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(i) 

ABSTRACT 

The expected wait in the Gi/G/1 queue is related to the mean and 

variance of the idle time. For arrival distributions which are 1FR or 

have mean residual life bounded by r-, simple bounds are obtained which 
A. 

give, for example, the expected number in queue to within at most one 

customer. 

By equating input with output, relations between random variables 

are used to obtain expressions foi the moments of the waiting time in 

terms of moments of the inter-arrival, service, and idle time distri- 

butions. By bounding the idle time moments, bounds are obtained on the 

mean and variance of the waiting time, the mean length of a busy period, 

and the probability an arrival finds the system empty.  Bounds on the 

mean wait lead to bounds on the expected virtual wait. 

Similar results are obtained for some generalizations of the Gl/G/1 

queue, including batch arrivals, batch service and priority queues. 

Queues where the first customer in each busy period has some added delay 

are also considered. 

Some preliminary results for tandem queues are given. 

ai ^^**w«-*rav*si*rqF%pmpHmf?n*m^' i^"*^******- •—-^^^-.r^^s^^^^^u:,^.^. *   ■^j^F!i.^-0^«Wg^^pW^;^aaCTr. 
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1. 

Chapter 1 

SOME RESULTS AND BOUNDS FOR ALL Gi/G/1 QUEUES 

1.  Introduction 

Little work has been done on approximations in queue ing,. Emphasis has 

been on complex analytic results.  Notable exceptions are papers by Kingman 

(1962 (a) and (b)) and recently by Newell (1965). The work of Newell is 

applied primarily to traffic light problems, whereas Kingman's is more 

closely related to this thesis. 

In this chapter some new results are found for various indicators of 

performance in the GI/G/1 queue.  Bounds which are easily calculable are found 

for such items as the expected wait in queue, expected length of an idle 

period and the variance of inter-output times„ 

V/e find a relationship between the idle time between busy periods and 

the waiting time of a customer in queue. The expected wait in queue is found 

in terms of the first two moments of the inter-arrival, service, and idle 

times. For Poisson arrivals the idle time distribution is exponential, and 

the expected wait is calculated easily.  In general the moments of the idle 

distribution are difficult to calculate. However, an upper bound for all 

GI/G/1 queues is easily found in terms of the mean and variance of the arrival 

and service streams only (see also Kingman, 19^2 (a) or (b)). A lower 

bound is found which requires knowledge of the arrival and service distri- 

butions, and not just the first two moments. 

Only stationary queues are considered. No transient results are given. 

2.  Notation 

The following notation is used throughout the paper. The sign ~ is 

used to signify "with distribution function". 

r "£TC>^-7^5K^3»?W"™»'!»=^-'-- 
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2. 

We shall deal exclusively with stationary queues in this paper , by 

which we shall mean that the queueing p-ocess either started at time zero 

with stationary conditions or that it started with some initial condition 

(such as the wait in queue of the first customer is zero) but that time 

was at -co. 

By the subscript n (e.g., V/ ) we shall be referring to the n-th cus- 

tomers in a stationary stream. When it is not required to note the order 

of the customers the subscript will be dropped. 

T = time between n-th and (n-M)--th arrival, T ~ A(t) , E[T 1 
n n   v '    nJ 

S = service time of n-th customer 

S     - T   ,  U   ~ K(t) 
n n      n 

,  S    - G(t))  E[S  ] 
n x  ' n 

1A 

l/p- 

T     =  time  between  n-th and   (n+l)-th departure 

p     = X/ii 

W = wait in queue of n-th customer,       W ~W(t) 
n ^ n   x ' 

V = virtual wait in a stationary queue (see section h) 

I  = length of idle period between busy periods, I ~H(t) 

B = length of busy period , B ~ B(t) 

It is possible in some queueing situations that an arrival and service can 

take place together, leading to problems in defining what is an idle period 

for the queue. V/e shall define P[l=0] = 0, and thus if an arrival occurs 

at the instant the last customer present departs, the busy period continues, 

and ends only when the facility is empty for a positive length of time. 

N. = number served in a busy period 

^-Illg^lW " - ^^■..T.-^-^-ITT' MBnasmonc; 



D     =  total   delay   in  system ~ W +  S 

N    = number   in   the queue  at a   random point   in  time 
q 

v)n'   = n-th moment about origin  of  random variable with  distribution F. 

The  superscript   is  dropped  for  n=l ,  e.g.,  v    =   1A,  v    =   1/p..,  v,   = E[l] 
a       g       n 

2 
a, = variance of a random variable with distribution F 

2 2 2 
cr = Or/i^r)    , where c,   is  the coefficient of variation 
f        i^  rJ    ' f 

a     = P[Arrival   finds   the system empty] 

F   (t)   =   1   - F(t)   for any distribution  F 

3.     The Wait   in Queue and  the   Idle Period 

By equating   input  times with output   times  relationships  between  the 

moments  of   the  arrival,  service,   idle,  and waiting  time  distributions  are 

now found. 

The following   result   is  given   in Riordan   (1962),   but  because  of   its 

usefulness   it   is  proved  here. 

Theorem  1.1:     For  all   GI/G/1   queues with p  <  1, 

1       1 
oh      X      y, (0 

Proof: Consider the time between the n-th and (n+l)-th departures 

T = T - D + D ^ 
n   n   n   n+I 

= S 
n-M   n 

'?''!TJr&yt\-'"'\>',J-,i''z'J-*—: '  -"■■~-=5S2-'-' *'! ■-■ • ^csa^Bg^gpgrowp— "■ •^*.rr?,v<j>s^'vt-i)(fäis*T~w~ 



where X = 0 i f W , . > 0 
n       n-i-1 

- - (D -T ) i f V/  , = 0, 
n n' 

If U = S -T we have the fundamental relationships 
n   n n 

W , , = W + X + U 
n+1   n   n   n 

(2) 

= Max [0, W + U ]. L ' n   nJ (3) 

VJhen X    > 0, X  =1.     Hence,   taking expectations   in   (2)   and assuming 

stationärity 

E[X ]  = a E[l] = -E[U ] which proves   (1). 

As  examples,   for Poisson arrivals  a     =  (1-p)   and  the   idle  distribution 

is exponential  with mean r-.     For  the  constant arrival,  constant  service 

case   (D/D/l   queue)   a     =  1  and   I   = r* " '"■• n '      o A.       |JL 

The  following  expression   is  now derived for   the expected wait   in 

queue. 

Theorem  1.2;     For  all  GI/G/1   queues with p <  1, 

E[W] = 
E[U21 . E[|21 
-2E[U]  2E[l] 

^i  2 .  2\ , /i  ^2   (2) 
K  aq]   ^~9' Vh 

2X(l-p) 2v. (^) 

^uji'-'-i^.-i-» 'luiuji.'T,W5-«JteS2»"5"'*^~'=,a:w^mmmim wmmmmmmfjß* "  
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Proof:    Write   (2)  as W   , ,   - X    =W    + U  .    Square  both sides and note  that 
  v  / n+l n n n 

W   ,iX     - 0,  giving 
n+l   n J 3 

2 2 2 2 
W   ,,  + X    = W    -l- 2W  U    +  U   . 

n+l n        n n n        n 

Takinq expectations,   since W    and U    are   independent, and 3       r ' n n 

E[X21  = a E[|2] we  have 
n o 

a E[|2]  = 2E[U ]E[W ] + E[U2]. 
0 L     J u   nj  u   nj ^   n 

Using  tlieorem  1.1   the   result follows. 

It   is   important  to note   the  special  v/ay   in which  the moments  of   the   idle 

Ef I21 distribution occur.    TpTTT  is   the mean of an  equilibrium excess   idle   distri- 

bution;   that   is,   it   is   the  mean  of a   random variable with  distribution 

funct ion ^HfM 
0 Vh 

du. This is a well known result in renewal theory. 

v (2) 

Consider again our two examples. For Poisson arrivals -z  = r-. 

9 ' 2vh        X 

In   this  case   (k)   reduces   to E[V/'J - ■x—r;—r,  a  well   known   result.     For   the 
2^ (I-p) ' 

2 2 (2) 2 1        12 
D/D/l   queue a    = a    = 0 and  v,v  '   =   (v. )     =   (r - —)   J   in which case   (k) 1 ag n s  h X       [i 

reduces   to E[V/]  = 0. 

An expression for  the variance  of  the wait   is  now found   in a  similar 

manner and   is   given  by 

Theorem  1 .3;     For all  GI/G/1   queues with p <   1, 

■ÜIUM- «^l/fMl^l^l^BP^IR^nMPPWaVW^nvnKIBVBRSSVmtK T^Sjgijr????'.-1-'«"'^*'' '» UJ;,.T .V^', It . ■!    "-UM»» 
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2       Ei"U3l 
0w "  -3E[UT 

rEfu2! i2 , rEfi3!   rEri2;n2i 
L-2E[UJJ        L3E[1]  " L2E[I'jJ J 

or 

CT    = 
w 

X(v(3'-v(3')+3(ov(2'-v(2))      rX2(o2.1C
2)   +(1-P)2,2 

v-vhere 

3(l-p) 

2 (2)     2 
e ,h        e ,h    e ,h 

2X(1-p) 

v (3) (2) 

3 V, [rH 

0" 
e ,h (5) 

Proof:    V/rite   (2)  as W   , .   - X     = V/    -t- U    and  cube  both  sides.     Note   that 
  n+l n n n 

X W   , ,   = W   , ,X     =0.     Using   (l)   and   ('-l-)   after  taking expectations n  n+l n-i-l   n a   \  / \   / J      i 

the  result follows . 

The expression for   the expected wait   is   of  particular   interest   in   queue- 

ing  and   it   is   seen  to depend  only  on   the  first   two moments   of  the   inter- 

arrival,  service,  and   idle  distributions.     In   general   these   idle  period  moments 

are  difficult   to calculate  but  bounds will   be  obtained  for   them and   this   is 

the  subject  of  section   (7)   of  this   chapter and  sections   (l-^i)   of Chapter  2. 

k.     The Virtual Wait 

The virtual  wait   is   defined  here   to be   the   time an arrival  would  have 

to v/a i t   in  queue   if he  arrived at  some   random point   in   time   into a   station- 

ary  queue.     The  expected   value of  V   is   found   easily   in   terms  of  the  expected 

value  of W,   the actual  wait   in queue. 

First we  show that  at a   random point   in   time   in a  stationary queue, 

the  probability   the system   is  empty   is   (1-p).     The  times   between   the   starts 

of  busy  periods  are   independent and   identically  distributed,   say with 

distribution  B'^t),   the   distribution  of   (B-M) .     Hence,   the  queue  has  an 

imbedded  renewal   process,  and  note   that  following   the  end  of an   idle   period, 

["naraHwimagn .T^.i^ww**i*»i^:';'-,rÄ,-w»«taiKawc^»ir.,.n^7'HaH!t n1*^^-^' ■-'^v*:rT^ ■'W'l-''M" ' '~~!77l, jt^p; '• .^rjr.Kamn'TZ" ***«=«»« 



7. 

the distribution  of   the next  busy  period   is   independent,  and  distributed 

as  B(t).     Let M"(t)   be  the expected number  of  busy cycles   (i.e.,   from  the 

start  of one  busy  period  to  the  start  of  the  next)   in   (O.t]   starting at 

t=0 with  the  start  of a  busy period. 

P[Busy at T1  =      8° (T-u)dM" (u) 
J0 

and applying  the  Key Renewal   theorem,   if  B"(t)   is  non-lattice, 

Mm P[Busy at T]  = ^^,3  = P 

In   the   lattice case,   the  Cesaro   limit  may be  found by Tauberian  arguments. 

Now  let V = X+Y, where X   is   the  excess   service  time  of   the  customer 

in  service and Y   is   the  sum of  the service   times  of all   those   in queue when 

a   random arrival   occurs.    Then 

E[Y3 =-~L= pE[W]. 
M- 

Conditioning only on whether or not a random arrival finds the system busy 

E[X1 :-    -.f-. 

Hence, E[V] 
p(Cq + 0 

+  pE[W]. (6) 

it is interesting to note from (6) that E[\/'j = E[Vy"J if and only if 

E[W] = 
P (Cg + 0 

V(I-P) 
which is the case for Poisson arrivals.  Using equation 

-r^   ^--^7^y^^^^,^T.,.y<yrwwv''i'g<gOTv--.T-)j '■;:'.', -~— •'^•ijs^^ctv.'rj'^'-'»'■'■ ■ '■^u-j.. qwBWff ■ m rmma***** -^P 
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(k)   in   (6)   gives 

E[V] ^ 
P(c2 + c2) 

2p,(l-p) 2^ 2v, 

1-i-C pv (2) 

Using either   (6)   or   (7)   in  the D/D/l   queue  gives   the  Cesäro  mean E[\/]  - '■„-- 

5 •    The Variance  of   the  Output 

It   is  obvious   that  E[T  "]  - E[T ]  = :-.    The variance   is   found as 
nJ       \ 

follows.    From  the   relationships   in  section  3» 

Var [T ]  = Var [S ^J + Var [X  ] 
nJ n+lJ n (C) 

and Var [W _, ,-X ] = Var [D -T ] u n+1 nJ       n nJ 
2
 ,  2 u 2 

a + a + a . a   g   w (8a) 

But     Var [W Ll-X ] = a    +  Var [X] 2Cov (W , .X ) v n-i-l n (8b) 

Jow W ^.X n+l n = 0 and hence, 

Cov (W^^X ) = n+l n' -Emci.i) 

Using this with (8), (8a), and (8b) gives 

Var [T 1 = o2 + 2o2 - f (l-p)E[Wl L nJ   a    g  K ^ J (9) 

Using equation   (k)   for  E[V/] we  have  finally, 

Vo r   (T  )   - 0     - J—j — 
X 

,(2) 

IhnlX 
n' g ^ 2 X v, 

mm 
...'■■ 

 V" 
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0 1 
For  the M/G/l   queue  this  gives  Var   (T  )   = O'    -I- —-„—,   so  that   the  variance 

• n CJ        x 

of the  output  of  the M/G/1   queue   is  known exactly when   the mean and variance 

of  the  service distribution are  given. 

2        1 1 
If  G(t)   is exponential, a    = ~r and Var   (T  )   - —r.     In  the  case  of v   '              '                    '     g          2 N  n'       ., 2 

p. X 

2 
constant arrivals,  constant  service, CT    - 0 and Var   (T   )   - 0. 

g n' 

6.    The  Covariance of Consecutive  Outputs 

We  now derive an expression   for  the  covariance  between   two consecutive 

output  times.     This  expression  depends  on   the  covariance  between a  service 

time and   the wait  of  the  next customer.    However  bounds  can   be  obtained   to 

show  that   it   is  bounded  close   to  zero.    This   is  done   in   section  7. 

Theorem   1.k:     For all   GI/G/1   queues with p <  1, 

Cov   (T   ,T   ,,)   - Cov   (S   u1,V/   i0)  +~ (l-o)   -a v n    n-i-r v n+l     n+l'       k   ^    ■ g (10) 

where        a = E Max [0,Un]     = j x dK(x) 

Proof: T    = T    - D    + D   L, n n n n-!-l 

(T  T   ,,)   -   (T  -D  +D   tl)(T   ,,-D   ,,-i-D   , J, v n  n-i-r        x n    n     n+r     n-M     n-i-1     n-i-2' 

and   in a   straight-forward  but   tedious  manner  we  find   that 

COV(T   ,T      .)   ■--- E[(D   -T )ü   , ,]   -  £[(0   -T )D   l0]   - E[D   , ,1  H- F.[D   , ,D   ,   '1.     (a) x n     n4 r LN n     rr   n-i-lJ -x  n     n'   rrl-?. n i-1 n+l   n-i-2J        v   ' 

^ .7-CiiP-* -.^—^|»KJ!iVtf^»W»rr*. .^sgsv-- ■ . --.-jzuizzcv mrrt- •'•7T.~^a^mr^'1.'^— '-'*'   * '~??rr!T*v*-**rrtft3C: 
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Since       D   , .   = W   , ,  + S   , ,   and W   , ,   = Max [0,D   -T  ] , n-i-l n-i-l n-l-1 n+1 L       n     nJ 

10. 

E[(D   -T  )D   ,,]  = E[W2
Ll]  -i-   (-)(E[W]  + - - f) v  n    n7   n+lJ L   n-i-lJ        > [I       K' (b) 

E^n+^ 
E[Vy2 J -I- 2E[W +1s (1] + l1)2. n+1- n+1   n-i-l ^IJ. 

(c) 

Using   (b)  and   (c)   in   (a),  after  some cancellation, 

COV(T   ,T   ul)   = E[(W Xl+S ^.-(D  -T  ))W   ,,]  - ^^- - a2 
v  n     n-i-r v n+1     n+1       n     n"   n-i-2J \x g 

= -E [(MIn(0JDn-Tn))Wn+2] + Cov(Sn+1,Wn+2)   -a (d) 

Now 

W n+2  Min   (0'Dn-V   =MaX   (0'W
n+r-Sn+l-

Tn+l)   Min   (0'Dn-Tn) 

When D   -T    < 0,  then W   ,,   =0, n     n n+1 

•■• Wn+2 Min   (0'Dn-Tn>   = M3X f0 ^n+rVP  Min   (0'Bn-Tn' 

which  by   independence  gives 

E[V/n+2  Min   (0,0^^)]  =-  -cvE[Max   (0,Dn-Tn)   -   (D^)] 

Putting   this   in   (d)   gives 

Cov(VTn.n)   -CovCS^^W^)   +f  (l-o) 
2 

-a9- 

*a^gg^F^i •iw-TlfiÄ^j.^.^'-- ■ ^-■yr^T^ri^crTr«»' —' •■ ^ASg^3 
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which establishes   (10) 

7.     Some   Bounds  for All   GI/G/1   Queues 

Using the results of the previous sections some simple bounds can be 

found for various factors in the GI/G/1 queue, such as the mean length of 

an   idle  period and  the mean wait   in queue, 

a)     The  mean   idle   time.     Since  a    g  1,   theorem   1.1   gives  a   lower  bound  on 

the   length  of an   idle period, 

E[l] ^ i . i (10 

The bound is tight for the D/D/l queue, 

b) The wa i t in queue. Recall that from theorem 1.2 

E[W] = 
X(a2 + a2) + (1-D)2  V.

(2) 

2X(l-p) 2v. 
(12) 

From (11) and Var [I] § 0, it follows that 

E[W] 
X (a2 + a2) a  .5_ 

2(l-p) ' 

This upper bound for all GI/G/1 queues is also found by Kingman 

(1962 (a) and (b)). Equality holds for the D/D/l queue. 

The importance of these bounds is that they involve at most only 

the first two moments of the arrival and service distributions and further 

knowledge of the distributions is not required.  However, if K(t) is 

known (or alternatively if A(t) and G(t) are known) a lower bound on the 

wait in queue can be found as follows. 

:'-.. -^■"•.•"■■r-'"..'*'". •sj^v. nij i! 
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Theorem 1.5: Let I be a solution of 

x = 1  KC(u)du, x § 0, where (Sn-Tn) ~ K(t) 
-x 

which exists and is unique if and only if p < 1. Then for all 

GI/G/1 queues, E[W] ^ I . 

Proof;  Recall the fundamental equation (3) 

W ^ = Max [0, W + U ]• 
n+1      L   n   nJ 

Then [W L1|W =x] = [Max 0, x+U ], L n+11 n  J  L        nJ ' 

tnd  E[W ..Iw =x] =   KC(u)du    all x 5 0. 
n-i-1' n    J     ' 

-x 
(13) 

Now let K (u)du = g(x) which is a continuous convex function for 
-x 

x § 0, with g'tx) = KC(~x), so KC(0+) = g'CO-) = P[Un > 0] and 

g1 (x) -> 1 as x -* «". 

r0 
Let-ß  - E[Min   (0,U  )]   -        K(u)clu    and 

n j 

i— 

a = E[Max   (0,U  )] -      KC(u)du. 

Then 

From (13) 

a  -  Q -. 

^W  =I^WdWn<X) 
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or E[Wn+|] = E[g(Wn)]. 

Using Jensen's   inequality for  the  expected  value  of a  convex 

function  of a  non-negative  random variable, 

E[Wn+1l § g(E[V/nl),       so   that 

E[W]  s KC(u)du, 
J-E[W] 

Consider  the  equation 

r00 

x = J      KC(u)du> x S 0 
-x 

(1^) 

This  can  be wri tten 

r0 

x = a + J     KC(u)dü x ^ 0. 

The situation is drav/n in Figure 1. The equation has a solution if 

and only if the two curves cross.  if cv = 0, x=0 is a solution; 

if a > 0  the curves cross if and only if for x sufficiently large, 

x > Q? -i- 

nO „0 

KC(u)du <=>   K(u)du > a    or if and only if ß > o-, 
-x J-x 

1 . 1 But ß > Ck1 i f and only If r-> —.  Uniqueness comes from convexity 
A. [JL 

arguments.     Uniqueness   fails only when   the   two curves   coincide  over 

some  range,  [a,b3   say.    This   implies   g' (x)   -■- K   (-x)  =   1   on 

[a,b3  -> g'Cx)   -   1   on [a,^)   -.-> curves   don't  cross.     In   the  case 

p  f'z   ] ,  either  no  solution exists   or,   for  example   in  the  case  of   the 

-JWSB"*nT5P»pWB "■ ■ f^T? **<&!&■* m~j." Ti* £■ 
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Uf, 

K-" 

r   c 
y = o' +        K   (u)clu 

Figure   1:     Determination  of  Lov/er Bound  on   the V/o i t   in Queue,   I. 

D/D/l  queue,  an   infinite   number of  solutions  exist with  p-1. 

So for p  <  1,   let  t   be  the  unique  solution of   (14).     It   is 

now shown  that  I   S E[V/"J.     This   is  obvious   from Figure   1   and  equations 

(13)  and   (14).     If   1=0  the   inequality   is   trivial.     If  I   >  0   then 

r0   c a > 0  and for all 0 ^ x < t , x < c -I-   K (u)du from the uniqueness 
-x 

property of  I.     Hence,   if E[W] < 1,   then  E[W] < K   (u)du which 
J-E[W] 

contradicts   (I'l)   and   the   theorem   is  proved. 

Summarizing, we  have  shov/n   that for all   Gl/G/1   queues with  p  <   1 

X(a2 -i- a2) 
i _ hiv/j _     2(1_p) (13) 

-urr-p" 

W?M 
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2        2 
where  I   is   the  unique  solution of   (1^).     For o    -i- a    > 0   (i.e.,  all 1 v  '       a   g    ^ 

except1 the D/D/l queue), both bounds tend to infinity as r—• — > 0. 
A.   [J, 

However, their ratio may diverge in a particular case as is shown 

below for the case of M/M/l queue. 

For the Poisson arrival, Exponential service queue it is found 

that 

k(t) = ^ e"^ t § 0 

Xy,  Xt 
^-i-X e 

t ^ 0 

which gives 

KC(t) =Tf-e"P't t S 0 

,   1  Xt 
1 - T—- e l+p 

t ^ 0. 

Using this in {]k)   it is found that the lower bound for this case 

is given by: 

1 2 
t = -(-) log  (1-p ) which -• as p -• 1". 

Hov/ever, it is easy to show that lim (l-p) log  — ~  0 and 
p->1" l-p 

hence,   the  bounds   diverge.    The  upper  and   lower  bounds  and   true value 

of E[W"J  are  shown   in Figure  2  for  fixed X-l   and varying p,. 

c)     The  variance of   the  output. 

The variance  of  the output distribution   is  given   in  equation   (9) 

Using arguments   similar  to those   in  b)   the  following  upper and   lower 

-fB»aBi»T»^BTOjgapj^ai;pMw»waa»T ■ rramatsemmBf ■ 'r^TS7?r*rv&?3IWIQI&3f*?m' ' _..  .iv.n ' "* '**>*' 
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bounds  are  found  for all   general   arrival,  general   service  single  channel 

queues, 

2 
J 
g 

2 . „ 2 
r 
a g 

of g Var [T„1 ?= a^ -1- 2o„  - 21 (f - -) , M /i       i (16) 

where t   is   the  solution  of equation   (1^). 

Lov/er  Bound 

.2 .h .6 .8 1.0      p 

F igure 2;     Pounds  on   the  Expected V/ait   in   the  M/H/l  Queue. 

d)    The  covariance  of  adjacent   inter-output   times. 

Equation   (10)   gives  the covariance  of T    and T     .    in   terms of   the 

covariance  of  S   ,,   and W   ,„. 
n+1 n+2 

Nov; n-l-1   n-!-2 n-i-1 n+1     n-M     n+P 

n+1     n+1     n-l-1     n+1 

""""'IJ '^^"^^™' ''^ ^~|r^^rrr,'?^3j;Ujs»io>i^='ga»^ BOW«— U ■» -,.._ ,* >4.f--i^Jt« 
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Hence, Cov   (S     A/   |0)  g ECS2,.]        ' 
\\i 

and  using this   in   (10)   gives 

Cov   (T   ,T   ,,) S f (l-p)(a - -) n     n+1 \   v    r' p. 

It is easy to show that a <  — and thus that this expression is negative 

An upper bound is found as follows: 

Max [0^/ ,,+S Ll-T ,,] ^W ^ -1- Max [0,S Ul-T _,,] L ' n-i-1  n-M  n+lJ   nH-1 n+1  n+lJ 

and using this gives 

C0V (Sn+r
Wn+2) '  

EtS„+: 
Hax CO'VirW^ S  ECSn+l^ 

which leads to: 

Theorem   1.6;    For  all   GI/G/1   queues with p <   1 

„(i _ i)., i^      1     g Cov   (T )  g ^(i „ i)  + L. 
XA.      LL 2      Xu, n     n+r X      u, 2 (17) 

The   lower  bound   is   negative and  upper  bound  positive  so   in  general   no 

conclusion  can   be  drawn  as   to  the  sign  of   the  covariancc.    However,   it- 

has   been  bounded  to within r—. 
K]i 

e)    The yirtuni V/ait. 

The  bounds  obtained   in  part   (b)   and   given   in  equation   (15)   can   bo 

used   in equation   (6)   to  show  that,   for all   GI/G/1   queues with p  <   1, 

i^t??jr^:Q*;ipii^ttiarlfiiner~e'KSfsrr—'«rraimawm'«^ ■•" "»■»-■B«y ««■*-. '^t"^BHl'UIWW.'J|J'>""1" '" 7-v.'.;-."»Vjir- 
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Chapter 2 

Q.UEUES WITH ARRIVAL DISTRIBUTIONS WHICH HAVE MONOTONE FAILURE RATES 

1.  I ntroduction 

In the previous chapter it was seen that the moments of the idle time 

distribution occurred in many of the expressions. The idle time distribution 

is some complicated tail distribution of an inter-arrival time and it might 

be conjectured that by placing some restriction on the inter-arrival time 

distribution one might obtain some desirable properties of the oments of 

the Idle period regardless of the service distribution. This indeed turns 

out to be true. 

The first restriction to be placed on the arrival distribution is to 

restrict it to the class with decreasing mean residual life (DMRL).  In this 

chapter the words decreasing and increasing are used in the weak sense and 

always should be read to mean non-increasing and non-decreasing respectively. 

The symbols I and t will be used respectively for decreasing and increasing 

in this weak sense. 

Definition 1. A non-discrete distribution F has DMRL (IMRL) if and only if 

 ^—       for all t § 0 when finite. 
Jt    FC(t)     (t) 

The expressions  and  symbols   in  parenthesis   should  be   read 

together. 

A  slightly  stronger assumption  on   the arrival   distribution will   also 

be  used which   Implies   the above  assumption. 

Definition  2.     A  non-discrete  distribution  F  has   increasing   failure   rate 

(is   IFR)   if and  only   If 

m**^&m9!m»*'*mwl.>' .^Mcram^ ™^*<^&!mmm*r**?r " j;y—■^-•■^.g;-7!;^^^,w^w> 
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F(M-A) - F(t) 1.    for A > o and all t g Q where finite 

FC(t) 

If F is discrete, then it is IFR if and only if 

IS 

CO 

S P 

all k fe 0 v.'here f in i te, 

n-k n 

It is said to be DFR (have decreasing failure rate) when t 

is replaced by I in the above expressions. 

These concepts are widely used in reliability theory where strong 

physical justifications can be given for their use in particular problems. 

In queueing an IFR arrival distribution would have the following physical 

interpretation. Given it has been a time t since the last customer arrived, 

the probability that a customer arrives in the next small interval A is 

increasing in t. Besides any physical justification many parametric 

families have this property; for example the gamma and V/eibul distributions 

in certain parameter ranges, and the truncated normal and modified extreme 

value distributions. The degenerate distribution of the constant arrival 

queue also has the IFR property.  For a fuller discussion on these properties 

the reader should consult Chapter 2 of R. E. Barlow and F. Proschan (1965). 

For IFR/G/1 queues, (that is, the class of GI/G/1 queues whose arrival 

distributions have the IFR property) it is shown that simple expressions 

can be obtained to bound, for example, the expected number in the queue to 

within at most one customer. These bounds involve only the mean and 

variance of the arrival and service streams. For the special class of 

D/G/l , (constant arrival, general service), the expected number in the 

queue is bound to within at most one half. 

5W "TnjiV^,.^,.» ■, ■ c* ;■??; ~:-'!i^>.l-7St-T' " ^aSC? 
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2. Some Properties of the Idle Distribution 

In this section two theorems ore proved-v/h ich give some of the useful 

properties of the idle distribution.  These are then used in section 3 to 

obtain bounds for certain factors in the given class of queues.  in what 

follows, symbols and expressions in parenthesis should be read together. 

Theorem 2.1;  For all Gl/G/1 queues where A(t) is restricted to have DMRL 

(IMRL) , 

I H (x)dx ' 

t HC(t)  (-) J 

■^ «c 
A^(x)dx 

t AC(t) 
all t 5 0. 

The inequalities are tight for the exponential distribution 

Proof:  Let X - time from the last arrival to enter a busy period to the 

end of the busy period and let X ~ 5(x) (see Figure 3). 

Note that by definition (see section 1, Chapter 1) ?(0 ) = 0. 

E 
J- 0) 
0) 4-' 
JD in 
E > 
^ to 

- T 

T ime 

Figure 3: A Realization Showing the End of One Busy Period and 

the Start of the Next. 

Let H(t; x) - P[l fi  t|X=x]. 

It can be seen that HC(L; X) - ^--üM. anci H(tj   -_:  f H(t.  x)dö(x)J 
AC(x) J0 

■^Jj^rt-J n ^.^»»rr«^ wrjy-i-.w f-T",iTWnr,
lrn"■**"' "iH^i mug r*? ccrr^ttM»« *< •*—-t i(isc->- 
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2?., 

where the integrals in this section are taken to be Lebesguc" 

Stieltjes integrals. 

Cone! i t ion i ng on X , 

'" HC(u)du H (u;x)rl.-vx) 

t HC(t)   Jt J0   HC(t) 
du 

0 HC(t) ^ HC(t;x) 
du • dö(x) 

since  the   integral   converge  absolutely, 

^o       C .     Hc '.co        nc (.Uxl j        Allu)^  .   d, (x) 

0    HC(t)    Jt-ix AC(t-i-x) 

rv00    nC 1:0   .,C "    p    Oulclur    Hl(l;xJ_dö(x) 

C-) üt    Ac(t)    J0    HC(t) 

from the assumption of  the   theorem. 

Hence, 

'm HC(u)du '" AC(u)du 

t    HC(t)       C-) Jt    AC(t) 

By   letting   t~0  one  gets   the  f ol lov.'i ng 

Corollary:     For   (DMRL)/G/1   queues,   ((if-'iRL)/G/l   queues). 

v 
h   (5)  X' 

(19) 

Theorem 2„2:    F;or all  GI/G/1   queues where A(t)   is   restricted   to be   IFR   (DFR) , 
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(j)     l-l(l-i-A)   -  11(0     r:     A(M-A)   - A(t) 

HC(t) (5) AC(t) 

for A >  0 ,  and a 11 

t ?:  0 where  f in i te , 

(ii)   tLlOl   • all   t ^ 0, 
A^t)   (t) 

(iii)     J' 
.'» ..c 

t   vh *)Jt 

TO  „c 
H   (u)clu    -     f    A^(u)clu 

V 
all   t S 0, 

The   inequalities   in   ( i)- (iii)   are   tight   for   the M/G/l   queue,  and 

in   this  case   the   ratio   in   (ii)   is  constant and equal   to   1. 

Proof;     Proofs  are  given  for A(t)   not discrete. 

(i)     First,  condition  on  X  as   in   the  proof of   the  previous   theorem. 

H(^A)   - H(t)  ^  r [l-i(M-A;x)   - Hjtjx).! ^ (x) 

HC(t) J0 HC(t) 

Now    H(t+A;x)   - H(t;x)   - HC(t;x)   - HC(t-i-A;x) 

and  substituting vve   get 

H(t+A) - H(t) ^ „!__ r MliAi<Lr_AÜ±>iL . d5 (x) 

H"(t)     H"(t) '0    A"(x) 

„J__. f  A(fl-A-ix)'- A(t-ix) o A
C(t-i-x) d6 (x) 

HC(t) ^0     AC(t-ix)       AC(x) 

- A(t-i-A) - A(t) 

(^)    AC(t) 

from the IFR, (DFR) assumption on A(t) 

(ii)  Add and subtract 1 from both sides of (i), 

nyr- ymfrffqpMitwuiwiii ""«ll^    • ■'T. 'ag-^^^w-Trj^-»""— ""«».V.T J^I-iM»1"« "»'H|l«.ni »■ 
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Ik 

HC(t)      & 

AC(t-!/..) 

AC(t) 

or hllil   -    HC(t-i-A) 

Ac(t)   (?) Ac(t-i-A) 
a 11  A >  0 ,     t S  0 , 

which  proves   part   (ii).     Notice   that   (i)   and   (ii)   are  equivalent 

as   this  argument   is   reversible. 

(i i i)     From  theorem 2.1 

Ht'(u)dL, 
_t ^    HflL)     §    HC(v) 

('-)   AC(t)   ^  AC(v) 
all     0 =? v ^  t 

A   (u)du 

from   (ii)   and  the  fact   th.it   1FR   (DFR)   -> DMRL   (IMRL)   (see  Barlow 

and  Proschan   (1965)) . 

Putting  this   in  determinant  form, 

HC(u)du HC(v) 

CO 

jAC(u)du AC(v) 
(S) 

0 all   0 ^ v S  t, 

Integrating v over   (0,t) 

J   HC(u)du J  HC(u)du 

1  AC(u)clii J  A   (u)dLi 
C-) 

^^r^^r;*fi^»^^w"^»WTU3A«^iin»^\'^^~-^-t« •'r«^n-v--_ ■ ■--■"■ T»" 
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Adding the first column to the second gives 

25, 

HC(u)du 
Jt 

J  AC(u)du 

V, 

(§) 

which proves   (iii)   and  completes   the  proof  of  the  theorem. 

Part   (iii)   leads   to  the  following 

Corol lary;     For   IFR/G/1   queues   (DFR/G/1  queues) 

.U) J2) v 

2v.      (?)   2v 
h     x  '       a 

\       2 ]   2       K+   ]) 

(20) 

Equality   is   taken  on  everywhere  by  the  M/G/l   queue. 

3.     Bounds   for Q.ueues with Monotone Failure Rate Arrival  Distributions. 

a)     The   probability an  arrival   does  not v/ait. 

Recall   from Chapter   1,   theorem  1.1   that 

Vh = ^o-p)- (21) 

Using  the  corollary  of  theorem 2.1  above, 

(i)     For DMRL/G/1   queues 

(1-p)  ^ aog  1 

(i I)     For   1MRL/G/1   queues 

'■i,'i',ia<S35:t>-w'''>,,w*''! ^"^sw™™ ^wMumaMiwmi' ••'rr=ig»y?,y?".-r-^r^ *•" 
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2b, 

0 5 a f: (l-o) O   v  • ' 

The lower bound in (i) and upper bound in (ii) are taken on by the 

Poisson arrival queue. The upper bound in (i) is taken on by the 

constant arrival, constant service queue. 

b) The mean idle time. 

Using equation 11 of Chapter 1 and the corollary to theorem 2.1 above 

gives 

(i) For DMRL/G/1 queues 

^(l-p)ävh^. 

(i!)    For   1MRL/G/1   qusues 

rsv 

The  upper  bound in   (i)   and   lower  bound   in   (ii)  are  taken  on  by   the 

Poisson arrival queue.     The   lower  bound   in   (i)   is   taken  on   by   the D/D/l 

queue. 

c)     The  mean   length and  number  served   in  busy  period. 

Using  the  relationships  E[B] =   ,  °  \   E[ I]  and E[N,1 = |iE[B]3 

(i)    For DMRL/G/1   queues, 

ix ix(l-p) V 

1  S E[NJ 
bJ -'   (1-p)' 

WW' 
~?^^jpK-:r=wBas aaBBBgaptgg^^wiWttn^gpjt ■**"•.' ■«-'-L^yr- 
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the  upper  bounds   being  tight  for   the  M/G/l   queue,  and  the   lower  ones 

for   the D/D/l   queue. 

(i i)     For   IMRL/G/1   queues, 

.-n^Ts E[B] ■ 

T^TäEtV 

These  bounds  are  tight and  taken  on by   the M/G/l   queue 

d)     The mean wait  and  number   in  queue. 

Here  use   is  made  of   the   important  queueing  formula  E[N  ]  = XECW]   (see 

Little,   (1961)).    With  this,  equation   (12)   of  Chapter   1   and   the  corollary 

to theorem 2.2 above,  the following  results are  obtained. 

(i)     For  al 1   IFR/G/1   queues 

(p-hc2) 
J   - —2^- = E[W]  == J , (22) 

and 

where 

Xvl    - 
(pHcJ) 

S E[N  1 ^ XJ, (23) 

J = 

2   u y2  2 
c    + X a 
_a g_ 
2X(l-p) 

The  first  expression  shows   that   for   this  broad  class  of  queues   the 

expected wait  has   been  bounded   to within  at  most a  mean   inter-arrival 

2 
time since p < 1 and for 1FR arrivals c ^ 1 (see Barlow and Proschan 

(1965)).  The second expression shows that the expected number in the 

queue has been bounded to within a t ptos t 1 customer. 

•'=Tr"^«'^,fPw^TriT^M" ■MAfr-istym»'.»" 
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An application  of  these   to  the   important  class  of constant  arrival, 

general   service queues   shows   that  the expected  number   in   the  queue  has 

2 
been  bounded   to within at  most   1/2  customer,   since   in   this   case  c    - 0. 

a 

The bounds in (22) and (23) are shown plotted in Figure k   for X-l , 

2 
c = .9, for different values of p, as a function of the variance of the 
a 

service time. One might say that the expected wait increases "approximutely 

linearly" with the variance of the service, with a slope of ^m T- 
2(1 -p) 

This   is  also  true   for   the variance  of   the arrivals. 

The   lower  bound   is   taken  on  by  the   M/G/l  queue  and at   least  one 

member of  the class   takes  on  the  upper  bound,  that being  the  constant 

arrival   constant  service queue. 

E[W] 

Figure  k.     Bounds  on  E[W]   for   1FR/G/1   Q.uem^ 

^ 
iST-r-«-.^■■■-l.wwi"u-T,fij> mwfmBBg^qm !Tr":'^T^5fSi»BBP'W^PF^**W'SBHCgtor-BBri.' i"». ■' —imaim*-^t.^, <■ ^-^•^ctu^KwtmK»■ 
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(i i)     For a]]  DFR/G/1  queues 

2   u ,2  2 
c    •(- A a a a 1 s Etw] s -f^T^y 

(p    +   C   ) a 
2X 

(2M 

and 

2 2 2 
c    + Xa        p  + c 

(25) 

where  I   solves  equation   (1^4).     The  upper  bound   is   taken on   by  the M/G/l 

queue.     It has   not  been  shown   that  the   lower  bound   is   taken  on   by any 

member   in  the  class. 

e)     The  variance of   the  wait   in  queue. 

Theorem 2.2  allows  bounds   to be  obtained  on   the  variance  of an 

2 
equilibrium excess idle distribution, a , .  If the first three moments 
^ e ,h 

of the arrival and service distributions are known this is the only 

unknown quantity in equation (5), v/hich gives the variance of the wait. 

C lear 1y , 

(i)  For IFR/G/1 queues, 

.    vp)  v(3) 
e,h- 3vh  -3va ' 

and this with equation (5) gives upper and lower bounds on the variance 

2 
of the wait v/hich differ by no more than —r, since if A(t) is IFR 

X 

v (3) 

3v, 
5 2v 

2 ,  2_ 

(see  Barlov; and  Proschan   (1965)). 

'..". ■i'O"^"* •^'';;-^ia.'y^'.a«3S**fl^^*'w^^f'-' v'-'i •" -"1C4. »U* .vj Hi i iim)ilJ)HP!ij ■■■!.. •>•-■•■ • -.V^r*' 
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f)     The  variance  of   the  outpul  dist nb u 1: i on . 

The  only  unknov/n  factor   in   the  variance of   the  output   i r.  again 

,(2) 

2V, 
and   using  theorem 2.2, 

(i)     For   IFR/G/1   queues 

2 <- i,      r     -i  --    2       1 -n 
o'    S Var IT      - ^T    -I- — g nJ g        . 2      ' 

the  upper  bound   being equality  for   the  M/G/l   queue,   and 

(i i)     For DFR/G/1   queues , 

a^ -i- i^- ?= Var [x ] ^ 2o^ + oj   - 21 (^ - k , 
g.Z n ga A.^, 

where I solves equation (1^). 

9) The V i rtual wajt 

Using the bounds in (22) and equation (6) give, 

(i)  For al 1 IFR/G/1 queues , 

p(c +c ) 

5^r3 ™ 
p (c +c )   (p-i-c ) 

5! . a'  _l__a_ 
2^ (1 -p)     2^ 

and the expected virtual wait has been bounded to within at most —. 

The lower bound is equality for the M/G/l queue.  The upper bound is 

the Cesaro mean, or the mean wait of a random arrival in the D/D/l queue 

(i i)  For al 1 DFR/G/1 queues , 

(He*) [        ^ .,. t] £ E[v] , P (cq''Ca) 

2^(1^)   • 

^iUVS—ftJ«&»*i=c^a^'»TeAÄ2i--r rrr-p» 
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^•    A Weaker Assumption  on   the Arrival   Stream 

Bounds  on   the  expected  number   in   the  queue   to within  at  most one 

customer  can  be  obtained  by weakening   the   iFR  assumption  on   the  arriva 

stream.    V/e  first  prove   the   following 

Theorem 2.31    For  all   GI/G/1  queues where A(t)   satisfies 

I 
,m AC(u)du    ^ 

t    AC(t)      (") 

J2) 

M < co for all   t 5 0, 

then 
2vh     (.) 

M. 

Equality holds when A(t)    is  exponential  and  M 
1 
X' 

Proof;    The  proof   is  similar  to  that  of Theorem 2.1.     Using   the  same  notation 

as  given   there, 

^ HC(u)clu =  r HC(t;x)   r"      AC(U)CIL: 

t    HC(t) ^0    HC(t)    ^t+x AC(t-i-x) 

„co      c 

ÄMJ 
ü-lLiü). d5 (x)   .^ M 

0    HC(t) 

from the  assumption  of  the  theorem, 

Therefore , 

i 
Integrating  over   t   ';ives 

v (2) 

2vh  (S) 
M and the theorem is proved, 

■■- —"^uim»i"j1l<inj^|DHI|m,)ilM»M»ini»W»tf i i i ■'■^V^iSW^i^1': tB^ZT —;«-,... ...it^iiL ■ ■■ imm »»mi-  —-yjs—- 



3?-. 

Using  this   result and   (12)   in   (k)   gives, 

:or all   Gi/G/1   queues  with p  <   1   and 

I ■ro Ac(u)d"u ^ i 

t    AC(t)     "X 
for all   t S  0, 

ilißl 
2X 

g E[W]  ^ J . 

XJ  - E[N ] S XJ, 

where 
J  = 

c    + X e 
_a g 
2X(l-p) '  • 

Example:     Suppose  we  have  m  types  of  customers  each   requiring  m different 

types  of  service,   and we  have one  facility  for  each  type with   service 

1 2 
distribution G.(t),  mean —and variance ö 

i Lb. g. 

Customers  arrive   in a   renewal   process v;ith   inter-arrival   time  distri' 

bution A(t)  which  has  DMRL  (IMRL).    The  probability  that  an  arrival   is  a 
m 

type i customer is p. 5 0, where S p. = 1. The distribution of time 
' r i • i  i 1 = 1 

between two type i arrivals does not in general have DMRL (IMRL).  For 

example if in the DMRL case the original distribution A(t) is degenerate 

at r-, the distribution of time between type i arrivals is a step function 
A. 

which does not have DMRL. However, we show next that the assumption of 

1 
Theorem 2.3 holds for each i, when M - Xp  • 

Consider a   renewal   process  of all   arrivals   starting  at   t-O with a   type 

i  arrival.     Pick  some  arbitrary  time  t,  >  0,  and define 

X.   =  time  between   (j-l)-th and  j-th  arrival  after  t,,   j-1 ,   2,   .. 

X     ,     =  time   to  n-th  arrival   after   t,. 
n.t, 1 

rrj ■ ■ i l ifc^gr^y-^-- 

Ww 
ynrw^T*ajMM -si^FaMüCTI«~-Mr.%*^*- ■r~£~Z!v T-*,-v. — ■ l^^^J '**■» 

\^->.^ 
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Then X ,  = S X. 
"^l  j = l J 

E[X   ]= S ECXl^ECX^H-^l ^ 

from DMRL (IMRL) property. Now let X  = time to first type i arrival after t. 

Then 
1  N '   n-1 i 

independent  of when   the   last   type   i   arrived  before   t,»     Let T.   -  time  of   last 

type   i  arrival   before  t,.    Then   in   particular 

But 
r^    A   ([x)d|jJ 

E[X    |Tr0]= -^  

and   the   result   is  at  hand 
,(2) 

t  follows   immediately  from  theorem 2.3   that -x    = x  
2vu Xp. 

h. i 
i 

■V-  i = 1 ,   2 ,   . .. ,  m 

and  for   the   i-th facility 

(HP:) 
-ä^-ECWl-J., (22a) 

v/here 

(MP;) 
Xp.J: .—i- ^  E[N ]  ?i Xp.J., r i i        2 q ii 

2   .   ^     ^2  2     ,1 
PiCa  ■'■   ^0  0"gi   •'■   ^Pi 

Ji   = """irFTÖTT) '     Pi   "' ^ 
Xp! 

(23a) 

'^,i^2^^''y'!;jSw:yM>.y,!ii^w*L,-'4w;wj*'"''' ■ ^f^ÄsaüÄ!"'"' ■T'rIT:ri«*V-,J'r!M7 •^rcs^p« 
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5 •     Exponent: Ja]   Service Q.iiciics 

The  Gl/M/1   queue  has   been  studied at   length  by  various  authors  and  an 

important  quantity   to be  determined   in   its  analysis   is   6,   the   unique  non- 

zero  root   of   the  equation 

z  = a^O-z)) (26) 

whe re 
-CO 

a(s)   = J    e"Sl:dA(t) 

It  has   been   shown   that   (for example   see  Prabhu   (1965  a)) 

ao = P[W=0]  -  (1-6), 

P[V/^x]  - 6(l-e^(1-6)x)     0 < x, 

P[an  arrival   finds   j   in  system'!   -   (l-ö^-1 j=0,   1,   2, 

By   restricting A(t)   one  can   say  something about   the  magnitude  of  6 

in  comparison  to o   = —.     In  fact we  prove here 

Theorem 2.^:      If A(t)   is   IFR   (DFPx)   and   if 6   is   the  unique  solution  of 

[0 < z <  1 ,  z  = a^O-x))]   for - = p <  1 ,   then  6 
^ (ä)  P- 

Equality   Is   taken   on  by  the  exponential   distribution. 

Proof:    The  proof   is  a  direct application  of   the  corollary ^.9  to Theorem 

^.8  on  page  33  of  Barlov; and  Proschan   (1965).    There   It   Is  shown  that   if 

A(t)   is   IFR   (DFR)   with mean  - 

aTi-T^'■'■'*??**■ f* 

-^ ■ 

.::• 
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a(s) 
(S) \+s 

for s real 

X-is 

For "3(5) - —, the solution of |o < 2 < 1 , z = X-i-u (1 -zTJ is z ^ ~ = P- 

For 'a (s) r? —— the solution must lie to the left of p and for a(s) 5" 

it must lie to the right. 

This leads to the following: 

For the IFR (DFR)/M/1 queue 

1)     P[V/ > x] = 6e pv  ' (>)   Pe ¥ x 5 0, 

2) E[W1 =X(l-6) (i) X(l-p) 

3) E[NJ = q-' - 1-6 (S) (l-p)" 

Equality holds throughout for the M/M/l queue, 

6.  Expected Number found by an Arrival 

For the M/G/l queue it can be shov/n that E[N "J, the time average number 

in the queue is the same as the average number found by an arrival.  Let 

L be the expected number in queue found by an arrival, and let L = E[N ]. 

For the Gl/G/i queue one can shov/ that 

Lt = pLa -1- (l-ao)XY) (27) 

where y  ~  average excess service time of the customer in service when an 

arrival comes. The argument is similar to that leading to equation (6) for 

the virtual wait. For Poisson arrivals a = (1-D), o        \        ' > 

Ä- "i .'AU'' ^ ' y Ujr*i7^^.i»''i**w-" ^«-^--t-.,.» .„m^i jnnjijiMnBi.ijiLiiij 1 ii 

C:- 
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36, 

y  .__. _J—j   j-]-,,-, moan  0f an   equilibrium excess   service  distribution,  and   hence 
2v 

L,   -  L 
p2(Hca

2) 

t -  ua  -    2(l-p)   ' 

If   the  service   time   distribution  has  DMRL   (IMRL)    it   Is  easy  to  sec   that 

—     1 
Y   AT\   ~with  equality  holding  for  exponential   service,   and   (27)   becomes 

Lt   (I)   pLa  H-   (,-ao)D 

Using   section  3  part  a)   we   have 

(i)     for  DMRL/DMRL/1   queues 

Lt Lt 
— -p  ^  L    ^ — 
P a       P 

with   the   lower  bound  equality   in   the  M/M/l   case, 

(i i)     for   IMRL/1MRL/1  queues 

0 #-  L    g ~ - p , a       p 

v;ith   the  upper  bound  an  equality   in   the   M/M/l   case 

W 

WF" z:r   ""i ||rH-|'iTMr**'*niy' •!^*<w*»M^y^'uy.i'.■'—»-^'■a^r -f**?--... ■———■   i^r* 
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Chapter  3 

BOUNDS  FOR  BATCH ARRIVAL,  BATCH  SERVICE, 

AND   INTERRUPTED  SERVER Q.UEUES. 

1 .      I ntrockict ion . 

This   chapter  considers   some  generalizations  of   the Gl/G/1   queue which 

preserve  some   important  basic points   in   its   underlying mathematical 

structure. 

We  first  study a  queue where customers  arrive   in  batches   of   (possibly) 

random size.    This   is   treated  by  redefining a   service  time.    Oueues  with 

services  occurring   in  batches  of fixed  size  N  are  then analyzed,  and 

solved  by   redefining an   inter-arrival   time.     Finally a  queue   in which  the 

service  mechanism   is   subject  to breakdown   in  a   Poisson  manner with  a   general 

repair  time  distribution   is  studied. 

Each  of  these   three  generalizations  of   the  basic Gl/G/1   queue  pre- 

serves   the  following  structure.    The   (possibly)   redefined   inter-arrival 

or  service  times  both  form   independent  sequences  of   independent and 

Identically distributed   random variables.     Also a   sequence of waiting  times 

can   be  found which  satisfy   the   recursion  formula 

W   Ll   = Max   (0, W •t-S'^-T1) , 
n-i-1 v n     n     n' 

where  the  primes  denote  a   possibly  redefined   service  or   inter-arrival   time 

2.     Queues with  Batch Arrivals 

Suppose  "arrivals"  appear  at   rate X   in  a   renewal   process   but   that  each 

"arrIva1"   is  now a batch  of  customers  of   random  size T).     Let  P(T)-n)   - TT   , 

•*r?\jf^~^'t20ffösä-zzrlmn*?**-*Tspr''—i -xsasz,^*^ ~ ■r^rrsitii^yiHirrrtsr^ 
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n=0,   1,   2,   ...   .     Customers   in each  batch  are  assumed   to  be  numbered   in 

some way to denote   their  order of  service.     The  FIFO order  of  serving 

batches   is maintained.     Note   that we allow a  zero batch  size,  which   is   of 

significant   importance  as will  be  shown   in  an  example. 

Now  let S.        be   the  service  time  of   the   k-th  customer   in   the  n-th 
k,n 

batch of a  stationary  queue,  and S.       ~G(t)   for all  n and  k=   1,  with 
K j n 

S-       = 0.     Let W,        be   the waiting  time   (in  queue)   of  the  complete  n-th 0,n b,n ^ \        -i /  1  

batch,  and  define  S"   = S.       + S,       +...+$„      ,  S" ~ G' (t) .     Then   the 
n 0 ,n 1 ,n T| ,n       n ' 

sequence [\7,     }   satisfies   the  relationship, 

W,      .,,   = Max [0, W,     +S"-T  1 
b , n+1 b , n     n     n - 

where T is the time between the arrival of the n-th and (n-i-l)-th batches, 

T .~A(t) for all n as before, 
n   v 

"■'"• 

Noting that fS"l and [T 1 form independent sequences of independent 

random variables, when \\)    < u the theorems in Chapter 1 are valid. 

The expected wait of the first customer in each batch is thus given by 

2L 2 (2) 

(30) 

The variance o  ,   can  be  found easily  by  conditioning giving 

2 2 ^  CTrr a  .   = v a    + -r. 
g-"        n g I (31) 

The average waiting time of an arbitrary customer Is found as follows 

The expected total additional wait of a 11 customers in an average batch is 

found, and this is divided by the average number of customers per batch. 

■ —'-OArJIW   '  SB ' .7*'".y.?j,,i'*;;>s>jrr'ri:*-Jr-""-=r-^*if ,^1"' T1
 ■■"» ■ *^*^--v»-*_- -- ^--is^« 

;-'■■>■- 
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Let X be the total additional waiting time of all customers in some batch 
n 

n. Then X -0 if 11=0, 1, and for T) S 2, 
n 

X = S,  + (S, H-S0 ) + ... + (S, H-S9 + ... -i-s, n ) 
n   l,n    l.n 2^' I , n 2^       (Tl -1) , n' 

Conditioning  on Tl   j t  follows   that 

E[X   I Til  = Hi^l for  all  Tl §  0, 
n1   - ^ 

and   hence 

E[Xn1 

(2) 
TT TT 

2^        ' 

The  expected wait  of any   unspecified  customer E[V/1   is   then   given   in   terms 

of  the wait of   the  first  one   in each  batch  by 

(2) 

:[vn = E[W.    i + [^ |1 i 
b.n        L2v 2j LL 

TT 

Using  this with   (31)   and   (30)   an expression   is   obtained  for   the  expected 

wait which   is  bounded as   follows   under   the assumption  of   1FR arrivals 

(between batches) : 

(o-ic2) 
VJ2 -~2-r-^[vn-j]+J2 (32) 

Xv J,  + Xv J„ 
TT    1 TT   2 

V    (p+C   ) 
n        a' 

^ E[N  1 g Xv Jn  + Xv J 
q' TT   2 TT 

(33) 

where 

irmmmraw**vwa -^7 an^yygpyCTw*1—' '*" r:^-rw;Trr^r-. 



^0, 

^r  2 2,   2      2,  ?-i klu, o -hi v 0 -i-a 
a  ^    TT   q    rt  )     p 

2/(l-p) 

Xv 
rr 

P- 
and   J 

-V 
n 

.2v 

(?-) 

rr 
2. 

1 
l^ 

Hence,   the average  number  of customers   in   the queue   is  bounded   to within 

at most an average  batch  size.     For   the  compound Poisson   input   the   lower 

r.«    n c 

bound   is   tight. 

p"lca ,   ielli "zT by   2X 

i- i    r A (u)du ^ 1 r   . , ^ 
For queues where   —i—^—= r- for all t 

Jt     AC(t) X 
0,  we  can   replace 

It   is  of   interest   to note  that   the  bounds   still   hold  even   though   the 

distribution  of   time   between  the arrival   of  cus tomers   is   not   IFR.     For a 

random variable   to have an   IFR  distribution,   the  distribution  can  have at 

most  one jump,   that  being  at  the  right  hand  end  of   its   interval   of  support 

(for  details   see  Barlow and Proschan   (1965)).      It   is  obvious   that   if   there 

is  a  positive  probability  of having   two or  more  customers   in  a   single  batch 

then  there   Is  a   non-zero probability  of a   zero   inter-arrival   time  between 

customers.     In   fact   let T'   be  the  time  between  customer arrivals, T    ~A   (t) , 

then  considering  only  batches  of  non-zero size we  find  that 

A"(0")   = 0    and    A"(0+)   = 
TT 

(1-TT   ) v O7 

V 
rr 

These   inter-arrival   times  are neither   independent nor   IFR. 

As  a  special   case  of  batch arrivals   consider  the example   In  section ^f 

of  Chapter 2,  where a   customer  from  the  original  arrival   stream  stops  at 

facility   I  with  probability p..    Since   in  our  development we allow batches 

of  zero size vie  can   interpret   this  example  as   batch arrivals, where   the 

batch  S.ize   Is   1   with   probability  p.   and  0 with  probability   (l-p.)«     Hence, 

■ jp i, .i- ■. ■ « iL^j^yv^^vy. .r-aüEPÄ«"^" ^TTT*— 
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k]. 

v    =  p.   and o     = p.(l-p.).     From  (32)   and   (33),   'Tor  the  case v/hcre A(t) 
TT i rr i i 

is  assumed  to have  bounded  mean   residual   life   (as   in secLion  'i,  Chapter  2) 

where 

■ p. + l- 
Ji - [4r]s EM s Ji 

Xp.J.   - 
PiCp;-1-1) i ■ i 

i    I 2 -   q 
S E[NJ  ^ Xp.J., 

(32a) 

(33a) 

J: 
PiCa  ''•   ^Pi)2gq •'' Pi(1-Pi) 

2Xp.(l-pi) 

Comparing thes ; v/ith (22a) and (23a) we see that this approach gives a 

better bound, as the expected number in queue is bounded to within at most 

p. customers.  It is easy to show the lower bounds are the same in both 

cases and are taken on by Poisson arrival queues. 

It is also important to note that the batch arrival approach to this 

example gives even tighter bounds if A(t) is assumed to be IFR, whereas the 

approach in Chapter 2 breaks down in this case, since as shown above the 

distribution of time between customer arrivals is not IFR. The above 

approach gives the expected number in queue to v/ith in 

Pi(P.+ca) 
if A(t) is IFR 

All   the DFR  bounds   of  Chapter  2  hold when   the  correct  means  and 

variances are defined,   since  the   idle  time   is   still   some excess  of an   inter- 

batch   time. 

3.     Queues V/ith Batch Services 

In   this  section we  assume a   renewal    input   into a  single  channel   queue 

with   independent  service   times,  but v/here  service   takes   place  only   in 

■»jiTi .IWH.-'I.J»"WB—iwiimrmi-i   ■.x-zcjazit^izyTvm- •••Ki-.T^lVrTn ran 
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batches  of a  f ixccl  s ize  of  N  customers       'ervice and   inter-arrival   times 

are  again  mutually   independent. 

Let W..       be   the wait   in  queue  of   the   last   (N-th)   person  who arrived 
N, n '  v '   ' 

and   formed   the  n-th  batch  of  N  customers.     By   redefining  an   inter-arriva' 

t ime   to be 

T"  = Tn      ■'" Ti        ■|-   •••   + T,M   n      ,   f" -A"(t), n O.n 1 ,n (N-l) ,n'     n v   ' 

where  T.        is   the   inter-a rr iva 1   time  between   the  j-th and   ()-i-l)-th  members 

of   the  n-th  batch,  we  have 

W..       .   = Max [0, V/..       -1- S   -I"], 
N .n+l ^   '     N.n n     nJ 

where  S     is   the  service   time  of   the n-th batch, 
n 

The  new   inter-arrival   time  distribution   is   the N-th  fold  convolution 

of   the  original  A(t).     The   IFR  property   is  closed  under  convolutions  and  so 

with   this  assumption  on  A(t)   the arguments  of   Chapter  2  can   be applied. 

However,   the DFR  arguments   fail   since  convolutions  of DFR  distributions 

are  not  necessarily DFR   (for  details   see Barlow and Proschan,   (1965)). 

For  the  distribution A"(t)  we  see   that 

2 
N       2 M  2 .      2 ca 

v   ,   = r-,  a   ,   = Ma and    c   ,   = —. a»       X       a» a a-       N 

For  any  unspecified  customer 

IMI E[W]   = E[WN|n-J + x       2 

"TW-rr^Z: '^HfZ'—^T3K^ii-itt*U>i»':3:*«»-»w-ajM^iureaiway^wwaaw****?*._-• :•   ■_-.■ wstuvm^m-**-^-»«.f-j^5?r- 
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and  hence  for   IFR/G/1   queues with  service   in   batches   of  fixed  size  N, 

J   - 
(Np-i-cp 

E[W]  S J, W 

v;he re 

XJ 

Nc 
J  = 

i.   qj 

^2  2 
A.   O 

.9. 

XJ, (35) 

2NX(l-p)   • 

Thus   the  expected   number   in   the  queue   is   bounded   to within  at  most -*---—''- 

customers. 

It is well known that in generalizing the M/G/l queue to batch services 

analytic problems arise and essentially the problem is the same as analyzing 

the E../G/1 queue.  In order to calculate E[Wl or E[N ] for this case it is 
N    ^ l- •    ^ qJ 

necessary to determine the roots of the equation (s-i-X)  - X g(-s) for 

Re(s) =- 0, v;here g(s) =   e "' dG(t) (for details see for example Prabhu 
V 

I965   (a)).     However,  all   this   can  be avoided   if   the approximations   in   (3'0 

and   (35)   give  sufficient accuracy. 

^•    Queues  wi th Server  Breakdown 

We  now consider  a   GI/G/1   queue where   the  service  mechanism can  break 

down.    V/hen   this   occurs   the  normal   queue.ing  process   Is   interrupted  until 

the  server   is   repaired,  and   it   is  assumed   that   these   interruptions  occur 

on ly   in  busy  per iods . 

I t wi11   be  assumed   that 

a)     Times   between   successive  breakdowns   of   the  server  are  exponentially 

1 
distributed and independent with mean 

X, 

-;gv!r:w ■ ■.kr-fomvn.!*>rma>' "■'■ *m f-v.iraawigrTnfr?.- ' '^7^üä!-j"»i^.»i.'.'r-v|"" ■  ,',.-■"'*' " »"ta.,1.'.','i.y;?B"^-''w-i»Y.anwt 
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b) Repair times are Independent drawings [R ] from a distribution R(l). 

c) The customer in service when an interruption occurs resumes his service 

where he left off.  This is called the Resume Rule. 

To analyze such a queue we use a concept introduced by Gaver (19^2) 

and dealt with in detail in his papers.  This is the "completion time" of a 

customer, C  for any customer n.  It is the time the n-th customer spends 
n      ' 

actually occupying the service facility (his service time and all the repair 

time for breakdowns during his service).  The assumption of exponential 

inter-breakdown times leads to {C ] being a sequence independent and Iden- 

tically distributed random variables.  The sequence of waiting times (in 

queue) satisfy 

W ,. - Max [0, W -i-C -T ], 
n-M n  n  nJ 

(36) 

For   the   IFR   or  DPR  assumption  on   the  arrival   stream all   the  bounds 

of  Chapter   2  hold   in   terms  of   the  mean  and  variance  of   the   inter-arriva' 

times  and   the  mean  and  variance  of  a  completion   time  C.     These   last   two 

quantities  are  easily  shown   to be 

E[C]  = -Kl   -(■ v X. ) J      p, r   b' 

V[C]  -  (1  + v X. )2a2 + —(a2-f-v2) 
^   J       v r  b'     g      ii   v   r     r 

For a stationary queueing distribution to exist we must have r-> E[C]. 

For any other distribution of time between breakdowns the completion 

times will not In general be independent or Identically distributed and the 

method fa i Is . 
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We can replace assumption c) by c,), 

c,) The customer in service when an interruption occurs starts his 

service over again, but with the same service time. This is called 

the Repeat Iclent ica 1 Rule. 

or by c2) 

c9) The customer in service when ar. interruption occurs starts over 

again with a new independent service time. This is called the Repeat 

D ifferent Rule. 

For a detailed discussion of these see Gaver (1962) . 

In both the above cases the completion times form sequences of inde- 

pendent and identically distributed random variables which are independent 

of the arrival stream. Hence, all results for the Gi/G/1 queue follow 

since consecutive waiting times satisfy the fundamental equation (36). 

Under the IFR or DPR arrival assumption the relevant bounds are thus ob- 
co  c . . 

tained.     Also  under  the assumption   that        —^—'-—   /.   r the  relevant 
Jt AC(t)  t) X 

bounds follow. All give bounds on the expected number in queue to within 

at most 1 customer. 

~^'7yTjr"^i-,>«»4.^^«1w>wJ
|'*"^*-",-,-.':^'ii^"J-:',-"'!'^- ~~^7^'*r^wgg»IWWWiüCTWBT" * ~~^'-:^^— ■•■l,—'»i^l.,.l.l-l,\.vl'!""'"''''*"*""*" 
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Chapter  k 

QUEUES  WITH ADDED   DELAY FOR  THE  FIRST  CUSTOMER 

IN A  BUSY  PERIOD 

^ •     I ntrocUict i on 

V/e  now  consider a   single  channel   queue with   renewal    input at   rate  I., 

independent  service at   rate p,,   but where   the  first  customer   in  every  busy 

period   suffers  a   random delay R   before  his   service  commences.     This   random 

variable R  can  be  dependent  on   the   preceding   inter-arrival   time  and   may 

affect   the   independence  of   the wait   in  queue  of   some   customer  n  and   the 

inter-arrival   time of  the  n-th and  the   (n-i-l)-th  customers.      It   is assumed 

that R   is   independent  of   the  service   times  of all   customers   in   the  busy 

period  generated  by R. 

In   this  chapter   the   random variable   I  will   refer  as   before   to  the   time 

from  the end  of  a   busy period  until   the  next  customer  arrives.     Hence,   it 

is   still   some  excess  of an   inter-arriva1   time.     The   idle   time with   respect 

to  the  server will   be   l+R. 

A  general   expression   is   found  for   the expected  waiting   time   in  queue 

and   is   seen  to be a  generalization  of equation   (^i-)   in  Chapter   1.    As  an 

example we  study   the  single  server  queue where   the  server waits  until   m 

people  arc  present  before   starting  on   the  first  service   in  a   busy period. 

He   then  continues   to serve  one  customer  at a   time   until   the  system   is  empty, 

V/e  shall   call   this   the  Gl   /G/l   queue   (see  Heyrnan,   I96G) .     When  m^l   the   sub- 
m 

script is dropped. For IFR arrivals bounds arc obtained which give the 

expected number in queue or system to within r- customer.  For arrivals with 

mean residual life bounded above by r- the expected number is bounded to 
2 Ä 

• ml 1 -c - 
a 

within 2m ̂  

|gps .r^Xiz^JHWWJ^ «^i*,«fca5;«r'^^       'r»^v— ■ 
■?•"" —^T- 
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2•     Genera]  Results 

By equating   input v/ith  output we  shall   nov/  find an  expression  for   the 

expected waiting   time   in  queue. 

Let R   be   the delay  before  service  commences   for   the  first  customer   in 

a   busy period   in a  stationary queue.    This  may  be  dependent  on  the previous 

inter-arrival   time and  hence  on   the   idle   time.     it  may  also affect  the 

independence  of V/    and T     as   is   seen   in  the  example   in   section  3   (in   this r n n 

example   the wait  of  the  first  customer   in a   busy  period   is   In  fact  equal 

to  the  next   (m-1)   inter-arrival   times),     it   is  assumed  that   it  has  no 

effect  on  the   independence  of W     and  S   .    Writing   the   inter-output  times 1 n n J 

as  T     -■ S   , ,   -I- X   , when  customer  n   leaves   the  system busy,  X  -0.  and when 
n n-i-i n '       n 

he   leaves   it  empty, X     =   l+R,   independent  of  S   ,.. r   '       n n+1 

We  now show  that 

crM2n t:rD?--i       rri2-i      Cov   (w   >T ) 
tLW-1  "  -2E[U1       2(E1X1  + E[l]) E[U] ' U/J 

Note   that   this   is  a  generalization  of  equation   (k)   in  Chapter   1 

To prove   (37)  we  proceed as   follows: 

Equating   input and output   times 

T     - S   , .   -i- X 
n n-M n 

- T    + D   , ,   - D   , 
n nH 1 n 

and  hence, W   , .   ---- X     +   (D   -T  ) , (38) 
ni 1 n        v  n     rr ' y     J 

>T>T—TCTri-ami^.»^i^w!^-ii^„'---rss<sai^gwwCT:-''--—~J-^--  Mi<it j JI i . j    M   . "    . "—'41". Jt.'II« ■■ ■»■ n 
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where    a) D-TSO=>X=0. 
n     n n • 

b) D   -T    < 0  ->   (D   -T   )   -  -I   and X     =   MR, 
n    n v  n     tr n 

c) E[Xn]  =  -E[U] (from  (38)) 

Squaring  both  sides  of   (38),   taking expectations  and  assuming  stationarity 

In   the  queue,  vie  get 

■2E[U]E[W1 = ECU2]  + E[Xn(XnH-2(Dn-Tn)]   -  2Cov   (Wn,Tn). (39) 

Using a)   and  b)  above we  see   that 

E[Xn(Xn+2(Dn-Tn)]  = E[(R+i)(R-!)]p (kO) 

where p = P[ (D   -T  )  < 0], r n     n J 

But  from c) 

pE[R+|]   = E[Xn]  '-  -E[U]. (41) 

Substituting   (40)   and   (41)   in   (39)   gives   (37). 

Note   that no assumption  had   to be  made   concerning   the   independence 

of R  and   j.  and   if R   is   independent of   the arrival   stream,   Cov   (W   ,T  )   -  0. 
' n     n 

3.     The  Gl. /G/l  Q.ucue 
 m  

Suppose the server does rot start service until m customers are present. 

In thij case the first customer served in a busy period waits for the next 

(m-1) customers to arrive before commencing service.  Numbering the first 

I* 
p^aaawa———paw mm*mmvaaw-^«^^v^—.-- ^"-w* ********** —-■■ ,lMlmm.,.„, ——M-  
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customer   in   the busy  period   1   for  convenience,  R  = T,-i-T0 -I-   ...  + T     ,,50 7   r 12 m-1 

that 

E[R]  = "^  E[R21   = ^- [cf -.■ m-l]. (',?.) 
A. 

For   this  case   it   is  obvious   that  for   the   first   (m-l)   customers   in 

each  busy  period  the waiting  time  of a  customer  depends   on   the  following 

inter-arrival   time,  and we  must   now calculate  the  non-zero covariance   term. 

The  calculation  of   the  covariance   is  achieved  by  conditioning on   the 

position  of  service   in a   busy  period.     Obviously,  a   busy period  serves  at 

least  m customers.    We  now  use   the  covariance   relationship  for any  three 

random variables X,   Y,  Z, 

Cov(X,Y)   = E[Cov(X,Y|z)] + Cov(E[x|z],  E[Y|Z]). (^3) 

We   interpret X   to  be  a waiting  time,  Y  the  following   inter-arrival 

time  and Z   the position  of   the  customer's   service   in  a   busy period.     Note 

that  E[Y|Z'J  - E[T.|z=i]  = —    a   constant.     Hence   in  our  case   (43)   reduces   to 

Cov(Wn,Tn)   --- E[Cov(W,T|z)]. (if'O 

If   i   indicates   the  position  of  service   in  a  busy  period,   for   1=1,   2,   .. 

W.T.   =  (T.+T.   ,+   ...   +T     ,-1-5,+   ...   +S.   ,)?,, 
ii i      i + l m-l     1 i -r    i 

and   so 

,m- 
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Cov(W>T|z=i)   -.-■ a i = l ,?.,... ,  m-1 

i  S  m.. 

Averaging  over  busy  periods, 

P^Z^i^  " ETTT i=1»2»   ...,ni-l 
b- 

E[N ]-(m-l) 
and P[Z § m]   -- 

E[Nbl 

Using   these   results   in   {hk)   gives 

2 
(m-l)a 

Cov (W   J )   = -p- x  n     n'       ELN 
a 

b-' 

But E[Nb]  ^üECB] =^'1^ f^\     so finally 

(m-l)(l-D)aJ 

Using   ('iS)  and   (^2)   in   (37)   gives   for   the  Gl   /G/l   queue with p  <   1 

c2+X2a2       , (m-l)[m-l-c21   - X2E[|2"j 

^ = zföT?+ k ^ + —^-(XEutr^T)—• (^) 

This expression depends only on the first two moments of the arrival, 

service, and idle distributions, and on m. 

In general the distribution of 1 will depend on m (not the case for 

Poisson arrivals).  For any stable queue (p < 1) I cannot be Identically 

zero since busy periods end with probability 1.  However, by using the 

2-, 
a pparently crude  device   of  setting E[ I]  - E[ i   ]  ■■■■  0   in   ('f6)  we   obtain 

■iafcfc-.iSti... ■ 

'-IIJ—-..r-r     ~ ■" '  •   • ' ■'—""-"»^^ ' .^Jj^,;»TiaKr;jT^avgn«a^i""'»«iaM^ji«gg>^jy..r^-icr^ .. . ■ -"-V" 
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an   upper  bound   for  all   Gl   /G/l  queues  with p  <   1, 

tLWJ  -  2X(1-D) 2X 2X 2X- {[/) 

We  now show   that   this   is  actually a   suprcmum  for   the  class  of  queues 

considered   by  exhibiting  a   family  of  queues   in   the  class  with  E[I]   and 

2 
E[ I '] arb i trar i ly sma 1 1 . 

Consider a queue with deterministic arrivals at (normalized) rate 1, 

1 -e 
and  deterministic  service with  service   time   for  each  customer ■ ,  where 

m 

m i?  2 and e > 0   is  arbitrary.    Then at  stationär ity   it   is  easy  to  show  that 

1       1       e 
l=e.     For example   take  m-3,   then —- — -—.     The   true E[W]   is  easily ca1- 

he ^      e 
culated   to  be r- - r-.     The  above  bound  gives  a  value of r- + T-.     By   letting 

e-0   in   this  example   the   bound gives —whereas   the   true  E[W]   -   1,   since   in 

. • .       2 
this  case   I   = T. 

For   IFR  arrivals  we   now  find a   lower  bound  on  E[V/"1.     For  any  value  of 

m   it   is  easy   to  see   that   theorems   2.1   and  202   still   hold  for   the   random 

variable   I.     In   the  proofs  of   those   theorems  m would affect   the  distribution 

5,    (of   time   from   the   last   customer  entering  a   BP   until   the  end  of   the  BP). 

However,   the   results  were   independent   of   the   form of £,  and we  can   say 

inimed lately   that  for   IFPv   (DFR)   arrivals  and  any  mS   1, 

2 2 
E[|nJ   I)   E[Tn]   all   n ^   1,  and  f^Uj  ^  ^}j. (hS) 

V/e   now prove a   useful   lemma. 

Lemma  ^l. 1 :      If   ('18)   holds  and a  and  b  a re  any  non-negative  numbers, 

MBBM^ß "'y;»i.Uj<w ■.>    ■ —    'l"!*^ — 
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a   -  Efl2!    s    a   -  E[T?-] 
b -1- E[l]     (0   b -i- E[T]   • 

Proof:     For a ä  0,   using   (^8)  we  have 

_?_     ^    _iL_ ^     -Ef 121    ^     -ErT21 
ELI]   (•?)   E[T3    and      E[l]     {-)     E[T] 

Adding   these  and  clearing   the   fraction  gives 

E[T](a-E[|2])   (|   E[ll(o-E[T?]) 

Also b(a-E[|2'J)   Jv   b(a-E[T2])       for    a ,b 5  0. 

Adding these gives the desired result. 

2 
V/e apply the lemma to (^6) with a - (m-l-c )(ni-l) for IFR arrivals 

3 

2 2 
since   in   this  case   c    <   1.     For DFR  arrivals  c    can  be arbitrarily   large, 

a a 

2 
so to insure validity of the conditions of the lemma we let a = (m-1)  in 

this c".se. 

Apply  the   lemma   to   (^6)   and   using   (^7)   we  have  shown   for  all   IFR   /G/l 

que ues with p  <   1 , 

J $ E[W] < J -I-   (^ , 

XJ g E[Nq] < U  -i- i, 

c -t-A a (m- 1 -n -c   ) 
where J  ■"  • 

(^9) 

2X (1 -p) 2X 

pu.'vürer«-— '"-■ '•"■■" '-"■■—■■' «a°iw^aa^^^g^ME8a!aagaD»B»»»»^»w»i*w>™«w»'  ——»>»»«>»33-»»'vy^CTr»«^.»-»-<o~w«31s»»* 
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The   lower  bound   is   taken  on by Poisson arrivals,  and as   shown  previously 

the   upper  bound   is  a   supremum for at   least one   family of  deterministic 

queues. 

For   the weaker assumption  of  bounded  mean   residual   life, i.e., 

,0°   .c 

—vHi-u g _  jj-   js  easy  to show that  the  bounds  are 
t    AC(l;) X 

(1-c2) N      a7 

2Xm 
E[vn < J -i- 21' 

(i-S) , 

For DFR   /G/l  queues with p <  1, 
m 

C   H-X   O /       i       \ a     iu + Ir^-Pl 
ELW-1   -     2X(l-p) 2X 2Xm' 

Equality occurs   for  Poisson arrivals  only when  m=l 

Ji^v^IS^'''^^^T;^^>^v.^^T1»*^!^'■"'l^-'''''•^'':::^B:a^^:,^^   ' ?g^B«WW*mWi apgy "   '^aJ^^^'.'.".' BWBWf w'^Tyaa^'v^- 
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Chapter 5 

QUEUES WITH 2 PR I OK ITY CLASSES 

1 • Arrivals in 2 Independent: Re?newa 1 Processes 

The following queueing situation is assumed in this section. 

1. High priority customers (called type 1) arrive in a Poisson manner at 

rate X,. Their service times are drawn from some general service 

distribution G^t), with mean —. 

2. Low priority customers (called type 2) arrive as a renewal process with 

distribution of inter-arrival times A (t), with mean r—. Their service 

times are drawn from a common distribution G9(t), with mean —. 

3. The preemptive resume rule applies to all type 2 customers, (see 

Chapter 3, section h,  and Gaver (I962). 

For convenience in this section we shall call the above 3 assumptions Jl . 

A busy period can start with the service of either a type 1 or a type 

2 customer.  It is important to note that those starting with a type 2 

customer have the same structure as the busy periods (BP's) for the inter- 

rupted server case treated in section k  of Chapter 3> with X. = X, and 

R(t) the distribution of a BP in an M/G/l queue with the service distribution 

G^t). 

For the study of this queueing system we shall use the following 

notation, A BP started with a type i customer will be called a type i 

BP. The phrase "a type 1 service period" refers to the time the server 

is busy serving consecutive type 1 customers (i.e., a normal BP in the 

imbedded M/G/l queue formed by the type 1 customers). 

=r?^;:~-rT.-->--;-.;-t--V.--'-W.v-v,»»rr JJ-J-w- t»w? 
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B -  length of an arb i trary BP. 

I   -  length  of an  arbitrary   idle  period. 

B'1^   =   length  of a   type   i   BP,   Ul ,  2. 

N     '   =  total   number of  customers   served   in a   type   i   BP,   i--l ,   2. 

N.       = number  of   type  j  customers  served   in a   type   i   BP,   i ,j-1,  2. 

C  = completion   time  of a  type  2  customer   (see Chapter  3>  section h) 

Pl   ^     P2 
_2 
M,2 ' x = xrhX2' ^-LxTuJ 1      ,vr    p,1 -X,-i-X J [j, J   Uo' 

p   = —    and  hence p   = p^i-p«. 

Arbitrary   idle and  Busy Periods 

Using  the  above  definitions  and   relating   input  to output,  we  have  foi 

p <  1, 

E[B] =TV[,]- 

By assuming A   (t)   has   IFR  or DFR we  now obtain  bounds  on  E[l] and 

hence on  £[6]. 

Theorem 4.1;     Under Jl ,   if A   (t)   has   IFPN   (DFR)  and p  <  1,   then 

E[i] 
l-a^,) 

(S) X 

CO 

v/here  a_(s)   ~        e       dA?(t).     Equality   is   taken   on when 

A9(t)   =   1-e 
-x2t 

j ^saiW- ■•i-    :- ■ztr*£?^$r,r£^&^tiSP^'V'*tt^^--~^ *"'■"'-^itiirt'-'^V'i-i.-r.'.^»'" » ' '■■iji;>...""'"-"-'-'"-i<>c'.'.'rr';^r^~''"rTr«tvMn'"^*1 

^ 
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Proof:  Let I ^11(1:), Y be the time from the end of the last BP to the next 

arrival of type 1, and Z be the time from the end of the last DP to 

the next arrival of type 2.  Then Y ^ Exponentia 1 with mean r—. 

Let Z ~ F(t). 

Under the IFR (DPR) assumption we know from Theorem 2.2 part (ii) 

that FC(t) ^ A^(t). 

Now I - Min (Y,Z) and hence 

-X, t     ^  -X, t 
HC(t) =e  ' FC(t) ^ e  ' A^(t) . 

Integrating  both sides   gives   the desired  result. 

Let a    = P(an arbitrary arrival   finds   the system empty).     Note  that 

a     is   not  the  probability an arbitrary  customer  does  not  have   to wait   in 
o          

queue.     Now  using   theorem   1.1  with   theorem k.]  and a    =   1   gives: 

For  all   2  priority queues  where Jl.  holds  and 

i)    A2(t)   if   IFR, 

1       1 l-a'o^i) 

i.E[B].[ 
l-a^X,) 

X 
JL. 

Ll-p 

The  upper  bounds are  tight  for  Poisson  type  2 arrivals, 

ii)    A2(t)   is DFR, 

l-a^X,) 
S £[1], 

«^naanwKWB m^smmi Z^rcrv^siE^i irowwwyTOwropBMpEcaaBB uss i w^&gggBBm n 
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[■ _£L_ 1-pJ i X -] g E[B]. 

The bound is tight for Poisson type 2 arrivals. 

Bounds for the expected number served in an arbitrary BP follow 

immediately. 

Type 2 Busy Periods 

As noted above these BP's have the same structure as those in the 

"server-breakdown" case dealt with in section k  of Chapter 3« From the 

results there it is easily seen that 

E[C] =  L_. 
^(Wi) 

Now if I  is the idle time in the server breakdown case it is easy to show 

that 

E[B(
2
)]=^TE[IS]. 

(2) 
and we immediately obtain the following bounds on E[B  ] 

i) For A2(t) IFR and underj^ : 

ll2lli_^ErB(2)1 
(l-p) ^ " ELB  ] M-o(l-p) 

(50) 

The  upper  bound   is   taken  on  by  Poisson   type  2  arrivals 

ii)     For A2(t)  DFR and   under j^ : 

^WSE[B(2)I 

il%-tvrar.j,   -^•■£*r*£j*^g*qiJSis^j*p)mK'i**&trr~v,1^^ ,..,.. ,.    ,, am^magammKSI'» 
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with equality for A2(t)   =  1-e 

(2) 

-x2t 

Since E[N^] = ^r ^  ^  = ^[B^^^-p ^   bounds  on E[N^]  follow 

immediately. 

Each interruption of a type 2 service results in a type 1 service 

period.  In each of these type 1 service periods the expected number served 

Is 7-: r-. Therefore, the expected number of type 1 customers served in 

each type 2 completion time is 
P^^'Pl) 

Hence E W2)] = 
E[N 

"1 (2) 
2 J 

^O-pj) 
-, and 

f Ina 1 ly v^e have 

E[N(2)J = (^(l-p,) +X1)E[B
(2)3. 

(2) (2)- 
Bounds now follow on E[N  ] from the above inequalities on E[B  J. 

Waiting Times 

The   low priority customers  have no effect on  the high priority type 

when   the  pre-emptive  rule applies.     Hence,   the waiting   time  of  the   type   1 

Is   given  by  the  Pollaczek-Khintchine  formula.    We  can  view  type  2  customers 

in a  similar way to Chapter k.    The  type 2 customers  form a  general  arrival, 

general   service queue where   service  times are  redefined   to be completion 

times,  and  the  first customer   in a   busy period  has  some   random delay R, 

which   is either zero or  the   remainder of a  busy period  of  type   1   customers. 

Hence,   formula   (37) with Cov   (W   ,T )  = 0 gives   the expected wait of a  type 

2  customer.     Using  this  and   the   lemma   in Chapter  h we  get  for  the  type   two 

customers   if A   (t)   is   IFR, 

m 
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2 

Er(T(2)-C)21 .   EFR2-!   - ErT(2)   1        ,-„-, s E[ (T(Z)-C)21 ., ElVl ,r,, 

1EF^C]/2[E[R]+E[T(
2)]]   '-E[W1-   aE[T(2)-c]     2W (J) 

2 
However, to bound E[R] and E[R ] seems to be very difficult.  For 

Poisson type 2 arrivals it can be shown that, if R ~R(t), and has density 

r(t), then 

RC(t) - B^(t)m(X2) - f- r(t), 

where B^t) is the distribution of a busy period of type 1 customers, 

CO 

'm(s) -   I e"StdM(t) and M(t) is the renewal function for the modified 

renevjal process [X .} , where X, ~ exp {X^  and for i > 1 , X. ~ Busy cycle of 

type 1 customers.  Using this we get 

(2) v 
ErR21-E[|21 b1 i_ 
2[E[R>E[|]]  = 2v       " X   ' 

Dl 

Substituting  this   in   (37)   gives  an exact expression  for E[V/] which  checks 

with  results   in V/ei   Chang   (1965). 

2.     Arrivals   in a  Single Renewal   Process 

In   this  section we  assume   that   inter-arrival   times   form a  single 

renewal   process.    V/ith  probability p  the arrival   is  a  type   1   (high  priority) 

and with  probability   (1-p)   it   is a  type  2.     Assuming   the  pre-emptive  resume 

rule applies   the  completion   times  of   type  2  customers  are no   longer   inde- 

pendent  and   identically distributed   (unless   the  arrival   stream   is   Poisson). 

Hov/ever,   idle  periods   (when   the  facility   is  empty)   are excess   inter-arrival 

times  and  under  the   IFR, DFR  or  bounded mean   residual   life assumption   these 

2ir,--"'- ■■r-,'*Jf'rsy,T~-.^"^i^ir<J^w''1,*'"'>:s^^ "—i I 'UJ mmPWU-'fJI'M. „U-1- iinnijil.i   HfJ/» "      iwm i 
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can be bounded. As in section 1 we then get bounds on the expected length 

of an arbitrary busy period. 

V/a i t inc) Times 

Under the pre-emptive rule the average wait of a high priority customer 

can be bounded under the various assumptions on the arrival stream.  For 

example, (32a) applies directly when the inter-arrival times have bounded 

mean residual life. This surprisingly gives a better bound than the 

approach in Chapter 2 (see 22a).  In the non-preemptive case the type 1 

customer who starts a type 1 service period must v/a i t until any type 2 in 

service leaves the system. Hence, (51) holds where in this case R is the 

remaining service time of a type 2 if one is present, and R=0 if a type 1 

arrival finds the system empty.  If the type 2 customers have a service 

distribution which has bounded mean residual life, then 0 2E[Rl  " \i. 

and  using  this   in   (51)   gives   the expected wait of a  type   1  customer  to within 

r—+ —, and  hence  the expected number  of  type  2   in   the  queue   to within 

(1+P2). 

Since in this model the completion times of the type 2 customers do 

not form a sequence of independent random variables, it is difficult to 

say much about their expected waiting time by the approaches used in this 

paper. 

i i :: 
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Chapter  6 

MORE  GENERAL QUEUES 

1.      Introduction 

V/e  now  relax some  of   the   independence assumptions  of  previous   chapters 

while  maintaining stationarity.    Tandem queues  are  taken as  a  particular 

case  of  dependent input.      In  this  case  an  expression   is  found  for  the   total 

expected wait and is   seen   to depend  on  some  unknov/n  covariance  terms. 

2•     Stationary Queues 

When E[U] < 0 and  the  sequence [U }   is  strictly stationary and metrically 

transitive,  Loynes   (1962   (a))   has  shown   that   the queue has a  stationary 

waiting  time distribution.    Also E[W]  and E[l]  exist and  equation   (1)   still 

holds   for  this  class  of queues;   that   is, 

aoE[l]  =  -E[U]. 

Note  that  the  proof  of   theorem  1.1   required  stationarity but  not 

independence. 

3.     Queues v/ith   Independent Services 

If  the  service   times   form an   independent  sequence and   the   inter-arrival 

times   form a  stationary  sequence,  from equation   (2)  we  can  obtain  a   general- 

ization  of   theorem  1.2.     Using  the  same  method  of  proof,  but   realizing   that 

now W     and T    are  not  necessarily   independent   it   is  easy  to  show  that 

^..2-, -r.a.       Cov(W   ,T  ) 
pnn       EI.U  J EM    I n'   n' 
tLWJ  ~  -2E[Ul   " 2E[ll E[U] 

(52) 
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Given  the  form of  the  dependence  of   the   inter-arrlva1   stream   it  may 

in  a   given  case  be  possible   to calculate   the  covariancc  term. 

k.     Tandem Queues^ 

Let  us  consider  now m single channel   queues   in   tandem,  where   the  output 

from one  becomes   the   input   into the  next.    We  shall   assume  unlimited  queueing 

space  before  each  facility  so that  no blocking  occurs,   that   the  original 

input forms a   renewal  process, and  that  the  service  times   in each  facility 

are   independent  sequences   of   independent  random variables.     That   is,   if 

S.    .   is   the  service   time  of  customer  k at  stage   i ,  S.    .^G.,   i=l,   2,   ...,  m, 
K, i k, i i 

and  [S     ,}  are mutually   independent. 
K, I 

The input stream to all facilities after the first will not in general 

be a sequence of independent random variables (the case of Poisson arrivals 

with  exponential   service at each stage   is   the exception).     Let 

2 
a      = variance of   input  to stage   i a. r J 

a      = variance of  service at staqe   i 
Si 

u.   = service   rate  at  stage   i,  p.   = ~ r i i       li 

v,:   ^ = n-th   idle  moment at  stage   i 
h. 

VP   '   = waiting   time  of  n-th customer at  stage   i   (in queue) 

• T^1'   =   inter-arrival   time  at  stage   i 
n J 

T     '   =   inter-output   time at  stage   i 
n r J 

From   ( 52)  vie   immediately  obtain 
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c[v/(i)] = 

w  2      2  v        ,,       v2 (2) 
X(CT    -la    )   -I-   (1-D.) v:   ^ va.    q.'        v       r n. 

i     ai i_ 

^l-P:) ""2vh 

\.   Cov(W(i),T(i)) 
_i v n n     / 

(1-P:) 
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But T =T        and hence   from section 5  of  Chapter   1, 
n n 

,(2) 

2 2 
o      = a 
a,       ' g.   T ,2 

1 Ji-1 X 

C-Pi.,)   , c-p,.,)   ^i-, 
— + ■        

v. 
M 

I—'^•J ^J 0    •     •      J lllo 

Now   If |j,.   = |j,,  giving p .   =D   for all   1 = 1,  2,   .. „ ,  m,   the expected tota 1 

wait   in  queue   is   given  by 

[.-(i)] = 
X(a2+2o-2 +..o+2a2      +a2 )  +  (1-p)2 

a g. r, r, 
'1 9m-l    9m 

2(l-p) 

(2) 
Vh 

m 
2v, 

m 

m 
n n 

Note   that  there   is   cancellation of   the   idle   time moments  of all   except 

the   last  facility   (this   happens  only when p   is   the  same  for each  facility). 

The  completely unknown  quantities   in  the  equation  are  the covariance 

terms.    The author has  had   little success   in determining their order  of 

magnitude.     It may be possible  to find  bounds   on   these  quantities   in   some 

generality  since each  term   is   the covariance  between   the wait   in queue  of 

the   n-th  customer and  the   time  until   the   (n+1)-th  customer arrives.      it 

seems   to  the author  that   in  general   this   correlation would  be  small. 
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6k. 

SUMMARY 

The  aim of   this  paper     is   to find  simple  expressions  which approximate 

some   of   the measures  of  performance   in   the Gi/G/I   queue.     The   large  body  of 

queueing   literature  shows   that exact  expressions   for many  of   these  measures 

are  extremely complicated.     Often  they are   implicit   in  nature,  making   them 

impractical   for  direct application.     Notable exceptions  are  the papers   of 

Kingman   (1962   (a)  and   (b))   and  Newell   (I965).     In  one  paper  Kingman  deals 

with   the  GI/G/1   queue, and   in   the other  he deals  with asymptotic  properties 

(as  p  -»   1")   of  stationary  queues.     Newell's  paper  deals  mainly with   traffic 

light  problems. 

In  Chapter   1,   the moments  of  the waiting  time  and   idle   time are   related 

by equating   input with output   in a  stationary queue.     New expressions  are 

found  for   the  mean and variance  of  the wait,  and an expression  for   the 

mean  queue   length  follows   immediately.     Upper  bounds   for  all   GI/G/1   queues 

are   found easily  from the  non-negativity of  the   idle   time  variance and   the 

bound  of   1  on  the  probability a  customer  finds   the  system empty   (Kingman 

(1962   (b))   finds   the same   upper  bound  for   the expected wait).     These  bounds 

are   in   terms  of   the means  and  variances  of  the arrival  and  service  streams. 

A non-trivial   lower  bound  on   the expected wait   is   found which   requires 

knowledge of  the arrival  and  service  distributions. 

In  Chapter  2 we   recognize  that an   idle   time   distribution   is   some 

complicated  tail   distribution  of an   inter-arrival   time.    Restrictions  are 

placed  on   the arrival   distribution which enable   us   to obtain  "good"  bounds 

on  such  measures  as   the mean  wait and  mean  number   in queue.    When   the  mean 

residual   life of an   inter-arrival   time   is assumed   bounded  above  by an 

ord inary mean   inter-arr iva 1   t ime ,   that   is ,        —^—'— g - a 11  T §  0,  we 
JT    AC(T) K 

*. 
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find bounds which  give   the  mean  queue   length  to within -^—p-   .     When   the 

stronger assumption   is  made  that  the arrival   distribution  ha-s   increasing 

failure   rate   (see  Chapter  2)   the mean queue   length   is  bounded   to within 

C   H-p p 

(—r—) , with c    g   1   (for   the D/G/l  queue   this   reduces   to r-) .     These  bounds 

are   in  terms  of on ly   the  means  and variances  of   the arrival  and  service 

distributions.     Bounds  on   the mean   idle   time  give  bounds  on   the  mean   length 

of a  busy period,  and  hence  on  the  mean   number  served   in  a  busy  period. 

Bounds  on   the  mean  actua 1  wa it  give  bounds  on   the mean vi rtua1   wa it.     Upper 

and   lower  bounds  are  also found when  the   mean   residual   life  of  an   inter- 

arrival   times   is  bounded  below   (that   is, '00 AC(u)du ^ 1 

T    AC(T)     '^ 
all  T S  0),  and 

when the arrival  distribution has  decreasing failure rate. 

Chapter  3  deals  with   these   generalizations  of   the  GI/G/1   queue.     Batch 

arrivals  are  treated  by  redefining  service   times, and when A(t)   has   increasing 

failure   rate or has   mean   residual   life  bounded above by r-,   the  mean queue 

length   is  bounded   to within at most an  average  batch size.    Queues with 

service   in batches   of  fixed  size N are   treated  by  redefining   inter-arrival 

times.     For   IFR arrivals   the mean  queue   length   is  bounded   to within 

2 
N Ca 
TT (D  + rr~) •    Queues  are  also considered  where   the  service  breaks   down   in 

busy periods   in a   Poisson  manner. 

Queues where   the  first customer   in  each  busy period  has   some added 

delay are dealt with   in  Chapter h.    The  Gl   /G/l  queue   (where  m customers 
' ' m x 

start a   busy period)   is   used   to   illustrate   the   results.     For  m >   1   simple 

bounds  are  found which  give   the mean queue   length   to within r-when A(t) 

is   IFR. 

Some   two-priority queues  are dealt with   in  Chapter  5.  snd   two models 

are  considered.     In   the  first one   the  arrivals  are assumed  to  generate   two 

^^-»^-j^S^^VUjjjj^^^ »li^;,1...:^« ^'w.i(K»ati<iiw 
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renewal   processes,   and  high  priority customers  are  Poisson.      In   the  second 

one   the  arrivals  are assumed   to generate  a   single   renewal   process,  and  the 

probability  that an  arrival   is  a  high  priority  customer   is   p   ((1-p)   that 

he   is a   low priority  customer). 

The   last chapter  deals with more  general  queues.     Stationarity   is 

retained  but  the   independence  assumptions  are weakened.     Some   preliminary 

results  on  tandem queues  are  given,   but   the expression  for   the  expected 

wait  has   some  covariance   terms  of  unknown  order  of magnitude. 

There   is  much   to  be  done   in   the are   of approximations   in  queueing. 

The   importance  of   the   idle   time  distribution   is  clearly demonstrated   In 

this   paper.      More  work needs   to be done   in   relating   its  properties   to  those 

of the arrival  and  service streams. 
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