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1. Introduction

Recently the SIAM Journal has published two papers [1, 8] which present
elaborate claasifications and sophisticated constructions for two classes of
problems in probabilistic programming. Neither the authors of these papers,
nor their referees, appear to have recognized that the problem in [1] and the
problems in [8] (for example, the "complete'" problem) are very special in-
stances of the class of "constrained generalized median' problems first discus=
by Charnes, Cooper and Thompson in 1961.L/ This canonical "median" formul:
tion is not a matter of a choice of nomenclature. Its technical advantage in ma:
problems in probabilistic programming derives from bringing into immediate
focus the relevance of the absolute value function.

As we shall demonstrate below by means of \ie absolute value function we
easily (1) obtain, characterize and markedly extend the essential results ¢f 1],
(2) interpret these results in linear programming and probabilistic terms, (3)
develop gradients and directional derivatives and interpret probabilistically
incremental formulae in all generality, (4) place these results in the framework
of chance-constrained programming, and (5) reduce all cases to investigation of
the behavior of the objective function along a ray.

Before undertaking these developments and irn order not to interrupt them,
some important assertions and constructions in [1] require correction. The
problem in [1] is to choose a vector X 2 0 which rraximizes the expected

T m
value of the function p " X+ = g; (X,b),

i=l

1/ See reference (4]



where {

®,-a'%)y, if b -aX <0
(bi-ax)bi if bi-axgo,

and Y 2 6, -

Here ai,i-l..‘m, is the iCh row of a given mxn matrix A,

Yi and 61,1-1...m, are given constants,

T

p 1is a given 1lxn vector,

and bi,i-l,...,m, are random variables whose marginal distributions
are known.

Thus the problem is

T m
max E(p X + T gi(x’b))
i=1
(2) subject to X > 0,

where we compute the expectation using the joint distribution of the random vari-
ables bl"“’bm'

In (2), it is assumed that the vector X 1is to be selected before any ob-
servations are made on the random variables bi,isl,...,m. Thus X 18 not per-

mitted to be a function of these random variables, but rather it must be a determin-

istic vector. Such a vector of decision rules is called a zero order decision rule

1

in the customary terminology of chance-constrained programming. Thus, (2) is a
chance-constrained programming problem in which the chance constraints are of the
particularly simple form P(X > 0) > 1, in which the function whose expectation

we wish to maximize is a piecewise linear function of the vector of decision rules,

and in which we seek the optimal zero order rule.

1/

For results on zero order rules see references [2, 3, 4, 5, 6],



In the mathematical development presentud in section 2, we first show that
(2) can be converted into a constrained generalized median problem of the type
discussed in [4]. This transformation enables us to use standard linear program-
ming methods in obtaining our results. It also permits us to indicate how these
results can be extended in two important directions: one is the case in which

gi(x,b) is a piecewise linear function of b | 6 ,bm rather than only bi

1’
as it is in (1); the other is the case in which X 1is subjected to other linear
constraints, say DX > d, in addition to the constraints X > 0. Neither of

these extensions are discussed in [1], and the techniques used in [1] cannot be
readily extended to include these cases.

The main results in [1] are a pair of theorems which give necessary and
sufficient conditions for the existence of an optimal solution to (2). We will
obtain most of these conditions in a much more direct manner than was used in
[1]. 1In particular, our proofs will require only well-known theorems in linear
programming and some elementary inequalities on the absolute value, and will not
require concepts such as Kakutani's fixed point theorem which were used in [1].
Neither will we require the elaborate specifications of classes of probability dis-
tributions used in [1].

One result obtained in [1] characterizes the situation in which the objective
function of (2) is bounded from above, but the supremum of the function is not
attained for a finite X. Rather than deriving this particular result, we character-
ize this situation in a constructive way by showing that it can be related to
the behavior of the objective function along a particular ray and by obtaining an

explicit expression for its limiting value.



First, however, we must correct some assertions in [1] about the admissible
class of random variables. In [1] it is assumed that Fi’ the cumulative dis-
tribution function of bi’ has at most a finite number of discontinuities in
each finite interval. In our development in section 2 it will be cleaf that such
an assumption is never required. We can, for example, admit random variables
whose distribution function has probability mass at all the irrational points in
an interval (or on the real line).

It is also assumed in [1] that Fi(-),1=1,...m, satisfies the following con-

ditions:
3(a) lim ziFi(zi) = 0,
zi-,-cn
and
3(b) zilg+° zi[l-Fi(zi)] = 0,

A remark is then made |1, p. 930] to the effect that 3(a) and 3(b) are "sufficient
for (but slightly stronger than) the existence of the first moment of Fi(')'"

In actual fact, as we prove in theorem 2,3(a) and 3(b) are necessary for the exist-
ance of the first moment of Fi(-), but they are not sufficient. This can be

seen by the following example:

Let F(z) = Q 1, z>-c

e
&lznlﬂ?l’ eene

Then
2 = : — =
zllinlm 2 (i) = :«',1--}:1‘05 lnT_ZT =
and z}}$c z[1-F(z)] = 0, as F(z) =1 for z>-e

Hence F(z) satisfies conditions 3(a) and 3(b). However, F(z) does not have a



first moment since

-e
I+o 2dF(z) = e f z <1+1n(-z) dz

- zz[ln(-z)]2
U £ LY N
e z[ln(z)]
» 1
= - e [' dz + e | In(ln(e)) - _lim ln(ln(t))“
“e z[ln(z)]2 = [ ]J

= - », since the integral term is negative and t:1__i,m_w,|:1n(1n(t:))] = o, Thus E(z)
does not exist.
Conditions 3(a) and 3(b) are used repeatedly in [1] to guarantee that the in-

tegration by parts formula

X X
lr-uFi(z) dz = xFi(x) - z]._i_x;m_a° zFi(z) - f.“zdFi(z)
is valid. But the above example shows that conditions 3(a) and 3(b) are not suf-
ficient to guarantee the validity of this integration formula since both integrals

diverge. On the other hand, the existance of E(z) 1is certainly a sufficient

condition for the formula to be meaningful.

2. Mathematical Development

We begin by introducing some notation. Let Y be an n=-vector.

Then 'YTl - ('yll, veey 'yi,’ so 0y Iynl)

and
T
E[Y"| = Ely,|s «oos Ely, ), ool Ely D).

We will use ”Y” to denote the norm of Y.




From t:he definition of gi(x b) in (1) we have that
i i
gi(x b) = <|b ~ a Xl + (b - a X)>+ 2 <(bi - a x) - Ibi - a XD

Hence

gy o, t Y =R
E(gi(x b)) ( i) E(b)) - < i) a'X +< i> E]b |
T T, O mrYty
E(p X + Z gi(x, b)> =pX+ ¥ E(gi(x, b)> = 7 —-— E(bi)
i=1 i=1 {i=1

mo /b + Y =Y,
+ pTw he: N x+r 121>Elbi-aix|
il

m 6 +
Thus, dropping the constant term <—2-—i—> E(b ) from the objective function,
i= 1
(2) can be written as
T T
) min h(X) = ¢ X + ¢ E[b - AX|

subject to X > 0

6 +'yj>
where = Py Jmly, seas 0,
‘gl %13 3’

1 =4

and ai=———2__’ 1-1, e ey m,

Also o, > 0 as we are given that Yy 2 61.

i
(4) is a constrained generalized median problem of the type discussed in [4].

The constraints are of the particularly simple form X > 0.

Theorem 1: We first note that h(X) 1is finite for some X > 0, in which case
h(X) 1s finite for all X > 0, if and only if Elbil <o for

all 1 such that ai>0 (i.e. Yi>61)'

Proof: Using the well-known and elementary inequalities on the absolute value

we have that

<|b - ax| < [b] + |ax|

- |p]

|ax] - |b] <




and so applying the expected value operator (which is order- pre-

serving) to both sides of the inequalities we get

cr .
(CTX + aTIAxl) = o.TEIbI < h(X) < (ch # aTlel) + o E|b].
This establishes the sufficiency of the stated conditions; neces-

sity is clear,

Theorem 2: A necessary condition for Elbi[ < oo 1is that

lim tP{ib | >t75- 0.
i -
tom

Proof:: Let y =|1, |b] <t
0, |b|>t¢
Then Efb | = E([b [, + E@bil(l - %))
But by definition of the Lebesgue-Stieltjes (or Radon) integral,

Elbil =t]:.-i;r:o E(’bilxt) when Elbil <o .

Thus E <Ibi|(1 - xt)> —> 0 as t —> .
[- -]
But E<Ibi'(1 - xt)> = -rt'bildFi(bi) > cpglbil > t} >0 for t >0.

So when Elbil < o we have tP((Ibil 2:}»0 as t—o0.
To see that the condition

lim cP{Ibil > t} =0

t-+>+w

is equivalent to 3(a) and 3(b), note that
Pglbil > t} =P(b, > t) + P(b, <-t) =1 - F (t) +F (-¢t),

Hence we have 0 = lim (t[l - F,(t)] + tF, (- t)) ,
i i
t—++m®

and since Fi( ) is a nonnegative function, 3(a) and 3(b) immediate-

ly result.



Theorem 3:

Proof:

h(X) 1is bounded from below for all X > 0 if and only if there

exists a w satisfying

| <a

By virtue of the inequality

’x + oF|ax| - a"E[b| <h(X) <c'X + of |ax| + oTE|b]

obtained in the proof of theorem 1, it is enough to show that

e’x + aTIAxl is bounded from below for all X > 0 if and only if

there exists a w satisfying |w| <a and WA +c

> 0.
To do this, we first note that the linear programming problem

min cTX + o.T|Ax|
subject to X > 0

(5)

can be rewritten in the following form:
min cTX + aT(Y+ +Y)

subject to Y+ - Y -AX=0

The dual to this problem is

max w. - 0
subject to - wTA < cT
wT <0.T
) wT SGT
or
max wT -0

subject to WA + ¢t >0

lw| <a.



Since (5) is consistent (the origin is feasible), the extended dual
theorem of linear programming (see [7], vol. I, p. 190) states that
the objective function of (5) is finite if and only if there is a
feasible solution to its dual, i.e. (6). Thus the theorem is proved.

To convert the result of theorem 3 to the corresponding result in [1], we use

T Yy - 4
our definitions of ¢ and 0. Since ai = ——2 , we see that ,wil <a
8, - vy Y. - 4 Vit 9y S

condition iwil <a becomes 61 S"i Syl. Similarly, since

m /8, + Y
c=£<—L—i a,, - p,, we get that wTA+cT-nTA-pT, SO wTA+cT_>_0
J i=1 2 i3 J

becomes 'rrTA > pT. Thus we see that theorem 3 is analogous to the result in [1]
which says that the optimal value of the objective function to (2) is finite if and

only if there exists an m-vector m satisfying

&TA > ﬁr

and § <nm<y.
We not turn to an elucidation of what is termed in [1] the "insoluble-l-/
finite" case. This is the situation we mentioned in the introduction in which

h(X) 1is bounded from below but its infimum is not attained for a finite X, 1{i.e.

h(X) > inf h(X) for all X > O.
X>0

Theorem 4: As t—»o0, E|bi - tq]~ [tq - E(b,), >0
E(bi) -tq, q<0
E,bil »q9=0,
where we use the symbol ~ to mean that the difference between the

two quantities tends to zero as t-—-w.

yThis terminology is peculiar since we explicitly express the optimal value

of the objertive function for this case. This is done in the corollary to theorem 4.

R dnd
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Proof: Define the function XCq" ch(bi) = 1, bi <tgq

O,b tho

{
Then E[b, - tq] = E[(b - tq)(l - Xeq)] +E (tq - bi)xth

=<E(bi) - ZE(bixtq)) + tq[P(b, <tq) - P(b, > tq)].

But E(b q)fv 0, q<0 as t—rwo ,

iXe
E(bi)’ q>0

and the second term on the right approaches tq if q >0 and

-tq if q <0. Thus the theorem is proved.

Now fix X and define I0 = {i $ aix = 0} . Let bi = - bi sgn (a"X)

and bi = bi , 1€ IO . Then we have
0 ,ifho
T T T 1 2
Corollary: As t—»>o, h(tX)~ t{c X + ¢ |Ax|] +a [E(b") + EIb l]

Proof: h(tX) = tc'X + o E|b = tAX| ~ tc'X + & oElb, |

iel

i 5.
+ ZIO a, sgn (a’X)[ta"X E(bi)J

- tlcTx + o' |ax|] + o' [EY) + E|b?]] .

Theorem 5: Suppose that h(Xn)—)vo for some sequence gxng with

X 20, llxn||—>oo as n—o, where v, = )i(g(t; h(X).
Then cTY- + a.TIA?l = 0 for some Y >0 with ||Y-|| = 1.
Proof: Since the set S1 H éx: HXH =1, X> Og is compact, the set

xn E has a limit point Y in Sl' Moreover, there exists some

n

subsequence, which we denote by EYUS , such that Yn—> Y as

n—-.



(7)
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Now

1 T T
TTE;TT (c Xn +a IAan) = C

TYn + aTIAYn|—> ch + c,TlA"l'l as n— .

T

However, c¢"X_ + a?IAX | is bounded from below since h(i ) > Vo
n n n

This follows from the inequality (ch + a?lAXI) = a?Elbl < h(X)

< (cTX it &T|AX|) * aTEIbI. Thus, in particular, cTXn + dT|AXn| remains
bounded while ||xn||——+oo. Hence, from (7), we conclude that the left
hand side goes to zero while c'¥ + aTlAfI > 0. Thus the theorem is

proved.

We will now show that when gxng exists wich the properties described above,

h(X) must approach its infimum along some ray in the orthant X > 0. First, how-

ever, we establish

Lemma 1:

Proof:

Theorem 6:

Proof:

For any vector £, |h(X + ) - h(X)I'S lchl + &TIAQI.

|h(x + £) - nx)| = |cTe + aE(|b - AX - AE - |b - Axl)l

< | + oTelagl| < [<el + o |agl.

Let llYnll =1, and
let t:n—>oo as n—00.,

Assume h(tnxn)—yvo as n—o0 and Y = lim Yn 5
n—00 ,

Then h(tnf)m»v as n-—o0.

0

There are only a finite number of ways an n-tuple can be

-partitioned into subsets of components such that the components in

a subset are either all posjitive, all zero, or all negative. Thus
there exists some subsequence of {Yng » which with a minor abuse
of notation we also denote by %Yng , with the property that the

components of AY" are of constant sign for all n.
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1
5 =y
in t:2 in
n

Let & if oia‘vn—u‘?-o

0 otherwise,
th
where y - is the 1 element of Yn.
Then the sign of each component of A(\? + Gn) remains the same

for all n sufficiently large. Also

h(tn‘f + tn6n) ~ h(tnYn) by theorem 5
and h(tnYn)—+vo by hypothesis.
But, by Lemma 1, |h(t ¥ +¢t 8 ) - h(t ¥)| < tn[lcT6n| + aTIAanJ
and by our definition of °n the expression on the right ap-
proaches zero as tn—vm « Thus h(tnY.)—>vo as n—0.

Thus we have reduced the problem to one of investigating the behavior of h(X)
along rays in the nonnegative orthant. Moreover, by the corollary to theorem 4,
the "knife-edge" cases in which c'X + a'|AX| = 0 have a.T[E(bl) + E|b?|] as the
optimal value of the objective function. However, it should be expressly noted
that these "knife-edge'" infinite ray cases can never appear as solutions to
practical problems. Rather they exhibit an inadequacy of realistic formulation
of the model. We develop their properties here only for completeness of analysis.

We now turn to the development of incremental formulae and their interpretation
in probabilistic terms. It should be noted that, again, elementary properties of

absolute values quickly and naturally lead to results in all generality.
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3. The Increment and the Radial Directional Derivative of h(X).

We now give expressions in terms of the probabilities of the various b
versus AX events for the increment of h(X) (i.e., h(X + €) - h(X) ) é&nd
for the directional derivative %E h(tX) whenever the latter exists. The ex-

pressions are free of any restrictions as to the character of the distributions

of the b.
First, on inspecting figure 1 below, we note that, for e > o,
€ ,u<a
f(u)= |u - (0 +€)| - |u-al= Je +2(a -u), a<u<a+é
'e ,U?_&+€.

£(u)
+6
u
)
Figure 1

Thus, i1f u 1is a random variable with finite expectation,

Eu<|u-(a+e)| - |u-a|) = €[P(u <at+€) - P(u> ate)] + [e,+2a-2 <a+ee(e9]1’(a_<_ u < a+€)

for some 0 <©9(e) <1 by the mean value theorem. In other words,

(8) E <|u-(a+€)| - |u-a|> = e[P(u < a+6) - P(u > at+€) - 20(€)P(a <u < a+€)].
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But
T T
h(X+£) - h(X) = ¢ g+aE<|b-AX-Ag| - Ib-AXD ,
so if we use (8) we get, using P(b > AX) to denote the vector whose components are

P(b, > a'x),

(9) h(X+£) - h/¥) = ch + aTD(Ag) [P (b <A(X +£2) =-P(b>AX+2))

- 2D (e (Jag]) P(AX <b < A(X+E) ]

where D(y) denotes the diagonal matrix whose diagonal consists of the components
of the vector y and where 9(|A§,) = (él(lalgl), o 96 3 Om(lamg|i> with
0 < 91(|aig|) <€ 1. Thus we have an expression for the increment of h(X), and
thereby an expression for any possible directional variation, in terms of the
probabilities of various events. Clearly then, any conditions on the probability
distributions involved in b which guarantee that P(AX < b < A(X+£))—>0 as
llgll——»o will guarantee the existence of a gradient of h(X) at X.

We now specialize (9) as follows: In (9) replace X by tX and £ by E€X,.

Then we get

h(t+€)X - h(tX) = cT €X) + CLT:)(Aex) |:P (b < A(t+€)X> - P (b > A(t:+e)x>

-2D (e(lAexl)) P <At:x <b <« A(c+e)x):| - e{ch + a,TD(Ax) [P (b < (t+e)Ax)
-P (b > (t+e)Ax> = 2D(0(|AX|)>P<tAX <b < (c+e)Ax>]g o

Then as t—o0 we get, for any fixed € > 0,

(10) h ((t+6)é)- h(tX) - ch . a.TlAXI .

Thus, if the left hand side of (10) has a limit as ¢—~0, we see that the directional

g

I h(tX) 1is given by

derivative

Tx + ot |ax| .

d
(11) M h(tX) = ¢
It is clear that computational methods can be based on our expressions (9), (10)

and (11), but we shall reserve these developments for another occasion.
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4., Extensions

The special model treated in [1] is rarely of any real-world or economic-
theoretical significance because many constraints cannot be expressed adequately
by '"linear" penalty funECIons. As a simple reminder, note that X must be
bounded, although of course the specification of the bounds may involve inter-
relations between groups of the individual variables. We have chrsen to develop
our results for clarity and ease of comparison in the context of [1]. However,
it should be obvious on reflection that practically all the developments of the
preceding sections can be extended to the case where there are additional linear
inequality constraints on X in (2).

- For example, consider the extension of theorem 3 to the case where X must
also satisfy DX > d. Then our proof of theorem 3 requires only the obvious

modification of the dual problem. Thus we get

Theorem 7: 1If the constraints DX > d, X > 0 are consistent, the optimal value

of the objective function for the problem

min clX + G?Elb - AX|
subject to DX > d
X>0
is finite if and only if there exist vectors w and v satisfying

-wTA o vTD < cT

v <a

v>0 .

thien e

A much more significant extension of the general model follows from observing

that the linear constraints DX > d can be considered to be the deterministic

equivalent constraints for chance constraints P(DX < b) > B. This follows from

e e . ot bty 3 _.*'-1

. e v 0 v ———— 5 . .- !
AN, Tl e A - B, .. S i e s oo TP g o L - - - P

L3 o s o
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the fact that since X 1s a zero order rule, the chance constraints can be re-
placed by the equivalent set of deterministic constraints DX < F-l(l-B), where
F-l(l-B) is the vector of F;I(I-Bi), the (l-Bi) fractile point of the marginal

distribution of bi'

It is also evident that modifying the objective function to the form

min ¢ X + E[Gb - AX],

where G 1is a given mxm matrix, does not affect the proof of our theorems,

Thus our results hold for the very general class of constrained generalized median

models discussed in [4].

Finally, it should be noted that the so-called "complete" probleml/ of

linear programming under uncertainty is merely another special instance of the
constrained generalized median problem, and as such it is susceptible to our analysis.

To see this we merely observe that the complete problem can be written as

T m
min ¢'X +E( I g (X,b)
=1

i
S.t. DX= d
X>0
i i
where gi(x,b) = (bi - a X)yi if bi -aX<o
i i
(bi - a X)6i if bi -aXxX>0.

This formulation is obtained by expressing the second stage decision variables

in terms of the first stage decision variables X.

Ysee (8],page 102.

<o ot oy g W s T 4 e ey,

e —— ——y T [ A AW
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