
CS48

to

^ AN APPROACH TO COMPUTER LANGUAGE DESIGN
Crj

CO BY

W. M. McKEEMAN

TECHNICAL REPORT NO. CS48

AUGUST 31, 1966

CLEARINGHOUSE
FOR FEDERAL SCIENTIFIC AND

TECHNICAL INFORMATION
Hardcopy I Microfiche

mi
in PP Ad

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

D D C
nffifn)f?nn np.
H SEP 2 9 1966

C

v.

,,,

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

·A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

AN APPROACH TO COMPUTER LANGUAGE DESIGN

BY

W. M. McKEEMAN

TECHNICAL REPORT NO. CS48

AUGUST 31, 1966

PREPARED UNDER CONTRACT Nonr-225(37) (NR-044-211)
OFFICE OF NAVAL RESEARCH

Reproduction in Whole or In Part is Permitted for

any Purpose of the United States Government

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

• rj,..

ACKNOWLEDGMENTS

I am well aware that I, as the first student to enter the Computer

Science curriculum for the Ph.D. at Stanford, have received more than my

share of help and advice. I wish to express my gratitude to Professor

Nicklaus Wirth, upon whose work the major part of this paper is based.

Professor Wirth has been a patient and gentle critic as well as a constant

source of ideas. Professor George Forsythe, who first introduced me to the

intricacies of automatic computation, has been extremely generous with

his time. Without his counsel, inspiration, and tangible help, I could

not have succeeded at Stanford; my debt is immense.

To Professors John McCarthy, William Miller, and Joyce Friedman, for

their encouragement and their efforts in reading this thesis, j,nd to my

fellow student Rajagopal Reddy who has steadily prodded and encouraged me

through the various stages of the Ph.D. program, sharing the tribulations

of our pioneer status, I wish to express my thanks.

Among the pleasures of studying at Stanford is the seemingly inex-

haustible stream of interesting people to meet with and talk to. I can

remember conversations directly applicable to this thesis with at least

the following friends: Robert Barton, Larry Breed, Ken Colby, Dave Dahm,

Horace Enea, Robert Floyd, Ken Iverson, Cleve Moler, Glen Oliver, John

Reynolds, Steve Russell and Harold van Zoeren; I am sure there are some

I have forgotten to list.

The Office of Naval Research, under contract Nonr-225(37) (NR-0M-21l),

the National Science Grant GPi+055 and the Stanford University Computation

Center contributed significant financial support.

And a final note of appreciation for my wife whose patient

encouragement has been very important.

iii

■"""! "^

TABLE OF CONTENTS

Section

1.

Page

INTRODUCTION

The Goals of Computer Language Design

Review of the Literature and Summary

2.

3.

COMPUTER LANGUAGE DEFINITION . .

Production Grammars

The Canonical Parse

The Parsing Function

Symbol Pair Parsing Functions

(2,l)(l,2) Parsing Functions

A KERNEL LANGUAGE

Principles of Design

Example Programs in the Kernel Lemguage

Syntactic and Semantic Definition

71

BIBLIOGRAPHY 123

IV

,

SECTION 1

INTRODUCTION

The Goals of Computer Language Design

The universe and its reflection in the ideas of man have wonderfully

complex structures. Our ability to comprehend this complexity and perceive

an underlying simplicity is intimately bound with our ability to symbolize

and communicate our experience. The scientist has been free to extend and

invent language whenever old forms became unvieldy or inadequate to ex-

press his ideas. His readers however have faced the double task of learning

his nev language and the new structures he described. There has therefore

arisen a natural control: a work of elaborate linguistic inventiveness and

meager results will not be widely read.

As the computer scientist represents and manipulates information

within a machine, he is simulating to some extent his own mental processes.

He must, if he is to malte substantial progress, have linguistic constructs

capable of communicating arbitrarily complicated information structures

and processes to his machine. One might expect the balance between linguis-

tic elaboration and achieved results to be operable. Unfortunately, the

computer scientist, before he can obtain his results, must successfully

teach his language to one particularly recalcitrant reader: the computer

itself. This teaching task, called compiler writing, has been formidable.

Consequently, the computing community has assembled, under the

banner of standarization, a considerable movement for the acceptance of

1

I

r

a few committee-defined languages for the statement of all computer

processes. The twin ideals of a common language for programmers and

the immediate interchangibility of programs among machines have largely

failed to materialize. The main reason for the failure is that program-

mers, like all scientists before them, have never been wholly satisfied

with their heritage of linguistic constructs. We hold that the demand for

a fixed standard programming language is the antithesis of a desire for

progress in computer science. That the major responsibility for compute

language design should rest vith the language user will be our central

theme.

The reduction of compiler writing to a task that a language user

might reasonably wish to undertake is the major technical obstacle. We

are not alone in our desire to simplify compiler writing [h, 7, 17, 22, 25

and we must justify our particular approach in some detail.

We postulate the existence of a set of basic concepts common to all

computing tasks. A language which includes just the basic concepts we

will call a kernel language. The implementation of a compiler for a

kernel language ve will call an extendable compiler. We do not expect

agreement on what constitutes the set of basic concepts or on the best

kernel language to represent them. We do hope that our kernel language

will be noncontroversial enough that the user will not be seriously

hampered in building a language to suit his needs.

Our first claim is that modifying an extendable compiler is easier

than building a compiler from first principles. The primary reason for

this is that the user of an extendable compiler can largely ignore the

details of such mechanisms as text scanning, syntactic analysis and pro-

gram loading while concentrating on translating his forms (syntax) into

2

^■t '

hin meaning (semantics). In many compiler systems trie mechanisms for

syntactic and semantic analysis, scanning, buildin'; tables and code

production are inextricably entwined, making a change to any one of them

hazardous, even for the expert. In our extendable compiler such functions

are cleanly separated, both conceptually and physically in the text of

the compiler program.

Our second claim involves the syntactic description of the user's

language. We demand a phrase structure grammar (BNF, Backus-Naur Form,

Chomsky type II, context free, etc.) from which a syntax preprocessor

generates syntactic recognition tables for physical insertion into the

compiler. We can show that if the syntax preprocessor accepts the phrase

structure grammar without complaint, then the syntactic analyzer in the

compiler will always function correctly. In short, we can prevent even

the naive user from blundering into an ambiguous or otherwise ill-defined

grammar.

Finally, we claim that the kernel language is a powerful and concise

base upon which to build.

Review of the Literature and Summary

We assume (for the moment) the reader is familiar with the notion

of a context-free grammar. The central problem in writing a compiler for

a language described by a context-free grammar is the construction of an

algorithm which will efficiently discover the grammatical structure of

an arbitrary input text. And the basic step in a parsing algorithm is

the identification of a substring in the text which, when replaced by

application of a rewriting rule, brings us closer to goal of an analyzed

text.

3

.-■■»-
■

A string is a candidate for rewriting if it is identical to the

right-hand side of a rewriting rule. If two or more candidates for

rewriting overlap, then at most one of the rewritings can lead to a

correct analysis. In Bounded Context Syntactic Analysis Floyd explores

the possibility of making the decision by examining a fixed number of

characters to the left and right of the candidate. A grammar for which

such a decision is always possible is called of bounded context. Floyd

shows that, if we chose the left and right bounds, we can determine if

a given grammar is of bounded context, for the chosen bounds. The

construction of a parsing algorithm then simply demands the construction

of tables for the relevant contexts.

We immediately discover two difficulties. First, straightforward

application of the ideas for a practical language results in tables of

impractical size. Floyd points out several simplifications based on

particular algorithms (such as a left-to-right scan of the text). But

the main difficulty is that the amount of table required for the hardest

decision is required for all decisions. Second, there are three decisions

involved: where is the left end of the candidate, where is the right end,

and what may we substitute for it. As might be expected, the bounds for

the individual decisions are usually smaller than those of Floyd, resulting

in a reduction of the table size.

In Syntactic Analysis and Operator Precedence Floyd presents a

particular algorithm for making the parsing decisions. The algorithm is

not properly a parsing algorithm since it skips some steps in the analysis

thus failing to give the complete structure of the text under consideration.

It is on the other hand more efficient for skipping them. The compiler

*" '■

writer must in each case decide whether the analysis provided is suffi-

ciently complete. We also come immediately to face the problem that for

some purposes the class of grammars acceptable to the algorithm is too

restricted.

In Euler; A Generalization of Algol §0, and its Formal Definition,

Wlrth and Weber modify Floyd's algorithm to remove some of the restrictive-

ness on the acceptable grammer and also expand it into a proper analysis

algorithm. No progress is made in reducing the size of the tables demanded

by expanding the context.

In this paper we explore the implications of splitting the parsing

decision into its thre»- components. For context bounds of (l,l) the

allowed grammars turn out to be identical to those of Wirth and Weber.

For bounds of (2,l) for finding the left boundary, bounds of (l,2) for

finding the right boundary and (0,0) for choosing the result of the

rewriting we find a substantial improvement in the table size but they

are still impractically large.

Also in Luler ... we find that not only the form of the language

but also the sequence of parsing steps is significant in the design of

a compiler. The sequence of steps proceeding strictly from left to right

in the text is called the canonical parse. The canonical parse turns out to

le a natural vehicle for describing the sequence of execution in the

compiled program as well as for proving a given class of grammars unambiguous

In language design we attempt two goals: to present a language

simpler and more powerful than Euler, and to make the defining mechanism

sufficiently simple so that the language user can change the language to

suit his needs.

Our first action is to equate those constructs in other languages

that are conceptually similiar but take different forms (switches, proce-

dures and name parameters) (lists, blocks, compound statements, parameter

lists, iteration lists). Our second step is to integrate the concept

of a list-valued constant into the language structure itself.

We describe the resulting language and compiler in some detail.

SECTION 2

COMPUTER LANGUAGE DEFINITION

Production Grammars

As can be seen by examining Table 1, there is little unanimity

among authors regarding the formalisms for the description of production

grammars. While our notation adheres closely to the consensus, our

readers may wish to refer to the table for a more familiar terminology.

We define three primitive entities: (l) the vocabulary V, a finite

set of elements called symbols, (2) a null string of symbols, A and

(5) the operation of catenation between strings and symbols denoted by

juxtaposition. In terms of the primitive entities we make the following

definitions:

V* = {x|x = A or (3y)(3y), y G V* , Y € V, x = yY]

is the set of all strings that can be formed from the elements of set V.

Note that we have used lower case latin letters to denote members of V*

and upper case latin letters to denote members of V. This convention

is extremely useful and we will adhere to it henceforth, usually without

explicit reminder.

I i

Author

I o

s

I
01
■p

«H
o

s
(0

ca
H I
M

o
CO

a1
•H
U
•P

CO

+>
CO

^

g
•H
+>
O

I
u
Pi

S1

I
0)
Ü

»4

•p
Ü

to

&
•p w

e
i
u o

s
0)
»4

01
0)

I
o

01

&
•P u
0)

i
o

g o

01
0)

I o

p

I o u
Pi

o
p
0)
ca

[5]
Chomsky V s vi VN E e. -4 ^>

[5,6]
Eickel & Paul A- z m A ::=»

t
-♦
0

t t

H
[11]

Ginsburg V r 9(V) e -» => =>

[12]
Grelbach IUT X T i A -» -» 1?

[71
Floyd V s T NTC wv A -♦ -♦ ^> P

[16]
Knuth IUT s T I OUT)* € -+ -♦ » => Ä

[25]
Wirth & Weber 1> A % l^-S) 1>* A -» •

-♦
•

•

McKeeman V G VT VN
V* A -» -♦ * -.* P

Table 1

A resume of notations used in recent papers on

production grammars.

The arrows of Eickel and Paul, like those of Gilbert [lO] have the

sense of reduction as opposed to the more standard sense of production.

8

i-*ri a production, is an ordered pair with both i, r € V*. We call i

the left of the production, r the right of the production and read the

production as I produces r.

P is a finite set of productions.

VL = [U |(3x)(3y)(3z) with yUz -♦ x in P) is the set of symbols on

the left in P.

VR = {U | (3x)(3y)(3z) with x-» yUz in P) is the set of symbols on

the right in P.

V™ = V - V is the set of terminal symbols.

V = V - V
-N -

y_ , the complement of V_ , is the set of nonterminal symbols,

VQ = V - VR is the set of symbols appearing only on the left in productions

We call V- the set of g;oal symbols. If £-»r is in P, then for any

x and y we may write x/y-» xry and read x<y directly produces xry,

or xry directly reduces to xiy. We immediately note that for every

production, the left of the production directly produces the right of the

production. We regard each production as a rewriting rule allowing the

substitution of the right of the production for any occurrence of the left

of the production in any string. If a string is in V^ then there can

be no applicable production and the process of production must halt,

hence the name terminal symbols is applied to V^.

One may also regard a production as a rewriting rule in the direction

opposite to the arrow. In that case the rule would be called a reduction.

In simplest terms, we would think of speaking as involving actions of

production and listening as involving actions of reduction. It will be

convenient to phrase our theorems in terms of productions while our

programs are capable only of reductions.

If y = x. -» x^ -» x, -♦ .,. -> x = z for n > 1, then we write y => z

and read y produces z or z reduces to y.

If we write y -> => z we mean y -> z with n > 1.

The set DS(p) = (x | (3G), G € V- , G -4=> x) is the set of strings

derivable in P.

Ii(P) = DS(P) H y* is called the language defined by P. The members

of L(P) are called the sentences of the language. Note that it is the

sentences that can be written as text and we need be concerned only with

the analysis of sentences.

Since a language is fully determined by the set of its productions P,

we will refer to the set of productions as the grammar P. We lose the

generality of being able to select a single member of V^, as the distin-

guished symbol, but the loss does not affect our considerations since we

have other reasons to restrict ^ to a single unique member.

For example: Let

P » (G -» X, X -» XX, X -♦ Y) .

Then:

V = (G, X, Y) ,

% • CD ,
VJJ = (G, X) ,

VQ » (G) ,

V* = (A, G, X, Y, GG, GX, GY, XG, ... etc.) ,

VJ = (A, Y, YY, YYY, ... etc.) ,

L(P) = (Y, YY, YYY, ... etc.) ,

G-»X-*XX-*XXX-»XXY-»XYY-» YYY

is an explicit demonstration of the fact that G produces the string

YYY (G => YYY). 10

We now direct our attention to a subset of production grammars,

called phrase structure grammars, in which the form of the productions

is restricted to L -♦ r. '

We will also assume two additional restrictions:

(1) V_ has a single element; we will designate it by G .

(2) (Vx)(3t) such that X € ^ , * ^ V* and X=i> t .

The alternative to restriction (l) is to distinguish one member

of V-, explicitly in the description of the language. We reject this

for two reasons: First, the productions describing the other members of

V- can be discarded since they can never be used in an analysis; Second,

we like to be able to test the productions for the existence of a unique

goal as a check against programmer errors.

Restriction (2) excludes grammars that give rise to derivations

that can never terminate in a sentence. It happens that condition (2)

is also required to prove the equivalence of simple precedence grammars

and symbol pair grammars (see page 27).

The Canonical Parse

If xYz -» xyz and z € VJ* , then we call the ordered pair

(xYz, xyz) a canonical parsing step (abbreviated CPS). Note that it

is the rightmost nonterminal symbol (RNS) that is replaced in a CPS.

If every step in s ^> t is a CPS, we call the sequence of steps a

canonical parse. A CPS induces a partition (xyz) on the unreduced text.

Note that we imply L € V and r € V* by our conventions on upper
and lower case.

11

Knuth calls the segment y the handle [l6] which unfortunately conflicts

with Greibach's term handle [12], Wirth and Weber [25] call y the

leftmost reducible substring which implies a relation that we do not wish

to pursue. We will give y the name canonically reducible string and

abbreviate it CRS. For a particular CPS, the CRS is well defined.

If we view the CPS in the sense of production, we see that zero

or more symbols are added to the terminal string to the right of the

rightmost nonterminal symbol. Therefore the length of the string z of

terminal symbols is a monotonic function of the number of canonical

parsing steps. Now viewed as a reduction, we see that the canonical

parse inforces exactly the same order of productions as required by a

left-to-right scan of the sentence.

Because of its relation to left-to-right parsing algorithms, the

concept of a canonical parse has appeared in many forms. It was first

explicitly named in [5] and [25] independently.

A sentence which has two essentially different structures is

called ambiguous. Formally, a sentence is unambiguous if and only if it

has a unique canonical parse. Furthermore^ a language containing an

ambiguous sentence is ambiguous; a grammar defining an ambiguous language

is ambiguous.,

The reader should verify that the grammar, language and sentence

in the preceding example are formally ambiguous according to our definition.

The Parsing Function

The problem of parsing a text t reduces to finding, at each stage,

the string ti so that t. -»t. is a CPS. If a sentence t Is

unambiguous then we see Imnedlately that each Intermediate stage of Its

derivation Is unambiguous. In particular, we note that for all 1, t.

Is uniquely determined by t, , alone.^" We can therefore Infer the

existence of a uniquely valued parsing function P such that Pfa.) ■ t.,

The following algorithm Is the complete solution to the problem of parsing

an unambiguous sentence.

START

1
t := Input text; G := goal;

t := P(t) ;

false
—^—

true

STOP

The assured existence of the function P Is, however, of little

use In constructing a translator. The only way to compute its values in

general Is to parse the sentence t and record the results in a table

(which rather begs the question).

For otherwise we would have two canonical parses of t .

15

1

It is surprising to find thst for a restricted set of phrase

structure grammars, we can find economical ways of computing the parsing

function. XUo [7^25] have been previously published. A third way, and

some steps toward a fourth are presented below. Except that Floyd's algorithj

skips some CPS, all are special cases of the following detailed breakdown

of an algorithm to compute the function P .

PI, P2, and P5 are functions of three string-valued variables

x, ^ and z. For the moment we will underline program variables to distin-

guish them from values with the same name but derived from the canonical

parse. If the catenation xyz is in DS(p) and L(p) is unambiguous

then there is a unique partition xyz ■ xyz of the catenation of strings

in the program variables x, y and z and a unique production Y -♦ y in P

such that G ^ xYz -»xyz is canonical. We give an Algol-like definition

of the functions in terms of the partition and production as follows:

Pl(x,^,z): If G -»^ xyz then

(x ■ xy and ^r = A and x ■- z) else undefined;

P2(x,^,z): If G -»^ xyz then

(x = x and ^ = y and z = z) else undefined;

P5(x^z): if P2(x,^,z) then Y else undefined.

Ik

•

thm

The general parsing algorithm.

..

START

x := A ; ^r : = A j z, 5= input text ; 0 := goal symbol ;

true

true

jr := x^; X := A >

false

STOP

false

false
—j»-

move first symbol

of z to tail of

move last symbol

of x to head of £

T

15

In terms of a syntactic analysis algorithm, we would assign the

following individual responsibilities to the functions:

pi: read the input tape..

P2: locate the CRS y to be replaced.

P5: perform the reduction.

Due to the monotonicity of the length of z, we must decide before

each CPS whether to shorten z. At the termination of the loop on PI,

we have assured ourselves that all of the CRS is on the tail of x« We

have located one boundary of y. The left boundary is found in the

loop on P2. At the termination of the larger loop, we substitute Y

for y, leaving the nonterminal symbol Y on the tail of x. If we have

reduced the entire string to the goal we are through. Otherwise, we return

to the loop on PI.

A cycle through the functions PI, P2, and P3 is equivalent to

a single step on the function P. The string xyz is always identical,

at the end of the main cycle, to the value of P(xyz). The main reason

for introducing the function PI, P2, and P3 is that their values can

be handled as reasonable computational entities. The parameters of the

functions are still unwieldy which reflects the fact that the function

values may depend upon an examination of the entire text.

Theorem. If the input text is a sentence and the grammar is unambiguous,

the general parsing algorithm will reduce the input text to the goal

symbol via the canonical parse.

Before attempting the proof we must describe our general method

for proving the correctness of algorithms. The basic mechanism of

inductive closure for program loops is described by Floyd [9] as one

16

■

technique of a verifying compiler. We state an initial set of relations

that ve know to be true upon entry to the]oop. Wo then show that they

are invariant with respect to execution of the loop, hence they are

always true. We finally deduce some relations that are true at the comple-

tion of the loop, either as a final result, or as a component in a proof

on a larger enclosing loop. In our deductions we must insure that alJ

actions are defined and all loops terminate. Relations true upon exit

from the algorithm are then correct descriptions of the final state of

the algorithm.

Proof. If the grammar is ambiguous, the parsing functions are not

uniquely defined and it is meaningless to state the parsing algorithm.

Similiarly, if the input text is not a sentence, all of PI, P2, and P5

are immediately undefined.

We need to show that we complete one CPS each time through the

outer loop and that the process terminates in a finite number of steps.

We cannot analyze the outer loop until we understand the inner loops.

We consider the loop on PI first.

G -♦=> xgz hence (ax)(3y)(3z)(3Y) such that

xyz = xyz and xYz -» xyz is a CPS; |x|< |xy| ; 1 = A

move first symbol of
z to tail of x

false
Ul < M 111 >o

G -*=Z> xyz hence ... etc. CP;3;

x = xy; ^ = A ; z = z; |zl < M '

17

We assume the truth of the relations listed at the top of the loop

and derive those at the bottom. Since G -*s&> xgz , PI is defined.

If it is false, x ^ xy. But we have |x| < |xy| hence we derive

x| < |xy| , From |^| = 0 we get \x^\ < |xy| < |xyz| hence

xy| < |xyz|. But xyz = xyz thus |8| > 0. There is, therefore, at

least one character in £ and the action in the box is defined. Further-

more, all of the assumptions are unaffected by the action, hence are

invariants of the loop. The loop must terminate because z is of finite

length. When PI becomes true, the conditions on exit from the loop are

consequences of the definition of PI.

Now consider the loop on P2 with the resulu.. of PI as assumptions,

V
G -»ae> x^z hence (3x)(3y) (3z)(3Y) such that

xyz ■ xyz and xYz -> xyz is a CPS;

x = xy; ^ = A z.= z; |^| < |y| .

false

move last symbol of

x to head of ^r

III < lyl 1*1 > o

true

G -»a5> xyz hence ... etc. ... CPS .

x = x; ^ = y; z = z;

P2 is initially defined and will remain so. Since z is never

affected, we have z^ = z everywhere. If P2 is false we have either

x / x or £ £ y. But either inequality implies the other, so we have both.

18

From 1^1 > |y| we derive |^| < |y|, hence |x| > 0. Therefore the

action in the box is defined. All the assumptions are preserved in the

loop. The loop must terminate because x is of finite length yie.'ding the

stated relations as consequence of the definition of P2.

For the entire algorithm we can now write

x := A ; ^ := A ; z := input text; G := goal symbol;

-*•
G-»^»x^z hence (3x)(3y)(3"2)(3Y) such.that

xyz ■ xyz and xYz -♦ xyz is a CPS;

1*1 < M ; x * A ;

G -♦=> x^z hence ... etc ... CPS;

x = x; ^ « y; z z:

^r := P5(x, ^,z) ;

x := x£; £ ::= A »

G -*=> xyz
hence ... CPS;
*| < |xy|;

^ = A ;

false

G => xjrz ; ^ = A ;

true xyz = G

STOP

19

By our assumptions, the input text is a sentence and we have

G -»=t> xgz and its ramifications. Since |x| = 0 initially,

|x| < lxy| is vacuously true. P3 is defined and has value Y.

xYz -* y^z is a GPS by definition hence we have new x = xY, ^ = A ,

and z = z with G=t> xyz. If G = xyz, we are done. Otherwise, we may

write again G -»=t> xyz and define new x, y, and z. Since z 6 V* ,

xy must contain all of the nonterminal symbols. The last symbol of the

new x is nonterminal, giving the required |x| < |xy|. We find our

assumptions invariant and also a consequence of the initial conditions.

The loop must terminate since there are a finite number of steps in a

canonical parse. QED.

20

•

Symbol Pair Parsing Functionti

If we wish to find a reasonably efficient method for computing the

parsing functions, we must renounce the privilege of examining the entire

text at each stage. We will see that the effect of narrowing the view of

the parsing functions will be to reduce the class of gramraars for which

we can build mechanical translators.

We first postulate that the parsing functions depend only upon a

few symbols in the region of the CRS. We will be able to verify our

postulate mechanically;- if it is false then the grammar in question lies

outside the range of that particular analysis.

Our approach will be to examine the grammar (mechanically, as it

is very tedious) to discover all the sequences of symbols that can possibly

occur in the region of the next CRS. For each possible sequence we will

record the required value of the parsing functions. When the resulting

functions are well defined the grammar is unambiguous and the syntactic

analysis algorithm in the compiler always functions correctly. The func-

tion values are inserted into the compiler in a condensed tabulated form.

Consider the three new functions PI', PS», and P^' defined in

terms of PI, P2, and P5.

If Pl(x,^,£) is defined, X is the last symbol of x and Z is

the first symbol of z, then we define Pl'^z) to be identical to

Pl(x,^,z). Similiarly, P2'(X,Z) must be identical to P2(x,^,z)

when P2 is defined^ X is the last symbol of x and Z is the first

symbol of the catenation jrz. P?1^) must be identical to P3(x,^,£)

when P3 is defined. We will call a grammar for which the functions

PI', PS', and PJ' are well defined a symbol pair grammar (or more

21

generally, as we will see, a (l,lXl,l) canonical parse grammar). We

will be able to show that under restrictions (l) and (2) (page ll),

symbol pair grammars are equivalent to simple precedence grammars [25].

The number of arguments for which PI, P2, and P3 are defined is

in general, infinite. On the other hand, if NSY is the number of symbols

in V, PI' -nd P2' need be defined for at most NSY squared possible

arguments. PJ' is defined only when ^ is the right part of a production

and thus also has a finite number of possible arguments. It is immediately

clear that we must apply a new restriction in order to make P5' well

defined:

Restriction (3): No two productions may have equal right parts.

We may, as has been pointed out to the author by N. Wirth, lift restriction

(5) if we have any way of distinguishing equal right parts. A particular

case in point is the Algol 60 <identifier> which we might wish to reduce

to <array identifier^ or to <variab]e>, etc., where the decision can be

made due to other non-grammatical information. We will call the number of

productions, (and, under restriction (j^ the number of CRS) NPR.

We see that the boundaries between x and ^ and between ^ and z

in the general parsing algorithm always lie immediately to the left of,

within, or immediately to the right of the next CRS. The parameters X

and Z of PI' and P2, always lie on opposite sides of one of the

boundaries; the values of PI' and P2, depend upon where the boundaries

lie with respect to the CRS. We will be able to compute the position of

the boundaries with the help of the three following set definitions:

22

■irwm, m>
"'■-'■ «

TS(X), the set of tail symbols of X, is given by

{Y|(3y), X-»=> f[] .

HS(X), the set of head symbols of X is given by

{Y|(3y), X-»^> Yy) .

HS_(X), the set of terminal head symbols is given by

(HS(X) U (X)) n ^ .

Note that if X is terminal, the first two sets are null but the third

is not.

When X is a tail symbol of the rightmost symbol in a CRS and Z

is a head symbol of anything that might follow that CRS in a sentence,

P1,(X,Z) must be true and never otherwise. Similiarly, whenever X lies

within a CRS and Z is a head symbol of the next symbol needed toward

the completion of that CRS, Pl'^z) must be false so that the needed

symbol is moved onto x. In terms of a production:

W -» uUVv ,

we cannot start building V if U has not yet been fully formed. Since

we have narrowed our view to one symbol on either side of the boundary,

we must never move any symbol in the head of V from £ to x if the

last symbol of x is a tail symbol of U. If U has been formed and

is the last symbol of x, we must move any head symbol of V onto x

to start building toward V and finally uUVv. We may very well find

conflicting demands, a symbol that must be moved on account of one pro-

duction and must not be moved on account of another production. Conflicts

are common in practice and constitute a serious nuisance. The compiler

writer can usually modify his grammar in a trivial way to remove the

conflict. A more general solution would be to extend the view of the

parsing functions, an approach which is discussed later in this section.

25

The function of the loop on P2, is to march down across a given

CRS and locate its left boundary. In terms of the sample production, it

is clear that P2'(U,V) must be false for every pair U,V that are

contiguous within a CRS. P2,(X,Z) must be true whenever we cross the

left boundary of a CRS—a condition that is true when X lies within a

CRS and Z a head symbol of the next item to be formed within that

CRS. We can summarize these relations with a mnemonic table:

W -» uUVv

P1'(U,HST(V)) =

P2'(U,V)

= false

= false

pr(TS(u),HST(v))

P2'(U,HS(V))

= true

= true

P^'CuUVv) = W

We need only consider terminal symbols for PI' since we know that

z contains only terminal symbols. We are also implicitly assuming some

strings to be non-empty. We avoid this last problem by adding a production

leading to the goal symbol,

G' -» I-G H , where 4- and H are end-of-file symbols

that we may use to initialize x and append to z. As modified the

parsing algorithm becomes;

2h

Ww

The Symbol Pair Parsing Algorithm

START

x:=|-; ^:=A; £:= input text -| ; G := goal symbol ;

false

■^-M»—^

X := last symbol of x ;

Z := first symbol of z ;

false
move first symbol

of z to tail of x

true

last symbol of x ;

first symbol of ^z ;

false
m

t
move last symbol

of x to head of J

x := x£; ^ := A ;

true

STOP

25

We state some consequences of the definition of symbol pair grammars.

Theorem. If the symbol pair parsing algorithm terminates normally, it

has produced the canonical parse for the input text.

Proof. The only transformation allowed on the text is the substitution

of the leftpart of a production for the rightpart, thus it is immediately

obvious that if the algorithm functions at all, it produces a parse.

After each substitution we see that the newly formed reduced symbol is the

rightmost nonterminal symbol in the text, hence that step was a CPS. QED.

Theorem. A symbol pair grammar is unambiguous. ([25] p. 26).

Proof. Assume the contrary. Then there is a sentence for which there

exist two canonical parses. We first show that the existence of two

different overlapping CRS implies a conflict in the parsing functions.

Assume that our text is

xLn L-,.. .L. M,M0.. .M R-R0...R z id Ki£ mic n

and both of L... .M and M1.. .R are CRS with m > 0, and one

of k or n > 0.

We treat the case k > 0 in detail. From the fact that L-.. .M
1 m

is a CRS we immediately derive PtC&Li HS^.J) = false and

P^(Lk, JL) = false.

(We substitute the set as an argument of P' meaning the relation is

true for all members of that set). Now perform the rightmost reduction

and our text becomes

xL1 L«...LjMz

where M was the leftpart of the production. Either L and M are

26

next to each other in a production or further reduction brings us to the

text

x'L'M'z'

where L' and M1 are next to each other in a production,

V =E> uL, M' =5> M v.

In the first case we have P2,(L, »N.) ■ true and in the second,
k 1

P^(Lk, HST(M
1)) ■ true. Either implies a conflict since M ^ ES{W)

and HS is never empty.

The situation is entirely similiar for n > 0. Thus we find our

only choice during reduction is which of several disjoint CRS to pick.

Let us assume that we pick other than the leftmost, substituting for it

the nonterminal symbol in the leftpart of its production. There is a

CRS to the left which must always be disjoint from all other CRS, hence

will eventually be reduced to its leftpart. But such a step is not a

CPS because we have already formed a nonterminal symbol to its right.

In order to form the canonical parse, we must always pick the leftmost

CRS and it is unique, thus the canonical parse is unique and the grammar

is unambiguous.

We will now define the simple precedence grammars of Wirth and Weber

and show their equivalence, under restriction (2), to symbol pair grammars.

We define three relations, <,=,>, between symbol pairs as follows:

For every production of the form W -» uUVv

U = V ,

Z € HS(V) implies U <• Z

X e. TS(U) implies X > V

X € TS(U) and Z € HS(v) imply X > Z.

27

•- ■•

If for each pair of symbols in V at most one of the above relations

holds, the grammar is a simple precedence grammar.

Theorem. If P is a simple precedence grammar, then P is a symbol

pair grammar. If P is a symbol pair grammar and restriction (2) holds,

then P is a precedence grammar. We immediately exhibit a symbol pair

grammar that violates restriction (2) and thus fails to be a simple

precedence grammar.

P - (G-»AB, A-»X, A-»XB, B -»C, C -» CY) .

The reader may find it instructive to build the six by six matrix of

precedence relations implied by the definition and find the two conflicts,

one of which is X <• C and X •> C.

Proof. We show that if P is not a simple precedence grammar then it

is not a symbol pair grammar and the converse.

Assume that P is not a simple precedence grammar. Then there

exist at least two symbols related by at least two of the three relations

<• >=**>. We treat each case separately.

(a). U=V implies (3W)(3-i)(3v) suchthat W-»uUVv.

(b). U<- V implies (3W)(3u)(3S)(3v) suchthat W -»uUSv

and V € HS(S).

(c). UJ>V implies (3W)(3u)(3R)(3v) suchthat W-»uRVv

with U € TS(R), or

(3W)(3u)(3R)(3S)(3v) such that

W-»uRSv with U € TS(R) and V £ HS(S) .

28

tmf*—imm,~r~

From the existence of a relation between two symbols we have been

able to infer the existence of the production from which the relation

was derived. Now from the productions we can derive some values for

the functions PI' and P2\

(a) implies P2'(U,V) is false and (VX), X € HST(V)

gives Pl'^X) is false.

(b) implies P2'(U,V) is true and (Vx), X € HST(S)

gives P1'(U,X) is false, Also HST(V) C HST(S).

(c) implies (Vx) Xe HST(v) gives Pl'C^X) = true since

U € TS(R) and HST(v) C HST(S).

On account of restriction (2), we see that HS_ is always nonempty.

Therefore if any two of (a), (b) or (c) hold simultaneously, we have a

conflict in Pi« or PS'; hence P is not a symbol pair grammar.

Converse. Assume that P is not a symbol pair grammar. Then there exist

symbols U and V for which either PI' or P21 is double valued.

(d). Pl'd^V) is true implies (3W)(3u)(3R)(33)(3v)

suchthat W-»uRSv with U € TS(R) and V € HST(S).

(e). n.*(llf?) is false implies (3W)(3u)(3S)(3v)

such that W-»uUSv with V € HST(S).

Now V € H3T(S) implies V £ HS(S) or V « S, thus (e) implies

U - V or U <• V and (g) implies U v> V, conflict.

(f). P2«(U,V) is true implies (3W)(3u)(3S)(3v)

suchthat W-»uUSv with V £ HS(S).

(g). P2'(U,V) is false implies (3W)(3u)(3v)

such that W -» uUVv.

But (g) implies U i V and (f) implies U <i V. Conflict, QED.

29

In terms of the general parsing algorithm, the precedence relations

can be thought of as a thre- valued function P12*(X|Z) which is used

for both analysis loops. Replacing PI', it is false if it has value

<• or = and true if •> , Replacing P2', it is false if ^ and

true otherwise. ([25] p. 20). It is surprising to find that even though

the defining matrix for P^' is twice as dense as corresponding matrices

for PI' and P2, and also contains spurious relations due to the over-

restrictive fourth defining rule for simple precedence grammars, that

no extra conflicts are introduced.

In either case, the matrices defining the parsing functions tarn

out to be rather sparse, and rather large. In the process of building

the parsing functions, we tabulate the symbols of V, and manipulate

instead the integer corresponding to their symbol table location. As

suggested by Floyd ([7] p. 525) we can frequently find functions fl and

gl such that if P1'(U,V) is true, fl(u) > gl(v) and if Pl'O^V) is

false, fl(uN ' gl(v).

We can, of course, do the same for P2', The advantage accrues in

requiring only k NSY memory locations for the tables defining the func-

2
tions fl, gl, f2, and g2 instead of 2 NSY locations required for

the matrices explicitly defining PI' and P2'. This is somewhat offset

by the fact that the Boolean matrices defining PI' and P2, could be

packed in digital memory. At present, all syntax checking is done by the

f..nctjon P3' and the only error indication is that the CRS found is

not la the production table. If we retained the functions Pl: and P2'

including the undefined values, we woald have an additional (redundant)

method of error checKing.

50

Let P be an arbitrary Boolean matrix (values 0 and l). For

all X and i, define

NSY ,,. .x Y

f(X) = £ 2^-1h{yi,Y), g(Y) = 2Y .
Y=l

Then P(X,Y) = 1 if and only if (f(X) mod g(Y)) > g(Y)/2 . Thus we

can state that a relation always exists with which we can record the

content of a Boolean matrix P in two linear arrays. The relations V"

and ">" are adequate in practice.

We present the symbol pair syntax preprocessor in two forms. The

first is written in the kernel language presented in Section 3> the

second is the listing of the Burroughs B5500 Algol program actually

used to generate tables for the extendable compiler of Section h. We

find it informative to compare the programs for conciseness and readability.

While the two programs accomplish essentially the same actions, the kernel

language version is approximately one half as long as the Algol version.

A detailed inspection of the program text reveals that the major savings

are in implicit table lookups (G, %$ index) and the generalized for

loop. Jn particular, there are 26 occurences of the symbol for in the

kernel language version while the Algol version contains 55. Further-

more, we find ten labels in the Algol version of which perhaps one half

are essential and none of which contribute to the reader's ability to

understand the program.

Since the kernel language is discussed in detail in Section 5> we

will say nothing further about it here. Burroughs B5500 Algol is in most

respects exactly Algol 60. The input and output conventions are relatively

standard except for the following features:

51

(1) On line 7 of the program we see a file declaration for the

card punch. Its function, setting aside buffer areas for the card

punch, is not important to an understanding of the program.

(2) Three lines below we find a WRITE statement in the form of

a procedure call. The first parameter to WRITE is a format which is

indicated to the Algol compiler by enclosing the format in the brackets

< and >. All the remaining parameters are values to be written.

In the middle of the third page we see two STREAM procedures. They

are an interface with the character mode machine instructions of the

B5500 used to set and interrogate two-bit fields within the h8 bit B5500

word. Since we may have upwards of 100 symbols and have two matrices

with that number squared of elements, packing the values is unavoidable

in Stanford's l6 thousand word B5500 memory. Packing would be somewhat

more convenient in the kernel language since we can use subscripts to

access bit strings directly.

Finally, we use the machine clock to obtain execution time infor-

mation for the user. One of our objectives is the accumulation of precise

timing information for the behavior of the preprocessor as a function of

the number of productions and number of symbols. Preliminary data gives

the surprising conclusion that execution time is a linear function of

the number of productions (about 2 seconds per production).

We now give a narrative of the kernel language version of the

program. Our first action is to name all the identifiers local to the

main block and initialize P to the null set. We examine the first

character from the input medium and continue to read productions until

an end-of-file symbol is encountered. Our productions are character

32

strings whose length is a multiple of 12. The firs^ 12 characters are

the leftpart of the production and the remaining fields are the symbols

of the rightpart. A carriage return delimits the production. Internally,

a production is an ordered set of strings, each element representing one

symbol in the production. We make special provision (if (length t)^ 0

then ...) for blank lines which cam be used to increase the readability of

the production tables. We also print the productions to supply the user

with a record of his input.

If the leftpart of two successive productions is the same, we

allow the user to substitute a field of twelve blanks for the second

leftpart, again to increase readability. At the completion of input we

immediately repair the omission.

Then, in three lines, we use the generalized for loop, set union

and set difference to build all the symbol tables that we will need.

Four more lines of program records them on the output medium.

After excluding the possibilitlos of empty and repeated rightparts,

it becomes advantageous to replace the production table with a new table

"PR" of identical format except that its elements are the indices of the

production symbols in the vocabulary V. We then complete our grammar

checks by excluding the possibility of a grammar with nonterminating

phrases (restriction 2).

We define procedures to compute head and tail symbols. Note that

we recompute the head and tail symbols repeatedly within the analysis

loop. In the processor for the (2,l)(l,2) grammars we adopt a suggestion

of N. Wirth to compute an "occurence" matrix which need not be re-evaluated.

The latter is probably a superior approach.

33

1

We then initialize the matrices PI and P2 to NSY iqutrtd

values undefined,, and proceed to evaluate the functions PI* and P2•

according to the directions of the theory. For every pair of adjacent

symbols in the grammar (j and k in the program) we evaluate the tail

and head symbols. We record P2,(j,k) true and all of P2,(j,HS(k)} fal.se.

Then we modify heads to become the set HS,_ and evaluate PI' in the

same manner.

Our final task is the computation of Floyd's linearization functions

f and g. Our algorithm is modeled on that of N. Wirth [26] but is

simpler since our matrices are two valued instead of three valued.

Our algorithm proceeds to satisfy the requirements of the decision function

starting in the apper left corner of its defining matrix. We add a row

to the satisfied area (null to begin with) and call uprow to assure that

(,l) f is large enough to satisfy all the requirements given by the value

false and (2) g is large enough to satisfy all the requirements given

oy the value true. If we must change g we call upcol to readjust that

entire column.

It is possible to hav ? functions PI1 and P2' b^t still not nave

a linearization for the relation pair < and >. At any given stage of the

operation of the algorithm above, we know that the Submatnx in the upper

left corner bar, been correctly linearized. Thus if we are going to fail,

the failure must involve one of the last relations added to consideration.

We can check witnm the adjusting procedures to see that we never return

to adjust one of the last relations added. If we do, we have failed and

print a diagnostic error trace indicating the exact reason for that

partic^l^r failure.

Ik

• Kernel language version of (l,l)(l,l) syntax preprocessor '

{ new j k kl P PR NPR V NSY VL VR VT VN VG PI P2 f g t heads tails

fail beenatrowk beenatcolk HS TS upcol uprow change,

P ♦- {); ' the null set of productions '

while in[l] / eof do

{ t *- [], ' the input loop, build a production '

while in[l] ^ cr do

{ t <- t © { in[l to 12]), • fixed field, 12 characters '

in «- in[l5 to length in]

)•

in <- in[2 to length in],

if (length t) ^ 0 then P ♦- P ® (t), ' add another production '

out <- out ® i®/t) ® cr ' print the production '

),

NPR <- length P, VL <- VR <- set (),

for all i from 1 to NPR do 'replace omitted left parts'

(if P[i][l] = " " then P[i][l] *- P[i-l][l]),

for all t from P do

{ VL <-VL U (t[l]), VR ♦-VR U t[2 to length t]),

V<-VLUVR, VTf-VReVL, VN^-VeVT, VG«-VL©VR,

NSY <- length V,

out «- out « (if (length VG) £ 1 then "no " else l",) ©

"Unique leftmost symbol: " « (©/VG) ® er ®

"Terminal spibols: " ® (®/VT) ® er ®

"Non terminal symbols: " ® (®/VN) ® cr,

for all t from P do (if (length t) = 1 then

out «- out 9 t[l] ® " has an empty right part" ® cr),

for all i from 1 to NPR do for all j from i+1 to NPR do

(if P[i][2 to oo] = P[tj][2 to oo] then

out «- out ® "Productions " ® er ®

(«/Pti]) • " and" ® cr e («/P[j]) « er ®

"have equal right parts" 9 cr),

PR «- P, 'convert productions strings to symbol table location'

for all i from 1 to NPR do for all j from 1 to length P[i] do

PR[i][j] «-PUHj] index V,

35

• The final grammar check—for nonterminating phrases'

for all 1 from 1 to NPR do P[i] «- P[i] e VT,

change «- true

while change do 'now try to collapse grammar'

(change «-false,

for all t from P do (if (length t) = 1 then

(for all i from 1 to NPR do

for all j from 2 to length Ptl] do

(if P(i][j] = t[l] then

P[i] .-PU] e (t[l])),

P <- P e' (t), change «- true

))

),

if P ^ () then out «- out 9 "grammar includes a

non terminating phrase" • (©/©/P)©cr,

HS <- (?)

(new s,

for all t from PR do

(if t[l] = s then if t[2] £ heads then

(head «-heads * (t[2]), HS{t[2]) })

TS *- (p)

{ new s,

for all t from PR do

(if t[l] = s then if t[-l] £ tails then

{ tails *-tails 9 {t[-l]), TS{t[-l])))

h
PI ♦- P2 <- NSY list (NSY list 0)

for all t from PR do for all i from 2 to (length t) - 1 do

{ j «- t[i], k «- t[i+l], heads «- tails «- {),

TS(j}, HS(k),

if P2[j](k] = ß then

{ P2[j][k] 4-1,

for all h from heads do

if P2[j]Lh] = 0 then P2[j][k] «- 0 else

(if P2[j][h] = 1 then out ♦- out •

"Conflict, P2(" 0 V[j] 9 "IE" 9 Vlh] 9 "]" • cr),

) else (if P2[j][k] = 0 then out ♦- out 9

"Conflict, P2[" 9 V[j] 9 "H" 9 V[k] • "]" 9 cr),

if V[k] € VT then heads «- {k), 'Now HST in heads'

for all h from heads do (if V[k] € VT then

(if Pl[jl[h] = n then Pl(j][h] ^ 1 else

(if Pl[j][h] ■ 0 then out <-out 9

"Conflict, Pl(" ® V[j] 9 "][" 9 V[h] 9 "]" 9 cr),

for all g from tails do if Pl[g][h] = 0 then Pl[g]lh] ♦- 0 else

(if Pl[g][h] = 1 then out «-out 9

"Conflict, Pl[" 9 V[g] * "][" « V[h] 9 "]" 9 cr),

)

h
uprow «- (p)

(new i p,

if beenatrowk A i = k then fail ♦- true,

beenatrovrit «- beenatrowk v i = k,

for all j from 1 to kl do

(if f[i] < g[j] then if p[i][jl = 0 then f[i] «-g[j] + l),

for all j from 1 to kl do

(if 1 fail then if f[i] > g[j] then if p[i][d] = 1 then

upcol{J, (p) p)),

if fail then out ■ out 9 "row= " • V[i] • cr

)i

upcol «- (p)

{ new j p,

if beenatcolk A j = k then fail «- tru^,

beenatcolk «- beenatcolk v J = k,

for all i from 1 to k do

(if f[i] > g[j] then if p[i](jl = 1 then gtj] «- f[i]),

for all i from 1 to k do

(if i fail then if f[i] < g(j] then if p[i][.j] = 0 then

uprow{i, (p) p)),

if fail then out «- out • "col= " © V[j] «or

li
37

fail «- false, kl <- 0

f <- g <-NSy list 0, 'Allocate storage to f and g'

for all k from 1 to NSY do if 1 fail then

(beenatrowk «- false, f[k] <-g[k] «- 1,

uprow{k, 0 P2),

kl <- k, beenatcolk 4- beenatrowk «- false,

upcoKk, 0 P2)

out <- out • "Linearized functions for K:" 9 cr 9

(for all i from 1 to NSY do (i base 10) • tab • V[i] ®

(f[i] base 10) 9 tab • (g[i] base 10) 9 cr),
fail «- false, kl 4- 0

for all k from 1 to NSY do if 1 fail then

(beenatrowk <- false, f[k] «- g(k] <- 1,

uprow(k, 0 PI),

kl «- k, beenatcolk «- beenatrowk <- false,

upcol(k, 0 PI)

out «- out • "Linearized functions for PI:" 9 cr •

(for all i from 1 to NSY do (i base 10) 9 tab • V[i] •

(f[i] base 10) • tab • (g[i] base 10) • cr)

•end of program'

38

The Algol version follows the kernel language version closely. We

have taken especial care to minimize conflict in memory use in the Algol

version. We provide three globals quantities, MAXNPR, MAXNSY, and MAXLPR

which determine the si^e of the tables in the program. Within the system

definition block (see the following diagram) we define the global arrays.

Our first action block is A, where the data cards are read and the various

tables built. In block B we check that the tables represent a grammar

according to the restrictions of the theory. In block 01 the recognition

functions are computed and in C2 the linearization is completed.

Block structure of the symbol pair analysis program

Outer block - system definition

Global quantities

Block A,
grammar input

Block B,
grammar checks

Block C

Block Cl
Compute
functions
PI1 and P2,

Block C2
Compute
functions
flj Hi f2| g2

39

RLGIN CQMMLNT SYNTAX fRJCESoCK. A*
INTEGER HAXMSY* CCKMENT
INTEGER HAXNPHJ CO.MENT
INTEGER MAXLPHI CC«MENT
INTEGER EllHER» fF.S# NO/ 11» GTJ

M. MCKEEMAN
MAX NUMUER
MAX NUMBER
MAX LENGTH

INTEGER Tl» OU
FILE UUT CH 0(2*10)1

CCT, 1965)
OF SYMBOLS)
OF PRODUCTIONS)
OF A PHCÜUCFIOM

CCVMENT TIMING INFORMATION)

PHCCEOURE TIMER)
PEQIN INTEGER T) T • TlME(l))

bHITE^MlME «••» F/.^»"» TOTAL
(T-OT)/ieOö» (T-TD/iöOÜ))
OT ♦ T)

FND TIMER)

ELAPSED » "# F7J2# ■ MIN,'»>.

PAXNST • iOC) MAX:4PK
EITHEh «- U) YES • D
CT ♦ VI ♦ IlMtd))

♦ 3ÜÜ) KAXLPR ♦ 5)
NO ♦ 2» LE ♦ 1) GT ♦ 2)

BEGIN CQMV.ENT SET UP «LUdAI. TABLES)
INTEÜEH
INTEGER
riQOLEAN
INTEGCK
INTEGER

12 SIG. CHARS)
PRODUCTIONS)

ARKAY VÜ» VIIOIMAXWSYI) COMMENT
ARHAY PRtÜJMAXNPR^UIMAXLPRJ)COMMENT
ARRAY ONHlGHKOiMAXNSYl)
NPh) CUMMENl ACTUAL NUMBER OF PRODUCTIONS READ)
NSYN« NSY) COMMENT ACTUAL NUMBER OF SYMBOLS READ)

COMMENT CARD INPUT BLOCK) BEGIN CUMMENT HLÜU A)
iNTtGLR I« J> K, L)
LARtL INPUTLÜUP» LUF» FÜLND)
INTEGEK ARRAY KQ* HHOIMAXNPR»
INTLGLR ARRAY MTdlOtMAXNSYJ)

OtMAXLPRD
COMMENT MASTER TABLE)

INTLGER ARRAY PHTo[Ü< 1022])
WR1 rE(<''PRUÜUC I IUNS »'♦//>))
NPR ♦ 0)
iNPUTLQOPl

REAÜ(<12A6>f FüK K f 0 STEP
(HUKPRM» Ml PHNPH4J |

IF PUlNHRM» li « ^ ■
BEGIN NPR *■ NPR ♦ I)

MNlTE(<le*Xt)^A6*', • *«*10A6>f
FOR R ♦ fl SUP 1 UNTIL MAXLPR DO

END)
GO TO INPUTLÜLH)

COMMENT PRODUCTION TABLE)

1 UNTIL MAXLPR DO
KIIHEOFI)

THEN HRITE(<* •'>) ELSE

NM*
tPO(NPR*K],Pl(NPR»K]]})

I

IC

ELFI
NSY ♦ 0) VCtÜJ ♦ VllCl ♦ H

FC/R K ♦ C STEP 1 UNTIL ^AXLPM CD
BEGIN ^R I ♦ 1 bltH 1 LKTIL NPR PO

BEOIN FOR J ♦ 0 STEP 1 UNTIL NSY
IF PCtI#M » VCI Jl AND PHI»*]

GO TU FUONÜ)
J ♦ NSY «• NSY ♦ D V0IJ1 ♦ PCri»K]l
FUUNDi
PKt I»KJ • J>
IF K # 0 IhLN UNR1GPTIJ] «- TRUE)

VltJl THEN

VltJl * PKNKl)

ho

E.MJ li
U K a C IHK NSYN ♦ ^SYj

FCR I ♦ 2 STLP 1 OMTIL NPK DO IF PftlNCJ ■ 0 ThfN
PNC I#0] ♦ f-Ktl-l^Ojl

taHITEdPAGC D) »•«IU{<,,INTEf»MEÜIAT£ SVMBCL S • ,,>)l
*KIUU3(I8*Xj;2AC}># rifi 1 4- 1 STfP 1 INTIL NSYN DC

11* vorn» viiinj;

Nhm.(<5(ifc»x>#?Af,)># ruR i «. Ktvik«] STEP I UNTIL NSY OO
n» vO[j)# vi(nj}j

HHnt(CP#<,,Fll.L VO[*J WITH 0#"# 6(••••••»A«»,••,••#,•#,•)/
(H("»"«,A6,*',,,#,,#,,))>»F0»' I f I STEP 1 UTlL NSY OU VO(lJ)>
KRITL(CP»<,,HIL m*J KUH 0»n» ÖC"»,A«»"*" »••#")/
C8(,M,,,»A6»',,,,,#,,*,'))>»F0M I «. 1 STEP 1 UNTIL NSY 00 VIIIDJ

L ♦ o;
Fl!N I «■ 1 STL^ 1 UNTIL NSV DO
BEGIN MBtl J ♦ L*li

FUN j «. J f.U.P 1 UNTIL NPH CO IF PKIJ»1J ■ I THEN
dEUIN FOH K » k STEP I UNTIL HAXLPH 00

IF HhIJ,Kj 1- (j THIN HRTBtL*L*l]«-PRtJ#KJI
PNTHlL«-!*!] ♦ -j; PRTBU«-L*n ♦ PRfw^OJI

LNU Jl
PHintL*i + n *- u;

END li

«iHITkUP#<,,f ILL PKTbl! KITH 0#,,M0CI4#"#")/
C «•»lAdO»"»-))»» Fl'R 1 ♦ 1 STEP 1 UMIL L OC PRTBCIJ)!
hHITUCP#<',FlLL MlLiI*J WITH ••» 13(13,••,*)/
(*• ,,#17(T3»*,»"))>'ü#FUH I ♦ | STEP 1 UNTIL KSY 00 MTBHJ))
WHlTt(CP#<,,NSY ♦ "»IS, ") NSVN ♦ ••, 13, «; NPRTB ♦ *$ 13,••)••>,
NSY» tSYN, I.))

END BLOC»1 A;

BEGIN CtMKtNl «iLOCK Bi COMMENT GRAMMAR CHECKS)
IMLGKH I, J* U
LABEL OKI
J • «;
FOR 1 • 1 STEH 1 UNTU NSVN 00 IF NOT RNHlGhUIl THEN
BEGIN J <■ J ■• U

»«HlTt(</MTMt UiiiuUi TAHfiET SYMBOL JSl •«/ ?A6># VOt 11» VH IJ)|
END li
IF J V I THEN WRIit(<,'TMEt<E IS NO UNIQUE LEFTMOST SYMbOL">)l

FOH I * I sm 1 UNTIL NPR OH
BEGIN CDMMENl CHECK FOR EMPTY LEFT AND RIGHT PAHTSI

IF PHtI,OJ e 0 THEN
WHITt(<HP«ÜUUCribN •», J» • HAS AN EMPTY LEFT PAHT"^!)!

IF PH[I,J J a u IHEN
WHITt (<"PHüüUCTlON M, J, ■ HAS ftN EMPTY RIGHT PART,,>#I)I

FUM J ♦ 1*1 bltP 1 UNTIL NPR 00

hi

bt0lnü SnH ^Nr ChtCK K-nR ICENTICAL RIGHT PARTS;
FUH K * i aiLP 1 liMiL MAXl.HH 01) IF PRtJ.KJ ^ PH[J,KJ THEN

GO T.J UK>
Wi<ITL(<"HKl)uuCIiONS ••.J#•, AND "» 4i
" MUST

UKI

Ian a
TlMtHi

tNU dLOCK Hl

.i>. uiSTu.GuiSHEo ev THE FNTERPRETATION RULES«>#I#J)I

HEGIN CUMMENT
ALPHA AHRAY

Öt-UCK Ci COMMENT SYNTAX ANALYSIS!
Pl» P^rOlNSY^ OINSY Olv 24Ji

eONNCNf PACÄI'Nli »»NO INPACKING PHOCEOURES;
STREAM MOCCOI.NC i(.T2..nrS(W# T, V); VALUE II
BLGIN ÜI * *i ülSKIk I iiq)l SI ♦ V) SKIP 46 SBI

2(ir SB THf.S Ü6 ♦ s,El KLSE OS ♦ RE3tTj SKIP SBMI

END stTPdnsi

iNTEGtH STREAM PHJCLÜljRE (iET2ÖITS<W* 1)1 VALUE II
BLGIN DI «• LUC ÜLf2ttmi SKIP 4« OB) SI ♦ Hl 2(SKIP I SBI)I

2(1F SB THF.^J III f üET ELSE CS ♦ RESETI SKIP SBDI
ENO GET2^1TSI

BEGIN CHMMENI BLUCK C l» CCMMENT COMPUTE PRECEDENCE RELATIONSI
INFEGER AHtUY rti-.AÜS» T>lLSlOlNSyjl
INIECFR C, M, I, j, K, Lt LC* HC# T# DIV2A# M0024I
BÜüLLAN FA1LI
LAbEL SKIPfl, bKlPP2» ÜONEI

PRUCEOUKE HSCb); VALUF SI INTEGER SI
BLüIN C0MrM.N1 Fl^ü THE LEFTMOST SYMBOLS OF Sl

INTECEM l# J# K;
LABEL ü"Jf llALrtEMQYI
FOR I ♦ l klCC l üMIL NPR 00 IF PR(I,OJ ■ S THEN
BLGU: N ♦ PRIlftll

FUH j ♦ i SUP I UNTIL LC DO IF HEAOSIJJ « K THEN
GU Tu LUIITALREADYI

LC ♦ LC ♦ II HLAUStLCJ * Kl HS(K)I
GCI 1 I Al.HLAUYi

END (I
tN.J HSI

PHüCEUU'AJ. lb(}»)» VALIE SI INTFGER SI
BLGIN COM-LNI FIND THE RIGHTMOST SYMBOLS OF SI

INTE^EH i, j, Kl
LABEL (ii.niALHLAÜY, Rl
FUR I ♦ 1 SILP 1 UMIL NPR DO IF PRtI»OJ ■ S THEN
BEGIN FUR J * MAXLPR STEP -l UNTIL I 00 IF PRtl.JJ * 0 THEN

GO TtJ hi
Ri K ♦ H«tl,jj;
FOR J ♦ I STfP 1 UNTIL RC DO IF TAILSIJ1 ■ K THEN

GJ TU liUMTALHEAnYl

k2

ENO II
CNÜ TSI

PRUCeOUHE CUNFLICT(I#j,M)l INTEGER I*J#M|
Bt'ilN INTtüEH Cl

FAIL * rnuti
NRITE(CNÜJ»<X29*N/">}J
NHITE(<WCUNH.ICT# *, 2A6* " ", M* ■ AND * A1#X2,2A6>«
VO(I)>Vim« M,M, VO(Jl,VltJJ)|

IHQ CüNFLKT;

FAIL * FALSE;
FOH I ♦ i SIEP 1 UNTIL NPR DO FOR L ♦ 2 STEP I UNTIL NAXLPR DO
UEtilN

J ♦ PH[I»L-lji K ♦ PRII#LJi
IF K a O THtN GQ TC OONEI
0IV24 • K Ü1V 241 MQ024 ♦ K MOO 241
LC ♦ RC * 01
TS(J); HJ>(K)|
T * GET2»IT&(P2lJ*0lV24)*H0024)f
IF T • US IHEN GÜ TO SKIPP2I
IF T ■ NO 1MEN CONFLICT(J#K#«»N") ELSE
StT2d|TS(P2[J*UIV24J,MQ024*YES)l
FÜR H ♦ l SIEP 1 UMIL LC 00
BEGIN 0IV24 * hEAOStH] DIV ?4I H0024 • HEAOSCH] MOD 241

IF GU2bnS(P2[J.0lV24]*HQ024) • YES THEN
CONKICT(JfHEADS[H]*NK(") ELSE
SET2UITS(P2CJ#0IV241>K0024*N0)I

ENO Hj
SKIPP2I

IF K > NSVN THtN
BEGIN CÜMMtNf IF «K« IS TERMINAL NE MUST TABULATE ITI

LC ♦ LC ♦ II
HEAOSILCJ «■ Kl

ENOl
FOR H ♦ 1 SIEP 1 UNTIL LC 00
BEGIN CUMMLNT ONLY TERMINAL SYMBOLS ARE INVOLVEOI

IF HLAUSIH) 1 NSfN THEN 60 TO SKIPPll
DIV24 • HEAOS(H) OIV 241 M0024 • HEA0S(N] MOD 24|
IF GtT2älTS(Pl(j*0lV24]*MOO24) • NO THEN

CÜNFLiCT(J#HEAOStN],"S") ELSE
SLT2dirS(Pl[lj»DIV24)«M0024«YES)l

FOR G ♦ 1 SIEP 1 UNTIL HC 00
19 GEl2blTS(PlITAlLStGj,0IV24l#M002O • YES THEN

CüMFLlCT(TAILSt6J#HEA0StHJ»"S") ELSE
SEI2U1TS(PI[TAILS[G]«OIV24]*M0024*NO)I

SKIPPil
ENO Hl
OONEI

END L II
IF NOT FAIL THtN HRl TEC</"NO CONFLICTS MERE FOUND*>)l
TIMERI

U5

END «LOCK C II

BEGIN COMMENT bLUCK C 21 COMMENT LINEAHI2E MATRICES!
INTEGER 4MNAY t* GCQlKSYU
INTEGER K> KU
BOOLEAN FAIL* bttMTHC*K# BEENATCOLKl

•NÜCEOURE üHCÜL(J»P)i VALUE Jl INTEGER Jl ALPHA ARRAY P[0#0JI
FORNAROI

PHÜCEÜURE ÜPHÜN(I#P)! VALUE H INTEGER II ALPHA ARRAY PtC#CJl
BEGIN INTEGER j;

IF BEENATHO.IK ANQ I a K THEN FAR ♦ TRÜEI
BEENATROHK ♦ ÜLENATWUWK CR I • Kl
FOR j ♦ i siEP i u^r^L KI DO IF FIU i GCJI THEN

IF üCT2älTS(P(I,j OIV 2A1,ENTIER(J MOD 2«)) ■ GT THEN
FlIJ ♦ GIJJ ♦ II

FOR J ♦ 1 SIEP I UKFIL Kl ÜO IF NOT FAIL THEN
IF FUJ > GIJJ THEN

IF GEI2aiTS(Pn#J OIV 20.ENTIER(J MOO 24)) ■ LE THEN
UPtUL(J# P)|

IF FAIL THEN MHITE(<"R0*| . ",I3, « m, ?A6># I# VO(!!# VI111)1
ENU UPRONI

PHUCEDURE ÜHCÜL(J»P)I VALUE Jl INTEGER Jl ALPHA ARRAY PI0*0JI
BEGIN INTEGER i, d0lV2«, JM002AI

IF BEENAfCULK ANO J a K THEN FAIL ♦ THOEI
BEENATCüLK ♦ HiENATCOLK CR J • Kl
J0IV24 • J U1V 241 JM0024 ♦ J MOO 241
FOR I ♦ 1 SIEP I UKTIL K DO IF FII] > GUI THEN

IF GET2diTSCPll.J0IV24)#JM002O - LE THEN GCJ] ♦ FtUI
FOR I ♦ I SIEP I UMIL K DO IF NOT FAIL THEN

IF f[l) i G[j) THEN
If aEI2Hirs(F(I,J0lV24),JM002O ■ GT THEN

JPKJMd, P)|

„uJULÜh TH£N "^^^"COL ■ "#13, ■ % 2A«>#J#V0CJJ,V1NJ)I
ENU UPCOLI

FAIL ♦ FALSE! Kl ♦ ÜI HRITE(I?AGEJ)I
FOR K ♦ 1 STEP i UNTIL NSY OÜ IF NOT FAIL THEN
BEGIN HEtNATHUNK ♦ FAL5EI FtKJ ♦ CtKJ ♦ II

UPR0«(K.P2)I
Kl ♦ Kl dEtNAlCOLK » BEENATRONK ♦ FALSEI
UPC0L(K#P2)I

ENU Kl
IF FAR THEN

NRITE<<"LlNtAKnATIÜN FAILURE FOR FUNCTIONS BELÖN">)I
XRITE(<"LlNtAHnEÜ PRCüUCTICN RECOGNITION PATRIXI"/
X^«»NO,"»X9#-STMdüL,,#MO.wF»#X7.»GV(Il0»X6#2A6»2I«)>«

j Fun K ♦ | STEP I U*TU NSY 00 t K, VOIK J,Vl IK J,FIK I^GIKJ))|
^lTE(CP»<"nLL F2I*J WITH C,% 1«(I2,-.« / 24 12,5 ! >'

f FÜH K ♦ I STEP I UNTIL NSY 00 F;KJ)| ••'••■• • ^>»
KHiTE<CP#<"FILL G2m rtlTH Q,*, 1 N(I2.«.'»)/(24(12»"."))>.
FÜ« K * i STEP I UNTIL NSY 00 G[K])I "l<^>" "»•

FAIL ♦
fQH K
BEÜIN

UHH
Kl
UPC

ENü Kl
IP FA!

MAI
HH1U(
X7»*NO
Füh K
NHITCC
FÜH K
WRlTtC
FÜH K

END BLOCK
ENO BLOCK tt

ENOI
Tir'ERJ
END,

FALUJ Kl • ÜI
♦ 1 SIEM I UNTIL

UUMTHUMK • FA

» Ki HELNATCOLK
QL(K.P1)>

L THk.N
IE(<nLlNtAM1241I
<MLlUEAHi2EÜ HIE
,,,#X«#,,bYHBÜL,,#)(
* I srtP t UNTIL
CP^^f ILL FU*1
♦ 1 STEP I UNTIL
CP#<"KILL ßl[*l
* 1 STEP \ UNTIL

C *)

TIMER) NRITE((PA6E1)I
NSY ÜO IF NOT FAIL THEN

I.SEI F[K1 * G(K] • II

» REENAIHQWK • FALSE)

ON FAILURE FOR FUNCTIONS BEL0NN>)l
HAHCHY ANALYSIS HATRIXlV
lO#HF,,#X7,"C"/(IlO#X6*2A6,2ia)>#

NSY 00 [K*VO(K]fVim#F(K]#G(KIl)l

00 FrKDf
0#«# 18(I2»*#««)/(2*(I2,••,"))>,
00 GrKDI

*iITH
NSY

>UTH
NSY

^5

(2,l)(l,2) Parsing Punctiong

Consider tne gramrr.ar

P ^ (G -» AB, B -♦ BC, 3 -» C)

The symbol B is left recursive, that is., B € HS(3) , From the first

production we can derive a conflict In P2'» Similiarly, if A had been

right recursive, we would have had a conflict in PI' frorr. the first

production,, We can s'jn up both situations by saying that an interntl

recursion will always cause a conflict. Note that tne grsmmer

P = (G -♦ AB' . B' -» B, S -* 3C, B -♦ C]

has no internal recursion and is a ^yirbol pair grammar. While we must

reject arbitrary grarrmar transformations on sen antic grounds, the Inser-

tion of a dummy production does not affect the semantic interpretation of

the language. The reader will note several such dUMy productions in the

grammar of our kernel language

We would liKe to extend the range of our grammars without requiring

additional work by the programmer. It is perfectly feacible to test for

internal recursions and automatically insert dummy productions into 'he

grammar prior to starting the analysis of the syntax

A perhaps more hopeful approach is to extend the v.ew of the func-

tions PI' and 12 It happens that internal recursions are allowed

if we TOOK l^eft one extra symbol for PI and ri_aht one extra symbol for

P2 Extending the notation of Wirth and Weber ([25 p 52) we call tne

symbol pair grammars (L,l}(l,l) canonical parse grammars and the suggested

extension (2,l)(l,2) canonical parse grammars

A (2,l)(l,2) syntax preprocessor is considerably more complicated

than that for a (l,])(l,l} grammar,. In pnrticulari the defining matrices

^6

■■** *m*m'

for Pl'^X^Z) and ?2n{X,Y,Z) contain NSY cubed elements. Even

though the density of defined entries is on the order of one percent,

a moderately large grammar may require 10,000 entries. It is encouraging

to note that no naturally occuring grammar has failed to be a (2,l)(l,2)

grammar.

The rules for deriving the values of Pi" and P2,, are similar

to those for deriving PI' and P21. We will first tabulate the various

set definitions required for the derivations and then state the rules de-

rived from certain standard production formats.

Set definitions.

{(X,Y) | (3u)(3R) P-»uXR, R ^> Y) U

{{X,Y) | (3u)(3R) P -»uR,

{X,Y) € T2S(R))

canonical parse
tail two symbols

T2S(P)

Canonical parse
head two symbols

H2S(P)

Allowed predecessors
AP(P)

Allowed successors
AS(P)

({X,Y) | (3u)(3R) P -»XRu,

(Y = R or Y G HS(R))) U

{{X,Y) | (3u)(3R) P -»Ru,

{X,Y) G H2S(R))

{X | (3Q)(3R)(3x)(3y) R -» xXQy,

(P s Q or P € HS(Q)))

(X | (3Q)(3R)(3x)(3y) R -» xQXy,

(P = Q or P € TS(Q)))

kf

^

11

Derivation rules for the parsing function values.

W -♦ UVv

W -♦ UVv

W -» UVv

W

W

tTUVv

tTUVv

W -» tTUVv

PI"

(3X)(3Z) Z € HST(V), X G AP(W) implies

Pl'^X^Z) = false.

(3X)(3Y)(3Z) Z € HST(V), X € AP(W),

U-»xe> y implies P1W(X,Y,Z) = true.

(3X)(3Y)(3Z) Z € HST(V), (X,Y) € T2S(U)

implies P1M(X,Y,Z) = true.

(3Z) Z € HST(V) implies P1M(T,U,Z) = false.

(3Y)(3Z) Z € HST(V), U -»^> Y implies

Pln{T,Y,Z) = true.

(3X)(3Y)(3Z) Z G HST(V), (X,Y) € T2S(U)

implies ?1"{X,Y,Z) = true.

W -» tTU

W -♦ tTU

W -» tTU

W

W

tTUVv

tTUVv

W -» tTUVv

P2"

(3S) S € AS(W), (3Z) Z € HST(S) implies

P2»(T,U,fc) = false.

(3S) S € AS(W), (3Y)(3Z) Z € HST(S),

U -»-e> Y implies P2,,(T,Y,Z) = true.

(3Y)(3Z) (Y,Z) e H2S(U) implies

P2,,(T,Y,Z) = true.

P2,,(T,U,V) = false.

(3Y)(3Z) Z € HST(V), U -»=e> Y implies

P2,,(T,Y,Z) = true.

(3Y)(3Z) {Y,Z) C H2S(U) implies

?2n{T,Y>7) = true.

U8

The block structure of the (2;l)(l,2) preprocessor is similiar to

that of the symbol pair preprocessor. We organize the set definitions

for allowed predecessors, allowed successors, single character derivatives

(Y -»=$> Z), head symbols and tail symbols as Boolean matrices. If, for

example, AP[l,j] = true then symbol number J is an allowed predecessor

of symbol number I. We gain by avoiding table look ups and loose by

being forced to pack the matrices. The blocks Cl, C2, and C5 contain

relatively transparent algorithms for the computation of the five sets.

Block C& delineates the algorithm for computing the function PI".

Consider an arbitrary canonical derivation Y ^> t where "t ^ Vm •

For every intermediate stage of the derivation (such that it has at

least two symbols) the pair of rightmost two symbols of the produced string

are an entry in the canonical parse tail two symbols of Y. The procedure

T2S tabulates pairs of tail symbols over all possible derivations emana-

ting from its argument. Storage requirements force us to abandon the

Boolean matrix definition for these sets and we tabulate them in a linear

array. It is also infeasible to record the values of Pln in a three

dimensional matrix hence we record the values in four linear arrays, the

first three giving the coordinates of the point and the fourth its value.

At the innermost loop of the analysis (nested within four FOR's and five

IF's) we find a call on procedure ENTER which records the computed value.

Since the speed of execution of the algorithm is proportional to the speed

of ENTER, we have attempted to code it efficiently. The first implication

is the need for a binary table look up which itself demands that the three

coordinate arrays be packed in a single word as the polynomial value

2
IXN +JXN+K where N > NSY. Secondly we use even powers öf two

and Burroughs B5500 partial word operators instead of multiplies and divides

as indicated in the comments.

U9

In block C5 we find similiar algorithms to compute P2". As one

immediately sees by inspecting the output from a trial run on the pages

following the program, even a small grammar generates an enormous number

of relations. The number is so large that we have been unable to test

the program for large grammars. Yet we feel that the information in the

tables is highly redundant leading us to conjecture the existence of some

analogue to Floyd's f and g functions for condensing the information.

To date we have not been able to find a reliable algorithm for this

purpose.

Our inability to condense the definitions of Pi" and P2" into

reasonably compact tables is the only bar to their use in the syntactic

analyzer of the compiler. It appears that (2,l)(l,2) grammars are suff-

iciently -powerful to describe computer languages with no further generali-

zation. There would be some advantage in generalizing the function P3'

to allow repeated and empty right parts in the production tables.

The sample output has been slightly rearranged from the actual

computer output. The first page contains listings of P, Y^., V_, and

G. Then follow the definitions of the five sets. The left margin contains

the symbol number and name; the top margin the least significant digit of

the symbol number. A dot signifies that the symbol numbered in the top

margin stands in the indicated relation to the symbol in the left margin.

For example, EOF is in the head of <PR0GRAI^>.

The first tabulated value for PI" indicates that <EXPR> ELSE IF

is an expected triplet and that IF is not to be moved from ^ to x in

the general parsing algorithm (because <EXPE> ELSE must first form

<TRUEPART>).

50

--

BEGIN COMMENT (2#1)(U2) SYNTAX PROCESSOR MCKrCMAN JAN. l9A6i
INTEGER MAXNSY)
INTEGER HAXNPRJ
INTEGER MAXLPRJ
INTEGER TN OT# T;
INTEGER P2CSAVE» Si' U
REAL ARRAY RECORDt0 I 20];
DEFINE PACKED ■ ALPHAfJ

COMMENT MAX NUMBER OF SYMBOLS)
COMMENT MAX NUMBER OF PROnUCTIDNS;
COMMENT MAX LENGTH OF A PRODUCTION!
COMMENT TIMING INFORMATION)
COMMENT STATISTICS STORAGE)

PROCEDURE TIMER)
BEGIN OT «- T) T ♦ TIMEM))

HRITEC^TIME
(T-OT)/3600#

END TIMER)

»"» F7,2#,,# TOTAL ELAPSED ■ "# F7,2# H MIN.">#
(T-Tn/3600))

PROCEDURE SAV(X)) VALUE X) REAL X) RECORDCSK-SI + U • X)

MAXNSY » 300) MAXNPR • 300) MAXLPR • 5)
P2CSAVE * SI * 0)
T •- TI •• TlMEd))
WRITE(<,,(2#l)(l,2) SYNTAX PROCESSOR» MCKEEMAN» JAN. 1966«»//>))

BEGIN COMMENT SET UP GLOBAL TABLES)
INTEGER ARRAY VO» VICOIMAXNSY]) COMMENT 12 SIG. CHARS)
INTEGER ARRAY PRCOtMAXNPR* OIMAXLPRD COMMENT PRODUCTIONS)
BOOLEAN ARRAY ONRIGHTCOIMAXNSY])
INTEGER NPR) COMMENT ACTUAL NUMBER OF PRODUCTIONS READ)
INTEGER NSY« NSYN) COMMENT ACTUAL NUMBER OF SYMBOLS READ)

BEGIN COMMENT BLOCK A) COMMENT CARD INPUT BLOCK)
INTEGER 1, J# K)
LABEL INPUTLOOP. EOF» FOUND)
INTEGER ARRAY PO» PlCOlMAXNPR» OIMAXLPR])
WRlTE(<MPROnuCTlONSlH//>))
NPR ♦ 0)
INPUTLOOP!
REA0(<12A<S># FOR K ♦ 0 STEP 1 UNTIL MAXLPR 00

[POtNPR*l# Kl» P1CNPR+1» K]])CE0F])
IF P0[NPR*1,IJ ■ •• " THEN WRITE(<H ••>) ELSE
BEGIN NPR «• NPR • 1)

NRITE(<IA»XB»2A6»N • W#10A6>» NPR»
FOR K * 0 STEP I UNTIL MAXLPR DO CP0[NPR»K1. PICNPR#K31))

END)
GO TO INPUTLOOP)

EOFI
NSY ♦ 0) VOCOJ • VHOl » " •')
FOR K ♦ 0 STEP 1 UNTIL MAXLPR 00
BEGIN TOR I •• 1 STEP I UNTIL NPR 00

BEGIN FOR J ♦ 0 STEP I UNTIL NSY DO
IF POCI»K] ■ VOCJl AND P1CI»K] > VlCJ] THEN

GO TO FOUND)
J ♦ NSY •• NSY ♦ II
VOtNSYl ♦ POtI»Kl) VltNSYl ♦ PllI»K])
FOUNDS

51

•

PRCNK] * J;
IF K ^ 0 THEN ONRIGHTtJl ♦ TRUE;

END i;
IE K « 0 THEN NSYN •• NSYJ COMMENT STIUL IN INTERMEDIATE SYM)

END K;

FOR I •• 2 STEP I UNTIL NPR
PRtI»0] ♦ PRCI-I,OI;

DO IF PRtI#OJ ■ 0 THEN

SYMBOLS»">)j
I UNTIL NSYN DO

WRlTECtPAGEDi WRTTE(<,, INTERMEDIATE
WRITE(<3(I8,X3I,2A6)># FOR I * 1 STEP

ci# vom» vitnn;
WRITE(<//»»TERMINAL SYMBOLSt'»>)l
WRITE(<3(ie.X3,2A6)>» FHH I ♦ NSVN^l STEP 1 UNTIL NSY HO

ti# vom» vicnnj
COMMENT GATHtR STATISTICS^
SAV(NPR); SAV(NSY); SAV(NSYN)I

END BLOCK AJ

BEGIN COMMENT BLOCK fll COMMENT
INTEGER ARRAY TESTtOlNPR» OlMAXLPRW
BOOLEAN CHANGE» EMPTY;
INTEGER I. J* K» Zt
LABEL OKI

GRAMMAR CHECKS)

j ♦ o;
FOR I #• I STEP 1 UNTIL NSYN 00 IF NOT ONRlGHTCH THEN
BEGIN J «■ J + I)

WRITE(</HTHE UNIQUE TARGET SYMBOL ISI *, 2A6>» VOtll» Vltll);
END II
IF J ^ 1 THEN WRlTE(<,,THERE IS NO UNIQUE LEFTMOST SYMBOL1^)!

DO FOR
> NSYN

J «• 0 STEP I UNTIL MAXLPR
THEN 0 ELSE PRCI.Jll

DO

NPR 00

FOR i M STEP i UNTIL NPR
TESTCI.J] * IF PfUI.JJ

CHANGE «• TRUE;
NHILE CHANGE 00
BEGIN CHANGE •> FALSFI

FOR I •> 1 STEP 1 UNTIL
BEGIN Z • TE3TtI#0i;

If 7. * 0 THEN
BEGIN EMPTY «• TRUEl

FOR J *■ 1 STEP J UNTIL MAXLPR 00
EMPTY * EMPTY AND TESTCNJ] ■ 01

IF EMPTY THEN FOR K •■ I STEP 1 UNTIL NPR DO
FOR J ♦ 0 STEP I UNTIL MAXLPR DO IF TESTtK,J3 ■ Z THEN

TESTtK»Jl ♦ 01
CHANGE • CHANGE OR EMPTYI

ENDI
ENDI

END CHANGEI
FOR I * I STEP I UNTIL NPR 00 IF TESTtI#0) ^ 0 THEN

WRITE(<HPRODUCTION%
1)1

U< LEADS TO A NON-TERMINATING PHRASEH>#

52

FOR I * I STEP 1 UNTIL NPR DO
BEGIN COMMFNT CHECK FOR EMPTY LEFT AND RIGHT PARTS)

IF PRtI#03 « 0 THEN
WRITE(<MPRnDUrTinN -# J, •• HAS AN EMPTY LEFT PARTH>#I)I

IF PRtI»l] ■ 0 THEN
WRITE(<MPROnUCTIOM ", J, " HAS AN EMPTY RIGHT PART">#I)J

FOR J ♦ !♦! STEP 1 UNTIL NPR DO
BEGIN COMMENT CHECK FOR IDENTICAL RIGHT PARTS)

FOR K •• 1 STEP 1 UNTIL MAXLPR 00 IF PRtI#K3 ^ PRrj»Kl THEN
GO TO OKI

WRITE(<MPROnUCTlONS »,J,* AND *$ J.
" MUST BE niSTlNGUISHEO BY THE INTERPRETATION RULES">,I,J))

OKI
END Jl

END i;
TIMER;
WRITECCPAGE])!

END BLOCK B;

BEGIN COMMENT BLOCK C; COMMENT SYNTAX ANALYSIS»
PACKED ARRAY CR[OJlO?2i; COMMENT COORDINATES!
INTEGER ARRAY Ifi S2[Gll022i; COMMENT NSY*2!
BOOLEAN ARRAY VtOn022i;
PACKED ARRAY INHEAO» INTAILC01NSY# QlNSY DIV 4831
PACKED ARRAY SCDCOINSY» OlNSY DIV 463)
PACKED ARRAY AP# ASfOtNSY» OlNSY DIV 4831
BOOLEAN ARRAY BEENTHEREIOINSY] J
INTEGER NVAL, P2C, riNDS)

BOOLEAN STREAM PRoCEOURE GETRITCA, I)» VALUE ||
BEGIN SI «■ A; SKIP I sm TALLY ♦ i;

IF SR THEN GETRIT ♦ TALLYI
END GETRITI

STREAM PROCEDURE SETfllT(A, I>| VALUE 1)
BEGIN DI * A! SKIP I OBI nS » SETI
END SETBITI

PROCEDURE ENTERd» J» K, X)l VALUE I» J# K# XI
INTEGER I, J# Kl BOOLEAN XI
BEGIN LABEL RINARYLOOKUP» GOTITALREADYI

INTEGER R# M» J, HP NH, LI
IF NVAL •■» 1022 THEN
BEGIN rfRlTEC<HTOO MANY ANALYSIS FUNCTION VALUESM>)|

NVAL * II
TIMERI

ENDI
COMMENT WE PACK COORDINATES BOTH FOR STORAGE ECONOMY AND
SPEED IN THE BINARY LOOKUP FOR INSERTION!
B ♦ 01 T • NVAL! H * K«J[24 I 361123»1112t361123 I
COMMENT H IS THE COORDINATES AS PONERS OF 2*101

55

«JMK - ^ ~-IZT

BlNARYLOOKUPl M «■ rMT}*C9AtttSI COMMENT DIV 2;
NH ♦ CRtMi;
IF NH < H THEN R «• M ELSE
IF NH > H THEN T «• M ELSE

BEGIN IE NOT (X EOV VtM]) THEN WR1TE(<McnNrLICT»M# 6A6>»
VO(n#VUIl# VOtJWVHJl* VOCKl#Vl[Kl);
FINDS * FINOS ♦ || COMMENT FOR STATISTICS!
GO TO GOTITALRFAny;

CNOJ
IF B+l * T THEN GO TO BINARYLOOKUP;
FOR L ♦ NVAL STEP -I UNTIL T DO
BEGIN CRCL*ll «• CRfLlI

vtL*n • vfLi;
END L)
CR[T] » H; VtTl • Xl
NVAL ♦ NVAL ♦ 1)
GOTITALBEADY«

END ENTFR;

PROCEDURE PUT(X# Y); ikXMl x, Y; INTEGER X» Y;

BEGIN COMMENT ENTER A HEAD OR TAIL PAIR INTO LIST;

INTEGER |J LABEL GOT ITALREAOY)

FOR I ♦ 1 STEP I UNTIL P2C DO

IF SHI] » X THEN

IF S2M « Y THEN GO TO QOTITALREADY;

P2C «■ P?C ♦ \i
IF P?C > 1022 THEN WRITE(<HT00 MANY PAIRSM>);
COMMENT WE SAVF P2C FDR STATISTICAL ANALYSIS)
IF P?C > P2C5AVE THEN P2CSAVE ♦ P2C;
SltP?C] «• X; S2tP?Cl «■ YJ
GOTITALBFAOYJ

END PUT;

PROCEDURE PRINTMATRIX(TITLE# M); FORMAT TITLE)
PACKED Af?9AY MC0,01I
BEGIN COMMENT PRINT A BOOLFAN MATRIX)

INTEGER I# J)
WRITE(TITLE);
WRITEC<X9» MSYM^OLM» t*>» I00ll>»

FDR I •• 1 STEP I UNTIL NSY 00 I MOD 10))
FOR I «• 1 STEP 1 UNTIL NSY 00

WRITEf<I3» X3# ?A6# X2» 100Al># If V0CI3. VltU»
FDR J ♦• 1 STEP 1 UNTIL NSY DO
IF GETBIT(MCI,J niV /i»i]#ENTIER(J MOO afl))THEN *,* ELSE • "))

TIMER!
WRITECCPAÜED)

END PRINTMATRIX;

PROCEDURE TABULATE(N)) VALUE N) ALPHA N)
BEGIN COMMENT PHlNT VALUES PF PlH(X#Y#Z> AND P2,,(X»Y»Z))

INTEGER I# ri# C2» C3)
FOR I «• 1 STEP 1 UNTIL NVAL DO
BEGIN ri » CRCI].[12M?1) c2 ♦ CRC 11. C?« 1121)

C3 #• CRCI].C36:12))
WRITEC<A?,♦••♦'♦,M(••»6A6»W) « ••# A2#MwH» w(,,#2(I 3»M»,, ># I 3#

5h

-.■mm

N, vOtClUVHCn. V0[C?l*VlCC21, VOtC33#VltC3)»
N, ci# eg» e9i vtn);

END;
WRITE(<I5# M FUNCTinNI VALUFS, DENSITY •*, F6.2» MtH#

••^ ENTRIES/VALUE»*» r6.2>#
NVAL» 100xNVAL/NSY*3# (FlNOS^NVAL)/NVAL)l

TIMERI
SAV((T-0T)/3600)I SAV(NVAL);
hRITE(CPAGEn)

END TABULATED

CR[01 •■ 01 COMMENT A SATE MBOTTOM" FOR THE BINARY LOOKUP)

BEGIN COMMENT BLOCK C II COMMENT HEAD AND TAR OCCURFNCES)
COMMENT INHEADtI»Jl IMPLIES J IS IN THE HEAD OF 1)
INTEGER I» J)

PROCEDURE HS(S)J VALUE SI INTEGER SI
BEGIN COMMENT FlNO ALL THE HEADS OF SI

INTEGER I# J# 21
IF NOT GETBlTdNHFTAntStS OIV 48l,ENTIER(S MOO 48)) THEN
BEGIN SETBlT(INHEAOtS,S DIV 4B)#ENTIER(S MOD 4fl))i

FOR I ♦ I STEP 1 UNTIL NPR 00 IF PRtI»0) ■ S THEN
BEGIN Z «- PR[I»ni

HS(Z)|
FOR J •• 1 STEP 1 UNTIL NSY DO

IF GETpiT(INHEADtZ#J OIV 481»ENTIER(J MOD 48)) THEN
SETBITCINHFAOCS^J DIV 48],ENTIER(J MOD 48));

END II
END;

END HSI

PROCEDURE TS<S)I VALUE Si INTEGER SI
BEGIN COMMENT FIND ALL THE TAILS OF SJ

INTEGER U J* Zl
LABEL Fj
IE NOT GETBlT(INTAlLtS#S OIV 4fl).ENTlER(S MOO 48)) THEN
BEGIN SETBlT(lNTAILtS#S OIV 48]#ENTIER(S MOD 48)))

FOR I * 1 STEP 1 UNTIL NPR 00 IF PRtI#OJ ■ S THEN
BEGIN FnR J «• MAXLPR STEP -l UNTIL I 00

IF PRtI#J3 * 0 THEN GO TO Fl
Fl Z ♦ PRtI»J3l
TS(Z);
FOR J «■ I STEP I UNTIL NSY DO

IF 6FTBlT(INTAlLtZ,J OIV 48l,ENTlER<J MOD 48)) THEN
SETBIT(INTMLCS#J OIV 48]»ENTIER(J MOO 48))J

ENO II
END;

END TSI

FOR I #• 0 STEP I UNTIL NSY 00 FOR J ♦ 0 STEP I UNTIL NSY DIV 48
DO INHEAOCNJI ♦• INTAILtI#JJ * 0|

FOR I •• I STEP 1 UNTIL NSY DO
BEGIN HS(I)I TS(I)I

55

1

END;

PRlNTMATRIX(<//MINHrAOlw/>» INHEAO);
PRlNTMATRl)((<//«!NTAlLt,,/>» INTAlL);

END BLOCK CM

BEGIN COMMENT BLOCK C 2l COMMENT SINGLE CHARACTER OERIVATIVES;

COMMENT scnti,j] IMPLIES THAT J IS A SINGLE CHARACTER
DERIVATIVE OF I»
INTEGER I» j* K;
BOOLEAN CHANRE)
TOR I «• 0 STFP t UNTIL NSY DO

FOR J «■ 0 STEP I UNTIL NSY DIV a« DO SCDfNJl «■ (W
FOR I ♦ 1 STEP 1 UNTIL NPR DO

IF PRtI#?l r 0 THEN
SETBlT(ScDtPPtI»03»PRri#n OIV «81,ENTlER(PRtI#11 MOo
4P));

CHANGE •• TRUE;
^HILE CHANGE On
REGIN CHANGE «■ FALSE;

FOR I ♦ I STFP 1 UNTIL NSYN 00
FOR J «• I STEP I UNTIL NSYN DO

IF GETBITfSCDtI#J DIV a81»ENTIER(J MOD 4fl)) THEN
FOR K «• 1 STEP I UNTIL NSY DO
IF GFTBIT(SCOtJ.K OIV 4fl3.ENTlER(K MOO 48)) THEN

IF NOT GETniT(SCOCI#K DIV 4fl]*ENTIER(K MOD 48))
THEN
BEGIN CHANGE ♦ TRUE;

SETBIT(SC0(I»K DIV 481,ENTIER(K MOD 48));

END;
END CHANGE;

PRlNTMATRlX(<//-SINf,LE CHARACTER DERIVATlVES l"/>» SCO);
END BLOCK C 2;

BEGIN COMMfNT BLOCK C 11 COMMENT PREDECESSORS ANO SUCCESSORS;
COMMENT Apri,j) IMPLIES J IS AN ALLOWED PREDECESSOR OF I;
INTEGER I» J# P;
FOR I ♦ 0 STEP I UNTIL NSY 00 FOR J ♦ 0 STEP 1 UNTIL NSY DIV 4P

DO APtI»J] ♦• AS[I,J) ♦ o;

FOR P * I STEP 1 UNTIL NSY DO
FOR I •• I STEP 1 UNTIL NPR 00
BFGIM COMMENT PREDECESSORS FIRST;

FOR J ♦ 2 STEP 1 UNTIL MAXLPR DO
IF PR[WJ1 « 0 THEN ELSE
IF GETHlT(lNHEADtPRtI#Jl#P OIV 48],ENTlER(P MOD 48))
THEN
SETBlT(AP[p#PR[I»J-n OIV 483 *ENTIER(PRtI»J-ll MOO
4fl));

56

FOP J * 1 STEP 1 UNTIL MAXLPR-1 DO
IK PRtNJM] » 0 THEN ELSE
IF GETRlTdNTMLfPRlNJl^P DIV ÖflJ,ENTlER(P MOO «8))
THFM
SETBlT(ASCP,PRCI.J*ll DIV it8 1, ENT IEH(PRC I# JM] MOO
48));

END I P;

PRlNTMATRIX(<//HALLOWEn PRFOECESSORSI"/>, AP);
PRINTMATRlXC<//"ALLnwFn SUCCESSORSt'V># AS);

END BLOCK C3;

BEGIN COMMENT BLOCK C HI COMMENT HIERARCHY ANALYSIS»
INTEGER A# B, C» P» X» Y# 7» U 11» 12» Hi

PROCEOURF T2S(P); VALUE PI INTEGER P;
BEGIN COMMENT THE CANONICAL PARSE TAIL 2 SYMBOLS OF P;

INTEGER I# J» R# X# Y;
LABEL F;
BEENTHERFIP1 •■ TRUE;
FOR I •• I STEP I UNTIL NPR 00 IF PRTL/OJ - P THEN

BEGIN FOR J •• MAXLPR STEP -I UNTIL I 00 IF PRTI#JL / 0 THEN
GO TO F;
El R «• PRfl.J];
IT J / 1 THEM
BEGIN COMMENT PROOUCTION LENGTH AT LEAST TWO;

x ♦ PRti# j-n;'
PUT(X» R)l
FOR Y «• 1 STEP I UNTIL NSYM 00
IF GETBIT(SCOCY#R 01V 483#ENT!ER(R MOO 48)) THEN

PUTCX, Y);
ENO;
IF NOT BEENTHERETR] THEN T2S(R);

END n
END T2S;

NVAL * 11 FINOS ♦ 0; CRCl] » 10?4*3;
FOR II f I STEP I UNTIL NPR 00 IF PRtll» 21/0 THEN
BEGIN COMMENT HIERARCHY ANALYSIS RELATIONS;

B «• PRCU» ISJ C «• PRCU, 21;
P •• PRCU» OJ;

FOR I •■ 1 STEP I UNTIL NSY 00 BEENTHEREtl] ♦ FALSE;
P?C •• O; T2S(B);
FOR Z •■ NSYN ♦ I STEP I UNTIL NSY 00
IF GETBlT(lNHEA0rC»7 OTV 48l#ENTIER(Z MOO 48)) THEN
BEGIN COMMENT 7. ARE IN HST(C);

FOR X * I STEP 1 UNTIL NSY DO
IF GETRIT(APCP#X DIV 48l#ENTIER<X MOD 4«)) THEN
BEGIN ENTER(X# B, 2» FALSE))

IF B 5 NSYN THEN
FOR Y ♦ 1 STEP 1 UNTIL NSY DO

IF GETBITCSCDfR^Y DIV 4ai»ENTlER(Y MOO 48)) THEN
FNTERCX, Y# Z, TRUE);

57

■

FOR 13 •• I STEP 1 UMTlL P2C
FNUR(Simi» S?ri31» Z#

Euo z;

DO
TRUOI

FOR
RFGI

A
F
P
F
1
R

12
N

OR
2C
OH
F

«■ 3 STEP I UNTIL MA^LPR DO IF PRCII» 121 ^ 0 THEN

PR
I
f

z
GET

PHtll» 12-1]^ C » PRCIl» 123»
NSY 00 BFENTHEREm «• FALSE!

rr.iN
IF
FOR
IF

FOR

til» 12-21» R ♦•
«• I STEP I UNTIL
O; T2S(B)»
«• NSYN*1 STEP I UNTIL NSY 00
HlTdNHEAOtCZ OIV «fll »ENTlERf Z MOO 48)) THEN

ENTER(A# R» 7.0 FALSE)*
8 i NSYN THEN
Y ♦■ I STEP 1 UNTIL NSY DO

fiETRlT(SCnrH#Y OIV <»8]#ENTIFR(Y
FNTFR(A# Y, 7, TRUE)»
IS » I STfP I UNTIL P2C 00
ENTERCSltm, S2[I3J, Z, TRUE)»

MHO ft«)) THEN

FNO z;
END i?;

ENO ill
NVAL ♦ NVAL 11

WRITE(<"HIFRARCHY
TABULATECPI");

ENO BLOCK C Hi

ANALYSTS FUNCTIONS I V>))

BEGIN COMMENT BLOCK C 5;
INTEGER A, B# C» R# P» Y»
LABEL LASTONC»

COMMENT PRODUCTION RECOGNlTlONJ
2» I, 11, I2ß 13»

PROCEDURE H?SCP); VALUE P) INTEGER P)
BEGIN COMMENT THE CANONICAL PARSE HEAD 2 SYMBOLS IN PI

INTEGER I, R» X* Y# Z;
BEENTHEHFCP1 «■ TRUE»
FOR I ♦ 1 STEP 1 UN1IL NPR 00 IF PR[I,03 ■ p THEN
BFGIM

IF PR[I*21 ^ 0 THFN
BEGIN COMMENT PHOHiJCTlON OF LENGTH AT LEAST TWO;

X •• PPCI» 11» R » PRtI» 111
IF GETRlTdNHEADfR.Y OIV 481»ENTIER(Y MOO 48)) THEN

PUT(X» Y)»
ENO»
R ♦ PHfl» 11»
IF NOT BEFNTHERECHl THEN H2S(R)I

END I»
END H?S»

NVAL «• |l FINOS «• 0» CRT 11 ♦• 1024*3»
FOR II ♦ I STEP 1 UNTIL NPR 00 IF PR[I1» 21/0 THEN
BEGIN COMMFNT PRUDUCTIDM RECOGNITION RELATIONS»

FOR I? «■ 2 STEP I UNTIL MAXLPR DO

5b

-

BFGIM A «• PRtll» If«!)! R * PRCIW 1231
IF 12 « MAXLPR THEN GO TO LASTONEJ
C *■ PRtll» I2M1I
IF C « 0 THFN GO TO LASTONEJ
ENTER(A# R, C» FALSF);
IF B «S NSVN THFN
FOR Y * I STEP 1 UNTIL NSY DO
IF GETBIT(SCD[R»Y DIV «fJ3#ENT IER(Y HOD 48)) THEN

FOR Z •• NSYN*1 STEP 1 UNTIL NSY DO
IF GETRIT(INHFAO[C#Z OIV flfl]»ENTIERCZ MOD 68)) THEN

ENTER(A» Y» Z» TRUE))
FOP I •■ I STFP 1 UNTIL NSY 00 BEENTHEREII] «■ FALSEJ
P2C •■ o; H?S(B)J
FOR 13 • 1 STEP 1 UNTIL P2C 00

F.NTER(A» SUH], S2tI3]. TRUE))
END p;

LASTOME»
P ♦ PPCIl» Oil
FOR » «• 1 STFP I UNTIL NSY DO
IT GFTBIT(AStP»R DIV «fl]#FNTlER(R MOO 48)) THEN

FOR Z * NSYNM STFP 1 UNTIL NSY DO
IF GETRIT(INHEAOCR#Z DIV 4R1#ENTIER(Z MOO 48)) THEN
BFGIN ENTER(A« R* 7, FALSE))

IF B S NSYN TMrN
FOR Y •■ 1 STEP I UNTIL NSY DO
IF GET*IT{SCOtB#Y OIV 481#ENTIER(Y MOD 48)) THEN

ENTER(A# Y# Z, TRUE)I
END z R;

FOR I «■ 1 STFP 1 UNTIL NSY DO REENTHFRECU ♦ FALSE*
P2C •■ O; H2S(0)j
FOR 13 ♦ I STEP 1 UNTIL P2C DO

FNTER(A# S1[I31# S2[I31# TRUE)|
END 11)
NVAL ♦ MVAL - 1)

WRITE(<wPROOUCTION RECOGNITION FUNCTIONS!"/>) I
TABULATr(wP2H);

END BLOCK C 5)
END BLOCK C)

END)
SAV((T-Tl)/3600)) SAV(p?CSAVF)»
WRITE(PRINFIL* <9E8.?# MMCKFFMAN"># FQR I «• 1 STEP I UNTIL 51 DO

RECORDtl]))
END.

59

(2#1)(1*2) SYNTAX PKüCLbSO«» MCKF.CMAN» JAN« 1966

PRCOUCTnNSI

<PH0(jrtAM> 4
<fcXPK> *

► EOF
► <IF CLAUSE>
► <SUM>

<EXHN>
<TRUF:PART>

EOF
<EXPR>

<ri<ür.rAwf> <
<IK CLrtÜÜ|.> *

> <EXPR>
> IF

ELSE
<EXPH> THEN

10
II
12
13

<SUM> <

<PKIHAI<Y> <

► <SIJM>
► <SlJM>
► ♦

¥ <PRIMAHY>
► IÜEN1
* IN1EGFH

(

♦
■
<PR1HANY>
<PRIMHY>

<EXPH>

<PRINAHY>
<PRIMARY>

)

INTEHNEOIATL SYMHntSt
1 <PNOGUAM>
A <lf CLAUSt>

TERMINAL SYMBOLS!
7 tOf

10
13 (
16)

2
5

a
ii
1A

<iXpR>
<SIM>

IF
IOENT
ELSE

THE UMflUL tAHGET SYMbUL ISt <Ph(IGRAM>
TIPE " 0.12« TOTAL ELAPStO > 0.12 NIK.

3
6

9
12
IS

<TRUEPART>
<PRIMARY>

INTEGER
THEN

I
60

•»-»*'**

INhEAOl

IfHpOi 123«96769U123496
1 <PRÜGHAH> • •
2 <EXPK> • »t* •i**«t
3 <THOtPART>
i <ir CLAUSO • •
9 <SUM> • t • • • • t
6 <PRIMARY> • •••
7 EOF t

e IF *
9 ♦ •

1C • •
11 I0EM •
12 INTEGER
13 (
14 ELSE

«
•

•
19 THEN •
16) t

l¥l m 0.04* TOTAL ELAPSED « 0.16 MIN.

INTAILI

SYMBOL
<PR0ÜHAM>
<EXP4>
<TRUtPAPT>
<IF CLAUSE>
<SUM>
<PRIMARY>
EOF
IF
♦

lüENf
INTEGER
(
ELSE
THEN
)

E ■ 0.0A. TOTAL tLAPStU ■

1234567890123456
i •

• • • «• •

i •

t • • • t

• * • •

t

«
«

0.20 MIN.

61

SINGLE CHAi<ACTEi< 0I.M1V4 f I VÜSl

<PRÜUHAH>
<F:XHN> ,. ,.
<TRULPAKT>
<ir CLAÜSE>
<SUM> . ••
<PRIM«RY> M

EOF
ir
♦
■

lOENf
INTEGER
(
ELSE
THEN
)

E ■ 0.04/ TOTAL ELAPSED - 0*24 HIN.

62

ALLüMEO PHtUCCESSOKSI

bYHQüL

2 <kXPK>
3 <TRUtPART>
4 <ir CLAliSL>
5 <SUM>
6 <PR1MARY>
7 IDF
a ir
« ♦

IG -
11 IDEM
12 lNTfcr.tR
13 (
14 ELSK
15 THEN
1«)

TICE ■ 0.04/

12J<tbA7fi901234!)6

•«

• •

•«

TOTAL ELAPSKÜ 0.26 MIN«

ALLONEO SUCCESSORS^

SYHBOL 123456/690123456
<PRU>iNAH>
<tXP.O • • • •
<TRU£PART> •
<IF CLAOSE> t

<SUH> i • • • • •
<PRIHARY> • «• t • •
EOF «
IF «
♦ •
• • •
IOENT * »• « • •
iNTkUkR • • • • • •
(•
ELSt •
ThEN t

) t • • • • •
TIK ■ 0.04# TOTAL LLAPSLÜ a 0.3? MIN.

63

—r

HIERARCHY ANALYSIS RJNCTIONSl

Pl-C <
PIH(<
P1M< <
Pl-C <
P1"C <
Plnl <
Pl"(<
Plw(<
Pl-C <
P1H(<
PIM(<
Plw< <
Plw(<
PIH(<
Plw{ <
P1MC <
PIM(<
Pl-C <
Plw(<
P1H(<
Pl"(<
Plw(<
P1M(<
PlMC <
Pl"(<
Pl-t <
P1M(<
Plw(<
pre <
PIH(<
pi-t <
pr(<
Pl-C <
PIM(<
PI*^ <
PIH(<
pi*(<
PIH(<
PIM(<
PT'C <
Plmt <
PlM(<
PlH(<
Pl-C <
PlMC <
plM(<
Pl"(<
prt <
Plw(<
PI"I <
PIM(<
PIM(<
P1M(<

EXPR> FLSE ir) s PIN 2 1 14 i 8) B TRUE
EXPR> FLSF 4) « Pi»(• I« » 9) S TRUE
EXPR> FLSE ■ J ■ Plw(I 14 I 10) ■ TRUE
rxPR> FLSE IOFNT) « Pl-(• U > 11) a TRUE
EXPR> FLSE INTEGER) . p*{ • 14 . 12) s TRUE
EXPR> FLSE () « Pl"(l 14 » 13) s TRUE
tXPR> THEM ir > ■ Pl"(» 15 » 8) s TRUE
EXPH> THEN ♦) ■ Pl"(. 15 • 9) 3 TRUE
EXPR> THEN ■) « Pii.(» 15 • 10) 3 TRUE
EXPR> THEN IÜENT) » PlM(. 15 • It) « TRUE
EXPH> THEN INTE6FR) » Pl"(. 15 » 1?) ■ TRUE
EXPR> THEN () ■ Plw(» 15 . 13) a TRUE
EXPH>) Eor > • PUM . lAi . 7) s TRUE
EXPR>) «) • Pl'M . 16 . 9) 3 TRUE
EXPR^) a J ■ Pi"« . I*. . 10) 3 TRUE
EXPR>) FLSE) ■ Pl"{ • 16 . 14) 3 TRUE
EXPR>) THEN) « Pl'M » 16 » 15) 3 TRUE
EXPR>)) } » Pl"(. 16 » 16) 3 TRUE
TRUFPART3 » <EXPR> FOF) ■ Pl'M . ?. . 7) 3 TRUE
TRUEPARTJ » <EXPR> ELSE) * PlM« • ? . 14) 3 TRUE
TflUFPART: » <EXPq> THEN) « Pl«(. ?- • 15) 3 TRUE
TRUEPAHT: » <EXPR>) } ■ Pt*i . ? . 16) S TRUE
TRUEPART: > <IF CLAUS£> IF) m P|«| 1 4 l 6) 3 FALSE
TRUrPART^ ► <IF CLAliSF> ♦) ■ Pi"! • 4 • 9) 3 FALSE
TRUfPAHT: ► <IF CLAIJSE> **) « Mw(• 4 • 10) 3 FALSE
TRUEPART: ► <IF CLAUSF> lOENT) s f>|«(I 4 ' 11) 3 FALSE
TRUPPARTJ > <ir RLAIJSE> INTEGER) ■ PI"! l 4 . 12) C FALSE
TRUEPARTS » <IF CLAUSE> (} s Pl'M l 4< • 13) 3 FALSE
TRUEPART: ► <SÜM> ♦) ■ Pl"(1 5. • 9) X FALSE
TRUEPART: » <SJM> ■ \ « P1M(. 5/ i 10) 3 FALSE
TRUEPART: » <PHlMARy> ♦) ■ Pl'M • 6- • 9) 3 TRUE
TRUfPART: ► <PHlMARY> m \ ■ Pl-(• 6 » 10) 3 TRUE
TRUEPART: > IF Ir) « PlM(. 8, • 8) ■ FALSE
TRUfPART: » IF ♦) « Pl^i . fl • 9) 3 FALSE
TRUFPART: ► IE -) « PlM(. fli • 10) 3 FALSE
TRUfPART: » ir lOENT) « P1H(• 8- ' 11) 3 FALSE
TRUEPART: ► IF INTEGFR) ■ Pl"(. 8» • 12) 3 FALSE
TRUFPART: ► IF () ■ Pl'M • Hi I 13) S FALSE
TRUEPART: » ♦ IOFNT) ■ Pl'M . *?, • 11) 3 FALSE
TRUfPART: ► ♦ INTEGER) ■ Pl'M • 9i I 12) a FALSE
TRUEPART: » ♦ () « Pl'M . 9i • 13) 3 FALSE
THUEPART: t m IOFNT) ■ Pl'M . IOI • 11) 3 FALSE
TRUFPART: ► INTEGFR) ■ PJM, . IOi 12) E FALSE
T«Uf PARTS • () ■ PI"! . IOi • 13) S FALSE
TRUfPART: i lOCNT ♦) • Pl'M 111 9) 3 TRUE
TRUEPART» ► IDENT M | ■ PI«(Hi 10) 3 TRUE
TRUEPART: • INTEGER ♦) ■ PPM 1 l?i . 9) 3 TRUE
TRUEPART: » INTrfiER m % ■ Pl"(12. 10) 3 TRUE
TRUEPART' • (If) « Ft«(> 13. I 8) 8 FALSE
TRUEPART: • (♦) ■ Pi"! 13« 9) 3 FALSE
T»UEPART> ' (* % ■ pii»(III 10) 3 FALSE
TRUEPART5 ► (IOENT) ■ Pl"(. I3i 11) 3 FALSE
TRUEPARTS » (INTEGER) « Pl'M 13. 1?) a FALSE

64

PIM(<TRU EPART> (() ■ Pl"(3 * 13 * 13) ■ FALSE
Pl"(CLAUSF> <EXPR> ELSE) ■ PlH(4 f 2 1 14) ■ FALSE
pre CLAUSE> <TRUEPART> IF) ■ Pl"(4 * 3 i 8) < • FALSE
PIM(CLAUSE> <TftUEPART> 4) » Pl"(H l 3 » 9) i • FALSE
Pl^C CLAUSE> <TRUEPART>) « Pl"(4 > 3 . 10) > • FALSE
pre CLAUSE> <TRUEPART> IOENT) ■ pre 4 * 3. . ID • « FALSE
PIM(CLAUSF> <TRUEPART> INTEGER) ■ Pl"(4 i 3 I 12) < ■ FALSE
PIH(CLAUSE> <THUEPART> (> ■ Pl"(4 * 3 . 13) l ■ FALSE
pi-c CLAüSE> <ir CLAUSr> IF) ■ Pl"(4 * 4 . 8) i i FALSE
PIM(CLAUSE> <IF CLAUSE> *) « Pl"(4 • 4/ i 9) i i FALSE
pre CLAUSE> <IF CLAUSE> m \ ■ PPC 4 * 4 • 10) « • FALSE
pi"(CLAUSE> <IF CLAIJSE> IOENT) ■ pre 4 > 4, • 11) • • FALSE
PIM(CLAUSE> <IF CLAUSE> INTEGER) ■ pre 4 * 4i i 12) • » FALSE
pi-(CLAUSE> <IF CLAUSE> () ■ pre 4 f 4/ . 13) i t FALSE
PIM(CLAUSE> <SUM> ♦) ■ Pl«(4 1 || I 9) • • FALSE
pi"(CLAUSE> <SUM> ■ j ■ pr(4 # 5i » 10) • « FALSE
Pl^C CLAUSE> <SUM> ELSE) ■ Pl"(4 * 5i . 14) i « TRUE
PIM(CLAUSE> <PRlMAHY> ♦) • pre 4 I 6i i 9) • • TRUE
PIM(CLAUSE> <PRIMARY> •) ■ Pl"(4 1 6/ . 10) i « TRUr
PIM(CLAUSE> <PRlMARy> ELSE) « Pl"(4 1 6, »14) i « TRUE
PIM(CLAUSE> IF IF) ■ Pl"(4 * 8i > 8) • « FALSE
Pl^C CLAUSE> IF *) ■ pre 4 $ 6, . 9) . • FALSE
PIM(CLAUSE> IF -) » pr(4 9 8/ . 10) • > FALSE
PIW{ CLAUSr> IF IOENT) « Pi"« 4 * 8i i 11) • « FALSE
PIH< CLAUSE> IF INTEGER) ■ Pl"(4 1 Si i 12) • « FALSE
PI"(CLAUSE> IF () ■ pre 4 * 8i 13) • l FALSE
pr'c CLAUSE> * IOENT) ■ pr(4 1 9i 11) ■ l FALSE
PIM(CLAUSE> ♦ INTEGER > ■ pre 4 1 9i 12) . i FALSE
Pl-C CLAUSE> ♦ () ■ pr(4 1 9i 13) . > FALSE
piM(CLAUSE> • IOENT) « pre 4 * 10i 11) ■ i FALSE
PI"(:LAUSE> ■ INTEGER) ■ pre 4 * lOi 12) ■ < FALSE
pre CLAUSE> - () ■ pre 4 $ 10, 13) » • FALSE
Pl-C I:LAUSE> IOENT ♦) « pr(4 » lit 9) ■ • TRUE
Pt*t CLAUSE> IOENT •) ■ pr(4 t 111 10) i i TRUE
pfl CLAUSE> IOENT ELSE) « Pl"(4 * 111 i 14) • • TRUE
Pl"(CLAUSE> INTEGER ♦) ■ pr(4 * 12i 9) « • TRUE
P1H(CLAUSr> INTEGER -) - pre 4 * 12i . 10) i • TRUE
wtmt CLAUSE> INTEGER ELSE) ■ pre 4 * 12< . 14) . • TRUE
PlMC CLAUSE> (IF) ■ pre 4 i 13, . 8) . • FALSE
PfC CLAUSE> (#) ■ pr(4 * 13, i 9) ■ • FALSE
pre CLAUSE> (•) « pre 4 * 13, . 10) « t FALSE
pio(CLAUSE> (IOENT) ■ pre 4 * 13, > 11) i • FALSE
PIH(CLAUSE> (INTEGER) ■ Pl-(4 • 13i 12) I • FALSE
PIH(:LAUSE> ((> ■ Pr(4 * 13. 13) ■ * FALSE
PIM(<SUM ♦ IOENT) ■ pre 5 I 9i 11) « i FALSE
pi"(<SUM ♦ INTEGER) ■ pre 5 1 9i 12) ■ l FALSE
PIH(<SUM ♦ () ■ pre 5 * 9J 13) . > FALSE
Pl^C <SUM • IOENT) ■ pre 5 1 lOi 11) • • FALSE
pre <SUM m INTEGER) ■ pre 5 I 10« 12) • < FALSE
PIH(<SUM m () ■ pre 5 * Id 13) ■ > FALSE
PIW(EOF <EXPR> EOF) fc pre / * 2i 7) ■ t FALSE
PIM(EOF <IF CLAUbE> IF) ■ pre T * 4i 8) ■ • FALSE
pre EOF <IF CLAUSE> 4) ■ pre 7 * 4« 9) ■ FALSE
Pl^C EOF <IF CLAUSE> ■) ■ pre 7 1 4i 10) ■ FALSE
PIH(EOF <IF CLAUSE> IOENT) ■ pre 7 * 4i U) ■ FALSE

65

Pl"(EOF
Pl"(EOF
Pl-t EOF
Pl-C EOF
Pl*l EOF
P1H< EOF
Plw{ EOF
PIH(EOF
Pl-t EOF
Pl-C EOF
pre EOF
pre EOF
Pl-C EOF
PIM(EOF
Pl-C EOF
PIM(EOF
PI,,(EOF
PIM(EOF
PlMC EOF
PIH(EOF
pre EOF
PIM< EOF
pre FOF
pre EOF
PIM(EOF
PI"(EOF
PIM(EOF
Pl-C EOF
PIM(EOF
Pl-C EOF
pre EOF
PI"(EOF
Pl-C IF
pre Ir

Pl-C IF
pi"(IF
Pl-C IF
PIH(IF
Pl-C IF
PIM(IF
PJW(IF
pre IF
pr(IF
piH(IF
PIM(IF
pre IF
pi-t IF
Pl-C IF
pi-c IF
PIM(IF
PT't IF
PIM(IF
PIM(IF
pre IF
pre IF

<IF CLAilSF> INTFGER) » ?t"(1 4 » 12) « FALSE
<IF CL4USe> () = P1"C , 4 * 13) » FALSE
<SUM> FOF) » Pl"{ » *> . 7) ■ TRUE
<SUM> ♦) = Pl"(» 5 • 9) B FALSE
<SUM> •) * Pl"(f 'S , 10) « FALSE
<PRIMARY> EOF) » Pl"(• 6 » 7) » TRUE
<PHIMARY> ♦) » Pl^t P 6 » 9) » TRUF
<PRIMARY> ■) « Pl"(1 6 . 10) ■ TRUE
IF IF) ■ PlM(» R . A) B FALSE
IF ♦) ■ Plw(1 A . 9) ■ FALSE
If -) - Plw(I 8 » 10) ■ FALSE
If IOFNT) * P1M(7 » A » 11) * FALSE
IF INTFGER) ■ Pl-(7 * A . 12) » FALSE
IF () * Plw(• A . 13) B FALSE
♦ IOENT) « Plw(7 • 9 i 11) s FALSE
♦ INTEGER) « Pl"(• 9 * 12) « FALSE
♦ () ■ P\»(7 • 9 . 13) . « FALSE
■ IDENT) » P1M(7 • 10 . 11) « FALSE
■ INTEGER) ■ Pl"(7 • 10 * 12) i • FALSE
■ () ■ Pl^t f . 10 . 13) i « FALSE
IDENT EOF) » Pl"(T I 11 . 7) . • TRUE
inENT ♦) ■ PlM(71 1 11 • 9) i t TRUE
IDENT -) • P1"C r i I 11 . 10) . • TRUE
INTFGER FOF \ « Pl"(7 1 1?- . 7) i • TRUE
INTrGER ♦) » Pl"(71 i 12. . 9) . • TRUF
INTEGER ;) * Pl"{ 71 • 12i . 10) i • TRUE
(IF ; > » P1"C 71 • 13i . 8) i « FALSE
(♦ > ■ Plw{ 71 • 13< . 9) i i FALSE
(; 1 ■ Plw(71 i 13. 1 10) : * FALSE
(IDENT : ■ Pl«(71 13i 11) i t FALSE
(INTFGFR I 1 s Pl»(71 I 13i i 12) i • FALSE
((: 1 = PI"« 71 I3i 13) i « FALSE
<EXPR> THEN : 1 « P1M(At |i 15) • • FALSE
<IF CLAIJSE> IF : I * Plw(Si •i A) . i FALSE
<IF CLAUSE> ♦ 1 = Pl^c fli U, 9) i I FALSE
<IF CLAUSE> - 1 ■ PIM(fli • l . 10) . • FALSE
<IF CLAUSE> IDENT 5 • Pl"(8i 4J 11) • • FALSE
<IF CLAUSF> INTFGER 3 8 P1»«C 8i •l 12) i • FALSE
<IF CLAUSE> (:) » P1W(Hi tti 13) . « FALSE
<SUM> ♦ ■ Pl"(fli 5i 9) i « FALSE
<SUM> • ■ Pl"(8i 5i 10) • • FALSE
<SUM> THEN) s Pl"(Si 5i 15) . « TRUE
<PRIMARY> ♦] « Pl"(8i Ai 9) • « TRUE
<PRIMARY> m ■ PlMC 8i 6« 10) . l TRUE
<PHIMAHY> THEN 3 a P1"(8i 6, 15) . 1 TRUE
IF IF 3 ■ Pl"(fli Ai 8) i « FALSE
IF ♦ « Pl^C 8. fli 9) i i FALSE
IF • « Pl"(8i 8i 10) . l FALSE
IF IDENT | - Pl"(8i A. 11) « ' FALSE
IF INTEGER 3 ■ Pft 8« Ai 12) • l FALSE
IF (5 ■ Pl"(8i At 13) « ' FALSE
♦ IDENT 3 « Fl»< fli tl 11) i l FALSE
♦ INTEGER) • PlMC fli 9i 12) ■ 1 FALSE
♦ () r Pl«(fli 9i 13) ■ FALSE
• IDENT | « Plw(fli 10. 11) ■ > FALSE

66

-■

P1M(IF
Pl"(ir
PI" I IF
PT'C IF
P1M(IF
Pl"l IF
Pi*{ IF
PT'C IF
Pl-t IF
PlM(IF
PT'C IF
Pl"{ IF
PlM(IF
P\n(IF
pre
n»!
PT'C
Plw(
PT'C
Hmi
Pl"(
PT't
PlM(
Pl-C
PlM<
Pl"l
PlM(
pr'f
P1WC
pre
Pl^C
PXn(
pi" i
PI"(
pi"t
p\"(
PI"I
PI
M
(

PI
M
(

pi"i
PI
H
(

PI
H
(

PI
M
(

PI
M
(

p\"(
p\"t
pre
PI
M
(

PI"I
PI
W
(

PI
M
(

Pl-C
PIM(
Pi"(
PIM(

" INTEGER) 3 Pl"(8» 10. 12) « FALSE
" () S Pl"(8# 10. 13) > FALSE inENT
TOFNT

) 3

) S
Pl"(8«
P1" (8»

11. 9)
11. 10)

■ TRUf
■ TRUE IDENT THEN) S P%*i 8# 11. 15) ■ TRUE

INTTCER ♦ Pf(8, 1?. 9) = TRUE
INTEGER - Pl"(8« 12. 10) ■ TRUE
INTFr,ER THFN P\"(8# 12. 15) ■ TRUE
(IF Plw(Q, 13. 8) ■ FALSE
(♦ PlM(8# 13. 9) ■ FALSE
(" P*t 8# 13» 10) ■ FALSE C lOFNT P1M(8# 13» 11) ■ FALSE
(INTEGER PlM(8» 13» \2) » FALSE
((PJ"{ 8, 13» 13) « FALSE
<EXPR> EOF PlM(9» 2» 7) 3 TRUE
<EXPP> ♦ Pl"(. 9, 2» 9) « TRUE
<EXPR> • Pl"(9# 2» 10) B TRUE
<EXpp> ELSE P1«(0# 2. 14) 3 TRUE <EXPR> THEN P1" (9. 2» 15) B TRUE <EXPR>) Pl"(9, 2» 16) • TRUF <SUM> EOF P\"l 9, 5» 7) • TRUE
<SUM> ♦ Pl"(9, 5. 9) « TRUE
<SUM> - Pl"(9, 5» 10) . i TRUE <SUM> ELSE Pl"(9» 5» 14) i B TRUE <SUM> THFN P\"i 9» 5. 15) • « TRUE
<SUM>) P\"l 9, 5. 16) > « TRUE <PRIMARY> EOF) Pl"(9. 6. 7) i « TRUE
<PKIMARY> ♦ P1MC 9, 6. 9) i • TRUE
<PRIMARY> - Pl"(9, 6. 10) • i TRUE
<PRIMARY> ELSE) PT'C 9. 6. H) * i TRUE
<PHIMARY> THEN J ■ Pl"C 9, 6. 15) i i TRUE
<PRIMARY>) } a Pl"(9» 6. 16) i TRUE
(IF) ?*l 9, 13. 6) ■ FALSE
(♦) PlM(9, 13. 9) a FALSE
(m 1 PV'l 9, 13. 10) . FALSE
C IDCNT) P*t 9# 13. 11) ■ FALSE
(INTEGER) PlM(9, 13. 12) ■ FALSE
(() P1M(9, 13. 13) ■ FALSE <EXPR> EOF) Pl"{ 10» 2. 7) ■ TRUE <EXPR> •f) P1M(10» 2» 9) « TRUE
<FXPR> m) Plw(10» 2. 10) « TRUE <EXPR> ELSE) PlM(10. 2* 1«) ■ TRUE
<EXPR> THEN) P\"l 10. 2. 15) » TRUE <EXPR>)) Plw(10. 2* 16) ■ TRUE
<SUM> EOF) Plw(10. 5. 7) ■ TRUE
<SUM> + > P1M{ 10. 5» 9) ■ TRUE
<SUM> •) Pl"(10. 5. 10) ■ TRUE <SUM> ELSE) Pl"(10. 5. 14) * TRUE
<SUM> THEN) f*i 10. 5. 15) ■ TRUE
<SUM>)) P1M(10. 5. 16) s TRUE
<PRIMARY> EOF) Pl«(10. 6. 7) * TRUE
<PRIMARY> *) P1M< io. 6. 9) ■ TRUE
<PRIMARY> m) P\"{ 10. 6. 10) i TRUE
<PRIMARY> ELSE) Pl"(10. 6. 14) « TRUE
<PHIMARY> THEN) P\"l 10. 6. 15) ■ TRUE

'

67

Pl"(<PRIMA«Y>) Plw(10 * 6 * 16) • TRUE
PIM((IF Pl^C 10 • 13 * 8) s FALSE
Plrt((♦ PlM< 10 * 13 . 9) « FALSE
pre (■ P1M(10 • 13 » 10) » FALSE
PI
M
((IOENT PlM(10 i 13 » 11) B FALSE

pi"((INTEGER Pft 10 l 13 » 12) « FALSE
p*((C PlH(10 1 13 » 13) « FALSE
PI
W
(<EXPR>) Pl"(• 2 . 16) s FALSE

pr(<IF CLAlJSr> IF Pl"(• 4 . 8) « FALSE
p*(<ir cuusr> * P1M(1 4 . 9) t FALSE
pre <1F CLAUSr> m PlM{ i A . 10) t FALSE
PI
M
(<ir CLAi)sr> IOFNT P1M(• 4 * 11) i FALSE

pre <ir CLAUSF> INTEGER P1M(> 4 . 12) » FALSE
PI
M
(<IF CLAUSF> (1 s Pl-C • 4 . 13) i i FALSE

Pfi <SUM> ♦ 1 s PIM(. 5 . 9) . i FALSE
pre <SUM> ■ Pl-C p 5 . 10) i FALSE
%(<SUM>) p\n(i 5 . 16) » TRUE
pre <PRTMARY> ♦ PIM(1 l 6 , 9) . « TRUE
Pl-C <PRIMARY> m Pl"(> 6 i 10) . • TRUE
pre <PRIMARY>) Pl^f 1 • 6 • 16) > • TRUE
PI
M
(IF IF P1M(1 a • 6) i « FALSE

PI
M
(IF ■♦■ ; Pl"(1 l 8 . 9) . « FALSE

PI*(IF m P1" (] 8/ . 10) ; « FALSE
PI
M
(IF IOENT Pl"< 1 • 6 . 11) 1 i FALSE

PI
H
(IF INTEGER PJ^C 1 8i • 12) i « FALSE

pre IF (: PP'C 1 8/ . 13) i i FALSE
Pl-C ♦ IOENT : M"(1 9/ • 11) « « FALSE
PI*I ♦ INTEGER ! Pl^C 1 9i > 12) . t FALSE
PI
M
(♦ (] P1M(1 ft 13) s « FALSE

pre ■ IOENT] P\Hl 1 10i 11) « • FALSE
pre - INTEGER 3 Pl^t 1 lOi 12) i « FALSE
pre • (] P\"(1 lOi 13) i » FALSE
Pl-C IDENT ♦ P1M(1 111 9) . i TRUE
Pl-C IDFNT m Pl"(1 111 10) i t JRUC
PI
W
(IOENT) Pl"(1 3 J Hi 16) • : TRUE

pi"(INTEßFR ♦ P1M(1 12I 9) • t TRUE
prt INTEGER - P1M(1 l?i 10) . 8 TRUE
pi-c INTEGER } ! PlwC 1 12« 16) • « TRUE
Pl-C (IF) Pl"(1 13. 8) i I FALSE
PI
M
(c * Plw(1 13* 9) i I FALSE

PI-C (m P1M(1 13. 10) i « FALSE
?!"((IOEMT : Pl"(1 13. 11) * ' FALSE
PI
W
((INTEGER] P*l 1 13. 12) i 1 FALSE

PI-C ((5 Pl"(1 13. 13) . FALSE
262 FUNCTION VALUES, DENSITY ■ *,*(.%» £ INTRIES/VALli F l.C 10

TIME B O.lfl, TOTAL ELAPSED ■ 0.3* MU .

68

PRODUCTION RECOr.NilTlriN PUNCTIONSl

p2.f
P2"

P?"
P2M

pgit
p2H
p2..

P2M

P2"
P2"
P2"
p2if

P2M

p2.t
p2.,
p2..
p2M

P2M

pp..
pp..
p2..

P2"
P2"
P2M

P2W

p^',

P2"
p?"
p2..
p2..

P2"
P2"
p2..
p2..
p2..

P2M

pp..
p2..

P2"
pp..

?2M

p2..
pp..

P2"
P2,,

P2,,

P2W

p2..

P2"
pp..
pp..
PP«
ppH

<rxpR>
<EypR>
<EXPR>
<EXPR>
<EXPR>
<EXPR>
<EXPR>
<EXPR>
<EXPR>
<EXPR>
<rxpR>
<EXPR>
<EXPR>
<EXPR>
<EXPR>
<EXPR>
<EXPH>
<EXPR>
<TRUEPART>
<TRUEPART>
<TRUEPART>
<TRUEPART>
<TRUEPART>
<TRUrPART>
<TRUFPART>
<TRUf:PART>

<TRUEPART>
<TRUEPART>

<TRUrPART>
<TRUEPART>
<TRUf:PART>
<TRllEPART>
<TRUFPART>
<TRUFPART>
<TRurPART>
<TRUEPART>
<TRLIFPART>
<TRUE:PART>
<IF" CLAUSF>
<SUM>
<SUM>
EOF
EOF
EOF
EOF
EOF
IF
IF
IF
IF
IF
♦

FLSr
ELSE
ELSE
ELSE
ELSE
ELSE
THEN
THEN
THEN
THEN
THEN
THEM
)
)
)
)
)
)
<EXPR>
<EXPR>
<CXPP>
<EXPR>
<SUM>
<SUM>

<SUM>

<PRlMARy>
<PRlMARY>
<PRIMARY>
<PRIMARY>
IDEMT

IDENT
IDENT
IDE^JT
INTFOFR
TNTf:r,F.R
INTFRFR
INTFGER
<THUFPART>
♦
m

<EXPR>
<SUM>
<PRTMARY>
IDFNT
INlFGER
<EXPR>
<SUM>
<PKIMARY>
lOENT
INTFGER
<PRIMARY>
<PHIMARY>

IF

IDENT
INTEGER
(
IF

♦

lOFNT
INTEGER
(
EOF
♦

ELSE
THEN
)
EOF
ELSE
THEN
>

EOF
ELSE
THEN
)
EOF

ELSE
THEN
)
FOE
ELSE
THEN
)
EOF

ELSE
THEN
)
<EXPR>
<PPIMARY>
<P0IMARY>
EOF

EOF
EOF
EOF
EOF
THEN
THEN
THEN
THEN
THEN
EOF
4

s

s

s

■
s
s

s
3

S

=

S

3

■

3

3

S

pp..(

P3"(
pp..(
PpM(
P?..(
Pp..(

P2"(
P?''(
pp..(
pp..(

P9mt
P2..c

??••(
pp..(

P?M(
ppM(
pp..f

P?"(
P?»(
??•♦(

P2M(

P?M(
pp..(

P?M(
P?M(
??»(
ppM(

P?M(
PpH(

P?W(
P?M(
pp..(
PP..(
p?W(

P?M(
pp..(

??»(
pp..(

P?MC
P?*l
P?"(
pp..(
p?..(

P?"(
P?"C
pp..(
pp,.(

P?M(
??*(
p?*(
pp«c

? > 11 . 1) ■
2 # 14 . 9) «

2 • 14 » 101 •
2 # 10 » 11) s
? * 14 I 12) ■
2 » 14 » 13) «
2 » 15 , 1) «
2 • 15 . 9) =
2 . 15 * 10) »
2 . 15 . 11) ■
2 i 15 . 12) »
? . 15 . 13) «
2. . 16< . 7) s
2/ • 16 . 9) m

2 . 16 . 10) »
2 • 16 . 14) »
2/ . 16 . 15) •
2 i 16/ . 16) «
ll i 2 . 7) a
ll > 2< . 14) a
ii 2i 15) a
3/ 2i 16) a
3« 5< 7) a
3. 5< 14) a
3# 5* 15) a
ll 5i 16) a
3, 6, 7) a
3i 6« 14) a
3, 6, 15) a
3« 6i 16) a
3« 11' 7) a
3. 11« 14) a
3. 11» 15) a
3, 11« 16) a
3, 12# 7) a
3, 12» 14) a
3, 12» 15) a
3» 12» 16) a
k. 1« 2) a
5ß 9« 6) a
5. 10» 6) a
7# 2» 7) a
7, 5» 7) a
7» 6« 7) a
7, 11» 7) a
7, 12» 7) a
fl. 2» 15) a
1« 5» 15) a
8, ll 15) «
6* 11» 15) a
If 12» 15) a
Q, 6» 7) a
9. 6» 9) a

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
FALSE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE

6g

P2"(♦
P2H(♦
P2W(♦
P2"(♦
P2H(♦
P2H(♦
P2n{ ♦
P2W(♦
P2"(♦
P2H(♦
P2"(♦
P2,,(♦
P2W(♦
P2''(♦
P2nl ♦
??*(♦
P2H(-
P2«(-
P2M(-
p2«(.

P2"{ -
P2"(-
P2H(.
P2"(-
P2-(-
P2«(-
P2H(-
p2-(-
P2',{ -
P2H(-
P2"(-
P2H(-
P2H(-

P2"C -
P2H(<
P2,,((
P2H(<
P2,,((
P2,,(C

92
TIME «

<PRIMARY>
<PRIMARY>
<PRIMARY>
<PRIMARY>
IOENT
1DENT
1DENT
IOENT
1DENT
IOENT
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
<PRIMARY>
<PRIMARY>
<PR1MARY>
<PRIMARY>
<PR1MARY>
<PRIMARY>
IOENT
IOENT
IOENT
IOENT
IOENT
IOENT
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
<EXPR>
<SUM>
<PRIMARY>
IOENT
INTEGER

FUNCTION VALUES» DFNSI
0.06» TOTAL ELAPSEO

m) ■ P2"< 9i 6i 10) ■ FALSE

ELSE) « P2M(9i 6< 14) • FALSE

THEN) * P2"(9» 6i 15) » FALSE

)) ■ P2W(9i 6i 16) « FALSE

EOF) ■ P2"(9i 11< 7) i TRUE

4) ■ P2"< 91 11* 9) • TRUE
■ P2W(9i 11- 10) • i TRUE

ELSE .) » P2"(9i Ui 14) ■ i TRUE
THEN) ■ P2"(9i Hi 15) » • TRUE
)) « P2"(9i 11. 16) • . TRUE
EOF) « P?"(9i 12. . 7) « i TRUE

♦) « P2H< 9J • 12« i 9) • i TRUE
m } s P?"(9I > 12- . 10) * TRUE

ELSE) « P2"(9j i 12. . 14) « t TRUE
THEN) m P?t.(9i 12. . 15) « i TRUE
)) ■ P?"(9i . 12. . 16) s TRUE
EOF) . P2-(lOi * 6. . 7) a FALSE

♦) « P2««(lOi • 6/ . 9) : i FALSE
« P2'«(10/ > 6. . 10) • . FALSE

ELSE) ■ P2"(10. • 6. . 14) • i FALSE
THEN) « P2W(10. I 6. • 15) » . FALSE

)) . P?H(10. > A. . 16) » • FALSE

EOF) « P2M(10. • 11. . 7) i * TRUE
4) « P2"(10 • 11 . 9) • . TRUE
.) • P2««(10. l U . 10) « « TRUE
ELSE) « P2''(10. * 11 . 14) . i TRUE
THEN) . P2H(10 • 11 . 15) • • TRUE

)) « P2M(10. • 11 . 16) » « TRUE
EOF) a P2,'(10 > 12 . 7) i • TRUE
♦) ■ P?*(10 . 12 . 9) • i TRUE
*) m P2'»(10 « 12 . 10) i • TRUE
ELSE) « P?f(10 . 12 . 14) « • TRUE
THEN) • P2M(10 • 12 . 15) i . TRUE
)) ■ P?"(10 l 12 I 16) • t TRUE
)) ■ P2M< 13 • 2 » 16) « « FALSE
)) » P2«,(13 1 5 . 16) : i TRUE
)) « P2'«(13 1 6 » 16) . t TRUE
) > « P?H(13 * 11 » 16) « t TRUE
)) ■ P2"C 13 » 12 » 16) . • TRUE

TY ■ 2.25«» EN TRIES/VA LUE 1. 39
a 0.42 MIN.

70

SECTION 3

THE KERNEL LANGUAGE

Principles of Design

The kernel language must above all provide the programmer witn a

convenient means for controlling an automatic digital computer. O^r

first task is to discuss several general principles of language design

and the contribution each makes toward the final form of the kernel

language,

We require that the language be minimal in that the forms of the

language must be concise and that there be as few kinds of forms as

necessary. The conciseness and mnemonic significance of expressions in

program text will depend upon the available character set as well as the

aesthetic, suitability of the multicharacter symbols chosen to represent

the various linguistic entities- We have exercised considerable care in

choosing the forms for the kernel language, drawing from the notations

of Algol, Euler [25J, Iverson's language [15] and Fh/lilk], We neverthe-

less realize that our readers with different experience in language or

with different, hardware may take strong exception to our choices. Our

interest is primarily in the organization behind the linguistic fajade

and we take refuge in the realization that the language user can choose

his own forms with the aid of the mechanisms of the extendable compiler.

71

1

We minimize the number of different structural forms by requiring

that the kernel language he involuted. Involution is achieved by avoiding

constructs that are applicable only in local context, we give some examples

of failures in existing computer languages.

In Algol 60 we find the following isolated features:

(1) A primitive list structure in the constructs <for list>

and <actual parameter list> which is unavailable elsewhere (for mstanc-p,

to be used in array initialization).

(2) General call by name is available only through aciual para.rjeters,

(5) Dynamic memory allocation is available only at block entr./ .

We also find that most compilers provide a separate language for Input

and output which includes only a fraction of the power of tne complete

language. In each case the power of the language can b? increased, the

number of primitive concepts reduced and the compiler simplified by

bringing the action out into the main program on a level with othei

statements.

By choosing operators and data types to reflect closely the mnn'ai

processes of tne language user we can substantially add to his ability to

write brief and lucid programs. With distressing frequency we find that

existing computers are ill-suited to the tasks thus set. We will find tha4

our goal of designing a mutable computer language irequentiy implies a

more anthropoid machine.

A program can be viewed as a sequence of operations on a data

structure It is necessary to provide the programmer with forms designed

to control the sequence conveniently. We find that with a sufficiently

elaborate set of sequence controlling forms, we have no need for tne

more traditional aabels and go-to statements. Lest rfe oe misunderstood,

1?

the inclusion of labels would not appreciably complicate the translator.

We would regard the appearance of the label definition as an instruction

to initialize the corresponding local variable to an appropriate value

of type label upon entry into the scope of the variable. The mechanics

of implementing the go-to statement are given in Wirth and Weber ([25] p 52)

We feel that labels are an anochronistic holdover from early computer

languages and are not in the collection of basic concepts.

Whenever possible we defer actions to a later time. A deferred

action implies an increased freedom since we have preserved our ability

to choose what action, if any, to take.

In particular, we shall require that each value be marked with its

type during execution. In this way we can make the machine operators

dynamically data dependent.*

The extendable compiler is a translator from the kernel language

into a machine language. That language will generally be a mixture of

direct commands to the hardware and interpretable information to direct

the hardware and other programs present at execution time. We will call

the program structure present at execution time the interpretive system

(or simply, the system) to distinguish it from the hardware.

t Consider, for instance, the effect of the arithmetic operators in

Iverson's language ([l5], p 13). Dynamic typing demands a memory

organization substantially different than any known to the author. It

can be avoided by adding typing information to the declaration structure

of the kernel language.

75

The program, the system and the hardware form three levels of

control over the action of the machines. It is possible to have even

more levels of control than those described here. For instance, the

microprogramming feature of the IBM System 560 line of machines [19]

could be inserted between the interpreter and the hardware. We may

change the system at any level. As we progress down the levels, the

ohanges become more difficult (more expensive) and the results are more

general.

Example Programs in the Kernel Language

We have implemented an extendable compiler for the kernel language

on the Burroughs B5500. The actual compiler and its description are given

elsewhere [20] but we wish to present the results of the execution of

selected kernel language programs as motivation for the sequel. (Note

another extensive example on page 35.)

We give several trivial examples which are essentially self-

explanatory and finish with a version of the extendable compiler written

in the kernel language. The programs and output are given in typescript

instead of actual computer listing because the B5500 character set is not

sufficiently rich to produce readable listing. We present the B5500 listing

of the first example for the purpose of reader comparison.

This has in fact been done by H. Weber for Euler IV on IBM 360 model 30.

7U

Exajnple 1. The procedure assigned to the identifier "factorial" gives

the usual recursive definition of the factorial function. The local

variable "n" is initialized from the parameter list when the procedure

is activated. Note the subscript "[l]". If it were omitted the procedure

would return a value of type list with one member equal to the required

factorial. The subscript, here analogous to the assignment to a procedure

identifier in Algol 60, serves to select the desired value.

Note also that the identifier "k" does not appear in the declara-

tion of its list. It is local to the scope of the iterative statement

and is declared by its appearance as the control variable.

{new factorial,

factorial «- (?)

(new n, if n = 0 then 1 else n X factorial{n-l))[lh

for all k from 1 to 6 do

out <- (k base 10) $ " factorial =" 9

(factorial{k} base 10) • cr

) eof

*** output ***

1 factorial = 1
2 factorial = 2
5 factorial = 6
k factorial = 2h
5 factorial = 120
6 factorial = 720

B5500 Version of Example 1.

75

BtGlN * TEST PROfiRAM FOR RtCURSIVK TACTORIAL »
NEW FACTORIAL N»
FACTORIAL •■ »
BEGIN NEH N»

IF N » 0 THEN I ELSE NXFACTURIAL BEGIN N-l END
ENDtn»
FOR ALL N FROM I TO A DO

OUT «• (N BASE 10) CAT ■ FACTORIAL • " CAT
(FACTORIAL BEGIN N END RASE 10) CAT CR

END EOF

*** output ***

1 FACTORIAL ■ I
2 FACTORIAL « 2
3 FACTORIAL « 6
H FACTORIAL « 2M
5 FACTORIAL * 120
6 FACTORIAL ■ 720

1110 INSTRUCTIONS EXECUTED

— ÜR--
57

CAT
16

UNION
0

INTER
0

DIFF
0

BASE
12

OR
0

AND
0

<
0

i
0

s

27 0
2

0
>

0
MEM

0
INCL

0

CONTAI
0

EOV
0

MAX
0

MIN
Ü 0 21

X

21 0

MOD
0

>IV
Ü

*

0
NÜTMEM

0
INDEX

0
LIST

0 0 0

0 0 0 0 0 0 0 0

0 g
PD

1
STO

7
SET

1
HRB

A
FETCH
102

XCG
1

NAME
121

JOF
27

BRF
6

VAL
219

BEGIN
56

END
56

XEQ
0

CASXIT
0

SUBS
27

CALL
27

AP
175

RTN
?7

EOS
56

FOR
7

FORXIT
1

EOP
1

0 0 0 0 0 0 0
NOT

0

MINUS
0

ABS
0

TYPE
0

ROUND
0

LENGTH
0

CHOP
0 0 0

76

Example 2. Inner product.

{ out «- ((+ / {1,2,5) X (3,2,1)) base 10) 9 cr) eof

*** output ■**■*■

10

Example 3. A simple sort procedure.

{ new sort,

sort ♦- (p)

{ new x,

for all i from 1 to length x do

for all j from i+1 to length x do

(If x[i) > x[j] then x[{i,j)] «-x[(j,i)]),

x

for all i from sort({6,5A,3,2,1)) do

out ♦- (i base 10) ® cr

} eof

*■**■ output *■*■*

1
2
3
k
5
6

77

Example h, A procedure to generate all the permutations of an

ordered set.

{ new perm,

perm «- ^g)

{ new x,

if 0 = length x then (x) else

©/(for all i from 1 to length x do

for all t from perm(x[l to i-l] 9 x[i+l to length x])

do x[i to i] © t)

Hi],

for all test from [nn, "a", "ab", "abc", "abed") do

for all p from permftest) do out «-p cat cr

) eof

*** output ***

a
ab
ba
abc
acb
bac
bca
cab
cba
abed
abdc
acbd
aedb
• • «

etc.

78

Example 5. The following program is a compiler-executor for a small

language. The organization of the program is essentially that of the

extendable compiler written for the Burroughs B5500. We will make

comments on the kernel language constructs used, the organization of

the compiler-executor and the implementation of the small language.

We find the following major sections: (l) The syntactic analysis

tables, (2) The scanner, (3) The compile actions definition and the

v

compiler, (h) The execute actions definition and the executor, (5) The

test program and its output.

In the outermost list we find the declaration of all the global

identifiers. To seven of them we find immediate assignments of syntactic

analysis tables. The tables are best understood in reference to the

Backus-Naur Form description of the small language contained in the com-

ments in the compile action definitions. The table wreservedsymbolsw

is a list of strings which correspond to the nonterminal and terminal

symbols in the grammar. The position of a symbol in the list is called

its symbol number.

The table "productionrightparts" is a list of lists, each of the

latter corresponding, in order, to the right part of a production

(<progran]> is symbol 1, eof is symbol 15, {l>l5i corresponds to

<program>eof). "productionleftparts" contains the symbol number of the

left part of the corresponding production.

The next four tables are linearized representations for the parsing

functions PI' and P2' which locate the right and left ends of the

next CRS. All seven tables could have been produced by a syntax pre-

processor similiar to the symbol pair algorithm of Section 2.

79

The scanner must fetch the next terminal symbol from the input

text each time it is called. In the case of the small language this

means identifying digits (which are less than 10 in our character set),

catenating identifiers (letters are less than 56), matching reserved

identifiers with their syntactic symbol numbers, entering variables into

the symbol table and matching special characters with their syntactic

symbol numbers.

Now skip ahead to the procedure assigned to "compile". After some

initializing we find "while compiling do" which controls a loop down to

the end of the procedure. Within that loop we immediately find the syn-

tactic analysis algorithm. In the first inner loop we are scanning ahead

to the right under control of the linearized form of function PI'. Having

located the right end of the CRS, we exit the loop and enter a loop scan-

ning for the left of the CRS under control of the linearized version of

function P2,. At the termination of the second loop, we may compare the

CRS with the production right part table to find the production number

"pn".

"pn" is used as a subscript to select the compile actions corres-

ponding to that production from the preceding table. The prescript

operator "[compileactions[pn]]" causes the execution, in order, of actions

from the explicit list following the prescript. For instance, the dis-

covery of production two would cause the integer 12 to be placed in the

code array, the program pointer to be incremented and the variable

"compiling" to be set to false, thus terminating compilation.

At the termination of each compilation step we find the substitution

of the production left part for the CRS.

80

The compiler is considerably simplified by having the entire code

array and execution memory available at compile time.

The translated code for the small language consists of a sequence

of twelve operation codes. Within the procedure assigned to "excute"

we find another prescript "[executeactionsfcodeEpp]]]". The operation

code in "codefpp]" is used to select a sequence of execution actions

from the preceding table. Execution proceeds until the operation code 12

causes the execution action "executing «- false" whereupon execution

terminates.

i

t

81

•Micro-mutant, a small version of the extendable compiler'

(new code pp memory variables mp text tp fl gl f2 g2

reservedsymbols productionleftparts productionrightparts

compile compileactions execute executeactions

scan nextsymbol scanval,

'Seven tables prepared by a syntax preprocessor'

reservedsymbols ♦- 'syntactic vocabulary'

("<prograaC>", "<stmt>", "<stmt]>", "<if clause!»",

"<label>", '^list head>", 'kexpi^", '^expr^",

'^arith exF>", "<tern>", "<tenia>", "<factoi>",

'^intege^", "<vai>", "eof", "go", "output", "if",

"<ident>", "begin", "(", "<digit>", "end", "to",

":", ",", "+% ■-•i MX", */*$ "then", ")"),

product ionrightparts <-

{(1,15), (15,2,15), (3), (5,3), (M), (6,23),

(16,21^,7), (17,7), (7), (18,7,32), (5,25), (20,2),

(6,26,2), (8), (1^,27,8), (9), (9,28,10), (9,29,10),

(10), (11), (11,30,12), (11,31,12), (12), (llf),

(13), (21,17,33), (22), (13,22), (19)),

productionleftparts «- (l,1,2,3,3,3,3,3,3A,5,6,6,7,8,

8,9,9,9,10,11,11,11,12,12,12,13,13,1^),

fl «_ (1,2,3,1,1,1,3,^,4,5,5,6,6,6,3,1,1,1,7,1,1,7,3,

1,7,1,1,1,1,1,1,7,6),

gl <- (1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,6,1,

1,7,1,6,4,^,5,5,3,3),

f2 *- (l,l,l,6,6,l,i,l,l,l,l,l,l,l,7,l,5,5,l,7,5,l,l,

5,1,7,4,3,5,2,2,1,1),

g2 <- (l,7,6,l,l,l,5,4,l,3,l,2,i,i,i,i,i,i,i,i,i,i,i,

1,1,1,1,1,1,1,1,1,1],

82

scan <- (?) 'fetch the next terminal symbol from the text*

(new t, while text[tp] = " "[l] do tp <- tp + 1,

if text[tp] < 10 then

{nextsymbol ♦- Vdigi^" index reservedsymbols,

scanval «- text[tp], tp «- tp + 1

) else

if textEtp] < 36 then

('catenate an identifier*

t <- tp, while text[tp] < 56 do tp <- tp + I|

t «- text[t to tp-l],

nextsymbol «- t index reservedsymbols,

if nextsymbol = 0 then

{' a variable'

nextsymbol «- '^iden-^" index reservedsymbols,

scanval «- t index variables,

if scanval = fl then variables [scanval «- mp <-mp + l] ♦- t

)

) else 'must be a special character'

(nextsymbol ♦- text[tp to tp] index reservedsymbols,

tp «- tp + 1

)

), 'end of scanning algorithm'

85

.

compileactions «-

(Oi ^progran^ : 2 = <prograii> eof '

(12,17,19), ^progran^ : S = eof <stmt> eof '

(2,17), ^stm^ : !■ <stmtl> •

ih ^stmt^ : 2 = <labe]> <stmtl> '

15, ^stmt^ : := <if clause> <stmt]> '

0, ^stmt^ : |a <list hea<C» end •

(1,17), ^stmt^ : := go to <expi> '

(7,17), ^stmt^ : := output <expi> '

0, ^stmt^ : := <expi> '

(3,17,18,17), •"Cif clause> : {■ if <expi*> then '

15, ^labe^ : J s <ident> :

0, ^list hea^« : := begin <stm-t> '

0, ^list head> : !■ <list hea(I> , <£tmt> '

0, ^exp^ : !■ <exprl> '

(6,17), ^expr^ : !■ <var> <-<exprl> '

0, ^expr^ : |a <arith exp> '

(8,17), ^arith exp> : Js <arith exp> + <tern> '

(9,17), ^arith exp> : := <arith exp> - <tern> f

0, ^arith exp> : : = <tenn> '

0, ^tern^ : t= <terml> '

(10,17), ^tem^ : := <terml> x <factoi> '

(11,17), •«ctenn;^ : !■ <terml> / <factoi> •

0, ^tem^ : ; = <factor> '

(5,17), ^facto^ : := <var> '

(M7,lM7), ^factoi^ : := <integer> '

0, ^facto^ : := (<expr>) •

0, •«CintegeiS* : := <digit> '

16, ^intege^ : ! = <integer> <digit> •
{4,i7,iii,i7) ^va^ : !■ <ident> '),

Oh

;.t T.

compile <- @

{new x xv xp Ip pn compiling,

pp <- tp «- 1, mp ♦- 0, compiling «- true,

x <- xv «- 25 list 0, xp <- 2,

x[l] «-"(" index reservedsymbols,

x[2] «- "eof" index reservedsymbols,

memory «- variables «- 10 list fl > code «- 100 list 0,

scan, 'initialize nextsymbol and scanval'

while compiling do

(while fl[x[xp]] < gl[nextsymbol] do

(x[xp«-xp+l] <- nextsymbol, xv[xp] «- scanval,

scan 'the decision for function PI'),

lp «-xp,

while f2[x[lp-l]] < g2[x[lp]] do lp <-lp-1,

'the right part of the next CRS i? between lp and xp'

pn «-x[lp to xp] index productionrightparts,

'the production number is used as an index to select

a sequence of compile actions'

[compileactions[pn]] 'a prescript on the following list'

('the first twelve compile actions correspond to

execution macro-instruction operation codes'

code[pp] «- 1, codefpp] «- 2, code[pp] «- 3,

code[pp] ♦- ^, code[pp] «- 5* code[pp] <- 6,

code(pp] «- lt codefpp] <- 8, code[pp] «- 9>

code[pp] «- 10, code[pp] «- 11, code(pp] <- 12,

'the remaining 7 rules do fixups, label initialization,

increment the program pointer, etc.'

85

memory[xv[xp-l]l ♦-pp, •15'

code[ppl <- xv[xpl, •lU'

code[xv[xp-l]] <-pp, •15'

xv[lp] 4- (xv[xp"ll x 10) + xv[xp]. •16'

pp <- pp + 1, •17'

Xv[lp] 4-pp, •18'

compiling <- false

h
xp ♦- Ip, 'making the left-f

•19'

or-right part aubst

x[xp] ♦- productionleftparts

)

), 'end of compilation procedure*

[pn]

1

executeactlons <-

((2,15), •unconditional branch V

(15,1), •clear stack 2»

(1,10,15), •branch on zero *•

(M,6,l), •load stack from code If

(8,1), •load stack from memory 5'

(9,7,5,1), •store stack to memory 6*

(5,1), •decimal output 7'

(11,5,1), •add 8-

(12,5,1), • subtract 9'

(13,5,1), •multiply 10«

(1^,5,1), •divide 11 •

16 •halt 12M,

87

. •

execute «- (?)

(new executing stack sp,

sp <- 0, pp <- 1, executing *- true,

stack <- 100 list 0,

while executing do

[executeact Ions [code [pp] 1]

(pp ♦- pp + 1,

pp «- stack[sp],

out ♦- (stack[sp] base 10) • cr,

sp ♦- sp + 1,

sp «- sp - 1,

stack[sp] <- code[pp],

stack[sp-l] «- stack[sp],

stack[sp] <- memory[stack[sp]],

memory[stack[sp-l]] «- stack[sp],

pp *- If stack[sp] sa 0 then code[pp] else pp + 1,

stack[sp-l] «-stack[sp-l] + stack[sp],

stack[sp-l] «- stack[sp-l] - stMck[sp],

stack[sp-l] <- stack[sp-l] x stacktsp],

stack[sp-l] «- stack[sp-l] -r stack[sp],

sp «- 0,

executing «- false

)

}, 'end of execution procedure'

V

2«

y

%•

5«

6«

7'

8'

9'

10'

'll*

'12'

'15'

•IM

•16'

88

•test program for micro-mutant compiler1

text <-

"begin n «- 1,

k: if 102k.n then

begin output n,

n «- 2 x n,

go to k

end

end eof eof ",

compile,

out «-"code dump:" • cr • "pp" « tab • "inst" « cr,

for all i from 1 to pp-1 do

out «-(i base 10)© tab 9 (code[i] base 10) • cr,

out ♦- cr,

execute,

out «- cr • "memory dump:" ® cr,

for all i frcn 1 to mp do out «-variables[i] © "a" 9

(memory[i] base 10) * cr

eof

89

code dump:
PP Inst
1 k
2 I
3 k
k 1
5 6
6 2
7 k
8 102k
9 k
10 1
11 5
12 9
13 3
Ik 35
15 k
16 1
1? 5
18 7
19 2
20 »♦
21 1
22 1*
23 2
2k ll
25 1
26 5
27 10
28 6
29 2
30 4
31 2
32 5
33 1
Ik 2
35 2
36 2
37 12

1
2
U
8
16
32
6k
128
256
512

memory dump:
n ■ 1024
k= 7

90

Syntactic and Semantic Definition

The following table is the phrase structure grammar for the kernel

language. We adopt the Backus-Naur Form of the Algol report, substitute

the reduction symbol "::=" for the production arrow "-»" of Section 2,

enclose the members of V.. in the brackets "<" and ">" and underline

the multicharacter representations for members of V_. The special sym-

bols integer, identifier and string are discussed on page 93.

We remind our readers that the grammar obeys two restrictions that

occasionally give it an artificial appearance. First, it is a symbol pair

grammar. Second, the productions have been carefully selected to reflect

the desired sequence of execution in the canonical parse to simplify the

production of the machine code.

Symbol Pair Grammar for the Kernel Language

<prograin>

<expressioii>

<expression >

<expressionp>

<expression,>

<procedure>

<if clause>

|- <expression>-^

<expression >

<if clause> <expression > |

<expressionJ>

<expression,>

<if clause> <truepart> <expressionJ>

<primary > «- <expressionJ> |

<procedure> <expression^> 1

<for clause> do <expressionJ> !

<for clause> <while clause> do

<expression3> 1

<while clause> do <expression^> |

<step list>

®
if <expression> then

91

<truepart>

<for clause>

<while clause>

<while>

<step list>

<simple expr>

<simple expr >

<primary>

<primary >

<primaryp>

<.lis-t>

<list head>

<begin>

<case>

<case head>

<case begin>

<declaration>

declaration >

<constant>

<infix>

<prefLx>

<expressionp> else

for all identifier from <3tep list>

<whil^> <step list>

while

<simple expr> to <simple expr> |

<simple expr> b^ <simple expr> |

<simple expr> to <simple expr> by <simple expr> |

<simple expr> b^; <simple expr> to <simple expr> 1

<simple expr>

<simple expr >

<primary> <infix> <simple expr > I

<prefix> <simple expr > 1

<infix> / <simple expr^ |

<primary>

<primary >

<primary > [<expression>] | <primaryp>

<constant> | (<expression>) |

identifier <list> 1 identifier | <list> | <case>

<list head>)

<list head> , <expression> I

<begin> <declaration> | <begin> <expression>

{

<case head>]

<car.e head> , <expression> i

<ca.se begin> <declaration> |

<case begin> <expression>

[<expression>l (

<declaration >

new identifier |

<declaration > identifier

true | false I integer | integer . | . integer |

integer . integer | universe \ string | <begin>]

t | U | 0 | • | base |V|A|<|<| = |/|

> | > | t | / | index [list | C | D | H | max | min

+ I - | X |mod| ♦ I t

"1 I minus I abs j type | round |chop | length I set

92

■

We will now gi\e our interpretations of each construct. The

description of an involuted language involves the use of terms before

they are defined. Paragraph numbers and cross references are used to

ease the reader's task in following the description.

We must distinguish between text describing the form of a construct,

text giving examples of a construct, text describing the meaning of a

construct, text justifying the choice of a construct nnd text advocating

a particular system organisation or machine design. We distinguish them

when possible with paragraph headings of Syntax, Examples, Ser.-.antic

Description, Justification, and Implementation, respectively.

Implementation of Reserved Words, Identifiers, Strings and Integers.

By an underlined word in the grammar we mean to reserve that word for

exclusive use in the given grammatical context. We do not then need spe-

cial character sets or escape symbols to write programs. One implication

is that spaces nre significant and that we cannot know whether an identi-

fier is reserved or not until we have seen all of it. Thus we find that

the process of catenating identifiers must take place outside of (and

before) the syntactical analysis algorithm. We assign this task to a

procedure called the scanner. It turns out to be convenient to recognize

and convert both integers and strings there also. As a result we find the

symbols integer, identifier and string terminal in the grammar but not

underlined. The inclusion of natural language text within a program in

the form of parenthetical comments to the reader is provided by choosing

an otherwise unused character as a comment bracket. We reject the Algol 60

comment convention because it is neither concise nor independent of the

program structure (since it involves the use of the semicolon).

95

- -t

'

Semantic Descrlption of Values. Before we can discuss (5-l)

constants, we must introduce the values they represent. We specify in

the language four unstructured types of values (undefined, number, name

and process) and three structured types (string, list, and set).

Syntax of Constants.

<constant> ::= ft | co j universe |

integer | integer . | . integer i integer . integer |

true I false |

<begin>) | string

<begin> ::= (

Examples of Constants.

ft oo universe true false

2 2. .2 156.721

{) "ABCDEFGHIJ-52"

Semantic Description of Constants of Typed Undefined.

ft , oo, and universe have type undefined. The value of a variable

before anything haa been stored into it is ft ; the result of dividing

a positive number by zero is oo; the intersection over the null collection

of sets is universe (the universal set).

The operators = and ^ are valid for all of the above; oo is a

valid operand for all numeric operators; universe is a valid operand for

all operators that accept sets as operands.

Implementation of Values of Type Undefined. The appearance of an

undefined value is usually cause for alarm. An alarm should cause the system

to originate a warning action to the programmer, but beyond that we make

no particular recommendation as to the form of the warning or the means of

suppressing it.

Justification of Values of Type Undefined. Undefined values can

arise in a variety of ways. We might think of, for instance, the value

of an uninitialized variable, the result of division by zero and the

result of an invalid subscripting operation. We propose the introduction

of a type undefined and a collection of values of type undefined corres-

ponding to (usually) pathalogical situations such as those described above.

For some we may wish explicit constants in the language. Thus we might

write

if X = GO then ...

to test for a division by zero.

The introduction of a type undefined provides a conceptually

simple mechanism with which to warn the programmer of some of the wilder

errors as well as providing a relatively noncontroversial system reaction

to the errors. If the error is isolated, the system may proceed with

execution of the program, leaving behind an indicative trail of undefined

values.

Semantic Description of Numbers. A value of type number will be

the computer representation of a real number. We have two reasons for

not wishing to make our concept of a number precise.

First, the only reasonable choice for numbers in a given implemen-

tation of the kernel language will be those acceptable to the floating

point hardware of the machine. For that implementation, the programmer's

knowledge about values of type number will be a pragmatic mixture of

his knowledge of numbers in the abstract and his study of the machine

specifications.

95

Second, a study of the desirable properties of computer numbers is

well beyond the scope of this paper. We hope to see some results in

this direction in a ^tudy presently being conducted by W. Kahan, J. Welsch,

and N. Wirth.

We do find it useful to distinguish three subsets of the class of

computer numbers, the first of which is computer integers. The second

is the set of characters which is the set of integers restricted to (3*2)

the range 0 to 255 inclusive. Finally we have the logical values

0 and 1. (5-3)

Semantic Description of Strings. We consider a fixed input or

output device. We assume a correspondence between the printing character

of the device and the characters (see 3-2). Normally some of the charac-

ters Qre unused for printable characters and may be used for nonprinting

or control functions. A string in the kernel language is an ordered set

of printable characters delimited by the string quote ("). We adopt the

PL/I convention that within the string, two contiguous string auotes

signify a single string quote within the string.

Justification of Strings. The programmer communicates with his

program via strings of characters; thus unrestricted ability to analyze,

manipulate and produce character strings is a minimal requirement for

any computer language. In much the sarne spirit that a compiler for

numerical work provides certain standard functions such as square root

and natural logarithm, we must provide primitive string manipulating

functions.

Implementation of Input and Output. For the kernel language

we assume that we have a single input medium «nd a 3ingle output medium.

96

If we view the program over the history of its execution, the input and

output are each single contiguous strings of characters. We name two

special variables (IN and OUT) and access them in the normal manner with

our primitive string manipulating functions. The fact that in real time,

the program may have to wait before an access to IN can be completed does

not affect the program logic. On the other hand, the program must have

control over when, in real time, the output appears. Thus we establish

the convention that whenever a carriage return is catenated onto OUT, the

string OUT is shortened past the carriage return and the excised characters

appear on the output medium.

Semantic Description of the Null List. The construct (} represents

the null set of values. We use the dummy production <begiri> for technical

reasons having to do with the emission of block entry code from the canon-

ical parse.

Semantic Description of true and false. The constants true and

false are synonymous with the characters 1 and 0.

Semantic Description of Variables. A variable is an object which

can be named in the kernel language and to which any value can be assigned.

The designation variable is given by either an identifier or a subscripted

identifier (see 3-9)-

Semantic Description of Values of Type Name. Corresponding to

every valid name in the kernel language is a value of type name within

the system. Names are created as intermediate results and are not access-

ible to the programmer.

97

w^iSI

Implementation of Variables and Names. A variable corresponds to

a memory address. The type of the value stored in a variable must be

preserved, thus we find that we allocate two words for a variable rmd use

the second to store the type information. We would prefer a machine in

which the type bits were automatically associated with each word but had

special properties. In particular we would like to determine whether the

variable contains a value of type address to effect indirect addressing

but without accessing the whole variable to find out. We believe this

implies that at least some of the type bits must be accessible in a

fraction of the time to access a memory word.

Syntax of Declarations.

<declaration> ::= <declaration >

<declaration > :;= new identifier |

declaration > identifier

Examples of Declarations.

new abed

new thisone thatone anyone

Semantic Description of Declarations. At most one declaration appears

in the head of a list (see 5-5). The extent of the list defines the scope

of the identifiers in the declaration. Every identifier in a program must

either be reserved or lie within the scope of an identifier of the same

name. Upon entry into the scope of an identifier, the system allocates

a variable to it and gives it the value uninitialized. An identifier names

the variable allocated to it. If an identifier appears in more than one

declaration, the use of that identifier names the variable corresponding

to the smallest containing scope.

98

■j

Justification of Declarations. The use of declarations to define

the scope of variables is well established. With dynamic typing of values,

we find no particular advantage in binding the type of an identifier with a

compile-time declaration. The involuted nature of the kernel language

moves the structural implications of the conventional declaration out into

the main program. Thus we find that declarations in the kernel language

are reduced to the single action of delineating the scope of, and allocating

variables fo^ identifiers used in the program.

We regard this as the final step in the direction taken by Wirth

and Weber ([25] p. k}).

Implementation of Declarations. From the viewpoint of variable

addressing, the program consists of a nested collection of scopes. Thus

from any point in the program we may assign a unique ordered pair of

integers to each variable, namely, the depth of nesting of the scope of

the identifier and the position of the identifier in the declaration.

We call the integers the scope level and order number respectively. At

compile time we can name the variables with the scope level and order

number.

The form of the declaration suggests that we should allocate a

list of variables corresponding to the declared identifiers upon entry

into the sccpe of the identifiers. The order number of a variable is

the index of that variable in the list of local variables. Thus we

expect to use the scope level to find a particular list and the order

number to find an element of that list. At execution time we convert

the compile time name into a value of type name by locating the memory

location assigned to the variable.

99

The designers of programning languages have traditionally (3-*)

indulged themselves in a semantic ambiguity: one cannot always tell

from the form of an expression (a subscripted variable for instance)

whether the name, or the value stored in the named location, is indi-

cated. In the Algol 60 construct of general call by name the ambiguity

is complete; the expression must yield both name and value, the choice

depending upon its use at a remote location. One can remove the ambiguity

by introducing explicit name and value operators into the language

([25] p. ^5). Since the choice is always ultimately clear from the con-

text in which the expression is found, we have chosen to dynamically

defer the final fetch of the value in cases where there is doubt.

Syntax of Lists.

<list> ::= <list head>)

<list head> ::= <list head> , <expression> |

<begin> <declaration> |

<begin> <expression>

<begin> : := (

Examples of Lists.

(1, 2, 3, "ABC")

[x ♦- 1, y *- y-2, if x < y then z else z ♦- y }

{new abc, a«-b«-1.0, c«-5)

{new a, {new a, a «- ?), a ♦- 2)

100

Semantic Description of Lists. A list is an ordered set of (3-5)

expressions which are evaluated sequentially. The value of the evaluated

list is the ordered set of evaluated expressions and is of type list.

The declaration is not an expression and does not contribute to the value

of the list.

Justification of Lists. Arrays, trees, iteration lists, parameter

lists, strings, blocks and compound statements are ordered sets. The

inclusion of arbitrary (even infinite) lists in the kernel language to-

gether with the principle of involution yields a drastic reduction in the

number of primitive concepts.

Semantic Description of Values of Type List. A value of type list

is an ordered collection of values with any admixture of the value types.

Implementation of Lists. We discover in the literature two alterna-

tives for representing lists. The first, in LISP, demands a li3t structure

where all elements are explicitly linked in storage. In Euler and Burroughs

B5500 hardware we find that a value of type list is a descriptor which

delineates the extent and locates the list. The list elements are stored

in sequentially contiguous memory locations. The first comparison is in

the amount of storage required to represent a given list. In LISP we

must use memory for the linking information; in Euler we must use memory

for dynamic typing. We estimate that implicit linking saves a factor of

two in '.tnory. The second comparison is in ease of access. In LISP we

must explicitly trace the list structure to find an element near the end

of a list; in Euler we may access any element of any list directly via a

subscript. There is no reason to expect the implicit list structure

organization to be less efficient them conventional index registors for

array applications so long as descriptors do not have to be repeatedly

101

fetched from memory. Even with the repeated fetching, the B5500 is

able to "ubr.ume the extra core accesses under cover of the multiply

operation time so afl to be proportionately as fast as the 7090 for

matrix problems. Our third comparison is in ease of modification. In

LISP we must change a link to append or insert an element to a list where

in Euler we must copy the entire contiguous block. Implicit linking is

severely less efficient here. Fourth, we must consider storage rtclUM«

tion. In both systems the majority of time is spent in searching out

and identifying the valid list structure. In Euler we find that the

percentage of execution time spent in storage reclamation is rougnly tne

same as the percentage of storage occupied with valid list structure; we

have no figures on LISP. In any case we do not expect the systen.^ to be

much different in this respect.

We do not know which represents the most efficient solution; we

suspect that it is both problem dependent and hardware dependent. We

have chosen implicit linkings so as to have array capability without in-

troducing them into the language as a distinct form.

Semantic Description of Values of Type Set. A set differs fron

a list m two ways:

(1) A set cannot contain two equal values.

(2) Tne programmer cannot prescribe the order of r,he members of the

set. Certain operations are allowed on sets and not on lists.

Justification of Values of Type Set. The set operations of member-

ship, inclusion, equivalence, etc., reouire preorganization for efricient

implementation. We choose to sort the values of a set by a machine deter-

mined order to facilitate table look ups (binary searches), union and

intersection (merges), etc. The membership operation (for instance) takes

102

log-n operations in a sorted set and n/2 operations in an unsorted

set (on the average).

Syntax of Subscripts.

[<expression>]

Examples of Subscripts.

[1] [x-z] [{1,2,5)]

Semantic Description of Subscripts. We will distinguish between

the subscript expression (the expression in the syntax above), the sub-

script operator (the rtiult of applying certain standard transformations

to the subscript expression), the subscript operand (the object in the

kernel language to which the subscript operator is being applied) and

the subscripted expression (the final result achieved by applying the

subscript operator to the subscript operand). A subscript expression

has meaning if (l) it has type number or (2) it has type list and all its

members have type number. A subscripted expression has meaning if (l) the

subscript has meaning and (2) the subscript operand is one of the structured

types, string, list or set. If a subscripted expression does not have mean-

ing, it yields a value of type undefined.

Subscripts of Type Number. If the value of the subscript expression

is of type number, the value of the subscript operator is the nearest

(rounded up) integer.

Subscripts of Type List. If the value of the subscript expression

is of type list and each element of the list is of type number then the

subscript operator is the list of nearest integers (rounded up) corres-

ponding to the numbers in the subscript expression.

105

Justification of Subscripts. Various constructs in the kernel

language have the form of ordered sets. Numerical subscripts Will be

used to select elements from the ordered sets and list valued subscripts

will be used to select subsets from the ordered sets.

Examples of Subscripted Lists.

list subscript result

{10, 20, 30, ÜoHl] = 10

{10, 20, 50, Uo][minus 1] = ^0

{10, 20, 30, 40)[{2,lv}] = (20, tO]

{10, 20, 30, kO)ll to 3] = (10, 20, 30)

(10, (20, (30), k0]][2] = (20, (50), ^0)

(10, (20, (30), h0})[2][2] = (50}

Syntax of the Case Expression.

<case> ::= <case head>)

<case heacl> : := <case heacO , <expression>

<case begin> <declaration> |

<case begin> <expression>

<case begin> ::= [<expression>] (

Examples of the Case Expression.

[n] {1,2,5,5,7,11,15,17,191

[{x, minus 1)] { new a,

a <- "Invalid type for subscript operator",

a «- "Invalid type for subscript operand",

a «- "Subscript out of range",

out <- a ® cr

)
10t

:

Semantic Description of the Case Expression. [15] The case

expression has the form of an explicit list preceded by a subscript.

Upon execution the following occurs: (]) The subscript operator is

evaluated. (2) The list is entered. (3) Storage is allocated for

the local variables (if any). If the subscript operator is an integer-

then we have {h) If the value of the integer is zero or larger in magni-

tude than the number of expressions in the list, a value of type undefined

results. If the subscript operator is positive then it is used as an

index to select an expression counting from the front of the Jiit| if

it is negative it is used to select an expression counting from the rear

of the list. (5) The selected expression is evaluated and the value of

the case expression is the value of the selected expression. If the

subscript operator is of type list then (h) Each number in the list is

used sequentially to select an expression as done above for subscript

operators of type number. (5) The value of the case expression is the

list of values so computed.

Implementation of Case Expressions. The use of an index to select

an expression out of a list of expressions suggests that the machine code

itself should have the form of a list structure where tlM code for an

expression occupies exactly one memory location.

Justification of Case Expressions. The case expression represents

one of the more powerful sequence controlling features of the kernel

language. If the subscript operator is a number, it resembles the Algol

60 switch without the nuisance of labels. The list valued subscript

operator allows reordering and repetition of the expressions in a list.

105

I

• ■;

Syntax of Primaries.

<primary> ::= <primary >

<primary.> ::= <primary > [<expression>] | <primary2>

<primar,yp> ::= <constant> | (<expressiori>) | identifier <list> |

identifier | <list> | <case>

Examples of Primaries. i

3.0 (x-z) X X[2][a-2] Y{l,2,51 (1,2,5) [n]{l,2,5)

Semantic Description of Primaries. Parentheses allow the programmer

to reorder the evaluation of operators in the conventional manner. They

have no other meaning in the kernel language.

An identifier followed by a list signifies a procedure activation.

The list (of parameters) is evaluated and the name of the variable corres-

ponding to the identifier is computed. If the variable contains a value

of type process the process is activated, otherwise the value undefined

is returned. (See 5-12). (3-6)

If an identifier appears alone, the name of the variable corres-

ponding to the identifier is first computed. If that variable holds a

value of type process, the process is activated and the name of the

identifier is replaced with the value of the process. (See 3-ll).

Semantic Description of Subscripted Primaries. If the (3-7)

subscript operand has type name, it is replaced by the value of the named

variable. The effect of the subscript operand on types string and list

follows.

106

Semantic Description of Subscripted Strings. A value of type

string is an ordered set of characters. If the subscript operand is of

type string the following remarks apply: (l) If the subscript operator (3-8)

is an integer and this integer is positive and less than or equal to the

length of the string, the value of the subscripted expression is the

character selected by counting from the front of the string; if the integer

is negative and no larger, in magnitude, than the length of the string,

the character is selected by counting from the rear of the string; other-

wise the value undefined is returned. (2) If the subscript operator is

a list of integers then the result is a (sub) string selected by applying

each integer as a subscript operator in order of occurence.

Implementation of Strings. If we view a string as a packed read-

only data structure then the operation of forming a contiguous substring

can be accomplished by constructing a new descriptor to point into the

old string. An implication is that a scanning algorithm does not have to

move characters, only locate them.

Semantic Description of Subscripted Lists. A value of type list

is an ordered set of values. If the subscript operand is of type list

the following remarks apply: (l) If the subscript operator is an (5-9)

integer then the value returned is the name of the variable selected

according to the algorithm given in paragraph (5-8). (2) If the sub-

script operator is a list of integers then the result is the (sub) list

selected by applying each integer as a subscript operator in their order

of occurence in the subscript operator.

10?

Syntax of Prefix Operators. (5.10)

<prefix> ::= "~i I minus | type | abs | round I chop ! length i set

Semantic Description of Prefix Operators. A prefix operator is

a single valued partial function of one operand. The action of the operator

is defined when the function is given over the allowed range of the operand.

All of the above operators, except type, length and set, are numeric prefix

operators. Their behavior for numeric operand, is obvious; their behavior

for list valued operands is discussed presently.

Semantic Description of the Operator "type" . The range of

operands for type is the collection of all values. The function defined

by the operator gives an integer corresponding to the type of the operand.

We leave the actual integer to be implementation defined since it is

convenient to have more than one system type corresponding to a given

kernel language type. Normally we test for type with a construct like

if (type a) = (type " ") then ...

rather than attempting to remember the correspond ^nce between integers

and types.

oemantlc Description of the Operator "length". The operand of

length must have type set, list or string. The value of the function

defined by the operator is the number of elements in the structured

operand.

An application of the operator set is the only way to transform

a value of type list into a value of type set. The resulting value will

have no repeated elements and will have been reordered.

108

Syntax of Infix Operators.

<infix> ::=n|u|e|c|D|€|^| Index | ® | list | base |

V | A | < | < | = | ^ | > | > | max | mm | +

X I mod | "M t

Semantic Description of Infix Operators. An infix operator is a

single valued partial function of two (right and left) operands. The

action of the operator is defined when the function is given over the

allowed range of the operands.

Semantic Description of 0, U, ©, C, and D. The range of values

for both operands is the collection of all values of type set. Their

defining functions are, respectively, set intersection, union, difference,

inclusion and containment.

Semantic Description of ^ and j£ . The left operand ranges

over the collection of all values; the right operand must be of type set

or list. The value of the function defining * is true if a value

equal to the left operand is found in the right operand. The function

defining ^ is the complement of the above.

Justification of Set Operators. The concept of a set is a natural

data type for many algorithms. Its simplicity makes the set a natural

object for the kernel language.

Implementation of Set Operators. The elements of the set valued

operands of the above operators are sorted to facilitate the construction

of efficient algorithms for their execution (sort - merge, binary look up,

etc.)

109

-

Semantic Description of index. I'ndex is identical to € except

that the resulting value is the index within the sot of the value, If

found, and of type undefined otherwise.

Semantic Description of base. The operands of base must be both

integers. The result is a value of type string. The string is the legible

representation of the left operand to the base specified by the right

operand.

Semantic Description of list. The left operand of list must be a

number and the right may have any value. The left operand is rounded to

the nearest integer and the result is that many copies of the right

operand (thuf a value of type list).

Semantic Description of ®. The range of operands of ® is the

collection of values for which the types of the operands (left and right

respectively) are string, string; set, list; set, set; list, set; list,

list. In the first case the result is a string obtained by catenating

the right operand onto the tail of the left operand. Otherwise the re-

sult is a list containing the members of the left operand followed by

the members of the right operand.

Semantic Description of - and /, The operands of = and f

may range over all values. If the operands do not have the same type,

they are unequal. If they have an unstructured type, they are equal if

they are identical. If they have a structured type, they are equal if

they have the same length and the corresponding elements are equal.

Semantic Description of Numeric Infix operators. All of the

remaining operators are numeric infix operators. If both operands are

of type number, the function defining the operators is usually obvious.

110

We make the following commentn. The operators V and A (logical "or"

and logical "and") accept as operands only logical values (See 3-5). The

result of 3 -r t is the (real valued) quotient. If we wish the integer

qnotient, we write chop(s T t). s mod t is defined to be the function

s - t X chop(s ♦ t) for all numbers.

Syntax of Simp]e Expressions.

<simple expr> : := <simple expr >

<simple expr > ::= <primary> <infix> <simple expr > |

<preflx> <simple expr > |

<infix> / <simple expr > | <primary>

Examples of Simple Expressions.

3-2-1 a + b - c x d mod e -r f t g

""I (minus abs round chop a) = (b max c min d)

+ / 1 to n (1,2,3} - (2,5,*)

Semantic Description of Simp.l e Expressions. From the grammar above

we deduce that the operand of a prefix operator is the value of the

(largest possible) simple expression to its right. The operands of an

infix operator are the primary to its left and the (largest possible)

simple expression to its right. We further deduce that all operators

(excepting those reordered by parentheses) are evaluated right-to-left.

Justification of Right to Left. We have provided a fairly extensive

catalog of operators in the kernel language while leaving room for further

extensions. With so many operators it would be onfusing at best to

assign hierarchies to them. In search for a simple rule ordering the

evaluations, we are left with either left-to-right or right-to-left

111

order ([l5] p. 8). The normal (and only reasonable) interpretation of

prefix operators demands a right-to-left ordering among themselves. We

choose the same order for infix operators as a concession to consistency.

Semantic Description of List Valued Operands for Numeric Operators.

If a numeric prefix operator finds a list as operand, we will follow

Iverson ([l5] p. 13) in generalizing the operator to yield the list of

values obtained by applying the pref.x operator to the members of the

operand in order. If a numeric infix operator finds a value of type list.

and a value of type number as operands, the result is the list obtained

by applying the operator successively between the number and elements of

the list. If the operator finds two lists as operands, the result is the

list obtained by applying the operator between corresponding members of

the lists. The operation terminates on the shorter of the two lists.

More formally, let s and t be numbers and S and T be lists.

Then if 0 is a numeric prefix operator, the following are equivalent:

(See 3-15).

0 S for all v from S do 0v

If 0 is a numeric infix operator then the following are enuivalent:

s 0 T for all v from T do s 0 V

S0t for all v from S do v 0 t

S © I for all i from 1 to (length S) min (length T)

do S[i] © T[i] .

112

Semantic Description of Compression. If 0 Is any Infix operator

then the following are equivalent:

0 / T for all v from T do u <- u 0 v

The latter depends upon the Initial value of u for which we specify

the following:

•i
ffti

U, () ;

fli universe ;

o, fl ;

base, fi ;

V , 0 ;

A, i ;

<f S ~* r* 2^ >> a11 undefined ;

max , - oo ;

mln , oo ;

+ , 0

- i 0

X , 1

mod , 1 ;

T , 1 ;

t , fl .

113

Justification of Compression. Compression, as well as the other

generali7ations of the numeric operators in the paragraphs preceding,

is a concise way of expressing comraon programming tasks. Furthermore,

as pointed out by R. S. Barton, they provide a mnemonic notation for

ignoring the order of execution so that, if parallelism is available,

it can t-, utilized. For example, the inner product:

+ / u x v

of vectors of length n can be performed in log^n + 2 operation times

if n multipliers and n -r 2 adders are available.

Syntax of Step Lists.

<step list> ::= <simple expr> to <simple expr> I

<simple expr> by <simple expr> I

<simple expr> by <simple expr> to <simple expr> i

<simple expr> to <slmple expr> by <simple expr> I

<simple expr>

Ilk

Examples of Step Lists.

2 by minus 2 to minus 16 1 to n

x-z to X[n] by 2 1 by 1

Semantic Description of Step Lists. A step list is a list of values

of type number. The value of the first expression above is called the

initial value; the value following the t_o is called the limiting value;

the value following the b^ is called the step value. The evaluation of

the step list proceeds as follows:

(1) All the expressions are evaluated in the order of their

occurence in the program.

(2) If the step value is missing it is replaced by 1.

(5) If the limiting value is missing, it is replaced by a value

of type undefinedo

(h) If all the values thus computed are of type number, the step

list has for value all the numbers of the form (initial value) + (n) x

(step value) lying between (inclusive) the initial and limiting values

where n ranges over the integers from 0 to infinity. If the limiting

value is undefined the set is infinite, otherwise, it is undefined.

Syntax of Assignments.

<expression^> ::- <primary > «-<expression,>

Examples of Assignments.

a <-1, (if x = y then z[l] else z[2])<-7,

b «-1 to n, c[2][x-z] <- "ave." ,

c ♦- { new x, if (length b) = 3 then out «- "5" ,

out <- out ® cr, x ♦- out 1

115

Semantic Description of Assignments. The primary on the left

must have a value of type name. If it does, the value of the named

variable is replaced by the value of the expression on the right. The

value of the expression is also the value of the assignment.

Justification of Assignments. The assignment allows the saving of

temporary intermediate values. We also provide some flexibility in the

designated variable on the left of the arrow (i.e., subscripted or

unsubscripted identifiers and the parenthesized expressions). Both of

(if a = b then c else d) «- 3*

a «- @ c, a <- 3,

are meaningful, and, if a initially equals b, have the same effect.

In the first case the principle of deferment demands delaying the fetch

of the value of c until the end of the conditional expression at which

point we discover that it is the name that we want. In the second, we

delay until after return from the procedure. The latter case is exactly

the Algol 60 call-by-narae construct.

Syntax of Procedures.

<expression^>

<procedure>

<primary2>

:•- <procedure> <expression,>

:= identifier <list> i identifier

Examples of Procedures.

increase <- Q^) a <- a + 1 ,

increase <- Qj) {new a, a «- a + 1] ,

increase{(F) a) ,

factorial •- ©

[new n,

if n - 0 then 1 else n x factorial{n-l1

Hi]

116

Semantic Description of Procedure Definition. A procedure

definition is denoted by the mark MM followed by an expression called

the procedure expression. The execution of a procedure definition pro-

duces a value of type process. If the procedure expression is not an

explicit list (or an explicit list followed by subscripts) then it is

called a parameterless procedure.

Semantic Description of Parameterless Procedure Activation. (3-ll)

Whenever the name of a variable is computed, that variable is inspected

to determine whether or not it contains a value of type process. If it

does, the process is activated and the name of the variable is replaced

with the resulting value. If that value is again of type name, the test

is repeated, etc., until a value of some other type is returned. If, at

the time of procedure activation, all of the variables valid at the place

of procedure definition are defined, then the effect, and the resulting

value are the same as would be obtained by executing the procedure ex-

pression in the same environment at the place of definition.

Semantic Description of a Procedure with Parameters. (5-12)

If the procedure expression is an explicit list, then it has a (perhaps

null) list of identifiers local to the scope defined by the list. We

call the variables allocated to these identifiers the first, second,

third, etc., initializable variables of that procedure.

Semantic Description of the Activation of a Procedure with

Parameters. If the procedure activation is signified by an identifier

followed by an explicit list, we call the list the actual parameter list.

If the variable allocated to the identifier does not contain a value of

type process, a value of type undefined is returned. Otherwise the

117

i

activation is identica] to that for the parameterless procedure except

that the initial!zadle variables of the procedure are given the values of

the corresponding actual parameters.

tt
Justification of Values of Type Process. The ability to define

a process that can be activated upon demand is present in some form in

Algol 60 procedures, functions, switches and name parameters. We have

in the kernel language a single process defining construct. The value

of a process may be of any type and the value may depend upon where the

process is activated. (For instance, if a process is activated to the

left of a replacement arrow it may return a value of type name rather

than the actual value of the named variable.) Process recursion, the

programming analogue of mathematical induction, is frequently the most

natura] way of expressing an algorithm in the kernel language.

The second and third examples above show the kernel language

equivalent of Algol 60 name parameters. The local variable a is

initialized to the procedure to compute a, a non local variable.

Each cccurence of the identifier a in the list body causes the procedure

t
Note tnat since every access to the procedure identifier causes a

procedure activation, there is no equivalent to tne Algol 60 procedure

assignment statement. If the procedure has parameters it is necessarily

list-valued anless/ as in the factorial example, a subscript is ^sed to

select the desired value«

Values of type process are similiar to the quotations of Euler.

Tne difference is that Euler quotations behaved differently when passed

ac parameters and when stored in local variables. We have eliminated

the distinction.

118

-

to be activated. The first activation yields the name of the non local

a since it is called to the left of the assignment arrow; the second

yields the value. The result is that the non local a is increased by 1

Implementation of Primaries of Type Process. The necessity of

accessing a word to compute its address is a consequence of the general-

caH-by-name concept from Algol 60. The provision for a special fast-

access bit associated with the word is required for efficient implementation*

Syntax of While-Controlled Iterations.

<expression,> :

<while clause> :

<while> :

= <while clause> do <expression^>

* <while> <step list>

= while

Examples of While-Controlled Iterations.•

while in[l] ± " "il] do (a «-a ® in[{l)],

in «- in[2 to length in]

)

while xt2^a do x«-(x + a"J'x)-r2

Semantic Description of While-Controlled Iterations. A while-

controlled iteration consists of a while clause and a controlled expression.

The Burroughs B5500 has the special bit (called the flag bit) but it

can be examined by the hardware only by accessing the word. Thus even

in the assignment I

a «- a

three memory references are required.

119

1

The while clause is evaluated; if it has value true then the controlled

expression is evaluated and we return to re-evaluate the while clause;

if it has value false we terminate the iteration and the value of the

while-controlled iteration is the list of values of the controlled ex-

pression; if it has any other value, the iteration is terminated with a

value of type undefined.

Syntax of For-Controlled Iterations.

<expressionJ> ::= <for clause> do <expression:> |

<for clause> <while clause> ^2 <expression,'>

<for clause> ::= for all identifier from <step list>

<while clause> ::= <while> <step list>

<while> ::= while

Examples of For-Controlled Iterations.

for all I from 1 to n do S f- S + I t 3,

+ / for all I from 1 to n do I t 5,

for all t from table while looking do

if t - object then looking «- false else emit{0}

Semantic Description of For-Controlled Iterations. (5-15)

The for-controlled iteration provides for the execution of the controlled

expression of a fixed number of times or a fixed number of times with

the possibility of an early termination. The step list of the for clause

is evaluated once; if it is not list or set valued, the value of the

for-controlled expression is of type undefined. The scope of the iden-

tifier of the for clause is the controlled expression. The variable

allocated to the identifier assumes in order each value from the iteration

set and the controlled expression is executed. If there is a while clause

120

—■ ZZ?*.

and its value is not true before the execution of the controlled expres-

sion, the iteration is terminated.

The value of the for-controlled expression is the list of values

assumed by the controlled expression.

Syntax of Conditional Expressions.

<expression>

<expression >

<expressionp>

<expression,>

<if clause>

<truepart>

= <expression >

= <if clause> <expression > | <expressionp>

= <expression2>

- <if clause> <truepart> <expressionT>

= if <expressiori> then

= <expressionp> else

Examples of Conditional Expressions.

if x = y then if y ^ z then x «- y max z ,

if test{7] then (x <- 1, y *- 2] else x <- 3 ,

if if A C B then true else z j^ B then B ♦- {l

Semantic Description of Conditional Expressions. The first

form of conditional expression is an if clause followed by an expression.

The if clause is evaluated; if it has value true the expression is

evaluated and the vaLue obtained is the value of the conditional expres-

sion; otherwise the value of the conditional, expression is of type

undefined.

For the second form we evaluate the conditional expression; if it

is true we evaluate the truepart expression; if it is false we evaluate

the final expression; otherwise we create a value of type undefined.

121

• ••

:

I

Syntax of Programs.

<program> ::= h <expression> H

Semantic Description of a Program. The value of a program is the

value of the expression. Note that by the nature of the kernel language

(identification of Algol 60 blocks and values of type list) the value of

a program will be a list structure of the intermediate results.

Implementation of a Program. On account of the copious list

structure generated by a program, we must have some form of remote storage

and recall mechanism. The list structure of the program is well suited

for segmentation and overlay.

122

Mt^aMtB* • ■ -j«* "

BIBLIOGRAPHY

[l] R. S. Barton, "A new approach to the functional design of a digital

computer", Proc. WJCC (1961), p. 595.

[2] Noam Chomsky, Syntactic Structures, Mouton & Co. (196^).

[3] > "Formal properties of grammars". Handbook of Mathematical

Psychology, Vol. II, John Wiley & Sons (June 1963), pp. 325-^18.

[Ij.] Jay C. Early, "Generating a recognizer for a BNF grammar", Technical

report, Carnegie Institute of Technology (August 1965).

[5] Jürgen Eickel and Manfred Paul, "The parsing and ambiguity problem

for Chomsky-languages", Report 6^09, Computation Center, Mathematics

Institute, Technical High School, Munich (no date).

[6] Jürgen Eickel, "Generation of parsing algorithms for Chomsky type-2

languages". Report 6401, Computation Center, Mathematics Institute,

Technical High School, Munich.

[7] Robert W. Floyd, "Syntactic analysis and operator precedence",

J. ACM, vol. 10, no. 3 (July 1963), pp. 316-333.

[8] , "Bounded Context Syntactic Analysis", Comm. ACM vol. 7, no 2

(Feb. 196^), p. 62.

[9] , private communication (Jan. 1966).

[10] Philip Gilbert, "On the syntax of algorithmic languages",

J. ACM, vol. 13, no. 1 (June 1966), pp. 90-107.

[ll] Seymour Ginsburg and Joeseph Ullian, "Ambiguity in context free

languages", J. ACM, vol. 13, no. 1 (Jan. 1966), pp. 62-89.

[12] Sheila A. Greibach, "A new normal-form theorem for context free phrase

structure grammars", J. ACM, vol. 12, no. 1 (Jan. 1965), pp. U2-52.

[13] C.A.R. Hoare, "Case Expressions", Algol Bulletin 15 (Oct. I96U)

pp. 20-22.

[lh] IBM Systems Reference Library, PL/l: Language Specifications,

Form C28-6571 (no date).

123

■

[l5] Kenneth Iverson, A Programming Language, John Wiley & Sons (1962).

[16] Donald Knuth, "On the translation of languages from left to right",

Information and Control, vol. 8 (Dec. 1965)> p. 607.

[l?] F. E. J. Kruseman Aretz, "Algol 60 translation for everybody".

Elektronische Datenverarbeitung, vol. 6 (1961*), p. 253.

[18] Reino Kurki-Suonio, "On character set reduction". Technical report,

Carnegie Institute of Technology, (August 1965).

[19] W. C. McGee and H. E. Petersen, "Microprogram control for experimental

sciences", Proc. FJCC, (Sept. 1965), p. 77.

[20] W. M. McKeeman, "MUTANT, An Extendable Compiler on the Burroughs B5500",

(to be published).

[2l] Naur, et al, "Revised Report on the Algorithmic Language ALGOL 60",

Comm. ACM, vol. 6 (Jan. 1965), pp. 1-17.

[22] John Reynolds, "COGENT Programming Manual", Report 7022, Argonne

National Laboratory (March 1965).

[25] A. van Wijngaarden, "Recursive definition of syntax and semantics",

IFIP working conference (Sept. 196U).

[2k] , "Generalized Algol", Symbolic languages in data processing,

(Rome 1962), k09 pp.

[25] N. Wirth and H. Weber, "Euler: A generalization of Algol, and its

formal definition". Technical Report CS20, Computer Science Department,

Stanford University (April 1965) (also in part - Comm. ACM, vol. 9,

nos. 1 & 2 (Jan. 1966)).

[26] N. Wirth, "Find precedence functions", (Algorithm 265)

Comm. ACM, vol. 8, no. 10 (October 1965).

[27] N. Wirth and C.A.R. Hoare, "A contribution to the development

of ALGOL", Technical Report CS55, Computer Science Department,

Stanford University (Feb. 1966).

12h

"<♦«-*•*»

UNCLASSIFIED
-

StMiity Cl—iflMtioa
OOCUMINT CONTROL DATA • RAD

fgtmgm »i—in—MI •! Mil». *■» tt rtrtw« mt i^wjM mmtMfm mg» *• ■jgM ■*— ft« »»»mi ggg i« ti»»»ait)
I. OHIOINATINO ACTIVITY fCsq

Computer Science Department
Stanford University
Stanford, Calif. 9^305

I» «NOUP
ttMÜML

I. RIPONT TITLI

AN APPROACH TO COMPUTER LANGUAGE DESIGN

4. DUCRWIVI Noru (Typ* 3 mSA 3 B3SBS SB
Manuscript for Publication (Technical Report)

t. AUTHOIVS> CLM« KM*. Hmt i : MUal)

McKEEMAN, William M.

«. RIPORT DATI
August 31, 1966

• •. CONTRACT OR «RANT I

Nonr-^O?)
a RROJBCT NO.

NR-0^4-211

12k 27
■ a. ORICIMATOR't RBRORT NUMBBRftJ

csue

• ». OTNBRRfRORT NOW Mir •*«' Si7: Mal nar ta m»»t0tu4

none
10- AVAILABILITY/LIMITATION NOTICU

Releasable without limitations on dissemination

H. >TU It- •RONSORINO MILITARY ACTIVITY

Office of Naval Research Code ^32
Washington, D. C, 20360

It- ABSTRACT

A kernel programming language Includes those constructs

universally applicable to the problem of computer control. The

need for constructs outside the kernel leads to the concept of

an extendable compiler. We approach this problem by attempting

to simplify the methods of generating a compiler and by design-

ing a basic language upon which to build.

The form of a language is determined by its grammar. In

particular, we demand a context free grammar as the initial in-

put to a syntax preprocessor which produces syntactic analysis

tables for the extendable compiler. The methods are extensions

of the precedence grammars of Floyd and Wirth-Weber.

A formal mathematical description of a class of analysis

algorithms including the above is given and two new syntax pre-

processor algorithms are presented. Some theorems concerning the

behavior of the algorithms and the nature of the acceptable

grammars are given.
 (cont.)

DD .5811473 UNCLASSIFIED
Security CUssiflcatfoa

* -

liiifid

14.

Security Cla: if..ca:ior
tmmmmmmmmtmim**** ************ m

(J3U8

KKV WONOS

1. Compiler

2. Computer-language

5. Parsing

k. Context-free graamar.

5. Extendable compiler

LINK A
NOLI WT

UNKI
noLm WT

UNKC
IIOLI WT

INSTRUCTIONS
L ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee. Department of 0»
fenae activity or other orsanlzatlon (cotporaf mtthot) Issuing
the report.
3a. REPORT SECURTTY CLASSIFICATION: Enter the over*
all security clossifieation of the report. Indicate whether
"Restricted Data" is included. Marking la to be In accord-
ance with appropriate security regulatlona.
26. GROUP: Automatic downcrading la specified In DoD Di-
rective 5200.10 and Armed Forcea Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
iced.

3. REPORT TITLE: Enter the complete report title in all
capital lettera. Titles in nil casea should be unclassified.
If a meaningful title cennot be aelected without classifica-
tion, show title classification In all capitals in parenthesis
immediately following the title.
4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., Interim, progress, summary, annual, or final.
Give the Inclusive dates when a specific reporting period la
covered.
5. AUTKOR(S): Enter the nomo(s) of author(a) aa shown on
or in the report. Enter last name, first name, middle Initial.
If military, show rank and branch of service. The name of
the principal author in an absolute minimum requirement
& REPORT DATE: Enter tha date of the report as day,
month, year; or month, yecr. If more than one date appears
on the report, use date of publication.
7«. TOTAL NUMBER OF PAGES: The total page count
should follow normal pocination procedurea, Le., enter the
number of pages containing information.
7b. NUMBER OF REFERENCES Enter the total number of
references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.
86, 8c, b 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such aa project number,
subproject number, system numbers, tssk number, etc.
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offl-
dal report number by which the document will be Identified
and controlled by the originating activity. This number muat
be unique to this report.
9b. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by thm originaler
or by thm «peneorj, also enter this number<s).
10. AVAILABILITY/LIMITATION NOTICE« Enter any lim-
itationa on further dissemination of the report, other than thosej

Imposed by eecurity classification, uaing standard statements
such as:

(I)

(2)

(3)

"Qualified requestors may obtain coplea of this
report from DDC"
"Foreign announcement and diaaemination of thla
report by DOC is not authorized "
"U. S. Government agenclea may obtain copies of
thla report directly from DDC Other qualified DDC
users shall request through

(4) "U. & mltitsry agencies may obtain copies of thla
report directly fron DDC Other qualified uaera
shall request through

(S) "All distribution of this report is controlled. Qual-
ified DDC users shall request through

If the report haa been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate thla fact and enter the price, If known.

Use for additional «gplan» 1L SUPPLEMENTARY NOTES:
tory notes.
1Z SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay
Ing tor) the research and development. Include addreaa.
13. ABSTRACT: Enter an abstract giving a brief and factual
aummaiy of the document indicative of the report, even though
it may also appear elsewheie in the body of the technical re-
port. If additional apace is required, a 1 mtlnuation sheet shall
be attached.

It is highly desirable that the abstract of ciaaaifled reports
be unelsssified. Each paragraph of the abstract ahall end with
an indication of the military security clsssificstlon of the in-
formstion in the paragraph, represented as (TS), (S), (C), or (V).

There is no limitation en the length of the abatract. How-
ever, the suggested length is from ISO to 225 words.

14. KEY WORDS: Key words are technically meaningful Unas
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key worda muat be
aelected ao that no eecurity clessiflcatlon is required. Identi-
fiers, such aa equipment model designstion, trade name, mllitaiy
project code name, geographic location, may be used aa key
worda but will be followed by an indication of technical con-
text. The aasignment of links, rales, and welghte la optional.

DD .Mt 1473 (BACK) Unclassified
Security ClusificaUon

-*** ± - ■ . -7-7 r-

In language design, we attempt to carry the EULER develop-
ment by Wirth and Weber to a more concise and powerful form. We
advocate languages that are minimal and involuted. A minimal
language combines into a single construct any two conceptually
similar but notationally different constructs. An involuted
language avoids constructs that are,applicable only in local
context. In the resulting language we find such previously
diverse constructs as lists, parameter lists, blocks, compound
statements, for lists, and arrays to be identical. After com-
bining the features of the reduced EULER with some ideas from
Iverson and PL/I we find that our control over the flow of ex-
ecution within a program is sufficiently complete such that we
can discard the traditional label and go-to statement as
irrelevant.

■

As a final example of the kernel language, we present an
extendable compiler written in the kernel language itself.

Our conclusions are that the precedence grammar techniques
are quite efficient and useful. Further improvement could make
them substantially superior to other methods of compiler gen-
eration. We believe that the computing community would be better
served with a minimal common language which the user would
routinely extend than by any large general purpose language.
Finally we believe that the growing agreement on the constructs
common to all programming task should have a much more significant
effect upon machine design than is presently the case.

i

% •*> ■.

