - M) ax (2-16)

where Et,Ht is the field produced when It is applied to the transmitter

VN R R
terminals, and J°, M is the current resulting when I, is e -lied to the
receiver terminals. If ¢ and p are scalars, or even symmetric tensors,

the usual reciprocity theorem applies, and (2-46) can be rewritten as

-1 ([,.r . & oyt o
7, = j(-'d" . M°) dx (2-47)
rt  I.I
tTr
Er, Hr is the Tield produced by Ir applied to the receiver terminals,
and Jt, Mt is the current produced by I, applied to the transmitter

t

terminnls. The important fact to note is that the measurement is of the
form of an inner product of the current caused by an excitation of the
transmitter with a field caused by an excitation of the receiver. Hence,
in the general notation of the method of moments,

measurcment = <f, g > (2-48)

[



it K bosne ¢ ool

where gr is function depending on the measurement to be perfocrmed. For
example, g is a E', H in (2-b7). Equatior :2-48) is the generel expression
for & functional of f. In terms of the soluticon obtained by the method

of moments, equation (1-32),

-1
measurement = <f,gg> = [Ei] {znm} [gm} (2-49)
where r .
(1= | <fl,gr>§
l <f )gr>E
=7 (2-50)
!
L |

This measurement matrix is of the same form as the excitation matrix [gm]

of (1-29), except that the inner products are with the fn instead of the

w_.
n

As an example of a measurement in a field problem, coasider a conduct-
ing body in a plane-wave incident field, and let the measurement be the

tistati: radar echo at some distant receiver. By definition, let Echo

be the field quantity whose magnitude squared is the conventional echo
area, that is

¢ = | Echo 32 (2-51)

A formula for Echo is obtained by lettirg both the transmitter and receiver
of Fig. 2-6 recede to infinity according to an appropriate limiving

- 1 ap =
procedure. The result is

N -1k r-_r t .
Echo = —L= E, c 4 ds (2-52)
2&'}3
7
S
r . . . .

where 1 =/p/s, k = 2n/X, E  is a normalized {unit amplitude) plane wave
. : K . s ’
{rom the receiver, and § 1is the current on the coyndusting szatlerer when

excited by a normalized plane wave from the transmitter. Ths cuirent on
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catterer has already been determined by the method of moments in
1< : in

the s

section II-B, the result being (2-i3}.

(2-52) gives
Echo = . (V] [y_1 (v ] (2-53)
ofy D nm” “'m
.
where LVn] is given by

171‘1 - - T. i

{¥n4 - <Jl"Eo>
- <J,E> (2-5k)

This is the same form
that J replace the J . In the Galsrkin method (Qn = En) the two voltage
V 1 are just different excitations of the same generalized
tion

general that almost any

. Discussion. The method of moments is so
it. The use of eigen-

soluiion can be interpreted as an application »f
for Lhe cxpansion functions and adjoint eigenfunctions for the

fnciions
funciions is iLhe classical eigenfunction method. Point-metiching

ciicn of the operator equation at specific

o

alisf
ivalent to using impulse functions as weighting

Togu
Methods which approximate the operator,

Lhe melhod of womep s,
the method of neis, are interpretakle as special cases of

Hence, one should view the method of moments as a
particular technigue of solution. In

her than as a
ng problems, one is confronted with many

ri

to enginec




possible choices and approximations. The particular technique of approxi-
mation called the method of subsections, introduced in Section I-E, has
been found quite useful for digital computation.

Basically, the method of subsections can be thought of as dividing
tie object into a number of pieces, and calculating the interactions
according to the method of moments. One of the first applications to time-
harmonic electromagnetic fields was the calculation of scattering by
square conducting cylinders.h General computer pregrams for basically

the same metnod, but with somewhat better approximations; have been used

N

for cylinders of arbitrary shape. Solutions of this type have also been

obtained for dielectric cylinders, for conducting bodies of revolutzon,?

~

< . . P e . .
and for wire antennas of arbitrary shape. An analysis of wire antennas

znd scatiterers of arbitrary shape, both loaded and uniocaded, are formulated

using the metheds of this section in the next chapter.

In terms of the method of moments, the method of subsections involves
using expansicn functicns which each exist over separaie seciions of the

he fieid in each section

similar, except that the self impedance {or admittance in the meagnetic
case) can be divided into iwo componenis, one endent on € {or p) and
the other independent of € {or p}. The mutual terms are alwayc independent

3 5 = - il 5 pre i 2 ~ Thliz H
24, and 2-5 become noninveracting elements, ihal is, expressible as diagonal

matrices. For example, the neiwork representation of Fig. 2-5 becomes
that of Fig. 2-7 when the method of subsections is used. The effect of ¢
-30-
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Fig.2-7 Network analogue for an arbitrary body when

the method of subsections is used.
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and p is then just a loading of the appropriate terminals of the general-
ized network for the body.

The use of these techniques for computation gives rise to a manber
of practical difficulties, which can be overcome by careful analysis.
For example, the field of a discontinacus distribution of current has
singularities, and the order of differentiation and integration cannot
always be interchanged. The usual tensor Green’s function often cannot
be used, but must be interpreted as symbolic of the more fundamental
vector and scalar potentisal formul&s.9 The accuracy of & sclution and
the ease of computsticn depend to a large extent on the ingenuity and
care used in the formulation of the problem. The method of subsections
is basically a small bedy technigue, since the matrices involved become
tco big for large bodies. The treatment of large bodies recuires great
care in the choice of expansion functions and testing functions, and
even then the interaction matrix usuelly is valid for only s subclass
of excitations. Perhaps the best approach to the large bodies is & per-
turbation one, that is, the use of an approximate solution as one of the
expansion functicns. The method of moments then gives a correction to
this approximate solution. A disadvantage to this approach is that the
generality of the solution is lost, being valid for only one excitation

of the body. Much more work remains to be done on the large body problem.

1. R. F. Harrington, "Theory of Loade3 Scatterers," Proc. IEE (london),
vol. III, no. %, april 1g6%, pp. 617-623.

2. V. H. Rumsey, "The Reaction Concept in Electromagnetic Theory,"
Phys. Rev., ser. 2, vol. G%&, June 15, 195k, pp. 1483-1kg1,

3. R. F. Harringion, Time-Hermonic Electromegnetic Fields, McGrawx-
Hill Book Co., Rew York, 1851, pp. 1156-120 and 340-3571.
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Consider two representative e_ements o
in Fig. 3-2. The iategrals in (3-11) and (3-12) are of the same form, and

are denoted by

mn
1 ’
W(n:m) = EE"‘n ¥ 'e-;:ﬂ—R;;- dzn (3-16)
N

Symbols + and ~ are used over m and n when eppropriate. Evaluation of the
¥ in general is considered in Section III-F. Let element n of Fig. 3-2
consist of a current filament I{n), and two charge filaments of net

charge

-1

+ 1l =
a(n) = 55 I(n) a(#) = 3 I(n) (3-17)
where q = opf. The vector potential at m due to I(n) is, by (3-11),

& = ui(n) &4 9(n,m) (5-28)

The scalar potentials at m and 7 due to the charges (3-17) are, by (3-1i2),
+ 1 + + N -
¢(m) = — [I(n) ?(n,m) - I{n) y(u,m)]

[1(n) y(8,A) - I(n) ¥(7,m)]

¢(m)

It

Juwe

]

Substituting from (3-18) and (3-19) into (3-10), and forming Lon

E?(m) . Aém/l(n), one obtains

. ’ 3 + + -+
Zan = Jouat, - by Wum) + o (4(@m) - W)

€
-y(1,E) + ¥(7,m)] {3-20)

This result applies for self impedances {m = n} as well as for mutual

impedances.

The wire object is completely characterized by its impedance matrix,

subject, of course to the approximations involved. The objeci is defined by

-L8-
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2N+ points on the wive axis, plus the wire radius. 7he 1mpedance

elements are calculated by (3-20), and the voltage matrix is determined

Y
S

by the impressed field, zccording to (3-1%). The current at N points on
the scatterer is then giveun by the current matrix, obtained frum the

inversion of (3-15) as

{11 =[x} [v] ¥i=1Iz (3-21)

Once the current distribution is kunown, parameters of intesrest such as
field patterns, input

by numerically evalusting the conventional formulas.

C. Wire Antennas. A wire antenna isc cbiained when the wire is exciied

is {Es} - -n
Yy & - 3
o
P
i H
0 |
i.e., gll elemenis zero except the a-th, which is egqual To the scurce
voltage. The currenit distribution is given by (3-21), which for the [V]
of {3-22) becomes T
Il=v |¥
n
Y,
F=d 1 I~ n=
{5-23)

Hence, the n-th column of the admittance matrix is the current distribution

for a unit voltage source applied in the n-th interval. Inversicn of

~50-




e
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T—————t L

e

the impedance wmatrix therefore gives simuitaneously the current distribue-

tions when ihe sntenna i3 excited in any arbitrery interval slong its

(20

length. The diagonsl elementis Ygﬂ of ihe admittance matrix are the

nput

] ﬂ' i

P2

admittances of the wire object fed in the neth irterval, and the Yﬁﬂ are

+he tranriey admit:snces between a port in the m-th interval and one in

3
[y
41
-
B
‘uu
wH
o
)
hes
4
o
o
1)
»
o
(o]

¥ & wire gnienna is obitalired by Sreating the

-JEr
o J&r_ c¢oSs
A= pe —_ I(Il} axs EJ a §21 (3-25)
- iar *n ST
n
where r_ and r are the radius vectors to the distant field point and

to the source voinis, rsrpectively, and £, is the ang:e between

E, = -3uiy g = -y (3-25)

where 6 and § are the conventional spherical coordinate angles.

An aliernaiive formala for the radiation paiiern, mors convenient
b4

b

for compubation, can be obtained bty reciprocizty. Figure 3-3 represents

i 3 & 3 g < §{ v 3 - 1 3 t EN
s @istant cuirent elsment IZ _ {subscripis r danote "receiver™), adjusted

directicn of travel of the wave, and r 1is the radius vector to & point
- . . R A
n on the antenns. By reciprocitvy,
~51-
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Fig. 3—4 Definitions for plane—wavz scatiering.
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The solution is in the form of an impedance or admittance representation
of the scatierer. Hence, the gensral procedures for determining scatter-
ing from loaded bodies, available in the literature,2 can be used directly.
This means that the behavior of wire antennas and scatterers loaded by
lumped impedence elements in any of the N intervals can be calculated
from the present solution by matrix manipulations. Furthermore, the effect
of finite conductivity of the wire, or, more generally, arbitrary boundary
conGitions at tne wire surface, can be analyzed by considering the wire
to be appropriately loaded in 211 intervals along its length.

F. Evaluation of {y. An accurate evaluation of the scalar ¢ function

of (3-16) is desired. Let the coordinate origin be located at the point

m, and the path of integration lie along the z axis. Then

104 - jKF
oy - b [ e (5-35;
wn) =gs | Ty =25,
mn
-0
where
2a=Mn (3'"'""0)
jpe-i-(z-z')g m#£n
Rmn = ¢ (3-b1)
ga? + (z')e m=n

an¢ a = wire radius. The geomefry for these formulas is given in Fig. 3-5.
One approximation to the y's can be obtained by expanding the
exponential in a Maclaurin series, giving
a
2
_ 1 1 . k o "
- mn

The first term is identical with the static potential of & filament of

charge. The second term is independent of qu. Hence, a two term

4

-

-58-
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Fig. 3-5 Geomeiry for evaluating y(m,n).




aprroximation to (3-39) is

¥(m,n) = 8}11:_(:! lo

A

g { + U+ Jpe + (z+a)2} _ Jk (3-43)
E?t
lz -a+ \/pe + (z-os)2

Ifr =‘/p2 + 22 is large, then

e IET
¥(m,n) = T

i

For a first order solution, one can take (3-43) as applying for small r,
say r < 2a/3, and (3-44) for large r, say r > 20/3

For higher order spproximations, more rapid convergence can be obtained
by taking a phase term e

out of the integrand.

Then
-ikr ¢ -3k(R_ - 1)
V=S | s
mn
-Q
s Foo o gk(R_-r) K1)
= -8——_’u [ (R - T 23 + . )dZ
mn mn mn
(X
(3-55)
Term by term integration gives
-Jkr
y(mon) = o— [1, - 3K(I, - rI;)

2
kK 2

- - < r 1
z (Ij 2rI2 T ...l)
ks 32 5 L&

+ 37 (3, - 3015 + 35T, - L) ¢ L] (3-46)
where
[ o )
I, = log [Z”a*“\ip +(2va)} (3-47)
z -a+ &+ (2 - )
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numbers almost egual in xnagnitude. For p < a, one should set p = a in

the expansion.

An expression suitable for large r is obtained by expanding (3-35
arg
in a Maclaurin series in z' as
u
1 £ 1 2
V=g i (0) + £{0)z + §T-f"{0} {z'}* + ...} az’
-¥ -
(3-51)
. where o B
. 2
L~ o+ (2 - 2Y)
£{e’) = 5
. ———— T
.2 2
e *(z-2")

resulis
e-jkr 2 z % -
¥y =2 (A + jkaa, + {ka)°a, + j{ka)7A; + (ka) A ] (3-52)
oy [#] 1 [4 5 =
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TV. CALCULATIONS FOR LINEAR WIRES

A. Piecewise-linear Carrent, Gelerkin's Method, A linear wire antenna

or scatierer is one constructed of a straight piece of wire, or of several
colinear pieces of wire. Again the wire cross sectlion is assumed circular,
and its diameter small. compared to wavelangth. This is a special case

2

of the prcblem considered in Chapter III, and some calculations were madse

b

that theory. However, ito obtain faster convergence, the fiigl calcu~-
lations wrre made using a piecewise=-linear approximetion to the current.
This is ecuivalent to using "irisngle” functions as expansion farctiors
in the method of moments. For this section, the weighting funct.ons vere
taken to be the same triangie functions, and bence the solutien zorresponds
to Galerkin's method.

Figure 1 shows a straight section of wire, and defines the coordinate

system. The wire extends from z = 0 to z = L along the 2z axis, and

b

of radius z. It is assumed that only the axial component of the current
on the wire is significant, and it is expressed in terms of the net current
I{z) at any point z. As discussed in Chapter III, the problem is represented

by the operztor equation

i

Li(z) =E (2)

A~
Pov
'
U
pdt
[N

*
oy
1]
-
m
L2}
|. o
[
<
v
™

z component of the impressed eleotric field at the wire

surface. The operator L is determined by the usual vector poitential method,

I
e J é 2, Z=z' .
= 1 1{z*\ ' {hoo)
Zalde ( "é + k ),- C(-T-.C’a Al < dz i 2[
” O
wnere
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antenna changes es the feed point changes. Only the magaitude is plotted,
but the real and imeginary parts were also calculated. In each case the

source strength was one volt. Figure k-5 is Tor L = AN, Figure :-6 is

[y

for L = 1.5\, and Figure -7 is for L = JA  The case L = A/2 showed
1ittle change in the shape of the current distribution as the scurce

was mcved, and hence was noi piotted.

3

Figures #-8 tc 4-10 show how the gain pattern for the linear zntenna

ot

changes as the feed point changes. These curves were normalized so that

Fi
or L = 1.5A, and Figure :-10 is for L = 2k. The

(g
]
>
-
e
[
(4
X
=
1]
o
1
WO
-t
(4]
b

case L = M2 was not plotted since the zain pattern is relatively

insensitive to feed position. HNote how the antenns tends (o sehave z8

a traveling wave antennz-as the feed is mcved to one end. This is
: particularly evident in the L = 2h case.

D. Linear Wire Scatterers. Compuiations for lincar wire scatteéersrs

. 3 s - - ~ N ) < N
excited Dy pliane waves at various angles of incidence have zlisc been made

for L/2a ratios verying from 10 o 2000, and L/A valuss up to 2.1. Thre
=3 3 /4 -2

- - s 3 e . 1] - kY ~ - -
following resulis for the case L/22 = 7t.2 (2 = 10} are given here io
ke + ~ ~  regn vt SR T 7
illusirate thne generzl behavior of wire scatterers.
~
. i 3 ~ ~ < T /2 o e+ P el 4
Figure L-11 shows echo area/N" vs. L/A and compares the result with
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t0 a wavelength, if constanis plus sinusocids are used ac expansion funciions.

-

However, =uch & procedure gives rather d4ifficult integrais o evzaluate,

pute

and the sclution of this pager

-

. . c L ee s .
s easier to> compuie if the wire is not too
long.

Figures %-12 to k-1 _ow how the current distiribution on the wire

ous vrlt per waveleugth. Oniy the nagnitude cf the current is shown, tul

the real ané imaginary components were zlso calculsted. TFigure k-i2 is

> - PRPRY > = - 'y > - O 's-o
for tle case L = A, with angles of incidenecs varying from 2 to 40

. =0 . $oam s s . o~ v =

in steps of 157, Figure 4-135 is the corresponcing set for I = 1.5h, and

Figures k=15 %0 %-17 show the bistatic rzdar cross section pzttierns

“-n
! ']
S
8:
! +
5
b
v

for the same cases as the current was shown ir Figures
angle of incidence is shown in each case by an arrow. Hote that there
is a large lobe at an angle of scatter egual tc the angle of incidence,
oul on the other side of the direction normal Lo the wire. This corrss-
ponds to specular diffracticn from the wive, and is more pronounced as
the wi:e becomes longer. Figure &-135 is for wires of leagih I = A
k.36 for % = 1.5h, and Figure %-17 for L = 2M\. Again the case L = A/2

is not shown Seczuse the shape df the cross section patiterns is relativaiy

jire Scatterers. The impedance elements characterizing

a2 linear wire are basically the same parameiers as the impedsnce elements

3 5
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its length. Azain caleulaties for 7/2a ratins of from 10 to 2000, and
for L/M ratios vp to 2.1, were made. The fcllowing results for the case
I/2a = 74.2 {2 = 10) are representative of the general behavior of loaded
scatiorers.

Figurz 4-18 shows the echo crea/h for a center loaded dipcle with

various loads 2., chosen to correspond to those used by Professor Hu

L}
- C 2 . v . s

for her ca-culations.  Again Professor Hu's resulis are good, bui

apparently become worse as Zﬁ——’m. However, this discrepancy is rnot as

bad as it seems, since the echo area of an open-circuited dipole is very

sensitive to the capacitance across the gap. For ar infinitesimal gap,

fde

the capacitance is infinite, just as it is in linear antenna theory-

In any approximate solution, the gap capacitance depends on the approxi-
mations made. In Professor Hu's solution, no funciion caparle of
representing a singularity in charge distribution is used, hence ner resultis
give a low gap capacitance. In the method of subsections used for the

calculations, the gap capacitance increases with the number of subsections

o

c,t

chosen. This is because the Tunciion expansion {&-5) can come nloser

to representing a singularity as the number of subsections incrsases.

Actually, z very small adjustment of the gap capacitance in Professor

od

s

Hu's resulis would bri
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this report, even for the case Z —>rw.

Figure &-19 shows the echo area/A” for a center ioaded dipole

of resonant scatierers is awvailable in the literature. By definition,
a resonant loaded scatierer is one for which the load impedance is a
reactance egquzal to the negatvive of the inpul reactance itc the scattere-

when fed as an antenna. This definition gives 2 maximum ec
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the open-circuit eche from the scatierer is much smaliler than the short-
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N
=y (5-6)
“I's - 2_ % Pi
1=1
(
1 within Aﬁi
P. = ¢
i
0 outside AL,
l i
ey - [ 2 ')k (3-7)
-'(Pil "J 24 K{Q ~ R , si (a'
NE,
1

The resulting set of equations, assuming an incident plane wave of

strepgth 1 from x = - is

N
z g,ji ai=g,j j:l’ 2y +e+y N (5"8)
1=1
wheres
.. i '(2) 3 [ IR 2 o
51 j By (kla, - of]) dks; (5-9)
A
i
and
-jkxj
g; = ke ° (5-15)

The diagonal matrix elements iii must be integrated analytically
zince the _ntegrand is singular. This integravien is illustrated in
fection V-E.1. When the field and source points are different (j # i)

no rsingularities are involved and tco a crude approximation

..91; -
- -— -— .
= e~k T P — ] Ay EeR T Oy




I'4
L., = HEg)(k‘n. -
O

=4 ver Q'i

[y
g t

-
e

7 =

These are the approximations it is believed X. K. Mei made in his sclution.

For symmetric bodies with normal incidence

O = Oy R = 0my_; Dby = Dy s (5-12)

so that the matrix egquation (5-8) may be reduced to

N/2 -gix,
Z 83 0 = ke =1, 2, ..., /2 (5-13}
=1
where
51 —_
=4 v A paea
2., + BRN(k|a, - () kot (5-1k)
i1 T % Ry T Pyia-i i -
and
' =
TR TR )

2) 0 \ 2)y- '1.7
[Hg )(Kinj - Qi” * Hgd)(xigj ) QN+l-il)j koey

(5-15)

B

Note there are the same number of voints on both halves of the scatterer
so that ¥ is even.

Inversion of the matrix equations (5-8) or {5-13) gives the ¢, which
represent the current density within the i-th interval. This current
may also be found by computing the magnetic field outside the conductor.

Hence 4

= ...-_:L. 1 3 *,?S

where n. is the normal to the conductor at the j-th point. This method

requires calculating two matrices, the column matrix [H'] whose elements are

- S e e e e -
T e = RO




o

wodp xpxze (5-17

and the square matrix H,, whose elements are

s
-~
4

Cde W

S

C..:

l
where 2 is the unit vecter in the z direction. The matrix eguat

QS is then

approximat.ion. However, it is easiily evaluated using znalytic differentia-
tion of the argument siace no singularities are involved. The rectangular

components of the normal are easily approximated as

n =-(y - y.)/nk

mations, the echo width as calculated using ih=2 ¢, 's is in good sgreement

with Andreasen’'s. The current deasity as calcalated by the ¢.'s is
considerably in error. However, as calculated 35y n x H. gs is in good .

B

using this method. The reason for the more accurate current evaluation

p..r '

is probably related foc the fazet that this procedure is somewhat of an
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teraiion process where only an approximation to L has been made.

oo

For a better evaluation of the £_. (j # i) of (5-9}, the addition
d"-

theorem for Hankel functions

(el

, (2 ,
o, - g'l) = Z eme(x.t) H; )(k,lgl) cos m @' (5-21)
n=0

is used to expand the kernel of the integral equation arcund each g. in

terms of the varisble of integration t' along the scatterer contour.

: - .
; and =0 -n (5-22)

-

ven in Section V-E.3. An

[N

The result of the integration for the £.. ies g

Coate
pote

upper limit of four seemed suffi-ient for convergence of the integrated

It should be noted that the elemenis 2., and :r’;i are most efficienily
d

pote

C.

computed at the same time since they involve the same values of

rd
(2} . ~ s . e
H/(k|g. - p.1). The sysmetry of the scatterer may alsc be taken into

0
)
[®]
:
ot
[}
(%]
frds
=}

m

~~

\J

L
frosd
n

g
i
jol

P
.
\.n

p

diagonal elements remain as in {5-k3) but for i #£ i, the matrix elements




g Fig. 5-3 Definition of variables { and ¢ on scatterer.
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Fig. 5-4 Ilustrotion defining angles ¢’ end #' on
scatterer.
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=

where

. .

~ = - - = H

cos §° , £ =p -0o S>-2k)
i RS
a2 gl
+
and a similar equation for cos §'.
Figure 5-5 shows the solution for the a. 's for thres different cases.

In all three, (5-£3) is used as the singular point element. The sclution

given oy dots used (5-:9) for the off Jjiagonal el-ments as did the soiution
given by circles. 1In the latier,more points were added about s = .5 where
the eilipse curves rapidly. The scluiion given by crosses used {5-23})

for off diagonal elements. In all three solutions, z "jump" occurs

where the spacing between poinis changes drastically. This problem remained
throuzhout the work and is probobliy due to an inadeguate integration

. -
H

procedure. Furtner work will be done to eliminate this probiem. Echo

density at a point is highly dependent on the field near that point and
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Fig. 5-6 Piclorial Reprasentotion of Lineor Constromt on g;.
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The ell e¢nts of the reduced matrix wmay be calculated as

t t

- +
Z'R - E2m=1,2n-2A ka’n-z + 0 + 22m_l’,:__1a kzn
mi ék2n-2 2m=1,2n-1 Akgn
m=l’ .-s,M n=2, 00',M"'1
_i.
z,; Ak
'R - 5 gm-l’fj 2 - —
Emn = £2m-l,l "——”ZEé n=1 m=1, ..., M
£ "k
'Ry N om-1,(N/2)-12 }‘(sz)-l
md Em-l,(N/E) Ak
(N/E)-l
n =M m=l, .-.,M
(5-28)
and tnose of [E;] are
. -3kzx
v m-1 ,
E = ne -1 m=12x, ..., M (5-29)

for a plane wave from % = =,

The result of using (5-13) and {5-23) for the gﬁi matrix elements

a

and (5-28) and (5-25) “or the reduced matrices is shown in Fig. 5-7.
The field has now only been matched at 19 pcints but the resuli are
quile good

It is 2lsc possible to expand the current density in a Taylor series
gbot each &; in terms of the body surface coordinate t. Keeping only

the linear term in t

(Qi) @y - % g
%@)=%@9+§%r“t=%+ T (5-20)

i

where the derivative term is approximated as shown. Integration over

owre interval then gives a contribution to the i - 1, i, and 1 + 1 elements
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of & row of the matrix. A matrix element is not computed directliy

but is obtai.ed as & result of integrating over three intervals on the
scatterer surface and summing the proper contributions. The contributions
to the matrix elements of the j-th row &5 a result of integrating over

the i-th Znterval (column) is

24 -

(2), Oy s . il "% [ (2) 0 s
aif ho \klﬁj'gii/ d..‘{oi + &C’i J v HO (k{QJ'Ql‘) O.Kt-i
A, ok,

(5-31)

where Ak, has been defined in (5-25). 7The first integral has been computed
previously for both j = i and j # i and the results given by (5-&3) and
(5-25). The seccnC integral is evaluafed in Section V-E.k.

A piecewise linear approximation to the current density may alsc
b2 made. In this case, triamgles are chosen as expansion functions in

the method of moments and the weighting functiions are again delta functions

Thus N
P m ~
I = T, (5-32)
i=1
waere
4 >
1+ = -0k, <t<O0
- - o ==
Ti = (3-33)
4
- o +
o= <t <ak,
Ak, -
Integration over the i-th Interval then contribuies to the malirix elements
of the j-th row as
0
7 ., - . . e s
2),.; W i i-1 A2)/, i
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Function is now written as

42 e

-J;{(l-(%?i)

-

2 2
. -t! t-t'
) )lcg7(;t)++( )]

B2 (fe-vf) =1~ (B2 <

for t > t' and with + and t' interchanged for t < t'. The integration

to be carried out is then

k&’zi . kAL,

kKt i
£, . =f
ii

H((f) [k(t-t')] dxt’ +f H§2) [k(t'-t)] diet'] dkt
-m’zi »kA"zi kt

(5-56)

After the first integration is carri~d out the second may be reduced

considerably. ‘The final result is

. \2 1 2

kat,
+5 2 (188,)% (3 - 2 Jog (7 —2)(1 - o7 (62,)) - iy (kast)?)

(5-57)
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VI. GSCATTERING BY DIELECTRIC CYLIWDERS

&. Intrcoduction. In this section, the problem of scatiering by di-

electiric cylinders is discussed and & particular sclution is formulabted
in terms of electric and magnetic surface curreats »n the obstacle. The
- fields inside and outside zare represented in terms of the field radisted

istributed over the surface

o
]
D

lectric and magnetic surface currents
of the obstacle.
The twe dimensional curve representing the surface of the cobstacle

is approximated with straight line segments and currents are assumed to
be constant over each straight line segment or io be deslta functions
located at the center of the strip. The fields due tc¢ infinite strips
of electric or magnetic current, with ls or Ms directed eiiher in the

z direction or along the straight line segment are calculated. A4 dual

formulation is used to 2xtend fthe resuits to the TE polarization.

: B. Formulation of the Problem (™ to z). Consider the problem

indicated in Fig. 6-1. A plane wave with zlectric Tield in the 2 direction
(™ to z) is incident upon an infinite dieleciric cylinder of arbitrary
cross section, per-ittivity €, and permeability p.

We can regresent the fields in terms of incident and scattered fields

- _ S inz
E,=E, +E
- a inc
H,=HE. + ¥ 6-1
st Yy (6-2)
‘ H =8 + 8¢
p e o

For purposes of zalculating the fields external o the cylinder we
4 ¥
]

s . co s 4 R c s . .
can use the eguivalence principle, replacing the induced polarization

-11g9-
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magnetizatiion sources OP/6% and V x M with surface currenis J =R x ¥
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¢ iy Gistributed over the surface of the obsitacle. These sources
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210 &y s azterial an

sources are such as to produce zero fields outside the ¢ylinder

<k~ currenis are exacit), so thait we can replace the free space outside

Ao

3

e of permitiivity € and permeability u, then

o
ﬁ)
i
y
ok
4
H
ute
{D
sosed
8-
o

becomes the homogenecus one of calculating the fisids dus

in infinite homogeneousx space of characieristics p,e.

1 (25 s 20 -, L oan
i, T T £') H ik - g&° 6-2
=55 F 4 (8) BT k) - dE (6-2j

contour

r

= = ? M(2) ;’{2}(}; ) - air {6-3)
i3 3 c of o= VI

contour

fr 2




The fields outside are given by

i I L
E},-E -VKEl+§}-€;)—7‘.\1xA1

i 1 {6-4)
ﬁ},zﬁ +’~:7x31+30¥°§’x‘?x£l

The vecior potentials for the fields inside are similar except the malerial

wave wumber and material constants appear. Thas

_j: - T B Y {2} yt
Ay = 53 ‘é £ (81} B 7 (K 0) df

7 oa X ey 58 oy age
%—Eé';ﬁ(f)ﬁo {Kﬂ}ﬂi
(6-5}
- i
é_:=-\7:-:£2+3&_€'{7x?.7x62

EE i?xée +3_3‘§V:;{Vx2‘2
where k = 0fue
Since there are no surface currents in the actual problem, the

tangential E and H fields must 1< countinuous at the surface of the
cylinder. On the surface of {he >yliander

RX E‘l =n Xx Ea

RxE =pxi
Eguations {£-6) may be expressed using {6-4) and {6-5) in terms of 4w

integro-differential operator equations-

i1 . T v & i . N _ . . pinc
g;_kg‘——-—jmsaV_an,gl+——jm€vax52+Vk{1-VXEQ]-gx};
1 1 inge
gx[—?x +Vx,§2--.—--‘7x§’x + = ?x?fo:an
4 hETH ST =

3
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where B ic the field inside du. %o the-,zs source in infinite homogeneous -

mediz with constaris p and € and E, is the fieid outside due tc the J
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In order to converti the operaior equations io 2 set of matrix -

4™

Il
gl

|-mQ

'lt"

S e
(6-10)

=

Jd
M=
e
¥

i=1
¢
where , 3 within i-th segment
P, = i
) outside i-th segment =
Using {6-10) and satisfying {6-9) at the center of each segment gives
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Magnetic currents are assumed counterclockwise.
Electric currents ore ossumed in 2 direction.

X = -ﬁ»(x;'-!—x;‘;}
Y, © %{yi’*'yliﬂ)

o _-,_’L"_f!_
Sm¢;! Pﬁl

cos ¢§ P}';'

Fig.6—2 Dielectric scotterer ond notation.
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It is assumdéd that the magnetic currents are all dirscted counter

clockwise. Then, locating ourselves at the midpoint of a segment and
facing in the direction of the megnetic current arrow, the fields for
the subscript 1 case (free space} will be just to the right and the
fieids for the subseript 2 case ¥ill be just to the left.

Consider the case i=j, that is the Tields are to be evaluated at the

B
ek
L]
(20
)
™
¥
"o:l
o
by
L
(1]
gg

midpoint of the j-th segment due 1o magnetic cuwrr
Thne orientation of the cocrdinate systex is unimporiant Tor this problen
and the configuration may be simplif-ed to that of Fig. &-3.

£3

The magnetic field is obtained from the vecior potential 7, where

2
- }- % (2}{' z & azx
E= !,:3:' 50 \ﬁﬂ) dx (C".!. }

and

Tow in dieleciric media with constanis y and ¢

1l

334

(6-16)

Since in Fig. 6-3 the tangential magnetic field H > 20d the part

i;’:

matrix slement .ii are identical, then

o ef

a/2
2
—_— -1 a H "(2) I ]

AT
This field may be evaluated in the following way. Iet the field point
b2 3
lie on the y axis, at a point (0,y), eveluate [ Iii"}{kp) dx', differentiate

& s

twice with

:

espect to y, and then let y—0. Hence

LIDE




Fig. 6-3 Magnetic Current Source
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afz

!

_ o _1 ¥ (2) . .
H‘gjj = H_,(0,07) .yj__iiuo { o P -d/ngo (kp) dx] (6-18)

Taking the first two terms of each series in the series expansion of

Héa) (kp), using integration formulas Dwight 623 and Dwight 623 '2’2

differentiating and taking the limit as y—»C, the partial matrix element

becomes

. € €

M J /r . 8 r ,1

o= oot = (k1) - — [= (=

233 2'qo J“r (k) N, JHEL (kd)

1 /e 3 %
Mo [5 - log 5 (6-19)

no J Tr

To calculate the tangential magnetic field Hx(0,0+) in the subscript
1 case, consjder the same limiting pirocess with the field point approaching
(0,0) along the negative y axis; by symmetry the tangential § field
will be identical to thet obtained in the subscript 2 case, since the
magnetic current source is tne negative of the source in the subscript
2 case. Thus we obtain the field H a1 by replacing the unit magnetic

current with its negative and u, €, k with Hor €52 ko. Hence

§ 8,1 .1 [3 %
Hlljj =T E (kod) - qoer‘ko& M ) [5 - log —p (6-20)

The tangential electric field on both sides of a strip of magnetic
current of ctrength unity must also be obtained. From Fig. 6-3, if we
assume that the electric field to the left of the midroint is in the 2
direction, then from symmetry considerations, the electric field just
to the right is in the negative z direction. The strength of the field

is mos¥ easily obtained by using the dual of Ampere's law
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¢

-[}; +df =K (6-21)

where K is the magnetic current enclosed. The result for a unit magnetic

current is easily obtained as

ot 1 .
1355 = Fy3 ="z 4 (6-22)

Now consider the evaluation of the fields when j # i. Replace the
magnetic surface current distribution with a magnetic dipole elemenc of
streangth di located at the midpoint of the segment. Here di is the
length of the i-th segment. For purposes of calcularion, assume a maguetic

current element located at the origin and oriented in the x direction as

in Pig. 6-3. Then to a crude approximation

4.
F = %]:. H§2)(kp)

1 ’
= - = e { 6- 3
E VxFE B o VxVxFE (6-23)
Thus
Ky, o (2)
kd
_icos ¢ (2)7 o
Hp el el H (ko) (6-2k)
kdi ( )n
}'l¢ = - ET sSin ¢ H (kp)

Now if we locate the magnetic current element at the center of the
i-th strip with an orientacion corrvesponding to that of the i-th strip
we can derive fields at the center of the j-th strip ¥y replacing o

with ]pji‘[ and ¢ with ¢J.i - ;- Then
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M M”‘
h {
{ A

'kadi (2) .
EQ4€ = T sin (¢j: - ¢.~) H\ ) (kfpj..i ) (6'25)
g - b i RS g

Cule
e
]

H¢ sin (¢j=- ¢ji) *+ H, cos (¢j - ¢ij)

-k, (2)"
S [oin 0 - 8 sin (G - ) P (o)

i |

cos (¢j - ¢ij) cos (¢ij - ¢

+ 0

)
z H:(La)(ki Py )] (6-20)

The elements E§j4 and ﬁ?ji can be obtained by replacing k, €, ¢

in (6-26) with K s €5 Uy

D. Evaluation of Partial Matrix Elements Trom Electric Currents. We

wish to calculate the fields at the j-th point due to a unit electric
current at the i-th segment.

First consider the case when j = i as in Fig. 6-3. Then

A, = 11;3 f H((Je)(kp) dx’ (6-27)
SO
. d/2
E =:Eff 82 (x ') ax (6-28)
A 2we o) ‘
0

Since Ez and Egjj are identical, we have on integrating dire~tly

2/ M\
(6-29)

. 1
B, = a dgad) .l [H_S_a’ 5% 1 (&) - £2E, H;kd)]

where H, and H_ are Struve functions. Alternately, if ng)(kx') is
approximuted by its series expansion (retaining the first twe terms of

each series), and integrated directly, the following result is obtained
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J kd,, - i,kd
E..=-(-E-)(.L-5( ))
2 kd d 1 k3> I kd, 2
- = (& {108(-7}—)(3- - '3—'('7;) Y -1+ g(-z) } (6-30)
The element Eljj is obta ned by repiacing X by K in (6.30).
The tangential magnetic field may be cobtained by applying Ampere's law

in a manner simiiar to that used in Section VI-C to calculate the

tangential electric field. The result is

i

1.
133 " Hapy 5 (6-31)

Now consider the fields when j # i. Replace the electric surface
current g with an electric filament directed in the z direction with
current I = 4., and located at the midpcint of segment i. Consider a

filement located at the origin. Then

A, = % H(()e) (kp) (6-32)
Hence
E, = :}S_ Hga) (xo0)
Hy = :’;1 Hgg)(k.o) (6-33)
H =0

The partial matrix elements for the subscript Z case are then

il

T}kd. .
i .{2),,
Eg,ji - By (B[ )

%
I

Do -5,
ji Ty B UK|Ry)) sl i@y - By

ar

\

- -15 1-
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The elements "”.i and H)y; ere obteined by replacing k and 1 by k_
aad. 7 in (6-34). The matrix elements in (6-11) have thus essentially

beer: established.

E. Duality. For incident, fields TE to z, the prcblem may be solved
by duality. 1In this case, all magnetic fields will be in the z direction
and the electric fields will lie in the xy plane. Thus the scattered
fields can be calculated by assuming magnetic —urrent sheets in the =z
direction and electric currents sheets directed along the contour of
the scatterer in the xy plane. Again the problem is resolved into two
homogeneous provlems, one involving free space and the other involving
an infinite homcgeneous space ¢f characteristiscs py,e. Replacing u with
€ and J with M according to =2 duality principleh yields problems
similar to those discussed in VI-A to VI-D; which can be solved using

the functions developed in VI-C and VI-D.
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VII. SCATTERING FROM BODIES OF REVOIUTION

4. Introduction. The objective of this work is to determine matrix

methods of solving for the surface currents induced on conducting bodies
of revolution by incident electromagnetic waves. Tnese currents can then
be used to calcuiate the scattered fields.

The general problem has been solved numerically by ji_ndzr.'ea.sen’,"’2 for
bodies with maxirmm cross-section perimeters ot twenty wavelengths. His
met’ >d consists of obtaining approximate solutions of the integral
equations for the induced currents.

In this section, the general solution for the body currents will
be formulated by the method of moments. From this, twe specific solutiuns,
namely, a field matching soluticn and a solution by Galerkin's method,

will be described.

B. Description of Probliem. Consider an electromagnetic wave incident

on the surface of an arbitrary conducting body of rewvsiution. The
ccordirases for the body and the inciden. wave are illustrated ia Fig.
7-1 and 7-2 respectively. The incident field (rz:" } induces surface
currents on the body whichare the sources of the scattered field (Es).
The boundary conditions require that the ifotal tangential E be zero on

the btody surface or
s i -
= « E -

For converience, ('El, '5?} are defined as unit vectors of the local

”~

orthogonal coordinate system defined on the body surface. ?’1 corresronds
the t vector and t, is 3 in Fig. 7-1. In terms of these coordinates,

(7-1) becomes

Mt




g Fig. 7-1 Coordinates for Body of Revolution.

. "




Fig.7-2 Coordinates of incident Plane Wave
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LEF@=-% F®  a-12 (7-2)

The scattered fields are expressed in terms of the surface currents

E® =11 ) (7-3)

vhere the operator I is defined below. Equation {7-2) vecomes

: T ot - v—.i,(\ 3 ~ B
”n.h’zs\z)':-"n':“‘!" =21, =« (1-%)

The problem is now reduced to solving (7-2) for 3 (')

Tc def'ine the operator L, {7-3) is expressed in ferms of the magnetic

vector and scalar potentiais. The vector potential for the induced surfsce

current ,IS( r'} is

s 1 ¢ IR
&'p =5 #.J_s(;:‘) 7 &' (7-5)

body
where in terms of the spherical coordinstes of Fig. 7-1
. 2 2
R= iz-;;2= [r + 177 - 2rr'{c05 8 s 6" +
1/2
sin @ sin e cos (§ - ¢")))

The scalar potentizl is given by

-3k
1 - q o7
‘%'S(z} = - '——‘k;{jwé -# {Vt' . J—S(I—‘ }} = aa’ {7—6}

nere ¥, - is the differential operator tangent to the body surface. In

terns of the local body coordinates, this operation on ar srbiirary vector

-~

OBy sin v
- in x%
y REF Y B ¢

-
3 B¢

O | o

L
>




S

vwhere p is the cylindrical coordinefe radius and v is the
hetween t and the z axis.

Row ihe scattered field is expressed in ferms of the

counterclockwise

induced

current

C. Expansion of the Incident Field and Surface Curreni. 2n arbitrery

-

mode has

w

same velpcity along the Z-axis of Fig. 7-2. The adventszge

expansion is that the current induced by each mode cen be

separately and the {oial current can then be found by superimposing zli

plane wave can be expanded in a discreie set of cylindrical modes.

of the significant mode currenis. This procedure is nscessary for

-

hand ing large todies on aveilablie computers.
The
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‘The coordinates of the body currents are called the "source coordinates"
and are the prim=d cocrdinates in Fig. T-1. The coordinates of the incident
and scattered fields are denoted by the unprimed "field coordinates."

From (7-14), for a given mode, say the m-th mode, the curreni, induced by
either incident field polarization is of the form

L'y = B 30 (80) n(g) + B0 a5 (81) nglug?) (7-15)
A »rccedure analogous to the development of (7-14) is used to express

the incident field corresponding to (7-15) &s
B - 3 (t) ny(nd) + § Bi(t) ny(a) (7-16)

where h_i;(m¢) and h¢(m¢) are the respective trigonometric functions in
(7-22) or (7-13) for whichever mode and polarization is being considered.

The scattered fields due to ’Is

B =L &) = - 2 f;[ da’ {k = f:m + Yf; eRJkR Y, } Z(r')
(7-17)
The t and ¢ scattered field components are found by taking the inner product
of (7-17) with the t and ¢ unit vectors at the field points. The result

%

for either polarization is

L I:(I.') = - 32 h, (m8) };2-/ [sin vsinv' (6 _; +G ;)
ta
2 cos V cos V! Gm] J:,(t’) - sin v (Gm-l - Gm&l)
. b ay:;l'(t') sin v'
g (e Re atr + 2 SET— + —5r— T (t')
t
a
oG,
+ ’é‘.ra'g,(t')} 5 o' at’ (7-18)
<150~




t
a

+ (6, 1 * 6 ,q) Jg,(t')} p dat

t, l
( ") in v!
_2_%[ P’t » i1, J‘m(t')4—Jm(t')] 60" dt!
4
a

’ |

(7-19)
where ﬂ -Jka
€ 1 t
G =] Tfﬁg—— cos ' <&¢ (7-20)
s O
R =R(§ =0)

o

To apply the method of moments to either polarization of the m-th
mode, the mode current terms are approximated as

N

[ 41 —~ ]

i=1

= Z B: (bi(t') (7-21)
i=l
where Ti(t') and Qi(t‘)are the approximating functions in the method of
moments. A suitable set of weighting functions (wl, Wys o
an inner product are defined. The approximate currents (7-21) are

.3 wN) and

substituted in (7-18) and (7-19) and the inner products of (7-4) with

the weighting functions are formed as
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= . {7-22)

where the current and field terms are cefined in (7-15) and (7-15). Both
of the matrices of (7-22) are complex. The left sides of the respective

real and imaginary matrices of (7-22) can be rearranged as

_ ‘ -
— —_ ps unerd ~ 1
! a'l <t ¢ E (2)) wl>
ttty 3 43 o .
[£.7 71 v [£7 ] .
ij ! ij | A
3 Oy < - E(x), wp $=1,2,...,N
e X X X ¥ W X3 q -------- e e = | wweoos ﬁ? ----- L2 X 3
E Bl <a * El(}:), wl> J=12,...,K
] t 1
[zf,fg i AR .
s J . 2
i 5N <§ ° Elil): wﬁ>
_ 4 L] _ o (7-23)

The solutions for the complex currents, Q. and ﬁi are found by inverting

the [2] matrices. Thus

(1: et
L= [t I- 1; (7-24)
J

where the definitions of the matrices ir (7-24) are implied from (7-23).

E. Field Matching Solution. The field matching solution amounts

to satisfying (7-1) at N points along the body perimeter from t to b,
(see Fig. 7-1) for each polarization of each modc. The perimeter length
from ta. to tb is divided into N segments. The length of the k-th segment
is Atk and the center point is tk as illustrated in Fig. 7-1. Since in

(7-22) the ¢ variations in the scattered and incident fields are the seme,

the h(nﬁ) terms can be cancelled by choosing the weighting functions to be

=142~




wkzﬁ(t—t.k) k.=l, 2, iO"N

Then the inner product is defined as
tb
<A,B> = _[ ABdt . 7-25)
t
a

where A and B are matrices and A is the transpose of A. Now {7-22) is
seen to be equivalent to {7-1) at the N points along the body perimeter.

The current approximating functions in (7-21) can be chosen to be

Thﬁ:%h% 1 onat

k k

0 elsewhere

This amounts to assuming that the currents are of constant amplitude on
each interval. Other current expansions, such as & piecewise linear
approximation, are possible but the computations are more cumbersome.

Substitution of the approximate currents into (7-18) and (7-19)
give approximations to the scattered fields at the samplinz points.
These are substituted in (7-22) and the approximate current amplitudes
are computed from (7-28).

The accuracy of the resulis improves as the number o sampling
points is increased. The scattered field at each field point on the body
is calculated as the sum of the contributions to the currents on each
o: the source intervals. For each contribution, (7-18) and (7~19) must
be evaluated. These calculations will usualily be approximate. When
the fieid point (ti) is several segments away from the source sampling
poeint (té), sufficient accuracy mey be obtained if the integrands of

7-18) and (7-19) are assumed constant over the sampled source intervals
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nd emal to their »

%

In general form, the integrals are then approximated as

espective values at the center of each source interval.

. § S B A} ¥
J( I(t') av' = I(tk, oty

(20

nLervalis.

I

as

When the field and source segments are within a few segments of each

other, it may be necessary to subdivide each source interval intc suo-

M

r
JEECHEREDY
By

The contributions to the scattered field from the currents

on each subinterval can be determined by evaluating the integrands at

the center of each subinterval and evaluating the respective ipntegrals

The

'
L Htgy) sty
J=1
wnere M is the number of subintvervals of the k-tk source interval. When
t. = t! the G terms {7-20) have singularities since R, = 0.
contribution from the currents outside of the small region
¢1_ e{'¢t<¢t+ €

can be determined as in the above case.

)

The contributions from the
currents within the remaining small surface arcund thz field goint can
be determined by an approximate analytic procedure.
in section VII-G.

This is discussed

The current derivative terms in {7-18) and (7-iQ) can be approximated
by finite difference approximations.

t-component of current at the k-th sampling point is

For exsmple, the derivative of the

~1hh-




ot' = AETT Ot
k+1 - %=1
% L+ Amk 4

Higher order spproximations could be used if necessary.

The eveluations of the G, terms defined in (7-20) and BGk/Bﬁ are

discussed in Section VII-G.

F. Solution by Galerkin's Method. The proposed solution by Galerkin's

method is equivalent to requiring

. i k
<T 2 x2') L(2)> = - E(n), L,(x)- (7-26)
where Qg(z) is the approximation to the current on the k-th body segment.

To obtain this formulation from the method of moments, the weighting

functions mk are equal {v the current approximating fun-cions. For example

Y

let

P ! — -t — 1
W = I&(t ) -rék(v )= 1 on Aty
0 elsevwhere.

The inner product is defined by (7-25). Equations {7-22) are now the
equations of Galerkin's metnod.

The constraint imposed on the solution by {7-25) is more stringent
than that of the field matching solution. Therefore it may be possible
to obtain a higher degree of accuracy in the varisticnal solution with
the same number of body intervals as in the field matching method. However,

the calculations of the matrix terms in {7-23) are more cumbersome.

Msny numerical techniques which are analogcus to those described in the -

previous section can be used to simplify the computations.
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} :\

. Expansicn of e /R, 1In eitner the fisld matching or variational
solaution, one of the major computations is the evaiusgtion of Gm and OG :1:/ ot
in {7-18) and (7-19). G, is defined in (7-20) as

1 -ijo
€ ' ]
Gy ""_[ 3 ) (7-20)
where
R = Je© + 112 - oppt {(cos © cos @' + sin @ sin 9' cos §')
(7-27)
Using the derivative chain rule
. ~ Y
aGm _ &Im 53’ + OEE & (7"28)
ot or Jdt ¥ &t
Applying {7-2C), (7-28) is expressed as
st -jkR
o " € o 3 13 7
5€..=‘/ 5~ (f; + £, cos ¢} cos uff* ag*
5 R
[o]
7 -,ijO
+[ S r, + f), cos §’) cos mf’ of" (7-29)
- R < -~
0 o ’

where the fi's are the appropriate functions of (r, r', 6, @'} which
result from (7-28}.

For the integration techniques discussed in Section VII-E, (7-20)
andi (7-29) are integrals over the source loop at the middle of the source
intervel {see Fig. 7-1).

The integrals can now be expressed in a general form as

1( “‘.;Eﬂo m = 0’ 1’ 2’ * e w

j : —=-~- COS pg' cos mf' g’ p=0,1

4] P‘o

In
n=13,2,5
(7-20)

when the integrands of (7-30) have singularities at R, = 0, approximate
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analytic integration over the singularities is necessary. The details

of this method are given in the references.”
For the integrals which do not include sinrpularities, the complexity

sgraluation. Numericel integration

of the integrand prohibits exact analytic

is possible but the computation is cumbersome. Another approach is to

“j}’y z }.". - . .
/K in functioms of

expand e the integration variable ¢'. Substitution
of these expansions then allows approximate evaluation of (7-30) by
this is the method which is proposed for

e

simple analytic integrations.

e

the body of revolution problem.

To illustrate the expansion, consider

-jkR . e s
cos kR . Sin kR ~
-1 =5 {7-31)

e -
R R R

Denoting either cos kR or sin kk as T(kR), esch term in (7-31) can be

expanded as

N
] 5 -7
Mz(ﬂé—ﬁem +Ceﬁ¢] a.y. (') C<g <=
n L L. iTi _ -
R i=0 .
(7-32)
forn=1, 2, 53 and R > € which is & small positive constsat tc be
determined below. The bracketed terms of (7-32) are chosen so that
4 - 1 l —
{A+Be‘c¢ +Ce5¢}z§g og¢'§n (7-33

n
1/K versus @* for closely spaced loops.

|
|
]

-5 is a typical curve of

A, B and ¢ are chosen so that
S N
A+ Be = ;{-—5 at ¢' = r,%, P ¢% i §
(7-3%)

A




é% - (A+B) \\(/

\ '-:3 % A+Be~ 4 Co=BH'

0° | 90° o 180°

| 1] 1 |
# A & ¥

Fig. 7-3 Graphical Illustrafion of the Approximation of &

~1L8-




"
4’!'

RS R ;
B = . T =
-0y, ~a¢3

-0l ! =
A= l‘n ~- Be 3 (7_35)
R(g3)

The consitants © and B are chosen so that

1 ' -pg*
gl-' (A'!‘Be—@ ):Ce@ a‘tg' =¢i’ ¢é
and
e o for ¢' > g1

If ¢, is properly chosen, (7-33) is satisfied when

o -of;
C= = - (& + Be )
1

i o]
Il
“
[\)i (=]
by
[
e ———
ot
(9]
| ]
Fane Y
N
R
[v5]
8
N
L
hM
» i
i j




r 4 %
. TXRj 1
; a.v. (@) =2 .
, 171 n gt L -
=~ T{kR}

Since the T{kR) are sinusoidal functions which are even sbout §* = =,

it is convenient to choose the ¥ {¢'} as trigonometric funciions wit

the ssme symmetry.

constant,

Equation { {-36) is a minimum square error epproximation and the cocfficients

£
-

Denoting the expanded

as

tx)

(¢:) =

From the error curves

either expansion is less

so the cases presented give-ah esbimate of the maximum errors t

be expected for expansions

cos i ', sin {1 -

For example

=

- 1y oo < ]
“A\¢: } T(¢i)

It was found that for R .

IT{9 ; 3@.&.}:

in Fig. 7-k, the averzge =

than 0.3 percent.

af
i

todies of

itade of

a. are det<rmined by satisfying {7-3£) for N vaiues of §'.

expansions of cos kR/R

+a20032¢‘+

sin3 gl]
L 7-37)

at any ¢ { is defined

& ™

i Zla

i0T

For these cases, R _._ =

min

> 0.067A, the average error decreased,

L L o

can

revolution with diasmeters less
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Fig.7-4 Resiis of Computed Exponsions




than ¢.5A and for Rmin > € = 0.067\. For larger diameters, it may be

necessary to increase the mumber of terms in (7-37).
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VIII. ZINVERSION OF MATRICES

A. Introduction. The inversion of a matrix is closely related to

the solution of a system of linear algebraic eguations. The n linea:

equations with n unknowns

a;X) + 8q0%5 + .. .+ 8nfn S V1
- + © . e = 3
Bp3%) T Fpp*p ¥ * %' T 2 (8-1)
& 1% + 2,5%o + .. .+ a n¥n = 7y
may be writien as a matrix equation
Ax =y (8-2)

where A is an n X n matrix, x = (x .eey X_) an unknown vector
id

1’ 72’
and 7 = (yl, Yor =ovs yq) a xnown vector. This matrix equation can
be conveniently written as a partitioned matrix {AjI) with a column
x-
vector [-=]
¥

(a1} (51 =0 (8-3)

where I denotes an identity matrix.
The elfaentary row operations are defined as
a) multiply any row by a constant,
b) interchange any two rows;
c) add one row multiplied by a constant c to any other row,
or their combination.
When the elementary row operations are performed on (8-1), or squivalently,
on the partitioned matrix (A|I) of (8-3) they do not change the solution

of the system of Egs. (8-1) or the matrix equation (8-3).
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Let L be s matrix representing some combination or product of the

elementary operations described sbove. After these operations on (8-3},

we have

(ta]s) (21 =0 (6-4)

If we carry out these elementary rowoperations sc that LA becomes an

identity matrix, i.e., LA = I, then the inverted matrix A"'L is found to

be
AT =1 (8-35)

B. Method of Gauss-Jordan Reduction. The method »f Gauss-Jordan

reduction is a systematic procedure designed to execute the method outlined
in Section A. Iet A be an n x n matrix to be inverted. The partiticned

matrix of {8-3) can te written as an r x 2n matrix

all 3.32 «es a'l,n-l a'ln 1 0 o 0 0
%21 a0 e By Epy 0 1 ... 0 O
81,1 %n-1,2 0 %paimel Zpeln] © O cer 10O
&nl a.n2 .« an‘tt .:L an,n O 0 > e O "L-J
{8-6)

Search the first column 2 (1 =1, 2, ..., n) for the largest

element in wagnitude, say akl

laq i > Jagql (i=1,2, ..., n) (8-7)

Ir &q = O, then the first column of 4 is zerc, A is a singular matrix
and hence A has no inverse in the usual sense. Therefore we may assune
&y # 0. Interchange the first and k-th rows, and then divide the firs-
row through by &y If the interchange r_:f the first and k-th rows is

foliowed by an interchange of the first and k-th columns of the second




submatrix, then the resulting matrix becomes more orderly. To make

sure that the interchange of colwms of the second submatrix does not
disturb the matrix equation (8-3) or (8-k), it is required that y, and

Yy be interchanged elso. Finally we use the first row to eliminate all but

the first term of the first column by the elementary row operations. Thus
1),.4(1 X
SRSV E A A (8-8)

~{1 Y (1) { Y 3
where I\ ) - L(l’P(*; (1) _ M(l’y ﬁﬁ(l) is a permittation matrix

which transforms y = {(y,, Yoo s yf) into ?(l) = (y.: Ypr Y50 vves

< 1
yk_l} yl) Jk+l’ sy yh)i

S COINT-16 0 N o ; ]
(LAl) =11 b, ... b) p1 Pin by 0 ... 0 ©
0 022 - bz,n-l b2n b21 1 ... © ?
0 Dn-l,2 T bn--l,n—l n-1,n “n-1,1 0 o
—O Dng LR 2N n’n_l bn’n bn,l 0 -~ e O ];

(8-9)

The elements of the matrix (8-9) can be written in terms of the elements
of the matrix (8-6) by inspection.
We proceed tc obtain 2 new mat: ix equation
2) _2(2) X o s
(L( ).ML( )) [E}-(éy] =0 {8-10)
from (8-8) by the elementary row operations such that the submetrix L(E)A
has zero eiements for the first and second column except the first and
second diagenal terms which are normalized to unity. This can be achieved
by the following stepsy:

1) Find an integer k such that

[Py ,21 > Jos5] (i=2, 3, ..., n-1, n)
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The ]bk 2! may be assumed to be non-zero otherwise the original matrix
2
is singular.

~

2) interchange the second and k-th rows and slso interchange the

second and k-th columns of tne second submatrix,

3) divide the (new) second row by b, s

4) use the second row to eliminate the second column by the
elementary operations except, of course, tne second element of the column,
5) interchange Y5 and Y+
It is readily seen that these steps lead to the matrix equation (8-10).

Assuming that the matrix A is nonsingular, then after repeating the
process n times, we obtain
{n), 2(n) x
AT AR I -——)-] =0 (8-11)
Y
(n)

whers L' A is an identity matrix, and ?( n) is a vector resulting from

the rea.rrangement of the original y. Let M be a permutation matrix
tracsforming y into ?(n):

#(7) gy (8-12)

{ ~
Since M is a permutation matrix so that MM = I, L\n) and L(n) are related

by (nY  ~{n}
A COM (8-13)
Equations (8-12) and (8-13) imp’y that if y. and y; are interchanged in

?(n)’ then bki'a.nd bkj of Lh’ (k =1, 2, ..., n) must be interchanged.

C. Commutative Matrices. When a boundary value problem has some

degree of symmetry such as rotationsl symmetry or reflectional symmetry,
the matrix obtained by the method of approximation described in previous

chapters often exhibits a special structure. This special structure of
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i

the matris

127 Y e Aliawan~
can usnually B¢ laarad

act that thils matrix
commutes with another metrix which represents the nature of the symmetry.
The product of tw> matrices A and B depends, in general, on the order
of the factors, i.e., AB # BA. 1In thc very speciai situation when the
product is independent of the order of the factor i.e., AB = B4, L <en
the matrices A and B are said to commute. A case of special interest
to us is when a given matrix commutes with g diagonal matrix.
Any matrix that commutes with a diagcnal matrix having distinct
diggonzal terms is necessarily a disgonal matrix.
To prove this statement let A = &zij] be an arbitrary n x n matrix

and D be an n x n diagonal matrix with distinct diasgonal terms.

D=[diaij],. di;éd: iftif ]

Since AD = DA, we have

[o; 516, T = [8;8 1oy ;]
which is equivalent to
n n
A
[Z Gye By ql=10) g 6lkak3}
k=1 k=1

This equation leads to

le;5(a, - a,)1 = [0]

where [0] denotes a zero matrix. The above equality holds only if

= i . . for i 3
Q5 o} 1fdl#da or 1 #£ j
which shows that the matrix A = &Iij
It follows from the proof given spove that if a matrix A commutes,

] must be diagonal.

with a diagonal matrix D whose diagonal terms of equal value appear
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D = dl 0 0 0 0 ¢
0 d2 0 8] 0 ¥]
0 0 62 0 0 0
O 0 © d5 0 0 (3-13)
0 o} 0 0 d. 0
2
d
0 0 0 0 0 3
then AD = DA implies that
A = ail 0 0 0 0 0
0 aég Qé3 ] 0 0
[
O O oy L © © I
-1
0 0 0 @y 9 O
0 0 0 Oy lo 20 o
pl 55 56

It is well known that a matrix equation remains invariant under a
similarity transformaticn which includes unitary and orthogonal trans-

formations as its special cases. For example the matrix equation
AC = CA (8-15)
which denotes the commmutability of the matrices A and C, after a

similarity transformation (by a non-singular matrix P) takes the same

form
ED = DB (8-16)
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AP  and D =P lcP (8-17)

Now suppose that C of (8-15) can be diagonaiized by a similarity
transformation and that the diagonaiized matrix D has distinct disgonal
terms. Then the matrix B of {8-16) obtained by the sume similarity
transfcrmation from matrix A must be diagonal alse. On the cther hand,
if D is a diagonal matrix with some repeated éiasgonal terms as shown in
(8~13), then B must be a supermatrix with zero off-diagonal submsatrices

as shown in (8-14}.

The iavariasut property of a matrix equation under the similarity

Iy

transformation sometimes can be us2d to simpiify the inversion of & matrix.

Let A be a metrix to be inverted. Suppose we can find a2 matrix C which ;

commutes with A and whose eigenvalues and th2 corresponding eigenelements -

can oe easily found so thai s nonsinguler matrix P, which will diagonalize

C by & similarity transformation, can Le obtained. In addition, if the

diegonalized matrix has disiinct diasgonal terms, then the matrix A is

reduced by the same similarity transformation to a diagonal matrix which

can ve inverted easily. The desired inverted matrix A-JT can be oblained

by reversing the originai similarity transformation. In case the diagonal

terms of the diagonalized matrix obtained by the similarity transformation

are not distinet, the matrir A is reduced by the same similarity trans-

formation to & suzermairix with zero off-diagonal submatrices. The inverted
=1

matrix & = is then obtained by first inverting ~hese diegonal snomatrices

and then reversing the originel similarity transformation.

The practicaliiity of the methoad described egbove depends on whether =
we can find a second matrix which commutes with the matrix to be inverted

and whose eigenvalues and eigenelemenis are ¥nown ur easily obtainable




30 that a nonsinguler mairix caa be constructed to diagonalize the matrix.

To find such matrix, we consider the specific configurstion of & four-

[

port network shown in Fig. 8-1. It is easily seen that when the network

undergoes a rotation of n/2, =, or 3x/2, the electrical structure remasins

-

unchenged. ILet 2 = (e, €y € 2, ) denote the set of excitations, r
the set of corresponding responses in the neiwork due to the excitation

and § the matrix representatio

[}
(o]
by
ct
o
m
=3
(14
of
¥
o
'
* ,l‘i‘
i)
K
5
'
I
1
)
771
[« 1
1))
(43
:
]
B
=1
:J'
D

the excitations and responses of the network is given by

r = Se {8-18;

Let R be 2 roisting operator signifying 2 rotation of x/2 in the
counterclockwise direction. A roiaticn of the si:t of excitations in the

counterclockvise direction by an angle of =/2, keeping the network

.Y

stationary, gives a sei of new responsss

e &3 - + i -y -~ i o< = as +
On the other hand, the set of new responmses r? is egusl %0 the set of

¢

LIS NP - ] 'y -~ 3 ey o3 %
excitation and network, counterclockwise by an angle of /2.
. - - BN
r* = Rr = KSe {B-20)

- -~ Fre
1y RoI0HY 3 {R_ony &3 nA £, et
inus Dy {u-a‘j} gnd {8-20}:, we find, for every exciizslion =
o == o B LI
SHe = he {8-21}
i Al < ITan +heas
wiiiCh ImMpLIE€sS THEv
Fado) s el A
— Fi Ty
SE = X5 {5-22;
. ~a . ~ P . - < < ot mn oz
syl Tas 3+ z S, T S e —d e @ - n
Usually, the S matrix which represeais the electrizszi siructurs of
+ho mosvinwl " T sferrmvnmend e gy g S e T o 1 e -
tne neiworx or ihe dynamic properiies of a boundary vaiue problem is
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C matrix. The characteristic equation

(C~-M)x=0 (8-26)

gives the N eigenvalues and the correspending eigenelements

. 2k

e N, x=0,1,2, ..., 81 (8-27)
N-~1 21:1;}3
1 N k=0, 1, 2 1 8-28)
—J: e eﬂ, —O’ I} 9 sesy N- ( -
£=0 J

wh.re e P denotes a unit element in the N-dimensional FEuclidean space.
The diagonalizing matrix P can be cbtained from the set of normalized
eigenelements by regarding them as the column elements of P

. 2nkd
1 YR
P = [7}{3]:—[9 ] (k,ﬁ:O, 1,2, ..., N'l)

'

(8-29)
The jinverse of P is seen to be
o 2nkE
- 1
P1=P*=_ e N] (k,ﬂ-‘:O, 1,2, c-o’N"l)
N

(£-30)

That P is a unitery matrix can be seen from the following reiation.

N-1 3 .k’ . 2mim
SR
(p*F), = Z ]
N-i . 2¢/(m - %)
=2 Z e ’ N 1=1[s8_1
=5 = Oy
£=0
g The maty ¥ C can te diagonalized by the following similarity transformation.
. 2nk
-1 I

«16k4-




which has N distinct diagenal terms equal to the eigenvalues of C. It

1

foliows that B = P AP must be = diagonal matrix also.

We now evaluate the diagonal terms of B.
can be calculated by the formula

-
-4

=

* 1
Bom = (7553 logd Il =5 %y ©

01

i,k=0

The elements of B, in general,

3 on(km - £i)

N (8-32)

According to the results in Section C, we see that the off diagonal

terns vanish, i.e.,

BB =0 if.@;ém

N-1 . 2a(k-i)4
I TR

i,k=0

(8-33)

This expression can be simplified by making use of the commutability of

matrices A and C.

It follows from the relstion AC = CA that the elements Qﬁk of A

depend only on the relative positions of i and k. Let p dencte the

relative position of 1 and kK and write

Qb = O&k

(8-3k)

A moment of careful examinaticn of (8-33) and Fig. 8-2 reveals that (8-33)

may be regrouped as fcllows:
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U

]

Integral number assumed
by »

- 3]

The partial sum of (8-33) corresponding

+~ n
bl
. 2nlp
g-ap € K if N is even
. 2nép
No e N if W is odd
ek
No e K
b
2afp
N o N
P
Na e N
b
5 278
3 =
g-ab e N if N is even
=nbp
No e N if ¥ is odd

nere the square bracket [Q] denotes the maximum integer of Q, e.g..

Zummstion of these terms over p yields

£§21 ,
S
Poe = [ %i"z‘

p=-[N/2]

If, in addition, the

3 2nlp
N 1 ¥ N
3(p + 5} -5 5(p - §)} 05 e

(8-35)

reciprocity property holds as in the problem

of circuler locp antenna, then
Upe = O (8-36)
or
a_=a 8-37
» =9 (8-37)
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[n/2] }
Beg = 2 - 8(p) - 8(p - g.)} o cos 2_:r1£T_1_3 (8-38)
p=0 J

which represent the diagonal terms of matrix B. Thus after the similarity

transformatio= of matrix A, we obtain a diagonal matrix

B=plpp = e, 5, ] (8-39)

The inverse of this metrix is easily seen to be

gt op At IE@'] (8-20)
L2
o %
Therefore, A 1s given by
PN
. 2ntk . 2xim
1 y 5, . -3 ==
=t YiEr1Ee” ¥j
v P
N-1 5 2nk(£-m)
1 1 +* N _ .
*F { Z B’t—gk. e ] = {5£m] (8-11)

-1 . NP
Thus the elements azm of A~ can be identified as

N-1 2nk{f-m)

. \ . . 1 . .
It suffices to evsluate thz elements of the first row of A ™, since the
elements of the other rows can be constructed from these elemenis. For

the first rov, we have
2xkm

——

N-1 3
l 1 I\{ z i e
a.Om = ﬁ Z -a?‘; e {S'kj}
k=0
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The inverted matrix A ~ is found according to (8-42) with the 2lements

of the first row given by {8-48).

-1 _
A= [_abo &1 %2 ab3

abl abo a'ol ab2
(8-49)
| 3’02 acl &oo aol
a . a a

03 o2 ol abo

e —d

E. Example. Linear Antenna. As another application, we consider

the problem of & linear anienna. The electrical property of the antenna
remains unchanged by rotating the antenna with respect to the mid-point

by an angle =. The matrix eguation intended to approximate the integro-
differential eguation describing the boundary value problem can be arranged
by a proper choice of the approximating functions {elements) to have a

~

matrix A = ﬂzij] which commutes with the matrix representing the rotation.

R={0 o ... o X
9 0 ... 1 ®
. . El s . - - - - - . (8-%)
6 1 ... ¢ ©
1 ... G 0O
that is
AR = RA (8-51)

We shall show that the inversion of msirix & can be reduced to
the inversion of its diagonsl cubmatrices. To be specific let Azn’ RQn

and Ian denote matrices of order 2n. The charscteristic equation for

Ry -~ Ml =0 (8-52)




gives the eigenvalues +1 and -1, each of which repeets n-times.
For the eigenvalue A = 1 and x = (gl, By wees Bgr oees §2n)’ the

equation

- A Yx = -
(Ry, = My dx =0 (8-53)
yields the following :elations to be satisfied by the eigenelements.

€ = En =0
& - by =0

A

(8-54)

The correspornding eigenelements, after normalization, can be chosen as

1
u = e——— (l, 0, 0, s 00y 0, 0’ l)

1
= — {0 1, O eeey O i, ©
‘12 4,2_. ( P P ’ P 3 ) (8—55)

oooo . 3 . * . . . . . * .

u = — (0, LR | 0) l, l, O, sy 0)

Similarly for the eigenvalue A = -1, we find the n normalized eigenelements

as follopws:

=———(C, sssy O, l, "'l.g 0, s 0y 0)

1
un.§.2 = :/é-_—— (0, MR | l, 0, O’ -1’ veey 0)
(8-56)
=X (1,0 0,0 0, -1)
?n 2 y ey 3’ 3 seey I}

3
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The matrix P, which disgonalizes R, by a similgrity transformation

-

may be corstructed from these eigenelements by regarding them as column

elements of P2n:

Pon_-‘/_l_- ¢ 0 ... 00 1
2 10 ...010
2 8 & a2 » 8 » 3 » (8-cx?)
A Y s L

0 l 0 + s . 0-1 0
0 ... ¢ 0-1

: I -

W
(o

which can ve put inio a more compact form

i

1
= —_— a_s }
Pen ‘[: (U 38_
2 R I
n n .
The inverse is seen to be R
T
“n Rn_‘
Py | l
Pon = T (8-59}
2n \{5-
i R -1
i 'n n
Note that P = -1 and BT = R
Note that P, = Py Ry = Ryp n n
&7 Ap
- r9_4
Ay = {8-60)
P21 P2
0 R
n -
Ry, = {8-51}

R, © g

and using the fact that "2:1 commutes with Ren’ i.e.,

IQ"

AsnBon = Ropds {8-82)
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We find ihat AZn can be rewritter as

A2:1 = All %‘421811

(8-63)
A?.‘:. Rn"’llgn
The similarity transformetion of A2n by Pzr rields
- . -
Al_l T RnA23. v
-1 .
Bon ™ Ponfon’on = (8-6%)
5 0 Rn(All - Rnﬂel)Rn__
The inverse is — -1 -
(All * Rn l) G
-1 -1 -1
Bop = Fop fop P2, = .
© RlAy - Rdny) Ry
= '18-’;

It follows that the inverse mairix A -l is found to be

fon
-1 -1
A= Penaﬂipan

- -1 -1 -1 -
+Rn52_1) M (An-P‘nA?l} [(Al}fﬁnaz}.} "(All.nnﬁ?.l)] Rn

[ R
TV |

B[R T - (A Ran) T R [y ) T R 7,

{8-66)

Trus, we have reduced the inversion of AZn given by {B-f0) #5 the inversion

of the submatrices {4 . + R, 1) and { R ).
e 51 n 21

3
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