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1.   Introduction 

Recently the SLAM Journal has published two papers [l, 8] which present 

elaborate classifications and sophisticated constructions for two classes of 

problems in probabilistic programming.   Neither the authors of these papers, 

nor their referees« appear to have recognized that the problem in [l] and the 

problems in [8] (for example, the "complete" problem) are very special in- 

stances of the class of "constrained generalized median" problems first diocus? 

by Charnes, Cooper and Thompson in 1961.-'   This canonical "median" formuL: 

tion is not a matter of a choice of nomenclature.   Its technical advantage in mai 

problems in probabilistic programming derives from bringing into immediate 

focus the relevance of the absolute value function. 

As we shall demonstrate below by means of the absolute value function we 

easily (1) obtain, characterize and markedly extend the essential results cf. [l], 

(2) interpret these results in linear programming and probabilistic terms, (3) 

develop gradients and directional derivatives and interpret probabilistically 

incremental formulae in all generality, (4) place these results in the framework 

of chance-constrained programming, and (5) reduce all cases to investigation of 

the behavior of the objective function along a ray. 

Before undertaking these developments and in order  not to interrupt them., 

some important assertions and constructions in [ij require correction.    The 

problem in [l] is to choose a vector     X S 0 which maximizes the expected 

T        m 

value of the function  p   X +   s g. (X,b), 
i=l 

—'   See reference   [4] 



where 

(1) g^b) - 
^(hi  - a^) 61 

if 

if 

b - a^ < 0 

b1 - a^ > 0, 

and Y* > ^i« 

Here a ,i>l,..m. is the 1  row of a g Iven tnxn mat 

YJ and 6 ji-l^.m, are given constants, 

T 
p  is a given Ixn vector, 

and b ti«sl,...,m, are random variables whose marginal distributions 

are known. 

Thus the problem is 

T    
m 

max E(prX + Z g,(X,b)) 
i-1 1 

(2) subject to X > 0, 

where we compute the expectation using the Joint distribution of the random vari- 

ables b.,... .b . 
1'  ' m 

In (2), it is assumed that the vector X is to be selected before any ob- 

servations are made on the random variables b. ,i=l,,,. ,m. Thus X Is not per- 

mitted to be a function of these random variables, but rather it must be a determin- 

istic vector. Such a vector of decision rules is called a zero order decision rule 

in the customary terminology of chance-constrained programming.—  Thus, (2) is a 

chance-constrained programming problem in which the chance constraints are of the 

particularly simple form F (X > 0) > 1,  in which the function whose expectation 

we wish to maximize is a piecewlse linear function of the vector of decision rules, 

and in which we seek the optimal zero order rule. 

— For results on zero order rules see references [2, 3, 4, 5, 6], 



In the mathematical development presented In section 2, we first show that 

(2) can be converted Into a constrained generalized median problem of the type 

discussed in [A].    This transformation enables us to use standard linear program- 

ming methods  In obtaining our results.     It also permits us to Indicate how these 

results can be extended  in two important directions:    one  is  the case  in which 

g  (X,b)    is a  pieccwlse  linear function of      b.,   ...   ,b      rather than only    b 

as  it   is in (1);  the other Is the case  in which    X    is subjected to other linear 

constraints,  say    DX > d,     In addition to the constraints    X > 0.    Neither of 

these extensions are discussed in [1J, and the techniques used In [1] cannot be 

readily extended to Include these cases. 

The main results  In [1] are a pair of theorems which give necessary and 

sufficient conditions  for the existence of an optimal solution to  (2).     We will 

obtain most of these conditions in a much more direct manner than was used in 

[1J.    In particular, our proofs will require only well-known theorems  In linear 

programming and some elementary inequalities  on the absolute value, and will not 

require concepts such as Kakutani's  fixed point  theorem which were used  in [1], 

Neither will we require  the elaborate specifications of classes of probability dis- 

tributions used In [1]. 

One result obtained in [1] characterizes the situation In which the objective 

function of (2)  is bounded from above, but the supremum of the function is not 

attained for a  finite    X.    Rather than deriving this particular result,  we character- 

ize this situation In a constructive  way   by  showing that  it can be related to 

the behavior of the objective  function along a particular ray and by obtaining an 

explicit expression for  its  limiting value. 



First,  however, we must correct  some assertions  in  [1] about the admissible 

class of random variables,     In [1]  it   is assumed that    F.,    Che cumulative dis- 

tribution function of    b  ,    has at most  a finite number of discontinuities  in 

each finite  interval.    In our development  in section 2  it will be clear that  such 

an assumption  is never required.    We can,  for example, admit  random variables 

whose distribution function has probability mass at all the  irrational points  in 

an Interval  (or on the real line). 

It  Is also assumed in [1J  that    F.C»)»!"!,.. „m,  satisfies the following con- 

ditions: 

and 

3(a) lim    z1Fi(2i) - 0, 
Z j-» -00 

3<b> z^-f zil>Fl(zl)J " 0' 

A remark is  then made [1, p.   930]   to   the effect that 3(a) and 3(b) are "sufficient 

for  (but  slightly  sf-ronger than) the existence of the first moment of    F  (•)•" 

In actual fact, as we prove  in theorem  2,3(a) and 3(b) are necessary for the sxist- 

ance of the  first  moment of    F  (•)»    but  they are not sufficient.    This can be 

seen by the  following example: 

Let    F(z)       ^       (1, z  >  - c 

* .     z< 

Then 

zl In z 

lim        zF(z)   = lim      "rfr = 0 Z-*.-co y   ' ■/, ~>-tn     Inj z| 

and lim      z[l-F(z)J  = 0,    as    F(z)  =1     for    z > 

Hence    F(z)    satisfies conditions    3(a)  and 3(b).    However,    F(z) does not have a 



first moment since 

-• -•   \^z [ln(-z)J   / 
dz 

ef   i±^L.2dz 
e    z[ln(z)] 

■ - e  f      r dz + e 
*e    z[ln(z)]' 

ln(ln(e))  - ^m^ [ln(ln(t))J 

■ - », since the Integral term is negative and  lim [ln(ln(t))J = «. Thus E(z) 

does not exist. 

Conditions 3(a) and 3(b) are used repeatedly in [1] to guarantee that the in- 

tegration by parts formula 

f F^z) dz - xF^x) - lim  zF4(z) - f zdF. (z) 
J  1 i    z—>•-»  i     J 1 

-09 -• 

is valid. But the above example shows that conditions 3(a) and 3(b) are not suf- 

ficient to guarantee the validity of this Integration formula since both integrals 

diverge. On the other hand, the existence of E(z) is certainly a sufficient 

condition for the formula to be meaningful. 

2. Mathematical Development 

We begin by introducing some notation.  Let Y be an n-vector. 

Then |YT| - ([yj, .... (yj , ..., (yj) 

and 

E|YT( - (ElyJ, ..., Ejyj, ..., E\yJ). 

We will use  ||Y||  to denote the norm of Y. 



From the definition of g (X,b) in (1) we have that 

g^X,  b) . ji (|b1 - a^l  + (b1 - A) V ji   (^(b1 - a^) -  ^ - a'xl)   . 

Hence 

E 

and 

nee 

(gi(x> b)) .(L^) E(bi). Q^ ^+^ Elbi. ^ 
m \ T m/ \ ,n/^6i + Yi>\ E/  p X + 

m /'6i+ Yi ^ Thus, dropping the constant term        S   I    5 J £(b^    ^rom t:he objective function, 
i«l \       ^       /        1 

(2) can be written as 

T„        T. 
(4) 

where 

and 

min    h(X) « c X + a E|b - Ax| 

subject to    X ^ 0 

m   / 6.  + 
Cj = /A        2       ^ij  * Pj' J - ^   ••'• n' 

a. = —2~— »    1 " i» •••» i1» 

Also a. > 0 as we are given that  y^ > ^.. 

(4) is a constrained generalized median problem of the type discussed in [4]. 

The constraints are of the particularly simple form X > 0. 

Theorem 1 

Proof; 

We first note that h(X) is finite for some X > 0, in which case 

h(X) Is finite for all X > 0, if and only if E|b | < 00  for 

all i such that a > 0 (i.e. y   >  6.). 

Using the well-known and elementary inequalities on the absolute value 

we have that 

|AX| - |b| < |AX| - |b| < b = AX < b + AX 



and so applying the expected value operator (which is order- pre- 

serving) to both sides  of the inequalities we get 

(cTX + aT|Ax|)  - nTE|b|   < h(X) < (cTX + aT|Ax|) + aTE|b| . 

This establishes the sufficiency of the stated conditions;    neces- 

sity is clear. 

Theorem 2;    A necessary condition for    EJb j   < oo    is that 

lim      tP (jbj > t] - 0. 

Proof: 

Then    ElbJ   »Edbjx^ +^^^(1  -  x^). 

But by definition of the Lebesgue-Stleltjos  (or Radon) integral, 

E|b |   = lim    E(|b  |x )   when    E|b  |   < oo   . 
t->oo 

Thus    E  Mb1|(l  - xt))   —> 0   as    t —> OD . 

But    EMbJd - xt)) =   J IbJdF^b^ > tP^jbJ > t) > 0    for    t > 0. 

So when   E|b  |   < oo     we have    tp\(b | > t>->0 as    t->oo 

To see that the condition 

lim      tp( |b  | > 11 = 0 
t-^+oo        ^     1    ~   > 

is equivalent to 3(a) and 3(b), note that 

P [ IbJ > t] - P(bi > t) + P(bi < -t) = 1  - F^t) + F^- t). 

Hence we have    0 » lim    ( t[l - F (t)] + tF  (- t) )   , 

and since  Fi(  ) is a nonnegative function,  3(a) and 3(b)  immediate- 

ly result. 
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Theorem 3;    h(X)    is bounded  from below for all X > 0    if and only if there 

exists a    w    satisfying 

|w|  < a 

T T w A + c    > 0. 

Proof;     By virtue of the inequality 

cTX + aT|AX| - aTE|b| < h(X) < cTX + aT|AX| + aTE|b| 

obtained in the proof of theorem 1, it is enough to show that 

T     T 
c X + a |AX|  is bounded from below for all X > 0 if and only if 

there exists a w satisfying |w| < a and w A + c > 0. 

To do this, we first note that the linear programming problem 

T     T 
.-v min c X + a |AX| 

subject to X > 0 

can be rewritten in the following form: 

min cTX + aT(Y+ + Y') 

subject to Y+ - Y" - AX = 0 

The dual to this problem is 

or 

X, Y+, Y' > 0 

is 

T i max w •   0 

ect to - w A < c 

T        T 
w   < a 

T        T 
- w    < a 

T max    w •  0 

T    T 
subject to w A + c > 0 

|w| < a . 



Äiv i* 

Since (5) is consistent (the origin is feasible), the extended dual 

theorem of linear programming (see [7], vol. I, p. 190) states that 

the objective function of (5) is finite if and only if there is a 

feasible solution to its dual, i.e. (6). Thus the theorem is proved. 

To convert the result of theorem 3 to the corresponding result in [1], we use 

T                   Yi " fii ii 
our definitions of c  and a. Since a. ■  5  , we see that  |w.| <a 

6i " Yi        Yi " fii              '     /Yi + ^ 
means  r  5 W4 .5  ö  *  I^ we put "l " wl + \  2  J    *    then the 

condition |w ( <a becomes Ä^ < TT. < Y .  Similarly, since 

. -Ae^ aj 1 " Pi»    we get that    wA + c    ■ TT A « p  ,    so    wA + c    >0 

T T becomes    n A > p  .    Thus we see that theorem 3 is analogous to the result in [1] 

which says that the optimal value of the objective function to  (2) is  finite if and 

only if there exists an m-vector    TT    satisfying 

TT A > p 

and        Ö 5 TT < Y • 

We not turn to an elucidation of what is termed in [1] the "insoluble- 

finite" case. This is the situation we mentioned in the introduction in which 

h(X) is bounded from below but its infimum is not attained for a finite X,  i.e. 

h(X) > inf h(X) for all X > 0. 
X>0 

Theorem 4: As t->.oo , E(b - tq| ̂ / tq - E(bi), q > 0 

E(bi) - tq, q < 0 

ElbJ     . q - 0. 

where we use the symbol -^ to mean that the difference between the 

two quantities tends to zero as t—>-CD . 

- This terminology is peculiar since we explicitly express the optimal value 
of the objer.tive function for this case. This is done in the corollary to theorem 4. 
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Proof; Define the func tion   X^-X^V -    j  1.  bi <tq 

0,   b    > tq 

Then    E|bi   - tq|   = £[(0^ tq)(l   - Xtq)] +E[(tq   - b^x^] 

-YEO^)  -  2E(bixt:qy   + tq[P(b1 < tq)   - P(bi > tq)]. 

But    E(bixt   )^/(0, q<0      as    t—>-aD    , 

(EO^),   q > 0 

and the second term on the right approaches    tq    if    q > 0    and 

- tq    if    q < 0.    Thus the theorem is proved. 

Now  fix    X    and define    1° =    |i  :  a1* = 0j .     Let    bJ - - ^ 8gn (aix) 

and    b b     ,  i € I    .    Then we have 

0    ,  i^ 

Corollary;    As    t--».co ,    h(tX) ~ t[c X + a |AX| ] + a [E(b  ) + E|b  | ]. 

Proof: h(tX) » tcTX + aTE|b - tAx|/v tcTX +   S oaiElbil 
iel 

+    E 0 a.   sgn  (aiX)[ta1X - E(b  )] 

- t[cTx + aT|Ax|J + JlXb1) + E|b2|] . 

Theorem 5;     Suppose that    h(X  )—►v-     for some  sequence      <X   (     with 

X    > 0,    llx  11—>oo    as    n—>-<n ,    where    vA « inf h(X). n -    '    ''   n'' 0      x>0 

Then    cTY + aT|AY|   = 0    for  some    Y  > 0    with     ||Y||   =  1. 

Proof: Since the set S s <X: ||x|| - 1, X > 0 ( is compact, the 

f Xn  ) 
ii  i| \     has a limit point Y in S,. Moreover, there exists some 

set 

n 

subsequence, which we denote by  W t ,  such that Y—>• Y as 

n—>-aj . 
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Now 

(7) TTxTT ^n + aT|AXnl) " ^n + «Vj-^Y + aT|AY as n—>- oo . 

T       T 
However, c X + a IAX I  is bounded from below since h(X ) > vn. '   n    ' n1 n   u 

This follows from the inequality (cTX + aT|AX|) - aTE|b| < h(X) 

< (cTX +aT|AX|) +aTE|b|. Thus, in particular, cTX +a |AXn| remains 

bounded while ||x ||—►oo . Hence, from (7), we conclude that the left 

hand side goes to zero while c Y + a |AY( > 0. Thus the theorem is 

proved. 

We will now show that when  ^x 1 exists wi:h the properties described above, 

h(X) must approach its infimum along some ray in the orthant X > 0. First, how- 

ever, we establish 

Lemma 1;   For any vector 5, |h(X + 5) - h(X)| < |c 5| + a |A5|. 

Proof;     |h(X + 5) - h(X)| =   jcT5 + aTli(|b - AX - A5 - |b - Ax| ) 

< |cT? + aTE|A5|    < |cT5| + aT|A5|. 

Theorem 6;    Let     ||Y  ||   = 1,    and 

let    t n 00    as    n—*.oo. 

Assume    h(t Y  )->-vA   as    n- n n        0 

Then    h(t Y) »v^    as    n->-oo. v n 0 

00    and    Y =    lim Y 
1 n->>oo . n 

Proof; There are only a  finite  number of ways an    n-tuple can be 

partitioned into subsets of components  such that  the components  in 

a subset are either all positive, all zero, or all negative.    Thus 

there exists some  subsequence of   JY   I   ,    which with a minor abuse 

of notation we also denote by    1Y   i   ,    with the  property that  tl 

components of    AY      are of constant  sign for all    n. 

:he 



Let 

where yin is the 

12 

1 
2 yin if 
t 

0 ~ aiy~ai.y • 0 
n 

n 

0 otherwise , 

th i element of Y • 
n 

Then the sian of each component of A(i + In) remains the same 

for all n sufficiently large. Also 

h(t Y + t 6 ) ~ h(t Y ) by theorem 5 n n n n n 

and h(tnYn) -+v0 by hypothesis. 

But, by Lemma 1, jh(t Y + t 6)- h(t Y)j . < t [jcT6 I+ aTjA6 IJ n nn n - n n n 

and by our definition of &n the expression on the right ap-

proaches zero as tn-.ao. Thus h(tnY)-+v0 as n~ao. 

Thus we have reduced the problem to one of inveatipting the behavior of h(X) 

along rays in the nonnegative orthant. Moreover, by t~e corollary to theorea 4, 

the "knife-edge" cases in which cTX + aTIAXI • 0 have aT[E(b1) + Ejb2IJ as the 

optimal value of the objective function. However, it should be expressly noted 

that these "knife-edge" infinite ray cases can never appear as solutions to 

practical probl.... Rather they exhibit ~n inadequacy of realistic formulation 

of the model. We develop their properties here only for coapleteneaa of analysis. 

We now turn to the develop~~ent of increMntal folWllae and thair interpretation 

in probabilistic teras. It should be noted that, again, ele .. ntary properties of 

absolute values quickly and naturally lead to results in all generality. 
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3. The Increment and the Radial Directional Derivative of h(X). 

We now give expressions in terms of the probabilities of the various b 

versus AX events for the Increment of h(X) (i.e., h(X + 5) - h(X) ) and 

for the directional derivative 7- h(tX) whenever the latter exists. The ex- 
dt 

pressions are free of any restrictions as to the character of the distributions 

of the b. 

First, on inspecting figure 1 below, we note that, for e > 0, 
fe       , u < a 

f(u)- |u-(a+e)| -|u-a|= je + 2(a-u),a<u<a + e 
(_ -€       , u > a + 6 . 

+6 

- 6 

f(u) 

a+e' 
u 

Figure 1 

Thus,  if    u    is a random variable with finite expectation, 

Eu^|u-(a+6)|   -   |u-aM-€[P(u < a+e)  - P(u > a+6)] +  6+2a-2 ^a+ee(6) 

for some    0 < 0(6) < 1    by the mean value theorem.     In other words, 

(8)    E   ("|u-(a+€)|   -  |u-a|)    - e[P(u < a+e) - P(u > a+6)  - 2e(6)P(a < u < a+€)]. 

P(a< u  < a+6) 



14 

But 

h(x+5) - h(x) - cT5 +aTEMb - AX - A5I - |b - AX|J    , 

so If we use (8) we get, using P(b > AX) to denote the vector whose components are 

P(b. > aSc), 

(9)  h(X+5) - h<X) - cT5 + aTD(A5)  P ^ b < A(X + §)  - P(b > A(X+5)) 

- 2D (e (|A5|) P(AX < b <A(X+5)j 

where D(y) denotes the diagonal matrix whose diagonal consists of the components 

of the vector y and where e(|A5|) - fe^la1?!), . •., Öm(|a
m5|))  with 

0<O(|a^|)<l. Thus we have an expression for the Increment of h(X), and 

thereby an expression for any possible directional variation, in terms of the 

probabilities of various events. Clearly then, any conditions on the probability 

distributions involved in b which guarantee that P(AX < b < A(X+5))—VO as 

II^II—>-0 will guarantee the existence of a gradient of h(X) at X. 

We now specialize (9) as follows:  In (9) replace X by tX and f by £X. 

Then we get 

h(t+6)X  - h(tX) - cT (ex) + aTD(A6X)   P (b < A(t+€)X ) - P ( b > A(t+&)X ) 

-2D nB(|A6X|) j P ^AtX < b < A(t+6)xJ    - 6?cTX + aTD(AX) Ufb < (t+fe)AX j 

-P^b >  (t+e)AXJ    -  2Dr9(|AX|) JP^tAX < b  < (t+6)AXN\1d . 

Then as    t-x»    we get,  for any fixed   fe > 0, 

(10) h ^t^O - h(tX)  ^eTx+aT|AX|   . 

Thus,  if the left hand side of (10) has a limit as e—H),    we see that  the directional 

derivative    — h(tX)    is given by at 

(11) ~ h(tX) - cTx +aT|Ax|   . 

It Is clear that computational methods can be based on our expressions (9), (10) 

and (11), but we shall reserve these developments for another occasion. 
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4.    Extensions 

The special model treated  in [1]  is rarely of any real-world or economic- 

theoretical significance because many constraints cannot be expressed adequately 

by "linear" penalty functions.    As a simple reminder,  note that    X    must  be 

bounded,  although    of course    the specification of the bounds may  involve  inter- 

relations between groups of the  individual variables.    We have ehrten to develop 

our results  for clarity and ease of comparison in the context of [1].    However, 

it  should be obvious on reflection that practically all the developments of the 

preceding sections can be extended to the case where  there are additional  linear 

inequality constraints on    X    in  (2). 

For example, consider the extension of theorem 3  to the case where    X    must 

also satisfy    DX > d.    Then our proof of theorem 3 requires only the obvious 

modification of the dual problem.    Thus we get 

Theorem 7;     If the constraints    DX > d, X > 0    are consistent, the optimal value 

of the objective function for the problem 

min    cTX + aTE|b  - AX| 

subject to    DX > d 

X > 0 

is finite if and only if there exist vectors w and v satisfying 

T     T    T 
-w A + v D < c 

|w| < a 

V > 0  . 

A much more significant extension of the general model follows from observing 

that the linear constraints DX > d can be considered to be the deterministic 

equivalent constraints for chance constraints P(DX < b) > 0, This follows from 

*«.->■ i,:, • v;I'-W'"" » "' 'i'. -Ts--—--r—tr. ■~~zx: »~SZM* 
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Che fact that since X Is a zero order rule, the chance constraints can be re- 

placed by the equivalent set of deterministic constraints DX < p' (1-ß), where 

F' (1-ß) is the vector of F' (1-ß.), the  (1-0.) fractlle point of the marginal 

distribution of b . 

It Is also evident that modifying the objective function to the form 

mln cTX + E|Gb - Ax| , 

where G Is a given mxm matrix, does not affect the proof of our theorems. 

Thus our results hold for the very general class of constrained generalized median 

models discussed in [4]. 

Finally > ^ should be noted that the so-called "complete" problem!.' 0f 

linear programming under uncertainty Is merely another special Instance of the 

constrained generalized median problem, and as such It Is susceptible to our analysis 

To see this we merely observe that the complete problem can be written as 

mln  cTX + E[ E g,(x,b) W 
s.t.  D X = d 

X > 0 

where g,(X,b) =  ( (b - aiX)Y.   If b. - a1* < 0 
i        \  1      1       1     ■" 

(b1 - aiX)6i   If b1 - a^ > 0. 

This formulation is obtained by expressing the second stage decision variables 

in terms of the first stage decision variables X. 

■^See [8],page 102. 
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