SOME INEQUALITIES FOR
SINGLE SERVER QUEUES

by

Kneale Thomas Marshali

CLEARINGHOUSE ]
FOR FEDERAL SCIENTIFIC AND ]
TECHNICAL INFORMATION 4

Hardoopy | Microfiche

23005 . 75 1/ ow
/ ARCHIVE COPY

L.

OPERATIONS RESEARCH CENTER

COLLEGE OF ENGINEERING

UNIVERSITY OF CALIFORNIA-BERKELEY

ORC 66-19
AUGUST 1966 .-

A

s Yow v YT

T PR

.
= T T Y " Y e e




- T~ A7 SV T

SOME INEQUALITIES FOR SINGLE SERVER QUEUES

by

Kneale Thomas Marshall
Operations Research Center
University of California, Berkeley

AUGUST 1966 ORC 66-19

This research was supported by the Office of Naval Research under Contract
Nonr-222(83). Reproduction in whole or in part is permitted for any purpose
of the United States Government.

& v-—- TR R R s i = T N T NN VL IR TR e =
T v ol R i TR =
Tt i 8 - .

LG AT - - -
WS 1 . . oL -
S



4
;

PRSI, % SN

ABSTRACT

The expected wait in the G1/G/1 queue is related to the mean and
variance of the idle time. For arrival distributions which are IFR or
have mean residual life bounded by %, simple bounds are obtained which
give, for example, the expected number in queue to within at most one
cus tomer.,

By equating input with output, relations between random variables
are used to obtain expressions foi the moments of the waiting time in
terms of moments of the inter-arrival, service, and idle time distri~-
butions. By bounding the idle time moments, bounds are obtained on the
mean and variance of the waiting time, the mean length of a busy period,
and the probability an arrival finds the system empty. Bounds on the
mean wait lead to bounds on the expected virtuél wait,

Similar results are obtained for some generalizations of the GI/G/]
queue, including batch arrivals, batch service and priority queues.
Queues where the first customer in each busy period has some added delay
are also considered,

Some preliminary results for tandem queues are given,
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Chapter 1

SOME RESULTS AND BOUNDS FOR ALL GI/G/1 QUEUES

1. Introduction

Little work has been done on approximations in queueing, Emphasis has
been on complex analytic results. Notable exceptions are papers by Kingman
(1962 (a) and (b)) and recently by Newell (1965). The work of Newell is
applied primarily to traffic light problems, whereas Kingman's is more
closely related to this thesis.

In this chapter some new results are found for various indicators of
performance in the G1/G/1 queue. Bounds which are easily calculable are found
for such items as the expected wait in queue, expected length of an idle
period and the variance of inter-output times,

Vle find a relationship between the idle time between busy periods and
the waiting time of a customer in queue., The expected wait in queue is found
in terms of the first two moments of the inter-arrival, service, and idle
times., For Poisson arrivals the idle time distribution is exponential, and
the expected wait is calculated easily. In general the moments of the idle
distribution are difficult to calculate. However, an upper bound for all
G! /G/1 queues is easily found in terms of the mean and variance of the arrival
and service streams only (sce also Kingman, 1962 (a) or (b)). A lover
bound is found which requires knowledge of the arrival and service distri-
butions, and not just the first two moments.

Only stetlionary quecucs are considered. No transient results are given,

2, Notation
The following notation is uscd throughout the paper. The sign ~ is

used to signify "with distribution function',
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¥
We shall deal exclusively with stationary queues in this paper , by
which we shall mean that the queueing p-ocess either started at time zero
with stationary conditions or that it started with some initial condition
(such as the wait in queue of the first customer is zero) but that time
was at'~w.
By the subscript n (e.g., wn) we shall be referring to the n-th cus-

tomers in a stationary stream., When it is not required to note the order
of the customers the subscript will be dropped.
T = time between n-th and (n+1) ~th arrival, T ~ A(t), E[Tn] = 1/\
S_ = service time of n-th customer » S ~ G(t), E[Sn] = 1/u
U =S -T, U ~K(t)
n n n’ “n
T, = time between n-th and (n+1)-th departure
p =M
wn =wait in queue of n-th customer, wn ~ W(t)
V = virtual wait in a stationary queue (see section k)
I = length of idle period between busy periods, | ~ H(t)
B = length of busy period , B~ B(t)
It is possible in some queueing situations that an arrival and service can ]
take place together, leading to problems in defining what is an idle pericd
for the queue. We shall define P[1=0] = 0, and thus if an arrival occurs
at the instant the last customer present departs, the busy period continues,
and ends only when the facility is empty for a positive length of time. |
Nb = number served in a busy period .
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total delay in system =V + S

=
I

number in the queue at a random point in time

v(n) = n-th moment about origin of random variable with distribution F.

The superscript is dropped for n=1, e.g., v_ = 1/\, vg = 1/, v, = EL1]

0% = variance of a random variable with distribution F
2 2 2 . . . .
cg = of/(vf) , where cg is the coefficient of variation

a = P[Arrival finds the system empty]

F(t) = 1 - F(t) for any distribution F

3. The Wait in Queue and the Idle Period

By equating input times with output times relationships between the
moments of the arrival, service, idle, and waiting time distributions are
now found.

The following result is given in Riordan (1962), but because of its

usefulness it is proved here,

" Theorem !,1: For all GI/G/1 queues with p < 1,

(1)

|-

Proof: Consider the time between the n-th and (n+1)-th departures
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L,
where X =0ifVW >0
n n+1
= -0 -T ) if W ., =0.
I f Un = Sn-Tn we have the fundamental relationships
Wy =W+ X+ U (2)
= Max [0, Wt Un]. (3)

When Xn >0, Xn=l. Hence, taking expectations in (2) and assuming

stationarity
E[Xn] = aOE[!] = -E[Un] which proves (1).

As examples, for Poisscn arrivals a = (1-p) and the idle distribution

. . . 1 . .
is exponential with mean X For the constant arrival, constant service
1

case (D/D/1 queue) a, =1 and | = .

> =

The following expression is now derived for the expected wait in

queue,

Theorem 1.2: For all GI/G/1 queues with p <1,

2 2
_EfuTY ELT
EIVY = 56007 - 260
\2(6% + o 2 (2)
o + cq) + (1-p) 2
2x (1-p) S 2y *)
, R T SR R S TSR = v oottt ~ —=r -



Proof: Write (2) as W -X =W 4+ U, Square both sides and note that
— n+ n n n

1

wn+]xn = 0, giving
wr e xZ aw? e U+ Ul
n-1 n n nn n

Taking expectations, since wn and Un are independent, and

E[Xi] = aoE[I2] we have
a E[l2] = 2E(U JE(W 7 + E[Uz].
(o} n n n

Using theorem 1.1 the result follows,

It is important to note the special way in which the moments of the idle
E[ 1]
distribution occur. EEETj-is the mean of an equilibrium excess idle distri-

bution; that is, it is the mean of a random variable with distribution

t ,c
function I Hzé&ﬁ-du. This is a well known result in renewal theory.
0 'h

,(2)
. . . . h 1
Consider again our two examples. For Poisson arrivals TR
h
p(]+C§)
In this case (4) reduces to E[W] = (i) a well known result. For the

2 2 (2) _ 2 1 L2 .o ,
D/D/1 queue Oy =0y = 0 and vool = (vh) = (k u) , in which case (&)

reduces to E[W] = 0.
An expression for the variance of the wait is now found in a similar

manner and is given by

Theorem 1.3: For all Gl1/G/1 queucs with p < 1,

e A s o PO B\ MOt 1 RIS YIS R oty > S
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E[U”) Erut1 EL121 TELLS]
Gw -gE[uJ Z2efu)) L i [’ '”‘]’

o _ K(véB)-v§3)) + 3(ov§2) : :
w ~ 3(1-0) ol 2 (1-p) ] oo 6

2 ,(2) h [vh 1

where oe,h e,h e,h B 3vh

Proof: Write (2) as\J b "X = wn U and cube both sides. Note that

yzw ey = nFl = 0, Using (1) and (&) after taking expectations
the result follows,
The expression for the expected wait is of particular interest in qucue-
ing and it is seen to depend only on the first two moments of the inter-
arrival, service, and idle distributions. In general these idle period moicnts

are difficult to calculate but bounds will be obtained for them and this is

the subject of section (7) of this chapter and sections (1-4) of Chapter 2.

L, The Virtual Wait

The virtuval wait is defined here to be the time an arrival would have
to wait in queue if he arrived at some random point in time into a station-
ary queue. The expected value of V is found ecasily in terms of the expected
value of W, the actual wait in queue,

First we show that at a random point in time in a stationary qucue,
the probability the system is empty is (1-p). The times between the starts
of busy periods are independent and identically distributed, say with
distribution B*(t), the distribution of (B+1). Hcnce, the qucue has an

imbedded rencwal process, and note that following the end of an idle period,

P-:«5'1‘. 3
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the distribution of the next busy period is independent, and distributed
as B(t). Let M (t) be the cxpected number of busy cycles (i.e., from the
start of one busy period to the start of the next) in (0,t] starting at

t=0 with the start of a busy period.

T "
P[Busy at T1 = J B (T-u)dM" (u)
0

and applying the Key Rencwal theorem, if B"(t) is non-lattice,

lim P[Busy at T] = E[B§+EEI] =0p.

T—x0

In the lattice case, the Cesaro limit may be found by Tauberian arguments.
Now let V = X+Y, where X is the excess service time of the customer

in service and Y is the sum of the service times of all those in qucue when

a random arrival occurs. Then

E[N_]
ECY] = —L;SL = pE[W].

Conditioning only on whether or not a random arrival finds the system busy,

@)
E[X] = 5.
2
p(C” + 1)
Hence, E(V] = ———%E~—~—-+ pE[W]. (6)

It is interesting to note from (6) that E[V] = E[W] if and only if

p(c: + 1)
E(W] = —ig%Tjay— winich is the case for Poisson arrivals, Using cquation

R B T B R T B R L B T e B AT T T s RREEICaiinage ] ian o
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(4) in (6) gives
p(c2 + cz) 1-1-(:2 pv(z)
ST o e g S
2y(1-p) 2 2\)h ’
Using either (6) or (7) in the D/D/) qucue gives the Cesaro mcan E[V] = %I'
5. The Variance of the OQutput
It is obvious that E[Tn] = E[Tn] = %u The variance is found as
follows. From the relationships in section 3,
Var [Tn] = Var [Sn+1] + Var [Xn] (8)
and Var (W =X ] =Var [D -T ] = 02 i 02 % 02 (8a)
n+l "n n n a g w'
But Var [WnF =X ] = o + Var [X] - 2Cov 0’1- n). (8b)
Now W X = 0 and hence,
n+1"'n
Cov (wn+]xn) = E[U](*-— —=).
Using this with (8), (8a), and (8b) gives
2 2 2
Var [Tn1 =o_ + Zog - X-(]—p)E[W]. (9)
Using equation (L) for E[W] we have finally,
o (2)
Var (Tn) =g - jl:%l' | 1]—Ql :‘—".
A h
%&ﬁ

- —
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- 2 ,

. . ‘ 2 .
For the M/G/1 queuve this gives Var LTn) = © so that the variance

2, 1
I
of the output of the M/G/1 queue is known exactly when the mean and variance

of the service distribution are given,

Co(t) s ¥ 2 _ 1 ) . A : <o of
If G(t) is exponential, oy =73 and Vai (Tn) = —5. In the case of

1 A

. ] 2
constant arrivals, constant service, Og = 0 and Var (Tn) = 0,

6. The Covariance of Consecutive Outputs

We now derive an expression for the covariance between two consecutive
output times. This expression depends on Lhe covariance between a service
time and the wait of the next customer. However bounds can be obtained to

show that it is bounded close to zero. This is done in section 7.

Theorem 1.4: For all GI/G/1 queues with p < 1,

i, + 2 (1-0) - o°
Cov (r 7 1) =Cov (S_ ¥ o) +3 (1-0) oy (10)

wherc o = ELMax [O,Un]w = J x dK(x).
B 0

Proof: T =T =-D +D
(TnTn+l) = (Tn-Dn+Dn+l)(Tn+l—Dn+l+Dn+?)’

and in a straight-forward but tedious manncr we find that

o - - - = 2 o 4
Cov(Tn’Tn+l) - E[(Dn Tn)Dn-i-l-J E[(Dn Tn)Dn+2] ) E[Dn+l] ! E[Dn+an+2J' (a)




10.
Since Dn+l = Wn+] S and W = Hax [O,Dn-Tn] ,
ELQ ~T )0 . 7 =Ee T+ (B Em]+ 1 -3
n n’ntl nt1 1 BoooA
2 2 1,2
E[Dn+1] = E[wn+]] + 2E[wn+]sn+]] + (u)'
Using (b) and (c) in (a), after some cancellation,
CET O 45 {D - A
COV(Tn,Tn+]) = E[(Un+]4sn+] (Dn Tn))wn+2] . Oy
2

-E[(Mln(O,Dn~Tn))wn+2] + Cov(Sn+],Wn+2) - Jg'

Now
Wn+2 Min (O,Dn~Tn) = Max (0,Wn+]+5n+]-Tn+]) Min (O,Dn—Tn),
When D_-T < 0, then W =0,

n n n+1

. , § _ o . 3
- W, Min (o,Dn Tn) Max [o,qn Tn+13 Min (o,Dn Tn)

+1

which by independence gives

E[Wn+2 Min (O,Dn—Tn)] = ~oE[Max (O,Dn-Tn) - (Dn_Tn)]

Putting this in (d) gives

2
]- -0,
(1-0) g

>R

COV(Tn,Tn+I) = Cov(Sn+],Wn+2) 4

(o)

STy
f
(b)
(d)
!
¥

My e e e is DI T IR, T S TROT FU TSy
y=ld —— "
-

i Y = - l




T Ty L A - TOIETRIT SoLECr Rt Eammac ot - e e -
e ie) o R X Yoh A goad RIRE " S et ey ey TR

s,

11,

which establishes (10).

[

7. Some Bounds for All GI/G/] Queues

Using the results of the previous sections some simple bounds can be
found for various factors in the GI/G/1 queue, such as the mean length of

an idle period and the mean wait in queue,

a) The mean idle time. Since a, = 1, theorem 1.1 gives a lower bound on

the length of an idle period,

1 1
E[l]} =~ - —. 11
(=4 -2 (1)
The bound is tight for the D/D/1 queue,
b) The wait in queue., Recall that from theorem 1.2
X(oz + 02) + (l-p)2 v(z)
E[U] = 2t i (12)
22 (1-p) 2v,

From (11) and Var (1] 2 0, it follows that

k(oz + cz~
E[W] = 2 05)
This upper bound for all GI/G/1 queues is also found by Kingman
(1962 (a) and (b)). Equality holds for the D/D/1 queue,
The importance of these bounds is that they involve at most only
the first two moments of the arrival and service distributions and further
knowledge of the distributions is not required. However, if K(t) is

known (or alternatively if A(t) and G(t) are known) a lower bound on the

wait in qucuc can be found as follows.

1=
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Theorem 1.5 Let !t be a solution of

Proof:

==J K°(u)du, x = 0, where (Sn—Tn) ~ K(t)
=X

which exists and is unique if and only if p < 1. Then for all

GI/G/1 queues, E[W] = 1,

Recall the fundamental equation (3)

Wy o= Max Lo, v +UT.
Then [wn+]|wn=xj = [Max 0, x+U 7,
[+
and E[Wn+]|wn=x] = f K (u) du all x = 0. (13)
-X

<
Now let J K®(u)du = g(x) which is a continuous convex function for
-X ’

x 2 0, with g'(x) = K°(~x), so K°(0") = g'(07) = PLU_> 0] and

g'(x) = 1as x~ o,

0
Let-B = E[Min (O,Un)] = f K(u)du and

-0

o = E[Max (0,U )] = f K (u)du. .
0

1
o

1
Th @ -8 ==
en "

From (13)

o

e
i
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or E[Wn+]] = E[Q@ﬂﬁ]-

Using Jensen's inequality for the expected value of a convex

function of a non-negative random variable,

E[Wn+]] z g(E[wn]), so that

fee]

E[W] aj E[w]Kc(u)du,

Consider the equation

[ee)

x = j_xkc(u)du, x 2 0 (1)

This can be written

0
X =qo + I K® (u)du x
-X

v
e

The situation is drawn in Figure 1. The equation has a solution ¥

and only if the two curves cross, If o =0, x=0 is a solution;
if o > 0 the curves cross if and only if for x sufficiently large,
0

0
X > o + I K (u)du <=> J K(u)du > ¢ or if and only if B > «.
-X =X

A

arguments. Uniqueness fails only when the two curves coincide over

But B>« if and only if l-> &. Uniqueness comes from convexity

some range, [a,b] say. This implies g'(x) = K°(-x) = 1 on
[a,b] => g'(x) = 1 on [a,») => curves don't cross. In the case

p = 1, either no solution exists or, for example in the case of the




= v it 'FC‘S'ET;;:“, o]
Y
1

14,

1

1‘~y o + I K® (u)du

o) { ='d

Figure 1: Determination of Lower Bound on the Wait in Queue, 1.

D/D/1 queuc, an infinite number of solutions exist with p=l,
So for p < 1, let ! be the unique solution of (I4). It is
now shown that t = E[W]. This is obvious from Figure 1 and equations

(13) and (14)., If t=0 the incquality is trivial. If t > 0 then
0
o> 0and for all 0= x <1, x<o+ J Kc(u)du from the uniqueness
-X
property of t, Hence, if E[W] < 1, then E[W] < f K® (u)du which '
-E[W]

contradicts (14) and the theorem is proved.

Summarizing, we have shown that for all GI/G/1 queues with p < 1

)\(o2 + 02)

t = E[W] = -§%77573—3 (15)

iSered dore =




15.

where 1 is the unique solution of (14). For 02 + 0; >0 (i.e., all

except' the D/D/1 queue), both bounds tend to infinity as %—* i-> 0.
However, their ratio may diverge in a particular case as is shown
below for the case of M/M/1 queue.

For the Poisson arrival, Exponential service queue it is found

that
RN VR T -
k(t) = |J,+)\ e t = 0
_ A At =
= e e t=0
which gives
K (t) = TQFp" e Bt t 20

>
~+
A

Using this in (i4) it is found that the lower bound for this case

is given by:
t = -() log. (1- 2) which - ® as p - 17
A e P

However, it is easy tc show that lim (1-p) loge —l~5 = 0 and
p—1” 1-p

hence, the bounds diverge. The upper and lower bounds and true value

of E[W] are shown in Figure 2 for fixed A=1 and varying p.

c) The variance of the output.

The variance of the output distribution is given in equation (9).

Using arguments similar to those in b) the following upper and lower

roue, e - v 87 S i TRV I o Al e e e S Gy oty g o g Lo
= W",W P Perter i St owe o P B S b WGTTTIST
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bounds are found for all general arrival, general service single channcl

queues,
2< & sz. 2 '4.].. _]_
o, E Vai (r 1 =0+ 20, 24 (5 u)’ (16)

where 1 is the solution of equation (14).

E[W]

Upper Bound

Lower Bound

T 1 I
.2 R .6 .8 1.0 o

Fiqure 2: Bounds on the Expected Wait in the M/M/1 Queue.

d) The covariance of adjacent inter-output times. ‘

Equation (10) gives the covariance of T and L in terms of the

covariance of Sn+l and wn+2.

, = TR
Now sn+lwn+2 Sn+] Max [0, wn+l4°n+l Tn+]]
= N
2 S i V™S They)
|
Y
- D e A o R 5
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2 1
Hence, Cov (Sn+lwn+2) z E[s ] - "
and using this in (10) gives
Cov (T _,7__,) & A (t-p) (@ - l)
n’ n+tl’ T A T

It is easy to show that o < & and thus that this expression is negative,

An upper bound is found as follows:

-T

Max LONM (S T T EW L Max Lo.s .

i n+1J

and using this gives
Cov (S

< < rrc?
nep M) = ECs g Max Los LT T S ECS T,

which leads to:

Theorem 1,6: For all GI/G/1 queues with p < I

1 | '
T ;) = (17)

The lower bound is negative and upper bound positive so in gencral no

conclusion can be drawn as to the sign of the covariance. However, it

has been bounded to within %Eu

e) The Virtual Wait,

The bounds obtaincd in part (b) and given in equation (15) can be

used in cquation (6) to show that, for all GI/G/1 queurs with p < 1,

~
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Chapter 2

QUEUES WITH ARRIVAL DISTRIBUTIONS WHICH HAVE MONOTONE FAILURE RATES

1. Introduction

In the previous chapter it was seen that the moments of the idle time
distribution occurred in many of the expressions. The idle time distribution
is some complicated tail distribution of an inter-arrival time and it might
be conjectured that by placing some restriction on the inter-arvival time
distribution one might obtain some desirable properties of the oments of
the idle period rcgardless of the service distribution. This indeed turns
out to be true,

The first restriction to be placed on the arrival distribution is to
restrict it to the class with decreasing mean residual life (DMRL). In this
chapter the words decrcasing and increasing are used in the wecak sense and
always should be read to mean non-increasing and non-decrecasing respectively.
The symbols ! and t will be used respectively for decreasing and increasing

in this weak sense.

Definition 1. A non-discrete distribution F has DMRL (IMRL) if and only if

J -——L~Diﬁ ' for all t 2 0 when finite,.
t FO(t) (1)
The expressions and symbols in parenthesis should be read
together.
A slightly stronger assumption on the arrival distribution will also

be used which implies the above assumption.

Definition 2. A non-discrete distribution F has increasing failure rate

(is IFR) if and only if
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F(t+Az - F (1) i for A >0 and all t = 0 vhere finite.
F(t)

If F is discrete, then it is IFR if and only if

pk
— 1 all k2 0 vhere finite.

> P
n=k

It is said to be DFR (have decreasing failure rate) when 1
is replaced by | in the above expressions.
These concepts are widely used in reliability theory wherc strong .
physical justifications can be given for their use in particular problems.
In queueing an IFR arrival distribution would have the following physical
interpretation. Given it has becn a time t since the last custoucr arrived,
the probability that a customer arrives in the next small interval 4 is
increasing in t, Besides any physical justification many parametiric
families have this property; for example the gamma and Weibul distributions
in certain parameter ranges, and the truncated normal and modificd extreme
value distributions. The degenerate distribution of the constant arrival
queue also has the IFR property. For a fuller discussion on thesc propertics
the reader should consult Chapter 2 of R. E. Barlow and F. Proschan (1965).
For IFR/G/1 queucs, (that is, the class of GI/G/1 queucs vhosc arrival
distributions have the IFR property) it is shown that simple cxpressions
can be obtained to bound, for example, the expected number in the qucue to
within at most one customer. These bounds involve only the mean and
variance of the arrival and service strcams. For the special class of
D/G/1, (constant arrival, general service), the expccted number in the

qucue is bound to within at most onc half,

T s T~ =
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2., Some Properties of the ldle Distribulion

In this section two theorems are proved. which give some of the uscful
properties of the idle distribution. These are then used in scction 3 to
obtain bounds for certain factors in the given class of queues. In what

follows, symbols and expressions in parenthesis should be read together.

Theorem 2.1: For all GI/G/1 queues where A(t) is restricted to have DML

(1MRL)

f —~i§l§5 j A” () dx all t z 0.

£ AC(1)
The inequalities are tight for the exponential distribution.

Proof: Let X = time from the last arrival to enter a busy period to the
end of the busy period and let X ~ 3(x) (see Figure 3).

Note that by definition (see section 1, Chapter 1) §(0+) =

c
E
v &
0 n
E >
30
=z
W e X el e | e " Time
i T : .

Figure 3: A Realization Showing the End of Onc Busy Period and

the Start of the Next.

Let H(t; x) = P[1 = t|X=x].

c . (e}
It can be scen that HO(L; x) = A~éLL§L and H(t) = j H(t; x)d? (x),
A~ (x) 0
e z-ww&;mmmw— PRI T ST T AT T e T R T AT T T s OO Ol iindil 15 e sl e 3 5
- - ) ’T“%‘ ’/ ;’ < K3
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where the integrals in this scction are taken to be Lebesgue-
Stieltjes integrals.

Conditioning on X,

j H (ﬂlﬂ I J ___.(LV)C]’Q_)_

£ HO(t) HE (¢)

) Hc(t;x) ) HC(UJXL - du -« d?(x)
0 HE(t) “t H(t;%)

since the integral converge absolutely,

[

Ho (tsx) j Acg_)du . 8 (x)

0 HO®t) Ytix AS(tix)

T AW du (T R (t:x) d3 (x)
(z) "t AS(t) Yo H(t)

A

from the assumption of the theorem,

Hence,
“[ldy & A (w)du
e HO(t) @) Yt AS(t)

By letting t=0 one gets the following

Corollary: For (DMRL)/G/1 queues, ((IMRL)/G/1 queues),

TA

v %n (19)

h ()

HV

Theorem 2.2: For all G1/G/1 queucs where A(t) is restricted to be IFR (DFR),

B o AR R NCY RNt i 4] T = — b5
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Ht+A) = H(t) = A(ta) - AL) for A > 0, and all
HE (t) =)  AS(t)

(i)

t 2 0 where finite,

(ii) ﬂf.(l.).. ! all t 20,
AS(t) (1)

® C = w C
(i) f ()R | A(udu 1y ¢z g,
Yh &) t Va

t

The inequalities in (i)-(iii) are tight for the M/G/1 quecue, and

in this case the ratio in (ii) is constant and cqual to 1,

Proof: Proofs are given for A(t) not discrete.

(i) First, condition on X as in the proof of the previous thcorem.

Hts) = H(L) Jm [H(ttn;x) - H(t;x)J.d@(x).
HE (t) 0 HE (t)

Now H(t+h;x) - H(t;x) = HO(t;x) - HO(t+a;x)

and substituting we get

M) = 1O 1 (7 Aend = ACE) | s
HE (t) HE (t) 0 A (x)

N j“” A(t-:—A-»xf - A(ttx) AC (t+x) dé (x)
HC(t) "0 AS (t+x) AC (x)

Y

A(trn) = At)
=) A%

from the IFR, (DFR) assumption on A(t).

(ii) Add and subtract 1 from both sides of (i),
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P HI(em) = A (t1)
HE (1) A (1)
c = uCle
or Hc(t) =) ”C(“A) all A>0, t=0,
AT (t) V7 AT (tn)
which proves part (ii). Notice that (i) and (ii) are cquivalent
as this argument is reversible.
(iii) From theorem 2.1
0
j HE (u)du c c
= 3y =
A — ) HCL &) ﬂ?(-‘il all 05 vEt
J.AC(LI)CIU A (t) A (V)
t
from (ii) and the fact that IFR (DFR) => DMRL (IMRL) (sce Barlow
and Proschan (1965)).
Putting this in determinant form,
Mea)
HE (u) du HE (v)
V
t
S0 allosvE L
o C e)
A~ (u)du A~ (v)
“t
Integrating v over (0,t)
” ¢ 't e
3 J H (u)du H™ (u)du
t). t 0
=0
@ ~t c (:E)
J/\'(u)du A (u)du
t °0
e g o B Z‘.;,:),;;;ti,ﬁ_ '::::,xgt 3 ﬁ.&o‘ T A e L S ) pisied Soverapan s
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Adding the first column to the second gives

j HE (u) du vy
ot

IV 1A

® ¢

j A~ (u)du v,
t

which proves (iii) and completes the proof of the theorem,

Part (iii) leads to the following

Corollary: For IFR/G/1 queues (DFR/G/1 queues)

2 @ 2
Vo= Va2 02, gt 1)
@, 2 Gt Q)T (20)

Equality is taken on everywhere by the M/G/1 queue.

Bounds for Queues with Monotone Failure Rate Arrival Distributions,

3.

a) The probability an arrival does not wait.,

Recall from Chapter 1, theorem l.1 that

avy = (%)(l—p). (21)

Using the corollary of theorem 2.1 above,

(i) For DMRL/G/1 queues

(1-p) = a, £ 1.

(ii) For IMRL/G/1 queues

N T T R R T T e




b)

0=a = (1-0).

The lower bound in (i) and upper bound in (ii) are taken on by the
Poisson arrival qucue. The upper bound in (i) is taken on by the
constant arrival, constant service queue.

The mean idle time.

Using equation 1! of Chapter 1 and the corollary to theorem 2.1 above
gives

(i) For DMRL/G/1 queues
! =y = L
()\)(]—p) ='—'th>\'

(ii) For IMRL/G/1 queues

HA
<

>|—

The upper bound in (i) and lower bound in (ii) are taken on by the
Poisson arrival queue. The lower bound in (i) is taken on by the D/D/I
queue.

The mean length and number served in busy period.

Using the relationships E[B] = zT%Es-E[I] and E[Nb] = yE[B],

(i) For DMRL/G/1 queues,

e T T TG S R IR S s S— TR AL - L e
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the upper bounds being tight for the M/G/1 queue, and the lower ones

for the D/D/1 queue,

(ii) For IMRL/G/1 queues,

These bounds are tight and taken on by the M/G/1 queuc,

d) The mean wait and number in queue.

Here use is made of the important queueing formula E[Nq] = NE[W] (see
Little, (1961)). With this, equation (12) of Chapter 1 and the corollary
to theorem 2.2 above, the following results are obtained.

(i) For all IFR/G/1 queues

(p-FC§)

J 5 & EIW] = J, (22)
and

" (p*‘cg) [ | '

- = E[N.] = AJ, 2
2 q:l | ( 3)
cﬁ + Xzoz

where J = Y]

The first expression shows that for this broad class of queues the
expected wait has been bounded to within at most a mean inter-arrival
time since p < 1 and for IFR arrivals cz £ 1 (sce Barlow and Proschan
(1965)). The second expression shows that the expected number in the

queue has been bounded to within at most 1 customer.

BN wad THITLIYT -y N, Ap ey iy o T - R RV b 3
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An application of these to the important class of constant arrival,
general service queues shows that the expected number in the queue has
been bounded to within at most 1/2 customer, since in this casc cs = 0,

The bounds in (22) and (23) arc shown plotted in Figure 4 for A=l,

2 . . .
c. =.9, for different values of p, as a function of the variance of the

a
service time. One might say that the expected wait increascs "approximately
linearly'" with the variance of the service, with a slope of Ez%jgjn
This is also true for the variance of the arrivals,

The lower bound is taken on by the M/G/) queuc and at least one

member of the class takes on the upper bound, that being the constant

arrival constant service queue,

¢ |-

E[W]

Figure 4. Bounds on E[W] for IFR/G/1 Queues.

vk

B SRRe o o s A e . S I
e s = 2 ppne e
TR e - . 0 o .



29.

(ii) For all DFR/G/1 queues

CS £ ch; (p + cz)
= = - L
t = E[W] = (T T (24)
and
c_ + XGE p + c:
AOS E[Nq] = 0 > , (25)

where 1 solves equation (14). The upper bound is taken on by the M/G/I
queue. |t has not been shown that the lower bound is taken on by any
member in the class.

e) The variance of the wait in_queue,

Theorem 2.2 allows bounds to be obtained on the variance of an
equilibrium excess idle distribution, ci,h. If the first three moments
of the arrival and service distributions are known this is the only
unknown quantity in equation (5), which gives the variance of the wait.
Clea}!y,

(i) For IFR/G/1 queues,

(3) (3)
0= 2 _ Vh = Va
=% .h " 3vh T3y,

and this with equation (5) gives upper and lower bounds on the variance

of the wait which differ by no more than 253 since if A(t) is IFR

PPV R PR

A
(3)
Va 2 .2
3 3 = 2 \)a = "‘2—
a A
(see Barlow and Proschan (1965)).
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f) The variance of the output distribution.

The only unknown factor in the variance of the output is again

L(2)

h and using theorem 2,2,
th

(i) For IFR/G/1 queucs,

1A
)
T
o)

2 . oyane
o, & Vai [Tn]

the upper bound being equality for the M/G/! qucuc, and

(ii) For DFR/G/1 queues,

2
o+ 12 = yar [t 1= 2% + 57
g )\2 n g a

] ]
- 21(5\_—;)’

where 1t solves equation (14),

g) The Virtual wait

Using the bounds in (22) and equation (6) give,

(i) For all IFR/G/1 queues,

5 9 2 2 2
p(cg-*-ca) . p(c tecy) ) (ptc)) -
2u(1-p) 2u(1-p) 24,

i

and the expected virtual wait has been bounded to within at most l.
The lower bound is equality for the M/G/1 queue. The upper bound is
the Cesaro mean, or the mean wait of a random arrival in the D/D/1 qucue.

(ii) For all DFR/G/1 qucues,

2

(14c?) ( 2+c2)
P[ EL-4-1] = E[V] = P “q ‘a

2 : éﬁ??tgjm
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L, A Veaker Assumption on the Arrival Stream

Bounds on the expected number in the queue to within at most one
customer can be obtained by weakening the [FR assumption on the arrival

stream., We first prove the following

Theorem 2.3: For all GI/G/1 queues where A(t) satisfies

® _C <
A (u)dy '5 M<eo for all t 2 0,

¢ ACq) @ B
(2)
Yh =
then 2\)h (?:) M.

Equality holds when A(t) is exponential and M = %.

Proof: The proof is similar to that of Theorem 2,1, Using the same notation

as given there,

Jm HE(Wdu _ (2 (%) jm A® (w)du aé (x)

t HE(t) 0 H(t) Yt+x AC(t+x)

IV A

) M jm ﬂii&ﬁil de (x) =M

0 H(t)

(

from the assumption of the theorem,

Therefore,

Im Ho(wdy = B L)y = 0
t h “ho

Integrating over t <ives

2V

=
v M and the thcorem is proved,
h (:’: )
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Using this result and (12) in (4) gives,

or all GI/G/1 quecues with p < 1 and

J A (u) udu{_:i for all t = 0,
t AS (t)
(o) -
J 7 E(W] = J,
A --(—*—)*’E[Nq] =N,

2 2 2
where + Ao
J=a—-—-—9
22 (1-p)
Example: Suppose we have m types of customers each requiring m different

types of service, and we have one facility for each type with service
N . . 2
distribution G, (t), mean 1 and variance ©
: My 9
Customers arrive in a renewal process with inter-arrival time distri-

bution A(t) which has DMRL (IMRL). The probability that an arrival is a

m
0, where T P
i=1

between two type i arrivals does not in general have DMRL (IMRL).

-

is P = 1, The distribution of time

For
example if in the DIMRL case the original distribution A(t) is degenerate

the distribution of time between type i arrivals is a step function .

)\’
which does not have DMRL. However, we show next that the assumption of
Theorem 2.3 holds for each i, when M = x&*

Consider a renewal process of all arrivals starting at t=0 with a typc

i arrival. Pick some arbitrary time t; > 0, and define

Xj = time between (j-1)-th and j-th arrival after ty, J=1, 2,
X = time to n-th arrival after t,.
n,t] ]
L3R gna S =Ry oo -‘-\-v‘—‘ \-"\——f‘"""‘-r".‘-.—.' - LT — oo < et
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. n
Then X = % X

I 1A

. ] =) = n
€X, 3= T ElX] - ELX)) 4 i

n,tI j=1 A

from DMRL (IMRL) property. Now let Xt = time to first typc i arrival after t].
]

8

= 1 n-1 ]
Then E[Xt ] ) & by npi(l—pi) = N
| n=1 i
independent of when the last type i arrived before tlo Let Ti = time of last
type i arrival before £ Then in particular
= 1
E[XtIIT]uO] & T
c
, , @ AC(w)de
] t Ai(t])
and the result is at hand,
,(2)
. h.
It follows immediately from theorem 2,3 that ! = : ¥ oi=1, 2, ..., m
th kpi
i
and for the i-th facility
Ji - ZXpi = E[(W] = Ji, (22a)
(H‘p |)
2 2
p.c_ (xpi) ogi | l—pI xpl
vihere Ji = ZXPi(l“pi) , oy o E}ﬁ
. r.f_bqnz‘y%‘twmwmﬂ-,muwm TTE RN sl S eere e SN ST : i\.._......:k:frﬁ TR T = e e
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5. Exponential Service Qucucs

The G1/M/1 queue has been studicd at length by various authors and an )
important quantity to be determined in its analysis is &, the uniquce non-

zero root of the equation

z = a(u(l-z)) (26)
where a(s) = j "e—StdA(t).
It has been shoun that (for example see Prabhu (1965 a))

a = P[W=0]

11

(1-8),

1!

P{W=x]) 6(l-e’“(]"6)x) 0 < x

)

Plan arrival finds | in system] = (1-8)83  j=0, 1, 2,

By restricting A(t) one can say something about the magnitude of &
A

in comparison to p = W In fact we prove here

Theorem 2.,4: 1§ A(t) is IFR (DFR) and if & is the unique solution of |

(HUT

fo<z<1,z=30u(-x))} for & =p <1, then & o

Equality is taken on by the exponential distribution.

Proof: The proof is a direct application of the corollary L,9 to Theorem

4.8 on page 33 of Barlow and Proschan (1965), There it is shown that if

A(t) is IFR (DFR) with mean %,

et Ee R e ) N o i Aok NP JR T o S . 70 B T AT PN s ———— vt
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) X§g for s real,

Y 1A

a(s) (

For a(s) = X%gx the solution of {O <z<l1,z-= N (1-2)) is z = ==p,

A

e the solution must lie to the left of p and for a(s) : x

For 3(5) =

it must lie to the right.
This leads to the following:

For the IFR (DFR)/M/1 queue

1) P[W > x] = g (1-8)x é) peH(17p)x ¥ x 20,
. o) =
2) EY =y @) T
.8 = _
3) ELGT =78 @) T

Equality holds throughout for the M/M/1 queue.

6. Expected MNumber found by an Arrival

For the M/G/1 queue it can be shown that E[Nq], the time average number
in the queue is the same as the average number found by an arrival., Let
La be the expected number in queue found by an arrival, and lct Lt = E[Nq].

For the G1/G/1 queue one can show that

Lo =ol, + (T-a )y, (27)

where y = average excess scrvice time of the customer in service when an
arrival comes., Thc argument is similar to that leading to equation (6) for

the virtual wait, For Poisson arrivals a = (1-0),

.oy viatant Lo naniges iy LB~ N s S PO W Foriva s o gx Loaal & ae sttt ol atnany T £ 23 ver
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L)
Y o= E%—"y the mean of an equilibrium excess service distribution, and hence
g2, 02
p~ (l+c))
L =1L =

e a 2(1-p) -

If the service time distribution has DMRL (IM3AL) it is casy to sce that

v &) &-with cquality holding for exponential service, and (27) becouzs

Lt (é) pLa + (l~ao)o.

Using scclion 3 part a) we have

(i) for DMRL/DMRL/1 queues

with the lower bound equality in the M/M/1 case,

(ii) for IMRL/IMRL/1 queuecs

o
A
—
A
© !d’r—

i

with the upper bound an equality in the M/M/1 casc.

e < T R T T T S S R T b FVANEII RTINS Tt Ty e e ey
EEARAN =i SR N ° - —==
w .- -

b~ AN o




e

W taiand

2%

b

37.

Chapter 3
BOUNDS FOR BATCH ARRIVAL, BATCH SERVICE,

AND INTERRUPTED SERVER QUEUES,

1. Introduction.

This chapter considers some gencralizations of the GI/G/} queuc which
preserve some important basic points in its underlying mathematical
structure,

We first study a queue where customers arrive in batches of (possibly)
random size. This is treated by redefining a service time. Queues with
services occurring in batches of fixed size N are then analyzed, and
solved by redefining an inter-arrival time. Finally a queue in which the
service mechanism is subject to breakdown in a Poisson manner with a general
repair time distribution is studied.

Each of these three generalizations of the basic GI/G/1 qucue pre-

serves the following structure., The (possibly) redefined inter-arrival

~or service times both form independent sequences of independent and

identically distributed random variables, Also a sequence of waiting times

can be found which satisfy the recursion formula
W = Max (0, W +S1=T'),
n"n 'n

n+1

where the primes denote a possibly redefincd service or inter-arrival time.

2. Queues with Batch Arrivals

Supposc Marrivals' appecar at rate N in a rencwal precess but that each

Marrival'' is now a batch of customers of random size M. Let P(M=n) = T

b 2 R e ¢ el . A TET IS aresa-o -y . 4
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n=0, 1, 2, ... . Customers in each batch are assumed to be numbcred in
some way to denote their ordei of service. The FIFO order of scrving
batches is maintained. Note that we allow a zero batch size, which is of
significant importance as will be shown in an example.

Now let Sk,n be the service time of the k-th customer in the n-th

batch of a stationary queue, and S ~ G(t) for all nand k 2 1, with

k,n

SO . 0. Let Wb N be the waiting time (in queue) of the complete n-tl.
batch, and define S = +S + ...+ S, S ~G (t). Then the
n O,n 1,n N,n n

sequence {wb n} satisfies the relationship,
3

W = Max [0, W

b,n+1 n+sn-Tn]’

b,
where Tn is the time between the arrival of the n-th and (n+1)-th batches,
Tn,~‘A(t) for all n as before.

Noting that {S:} and {Tn} form independent sequences of independent
random variables, when Xvn <y the theorems in Chapter | are valid.

The expected wait of the first customer in each batch is thus given by

2, 2 (2)
Oa+cg? 1,1 “i h
E[Wb,n] = A Gl ;—) sl Tt (30)
2y - ) "
Ao

02
2 2 0
” 2- (3])

The average waiting time of an arbitrary customer is found as follows,
The expected total additional wait of all customers in an average batch is

found, and this is divided by the average number of customers per batch.

o e
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Let Xn be the total additional waiting time of all customers in some batch

n. Then Xn:O if M=0, 1, and for N & 2,

Conditioning on M it follows that

ELx_|n7 = B%%:Ll for all 1 2 0,

and hence

v(z)-v

T
ELX 1 = Y

The expected wait of any unspecified customer E[W1 is then given in terms

of the wait of the first one in each batch by

L)
7 17 1
eV = EQ, 7+ [ZVTT A

Using this with (31) and (30) an expression is obtained for the expected

wait which is bounded as follows under the assumption of IFR arrivals

(be tween batches):

(o +C§ )
o ~ < a =< o
I+, o 5 EQW = 94, (32)
v (o-*cs ) ‘
- < < !
SRR SR AR N 5 = E[Nq] = kvﬂdz 4 Xan] (33)
where
~r mnmv@mwn»: T R ST T o -
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Lo,

Aoy otio? " W@
a T g 17 m - 11
Jz 3 5 ) p = -, and J] =3 -2--\-)-—»— = .é. ‘.;.
20" (1-p) BV -

Hence, the average number of customers in the qucue is bounded to within
at most an average batch size. For the compound Poisson input the lower
™ . C
. . A
bound is tight. For queues where J ——éﬁlﬁg-é %-for all t = 0, we can replace
t A(t)

.].C2
pieg
2\

-+

by (;K])'

it is of interest to note that the bounds still hold even though the
distribution of time between the arrival of customers is not IFR. For a
random variable to have an IFR distribution, the distribution can have at
most one jump, that being at the right hand end of its interval of support
(for details see Barlow and Proschan (1965)). It is obvious that if there
is a positive probability of having two or more customers in a single batch
then there is a non-zero probability of a zero inter-arrival time between

customers. In fact let T be the time between customer arrivals, T° ~ A" (1),

then considering only batches of non-zero size we find that

Voo~ (l-ﬂo)

Y
TT

A“(07) =0 and A (0") =

These inter-arrival times are neither independent nor IFR.

As a special case of batch arrivals consider the example in scction I
of Chapter 2, where a customer from the original arrival stream stops at
facility i with probability P, Since in our development we allow batches
of zero size we can interpret this example as batch arrivals, where the

batch size is 1 with probability P and 0 with probability (I—pi). Hence,

",
i,
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Vo= P and oi = pi(l—pi). From (32) and (33), for the case where A(t)

is assumed to have bounded mecan residual life (as in section 4, Chapter 2),

pi+]_
Ji - ['—ZTJ = E[W] = Ji , (32a)
Pilpy*l) _
Apd; - ——— 2 EIN] = ey, (33a)
2 2 2 2
pica * ()‘p') GC] "‘pi(]‘Pi)
where Ji = pri(‘"P;) .

Comparing thes: with (22a) and (23a) we see that this approach gives a
better bound, as the expected number in queue is bounded to within at most
P, customers. |t is easy to show the lower bounds are the samc in both
cases and are taken on by Poisson arrival queues,

It is also important to note that the baych arrival approach to this
example gives even tighter bounds if A(t) is assumed to be IFR, whereas the
approach in Chapter 2 breaks down in this case, since as shown above the
distribution of time between customer arrvivals is not IFR, The above

approach gives the expected number in queue to within

2
P, (p +c;)
—_— - if A(t) is IFR.

A1l the DFR bounds of Chapter 2 hold when the correct means and

variances are defined, since the idle time is still some excess of an inter-

batch time,.

3, Queues With Batch Services

In this section we assume a rencwal input into « single channcl queuc

with independent service times, but where service takes place only in
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L2,
batches of a fixed size of N customers  “ervice and inter-arrival times
are again mutually independent.

Let W be the wait in quene of the last (N-th) person who arrived

N,n

and formed the n-th batch of N customers. By redefining an inter-arrival

time to be

T =T + T n'l' ...'FT(N_]),n,T NA(L),

where Tj N is the inter-arrival time betwecen the j-th and (j+1)-th mcmbers

of the n-th batch, wc have

W = Max [0, Wy +5 -T"7,

N,nt+1 N,n

where Sn is the service time of the n-th batch.

The new inter-arrival time distribution is the N-th fold convolution
of the original A(t). The IFR property is closed under convolutions and so
with this assumption on A(t) the arguments of Chapter 2 can be applied.
However, the DFR arguments fail since convolutions of DFR distributions
are not necessarily DFR (for details see Barlow and Proschan, (1965)).

For the distribution Aw(t) we sece that

2
c
2
N

v_, = ﬁ, @, & st and C%u =
A a% a o1

For any unspecified customar

E(W) = EDwy T+ xl(N‘zD‘
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and hence for IFR/G/1 queucs with service in batches of fixed size N,

(Notc ) ) 1
- —5——a E(W] = 9, (34)
2
N : .
W= N—a—]ﬂw ] =, (35)
Nc™ - )\20‘3
where J = N (Tp)

Thus the expected number in the quecue is bounded to within at most iﬂ%ll
customers.,

It is well known that in generalizing the M/G/1 queue to batch services
analytic problems arise and essentially the problem is the same as analyzing
the EN/G/l queuc. In order to calculate E[W] or E[Nq] for this case it is
necessary to détcrmine the roots of the equation (s+k)N = lNg(—s) for
Re(s) = 0, where g(s) = Jw e-Sth(t) (for details see for example Prabhu

0-
1965 (a)). Howev:r, all this can be avoided if the approximations in (31)

and (35) give sufficient accuracy.

L, Queues with Server Breakdown

We now consider a GI/G/1 queuc wherce the service mechanism can break
down. When this occurs the normal queucing process is interrupted until
the server is repaired, and it is assumcd that these intevruptions occur
only in busy periods.

It will be assumed that
a) Timzs between successive breakdowms of the scerver are exponentially

distribuled and indcpendent with mean %—z
b

. T Y R TR T A TR T T T A e e e T T R o AN T e —— e e
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b) Repair times are independent drawings {Rn} from a distribution R(1).
c) The customer in scervice when an interruption occurs resumes his scrvice

where he left off, This is called the Resume Rule,

To analyze such a qucue we use a concept introduced by Gaver (1962)
and decalt with in detail in his papers. This is the "completion tinc!' of a
customer, Cn for any customer n. It is the time thce n-th customer spends
actually occupying the scrvice facility (his service timec and all the repair
time for breakdowns during his service). The assumption of exponential
inter-breakdown times lecads to {Cn} being a sequence independent and idon-
tically distributed random variables. The scquence of waiting times (in

queue) satisfy
= . J 4C - )
wn+] Max [0, Un Cn Tn] (36)
For the {FR or DFR assumption on the arrival stream all the bounds
of Chapter 2 hold in terms of the mean and variance of the inter-arrival

times and the mean and variance of a completion time C. These last two

quantitics are easily shown to be

]
E[C] = J(] + vr).b)
2 2 )\b 2 2
vicy = (1 + Vr>“b) Og + LT-(gr-wr).

. . . . . . |
For a staticnary qucueing distribution to exist we must have X-> Efc].
For any other distribulion of time botweer breakdowns the completion
times will not in goneral be independent or identically distributed and the

method fails.,

.y e d e s T
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We can replace assumption c) by c]),

c]) The customer in service when an interruption occurs starts his
service over again, but with the same service time. This is called

the Repeat Identical Rule.

or by cz)

c The customer in service when ar. interruption occurs starls over

2)

again with a new independent service time. This is called the Repcat

Different Rule,

For a detailed discussion of these see Gaver (1962).

in both the above cases the completion times form sequences of inde-
pendent and identically distributed random variables which are independent
of the arrival stream. Hence, all results for the GI/G/1 queue {ollow
since consecutive waiting times satisfy the fundanental equation (36).
Under the IFR or DFR arrival assumption the relevant bounds arc thus ob-

T AT (Wdu 7]
tained. Also under the assumption that J PAUER T = the relevant
¢ AS(y &)

bounds follow. A1l give bounds on the expected number in qucue to within

at most 1 customer,

T T T R N R o BN e U A T T T e o MR e S~ ek i T wT > E e - {
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Chapter U
QUEUES WITH ADDED DELAY FOR THE FIRST CUSTOMER

IN A BUSY PERIOD

1. Introduction

We now consider a single channel qucue with rencwal input at rate ),
independent service at rate p, but vherce the first customer in cvery busy
per{od suffers a random delay R before his service commences. This random
variable R can be dependent on the preceding inter-arrival time and may
affect the independence of the wait in queuc of some customer n and the
inter-arrival time of the n-th and the (n+1)-th customers., It is assumcd
that R is indepcndent of the scrvice times of all customers in the busy
period generated by R.

In this chapter the random variable | will refer as before to the tine

from the end of a busy period until the next customer arrives. tlence, it

is still some excess of an inter-arrival time. The idle time with respect

to the scrver will be I+R,

A general expression is found for the expected waiting time in queue
and is scen to be a gencralization of equation (It) in Chapter 1. As an
example we study the single server queuc where the server waits until m
people arc present before starting on the first service in a busy period.

He then continues (o serve onc customer at a time until the system is ecnptly,
Vie shall call this the G|m/G/1 qucue (sce Heyman, 19606). When m:=1 the sub-
script is dropped, For IFR arrivals bounds arec obtained which give the

. s ] . .
expected number in queuc or system to within - customer, For arrivals vith

2
. . ! .
mean residual life bounded above by X-tho expected nunber is bounded to
2
mil-c
within [""““-E}
2m )
o
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2. General Results

By equating input with output we shall now find an expression for the
expected waiting time in quecue.

Let R be the delay before service commences for the first customer in
a busy period in a stationary qucue, This may be dependent on the previous
inter-arrival time and hence on the idle time. |t may also affect the
independence of Wn and Tn as is seen in the example in section 3 (in this
example the wait of the first customer in a busy period is in fact equal
to the next (m-1) inter-arrival times). It is assumed that it has no
effect on the independence of Wn and Sn' Writing the inter-output times

as T = Sn+] * Xn’ when customer n leaves the system busy, Xn=0, and when

he leaves it empty, Xn = |4R, independent of Sn+].

We now show that

Cov (Wn,Tn)

2 2
E[U™1 E[R™] ~ ET177

P = e B GECRT Y EO)

“Note that this is a generalization of equation (&) in Chapter 1.
To prove (37) we proceed as follows:

Equating input and output times

=T +D - D
n ntl n’
and hence Vi = X+ (D =T 53
? nil n ( n r) 2 (3))
T P T o e T R R I L T AT T e ——
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where a) D -T 20 =X =0,
n n n
b) DT <0 > (0T ) = -l and X, = 4R,
c) E[Xn] = -E[U] (from (38)).

Squaring both sides of (38), taking cxpectations and assuming stationarity

in the queue, we get
-2E[UIE[W] = E[UZ] + E[Xn(Xn+2(Dn—Tn)] - 2Cov (wn,Tn). (39)

Using a) and b) above we see that

ECx (X +2(0 _-T )] = ELR+1) R-1)]p (ko)
where p = P[(Dn“Tn) < 0],
But from c)
pE(R+1] = E[X ] = -E[U]. | (L)

Substituting (40) and (&41) in (39) gives (37).
Note that no assumption had to be made concerning the indepcndence

of R and I, and if R is independent of the arrival stream, Cov (wn,Tn) = (0,

3, The G!I /G/1 Quecuc
m

Supposc the scrver does rot start service until m custoners are present,
In this case the first customer served in a busy period waits for the next

(m-1) customers to arrive before commiencing service. Numbering the first

G o= S |
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customer in the busy period 1 for convenience, R = T]+T2 ol Tm—l’ so

that

efr) = U Ere?y - %—‘l [<2 + m-1]. (42)

For this case it is obvious that for the first (m-1) customers in
each busy period the waiting time of a customer depends on the following
inter-arrival time, and we must now calculate the non-zero covariance term,

The calculation of the covariance is achieved by conditioning on the
position of service in a busy period, Obviously, a busy period scrves at

least m customers, We now use the covariance relationship for any three

random variables X, Y, Z,
Cov (X,Y) = E[Cov(X,v|Z)] + Ccov(E[X|ZT, ELY|ZT). (43)
We interpret X to be a waiting time, Y the following inter-arrival
time and Z the position of the customer's service in a busy period. Note
that E[Y|Z] = E[Ti|2=i] = %, a constant. Hence in our case (43) reduces to
Cov(wn,Tn) = E[Cov (W ,T|2Z)]. (4h)
If i indicates the position of service in a busy period, for i=1, 2,
wiTi = (Ti+Tm+ +Tm_l+s|+ +Si~l)Ti’

and so

. ,m=1
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. . 2 .
Cov04,1|2=|) =0 i=l, 2, ..., m-1
= 0 i = om.
Averaging over busy periods,
> . | .
Plz=i] = E[Nb] i=1, 2, ..., m-1
E[Nb]-(m—l)
and P[Z = m] = ELNb'_l
Using these results in (44) gives
(m—])og
Cov(wn,Tn) = EFNET—‘.
But ELN ] = pE[(B] = AELE] + EFRW), so finally
b (l-p)
(m-l)(l~o)0§
] = = Lo
Covl . To) = SE g+ et (%)
Using (U5) and (42) in (37) gives for the Glm/G/l queue with p < 1
c§+x203 ] (m—l)[m—l—ciW - XZE[IZ]
W] = 5y * o (o) Y e e (46)

This expression depends only on the first two moments of the arrival,
service, and idle distributions, and on m.

In general the distribution of | will depend on m (not the casc for
Poisson arrivals). For any stable qucue (o < 1) | cannot be identically
zero since busy periods end with probability . However, by using the

apparently crude divice of setting E[1] = E[Iz] = 0 in (I6) we obtain

T i .
T T T | 6 et o S S P BTN I KFV RSCRI ISR I YT IR P s o - — .
3 5 =5 T p— S
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an upper bound for all Glm/G/l qucues with p < 1,
2
Sl e L
BV = oy e T T T e (47)

We now show that this is actually a supremum for the class of qucues
considered by exhibiting a family of qucues in the class with E[1] and
E[IZ] arbitrarily small.

Consider a queue with deterministic arrivals at (normalized) rate 1,

1-¢

and deterministic service with service time for each customer _—, where

m= 2 and ¢ > 0 is arbitrary. Then at stationarity it is easy to show that

I=¢. For example take m=:3, then & = % - %. The true E[H] is easily cal-
L

culated to be % - %. The above bound gives a value of % + %. By letting

e=0 in this example the bound gives % whereas the true E[W] = 1, since in

this case | = 3

For IFR arrivals we now find a lower bound on E[W]. For any valuc of
m it is casy to sce that theorems 2.1 and 2.2 still hold for the random
variable I. In the proofs of those thecorems m would affect the distribution
(of time from the last customer entering a BP until the end of the BP).
However, the results were independent of the form of &, and we can say

z

inmediately that for IFR (DFR) arrivals and any m 2

(48)

r—1
]
t__![_J
A
m
b !

E[InJ (;) E[Tn] all n= 1, and 2

m
\—_‘
o
B

i
r—“
!_._-

Ve now prove a uscful lemna,

Lenma b, 1 1f (48) holds and a and b are any non-ncgative numbers,

Ay o P P
b - = Ry (hau=— Frier >ty Hlg = I W e Ty P — o S
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a - EFIZT z a - ELIEJ‘
b+ E[I] () b+ E[LT] "
Proof: For a 2 0, using (48) we have
LA B a 1% = (TN
ELIT] (=) ELT] ELI (=) E{T]

Adding these and clecaring the fraction gives

ATV

E(T](o-E01%7) 5y ECHG-ELT').

~~

v

Also  b(a-E[1°]) (Z) b(a-E[T?]) for a,bz O.

Adding these gives the desired result,
We apply the lemma to (L6) with a = (m—l~c§)(m—l) for IFR arrivals

since in this casec c§ = 1, For DFR arrivals Cg can be arbitrarily large,

. 2
~so to insure validity of the conditions of thc lemma we let a = (m-1)" in

i el

this casc.
Apply the lemma to (46) and using {4t7) we have shown for all IFRm/G/l

queues with p < 1,

1
JEEMI< I+ (—z—)T),

(L9)
< N db .].
M= EIN] < g
ci+x202 (m—l—p—cf)
V'Jhe e J e 2)\ ( l __p) + 2}\
B
T RORATR AT ,,;.'.;_‘;‘ Fyed W) At S B T TV .—p-,h:_':-r VT 1"5_':::-”'-::::.»4;;!:—- posimoec — e
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The lower bound is taken on by Poisson arrivals, and as shown previously
the upper bound is a supremum for at least one family of deterministic
queues,

For the wecaker assumption of bounded mcan residual life, i.e.,

Jt ézéiifg-é % it is easy to show that the bounds are
( 1 “Cz) ]
J - = ELWY <0+ 5,
) (49a)
(l-ca) |
A - o = E[Nq] <N+ 5

For DFRm/G/l queues With p < 1,

2,22
[ +)\ O‘q (n]_]_p) ~|
V] = 5oyt T o T B

Equality occurs for Poisson arrivals only when m=1.

ooy T~ T S T et R TP e - v
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Chapter 5
QUEUES WITH 2 PRIORITY CLASSES
1. Arrivals in 2 Independent Renewal Procesces
The following queueing situation is assumed in this section.
1. High priority customers (called type 1) arrive in a Poisson manner at

rate l]. Their service times are drawn from some general service

distribution G](t), with mean &~.
. ]

2. Low priority customers (called type 2) arrive as a renewal process with

distribution of inter-arrival times Az(t), with mean %—n Their service
2

. . . . . 1
times are drawn from a common distribution Gz(t), with mean a*n
2

3. The pfeemptive resume rule applies to all type 2 customers, (sce
Chapter 3, section L, and Gaver (1962).
For convenience in this section we shall call the above 3 assumptions J{.
A busy period can start with the service of either a type 1 or a type
2 customer. It is important to note that those starting with a type 2
customer havé the same structure as the busy perioﬁs (BP's) for the inter-
rupted server case treated in section 4 of Chapter 3, with Xb = X] and
R(t) the distribution of a BP in an M/G/1 queue with the service distribution
G](t).
For the study of this queuveing system we shall use the following
notation, A BP started with a type i customer will be called a typec i
BP., The phrase '"a type 1 service period!" refers to the time the server
is busy serving consecutive type 1 customers (i.e., a normal BP in the

imbedded M/G/1 queue formed by the type 1 customers).

—t orers .
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B = length of an arbitrary BP.

| = length of an arbitrary idle period,

B(’) = length of a type i BP, i=l, 2.
‘ N(') = total number of customers served in a type i BP, i=1, 2.
N}') = number of type j customers served in a type i BP, i,j=1, 2,

C = completion time of a type 2 customer (see Chapter 3, section 1),
:"):—]-' :-.-}-\-'2- A = \.FA J—:[ 1 [_ ]
P P2 ’ P AT NV TN S Y

A
p = B and hence p = PitPy-

‘ Arbitrary Idle and Busy Periods

Using the above efinitions and relating input to output, we have for

p <1,
1 = 2 -
£(8] = 1% E[1].

By assuming Az(t) has |FR or DFR we now obtain bounds on E[I] and

hence on E[B].

Theorem 4. 1: Underj{ if A (t) has IFR (DFR) and p < 1, then

(0 = -a, ()
ELI - ]
& T
where Sé(s) = I e~StdA2(t). Equality is taken on when
0"
~k2t

Az(t)‘z 1-e
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Proof: Let | ~H(t), Y be the time from the end of the last BP to the next
arrival of type 1, and Z be the time from the end of the last BP to
the next arvival of type 2. Then Y ~ Exponential with mean %;.

Let Z ~ F(t).
Under the IFR (DFR) assumption we know from Theorem 2.2 part (ii)

) A;(t).

iV A

that F&(t) (
Now | = Min (Y,Z) and hence

-\t

-\ |

t _
HO(t) =e | FO(t) g e AS(t).

Integrating both sides gives the desired result.

Let a_ = P(an arbitrary arrival finds the system empty). Note that
a, is not the probability an arbitrary customer does not have to wait in
queue. Now using theorem 1.1 with theorem 4,1 and a, = 1 gives:

For all 2 priority queues where A holds and

i) Az(t) if IFR,

L & =E[1] = ]—aifﬁll,
143, (\,)
i’é E(B] = [ i] l ][1€p]

The upper bounds are tight for Poisson type 2 arrivals,

ii) A,(t) is DFR,

T S LR
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The bound is tight for Poisson type 2 arrivals,
Bounds for the expected number served in an arbitrary BP follow
immediately.

Type 2 Busy Periods

As noted above these BP's have the same structure as those in the
iserver-breakdown'' case dealt with in section 4 of Chapter 3. From the

results there it is easily seen that

Now if IS is the idle time in the server breakdown case it is easy to show

that

E[B(z)] = (l—p) ECI ]

and we immediately obtain the following bounds on E[B( )]

i) For A (L) IFR and under f} :

(1-p,) |
2 [B(Z)] =

(1-p) uz uz(l-p) (50)

The upper bound is taken on by Poisson type 2 arrivals,

ii) For A,(t) DFR and under A :

1
iy (1-0) =

= 05,

- /=
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-th
with equality for Az(t) = l-¢ .

2
Since E[N(z)] —%féiz" E[B(2 ]Mz(l -0 ) bounds on E[ §2)] follow

immediately.
Each interruption of a type 2 service results in a type 1 service
period, In each of these type 1 service periods the expected number served

is TT%E—T' Therefore, the expected number of type 1 customers served in
]

\ W)
! (2) Mo
each type 2 completion time is —~——. Hence E[N ] -————————-—, and
U*z(]"'p]) "p])

finally we have

en Py = G, (100 )) + 2 EC8 @1,

(2);,

Bounds now follow on E[N(Z)] from the above inequalities on E[B

Waiting Times

The low priority customers have no effect on the high priority type
when the pre-emptive rule applies. Hence, the waiting time of the type |
is given by the Pollaczek-Khintchine formula, We can view type 2 customers
in a similar way to Chapter 4, The type 2 customers form’a general arrival,
general service queue where service times are redefined to be completion
times, and the first customer in a busy period has some random delay R,
which is either zero or the remainder of a busy period of type 1 customers,
Hence, formula (37) with Cov (wn,Tn) = 0 gives the expected wait of a type

2 customer, Using this and the lemma in Chapter 4 we get for the type two

customers if Az(t) is IFR,

YT rer iR i et £ 3T 5 P ezt - G TV RETRETRLLR  O S TR ..;M?ZT?-‘W ———
- WM | e e S = .
NEEL L em-
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(2)2 2) .2
- EF(T(')ag) 1.

CE[R21 - E[T
2607 ¢

oLECR+ECT BV ]

er (7% .y

ErR21
; (51)
ZE[T(Z)-C]

1.

However, to bound E[R7] and E[R2] seems to be very difficult. For
Poisson type 2 arrivals it can be shown that, if R ~R(t), and has density

r(t), then

RE(1) = BS()F0L,) - {-; r(t),

where B](t) is the distribution of a busy period of type 1 customers,
® st

m(s) = J e > dM(t) and M(t) is the renewal function for the modified
0

renewal process {Xi}, where X] ~ exp (x]) and for i > 1, Xi ~ Busy cycle of

type 1 customers. Using this we get

,(2)

E[RZ1-E[ 127 b,

]
2L ELRELTT] va] ) T'z'

Substituting this in (37) gives an exact expression for E[W] which checks

with results in Wei Chang (1965).

2. Arrivals in a Single Renewal Process

In this section we assume thqt inter-arrival times form a single
renewal process. With probability p the arrival is a type | (high priority),
and with probability (1-p) it is a type 2. Assuming the pre-emptive resume
rule applies the completion times of type 2 customers are no longer inde-
pendent and identically distributed (unless the arrival stream is Poisson).
However, idle periods (when the facility is empty) are excess inter-arrival

times and under the IFR, DFR or bounded mean residual life assumption these

w :I?Fﬁ:fﬂph‘wwqutmm.w\ﬁ R e SR 1, o) S0 il IR T T T TR YT e m
= T o ey ) . ”
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can be bounded, As in scection | we then get bounds on the expected length
of an arbitrary busy period.

Waiting Times

Under the pre-emptive rule the average wait of a high priority customer
can be pounded under the various assumptions on the arrival strecam, For
example, (32a) applies directly when the inter-arrival times have bounded
mean residual life, This surprisingly gives a better bound than the
approach in Chapter 2 (see 22a). In the non-precmptive case the type 1
customer who starts a type 1 service period must wait until any type 2 in
service leaves the system. Hence, (51) holds where in this case R is the
remaining service time of a type 2 if one is present, and R=0 if a type 1
arrival finds the system empty. |If the type 2 customers have a service

2.
distribution which has bounded mean residual life, then 0 = %%%ﬁ%

L

H plz

A\

and using this in (51) gives the expected wait of a type 1 customer to within
%~ + i—, and hence the expected number of type 2 in the queue to within
2 2
(1+p,).
Since in this model the completion times of the type 2 customers do

not form a sequence of independent random variables, it is difficult to

say much about their expected waiting time by the approaches used in this

paper:
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Chapter 6

MORE GENERAL QUEUES

1. Introduction

We now relax some of the independence assumptions of previous chapters
while maintaining stationarity. Tandem qucues are taken as a particular
case of dependent input. In this case an expression is found for the total

expected wait and is seen to depend on some unknown covariance terms.

2, Stationary Queues

When E[U] < 0 and the sequence {Un} is strictly stationary and metrically
transitive, Loynes (1962 (a)) has shown that the queue has a stationary
waiting time distribution. Also E[W] and E[1] exist and equation (1) still

holds for this class of queues; that is,
aOE[I] = -E[U].

Note that the proof of theorem 1.1 required stationarity but not

independence.

3, Queues with Independent Services

I the service times form an independent sequence and the inter-arrival
times form a stationary sequence, from equation (2) we can obtain a gencral-
ization of theorem 1.2, Using the saﬁe method of proof, but realizing that
now wn and Tn a}e not necessarily independent it is easy to show that

erudy erg2n CovlouT)

ELVY = 23600y ~ 26007 T TECO) 52)
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Given the form of the dependence of the inter-arrival stream it may

in @ given case be possible to calculate the covariance term,

Ik, Tandem Queues

Let us consider now m single channel quecues in tandem, where the oﬁ(put
from one becomes the input into the next. We shall assume unlimited queucing
space before each facility so that no blocking occurs, that the original
input forms a renewal process, and that the service times in each facility
are independent sequences of independent random variables, That is, if

Sk ; is the service time of customer k at stage i, Sk ; m'Gi, i=l, 2, ..., m,
H H

and {Sk i} are mutually independent.

The input stream to all facilities after the first will not in general
be a sequence of independent random variables (the case of Poisson arrivals

with exponential service at each stage is the exception). Let

2 . . 3
o, = variance of input to stage i
i
2 . . .
Gg = variance of service at stage i
i
. ' . A
by = service rate at stage 1, Py = E*
i
vén) = n-th idle moment at stage i

=
—_
—
I

= waiting time of n-th customer at stage i (in queue)

2
~
=

f

inter-arrival time at stage i

(i) = inter-output time at stage i

=
i

From ( 52) we inmediately obtain
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)\(0'2 "'O': ) + (]"Ol)z VP(]Z) A. Cov (w(') T('))
E,-w(i)-| _ i i R I n_’'n
) 2(1-p ;) 2vy (1-p.)

N
|

But Té'-]) = Té') and hence from section 5 of Chapter 1,

(2)
2 v
(t=p. ) (1-p._ ) "he_
2 2 i-1 i-1 i=1 .
O'a =0 - ) + X 7 i=2, 3, ..., m.
i 9i-1 A h

i-1

Now if e =i giving p; =0 for all i=1, 2, ..., m, the expected total

wait in queue is given by

l(02+202 +,,,+202 +02 y 4+ (]_p)Z v(2)
m (i a g, 9.1 9 h \
E[.X W( )] = ACS m - Zv: ey 7 COV(U( i) ( ))
m

Note that there is cancellation of the idle time moments of all except
the last facility (this happens only when p is the same for each facility).

The completely unknown quantities in the equation are the covariance
terms., The author has had little success in determining their order of
magnitude. 1t may be possible to find bounds on these quantities in some
generality since each term is the covariance between the wait in queue of
the n-th customer and the time until the (n+1)-th customer arrives. it

seems to the author that in general this correlation would be small.
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SUMMARY

The aim of this paper is to find simple expressions which approximate
some of the measures of performance in the GI/G/} queuve. The large body of
queueing literature shows that exact expressions for many of these measures
are extremely complicated. Often they are implicit in nature, making them
impractical for direct application. Notable exceptions are the papers of
Kingman (1962 (a) and (b)) and Newell (1965). In one paper Kingman deals
with the GI/G/1 queue, and in the other he deals with asymptotic properties
(as p = 17) of stationary queues. Newelll!s paper deals mainly with traffic
light problems.

In Chapter 1, the moments of the waiting time and idle time are related
by equating input with output in a stationary queue. New expressions are
found for the mean and variance of the wait, and an expression for the
mean queue length follows immediately. Upper bounds for all GI/G/1 queues
are found easily from the non-negativity of the idle time variance and the
bound of 1 on the probability a customer finds the system empty (Kingman
(1962 (b)) finds the same upper bound for the expected wait). These bounds
are in terms of the means and variances of the arrival and service streams;
A non-trivial lower bound on the expected wait is found wh{ch requires
knowledge of the arrival and service distributions.

In Chapter 2 we recognize that an idle time distribution is some
complicated tail distribution of an inter-arrival time. Restrictions are
placed on the arrival distribution which enable us to obtain ''good'" bounds
on such measures as the mean wait and mean number in queue. When the mean

residual life of an inter-arrival time is assumed bounded above by an

® ,C
ordinary mean inter-arrival time, that is, J é_jglﬁg_g L all Tz 0, we
T AS(r) A

oA T T N YIS Ly Qs @ 1o e tiadas o e A L S et = T
3 — %5?1 .’-u..a g - - = — ,'_vt

e "‘I"l[}é;i '

[ o

-ngi



N Y F~ A - s -t
65.

. . . L 1+
find bounds which give the mecan queue length to within i_EQl. When the
stronger assumption is made that the arrival distribution has increasing

failure rate (see Chapter 2) the mean queue length is bounded to within

P C2+p
( a

2

, With c2 = 1 (for the D/G/) queue this reduces to Q). These bounds
a 2

are in terms of only the means and variances of the arrival and service
distributions. Bounds on the mean idle time give bounds on the mean length
of a busy period, and hence on the mean number served in a busy period.
Bounds on the mean actual wait give bounds on fhe mean virtual wait. Upper

and lower bounds are also found when the mean residual life of an inter-

1w

© ,C
arrival times is bounded below (that is, J A (u)du % all Tz 0), and

T AS(T)

when the arrival distribution has decreasing failure rate.
) Chapter 3 deals with these generalizations of the GI/G/1 queue. Batch
arrivals are treated by redefining service times, and when A(t) has increasing
failure rate or has mean residual life bounded above by %, the mean queue
length is bounded to within at most an average batch size. Queues with
service in batches of fixed size N are treated by redefining inter-arrival
‘times. For IFR arrivals the mean queue length is bounded to within

2
c

N a . . .
7 (p + ﬁ—). Queuves are also considered where the service breaks down in

busy periods in a Poisson manner,

Queues where the first customer in each busy period has some added
delay are dealt with in Chapter 4. The Glm/G/l queue (where m customers
start a busy period) is used to illustrate the results. For m > 1 simple

_bounds are found which give the mean queue length to within % when A(t)
is IFR.

Some two-priority queues are dealt with in Chapter 5, and two models

are considered. In the first one the arrivals are assumed to gencrate two
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renewal processes, and high priority customsrs are Poisson. In the second
one the arrivals are assumed to generate a single rencwal process, and the
probability that an arrival is a high priority cusfomer is p ((1-p) that
he is a low priority customer).

The last chapter deals with more general queues. Stationaritly is
retained but the independence assumptions are weakened, Some preliminary
results on tandem queues are given, but the expression for the expected
wail has some covariance terms of unknown order of magnitude.

There is much to be done in the are of approximations in queueing.
The importance of the idle time distribution is clearly demonstrated in
this paper. More work needs to be done in relating its properties to thosc

of the arrival and service streams.
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