CS48

O
O
-~
g’ AN APPROACH TO COMPUTER LANGUAGE DESIGN
& BY
g W. M. McKEEMAN

TECHNICAL REPORT NO. CS48
AUGUST 3I, 1966

CLEARINGHOUSE
FOR FEDERAL SCIENTIFIC AND
TECHNICAL INFORMATION

[Hardcopy | Microfiche

$4.0C ' s0,00 }'5/}39'0’)

/ ARGHIVE GOPY

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY
DDC>

mmmmnn N2 U ‘

@

S SEP 29 1966

e L d O
&

b e g

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

- 0
» @ e AR WL

AN APPROACH TO COMPUTER LANGUAGE DESIGN

BY
W. M. MCKEEMAN

TECHNICAL REPORT NO. CS48
AUGUST 31, 1966

PREPARED UNDER CONTRACT Nonr-225(37) (NR-044-211)
OFFICE OF NAVAL RESEARCH
Reproduction in Whole or in Part is Permitted for
any Purpose of the United States Govermnment

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

~)

ACKNOWLEDGMENTS

I am well aware that I, as the first student to enter the Computer
Science curriculum for the Ph.D. at Stanford, have received more than my
share of help and advice. I wish to express my gratitude to Professor
Nicklaus Wirth, upon whose work the major part of this paper is based.
Professor Wirth has been a patient and gentle critic as well as a constant
source of ideas. Professor George Forsythe, who first introduced me to the
intricacies of automatic computation, has been extremely generous with
his time. Without his counsél, inspiration, and tangible help, I could
not have succeeded at Stanford; my debt is immense.

To Professors John McCarthy, William Miller, and Joyce Friedman, for
their encouragement and their efforts in reading this thesis, und to my
fellow student Rajagopal Reddy who has steadily prodded and encouraged me
through the various stages of the Ph.D. program, sharing the tribulations
of our pioneer status, I wish to express my thauks.

Among the pleasures of studying at Stanford is the seemingly inex-
haustible stream of interesting people to meet with and talk to. I can
remember conversations directly applicable to this thesis with at least
the following friends: Robert Barton, Larry Breed, Ken Colby, Dave Dahm,
Horace Enea, Robert Floyd, Ken Iverson, Cleve Moler, Glen Oliver, John
Reynolds, Steve Russell andHarold van Zoeren; I am sure there are some
I have forgotten to list,

The Office of Naval Research, under contract Nonr-225(37) (NR-ok4-211),
the National Science Grant GP4053 and the Stanford University Computation
Center contributed significant financial support.

And a final note of appreciation for my wife _ whose patient
encouragement has been very important.

iii

TABLE OF CONTENTS

Section Page

l . mTRODUCI' ION L] . . L] . L] L] L] L] L] L] L] L] L] . L] L] L] . l
The Goals of Computer Language Design

Review of the Literature and Summary

2, COMPUTER LANGUAGE DETINITION . «. + « « ¢ o o o o o 7
Production Grammars
The Canonical Parse
The Parsing Function
Symbol Pair Parsing Functions
(2,1)(1,2) Parsing Functions

24 A KERNEL LANGUAGE: ¢« « ¢ ¢ ¢ « ¢ ¢ ¢ o o o s o o & 71
Principles of Design
Example Programs in the Kernel Language
Syntactic and Semantic Definition

BIBLImRAP}{Y L] . . . L] . L] . L] L] L] .‘ L] L . . L] L] L] . L L] L] [] L] 125

iv

- . " -

. . iy -t .
T - » &% e il Wov oo e ek g » X AT

npry ~ SRS g L ..uﬁuul

-

#

SECTION 1

INTRODUCTION

The Goals of Computer Language Design

The universe and its reflection in the‘ideas of man have wonderfully
complex structures. Our ability to comprehend this complexity and perceive
an underlying simplicity is intimately bound with our ability to symbolize
and communicate our experience. The scientist has been free to extend and
invent language whenever old forms became unvieldy or inadequate to ex-
press his ideas. His readers however have faced the double task of learning
his nev language and the new structures he described. There has therefore
arisen a natural control: a work of elaborate linguistic inventiveness and
meager results will not be widely read.

As the computer scientist represents and manipulates information
within a machine, he is simulating to some extent his own mental processes.
He must, if he is to make substantial progress, have linguistic constructs
capable of communicating arbitrarily complicated information structures
and processes to his machine. One might expect the balance between linguis-
tic elaboration and achieved results to be operable. Unfortunately, the
computer scientist, before he can cbtain his results, must successfully
teach his language to one particularly recalcitrant reader: the computer
itself. This teaching task, called compiler writing, has been formidable.

Consequently, the computing community has assembled, under the

banner of standarization, a considerable movement for the acceptance of

e = — —— . " ”
- - - .
- -“;::. . & gee ifin g WY o el - v =

-

PR

a few committee-defined languages for the statement of all computer
processes. The twin ideals of a common language for programmers and

the immediate interchangibility of programs among machines have largely
failed to materialize. The main reason for the failure is that program-
mers, like all scientists before them, have never been wholly satisfied
with their heritage of linguistic constructs. We hold that the demand for
a fixed standard programming language is the antithesis of a desire for

progress in computer science. That the major responsibility for computer

language design should rest with the language user will be our central

thene.
The reduction of compiler writing to a task that a language user
might reasonably wish to undertake is the major technical obstacle. We
are not alone in our desire to simplify compiler writing [4, 7, 17, 22, 25
and we must justify our particular approach in some detail.
We postulate the existence of a set of basic concepts common to all
computing tasks. A language which includes just the basic concepts we

will call a kernel language. The implementation of a compiler for a

kernel language ve Wwill call an extendable compiler. We do not expect

agreement on what constitutes the set of basic concepts or on the best
kernel language to represent them. We do hope that our kernel language
will be noncontroversial enough that the user will not be seriously
hampered in building a language to suit his needs.

Our first claim is that modifying an extendable compiler is easier
than building a compiler from first principles. The primary reason for
this is that the user of an extendable compiler can largely ignore the
details of such mechanisms as text scanning, syntactic analysis and pro-
gram loading while concentrating on translating his forms (syntax) into

2

for

cex

W

25]

his meaning (semantics). In many compiler systems the mechanisms for
syntactic and semantic analysis, scanning, buildiny tables and code
production are inextricably entwined, making a change to any one of them
hazardous, even for the expert. In our extendable compiler such functions
are cleanly separated, both conceptually and physically in the text of
the compiler program.

Our second claim invelves the syntactic description of the user's
language. We demand a phrase structure grammar (BNF, Backus-Naur Form,

Chomsky type II, context free, etc.) from which a syntax preprocessor

generates syntactic recognition tables for physical insertion into the

compiler. We can show that if the syntax preprocessor accepts the phrase
structure grammar without complaint, then the syntactic analyzer in the
compiler will always function correctly. In short, we can prevent even
the naive user from blundering into an ambiguous or otherwise ill-defined
grammar,

Finally, we claim that the kernel language is a powerful and concise

base upon which to build.

Review of the Literature and Summary

We assume (for the moment) the reader is familiar with the notion
of a context-free grammar. The central problem in writing a compiler for
a language described by a context-free grammar is the construction of an
algorithm which will efficiently discover the grammatical structure of
an arbitrary input text. And the basic step in a parsing algorithm is
the identification of a substring in the text which, when replaced by
application of a rewriting rule, brings us closer to goal of an analyzed

text.

A string is a candidate for rewriting if it is identical to the
right-hand side of a rewriting rule. If two or more candidates for
rewriting overlap, then at most one of the rewritings can lead to a

correct analysis. In Bounded Context Syntactic Analysis Floyd explores

the possibility of making the decision by examining a fixed number of
characters to the left and right of the candidate. A grammar for which

such a decision is always possible is called of bounded context. Floyd

shows that, if we chose the left and right bounds, we can determine if

a given grammar is of bounded context, for the chosen bounds. The
construction of a parsing algorithm then simply demands the construction
of tables for the relevant contexts.

We immediately discover two difficulties. First, straightforward
application of the ideas for a practical language results in tables of
impractical size. Floyd points out several simplifications based on
particular algorithms (such as a left-to-right scan of the text). But
the main difficulty is that the amount of table required for the hardest
decision is required for all decisions. Second, there are three decisions
involved: where is the left end of the candidate, where is the right end,
and what may we substitute for it. As might be expected, the bounds for
the individual decisions are usually small.r than those of Floyd, resulting
in a reduction of the table size.

In Syntactic Analysis and Operator Precedence Floyd presents a

particular algorithm for making the parsing decisions. The algorithm is
not properly a parsing algorithm since it skips some steps in the analysis
thus failing to give the complete structure of the text under consideration.

It is on the other hand more efficient for skipping them. The compiler

writer must in each case decide whether the analysis provided is suffi-
ciently complete. We also come immediately to face the problem that for
some purposes the class of grammars acceptable to the algorithm is too

restricted.

In Euler: A Generalization of Algol ég, and its Formal Definition,

Wirth and Weber modify Floyd's algorithm to remove some of the restirictive-
ness on the acceptable grammer and also expand it into a proper analysis
algorithm., No progress is made in reducing the size of the tables demanded
by expanding the context.

In this paper we explore the implications of splitting the parsing
decision into its thre: components. For context bounds of (1,1) the
allowed grammars turn out to be identical to those of Wirth and Weber.

For bounds of (2,1) for finding the left boundary, bounds of (1,2) for
finding the right boundary and (0,0) for choosing the result of the
rewriting we find a substantial improvement in the table size but they
are still impractically large.

Also in Ekuler ... we find that not only the form of the language
but also the sequence of parsing steps is significant in the design of
a compiler. The sequence of steps proceeding strictly from left to right

in the text is called the canonical parse. The canonical parse turns out to

te a natural vehicle for describing the sequence of execution in the

compiled program as well as for proving a given class of grammars unambiguous.
In language design we attempt two goals: to present a language

simpler and more powerful than Euler, and to make the defining mechanism

sufficiently simple so that the language user can change the language to

suit his needs.

. e) F . T 3 .
- dﬁm—h- ‘. e w "1~,‘ {: .‘-.' el 0, L = whae ', - T 0 v Qi

Our first action is to equate those constructs in other languages
that are conceptually similiar but take different forms (switches, proce-
dures and name parameters) (1lists, blocks, compound statements, parameter
lists, iteration lists). Our second step is to integrate the concept
of a list-valued constant into the language structure itself,

We describe the resulting language and compiler in some detail.

~ ARG ST ?_. e ———— - 'm -

SECTION 2

COMPUTER LANGUAGE DEFINITION

Production Grammars

As can be seen by examining Table 1, there is little unanimity
among authors regarding the formalisms for the description of production
grammars. While our notation adheres closely to the consensus, our
readers may wish to refer to the table for a more familiar terminology.

We define three primitive entities: (1) the vocabulary V, a finite

set of elements called symbols, (2) a null string of symbols, A and

(3) the operation of catenation between strings and symbols denoted by

Juxtaposition. In terms of the primitive entities we make the following

definitions:
v* = (x|x = A or (3y)(3Y), yey*, YEY, x=y¥)

is the set of all strings that can be formed from the elements of set V.
Note that we have used lower case latin letters to denote members of V¥
and upper case latin letters to denote members of V. This convention

is extremely useful and we will adhere to it henceforth, usually without

explicit reminder.

2]
. ¢ ¥ .3
~ o o
" 8 (/] 7] {‘z
$ 3 % 8 1 3
& 4 g &
s 4? .El s ("] .o 8 n
A g’ @ e @ S g
i & g 2 B RIS RS RS
g % g, E 38 5 %
(o] [T}] (7] o 8 g g 8
a B (9 E? a, 0o
E‘ [} 8 (o] ~ 8 . .. Y [N
. INR L. i ¢ » ¥-§ B
9 o o u] 5 o o .
g S B ok d g Y
S ae g B 3OS ER B
Author g 3 1 @ 13 A d o =4 o
(3]
Chomsky ' s Y. | %) e | - =
(5,6] i t :pt t
Eickel & Paul w2z B’@r) A 2= | = > H
(11] *
Ginsburg \' : o(v) | € - | = | =
[12] *
Greibach IuT X T I A .| = - p
(7] g A 3 1 A
Floyd v T |ND W | A sl &
[16]
Knuth IuT | s p | 1 fun)x| € sl al]| =)
(25] . .
Wirth & Weber ‘)L A ﬁb ‘\}djb"\,‘* A - N =)
McKeeman \') G VT VN V* A - - = |-» =] P
Table 1

A resume of notations used in recent papers on
production grammars.

*
The arrows of Eickel and Paul, like those of Gilbert [10] have the
sense of reduction as opposed to the more standard sense of production.

WA i . * LS W'Y

L -r, a production, is an ordered pair with both £, r € V¥, We call !
the left of the production, r the right of the production and read the
production as ! produces r.

P 1is a finite set of productions.

v, = (U | (3x)(3y)(3z) with yUz -» x in P} is the set of symbols on
the left in P.

Vg = (U | (3x)(3y)(3z) with x - yUz in P) is the set of symbols on
the right in P.

Vo=V, - V. is the set of terminal symbols.

T =R =L

EN =V - !& » the complement of !& » 1is the set of nonterminal symbols.
Y%= !L - Vo 1is the set of symbols appearing only on the left in productions.
We call !é the set of goal symbols. If f-r is in P, then for any

x and y we may write xly o xry and read xly directly produces xry,

or Xry directly reduces to x!y. We immediately note that for every

production, the left of the production directly produces the right of the
production. We regard each production as a rewriting rule allowing the
substitution of the right of the production for any occurrence of the left
of the production in any string. If a string is in !; then there can
be no applicable pré&duction and the process of production must halt,

hence the name terminal symbols is applied to !&.

One may also regard a production as a rewriting rule in the direction
opposite to the arrow. In that case the rule would be called a reduction.
In simplest terms, we would think of speaking as involving actions of
production and listening as involving actions of reduction. It will be
convenient to phrase our theorems in terms of productions while our

programs are capable only of reductions.

If y’xl—’xa"’xj"'"""xn“zf”n?.-l' then we write y=> 2
and read y produces z or =z reduces to y.
If we write y-»=> z We mean y=12 with n> 1,

The set DS(P) = (x| (36), G €, , 6 »=> x) 1is the set of strings

derivable in P.

E(E) 7 P§(2) n !:1'* is called the language defined by P. The members
of _I_:(_l_’_) are called the sentences of the language. Note that it is the
sentences that can be written as text and we need be concemed only with
the analysis of sentences.

Since a language is fully determined by the set of its productions P,
we will refer to the set of productions as the grammar P. We lose the

generality of being able to select a single member of -YG as the distin-

guished symbol, but the loss does not affect our considerations since we
have other reasons to restrict !C to a single unique member.
For example: Let
P=(GoX, XXX, XY} .
Then:

!’-’(G: X, Y},

v = (Y),

Yy = (G X],

Y, = (6},

v* = (A G, X, Y, GG, GX, GY, XG, +¢¢ etc.) ,

* [A} Y’ YY, m, oo etc.]]

I g

() = (Y, YY, YYY, ... ete. }
G o XXX - XX XXY = XYY - YYY
is an explicit demonstration of the fact that G produces the string

YYY (¢ => YYY). 16

- —— ey — e e

We now direct our attention to a subset of production grammars,

called phrase structure grammars, in which the form of the productions

t

is restricted to L - r.
We will also assume two additional restrictions:
(1) V; has a single element; we will designate it by G .
(2) (VX)(3t) such that X€Vy, t€VX and X=>t .
The alternative to restriction (1) is to distinguish one member
of !G explicitly in the description of the language. We reject this
for two reasons: PFirst, the productions describing the other members of
!G can be discarded since they can never be used in an analysis; Second,
we like to be able to test the productions for the existence of a unique
goal as a check against programmer errors.
Restriction (2) excludes grammars that give rise to derivations
that can never terminate in a sentence. It happens that condition (2)

is also required to prove the equivalence of simple precedence grammars

and symbol pair grammars (see page 27),

The Canonical Parse

If xYz -+xyz and 2z € Xg » then we call the ordered pair
(xYz, xyz) a caenonical parsing step (abbreviated CPS). Note that it
is the rightmost nonterminal symbol (RNS) that is replaced in a CPS.
If every step in s=> t 1is a CPS, we call the sequence of steps a

canonical parse. A CPS induces a partition (xyz) on the unreduced text.

fNote that we imply L € V and r € V¥ by our conventions on upper
and lower case.

11

Knuth calls the segment y the handle [16] which unfcrtunately conflicts
with Greibach's term handle [12]. Wirth and Weber [25] call y the
leftmost reducible substring which implies a relation that we do not wish

to pursue. We will give y the name canonically reducible string and

abbreviate it CRS. For a particular CPS, the CRS is well defined.

If we view the CPS in the sense of production, we see that zero
or more symbols are added to the terminal string to the right of the
rightmost nonterminal symbol. Therefore the length of the string =z of
terminal symbols is a monotonic function of the number of canonical
parsing steps. Now viewed as a reduction, we see that the canonical
parse inforces exactly the same order of productions as required by a
left-to-right scan of the sentence.

Because of its relation to left-to-right parsing algorithms, the
concept of a canonical parse has appeared in many forms. It was first
explicitly named in [5] and [25] independently.

A sentence which has two essentially different structures is

called ambiguous. Formally, a sentence is unambiguous if and only if it

has a unique canonical parse. Furthermore, a language containing an
ambiguous sentence is ambiguous; a grammar defining an ambiguous language
is ambiguous.

The reader should verify that the grammar, language and sentence

in the preceding example are formally ambiguous according to our definition.

12

The Parsing Function

The problem of parsing a text t reduces to finding, at each stage,

$ so that ti -oti_l is a CPS. If a sentence t is

unambiguous then we see immediately that each intermediate stage of its

the string ¢

derivation is unambiguous. In particular, we note that for all i, t §

is uniquely determined by ti-l alone.! We can theréfore infer the
existence of a uniquely valued parsing function P such that P(ti-l) =t g°
The following algorithm is the complete solution to the problem of par.sing

an unambiguous sentence.

START
I

t := input text; G := goal;
4

——
t := P(t) ;

false
- t=G 1
true

STOP

The assured existence of the function P is, however, of little

use in constructing a translator. The only way to compute its values in

general is to parse the sentence t and record the results in a table

(which rather begs the question).

TFor otherwise we would have two canonical parses of t .

15

It is surprising to find that for a restricted set of phrase
structure grammars, we can find economical ways of computing the parsing
function. To [7,25] have been previously published. A third way, and
some steps toward a fourth are presented below. Except that Floyd's algorith
skips some CPS, all are special cases of the following detailed breakdown
of a.n algorithm to compute the function P .

Pl, P2, and P> are functions of three string-valued variables
X, Yy and z. For the moment we will underline program variables to distin-
guish them from values with the same name but derived from the canonical
iaa.rse. If the catenation xyz is in DS(P) and L(P) is unambiguous
then there is a unique partition xyz = xXyz of the catenation of strings
in the program variables Xx, y and z and a unique production Y -y in P

such that G=> xYz - xyz 1is canonical. We give an Algol-like definition

of the functions in terms of the partition and producticn as follows:

P1(x,y,z): If G —»=> xyz then
(x =xy and y = A and x =:z) else undefined;
P2(x,y,2): If G »=> xyz then

(x =x and y=y and z = z) else undefined;

P3(x,y,z): If P2(x,y,z) then Y else undefined.

1k

thm

The general parsing algorithm,

START

2z := input text ;

G =

goal symbol ;

of 2 to tail of x

of X to head of Yy

<
move first symbol
false
’: l
-
move last symbol
false
e J
¥ = P3(x,¥,2)
X i=Xy; yoi= A
fa]ts% xyz =G ?
true
STOP
15

In terms of a syntactic analysis algorithm, we would assign the
following individual responsibilities to the functions:

Pl: read the input tape.,.

P2: locate the CRS y to be replaced.

P3: perform the reduction.

Due to the monotonicity of the length of 2z, we must decide before
each CPS whether to shorten z. At the termination of the loop on Pl,
we have assured ourselves that all of the CRS is on the tail of x. We
have located one boundary of y. The left boundary is found in the
loop on P2. At the termination of the larger loop, we substitute Y
for y, leaving the nonterminal symbol Y on the tail of x. If we have
reduced the entire string to the goal we are through. Otherwise, we return
to the loop on Pl.

A cycle through the functions Pl, P2, and P} is equivalent to
a single step on the function P. The string xyz is always identical,
at the end of the main cycle, to the value of P(&z_) The main reason
for introducing the function Pl, B2, and P35 is that their values can
be handled as reasonable computational entities. The parameters of the
functions are still unwieldy which reflects the fact that the function
values may depend upon an examination of the entire text.

Theorem. If the input text is a sentence and the grammar is unambiguous,
the general parsing algorithm will reduce the input text to the goal
symbol via the canonical parse.

Before attempting the proof we must describe our general method
for proving the correctness of algorithms. The basic mechanism of

inductive closure for program loops is described by Floyd [9] as one

16

technique of a verifying compiler. We state an initial set of relations
that we know to be true upon entry to the loop. We then show that they

are invariant with respect to execution of the loop, hence they are

always true. We finally deduce some relations that are true at the comple-
tion of the loop, either as a final result, or as a component in a proof
on a larger enclosing loop. In our deductions we must insure that all
artions are defined and all loops terminate. Relations true upon exit

from the algorithm are then correct descriptions of the final state of

the algorithm.

Proof'. If the grammar is ambiguous, the parsing functions are not
uniquely defined and it is meaningless to state the parsing algorithm.
Similiarly, if the input text is not a sentence, all of Pl, P2, and P5

are immediately undefined.

We need to show that we complete one CPS each time through the
outer loop and that the process terminates in a finite number of steps.
We cannot analyze the outer loop until we understand the inner loops.

We consider the loop on Pl first.

\
) G —»=> xyz hence (3x)(3y)(3z)(3Y) such that
xyz =xyz and xYz »xyz isa CPS; |x|< Jxy|; y=A

-

move first symbol of
z to tail of x

\ false
pl(f;? > 5] < Ixvl |z| >0

G »=> xyz hence ... etc. CP3;
X = XY; x:/\; Z = 2 'X'S |y| .

true

17

We assume the truth of the relations listed at the top of the loop
and derive those at the bottom. Since G —»=> xyz , Pl is defined.
If it is false, x # xy. But we have |x| < |xy| hence we derive
|x| < |xy] . From |y| =0 we get |xy| < |xy| < |xyz| hence
|xy| < |xyz|. But xyz = xyz thus |&] > O. There is, therefore, at
least one character in 2z and the action in the box is defined. Further-
more, all of the assumptions are unaffected by the action, hence are
invariants of the loop. The loop must terminate because 2z 1is of finite
length. When Pl becomes true, the conditions on exit from the loop are

consequences of the definition of Pl.

Now consider the loop on P2 with the result: of Pl as assumptions.

Y
G »=> xyz hence (3x)(3y) (32)(3Y) such that
Xyz = xyz and xYz = xyz is a CPS;

x=xy; y=A z.=2; |yl <lyl .

=

move last symbol of

X to head of Y

false

.
|

lyl <1yl x>0

G -=> xyz hence ... etc. ... CPS.

X=X; y=Yy; 2=2;

P2 is initially defined and will remain so. Since 2z 1is never
affected, we have z = z everywhere. If P2 is false we have either

x £#x or y#y. But either inequality implies the other, so we have both.

18

From |y| > |y| we derive |y| < |y|, hence |x| > 0. Therefore the
action in the box is defined. All the assumptions are preserved in the
loop. The loop must terminate because x 1is of finite length yielding the
stated relations as consequence of the definition of P2.‘

For the entire algorithm we can now write

,3(_' = A3 y:i=Aj; 2 := input text; G := goal symbol;

G »=> xyz hence (3x)(3y)(3z)(3Y) such.that

-
xyz = xyz and xYz -xyz 1is a CPS;
Y x| < lxyl 5 x=4h;
G-»=> x32 hence .., etc ... CPS;
Y X=Xj Y=Yy; 2Z=2;j

Y := P3(x ¥ 2) ;
X

= Xy; Y i=A;
G o »=> Xyz
hence ... CPS;
x| < Ixyl; Y i=mpr L N
Y=A;

false

STOP

19

By our assumptions, the input text is a sentence and we have
G -=> xyz and its ramifications. Since |x| = 0 initially,
|x| < |xy| is vacuously true. P3 is defined and has value Y.
XYz @ xyz 1is a CPS by definition hence we have new x = x¥, y = A,
and z =2z with G=> xyz. If G = xyz, we are done. Otherwise, we may
write again G -»=> xyz and define new x, y, and z. Since 2 € y_,*f ’
xy must contain all of the nonterminal symbols. The last symbol of the
new x is nonterminal, giving the required |x| < |xy|. We find our
assumptions invariant and also a consequence of the initial conditions.
The loop must terminate since there are a finite number of steps in a

canonical parse. QED.

20

Symbol Pair Parsing Functions

If we wish to find a reasonably efficient method for computing the
parsing functions, we must renounce the privilege of examining the entire
text at each stage. We will see that the effect of narrowing the view of
the parsing functions will be to reduce the class of grammars for which
we can build mechanical translators.

We first postulate that the parsing functions depend only upon a
few symbols in the region of the CRS. We will be able to verify our
postulate mechanically; if it is false then the grammar in question lies
cutside the range of that particular analysis.

Our approach will be to examine the grammar (mechanically, as it
is very tedious) to discover all the sequences of symbols that can possibly
ovecur in the region of the next CRS. For each possible sequence Qe will
record the required value of the parsing functions. When the resulting
functions are well defined the grammar is unambiguous and the syntactic
analysis algorithm in the compiier always functions correctly. The func-
tion values are inserted into the compiler in a condensed tabulated form.

Consider the three new functions Pl', P2', and P3' defined in
terms of Pl, P2, and P3.

If Pl(x,y,z) is defined, X 4is the last symbol of x and Z is
the first symbol of z, then we define P1'(X,2) to be identical to
P1(x,y,;z). Similiarly, P2'(X,Z) must be identical to P2(x,y,z)
when P2 i§ defined, X is the last symbol of x and .Z is the first
symbol of the catenation yz. P3'(y) must be identical to P3(x,y,z)
when P> is defined. We will call a grammar for which the functions

Pl', P2', and P3' are well defined & symbol pair grammar (or more

21

generally, as we will see, a (1,1X1,1) canonical parse grammar). We

will be able to show that under restrictions (1) and (2) (page 11),
symbol pair grammars are equivalent to simple precedence grammars [25].

The number of arguments for which Pl, P2, and P} are defined is
in general, infinite, On the other hand, if NSY is the number of symbols
in V, P1l' -nd P2' need be defined for at most NSY squared possible
arguments. P3' is defined only when y is the right part of a production
and thus also has a finite number of possible arguments. It is immediately
clear that we must apply a new restriction in order to make P3' well
defined:

Restriction (3): No two productions may have equal right parts.

We may, as has been pointed out to the author by N. Wirth, 1lift restriction
(3) if we have any way of distinguishing equal right parts. A particular
case in point is the Algol 60 <identifier> which we might wish to reduce

to <array identifier>, or to <variable>, etc., where the decision can be
made due to other non-grammatical information. We will call the number of
productions, (and, under restriction (3), the number of CRS) NPR.

We see that the boundaries between x and y and between y and 2z
in the general parsing algorithm always lie immediately to the left of,
witihin, or immediately to the right of the next CRS. The parameters X
and Z of Pl' and P2' always lie on opéosite sides of one of the
boundaries; the values of Pl' and P2' depend upon where the boundaries
lie with respect to the CRS. We will be able to compute the position of

the boundaries with the help of the three following set definitions:

ee

LS T8
- - . e ~ =

TS(X), the set of tail symbols of X, is given by
(vlay), x-= 1) .

HS(X), the set of head symbols of X is given by

(xl(zy), x-=> vy} .

HST(X), the set of terminal head symbols is given by

(#8(X) U (X)) n ¥,
Note that if X is terminal, the first two sets are null but the third
is not.

When X is a tail symbol of the rightmost symbol in a CRS and Z
is a head symbol of anything that might follow that CRS in a sentence,
P1'(X,2) must be true and never otherwise. Similiarly, whenever X 1lies
within a CRS and Z 1is a head symbol of the next symbol needed toward
the completion of that CRS, P1'(X,Z) must be false so that the needed

symbol is moved onto x. In terms of a production:

W - ulVv ,
we cannot start building V if U has not yet been fully formed. Since
we have narrowed our view to one symbol on either side of the boundary,
we must never move any symbol in the head of V from z to x if the
last symbol of x is a tail symbol of U. If U has been formed and
is the last symbol of x, we must move any head symbol of V onto x
to start building toward V and finally uUVv., We may very well find
conflicting demands, a symbcl that must be moved on account of one pro-
duction and must not be moved on account of another production. Conflicts
are common in practice and constitute a serious nuisance. The compiler
writer can usually modify his grammar in a trivial way to remove the

conflict. A more general solution would be to extend the view of the

parsing functions, an approach which is discussed later in this section.

23

The function of the loop on P2' is to march down across a given
CRS and locate its left boundary. 1In terms of the sample production, it
is clear that P2'(U,V) must be false for every pair U,V that are
contiguous within a CRS. P2'(X,Z) must be true whenever we cross the
left boundary of a CRS--a condition that is true when X 1lies within a
CRS and Z = a head symbol of the next item to be formed within that

CRS. We can summarize these relations with a mnemonic table:

W - ulVv
Pl'(U,HST(V)) = false Pl'(TS(U),HST(V)) = true
P2'(U,V) = false P2 (U,HS(V)) = true

P3'(ulvv) = W

We need only consider terminal symbols for Pl' since we know that

z contains only terminal symbols. We are also implicitly assuming some

strings to be non-empty. We avoid this last problem by adding a production

leading to the goal symbol,

G'=> kGH, where 4 and - are end-of-file symbols
that we may use to initialize x and append to 2z. As modified the

parsing algorithm becomes:

2k

- 1A
it ; T ——

The Symbol Pair Parsing Algorithm

START
Xi= ;3 y:i=A; 2z:= input text 4 ; G := goal symbol ;
X := last symbol of Xx ;
Z := first symbol of 2z ;
move first symbol
f‘a]ie_’___ of z to tail of x
true
'E := last symbol of Xx ;
Z i= first symbol of yz ; i

false move last symbol
P

of x to head of y

false

STOP

25

We state some consequences of the definition of symbol pair grammars.
Theorem. If the symbol pair parsing algorithm terminates normally, it

has produced the canonical parse for the input text.

Proof. The only transformation allowed on the text is the substitution
of the "leftpart of a production for the rightpart, thus it is immediately
obvious that if the algorithm functions at all, it produces a parse.

After each substitution we see that the newly formed reduced symbol is the

rightmost nonterminal symbol in the text, hence that step was a CPS. QED.

Theorem. A symbol pair grammar is unambiguous. ([25] p. 26).

Proof. Assume the contrary. Then there is a sentence for which there
exist two canonical parses. We first show that the existence of two
different overlapping CRS implies a conflict in the parsing functions.
Assume that our text is

xLlL2 oo .Lleme .o .MmR]_Rz. . .an
and both of L M-n and M

of k or n> 0.

l"'Rn are CRS with m> 0, and one

We treat the case k > 0 in detail. From the fact that Ll"’Mm
is a CRS we immediately derive P:'L(Lk, HST(M.l)) = false and

py(L,, M) = false.

(We substitute the set as an argument of P]'_ meaning the relation is
true for all members of that set). Now perform the rightmost reduction

and our text becomes

xLlLe...LkMz
where M was the leftpart of the production. Either Lk and M are

26

next to each other in a production or further reduction brings us to the
text

x'E'Mz
where L' and M' are next to each other in a production,

! f

In the first case we have P2'(Lk,Ml) = true and in the second,
Pi(L,, HS;(M')) = true. Either implies a conflict since M, € HS(M')
and HST is never empty.

The situation is entirely similiar for n > 0. Thus we find our
only choice during reduction is which of several disjoint CRS to pick.

Let us assume that we pick other than the leftmost, substituting for it
the nonterminal symbol in the leftpart of its production. There is a
CRS to the left which must always be disjoint from all other CRS, hence
will eventually be reduced to its leftpart. But such a step is not a
CPS because we have already formed a nonterminal symbol to its right.

In order to form the canonical parse, we must always pick the leftmost
CRS and it is unique, thus the canonical parse is unique and the grammar
is unambiguous.

We will now define the simple precedence grammars of Wirth and Weber
and show their equivalence, under restriction (2), to symbol pair grammars.
We define three relations, < , =, » , between symbol pairs as follows:

For every production of the form W - ulUVv

U=V,

Z € HS(V) implies U< Z

X € TS(U) implies X » V

X € TS(U) and Z € HS(V) imply X > Z.

e

If for each pair of symbols in V at most one of the above relations

holds, the grammar is a simple precedence grammar.

Theorem. If P 1is a simple precedence grammar, then P is a symbol
pair grammar. If P is a symbol pair grammar and restriction (2) holds,
then P is a precedence grammar. We immediately exhibit a symbol pair
grammar that violates restriction (2) and thus fails to be a simple

precedence grammar,

2 = [G‘.AB, A-.x, A"m, B_’C, C"’CY} .
The reader may find it instructive to build the six by six matrix of
precedence relations implied by the definition and find the two conflicts,

one of which is X < C and X > C.

Proof. We show that if P is not a simple precedence grammar then it
is not a symbol pair grammar and the converse.
Assume that P 1is not a simple precedence grammar. Then there

exist at least two symbols related by at least two of the three relations

<¢ , =, © , We treat each case separately.
(a). U=V implies (3W)(31)(3v) such that W - ulvv.
(b). U< V implies (3W)(3u)(3S)(3v) such that W — uUSv
and V € HS(S).
(c). U> V implies (3W)(3u)(3R)(3v) such that W -» uRVv
with U € TS(R), or
(3W)(3u)(3R)(38)(3v) such that

W o uRSv with U € TS(R) and V € HS(S) .

28

From the existence cf a relation between two symbols we have been
able to infer the existence of the production from which the relation

was derived. Now from the productions we can derive some values for

the functions Pl' and P2',

(a) implies P2'(U,v) is false and (VX), X € HST(V)
gives P1'(U,X) is false.

(b) implies B2'(U,V) 1is true and (VX), X € HST(S)
gives P1'(U,X) is false, Also HST(V) C HST(S).

(¢) implies (VX) X € HST(V) gives P1'(U,X) = true since

U € TS(R) and HST(V) C asT(s).

On account of restriction (2), we see that HS, is always nonempty.

i 4
Therefore if any two of (a), (b} or (c) hold simultaneously, we have a

conflict: in P1' or P2'; hence P 1is not a symbol pair grammar.

Converse. Assume that P is not a symbol pair grammar. Then there exist

symbols U and V for which either Pl' or P2' 1is double valued.

(a). P1'(U,v) is true implies (3W)(3u)(3R)(38)(3v)
such that W - uRSv with U€ TS(R) and V€ HST(S).
(e). P1'(U,V) 1is false implies (3W)(3u)(38)(3v)
such that W - uUSv with V€ HST(S).
Now V€ usT(s) implies V€ H3(S8) or V=8, thus (e) implies
UsV or U<V and (g) implies U V, conflict.
(f). P2'(U,V) is true implies (3W)(3u)(38)(3v)
such that W - uUSv with V € HS(S).
(g). P2'(U,v) is false implies (3W)(3u)(3v)
such that W - ulVv,

But (g) implies U =V and (f) implies U< V. Conflict, QED.

29

In terms of the general parsing algorithm, the precedence relations
can be thought of as a thre~ valued function P12'(X,2) which is used
for both analysis loops. Replacing Pl', it is false if it has value
< or = and true if > . Replacing P2', it is false if = and
true otherwise. ([25] p. 20). It is surprising to find that even though
the definiug matrix for Pl2' is twice as dense as corresponding matrices
.for Pl' and P2' and also contains spurious relations due to the over-
restrictive fourth defining rule for simple precedence grammars, that
no extra conflicts are introduced.

In either case, the matrices defining the parsing functions turn
out to be rather sparse, and rather large. In the process of building
the parsing functions, we tabulate the symbols of V, and manipulate
instead the integer corresponding to their symbol table location. As
suggested by Floyd ([7] p. 323) we can frequently find functions f1 and
gl such that if P1'(U,V) is true, f1(U)> gl(V) and if F1'(U,V) is
false, f1(u' - g1(v).

We can, of course, do the same for P2'. The advantage accrues in
requiring only U4 NSY memory locations for the tables defining the func-
tions fl, gl, f2, and g2 instead of 2 NSY2 locations required for
the matrices explicitly defining Pl' and P2'. This is somewhat offset
by the fact that the Boolean ratrices defining Pl' and P2' could be
packed in digital memory. At present, all syntax checking is done by the
function F3' and the only error indication is that the CRS found is
not i1n the production table. If we retained the functions Pl' and P2’
including the undefined values, we wo.uld have an additional (redundant)

method of error checking.

30

Let P be an arbitrary Boolean matrix (values O and 1). For

all X and Y, define

£(X) = N)? 2(U-Dpiy,v), gy) = 2% .
Y=1
Then P(X,Y) =1 if and only if (f£(X) mod g(Y)) > g(Y)/2 . Thus we
can state that a relation always exists with which we can record the
content of a Boolean matrix P in two linear arrays. The relations "<"
and ™" are adequate in practice.

We present the symbol pair syntax preprocessor in two forms. The
first is written in the kernel language presented in Section 5, the
second is the listing of the Burroughs B5500 Algol program actually
used to generate tables for the extendable compiler of Section 4. We
find it informative to compare the programs for conciseness and readability.
While the two programs accomplish essentially the same actions, the kernel
language version is approximately one half as long as the Algol version.

A detailed inspection of the program text reveals that the major savings
are in implicit table lookups (€, ¢, EEQEE) and the generalized for
loop. Tn particular, there are 26 occurences of the symbol for in the
kernel language version while the Algol version contains 35. Further-
more, we find ten labels in the Algol version of which perhaps one half
are essential and none of which contribute to the reader's ability to
under<tand the program.

Since the kernel language is discussed in detail in Section 3, we
will say nothing further about it here. Burroughs B5500 Algol is in most
respects exactly Algol 60. The input and output conventions are relatively
standard except for the following features:

31

(l) On line 7 of the program we see a file declaration for the
card punch. Its function, setting aside buffer areas for the card
punch, is not important to an understanding of the program.

(2) Three lines below we find a WRITE statement in the form of
a procedure call. The first parameter to WRITE is a format which is
indicated to the Algol compiler by enclosing the format in the brackets
< and >. All the remaining parsmeters are values to be written.

In the middle of the third page we see two STREAM procedures. They
are an interface with the character mode machine instructions of the
B5500 used to set and interrogate two-bit fields within the 48 bit B5500
word. Since we may have upwards of 100 symbols and have two matrices
with that number squared of elements, packing the values is unavoicdable
in Stanford's 16 thousand word B5500 memory. Packing would be somewhat
more convenient in the kernel language since we can use subscripts to
access bit strings directly.

Finally, we use the machine clock to obtain execution time infor-
mation for the user. One of our objectives is the accumulation of precise
timing information for the behavior of the preprocessor as a function of
the number of productions and number of symbols. Preliminary data gives
the surprising conclusion that execution time is a linear function of
the number of productions (about 2 seconds per production).

We now give a narrative of the kernel language version of the
program. Our first action is to name all the identifiers local to the
main block and initialize P to the null set. We examine the first
character from the input medium and continue to read productions until

an end-of-file symbol is encountered. Our productions are character

32

strings whose length is a multiple of 12, The firsi 12 characters are

the leftpart of the production and the remaining fields are the symbols

of the rightpart. A carriage return delimits the production. Internally,
& production is an ordered set of strings, each element representing one
symbol in the production. We make special provision (if (length t)# 0
then ...) for blank lines which can be used to increase the readability of
the production tables. We also print the productions to supply the user
with a record of his input.

If the leftpart of two successive productions is the same, we
allow the user to substitute a field of twelve blanks for the second
leftpart, again to increase readability. At the completion of input we
immediately repair the omission.

Then, in three lines, we use the generalized for loop, set union
and set difference to build all the symbol tables that we will need.

Four more lines of program records them on the output medium.

After excluding the possibilities of empty and repeated rightparts,
it becomes advantageous to replace the production table with a new table
"PR" of identical format except that its elements are the indices of the
production symbols in the vocabulary V. We then complete our grammar
checks by excluding the psésibility of a grammar with nonterminating
phrases (restriction 2).

We define procedures to compute head and tail symbols. Note that
we recompute the head and tail symbols repeatedly within the analysis
loop. In the processor for the (2,1)(1,2) grammars we adopt a suggestion
of N. Wirth to compute an "occurence" matrix which need not be re-evaluated.

The latter is probably a superior approach.

55

We then initialize the matrices Pl and P2 to NSY squareil
values undefined, and proceed to evaluate the functions P1' and P2'
according to the directions of the theory. For every pair of adjacent
symbols in the grammar (j and k in the program) we evaluate the tail
and head symbols. We record P2'(j,k) true and all of P2'(j,HS(k)) false.
Then we modify heads to become the set H‘ST and evaluate Pl' in the
same manner.

Our final task is the computation of Floyd's linearization functions
f and g. Our algorithm is modeled on that of N. Wirth [26] but is
simpler since our matrices are two valued instead of three valued.
Our algorithm proceeds to satisfy the requirements of the decision function
starting in the upper left corner of its defining matrix. We add a row
to the satisfied area (null to begin with) and call uprow to assure that
(1) f is large enough to satisfy all the requirements given by the value
false and (2) g is large enough to satisfy all the requirements given
oy the value true. If we must change g we call upcol to readjust that
entire column.

It is possible to have functions Pl' and P2' but still not have
a linearization for the relation pair < and >. At any given stage of the
operation of the algorithm above, we know that the submatrix in the upper
left corner has been correctly linearized. Thus if we are going to fail,
the failure must involve one of the last relations added to consideration.
We can check within the adjusting procedures to see that we never return
to adjust one of the last relations added. If we do, we have failed and
print a diagnostic error trace indicating the exact reason for that

particular failure.

b

' Kernel language version of (1,1)(1,1) syntax preprocessor '
{ new J k k1 PPRNPR VNSY VL VR VI VN VG P1 P2 f g t heads tails
fail beenatrowk beenatcolk HS TS upcol uprow change,
P« (), ' the null set of productions '
while in[1] # eof do
(t « (), ' the input loop, build a production '
while in[1] £ er do
{t <t ®(in[1 to 12] }, ' fixed field, 12 characters '
in « in[13 to length in]
),
in « in[2 to length in],
if (length t) # O then P « P & (t), ' add another production '
out « out & (6/t) ® cr ' print the production '
}»
NPR « length P, VL « VR « set (]},
for all i from 1 to NPR do ‘'replace omitted left parts'
(it plil[2]) =" " then P[i](1] « P{i-1][1]),
for all t from P do i
(VL « VLU (t[1]}, VR« VR U t[2 to length t]},
Ve«VLUVR, WTe«VRe VL, VNe&Ve VI, VG «VL e VR,
NSY « length V,
out « out & (if (length VG) # 1 then "no " else "") @
"Unique leftmost symbol: " & (®/VG) ® cr &
"Terminal symbols: " & (®/VT) & cr &
"Non terminal symbols: " ® (®/VN) & cr,
for all t from P do (if (length t) = 1 then
out « out @ t[1] ® " has an empty right part" @ cr),
for all i from 1 to NPR do for all j from i+l to NPR do
(if P[i][2 to @] = P[J][2 to o] then
out « out ® "Productions " ® cr &
(o/P[i]) & " and" & cr & (8/P[j]) ® cr @
"have equal right parts" @ cr),
PR « P, 'convert productions strings to symbol table location'
for all i from 1 to NPR do for all j from 1 to length P(i] do
PRIiJ[3) « P[1][j] index V,

35

' The final grammar check--for nonterminating phrases'
for all i1 from 1 to NPR do P[1i] « P(1] e VT,
change « true
while change do 'now try to collapse grammar'
(change « false,
for all t from P do (if (length t) = 1 then
(for all i from 1 to NPR do
for all J from 2 to length P(i] do
(it P(1]{3] = t(1] then
Pli] « P[1] o (t([1])),
P« P o (t), change « true
))
),
if P # () then out « out ® "grammar includes a
non terminating phrase" & (0/6/P)écr,
HS « @
{ new s,
for all t from PR do
(if t[1] = s then if t[2] £ heads then
(head « heads ® (t[2]}, HS(t[2]) })
)y
TS &« @
{ new s,
for all t from PR do
(1f t[1] = s then if t[-1] £ tails then
{ tails « tails ® (t(-1]}, TS(t[-1]) })
), . .
Pl « P2 « NSY 1ist (NSY 1ist @)
for all t from PR do for all i from 2 to (length t) - 1 do
(§ «tli]), k « t[i+1l], heads « tails « (),
TS(3), HS(k],
if P2[j){k] = @ then
(P2[3)[k] 1,
for all h from heads do

36

O . ’ -

}s

if P2[j1{h] = @ then P2[j)[k]) « O else
(if P2[3][h] = 1 then out « out @
"Conflict, P2(" @ V[(j)l & "]}[" @ v[h] @ "]" 0 cr),
) else (if P2[j}{k] = O then out « out @
"Conflict, P2[" & V[j] & "]1(" & V[k] & "]" @ cr),
if V[k] € VI then heads « (k}, 'Now HST in heads'
for all h from heads do (if V[k] € VT then
(if P1{j](h] = R then P1[j}(h] « 1 else
(if P1[j}[n) = O then out < out @
"Conflict, P1[" ® V[j] & "][" ® V[h] ® "]" @ cr),
for all g from tails do if P1{g)(h] = @ then P1lg][h] « O else
(if Pi{gl(n] = 1 then out « out @
"Conflict, P1[" @ V[g] & "](" & V[n] & "]" & cr),

if beenatrowk A i = k then fail « true,

beenatrowk « beenatrowk v i =k,

for all j from 1 to kl do

(if £{1) < glJj] then if plil[j] = O then fli] «gl3] + 1),
for all j from 1 to kl do

(if 7 fail then if £[1] > g[j] then if p[1]1[Jj] = 1 then

upcol(J, @p])»

if fail then out = out ® "row=" 0 V(1] @ or

if beenatcolk A j = k then fail « true,

beenatcolk « beenatcolk v J = k,

for all i from 1 to k do

(1f £[1] > gl3] then if p[1i)[4] = 1 then gl3] « fli]),
for all i from 1 to k do

(if 7 fail then if f[i] < glj] then if p(1](J] = O then

uprow(i: @P]))

if fail then out « out ® "col=" & V[j] ® cr

W

fall « false, k1l « O
f « g «NSY 1list O, 'Allocate storage to f and g'
for all k from 1 to NSY do if 7 fail then
(beenatrowk « false, flk] «glk] «1,
uprow(k, @ P2),
kl « k, beenatcolk « beenatrowk « false,
upcol(k, @ P2)
),
out « out ® "Linearized functions for P2:" @ cr @
(for all i from 1 to NSY do (i base 10) ® tab @ V[i] @
(£{1] vase 10) ® tab ® (g[1] vase 10) @ cr),
fail « false, kl « O
for all k from 1 to NSY do if ™ fail then
(beenatrowk « false, flk] « glk] « 1,
uprow(k, @ Pl1),
kl « k, beenatcolk « beenatrowk « false,
upcol(k, () P1)
),
out « out @ "Linearized functions for P1:" @ cr @
(for all 1 from 1 to NSY do (i base 10) © tab ® V[i] o
(£[1) vbase 10) ® tab @ (gli] base 10) @ cr)
) 'end of program'

58

The Algol version follows the kernel language version closely. We
have taken especial care to minimize conflict in memory use in the Algol
version. We provide three globals quantities, MAXNPR, MAXNSY, and MAXLPR
which determine the size of the tables in the program. Within the system
definition block (see the following diagram) we define the global arrays.
Our first action block is A, where the data cards are read and the various
tables built. In block B we check that the tables represent a grammar
according to the restrictions of the theory. In block Cl the recognition

functions are computed and in C2 the linearization is completed.

Block structure of the symbol pair analysis program

Outer block - system definition

Global quantities

Block A,
grammar input

Block B,
grammar checks

Block C

Block C1
Compute
functions
P1' and P2

Block C2
Compute
functions

fl, gl, f2, g2

59

PR = == e gy = =

BEGIN COMMENT SYNTAX PRICESSCR, We Mo MCKEEMAN CCT, 19653

INTEGER MAXNSYS CCHMMENT MAX NUMBER QF SYMBOLSS
INTEGER MAXNPR} CCMMENT MAX NUMBER OF PRODUCTIONS)
INTEGER MAXLPR} CCMMENT MAX LENGTH OF A PROOUCTIOMN)
INTEGER ELTHER» YES» NO» LE» GT3

INTEGER T1» OV CCMMENT TIMING INFORMATION}

FILE QUT ¢P 0(2,10)}

PRCCEDURE 1IMER)

REGIN INTEGER T3 T ¢ TIME(1))
ARITECS"TIME 3"s F742)% TUTAL ELAPSED 3 ") F7.25 ™ MINe">,
(1=0T7)/73¢00,» (T=11)73600)}
0T ¢ 1)

END TIMER)

PAXNSY ¢ 30C3 MAXWPR ¢ 3003 VAXLPR ¢ 5)
EITHER ¢ U3 YES ¢ 1} NO ¢ 23 L€ ¢ 13 GT ¢ 2}
01T ¢ V1 ¢ TIMECL)S

REGIN COMYENT SET UP GLUYAL TARLESS
INTEGER ARKRAY VO» VILQIMAXNSY)} COMMENT 12 SIGs CHARSS
INTEGER ARRAY PRUUSMAXNPR,OIMAXLPRIICOMMENT PRODUCTIQNS)
BO0LEAN ARRAY UNKIGHI[OIMAXASY)S
INTEGER NPKJ CUMMEN) ACTUAL NUMBER OF PRODUCTIONS READS
INTEGER NSYN, NSYJ} CUMMENT ACTUAL NUMBER OF SYMBUOLS READ)

BEGIN CUMMENT BLUCK A) COMMENT CARD INPUT BLOCK)
INTEGER I» J» K» L}
LAREL JANPUTLUUP» tUF» FOUULND)
INTEGER ARRAY PQs» PILQSMAXNPRY QSMAXLPR}}
INTEGER ARKAY MTHLOSMAXNSY)S COMMENT MASTER TABLES
INTEGER ARRAY PRIo[081022)3 CCMMENT PRODUCTION TABLE)
WRETECS"PRUDUCIIUNSE™Z/2))
NPR ¢ 03
INPUTLOOPS 1
REAU(<)1Z2A6>» FUR R ¢ O STEP § UNTIL MAXLPR DO

(PCINPR+I» R)o PLIINPR41, KIIXCEOQF))

1F PULNPR+L, 1) = ™ " THEN WRITE(<" ">) ELSE
BEGIN KPR ¢ APR ¢ 13
WRITE(<CIBrXBr2A6" ¢ ", 10A6>, NFR»
FORh K ¢ 0 STEP 1 UNTIL MAXLFR DO C(POINPR)K),PLICNPRIK])))
ENDS
GC 10 IANPUTLOULPS
ELF
NSY ¢ 03 VCLOJ ¢ VIIC) ¢ l

FGR K ¢ O STEP 1 UNTLIL ~AXLPR CO)
BEGIN FOR I ¢ § STEP 1 LATIL NPR DO
BEGIN FOR J ¢ 0 STEP 1 UNTIL NSY (C
IF PCLINNRY = VOLJ) AND PRI(I,X) = VI[J) THEN
GO TUL FuunD}
J ¢ NSY ¢ NOY ¢ 33 VO([J) ¢ PClIsKI} VILJ) ¢ PL{IsK))
FOUND S
PRIIs»K) ¢ J)
IF K # 0 ThtN UNRIGHTIJ) ¢ TRUE}

Lo

ENV 1)
It K = ¢ IhtN NSYN ¢ NSYS

END Ki

FCR I ¢ 2 STLF 1 UNTIL ANPK DO IF PR{1,C) = 0 THEM
PRI1,0) ¢ FR{1°3,0)}

WRITECCPAGE))S wWHITECS"INTERMEDIATE SYMBCLStI">))
WAITELCSCIB2X322AC)>s FUR 1 ¢ 1 STEP 1 UNTIL NSYN OC
Clr vOLI)» VILIDI))S
WRITEC<//7" TR INAL SYPBULSE™>) S
WHITEC<SC1EsX322h0)20 FUR 1 ¢ NSYN4] STEP § UNTIL NSY pO
CI» vOCI)» VIC1DD)3
WHITE(CE,<™FILL VUL®) WITH 0s%s G(""",A6," 0 ,",0n)y
CHBEm""pP65"""s™s"))>sF0k T ¢ 3 STEP | UNTIL NSY Q0 VOCLI))S
WRITEL(CP o< FILL VIL®) WITH 0p") G(nnn,pb,n0m,",%)/
COCT " sA6o""™»™)™))>eFON | ¢ & STEP t UNTIL NSY 00 VIC(11)}

L ¢ 03
FOR I ¢ 1 STEF 1 UNTIL NSY 0O
BEGIN MTBII) ¢ L¢Yy)
FOR O ¢ 3 STEP & UNTIL NPR CO IF PREJs1) 3 1 THEN
BEGIN FUR K ¢ 2 STEF § UNTIL MAXLFR OO
IF PR{JoK]) ¥ O THEN PRTBILCL*1)PRIJIK]S
PRIGILEIL+]1) ¢ =J3 PRYBLLeL+1) ¢ PRI.»0)3
eNG JS
PRIACLeL+1Y ¢« 0}
END i

WRITELCP <™ FULL PRTBHL®] WITH 0s™r10C]as"s")/

C" "»34C¢14s%9"))> FUR 1 ¢ 1 STEP 1 UNVIL L OC PRTB(I)))
WRITEC(CP,<"FILL MIul®) WITH ") 13C13,"")/

C" "so17C13,"5"))2900FUR 1 ¢ 1 STEP 1 UNTIL NSY D0 MTBLI)))
WRITECCP,<"NSY ¢ ", 3, "} NSYM ¢ w, 13, "3 NPRTE ¢ ", [3,")">,
NSY» PSYN, L))

END BLOCH A3

BEGIN CuMMENT BLOCK B3 COMMENT GRAVMAR CHECKS)
INTEGER 1, J» K)
LABEL 0K}
J ¢ 0

FOR 1 ¢ 1 STEF 1 UNTIL NSYN DO IF NOT ONRIGHTLIJ THEN
BEGIN J ¢ J « 1)
RRITEC</"TiE UnTuUt TARGET SYMBOL]St ™, 2A6>» VOLI)sVI(I)))

Eno I
IF J # 1 THEN WRIIECS"THERE TS NO UNIQUE LEFTMOST SYMBOL™))

FOR I ¢ 1 STEF 1 UNTIL NPR DD
BEGIN COMMENI CHECK FOR EMPTY LEFT AND RIGHT PARTS)
IF PRII,0J = 0 THEN
WRITEC<S"PROVDUCTION "» Jo ™ RAS AN EVPTY LEFT PART™ 1))
IF PRCIs1) = 0 THEN
WRITEC<"PROUUCTION ", Jp ™ HAS AN EMPTY RIGHT PART">,1)}
FUK J ¢ 141 SitP 1 UNTIL NPR DO

L

BEGIN - COMAENT ChECK ¢¥D
FUR K ¢ 1 21EP 19 i
6u Tu UK
Wit ETE (< FRUOUUCTIONS "pJs™ AND ", J,
" MUST ‘s ULSTINGUISHED BY FHE INTERPRETATION RULES">,1»J))
UK
ENL Ji
EnD I
TIMERS

)
PRLJIK] THEN

ENU SLOCK B}

BEGIN CUMMENT BLUCK C) COMMENT SYNTAX ANALYSISS

ALPHA ARRAY P1» PZIOINSY. OSNSY DIV 240}

COMMERT PACKING AND UNPACKING PROCEDURES)

SIREAM PROCEDVLRE SLT24T1SCH, T» VI3 VALUE I3

BEGIN UI « wjp 2(SKIF [03)) SI ¢ V3 SKIP 46 SB)J
2CiF SB THEN UD ¢ SET KILSE DS ¢ RESET) SKIP SB8)))

END SLT281158)

INTEGER STREANM PRUCELULURE GET2BITS(W» [)J VALUE 1}

BEGIN DI ¢ LUC GET28ITS) SKIP 46 DBJ SI ¢ W) 2(SKIP I SB)))}
QC(IF SB THEN Ud ¢ SET ELSE CS ¢ RESET) SKIP S§83))

END GLT2A1TSS

BEGIN COMMENT BLUCK C 1! COMMENT COMPUTE PRECEDENCE RELATIONS)
INTEGER ARWAY HEADS, TATLSCOSNSY)S
INTEGER G» Ho Lo Jo Ky s LC» RC» T» DIV24» MOD24)
BUOULEAN FAILLS
LABEL SKIPP1, SKIPP2» OONES

PRUCEDUKE HS(S)3 VALUF S3 INTEGER S
BLOGIN COMMLNY FIND THE LEFTMOST SYMBOLS OF S
INTEGER 1» J» K3
LABEL GO TIVALREADY)
FOR 1 ¢ 1 SIEP 1 UNTIL NPR DO IF PRCI»0) s S THEN
BEGIN X ¢ PRIL,1)S
FUR U ¢ 1 S1EP 1 UNTIL LC DO IF HEADSCLJ) s K THEN
GU TO GUIITALREADY)
LC ¢ LC + 1) HEADSILC) ¢ K3 HKS(K)}
GUOVITALREADY '
END 0D
Ny HSS

PRUCEDUNRE T5C(8)3 VALUE S3 INTEGER §3
BEGIN COMREN) FIND THE RIGHTMOST SYMBOLS OF S)
INTEGER 1» vy K}
LABEL GUTITALREADY, R}
FUR | e 1 SIEP 1 UNTIL NFR DN IF PR{I»0) s § THEN
BEGIN FUR J ¢ MAXLPR STEP =1 UNTIL § DO IF PRL12J) » O THEN
60 Tu K) ;
R1 K ¢ PR{1,J}}
FOR J ¢ 1 STEP § UNTIL RC DO IF TAILSCJ] s K THEN
Gt) TO GUTITALREADY}

L2

e — T T R . a -

TAILSIRC) ¢ K3 TS(K))

PRUCEOURE CUNFLICT(I»ysM)) INTEGER IoJsM}
BEGIN INTEGER C)
FAIL ¢ InUES
WRITECINUD»CX29,"/%>))
WHITECCS"CUNFLICT, ™, 246, " ", Alys ™ AND ™ AL12X2,2A6>,»
VOLT)»VIL1)s Msedy, VO[JIIVLILJ))S
END CONFLICTS

FAIL ¢ FALNES
FOR I ¢ § STEP 1 UNTIL NPR DO FOR L ¢ 2 STEP § UNTIL MAXLPR DO
BEGIN
J ¢ PREIsL=1)3 K ¢ PRL{INL))
IF X = 0 THeN GQ TC DONE}
0Ivad ¢ K 01V 243 wMOD24 ¢ K MOD 243
LC ¢ RC ¢ 0J
T1SCJ)3 HS(K)}
T ¢ GET2U1T5CP2(JsDIV24),M0D24))
IF T 8 YES I1HEN GU T0 SKIPP2)
IF T = NO THEN CONFLICT(JsKs"N™) ELSE
SET23JTSCP2LJ»DIV24),M0024,YES))
FOR H e 1 SIEP 1 UMTIL LC OO0
BEGIN 0Iv24 ¢ HEADSCH) DIV 243 MOD24 ¢ HEADSCH) MOD 24)
IF GET2BITSCP2(JoDIV24)oN0D24) = YES THEN
- CONPLICTCJIHEAGSIHII"N") ELSE
SET2BITSC(P2CJ»DIV24),00024,5N0) 3
ENO HJ
SKIPP2!?

IF X > NSYN THEN
BEGIN CUMMENT IF "k» [S TERMINAL WE MUST TABULATE IT)
LC ¢ LC ¢+ 1}
HEADSILC) ¢ «)
END)
FOR W ¢ 1 SIEP 1 UNTIL LC 0O
BEGIN CUMMENT ONLY TERMINAL SYMBOLS ARE INVOLVED)
IF HLAUSLH] S NSYN THEN GO TO SKIPP1)
DIv24 ¢ HEADSCH) DIV 243 MOD24 ¢ HEADS[H]) MOD 243
IF GeT28LTS(PILy»0IV24),M0D24) = NO THEN
CONFLLICTCJLHEADSIN]IL"S") ELSE
SET201TSCPL(ysDIV24)5M0D24,YES))
FOR G ¢ 1 SIEP | UNTIL RC DO
IF GET2BITSCPICTAILSIG),DIV24),M0024) s YES THEN
CONFLICTCTAILSIGI HEADSTH)»"S") ELSE
SEV281TSCPILITAILSIG)»DIV24),NM0D245N0))
SKIPPY
END W3
DONE$
END L T)
IF NOT FAIL THEN WRITEC</"NC CUNFLICTS WERE FOUND®>))
TIMER)

43

=

END BLOCK C 1)

BEGIN COMMENT BLUCK C 2} COMMENT LINEARIZE MATRICESS
INTEGER ANKAY b, GLOSASY]))
IMTEGER Ko K1)
BOOLEAN FAIL, HEENATRCWK, BEENATCOLKS

'RUCEDURE UPCOL(JsP)) VALUE JJ INTEGER JJ ALPHA ARRAY P[0,0)}
FORWARD)

PRUCEDURE UPRUWCISP)) VALUE IJ INTEGER I3 ALPHA ARRAY P[0s0)}
BEGIN INTEGER J)
IF BEENATROWK AND | = K THEN FAIL ¢ TRUES
BEENATROWK ¢ ULENATRUOWK CR I = K}
FOR J ¢ | SIEP 1 UNTIL KI DO IF FCI) S GCJ) THEN
IF GL1281TSCPCIoy DIV 24),ENTIERCY MOD 24)) s GT THEN
FLI) ¢ GLY) + 13
FOR J ¢ 1 SIEP 1 UNTIL X1 00 IF NOT FAIL THEN
IF FLL) > GLY) THEN
IF GEI2811SCPLTI,J DIV 24),ENTIERCJ MOD 24)) = LE THEN
UPCULCJY» P)}
IF FAIL THEN WRITEC<"ROW = ", 13, » ", 2A62,1,V0CI)sViLI]))
END UPROW)

PRUCEDURE UPCULCJsP)) VALUE y3 INTEGER JJ ALPNA ARRAY PLO-0))
BEGIN INTEGER i» w0IV24, JUMOD24}
IF BEENATCOLK AND U 3 K THEN FAIL ¢ TRUE}
BEENATCULK ¢ BEENATCOLK CR J s K3
JOIV24 ¢ J ULV 243 JMOD24 ¢ J MOD 24)
FOR 1 ¢ 1 SIEP | UNTIL K DO IF FLI) > GCJ)l THEN
IF GET2BATS(PL1,JDIV24)5,JM0D24) = LE THEN GLY) ¢ FLI}}
FOR 1 ¢ 1 SIEP 1 UNTIL K DO [F NOT FAIL THEN
IF FLI1) S GLy) THEN
IF GEI2BIFSCFLT1,J0IV243,JM0024) 3 GT THEN
JPROWCT, P))
IF FAIL THEN WHITEC<"COL = ", 13, » =, 2A6>24sV0LJYINVILY))Y)
ENU UPCOLS

FAIL ¢ FALSE; Ki ¢ 0} WRITECLPAGE)))
FOR K ¢ 1 STEP | UNTIL NSY DO IF NOT FAIL THEN
BEGIN BELNATHUNK ¢ FALSES FCK) ¢ GIK) ¢ 1)
UPRON(K,P2)}
K1 ¢ KJ OEENAICOLK ¢ BEENATROWK ¢ FALSES
UPCOL(KsP2)}
END K3
IF FAIL THEN :
WRITECSPLINLARIZATION FAILURE FOR FUNCTIONS BELUW">)}
WRITEC<"LINEARIZEV PRCOUCTICN RECOGNITION MATRIX$"/
X?p“NO."aXOo”SYMBUL”;XlO."F'pX?-"G"/(llOoXéo?AboZlQ)’o
FOrn K ¢) STEP 1| UNTIL NSY 0O (KoVOLKIAVILKIAFLKILGEK))))
WRITECCPo<"FILL F2(#] WITH 0,",» 18(12,",")/7¢24C12,","))>,
FUR K ¢ 1 STEP | UNTIL NSY DO F:K))}
WRITECCP,<"FILL G2(*) WITH 0,", 18C12,"5")/7(24(120","))>,
FOn K ¢ 1 STEP | UNTIL NSY DO G(K))}

L

g ——— TR RN e A

FALL ¢ FALSE] Ki ¢ U3 TIMER} WRITECLPAGE)))
FOR K ¢ 1 SIEP § UNTIL NSY U0 IF NOY FAIL THEN
BEGUIN UELNATRUWK ¢ FALSES FLK) ¢ GLK) ¢ 1}

UPROWCK,PY))

Kl ¢ K} REENATCOLK ¢ BEENATHOWK ¢ FALSES

UPCOLC(K,P1))
END K3
IF FALL THEN

WRITECS"LINLARIZAITUN FAILURF, FOR FUNCTIONS BELOW™>))
WRITEC<"LINEARLZED HIERARCHY ANALYSIS MATRIXSE"/
X7o"NO "o XYr"SYMBUL™ s X 10, "F"»XT7,"GC"/C(110,X%X6,2A6,213)>)
FOR K ¢ 1 SIEP t UNTIL NSY D0 [KoVOCK)I»VIIRILFIKINGEIKI)))
WRITECCP,<"FILL FLLe] alITH Qp%s 13C12,",")/7(C24(12,",%))>,
FOR K ¢ § STEP § UNTIL NSY DO Frkl) .
WNRITECCP,<"FILL GIC*] WITH 0,"s 18(12,",")/7(24C12,%,"))>,
FOR K ¢ 1 STEP { UNTIL NSY DO GrK1)}

END BLOCK C 23

END BLOCK C)

ENDJ
TIVER)
END,

45

(2,1)(1,2) Parsing Functions

Consider the grammar
Pes{G-oAB, B> BC, B=C) .

The symbol B 1is left recursive, that is, B € HS{B). From the first

production we can derive a conflict in P2'. Similiarly, if A had been

right recursive, we would have had a conflict in Pl' from the first

production. We can sum up both situations by saying that an internal
recursion will always cause a conflict. Note that the grammer
P={(G—>AB', B' =B, B-3C, B~-C]

has no internal recursion and 1s a symbol pair grammar. While we must
reject arbitrary grammar transformations on semantic grounds, the inser-
tion of a dummy production does not affect the semantic interpretation of
the language. The reader will note several such dummy productions in the
grammar of our kernel language.

We would like to extend the range of our grammars without requiring
additional work by the programmer. 1t is perfectly feacible to test for
internal recursions and a.tomatically insert dummy productions into the
grammar prior to starting the analysis of the syntax

A perhaps more hopeful approach is to extend the view of the func-
tions Fl1' and F2 I't happens that internal recursions are allowed
if we look left one extra symbol for F1 and right one extra symbol for
P2 Extending the notaticn of Wirth and Weber ([25! p. 32) we call the
symbol pair grammars {1,1){(1,1) canonical parse grammars and the suggested

extension (2,1)(1,2) canonical parse grammars

A (2,1)(1,2) syntax preprocessor 1s considerably more complicated
than that ror a (1,1){1,1) grammar. 7In particular, the defining matrices

46

B e il * 9 —-w-v-'-—-——’.-

for P1"(X,Y,Z) and P2"(X,Y,2) contain NSY cubed elements. Even
though the density of defined entries is on the order of one percent,
a moderately large grammar may require 10,000 entries. It is encouraging
to note that no naturslly occuring grammar has failed to be a (2,1)(1,2)
grammar,

The rules for deriving the values of Pl" and P2" are similar
to those for deriving Pl' and P2', We will first tabulate the various
set definitions required for the derivations and then state the rules de-
rived from certain standard production formats.

Set definitions.

canonical parse (x,y) | (3u)(3R) P-uXR, R=> Y} U
tail two symbols
T2S(P) ({x,Y) l (3u)(3R) P - uR,
(X,Y) € T2s(R))
Canonical parse ((%,Y) | (3u)(3R) P - XRu,
head two symbols
H2S (P) (Y=R or Y€ HS(R))) U

((x,¥) | (3u)(3R) P - Ry,
{X,Y) € H2s(R))

Allowed predecessors (x | (3)(3R)(3x)(3y) R - xXay,
AP(P) (P=q or PEeHS(Q)))
Allowed successors (x | (3Q)(3R)(3x)(3y) R - xQXy,

AS(P)

(P=Q or P€TS(Q))

b7

Derivation rules for the parsing function values.

W - UVv

W - Uy

W - UVv

W - tTUVv

W - tTUVv

W - tTUVv

W - tTU

W - tTU

W - tTU

W - tTUVv

W - tTUVv

W - tTUVV

Iy S

Pl"

(3x)(32) z € HST(V), X € AP(W) implies
P1"(X,U,2) = false.

(3x)(3Y)(32) z € HST(V), X € AP(W),
U-=> Y implies P1"(X,Y,Z) = true.
(3x)(3Y)(3z) 2z € HST(V): (X,Y) € T25(U)
implies P1"(X,Y,Z) = true.

(32) z € HST(V) implies P1"(T,U,Z) = false.

(3v)(3z) z € HST(V), U->=>Y implies
P1"(T,Y,Z) = true.

(3x)(3Y)(3z) z € HsT(v), (X,Y} € T2s(v)
implies P1"(X,Y,Z) = true.

P2"
(3s) s € as(w), (3z) z¢€ HST(S) implies
P2"(T,U,Z) = false.

(3s) s € as(w), (3y)(3z) z € HST(S),
U—-=> Y implies P2"(T,Y,Z) = true.

(3Y)(3z) (Y,2) € H2S(U) implies
P2"(T,Y,2)

true.

P2"(T,U,V) = false.

(3Y)(3z2) z ¢ HST(V), U->=>Y implies
P2"(T,Y,Z) = tmeo

(3Y)(3z) (Y,2) € H2S(U) implies
P2"(T,Y,Z) = true.

48

- 2
. & Lasy -

The block structure of the (2,1)(1,2) preprocessor is similiar to
that of the symbol pair preprocessor. We organize the set definitions
for allowed predecessors, allowed successors, single character derivatives
(Y -=> 2), head symbols and tail symbols as Boolean matrices. If, for
example, AP[I,J] = true then symbol number J is an allowed predecessor
of symbol number I. We gain by avoiding table look upé and loose by
being forced to pack the matrices. The blocks Cl, C2, and C> contain
relatively transparent algorithms for the computation of the five sets.

Block Ck delineates the algorithm for computing the function P1",
Consider an arbitrary canonical derivation Y=> t where t € !; .
For every intermediate stage of the derivation (such that it has at
least two symbols) the pair of rightmost two symbols of the produced string
are an entry in the canonical parse tail two symbols of Y. The procedure
T2S tabulates pairs of tail symbols over all possible derivations emana-
ting from its argument. Storage requirements force us to abandon the
Boolean matrix definition for these sets and we tabulate them in a linear
array. It is also infeasible to record the values of P1" in a three
dimensional matrix hence we record the values in four linear arrays, the
first three giving the coordinates of the point and the fourth its value.
At the innermost loop of the analysis (nested within four FOR's and five

IF's) we find a call on procedure ENTER which records the computed value.

Since the speed of execution of the algorithm is proportional to the speed
of ENTER, we have attempted to code it efficiently. The first implication
is the need for a binary table look up which itself demands that the three
coordinate arrays be packed in a single word as the polynomial value

IXx N2 +J XN+K where N > NSY. Secondly we use even powers of two

and Burroughs B5500 partial word operators instead of multiplies and divides

as indicated in the comments.

49

In block C5 we find similiar algorithms to compute P2". As one
immediately sees by inspecting the output from a trial run on the pages
following the program, even a small grammar generates an enormous number
of relations. The number is so large that we have been unable to test
the program for large grammars. Yet we feel that the information in the
tables is highly redundant leading us to conjecture the existence of some
analogue to Floyd's f and g functions for condensing the information.
To date we have not been able to find a reliable algorithm for this
purpose.

Our inability to condense the definitions of P1" and P2" into
reasonably compact tables is the only bar to their use in the syntactic
analyzer of the compiler. It appears that (2,1)(1,2) grammars are suff-
iciently »owerful to describe computer languages with no further generali-
zation. There would be some advantage in generalizing the function P3'
to allow repeated and empty right parts in the production tables.

The sémple output has been slightly rearranged from the actual
computer output. The first page contains listings of P, !ﬁ’ !T, and
G. Then follow the definitions of the five sets. The left margin contains
the symbol number and name; the top margin the least significant digit of
the symbol number. A dot signifies that the symbol numbered in the top
margin stands in the indicated relation to the symbol in the left margin.
For example, EOF is in the head of <PROGRAM>.

The first tabulated value for Pl1" indicates that <EXPR> ELSE IF
is an expected triplet and that IF is not to be moved from 7 to x in
the general parsing algorithm (because <EXPR> ELSE must first form

<TRUEPART>).

50

S s , T~ ——— . '
- .': & e, - . a . s ZE

BEGIN COMMENT

(2,1)(1,2) SYNTAX PROCESSOR MCKEEMAN JAN. 1966}

INTEGER MAXNSY} COMMENT 'MAX NUMBER OF SYMBROLSS
INTEGER MAXNPR} COMMENT MAX NUMBER OF PRODUCTINNS}
INTEGER MAXLPR} COMMENT MAX LENGTH OF A PRODUCTINNJ
INTEGER TI» OT» T3 COMMENT TIMING INFNRMATIONS

INTEGER P2CSAVE, SI» I} COMMENT STATISTICS STORAGES

REAL ARRAY RECORDO(O%20)3
DEFINE PACKED = ALPHAS}

PROCEDURE TIMER3

BEGIN OT ¢ T3 T ¢ TIME(1))
WRITECC"TIME 3"» F7.25"» TOTAL ELAPSED = "5 F7,2»0 " MIN.">»
(T=07)/73600,» (T=T1)/3600)3

END TIMER}

PROCEDURE SAV(X)S VALUE X3 REAL X3 RECORD(SIeSI+1) ¢ X}

MAXNSY ¢ 3005 MAXNPR ¢ 3003 MAXLPR ¢ 53
P2CSAVE ¢ SI ¢ 03

T ¢ Tl ¢ TIME(C1)S
WRITE(<"(2,1)(1,2) SYNTAX PROCESSOR, MCKEEMAN, JAN, 1966%//>)}

BEGIN COMMENTY SET UP GLORAL TAHLFSS
INTEGER ARRAY VO» VI(OSMAXNSY)3 COMMENT 12 SIG. CHARSS
INTEGER ARRAY PRIOtMAXNPR» OSMAXLPR)} COMMENT PRODUCTIONSS
BOOLEAN ARRAY ONRIGHTCLOSMAXNSY)}
INTEGER NPR3 COMMENT ACTUAL NUMBER OF PRODUCTIONS READS
INTEGER NSy, NSYN} COMMENT ACTUAL NUMBER OF SYMBOLS READ}
BEGIN COMMENT BLOCK AS COMMENT CARD INPUT BLOCKS
INTEGER 1, J» K3
LABEL INPUTLOOP, EOF» FOUND}
INTEGER ARRAY PO, P1[OSMAXNPR, OSMAXLPR])}
WRITE(<"PRONUCTIONSt"//>)}
NPR ¢ 03
INPUTLOOPS
READ(<12A6>» FOR K ¢ O STEP 1 UNTIL MAXLPR pO
(POINPR+1» K)» PICNPR+1, KI))ICLEOF))
IF PO{NPR+i,1) = " THEN WRITE(<™ ">) ELSE
BEGIN NPR ¢ NPR ¢ 13
WRITEC<SIRIXBs2A6," ¢ ",10A6>» NPR»
FOR K ¢ O STEP 1 UNTIL MAXLPR DO CPOLNPRsK)» PLINPR»K3))}
END}
GO TO INPUTLOOPS

EOF 3
NSY ¢ 03 VO(O) ¢ VI(O) ¢ © "3
FOR K ¢ 0 STEP 1 UNTIL MAXLPR DO
BEGIN FOR T ¢ 1 STEP 1 UNTIL NPR DO
BEGIN FOR J ¢ O STEP | UNTIL NSY DO
IF POCIsX] = VOLJ) AND PI(1,K) = Vi(J) THEN
GO TO FOUND}
J ¢ NSY ¢ NSY ¢ 1}
VOCNSY) e POCI»K]S VIINSY) ¢ P1(IrK)}
FOUND3

o1

PRITsX]) ¢ J}
IF K # O THEN NNRIGHT(J) ¢ TRUES
END I}
IF K = 0 THEN NSYN ¢ NSY} COMMENT STILL IN INTERMEDIATE SYM™}
END K3

FOR I ¢ 2 STEP { UNTIL NPR DN IfF PR(1,0) = 0 THEN
PR(1,0) ¢ PR[I=1,0)3

WRITECCPAGE))S WRITEC<"INTERMEDIATE SYVMBOLS3I">)3

WRITEC(<3¢18,X%X3,2A6)>, FOR I ¢ 1 STEP 1 UNTIL NSYN DO
1, vortils Vi(111)3

WRITEC<//"TERMINAL SYMBOLSt">)}

WRITEC<3C185X3,2A6)>» FOR I & NSYN+y STFP 1 UNTIL NSY DD
(1, voClIds VILIN))S

COMMENT GATHER STATISTICSS

SAVENPRYS SAV(NSY)S SAV(NSYN)}

END BLOCK AJ

BEGIN COMMENT @8LOCK BS COMMENT GRAMMAR CHECKS)
INTEGER ARRAY TESTLOSNPRs» OIMAXLPR)S
BOOLEAN CHANGE, EMPTYS
INTEGER s J2» K» 23
LABEL Ok}
J ¢ 0}
FOR I ¢ { STEP § UNTIL NSYN NN 1F NOT ONRIGHT(!) THEN
BEGIN J ¢ J + 1}
WRITEC</"THE UNIQUE TARGET SYMBOL ISt ", 2Aa>, VOLI)» VII(1))}
END I3
IF U # 1 THEN WRITE(S"THERFE 1S NO UNIQUE LFFTMOST SYMBOL">)}

FOR 1 ¢f STEP 1 UNTIL NPR DO FOR J ¢ O STEP 1 UNTIL MAXLPR DO
TESTCLIeJ) ¢ IF PRIIL,J) > NSYN THEN O ELSE PRI1,J)3
CHANGE ¢ TRUES
WHILE CHANGE DN
BEGIN CHANGE ¢ FALSF}
FOR I ¢ 1 STEP | UNTIL NPR DO
BEGIN Z ¢ TESTUI,0);
IF 2 # O THEN
BEGIN EMPTY ¢ TRUE}
FOR J ¢ § STEP § UNTIL MAXLPR DN
\ EMPTY « EMPTY AND TEST(1,J) = 03
IF EMPTY THEN FOR K ¢ 1 STEP § UNTIL NPR DN
FOR J ¢ O STEP 1 UNTIL MAXLPR DO IF TESTCK,»J) = Z THEN
TESTIK»J) ¢ 03
CHANGE ¢ CHANGE OR EMPTY)
END3
ENOJ
END CHANGES
FOR T ¢ 1 STEP 1 UNTIL NPR DN IF TEST(I,O0) # O THEN
WRITEC<"PRODUCTION", 14, "™ LEADS TO A NON=TERMINATING PHRASE">,
1)3

- A . - = N T
- - - . Wo.dh idew = -

FOR I ¢ { STEP 1 UNTIL NPR DN
BEGIN COMMENT CHECK FOR EMPTY LEFT AND RIGHT PARTSS
IF PRCLT1,0) = O THEN
WRITECS"PRODUCTION "» J, ™ HAS AN EMPTY LEFT PART">,1))
IF PRIT1»1) = O THEN
WRITEC(<"PRODUCTION "» J» * HAS AN EMPTY RIGHT PART">,1))
FOR J ¢ I+1 STEP 1 UNTIL NPR DO
BEGIN COMMENT CHECK FOR IDENTICAL RIGHT PARTSS
FOR K ¢ 1 STEP 1 UNTIL MAXLPR DO IF PRLISK) # PRCJsK) THEN
GO0 TO 0K}
WRITEC<"PRONUCTIONS ", J," AND "» J»
" MUST BE NISTINGUISHEN 8y THE INTERPRETATINN RULES">,1,J)3
0Ks
END U3
END I3
TIMER;
KRITECCPAGE))}
END BLOCK B3

REGIN COMMENT BL0OCK C3 COMMENT SYNTAX ANALYS!S)
PACKFD ARRAY CR[0:1022); CNMMFNT COORDINATESS
INTEGER ARRAY S1» $2[011022)3 COMMENT NSY#23
BOOLEAN ARRAY V03102213
PACKED ARRAY INHEAD» INTAILCLOSNSY, OINSY DIV 48133
PACKED ARRAY SCDLOSNSY, OtNSY DIV 48)}
PACKED ARRAY AP, ASCOINSY, OSNSY DIV 48)}
BOOLEAN ARRAY BEENTHFRE[OSNSY)S
INTEGER NVAL»s P2C, FINDSS

BOOLEAN STREAM PROCENURE GETRIT(CA, I)3 VALUE I3
BEGIN SI ¢ A} SKIP I SB3 TALLY ¢ 1)

IF SA THEN GETRIT ¢ TALLYS
END GETRITS

STREAM PROCEDURE SFTRIT(A, 133 VALUE I}
BEGIN DI ¢ A} SKIP I DBS NS e SET)
END SETBITI

PROCEDURE ENTERCI» Jo Ks» X)3 VALUE I» Jr» Ky X3
INTEGER 1, J» K3 ARONLEAN X3
BEGIN LABRFL PRINARYLONKUP, GOTITALREADYS
INTEGER Rs» My T, Hsy NH, L3
IF NVAL = 1022 THFEN
BEGIN WRITECC"TNO MANY ANALYSIS FUNCTION VALUES">)}
NVAL « 1}
TIMERS
ENDS
COMMENT NWE PACK COORDINATES BOTH FNR STORAGE ECONNMY AND
SPEED IN THE BINARY LOOKUP FOR INSERTIONS
R e 03 T ¢ NVAL) H ¢ K_RJCL241361312)81(12336312)3
COMMENT H IS THE COURDINATES AS POWERS OF 2+103)

23

RINARYLOOKUPS M ¢ (R+T),[3A111)) COMMENT DIV 23
NH ¢ CR(M);
IF MH ¢ H THEM R ¢ M ELSF
IF NH > H THEN T ¢ M ELSE
BEGIN IF NNT (X FQV VIM)) THEN WRITEC(<"CONFLICTS»"» 646>,
VOCTI),VILfI), VOLJIsVILJUY» VOLKI,VI(K))YS
FINDS ¢ FINDS ¢ 13 COMMENT FOR STATISTICSS
GO TO GOTITALREANYS
ENDJ
IF B¢l # T THEN GO TO BINARYLOOKUP}
FOR L ¢ NVAL STEP =1 UNTTL T DO
BEGIN CRIL+1) ¢ CRCLYS
VEL+1) ¢ VvIL)YS
END L3
CRCT) « H3 VLTI ¢ X3
NVAL ¢ NVAL + 13
GOTITALREADY!
END ENTFR3

PROCEDURFE PUT(X» Y35 VALUE X» Y3 INTEGER X» Y3
BEGIN COMMENT ENTER A HEAD OR TAIL PAIR INTO LISTS
INTEGER I3 LABEL GOTITALREADY)
FOR I « § STEP { UNTIL P2C DO
IF S1tI) = X THEN
IF S2C13 = Y THEN GND TN GOTITALREADYS
P2C ¢ P2C + 13
IF P2C > 1022 THEN WRITE(<"TNN MANY PAIRS">)};
COMMENT WE SAVF P2C FNR STATISTICAL ANALYSISS
IF P2¢C > P2CSAVE THEN P2CSAVE ¢ P2C)
S1{P2C) ¢ X3 S2(P2C) ¢ Y3
GOTITALRFADY!
END PUT;

PROCEDURE PRINTMATRIX(TITLFE, M)3 FORMAT TITLES
PACKED ARRAY M[0,0)3
BEGIN COMMENT PRINT A BOOLFAN MATRIXS
INTEGER 1» J3
WRITECTITLE)S
WRITF(<X9» "SYMI0L"» XS» 100[1>»
FOR I ¢ 1 STEP 1 UNTIL NSY DO I MOD 10)3
FAR I « 1 STEP § UNTIL NSY DN
WRITE(<I3» X3» 2460 X2» 100A1>» 1» VOCI)» VILI)»
FNR J ¢ 1 STEP 1 UNTIL NSY 0O
IF GETBIT(MLI»J NIV 4B),ENTIERCJ MOD 48))THEN ",™ FLSE " ")3
TIMERS
WRITECCPAGE))
END PRINTMATRIX}

PROCEDURE TABULATECN)S VALUF N3 ALPHA N3
BEGIN COMMENT PRINT VALUES PF P1"(XsY»2) AND P2"(X»Y»2)}
INTEGER 1» €C1» C2» C3)
FOR I ¢« § STEP 1 UNTIL NvAL DO
REGIN €1 ¢ CRLTI), (1281213 (2 ¢ CRLI).C2431213
€3 ¢« CRI1).036212)3
NRITE(CA2,""™5"("0BA6s") = "oA2,"mN,nen,5(13,%,7),13,

Sk

» M v - 3 - "-";b

|

3
’-"‘7&., e ™ .'. - e . - J »

"y ® " LS
N, vOCCll,viCtC1), VOLC?),v1iLC2), VOLC3),ViLC3)»
N, Ci» C2» C3» VLIS

END}

WRITEC(<IS, "™ FUNCTINN VALUFS, DENSITY =", Fé,2, "%,
", ENTRIES/VALUE"» F6,2>,
NVAL» J1OOXNVAL/NSY*3, C(FINDS+NVAL)/NVAL)S

TIMERS

SAV((T=0T)/3A600)3 SAV(NVAL)S

WRITECTIPAGEY)S

END TABULATES

CRLO] ¢« O3 COMMENT A SAFE "BOTTOM"™ FOR THE RINARY LNOKUP}

BEGIN COMMENT BLOCK C 13 COMMENT HEAD AND TATIL OCCURENCESS
COMMENT INHEADCI»J) IMPLIES J IS IN THE HEAD OF I3
INTEGER 1» JJ

PROCEDURE HS(S)} VALUE S3 INTEGER S}
BEGIN COMMENT FIND ALL THE HEADS OF S3
INTEGER I» J» 23
IF NOT GETRITCINHEANCS,S DIV 48),ENTIER(S MND 48)) THEN
BEGIN SETBITC(INHEAN(S,»S DIV 4BILENTIER(S MOD 48))3
FOR I ¢ § STEP 1 UNTIL NPR DO IF PRLI,0) = S THEN
BEGIN Z ¢ PR(1,11}
HS(Z)}
FOR J ¢ § STEP 1 UNTIL NSY DO
IF GETRITCINHFADCZ,J DIV 4B8),ENTIERCJ MOD 48)) THEN
SETBITCINHFAD(S,J DIV 48),ENTIER(J MND 48))3
END I}
END3
END HS3

PROCEDOURE TS(S)} VALUE S3 INTEGER SJ
BEGIN COMMENT FIND ALL THE TAILS OF S3
INTEGER 1» J» 23
LABEL F3
IF NOT GETBITCINTAILIS»S NIV AR)LENTIER(S MOD 48)) THEN
BEGIN SETRITCINTAILLS,S DIV 4B1,ENTIERCS MOD 48))3
FOR 1 ¢ 1 STEP § UNTIL NPR DO If PR[1,0) = S THEN
BEGIN FNR J ¢ MAXLPR STEP =1 UNTIL ! DO
IF PRCI,J) # 0 THEN GO T0O F3
F$8 Z ¢ PRCI»JY)
TSC2)3
FOR J ¢« 1 STEP 1 UNTIL NSY DO
IF GETBITCINTAILLZ,J DIV 483,ENTIERCY MND 48)) THEN
SETRITCINTAILLIS,J DIV 4BY,ENTIERCJ MDD 48)))
END I3
ENDS
END TS3

FOR I ¢ O STEP { UNTIL NSY D0 FOR J ¢ O STEP § UNTIL NSY DIV 48
N0 INHEADCTI,J) ¢ INTAILCI,J) ¢ 0O}

FOR I ¢ § STEP t UNTIL NSY D0

BEGIN HSC(I)} TS(1)3

25

END3

PRINTMATRIX(<//"INKFADt"™/>» INHEAD)
PRINTMATRIX(<//"INTAILE"/>» INTAIL)}
END RLOCK C1}

BEGIN COMMENT BLOCk C 23 COMMENT SINGLE CHARACTER NERIVATIVESS
COMMENT SCNLI,J) IMPLIFS THAT J IS A SINGLE CHARACTER

DERIVATIVE OF I
INTEGER 1» J» K3
BOOLEAN CHANGES
FOR I ¢ O STEP 1 UNTIL NSY NO
FOR J ¢ 0 STEP { UNTIL NSY DIV 48 DO SCOCI,J) ¢ O3
FOR 1 ¢ § STEP 1 UNTIL NPR DN
If PR(I»2) = O THEN
SETBIT(SCNCPPCI»0),PRII»1) DIV 4BI,ENTIER(PRII»1) MOD
48));3
CHANGE ¢ TRUES
WHILE CHANGE DO
REGIN CHANGE ¢ FALSFS
FOR I ¢ { STFP 1 UNTIL NSYN OO
FOR J ¢ 1 STEP 1 UNTIL NSYN DO
IF GETRIT(SCO[I,J NIV 4B),ENTIERCJ MOD 48)) THEN
FOR K « 1 STFP 1 UNTIL NSY NO
IF GFTBIT(SCDCLJUsK DIV 4B),ENTIERC(K MOD 48)) THEN
IF NOT GETRIT(SCDII»K DIV 4B),ENTIER(K MOD 48))
THEN
BEGIN CHANGE ¢ TRUE)
SETRITCSCOLIsK DIV 4BI,ENTIERCK MND 48))3
FND3
END CHANGES

PRINTMATRIX(<//"SINGLE CHARACTER DERJVATIVESt"/>, SCD)S
END BLOCK C 23

BEGIN COMMENT BLNCK ¢ 33 COMMENT PREDECESSORS AND SUCCESSORSS
COMMENT APIT,J) IMPLIES J TS AN ALLOWED PREDECESSOR 0OF I3
INTEGER 1» J» P3
FOR I ¢« 0 STEP { UNTIL NSY DO FOR J ¢ O STEP 1 UNTIL NSY DIV 48

D0 APLI»J) ¢ AS[1,J) ¢ 0O}

FOR P ¢ 1 STEP 1 UNTIL NSY NO
FOR I ¢ 1 STEP 1 UNTIL NPR DO
BFGIN COMMENT PREDECESSORS FIRSTS
FOR J ¢ 2 STEP 1 UNTIL MAXLPR DO

IF PR(C1,»J) = O THEN ELSE
%F GETHRITCINHEADCPRIT,J),P DIV 48),ENTIERC(P MOD 48))
HEN
SETBITCAPIP,PRII»J=1) DIV 48),ENTIERCPR(I»J=1) MOOD
48));

56

L

FOR J « | STEP { UNTIL MAXLPR=1 DN
IF PRLI,J+41) = O THEN ELSE
IF GETRITCINTAILCIPRLISJISP DIV 4B),ENTIER(P MOD 4B))
THEN
SETBITCASIP,PRII»J+1) DIV 4BILENTIER(PRII»J¢1]) MOD
48))3
END T PJ

PRINTMATRIX(<//"ALLOVED PRFNECESSORSI"/>, AP)}
PRINTMATRIX(<//*ALLNWED SUCCESSORSs"/>, AS)3
END BLOCK C33

BEGIN COMMFNT BLOCK C 43 COMMENT HIERARCHY ANALYSIS?
INTEGER A» Bs» Co» Po Xo Ysr 25 1» 13y 12, 133

PROCEDURF T2S(P)Y? VALUF P3 INTEGER P3
REGIN COMMENT THE CANONICAL PARSE TAIL 2 SYMROLS OF pP3
INTEGFR 1, Js» Rs Xo Y3
LABEL FJ
BEENTHERELP) ¢ TRUES
FOR | ¢ | STFP 1 UNTIL NPR DO IF PRC1,0) = P THEN
BEGIN FOR U ¢ MAXLPR STEP =1 UNTIL 1§ 00 IF PRCI»J) # O THEN
GN TN F3
Ft R ¢ PRII,J))
IF J # 1 THEN
REGIN COMMENT PRONUCTION LENGTH AT LEAST THWN)
X ¢ PRCI, J=1)}/
PUT(X,» R)3
FOR'Y ¢« 1 STEP 1 UNTIL NSYN DO
IF GETRIT(SCNLY,R DIV 4B),ENTIER(R MOD 48)) THEN
PUT(X» YY)}
ENDS
IF NOT REENTHFRELR) THEN T2S(R)3
END I3
END T2S)

NVAL ¢ 13 FINDS ¢ 03 CRC1) e 1024+33
FOR 11 ¢ 1 STEP 1 UNTIL NPR pN IF PRLI1» 2] # O THEN
BEGIN COMMENT HIERARCHY ANALYSIS RELATIONSS
8 ¢« PRI{It, 133 C ¢ PRLI1L, 2))
P ¢ PRLI1,» 0)}
FOR T « 1 STEP 1 UNTIL NSY D0 REENTHERE(I) ¢ FALSE)
P2¢C ¢ 0; T2S(R)Y3
FOR 2 ¢ NSYN ¢+ 1 STEP 1 UNTIL NSY DO
IF GETBIT(INHEAOIC»2 DTV 4RILENTIER(CZ MOD 48)) THEN
BEGIN COMMENT Z ARE IN HST(C)3
FOR X ¢ 1 STEP 1 UNTIL NSY DO
IF GETRITCAPCLP»X DIV 4B8),ENTIERC(X MOD 48)) THEN
BEGIN ENTER(X, B, Z» FALSE)S
IF B € NSYN THEN
FOR Y ¢« 1 STEP § UNTIL NSY DO
IF GETBIT(SCNIR,Y DIV 48),ENTIERCY MOD 48)) THEN
FNTER(X» Ys 2» TRUE)}

o7

END X3
FOR [3 « { STEP 1 UNTI{ P2C DO
ENTER(S1LI3)» S2C131» Z» TRUEDS
En 23

FOR 12 ¢ 3 STEP 1 UNTIL MAXLPR DO IF PRCIt» 12) # O THEN
BFGIN :
A e PR{TY, 12=213 R ¢ PR{I1,» 12=133 ¢ ¢ PR(11, 12133
FOR I ¢ 1 STEP 1 UNTIL NSY NO BFENTHEREL]I) ¢ FALSE}
P2C ¢ 03 T2S(R)3
FOR Z ¢« NSYN+i STEP 1 UNTIL NSY DO
JIF GETRITCINNEADLIC,2 DIV 4BI,FNTIER(Z MOD 48)) THEN
REGIN ENTERCA, Rs Z» FALSE)S
IF B € NSYN THEN
FOR Y ¢'1 STEP 1 UNTIL NSY D0
IF GETRITC(SCNIB,Y DIV 4B8I,ENTIFRCY MND 48)) THEN
ENTFRCA) Ys 7o TRUE)S
FOR 13 ¢ 1 STEP § UNTIL P2¢ DO
ENTERCSICI3), S2(13), 2, TRUE)S
END 23
END 123
END 113
NVAL ¢ NVAL = §}

WRITEC<"HIFRARCHY ANALYSTS FUNCTIONSI%/>)}
TABULATE("P1")}
END BLOCK C 4

BEGIN CNMYENT BLOCK C 53 COMMENT PRODUCTINN RECOGNITIONS
INTEGER As Ry C» Ry Ps Yo 20 s 1Y, 12, 133
LABEL LASTONCS

PROCFNURE H2S(P)3 VALUE P3 INTEGER PJ
BEGIN COMMENT THE CANONTCAL PARSE HEAD 2 SYMBOLS IN P}
INTEGER 1» Ry X» Yo 23
BEENTHERFCP) ¢ TRUES
FOR I ¢ §{ STEP 1 UNTIL NPR 00 IF PRIC1,0) = P THEN
REGIN
IF PRET»2]1 # O THEN |
BEGIN COMMFNT PRONPUCTION OF LENGTH AT LEAST TWOS
X ¢« PR[(I» 113 R ¢ PRI1,» 2)3
IF GETRITCINHFADCR,Y DIV 48J,ENTIERCY MOD 48)) THEN
PUTC(X, Y)3
ENDS
R ¢« PRII, 133
IF NOT REFNTHERECR) THEN H2SC(R)S
EnND 13
FND H2S3

NVAL e« 13 FINDS ¢ 03 CRF1) ¢ 1024+33

FOR 11 ¢ 1 STEP 1 UNTIL NPR DO IF PRII1s 2) # O THEN

REGINM COMMENT PRODUCTINN RECOGNITION RELATIONSS
FOR 12 ¢« 2 STEP { UNTIL MAXLPR DO

28

- :
R .

BEGIN A « PRCIi, 12=1)3 B ¢ PR(I1, 12)}
IF 12 = MAXLPR THEN GO TO LASTONES
C ¢« PR(I1, 12+1)3
IF C = 0 THEM GO TO LASTONE)
ENTERCA» Ry, C» FALSF)S
IF B € NSYN THEN
FOR Y ¢ § STEP {1 UNTIL NSY DR
IF GETBIT(SCOILR»Y DIV 4BILENTIER(Y MOD 48)) THEN
FOR 2 ¢ NSYN+1 STEP § UNTIL NSY DO
IF GETRITCINHEADCC»Z DIV GBY,ENTIER(Z MOD 48)) THEN
ENTERCA» Y» 2, TRUE)S
FOR I e { STEP § UNTIL NSY DO BEENTHEREL!) ¢ FALSES
P2C ¢ 03 H2S(B)}
FOR I3 ¢ § STEP | UNTIL P2C 0O
ENTERCA, S1CI13), S2t13), TRUE)S
END 12}

LASTONES
P e PRCIT1, 0)3
FOR R ¢ {1 STEP § UNTIL NSY DO
IF GFTRITCASIPsR DIV U4BJHENTIERC(R MON 48)Y THEN
FOR 2 ¢ NSYN+1 STFP 1 UNTIL NSY DN
1f GETRITCINHEADCR»Z DIV 4BY,ENTIERCZ MOD 48)) THEN
BEGIN ENTERCA, Ry 7, FALSE)S
IF B § NSYN THEN
FOR Y ¢ § STEP { UNTIL NSY DO
IF GETRIT(SCODCB,Y NIV 4BY,ENTIERCY MOD 48)) THEN
ENTERCA» Yo Z» TRUE)DS
END 2 R)
FOR] ¢ 3 STEP 1 UNTIL NSY DO REENTHERECI) ¢ FALSES
P2C ¢ 03 H2S(B8)3
FOR 13 ¢ { STEP { UNTIL P2C DO
ENTERCA» S1(13)» S2(13)» TRUE)S
END 113
NVAL ¢ NVAL = 1}

WRITE(<"PRONUCTION RECNGNITION FUNCTIONSt"/>)}
TABULATE("P2");
END BLOCK C 53
END BLOCK 3
END3S
SAV((T=T1)/3600)3 SAV(P?2CSAVF)}
WRITECPRINFIL» <9E842» "MCKEEMAN">, FOR T ¢ 1 STEP 1 UNTIL SI nO
RECORDCI1);
END,

29

€2,1)C1,2) SYNTAX PHRUCEDSUH, MCAFEMAN, JAN,

PRCOUCTIINS?
1 <PROGRAM>
e <SEXPK>
3
(] <TRUEPART >
5 <I¥F CLAUSE?
6 <SUM>
!
8
9
10
11 <PRIWANKY>
12
13
INTERMEDIATE SymunLs:
i SPROGRAM>

4

<1F CLAUSL>

TERMINAL SYMBOLSS

4
10
13
16

THE UNIQUEL TARGET SYMBUL 153
0e¢12, TOTAL ELAPSED =

TIVE =

tOF

(
)

>

* @

*OPPTPOO P+

8
11
14

EQF

<IF CLaUSE>

<SUM>

<EXPR>
IF

<SUM>
<SUM>

3
<PRIMARY>
JOENT
INTEGER

¢

<EXPR>
<SUM>

IF
IDENT
ELSE

<PKOGRAM>

0¢12 MIN,

60

1966

<EXPR>
<TRUEPART>

ELSE
<EXPR>

¢

<PRIMARY)>
<PRIMARY>

<EXPR>

12
15

EUF
<EXPR>

THEN

<PRIMARY>
<PRIMARY>

<TRUEPART>
<SPRIMARY>

+
INTEGER
THEN

INHEAD

o b 4t oo b o
VMBWLWRE OO BVO RS WA -

16
TIVE =

INTALL

WA= OOBN O BWNAN -

G fub Qub S ub

-
(%)

16
TIrE s

SYMBOL
<PROGRAM>
CEXPRY
C<JRUEPART>
<IfF CLAUSE>
<SUn>
<PRIMARY>
EOF
IF
¢

J10ENT
INTEGER
(

ELSE
THEN

)

SYMBOL
<PROGRAM>
<EXPRY
<TRUEPART>
<JF CLAVUSE>
<SUM>
<PRIMARY>
EQF
IF
+
TUENT
INTERER

(

ELSE
THEN
)

12345070890123456
0)
o %00 00000
00000 000000
L [
(N} 00000
] (XX

L]
0,04, TOTAL ELAPSED 3 0.16 MIN,

1234567092123456
[] []
[e .0 []
[} []
[] []
[X] [X] []
[0 []

0.08, TOTAL ELAPSLD = 0.20 MIN,

61

SINGLE CHAMACTER DLRIVATIVESS

N €3 OB NG LU & WA e

TIVE =

SYMBOL
<SPRUGRAMD
<EXPRD
CTRUEPART)>
<IF CLAUSE>
<3UM>
SPRIMARY>
EOF
If
¢

JOENT
INTEGER
(

ELSE
THEN

)

0,04, TUTAL ELAPSED =

1234567090123456

62

Sl

0,24 MIN,

&

-

e

P Cagereny

ALLUWED PHREUDECESSORS?S

SYKBOUL 1234567090123456
1 <PROURAM>
¢ <t XPR> 0 oo °
3 <TRULPART> .
4 <IF CLALSE> e ey °
s ‘SUH’ 0 e 0
6 ‘PR!MAR" (] oo e 0
? EOF o
0 IF T
9 + vee oo °
‘c . o8 oy .
11 TUENT N N YY) °
‘2 lN'tGER [] (Y K] °
13 ¢ e0 seee o
14 ELSE ’
15 THEN .
16 % . °
TIVE s 0,04, TOTAL ELAPSLO = 0.28 MIN,
ALLOWED SUCCESSORS:
SYmMgoL 1234567890123456
1 CPRUGKAMD
2 <EXPD ’ p
3 STRUEPART> .
q <IF CLAULSE> .
] <SUM> ¢ o0 XX
é <PRIMARY> ¢ 0o veo
1 E8F .
e IF .
$ ¢ ¢
30 .
11 10ENT Ll T
‘2 ‘N'L“lta * Q0o XX
13 (.
14 ELSE .
15 THEN o
16) ¢ oo (XX
TINE = 0.04, TOTAL ELAPSED = 0¢32 MIN,
63

HIERARCHY ANALYSIS FUNCTIONS!

PI"(<EXPR> FLSE {F) = PIn(2, 14, @AY = TRUE
P1%(<EXPR> FLSE +)y = PI"(2, 14» 9) = TRUE
PI"(<EXPR> ELSE -)y s PI"(2, 14, 10) = TRUE
P17(<FEXPR> FLSE 10ENT Yy = PI"(2, 14, 11) = TRUE
P1"(<EXPR> FLSE INTEGER y = PI"(2, 14 12) =3 TRUE
P17(<EXPR> FLSE (Yy = Pin¢ 2, 14, 13) = TRUE
P1"(<EXPR> THEN 1f Y = Piv¢ 2, 15, 8) = TRUE
P1"(<EXPR> THEN + Y = PiIn(2, 15, 9) = TRUE
PI"(<EXPR> THEN - Y = PivC 2, 1%, 10) = TRUE
PI1"(C <EXPR> THEN 1DENT) = P1vC 2, 1%, 11) = TRUE
P1"(<EXPR> THEN INTEGFR Y = PIn(2, 15, 12) = TRUE
P1"(<EXPR> THEN ¢) = Pi"(2, 15, 13) =3 TRUE
P1™(<EXPR>) FNF) = PI"(2, 16, 7)Y = TRUE
PI™(<EXPR>) +)y 3 PIw(92, 16, 9) = TYRUE
PLI%"(<EXPR>») - Y 3 PI"(2, 1A» 10) 3 TRUE
PI"(<EXPR>) FI.SE) = PInt 2, 16, 14) = TRUE
P1"(<EXPR>) THEN) = PIn(2, 16, 15) = TRUE
PLI"(<EXPR>)))y 3 PI"¢ 2, 16, 16)Y = TRUE
P1"(<TRUFPART> <FXPR> EOF Yy = PIw(3, 2, 7)Y = TRUF
P1"(<TRUEPART> <EXPR> CLSE) = PInC 3, 2, 14) = TRUE
P1"(<TRUFPART> <EXPR> THEN) 3 Piv¢ 3, 2, 15) = TRUE
P1"(<TRUEPART> <EXPR>)) = Pin(3, 2, 16) = TRUE
P1"(<TRUEPART> <IF CLAUSE> IF)y = Pi"C 3, 4, 8) = FALSE
PI"(<TRUFPART> <IF CLAUSF> ¢+ Yy = Pi"C 3, 4» 9) = FALSE
P1"¢ <TRUEPART> <IF CLAUSE> =)y = In(3, 4, 10) = FALSE
P1"(<TRUEPART> <IF CLAUSKE> INENT Y = PI"(3, 4s 11) = FALSE
PI"(<TRUEPART> <IF CLAUSE> [INTEGFR)y = PIn(3, 4, 12) = FALSE
P17"(<TRUEPART® «<¢IF CLAUSE> () s PI"C 3, 4» 13) = FALSE
P1"¢ <TRUEPART> <«SUwm> + Y = PI"(3, S5, 9) = FALSE
P1"C <TRUEPART> <SUu> - Y s PInl 3, S5, 10) = FALSE
P1"(<TRUEPART> <PRIMARY> + Y = PI"(3, 6» 9) = TRUFE
PI"(<TRUFPART> <PRI“ARY> -) = PI"¢ 3, 65 10) = TRUE
P1"(<TRUFPART> IF 102) = PIn(3, B8, B8) = FALSE
PI1"(<TRUEPART> 1IF +) = PIv(3, B8 9) = FALSE
P1"¢ <TRUFPARY> IF -)y s PI"(3, B8, 10) = FALSE
PI"(<TRUFPART> IF JOENT)y = PI"(3, B8, 11) = FALSE
PI"(<TRUFPART> I[F INTEGFR Yy = PI"C 3 B8s 12) = FALSE
P1Y”(<TRUFPART> IF (Y = Piw(3, A, 13) = FALSE
P1"(<TRUFPART> + 1NENT) = PIv(3, 9, 11)Y = FALSE
P (<TRUFPART> o INTEGFR Y 3 PI"C 3» 9» 12) = FALSE
PI"(<TRUEPART> + ¢ Yy = PI"C 3, 9, 13) = FALSE
PL"(<TRUFPART> = IDENT) = Pi"(3, 10, 11) = FALSE
PI"(<TRUFPART> = INTEGFR Y = PI"C 3, 10, 12) = FALSE
PI"(<TRUEPART> = () = Ptv(3, 10, 13) = FALSE
PLI"(<TRUFEPART> IDENT +) = P{"(3, 11» 9) = TRUF
PI"(<TRUEPART> [IDENT -) = Pin(3, 11, 10) = TRUE
PI"C <TRUFPARY> INTFGER +) = PIv(3, 12, 9) = TRUF
PI"(<TRUFPART> INTFQER ®) s Piv¢ 3, 12, 10) = TRUF
PI"(<TRUEPART> ¢ IfF) = PIw¢ 3, 13, B8) = FALSE
P1"(<TRUEPART> ¢ +) = PI1"(3, 13 9) = FALSE
PI"C <TRUEPART> (- Y = PI"(C 3, 13, 10 = FALSE
P1"(<TRUEPART> (INENT) = PI"C 3, 13, 11) = FALSE
PI"(<TRUFPART> (INTEGER Y = PI"C 3, 13, 12) = FALSE

64

P1"(
PI™(
P1"(
PL™(
Piv(
Py"(
PL"(
P1"(
PL%(
Py%(
PIY(
P1"(
P1"(
pP1"(
PI"(
PLI%(
PI¥(
Pi"(
P1"(
P1"(
P1"(
pin(
PI%¢
PLI™(
PL"(
PI"(
P1"(
PL(
P1"(
PIv(
Py
PI"(
P1"™¢(
[B ¢
PLI"(
P1%(
P1%(
P1"(
pLIY(
PL™(
P1"¢(
P1"(
PL¥(
PI"¢
PI(
P17(
PI"(
PL"™(
P1"¢(
P1%¢(
P17(
PI"¢(
pPIn(
PLI"™(
PI"(

<TRUEPART>

<1F
<IF
<IF
<IF
<IF
<]F
<IF
<IF
<1f
<IF
<1IF
<IF
<IF
<IF
<If
(312
<1f
<IF
<lf
<If
<IF
<IFf
<IF
<IF
<IF
<IF
<IF
<IF
<IF
<1F
<1F
(313
<IF
<IF
<1f
<IF
<If
<1F
<IF
<IF
<IF
<IF
<IF

CLAUSFE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
cLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
cLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSED>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAVUSE>
CLAUSE>
CLAUSE>

<SUM>
<SUM>
<SUM>
<SUM>
<SUMD>
<SUM>

EOF
eoF
EoF
EOF
eoF

(¢
<EXPR> ELSE
<TRUEPART> 1IF
C<TRUEPART> ¢
<TRUEPART> =
<TRUEPART> IDENT
<TRUEPART> INTEGER
<TRUEPART> ¢

<IF CLAUSE> IF

<IF CLAUSE> +

<lF CLAUSE> =

<]F CLAUSE> IDENT
<IF CLAUSE> INTEGFR
<IF CcLAUSE> ¢

<SUM> +

<SUM> -
<SUM> ELSE
<PRIMARY)> +
<PRIMARY> -
<PRIMARY> ELSE

1F 1F

IF +

1F .

1F INDENT
1F INTEGFR
IF (

* INDENT

¢ INTEGER
¢ (

- IDENT

- INTEGFER
- (

T1DENT ¥

10ENT -

1DENT ELSE
INTEGER ¢
INTEGER -
INTEGER ELSE

4 1F

{ +

(-

¢ I1DENT

(INTEGER
¢ (

+ IDENT

+ INTEGER
* ¢

- JI0ENT

- INTEGER
- (
<EXPR> EOF

<IF CLAUSE> IF

<lF CLAUSE> ¢

<IF CLAUSE> =

<IF CLAUSE> IDENT

65

oA A A A A A A A A A A A A ECRCA - ASESESESE A A A - AV RV EY RV EVEVEVEVEVEVEVIVEVREVEVRVEVEVRVEWIRVEVRES IRV RV RSN ONE

A0 88" 0 0 08N B0 XN 0N BN N NEWNNN O NS BN NRENR NN NERNE NN NN NN RS

Py %
P1"(
Py"(
Pen(
Pin(
Pyn(
Pin(
Pyn(
Pen(
Pyn(
P1"(
Pin(
Pin(
Pin(
Pyn(
P1"(
P1n(
P1%(
Pyn(
Pin(
Py%(
P1n(
P1v(
P1n(
P1n(
Pyn(
Pi"(

. P1n(

Pyw(
P1n(
Py"(
Pi"(
Py%(
PLn(C
Pyn
P1"(
P1n(
P1"(
P1%¢
Py"C
Pi"(
Pin(
P1n(
P1%(
Pin(
Pin(
P1%(
P1%(
P1%¢
Pin(
Pin(
Pyn(
P1%(
P1n(
P1"(

13,

10,
10,
10»
2
&4
b4
4,
4

13)
14)

9)
10)
11)

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE

TRUE

TRUE

TRUE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSF.
FALSE
FALSE
FALSE
FALSE

L 3

PL"™(
PL™(
PL"(
PLI"(
PI"(
P1"(
P1%(
P1"(
PI"™(
PI%(
PI"(
P1"(
P1"(
P1%(
P1"(
P1"(
pI"(
PI"(
PI"(
PLI"(
P1"¢
PLY(
PLIY(
PL"(
P1"¢
PLI™(
PL"(
PI"(
P1"(
PI"™(
pPLI"(
P1"™(
PI™(
PIv(
PI"™(C
PI"(
PI"(
P1"¢(
-3 S ¢
PI"(
PI"(
P1"(
PLI"(
PI™(
P1%(
PL"(
PL™(
P1"(
P1"(
PL"(
PI"™(
PI"(
PI"™(
P1"(
P1"(

EOF
EOF
EOF
E0F
EOF
EOF
EOF
EOF
EQOF
EQF
EOF
EQF
EOF
ENF
EOF
EoF
€oF
EOF
€or
EOF
EOF
EOF
E0F
EOF
EOF
EOF
EOF
E0F
ENF
€nf
EOF
EOF
IF

17

1f

IF

142

IfF

IF
IF
IF
1F
IF
IF
IF
IF
IF
112
IF
If
1F
IF
IF
IF

<lF CLAISE> INTFEGFR
<IF CLAUSE> (

<SUMD>
<SUM>
<SUM>
<PRIMARY)>
<PRIMARY>
CPRIMARY>

IF
IF
IF
1F
1F
IF
.

s 8 ¢+ <

IDENT
INENT
JDENT
INTFEGER
INTFGER
INTEGER

(

o R o Wa W

¢

<EXPR>

<lF
<IF
<IF
<lF
<IF
<lIF

CLAUSE>
cLaAUSE>
CLAUSE>
CLAUSE>
CLAUSE>
CLAUSE>

<SUM>
<SUm>
<SUM>
<PRIMARY)>
<PRIMARY>
<PRIMARY>

IF
IF
1F
IF
IF
1F
+

L
+
-

FOF
+
cof
+

1F

+

IDENT
INTFGER
¢

I0ENTY
INTEGER
(

T1DENT
INTEGER
(

E0F

+

FOF
+

IF
+

T1DENT
INTEGER
(

THEN

IF

+

IDENT
INTEGER
(

IF

INDENT
INTEGER
¢

IDENT
INTEGFR
(

INENT

66

(R EVREVRORS y
P Al P AP NP D NP P P P D PNl P P D P P NP D D NP P D P P P P P PP NP D D PP P PP P P P PP P NP S

PYw(
P1n(
Pyn
P1%(
P1"(
P1"¢
P1m(
Piw(
P1%(
Pyw(
P1*¢
Pin¢
1w
P1n(
P1"(
PLn(
PL"C
P1n(
P1n(
Pi"(
P1w(
P1"(
Pyw(
Pyn(
PLw(
Pyn(
Pin(
PL"(
PLm(
P1n(
PLn(
P1n
PIn(C
PLm(
PL"(
PLw(
Py"(
Pi%¢
PLw(
P1"(
P1%(
P1%(
PL"(
P1"(
P1"(
P1"(
P1"(
P1%(
PE"(
PLmC
P1%(
Pi%(
Pyw(
Pi"(
Piv(

4,
4,
S
5
Se
6
(.Y
(Y]
8
8,
8,
A
8,
B,
9,
9,
9,
10,
10»
10,
11,
11,
11,
12,
12»
12»
13,
13,
13,
13,
13,
13,
ry)
4,

4,
4
4,
4,
S
S
S»

6»
6,
B,
8,
8»
8,
A
B,
9,
9
9
10»

12)
13)
7)
9)
10)
7)
9
10)
8)
9)
10)
11)
12)
13)
11)
12)
13)
1B P
12)
13)
7)
9)
10)
7)
9)
10)
8)
9)
10)
11)
12)
13)
15)
8)
9)
10)
1)
12)
13
9)
10)
15)

10)
15)
8)

10)
1)
12)
13)
11)
12)
13)
1)

FALSE
FALSE
TRUE

FALSE
FALSE
TRUE

TRUE.

TRUE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE

TRUE

TRUE

TRUE

TRUF,

TRUE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE

TRUE

TRUE

TRUE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

PL"(
PL"(
P1"(
Pi”(
PI"(
P1"(
P1%(
PL%(
PL®(
P1"(
PL"(
P1"(
PL"(
PL"(
PI"(
PL*(
PI"(
PL"(
PL"(
P
PL"(
PL1"(
PLY(
PL"(
P1%(
PL(
PL"(
PL"(
PL™(
PI"™(
pLv(
P1"¢
pLm(
PL"(
PL"(
P1%(
PL"(
PL"(
PL"(
P1"¢(
P1"¢(
PI"(
pLY(
PLY(
PL"(
PL"(
PL"(
PL"(
P1"¢
pPL"(
P1"(
PL1"(
PI"¢
PL"(
PL"(¢

lll!ll.llllllllllf#ff#’*#’###*####0006000

IDENT
10ENT
IDENT
INTEGER
INTEGER
INTEGER
(

[I o W W WP

<EXPR>
<EXPR>
<EXPR>
<EXPR>
<EXPR>
<EXPR>
<SUM>
<SUM>
<SUM>
<SUM>
<SUM>
<SUM>
<PRIMARY>
<PRIMARY>
<PRIMARY>
<PRIMARY>
<PRIMARY>
<PRIMARY>
(

(

(

(

(

(

<EXPR>
<EXPR>
<EXPR>
<EXPR>
CEXPR>
C¢EXPR>
<SUM>
<SUM>
<SUM>
<SUM>
<SUM>
<SUmM>
<PRIMARY>
<PRIMARY>
<PRIMARY>
<PRIMARY)>
<PRIMARY>

INTEGER
(

+

THEN

+

THEN

IF

+

INENT
INTEGER
¢

FOF
+
ELSE
THEN
)
EOF
+

ELSE
THEN
)
EOF
+

ELSE
THEN
)

IF

+
IDENT
INTEGER
(

F.OF

+
ELSE
THEN
)

EOF

+

ELSE
THEN
)
EOF
+
ELSE
THEN

67

vvvuvvvvvvvvvvv W AP NP -~ -—r
vvvkuwuvvvvvv
uvvvwvuvvvkuvv
~r o - N o

P
P1n(
P1w(
P
P
P
Pl"(
PLn(
P1w(
PLm(
Py
PImC
Piv(
Py
P1m¢
P (
P (
PIm
PimC
Pl"(
P1m(
P
P
PLn(
Py
P (
Py
Py
P1"(
P1"(
P1n(
Pyv(
P
P1"(
PL%(
P1n(
Pim(
P1"(
Py
Pyn(
P
PLn(
Piw(
Pyw(
Pin(
P
Pym(
P1"¢
P
P1nC
Pin(
PIm(
P1%(
P
PIn¢

10,
10,
10,

10,
10,
11,
11,
11,
12,
12»
12,
13,
13,
13,
13,
13,
13,

ry)

)
2

2
S»
S5

S»
S
S»

6,
Y]
6

6,
13,
13,
13
13,
13,
13,

2

-4

2

2

2
S
S
S»
S»
S,
S»
(.Y}
6»

(.Y
6»

12)
13)

9)
10)
15)

9)
10)
15)

9)
10)
11)
125
13)

7)

9)
10)
14)
15)
16)

FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUF
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUF
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

P1"(
P1%(
PI"(
P1"(
PL1"(
(3 Bed ¢
P1%(
P1%(
P1%(C
L ¢
PI"(
P1"¢
PL%(
P1"¢
P1"(
P1"(¢
L Pl
P1"(
P (
P17 ¢
P1"(
P1"(
PLI"(
P1Y(
P1"¢(
P1%¢
P1"¢
PI"(
PL"(
P1"(
P1"(
PL™(
P1"(
P1"¢(
Pin(
P1"(
L el
P1"(
PI"(
PL"(
P1%(¢
P1"¢
o3 Bl
P1"(

TIME =

<PRIMARY>

(
(
(
(
(

(
<E.XPR>

<]F CLAUSFE)>
<lF CLAUSE>
<lF CLAUSE>
<IF CLAUSFE>
<1F CLAUSE>
<IF CLAUSE>

<SUM>
<SUM>
<SUM>

<PRIMARY>
<PRIMARY>
<¢PRIMARY>

1F

IDENT
JOENT
1DENT
INTEGER
INTEGER
INTEGER
(

¢
(
(
¢

¢ ¢
262 FUNCTION VALUESs, DFNSITY 2
0¢18, TOTAL ELAPSED =

)

IF

+

INENT
INTEGFR
(

)

IF

¢

10FNT
INTEGFR
(

¢ i)b

TNDENT
INTEGER

(
IDENT
INTEGER

(
I0FNT
INTEGER

F

ot B ¢ b+

INENT
INTEGER

68

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

6,“(:” ENY
0e37 MIN.

B 0 0 H NN B KRNE NN N NN NN NS NN NN B NN NN H NN NN NN NN N8R

=
RIE

P (
P1%(
P1%(
P1%(
P1"(
P1%C
P1"(
PLm(
P1"C
P1m(
P1"(
P1"(
P1wC
PL"¢
PL"(
P1"(
P1"(
P1"(
P1%(
P17 (
P1"(
P1"C
P1"(
P1"(
P1"(
P1"C
P17(
P1"(
PIw(
P1"(
PI"(
PL"(
P1w(
P1"(
P1"(
P1%¢
PLv(
P1%(
PL"(
P1m(
P1"¢
PIn(
P1w(
PLw(

10,
10,
10,
10,
10,
10,
10,
13,
13,
13,
13,
13,
13,
13,
13,
13,
13,
13,
13
13
13,
13,
13,
13,
13,
13,
13,
13,
13
13,
13,
13,
13,
13,
13,
13,
13,
13,
13,
13,
13,
13,
13,
13,

S/VALUE

.Y
13,
13,
13,
13,
13,
13

2»

4

4

4y

4

4,

4

S»

S»

S»

6

(.Y}

6»

8,

8,

8»

8,

8,

8,

9

9,

9
10,
10,
10,
11>
i1,
11»
12»
12»
12,
13,
13,
13,
13,
13,
13,
1,00

16)
8)
9)

10)

i1)

12)

13)

16)
8)
9

10)

1D

12)

13)
9)

10)

16)
9)

10)

16)
6)
9)

10)

1)

12)

13)

11)

12)

13)

1B

12)

13)
9)

10)

16)
9)

10)

16)
8)
9)

10)

11)

12)

13)

TRUE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE

TRUE

TRUE

TRUE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

PRODUCTION RECOGNITINN FUNCTIONSS

Pan(
pen(
P2"(
Pa2"(
p2"(
P2"(
pa"(
P2"(
pav(
Pan(
P2"(
per(
P2"(
p2"(
P2"(
P2"(
pa"(
p2" ¢
pen(
p2"(
p2"(
pa"(
P2%(
p2"(
P2"(
P2"(
pan(
P2"(
pan(
P2"(
Pzﬂ(
pa"(
P2"(
p2"(
P2"(
pan(
pan(
P2"(
pan(
P2"(
Pa"(
P2"(
P2 (
P2"(
P2"(
p2"(
pa"(
pe"(
p2"(
P2"(
p2"(
pe"(
p2"(

<EXPR>
CEXPR>
<EXPR>
<EXPR>
<EXPR>
<EXPR>
<EXPR>
CEXPR>
<EXPR>
<EXPR>
<EXPR>
<EXPR>
<EXPR>
<EXPR>
<EXFR>
<EXPR>
<EXPR>
<EXPR>
<TRUEPART>
<TRUEPART>
<TRUEPART>
<TRUEPART>
<TRUEPART>
<TRUEPART>
<TRUFPART>
<TRUEPART>
<TRUEPART>
<TRUEPART>
<TRUEPART>
<TRUFEPART>
<TRUEPART>
<TRUEPART>
<TRUFPART>
<TRUEPART>
<TRUFEPART>
<TRUEPART>
<TRUFPART>
<TRUEPART>
<IF CLAUSFE>
<SUM>
<SUM>

EOF

EOF

ENF

EOQF

EOF

IF

IF

1F

1F

1F

+

+

FLSE
FLSE
ELSFK
ELSE
FLSF
ELSE
THEN
THEN
THEN
THEN
THEN
THEN
)

)
)
)
)

)

CEXPR>
<F.XPR>
<EXPR>
<EXPR>
<SUM>
<SUM>
<SUM>
eSUmd>
<PRIMARY>
<PRIMARY>
<PRIMARY>
<PRIMARY>
10EMT
1DENT
IDENT
1DENT
INTFGER
INTEGER
INTFGER
INTEGER
<TRUEPART>
+

<EXPR>
<SUM>
<PRIMARY>
J0ENT
INTEGER
<CEXPR)>
<SUM>
<PRIMARY)>
JDENT
INTEGER
<PRIMARY>
<PRIMARY>

IF
+

IDENT
INTEGER
(

1F

+

INENT
INTEGFR
(

EOF

+

ELSE
THEN
)
EOF
ELSE
THFN
)
e0rF
ELSE
THEN
)
EOF
ELSE
THEN
)
E£OF
ELSF
THEN
)
EQF
FLSE
THEN
)
<EXPR>
<PRIMARY)>
<PRIMARY>
EOF
£0F
ENF
£OF
£OF
THEN
THFN
THEN
THEN
THEN
F.OF

Wl Nl Wl W N Nl P NP NP AP P NP N NP NP P NP NP NP NP P NP NS vwvvuvvvavvvvwwvvkuvvvvvvuvv

pant
Pan(
PZO"
P2"(
pgn(
Pa"(
pan(
Par(
pan(
pan(
Pan(
Pan(
P2v(
P2n(
Pan
pan(
P2n(
P2"(
P2n(
Pan(
A ¢
pan(
pPav(
Pa»(
Pav(
pan(
p2nr(
Pan(
P2n(
P2"(
pan(
Pan(
Pov(
pan(
P (
pan(
past
P2"(
P2n(
P2n(
P2 (
pan(
A ¢
Pan(
P?"(
par(
Pan(
p2"(
p2n(
2 |
pon(
Pan(
pan(

14,
{4,
14,
14,
14,
14>
15,
15,
15,
15,
15,
15,
16,
16»
16,
16,
16
16
2
ry)
2
-y
S»
S,
S»
S5»
6,
6»
6,
6
11»
11,
11,
11,
12»
12»
12»
12»
3,
9
10»
2
5»
6
11
12»
2
S»
6»
11»
12,
6
6»

8)

9)
103
1)
12)
13)

8)

9)
109
11)
12)
13)

7

9)
10)
14)
15)
16)

7)
14)
15)
16)

7
14)
15)
16)

7
14)
15)
16)

14)
15)
16)
7
14)
15)
16)
2)
6)
6)
7
7)
7
Wl
7
15)
15)
15)
15)
15)
)
9)

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
FALSE
TRUF.
TRUE
TRUE
TRUE
FALSE
FALSE

pa"(
pP2"¢(
pa"(
pa*(
p2"¢(
P2"(
P2"(
p2"(
“pan(
P2"(
pe"(
pa"(
P2"(
pan(
Pan(
pen(
Pe"(
pa"(
pe"(
P2"(
pan(
p2"(
PR"(¢
p2"¢(
P2%(
pe"¢(
P2%(
pa™(
p2"(
P2"(
pa"(
P2%(
pan(
pa"¢
P2"(
pa"(
pe*(
p2"(
P2"(

AAAAN I I TSI 10 8088 3 03 800 3 84 00ttt

<PRIMARY)>
<PRIMARY>
<PRIMARY>
<PRIMARY>
JOENT
10ENT
1DENT
10ENT
1DENT
JOENT
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
¢PRIMARY>
<PRIMARY>
<PRIMARY>
<PRIMARY>
<PRIMARY>
<PRIMARY>
INDENT
10ENT
I0ENT
1DENT
I1DENT
IDENT
INTEGER
INTFGER
INTEGER
INTEGER
INTEGER
INTEGER
CEXPR>
<SUM>
<PRIMARY>
IDENT
INTEGER

ELSE
THEN

EOF

ELSE
THEN

EOF

ELSE
THEN

EOF

ELSE
THEN

€EOF

ELSE
THEN
)
EOF
+
ELSE
THEN
)

)
)
)
)

~r

92 FUNCTION VALUES, DFNSITY =

TIME

0«06, TOTAL ELAPSED =

AP AP WP AL AL P Ol P P NP S P SO P D P P PP P P B D D N D D B NP P D B P NP NP P P P P

P2»(
P2r(
rdad ¢
P2n¢
Pan(
pan¢
Pa2n(
Pa«(
Pa2v(
P2v(
pan(
Pan¢
pan(
pa2n(
Pan(
Pan(
pPan(
P2*%(
P2%(
P2"(
pan(
Pan(
par(
pan(
- Al ¢
P2n(
Pan(
p2v(
pan(
A ¢
P27¢
Pan(
pan(
Pan(
pPan(
p2n(
P2n(
pPan(
pan(

10»
10,
10»
10,
10,
13
13,
13
13,
13

2.25%, ENTRIES/VALUE

0e42 MIN,

70

10)
14)
15)
16)

7

9)
10)
14)
15)
16)

7)

9)
10)
14)
15)
16)

7

9)
10)
14)
15)
16)

9
10)
14)
15)
16)

7)

9)
10)
14)
15)
16)
16)
16)
16)
16)
16)

FALSE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
TRUE
TRUE
TRUE
TRUE

SECTION 3

THE KERNEL LANGUAGE

Principles of Design

The kernel language must above all provide the programmer with a
convenient means for controlling an automatic digital computer. Our
first task is to discuss several general principles of language design
and the contribution each makes toward the final form of the kernel
language.

We require that the language be minimal in that the forms of the
language must be concise and that there be as few kinds of forms as
necessary. The conciseness and mnemonic significance of expressions in
program text will depend upon the available character set as well as the
aesthetic suitability of the multicharacter symbols chosen to represent
the various linguistic entities. We have exercised considerable care in
choosing the forms for the kernel language, drawing from the notatiocns
of Algol, BEuler [25], Iverson's language [15] and PL/I[14]. We neverthe-
less realize that our readers with different experience in language or
with different hardware may take strong exception to our choices. Our
interest is primarily in the organization behind the linguistic fagade
and we take refuge in the realization that the language user can choose

his own forms with the aid of the mechanisms of the extendable compiler.

i

We minimize the number of different structural forms by requiring
that the kernel language be involuted. Involution is achieved by avoiding
constructs that are applicable only in local context; we give some examples
of failures in existing computer languages.

In Algol 60 we find the following isolated features:

(1) A primitive list structure in the constructs <for list>
and <actual parameter list> which is unavailable elsewhere (for instance,
to be used in array initialization).

(2) General call by name is available only through actual paraceters.

(3) Dynamic memory allocation is available only at block entry.

We also find that most compilers provide a separate language for inp.t
and output which includes only a fraction of the power of the compiete
language. In each case the power of the language can be increased, the
number of primitive concepts reduced and the compiler simplified by
bringing the action out into the main program on a level with other
statements.

By choosing operators and data types to reflect closely the mental
processes of the language user we can substantially add to his ability to
write brief and lucid programs. With distressing frequency we find that
existing computers are illesuited to the tasks thus set. We wiil find that
our goal of designing a mutable computer language frequently implies a
more anthropoid machine.

A program can be viewed as a sequence of operations on a data
structure. It is necessary to provide the programmer with forms designed
to control the sequence conveniently. We find that with a sufficiently

elaborate set of sequence controlling forms, we have no need for the

more traditional labels and go-to statements. Lest we be misunderstood,

72

the inclusion of labels would not appreciably complicate the translator.

We would regard the appearance of the label definition as an instruction

to initialize the corresponding local variable to an appropriate value

of type label upon entry into the scope of the variable. The mechanics

of implementing the go-to statement are given in Wirth and Weber ([25] p 52).
We feel that labels are an anochronistic holdover from early computer

languages and are not in the collection of basic concepts.

Whenever possible we defer actions to a later time. A deferred
action implies an increased freedom since we have preserved our ability
to choose what action, if any, to take.

In particular, we shall require that each value be marked with its
type during execution. In this way we can meke the machine operators
dynamically data dependent.f

The extendable compiler is a translator from the kernel language
into a machine language. That language will generally be a mixture of
direct commands to the hardware and interpretable information to direct
the hardware and other programs present at execution time. We will call

the prégram structure present at execution time the interpretive system

(or simply, the system) to distinguish it from the hardware.

t Consider, for instance, the effect of the arithmetic operators in

Iverson's language ([15], p 13). Dynamic typing demands a memory
organization substantially different than any known to the author. It
can be avoided by adding typing information to the declaration structure

of the kernel language.

13

The program, the system and the hardware form three levels of
co?trol over the action of the machines. It is possible to have even
more levels of control than those described here. For instance, the
microprogramming feature of the IBM System 360 line of machines [19]
could be inserted between the interpreter and the hardware.f We may
change the system at any level. As we progress down the levels, the
changes become more difficult (more expensive) and the results are more

general.

Example Programs in the Kernel Language

We have implemented an extendable compiler for the kernel language
on the Burroughs B5500. The actual compiler and its description are given
elsewhere [20] but we wish to present the results of the execution of
selected kernel language programs as motivation for the sequel. (Note
another extensive example on page 35.)

We give severel trivial examples which are essentially self-
explanatory and finish with a version of the extendable compiler written
in the kernel language. The programs and output are given in typescript
instead of actual computer listing because the B5500 character set is not
sufficiently rich to produce readable listing. We present the B5500 listing

of the first example for the purpose of reader comparison.

T This has in fact been done by H. Weber for Euler IV on IBM 360 model 30.

T4

Example 1. The procedure assigned to the identifier "factorial” gives
the usual recursive definition of the factorial function. The local
variable '"n" 4is initialized from the parameter list when the procedure
is activated. Note the subscript "[1]". If it were omitted the procedure
would return a value of type list with one member equal to the required
factorial. The subscript, here analogous to the assignment to a procedure
jdentifier in Algol 60, serves to select the desired value.

Note also that the identifier "k" does not appear in the declara-
tion of its list. It is local to the scope of the iterative statement

and is declared by its appearance as the control variable,

{new factorial,
factorial e-<:)
(newn, if n = O then 1 else n X factorial(n-1})[1],
for all k from 1 to 6 do
out « (k base 10) & " factorial =" &
(factorial{k) base 10) 6 cr
} eof

*¥% output *¥*

1 factorial = 1

2 factorial = 2

3 factorial = 6

4 factorial = 2k
5 factorial = 120
6 factorial = 720

B5500 Version of Example 1.

75

ssfijRe=
57

<
0

CONTAL
0

MO0
0

NAME
121

suBs
a7

MINUS

BEGIN t TEST PROGRAM FOR RECURSIVE FACTORIAL

NCW FACTORIAL No»

FACTORIAL «

4

BEGIN NEW N»

IF N = 0 THEN | ELSE NXFACTORIAL BEGIN Ne1}

ENDT1)»

FOR ALL N FROM § T0 6 DO
DUT ¢ (N BASE 10) CAT " FACTORJAL = " CAT
(FACTORIAL BEGIN N END HASE 10) CAT CR

[\ I S
N &
o

720

1110 INSTRUCTIONS EXECUTED

END EOF
¥t output e
{ FACTORIAL =
2 FACTORIAL =
3 FACTORIAL =
4 FACTORJAL =
S FACTORIAL =
6 FACTORIAL =
CAT UNION
18 0
< = -
0 27
EQv MAX
0 0
v *
0 0
0 0
/ PD
0 1
JOF BRF
27 6
CALL AP
27 175
0 0
ABS TYPE
0 0

INTER

P
0

MIN
0

NOTMEM

ROUND

76

DIFF

€os

0

LENGTH
0

BASE
12

21
LIST

BRB
END
56

FOR

CHOP

5

ENO

OR

MEM

21

0

FETCH
102

XEQ
0

FORXIT
1

AND

INCL

0

XCG
1

CASXIT
0

earp
1

NOT

Example 2. Inner product.

{ out « ((+/ (1,2,3) x {3,2,1)) base 10) @ cr} eof
X output (HH*

10

Example 3. A simple sort procedure.

(new sort,

for all i from 1 to length x do
for all J from i+l to length x do
(if x[i] > x[3] then x(({1,3j}] « x[(3,i)]),
X
J2],
for all i from sort((6,5,4,3,2,1}} do
out « (i base 10) @ cr
} eof

¥ output k%

A\ FEFW -

7

Example 4, A procedure to generate all the permutations of an

ordered set.

(new perm,

if 0 = length x then (x) else
®/(for all i from 1 to length x do
for all t from perm(x[1 to i-1] @ x[i+1 to length x])
do x[1i to 1] & t)
J(1],
for all test from ("™, "a", "ab", "abc", "abcd") do
for all p from perm(test) do out «p cat cr
} eof
*%¥¥ output e

a

ab
ba
abce
achb
bac
beca
cab
cba
abed
abdc
acbd
acdb

etc.

78

Example 5. The following program is a compiler-executor for a small
language. The organization of the program is essentially that of the
extendable compiler written for the Burroughs B5500. We will make
comments on the kernel language constructs used, the organization of
the compiler-executor and the implementation of the small language.

We find the following major sections: (1) The syntactic analysis
tables, (2) The scanner, (3) The compile actions definition and the
compiler, (4) The execute actions definition and the executor, (5) The
test program and its output.

In the outermost list we find the declaration of all the global
identifiers. To seven of them we find immediate assignments of syntactic
analysis tables. The tables are best understood in reference to the
Backus-Naur Form description of the small language contained in the com-
ments in the compile action definitions. The table "reservedsymbols”
is a 1list of strings which correspond to the nonterminal and terminal
symbols in the grammar. The position of a symbol in the list is called

its symbol number.

The table "productionrightparts" is a list of lists, each of the
latter corresponding, in order, to the right part of a production
(<program> is symbol 1, eof is symbol 15, (1,15} corresponds to
<program>eof). "productionleftparts" contains the symbol number of the
left part of the corresponding production.

The next four tables are linearized representations for the parsing
functions P1' and P2' which locate the right and left ends of the
next CRS. All seven tables could have been produced by a syntax pre-

processor similiar to the symbol pair -algorithm of Section 2.

19

The scanner must fetch the next terminal symbol from the input
text each time it is called. In the case of the small language this
means identifying digits (which are less than 10 in our character set),
catenating identifiers (letters are less than 36), matching reserved
identifiers with their syntactic symbol numbers, entering variables into
the symbol table and matching special characters with their syntactic
symbol numbers.

Now skip ahead to the procedure assigned to "compile"”. After some
initializing we find "while compiling do" which controls a loop down to
the end of the procedure. Within that loop we immediately find the syn-
tactic analysis algorithm. In the first inner loop we are scanning ahead
to the right under control of the linearized form of function Pl'. Having
located the right end of the CRS, we exit, the loop and enter a loop scan-
ning for the left of the CRS under control of the linearized version of
function P2', At the termination of the second loop, we may compare the

CRS with the production right part table to find the production number

”n ”

pa™.

"pn" is used as a subscript to select the compile actions corres-
ponding to that production from the preceding table. The prescript
operator "[compileactions[pn]]™ causes the execution, in order, of actions
from the explicit list following the prescript. For instance, the dis-
covery of production two would cause the integer 12 to be placed in the
code array, the program pointer to be incremented and the variable
"compiling” to be set to false, thus terminating compilation.

At the termination of each compilation step we find the substitution

of the production left part for the CRS.

80

The compiler is considerably simplified by having the entire code
array and execution memory available at compile time.

The translated code for the small language consists of a sequence
of twelve operation codes. Within the procedure assigned to "excute"
we find another prescript "[executeactions[code[ppl]]". The operation
code in "code[ppl]" is used to select a sequence of execution actions
from the preceding table., Execution proceeds until the operation code 12
causes the execution action "executing « false" whereupon execution

terminates.

81

'Micro-mutant, a small version of the extendable compiler!

(new code pp memory variables mp text tp f1 gl f2 g2
reservedsymbols productionleftparts productionrightparts
compile compileactions execute executeactions

scan nextsymbol scanval,

'Seven tables prepared by a syntax preprocessor'

reservedsymbols « 'syntactic vocabulary'

("<program>", "<stmt>", "<stmtl>", "<if clause>",
"<label>", "<list head®", '"<expr>", "<exprb>",
"<arith exp", "<tem>", "<temD", "<factor>",
"<integer>", "<var>", "eof", "go", "output", "if",
"<ident>", "pegin", "(", "<digit>", "end", "to",
Nat, M,M, MeM, nan, Nn, "/": "then", ")"],

productionrightparts «

([1’15]) (15)2)15]} (3]) [5)3], [hijl) [6)25]!
(16,24,7), (17,7}, (7}, (18,7,32), (5,25}, (20,2),
(6,26,2), (8), (14,27,8), {9}, (9,28,10}, (9,29,1C),
(10}, (11}, (11,30,12}, (11,31,12}, (12}, (14},
(13}, (21,17,33), (22}, (13,22}, (19)),

productionleftparts « (1,1,2,3,3,3,3,3,3,4,5,6,6,7,8,
8,9,9,9,10,11,11,11,12,12,12,13,13,1k4},

fl - [1)2)511)1)1’3”"’}“)5)5)6)6)6,5’1}1’1)79111}7’5’
1,7,1,1,1,1,1,1,7,6},

gl - [l’l)l’l)l’l)l)lil,l)l)1)1’1’2’5)3)5)3)3)5)6’1,
1,7:15611")1‘:5:5’5,5]:)

f2 o [1)1)1)6)6)1)19-131’1)1’1)1’1)7’1)5’ 5)1.'7)5}1,1’
5,1,7,4,3,3,2,2,1,1},

82 = (1’7)691)111)5)“)1)5)1)2)1)1,111)1’1)l}lil,l,l,
l)l)l’l)l)l’lil)l)l])

scan ¢« ® 'fetch the next terminal symbol from the text!®
(new t, while text[tp] =" "[1] do tp « tp + 1,

if text[tp] < 10 then

{nextsymbol « "<digit>" index reservedsymbols,

scanval « text{tpl, tp «tp +1

} else

if text[tp] < 36 then
('catenate an identifier

t « tp, while text[tp] < 36 do tp « tp + 1,
tp-1],

t « text[t to
nextsymbol «
if nextsymbol
('a variable'
nextsymbol
scanval «

if scanval

)

t

index reservedsymbols,
fi then

« "<ident>" index reservedsymbols,

t

index variables,

Q then variables[scanval «mp «mp + 1] « ¢

} else 'must be a special character’

(nextsymbol « text{tp to tp] index reservedsymbols,

tpe~tp +1
)

}, 'end of scanning algorithm'

83

compileactions «

« (), '<program> $:= <program> eof
(12,17,19), '<program> s:= eof <stmt> eof
(2,17), '<stmt> 1= <stmtl>
(), '<stmt1l> t:= <label> <stmtl>
15, '<stmtl> t:= <if clause> <stmtl>
(), '<stmtl> :¢= <list head> end
(1,17}, '<stmtl> t:= go to <expr>
(7,17]), '<stmt1> $:= output <expr>
(), '<stmtl> = <expr>
(3,17,18,17), '<if clause> ::= if <expr> then
13, '<label> t:= <ident> :

(), '<1ist hea® ::= begin <stmt>

(), '<list hea®> ::= <list head , <stmt>
(1, ‘<expr> $:= <exprl>

(6,17}, '<exprl> t:= <var> « <exprl>

(), '<exprl> 1:= <arith exp>

(8,17], '<arith exp> ::= <arith exp> + <tem>
(9,17), '<arith exp> ::= <arith exp> - <term>
(), '<arith exp> ::= <term>

(1, "<term> t:= <terml>

(10,17}, '<terml> t:= <terml> x <factor>
(11,17), '<terml> 1:= <terml> / <factor>
(), '<terml> 1:= <factor>

(5,17), '<factor> $1= <var>

(4,17,14,17), ‘'<factor> 1:= <integer>

(), - '<factor> t:= (<expr>)

(1, '<integer> 1= <digit>

16, '<integer> $:= <integer> <digit>
(4,17,14,17) '<var> 11= <ident>

8l

compile « (@)

{new x

xv xp 1l1lp pn compiling,

pp « tp « 1, mp « O, compiling « true,

X «Xve25 1list 0, xp e« 2,

x[1] «"(" index reservedsymbols,

x[2] « "eof" index reservedsymbols,

memory « variables « 10 list §§ , code « 100 1list 0,

scan,
while

'initialize nextsymbol and scanval'
compiling do

{(while f1[x[xp]] < gllnextsymbol] do
(x[xpexpt1] « nextsymbol, xvlxp] « scanval,

1p

scan 'the decision for function P1'},
& Xp,

while f2(x[1p-1]] < g2[x[1pl] do 1p ¢ 1p-1,
'the right part of the next CRS is between 1lp and xp'
pn « x[1p to xp] index productionrightparts,

'the production number is used as an index to select

a

sequence of compile actions'

[compileactions[pn]] 'a prescript on the following 1ist!'

('the first twelve compile actions correspond to

execution macro-instruction operation codes'’
code[pp] « 1, codelpp] « 2, codelppl « 3,
code[pp] « 4, codelpp] « 5, codelppl « 6,
code[pp] « T, codelpp] « 8, codelppl « 9,
code[pp] « 10, codelpp] « 11, code[ppl « 12,
'the remaining 7 rules do fixups, label initialization,

‘increment the program pointer, etc.'

85

memory(xv{xp-11] « pp, 113’

codelpp] « xvlxpl, 11k
code[xv[xp-11] « pp, 115'
xvllp] « (xvixp-1] x 10) + xvixpl], ‘16
PPepp t+1, v
xvllp] « pp, 118
compiling « false '19'

}s
Xp « 1p, 'making the left-for-right part subst.'
x[xp] « productionleftparts(pn]

)

}» 'end of compilation procedure'

executeactions «

((2,15), 'unconditional branch 1!
(15,1}, '‘clear stack 2!
(1,10,15], 'branch on zero)
(4,1,6,1), 'load stack from code b
(8,1), 'load stack from memory 5!
(9,7,5,1), 'store stack to memory 6!
(3,1}, 'decimal output T
(11,5,1), 'add 8
(12,5,1), 'subtract 9!
(13,5,1}), 'multiply 10!
(14,5,1), 'aivide 11"

16 'halt 121},
87
et .- .

execute « ®
(new executing stack sp,

spe«0, ppe«1l, executing « true,

stack « 100 1ist O,

while executing do

[executeactions(code[ppl]]

{ ppepp+1,
pp « stack[spl,
out « (stack[sp] base 10) @ cr,
spesp +1,
Spesp -1,
stack(sp] « code(ppl,
stack[sp-1] « stack(spl,
stack[sp] « memoryl[stack[spll,
memory[stack(sp-1]] « stack[spl,
pp « if stack[sp] = O then code[pp] else pp + 1,
stack[sp-1] « stack[sp-1] + stacklspl,
stack[sp-1] « stack[sp-1] - stuck[spl,
stack[sp-1] « stack[sp-1] x stack[spl,
stack[sp-1] « stack[sp-1] + stack(spl,
sp « 0,

executing « false

), ‘'end of execution procedure'

88

1 60
' T

110!
111
1101
113
11l
1150

|l6l

"

} eo:

'test program for micro-mutant compiler'
text «
"begin n « 1,
k: if 1024-n then
begin output n,
nNe2 Xn,
go to k
end
end eof eof ",
compile,
out ¢« "code dump:" ® cr © "pp" © tab @ "inst" @ cr,
for all i from 1 to pp-1 do
out « (1 base 10)® tab ® (code[i] base 10) @ cr,
out « cr,
execute,
out « cr ® "memory dump:" & cr,
forall i frcm 1 to mp do out « variables[i] © "=" @
(memory[i] vase 10) © cr

eof

89

code dump:
PP inst

=
=
HEDVNE EWWOWNH EHEFODOE & &

N
0]
DHEVMDFODONE WM &S

A
= D
no

128
256
512

memory dump:
n = 1024

k=17

§xntactic and Semantic Definition

The following table is the phrase structure grammar for the kernel
language. We adopt the Backus-Naur Form of the Algol report, substitute
the reduction symbol "::=" for the production arrow "' of Section 2,
enclose the members of V. in the brackets "<" and ™" and underline

=N

the multicharacter representations for members of _IT The special sym-
bols integer, identifier and string are discussed on page 93.

We remind our readers that the grammar obeys two restrictions that
occasionally give it an artificial appearance. First, it is a symbol pair
grammar. Second, the productions have been carefully selected to reflect

the desired sequence of execution in the canonical parse to simplify the

prcduction of the machine code.

Symbol Pair Grammar for the Kernel Language

<program> t:= |- <expression> <

<expression> = <expressionl>

<expressionl> ti= <if clause> ?<expression1>
<expression2>

<expression2> S <expression5>

<expression5> ::= <if clause> <truepart> <expression5> |
<primaryl> « <expression5> |
<procedure> <expression5> |
<for clause> do <expression3> |
<for clause> <while clause> do

<expression5> |
<while clause> do <expression5> |
<step list>
<procedure> ti= @
<if clause> ::= if <expression> then

91

<truepart>
<for clause>
<vwhile clause>
<while>

<step list>

<simple expr>
<simple exprl>

<primary>
<primaryi>
<primaryé>

<list>
<list head>

<begin>
<case>
<case head>

<case begin>
<declaration>
<declarationr>

<constant>

<infix>

<prefix>

se

<expressioné> else

for all identifier from <step list>

<while> <step list>

while

<simple expr> to <simple expr> |

<simple expr> by <simple expr> I

<simple expr> to <simple expr> by <simple expr> |
<simple expr> by <simple expr> to <simple expr> I
<simple expr>

<simple exprr>

<primary> <infix> <simple expr.>

1
<prefix> <simple exprf> |

<infix> / <simple exprf> |

<primary>

<primaryi>

<primary,> [<expression>] | <primary>
<constant> | (<expression>) |
identifier <list> | identifier | <list>
<list head® }

<list head> , <expression> |

<begin> <declaration> ‘ <begin> <expression>
{

<case hea®)

<case>

<case head> , <expression> I
<case begin> <declaratiorn> |
<case begin> <expression>
(<expression>] {
<declarationf>

new identifier |

<declaration.> identifier

1
true | false | integer I integer . | . integer |

integer . integer | universe | string | <begin>)

elulnlelbaselvlialalcl=]¢]1
>|> 1€l] index luist |c |5 | = | mex | min |
+ |- | x lmoal = | ¢

'1| minus | abs | type |round Ichop | length | set

92

- t0~‘ =
- res T iy E

We will now give our interpretations of each construct. The
description of an involuted language involves the use of terms before
they are defined. Paragraph numbers and cross references are used to
ease the reader's task in following the description.

We must distinguish between text describing the form of a construct,
text giving examples of a construct, text describing the meaning of a
construct, text justifying the choice of a construct and text advocating
a particular system organization or machine design. We distinguish them

when possible with paragraph headings of Syntax, Examples, Semantic

Description, Justification, and Implementation, respectively.

Implementation of Reserved Words, Identifiers, Strings and Integers.

By an underlined word in the grammar we mean to reserve that word for
exclusive use in the given grammatical context. We do not then need spe-
cial character sets or escape symbols to write programs. One implication
is that spaces are significant and that we cannot know whether an identi-
fier is reserved or not until we have seen all of it. Thus we find that
the process of catenating identifiers must take place outside of (and
before) the syntactical analysis algorithm. We assign this task to a
procedure called the scanner. It turns out to be convenient to recognize
and convert both integers and strings there also. As a result we find the
symbols integer, identifier and string terminal in the grammar but not
underlined. The inclusion of natural language text within a program in
the form of parenthetical comments to the reader is provided by choosing

an otherwise unused character as a comment bracket. We reject the Algol 60

comment convention because it is neither concise nor independent of the

program structure (since it involves the use of the semicolon).

95

Semantic Description of Values. Before we can discuss (3-1)

constants, we must introduce the values they represent. We specify in

the language four unstructured types of values (undefined, number, name

and process) and three structured types (string, list, and set).

Syntax of Constants.
<constant> ::= | @ | universe |
integer | integer . | . integer | integer . integer

true | false |

<begin> } | string

<begin> ::= {

Examples of Constants.

Q universe true false
2 2, .2 136.721

()} "ABCDEFGHI1J-32"

Semantic Description of Constants of Typed Undefined.

l , @, and universe have type undefined. The value of a variable
before anything has been stored into it is Q ; the result of dividing
a positive number by zero is o ; the intersection over the null collection
of sets is universe (the universal set).

The operators = and # are valid for all of the above; o is a
valid operand for all numeric operators; universe is a valid operand for

all operators that accept sets as operands.

Implementation of Values of Type Undefined. The appearance of an
undefined value is usually cause for alarm. An alarm should cause the system
to originate a warning action to the programmer, but beyond that we make
no particular recommendation as to the form of the warning or the means of

suppressing it.

b

" o - . L.

- 4 g -y-uvo’"' -

Justification of Values of Type Undefined. Undefined values can

arise in a variety of ways. We might think of, for instance, the value

of an uninitialized variable, the result of division by zero and the
result of an invalid subscripting operation. We propose the introduction
of a type undefined and a collection of values of type undefined corres-
ponding to (usually) pathalogical situations such as those described above.
For some we may wish explicit constants in the language. Thus we might

write

if X = oo then ...

to test for a division by zero.

The introduction of a type undefined provides a conceptually
simple mechanism with which to warn the programmer of some of the wilder
errors as well as providing a relatively noncontruversial system reaction
to the errors. If the error is isolated, the system may proceed with

execution of the program, leaving behind an indicative trail of undefined

values,

Semantic Description of Numbers. A value of type number will be

the computer representation of a real number. We have two reasons for
not wishing to make our concept of a number precise.

First, the only reasonable choice for numbers in a given implemen-
tation of the kernel language will be those acceptable to the floating
point hardware of the machine. For that implementation, the programmer’'s
knowledge about values of type number will be a pragmatic mixture of
his knowledge of numbers in the abstract and his study of the machine

specifications.

9

Second, a study of the desirable properties of computer numbers is
well beyond the scope of this paper. We hope to see some results in
this direction in a study presently being conducted by W. Kahan, J. Welsch,
and N, Wirth,

We do find it useful to distinguish three subsets of the class of
computer numbers, the first of which is computer integers. The second
is the set of characters which is the set of integers restricted to (5-2)
the range 0 to 255 inclusive. Finally we have the logical values

0 and 1. (3-3)

Semantic Description of Strings. We consider a fixed input or

output device. We assume a correspondence between the printing chsracter
of the device and the characters (see 3-2). Normally some of the charac-
ters 2re unused for printable characters and may be used for nonprinting
or control functions. A string in the kernel language is an ordered set
of printable characters delimited by the string quote ("). We adopt the
PL/I convention that within the string, two contiguous string auotes
signify a single string quote within the string.

Justification of Strings. The programmer communicates with his

program via strings of characters; thus unrestricted ability to analyze,
manipulate and produce character strings is a minimal requirement for
any computer language. In much the same spirit that a compiler for
nume}ical work provides certain standard functions such as square root
and natural logarithm, we must provide primitive string manipulating

functions.

Implementation of Input and Output. For the kernel language

we assume that we have a2 single input medium and a single output medium.

96

If we view the program over the history of its execution, the input and
output are each single contiguous strings of characters. We name two
special variables (IN and OUT) and access them in the normal manner with
our primitive string manipulating functions. The fact that in real time,
the program may have to wait before an access to IN can be completed does
not affect the program logic. On the other hand, the program must have
control over when, in real time, the output appears. Thus we establish
the convention that whenever a carriage return is catenated onto OUT, the
string OUT is shortened past the carriage return and the excised characters

appear on the output medium.

Semantic Description of the Null List. The construct {) represents

the null set of values. We use the dummy production <begin> for technical
reasons having to do with the emission of block entry code from the canon-

ical parse.

Semantic Description of trﬁe and false. The constants true and

false are synonymous with the characters 1 and O.

Semantic Description of Variables. A variable is an object which

can be named in the kernel language and to which any value can be assigned.
The designation variable is given by either an identifier or a subscripted

identifier (see 3-9).

Semantic Description of Values of Type Name. Corresponding to

every valid name in the kernel language is a value of type name within
the system. Names are created as intermediate results and are not access-

ible to the programmer.

91

Implementation of Variables and Names. A variable corresponds to

a memory address. The type of the value stored in a variable must be
preserved, thus we find that we allocate two words for a variable nnd use
the second to store the type information. We would prefer a machine in
which the type bits were automatically associated with each word but had
special properties. In particular we would like to determine whether the
variable contains a value of type address to effect indirect addressing
but without accessing the whole variable to find out. We believe this
implies that at least some of the type bits must be accessible in a
fraction of the time to access a memory word.

Syntax of Declarations.

<declaration> ::= <declaration.>

1
<declarationf> = new identifierl
<declaration.,> identifier

Examples of Declarations.

new abecd °

new thisone thatone anyone

Semantic Description of Declarations. At most one declaration appears

in the head of a list (see 3-5). The extent of the list defines the scope
of the identifiers in the declaration. Every identifier in a program must
either be reserved or lie within the scope of an identifier of the same
name. Upon entry into the scope of an identifier, the system allocates

a variable to it and gives it the value uninitialized. An identifier names

the variable allocated to it. If an identifier appears in more than one
declaration, the use of that identifier names the variable corresponding

to the smallest containing scope.

98

Justification 92 Declarations. The use of declarations to define

the scope of variables is well established. With dynamic typing of values,
we find no particular advantage in binding the type of an identifier with a
compile-time declaration. The involuted nature of the kernel language
moves the structural implications of the conventional declaration out into
the main program. Thus we find that declarations in the kernel language
are reduced to the single action of delineating the scope of, and allocating
variables for identifiers used in the program.

We regard this as the final step in the direction taken by Wirth
and Weber ([25] p. U43).

Implementation of Declarations. From the viewpoint of variable

addressing, the program consists of a nested collection of scopes. Thus
from any point in the program we may assign a unique ordered pair of
integers to each variable, namely, the depth of nesting of the scope of
the identifier and the position of the identifier in the declaration.

We call the integers the scope level and order number respectively. At
compile time we can name the variables with the scope level and order
number.

The form of the declaration suggests that we should allocate a
list of variables corresponding to the declared identifiers upon entry
into the sccpe of the identifiers. The order number of a variable is
the index of that variable in the list of local variables. Thus we
expect to use the scope level to find a particular list and the order
number to find an element of that list. At execution time we convert
the compile time name into a value of type name by locating the memory

location assigned to the variable.

9

The designers of programring languages have traditionally (3-4)
indulged themselves in a semantic ambiguity: one cannot always tell
from the form of an expression (a subscripted variable for instance)
whether the name, or the value stored in the named location, is indi-
cated. In the Algol 60 construct of general call by name the ambiguity
is complete; the expression must yield both name and value, the choice
depending upon its use at a remote location. One can remove the ambiguity
by introducing explicit name and value operators into the language
([25] p. 45). Since the choice is always ultimately clear from the con-
text in which the expression is found, we have chosen to dynamically

defer the final fetch of the value in cases where there is doubt.

Syntax of Lists.

<list> t:= <list head)

<list head> ::= <1list head> , <expression> |
<begin> <declaratior> |
<begin> <expression>

(

<begin>

Examples of Lists.

(1, 2, 3, "ABC"}
(x «1l, yey-2, if x<y then z else z «y }
(new a bc, aebel.0, cebH)

(new a, (new a, a « 2}, a «2)

100

Semantic Description of Lists. A list is an ordered set of (3-5)

expressions which are evaluated sequentially. The value of the evaluated
list is the ordered set of evaluated expressions and is of type list.

The declaration is not an expression and does not contribute to the value
of the list,

Justification of Lists. Arrays, trees, iteration lists, parameter

lists, strings, blocks and compound statements are ordered sets. The
inclusion of arbitrary (even infinite) lists in the kernel language to-
gether with the principle of involution yields a drastic reduction in the
number of primitive concepts.

Semantic Description of Values of Type List. A value of type list

is an ordered collection of values with any admixture of the value types.

Implementation of Lists. We discover in the literature two alterna-

tives for representing lists., The first, in LISP, demands a list structure
where all elements are explicitly linked in storage. In Euler and Burroughs
B5500 hardware we find that a value of type list is a descriptor which
delineates the extent and locates the list. The list elements are stored
in sequentiuilly contiguous memory locations. The first comparison is in
the amount of storage required to represent a given list. In LISP we

must use memory for the linking information; in Euler we must use memory
for dynamic typing. We estimate that implicit linking saves a factor of
two in ricmory. The second comparison is in ease of access. In LISP we
must explicitly trace the list structure to find an element near the end
of a list; in Euler we may access any element of any list directly via a
subscript. There is no reason to expect the implicit list structure
organization to be less efficient than conventional index registors for

array applications so long as descriptors do not have to be repeatedly

101

fetched from memory. Even with the repeated fetching, the B5500 is

able to subsume the extra core accesses under cover of the multiply
operation time so as to be proportionately as fast as the 7090 for
matrix problems. Our third comparison is in ease of modification. In
LISP we must change a link to append or insert an element to a list where
in Euler we must copy the entire contizuous block. Implicit linking is
severely less efficient here. Fourth, we must consider storage reclama-
tion. In both systems the majority of time is spent in searching out
and identifying the valid list structure. In Euler we find that the
percentage of execution time spent in storage reclamation is roughly tne
same as the percentage of storage occupied with valid list structuire; we
have no figures on LISP. In any case we do not expect the systems tc¢ be
much different in this respect.

We do not know which represents the most efficient solution; we
suspect that it is both problem dependent and hardware dependent. We
have chosen implicit linkings so as to have array capability without in-
troducine them into the language as a distinct form.

Semantic Description of Values of Type Set. A set differs from

a list in two ways:

(1) A set cannot contain two equal values.

(2) The programmer cannot prescribe the order of the members of tue
set, Certain operations are allowed on sets and not on lists.

Justification of Values of Type Set. The set operations of member-

ship, inclusion, equivalence, etc., reauire preorganization for efiicient
implementation. We choose to sort the values of a set by a machine deter-
mined order to facilitate table look ups (binary searches), union and

intersection (merges), etc. The membership operation (for instance) takes

102

log2n operations in a sorted set and n/2 operations in an unsorted

set (on the average).

Syntax of Subscripts.

[<expression>]

Examples of Subscripts.

[i] [X-Z] [[1:2)5]]

Semantic Description of Subscripts. We will distinguish between

the subscript expression (the expression in the syntax above), the sub-
script operator (the result of applying certain standard transformations

to the subscript expression), the subscript operand (the object in the
kernel language to which the subscript operator is being applied) and

the subscripted expression (the final result achieved by applying the
subscript operator to the subscript operand). A subscript expression

has meaning if (1) it has type number or (2) it has type 1list and all its
members have type number. A subscripted expression has meaning if (1) the
subscript has meaning and (2) the subscript operand is one of the strucéured
types, string, list or set. If a subscripted expression does not have mean-
ing, it yields a value of type undefined.

Subscripts of Type Number. If the value of the subscript expression

is of type number, the value of the subscript operator is the nearest

(rounded up) integer.

Subscripts of Type List. If the value of the subscript expression

is of type list and each element of the list is of type number then the
subscript operator is the list of nearest integers (rounded up) corres-

ponding to the numbers in the subscript expression.

103

Justification of Subscripts. Various constructs in the kernel

language have the form of ordered sets. Numerical subscripts will be
used to select elements from the ordered sets and list valued subscripts

will be used to select subsets from the ordered sets.

Examples of Subscripted Lists.

list subscript result
{10, 20, 30, 40}[1] = 10

(10, 20, 30, 40){mipus 1] = ko

{10, 20, 30, 40)((2,4}] (20, 40}

{10, 20, %0, 40)}[{1 to 3] {10, 20, 30}

(20, (30}, LO)
(30)

(10, (20, (30}, ko})(2]

(10, (20, (30}, 40}}[2](2]

Syntax of the Case Expression.

<case> ::= <case head)}

<case head> 8 | <case head®> , <expression> |

<case begin> <declaration> |
<case begin> <expression>

<case begin> ::= [<expression>] {

Examples of the Case Expression.

(n] (1,2,3,5,7,11,13,17,19)

[{x, minus 1}] { new a,
a « "Invalid type for subscript operator",
a « "Invalid type for subscript operand",
a « "Subscript out of range",

out « a ® cr

104

Semantic Description of the Case Expression. [13] The case

expression has the form of an explicit list preceded by a subscript.

Upon execution the following occurs: (1) The subscript operator is
evaluated. (2) The list is entered. (3) Storage is allocated for

the local variables (if a.ny)’. If the subscript operator is an integer
then we have (4) If the value of the integer is zero or larger in magni-
tude than the number of expressions in the list, a value of type undefined
results. If the subscript operator is positive then it is used as an
index to select an expression counting from the front of the list; if

it is negative it is used to select an expression counting from the rear
of the list. (5) The selected expression is evaluated and the value of
the case expression is the value of the selected expression., If the
subscript operator is of type list then (4) Each number in the list is
used sequentially to select an expression as done above for subscript
operators of type number. (5) The value of the case expression is the
list of values so computed.

Implementation of Case Expressions. The use of an index to select

an expression out of a list of expressions suggests that the machine code
itself should have the form of a list structure where the code for an
expression occupies exactly one memory location.

Justification of Case Expressions. The case expression represents

one of the more powerful sequence controlling features of the kernel
language. If the subscript operator is a number, it resembles the Algol
60 switch without the nuisance of labels. The list valued subscript

operator allows reordering and repetition of the expressions in a list.

105

R s - 0
& 3 e, B i - . .

§yntax of Primaries.

<primary> ::= <primaryi>
<primaryl> $i= <primaryi> [<expression>] | <primaryé>
<primary,> ::= <constant> I (<expression>) | identifier <list>

identifier | <1ist> | <case>

Examples of Primaries.

3.0 (X-Z) X X[2][a-2] Y[l:2.~5} [1,2:5] [n](l:2)5}

Semantic Description of Primaries. Parentheses allow the programmer

to reorder the evaluation of operators in the conventional manner. They
have no other meaning in the kernel language.

An ijdentifier followed by a list signifies a procedure activation.
The list (of parameters) is evaluated and the name of the variable corres-
ponding to the identifier is computed. If the variable contains a value
of type process the process is activated, otherwise the value undefined
is returned. (See 3-12). (3-6)

If an identifier appears alone, the name of the variable corres-
ponding to the identifier is first computed. If that variable holds a
value of type process, the process is activated and the name of the
identifier is replaced with the value of the process. (See 3-11).

Semantic Description of Subscripted Primaries. If the (3-7)

subscript operand has type name, it is replaced by the value of the named
variable. The effect of the subscript operand on types string and list

follows.

106

o |

- e
e L TR o = -

Semantic Description of Subscripted Strings. A value of type

string is an ordered set of characters. If the subscript operand is of

type string the following remarks apply: (1) If the subscript operator (3-8)
is an integer and this integer is positive and less than or equal to the
length of the string, the value of the subscripted expression is the

character sclected by counting from the front of the string; if the integer

is negative and no larger, in magnitude, than the length of the string,

the character is selected by counting from the rear of the string; other-

wise the value undefined is returned. (2) If the subscript operator is

a list of integers then the result is a (sub) string selected by applying

each integer as a subscript operator in order of occurence.

Implementation of Strings. If we view a string as a packed read-

only data structure then the operation of forming a contiguous substring
can be accomplished by constructing a new descriptor to point into the
old string. An implication is that a scanning algorithm does not have to
move characters, only locate them.

Semantic Description of Subscripted Lists. A value of type list

is an ordered set of values. If the subscript operand is of type list

the following remarks apply: (1) If the subscript operator is an (3-9)
integer then the value returned is the name of the variable selected
according to the algorithm given in paragraph (3-8). (2) If the sub-
script operator is a list of integers then the result is the (sub) list
selected by applying each integer as a subscript operator in their order

of occurence in the subscript operator.

107

Syntax of Prefix Operators. (3.10)

<prefix> 1= T l minus | type | abs | round l chop | length | set

Semantic Description of Prefix Operators. A prefix operator is

a single valued partial function of one operand. The action of the operator
is defined when the function is given over the allowed range of the operand.

All of the above operators, except type, length and set, are numeric prefix

operators. Their behavior for numeric operand. is obvious; their behavior
for list valued operands is discussed presently.

Semantic Description of the Operator "type". The range of

operands for type is the collection of all values. The function defined
by the operator gives an integer corresponding to the type of the operand.
We leave the actual integer to be implementation defined since it is
convenient to have more than one system type corresponding to a given

kernel language type. Normally we test for type with a construct like
if (type a) = (type " ") then ...

rather than attempting to remember the corresponc °nce between integers
and types.

Semantic Description of the Operator "length". The operand of

length must have type set, list or string. The value of the function
defined by the operator is the number of elements in the structured
operand.

An application of the operator set is the only way to transform

a value of type list into a value of type set. The resulting value will

have no repeated elements and will have been reordered.

it
i
LK

-y

Syntax of Infix Operators.

<infix> ::= ﬂ|U|9|C|O|E|ﬁ|index|®|list|base|
ViAal<l<l=1#121>| max |min]|+]-]|
X | mod | + | 1

Semantic Description of Infix Operators. An infix operator is a

single valued partial function of two (right and left) operands. The
action of the operator is defined when the function is given over the
allowed range of the operands.

Semantic Description of N, U, e, C, and D. The range of values
for both operands is the collection of all values of type set. Their
defining functions are, respectively, set intersection, union, difference,
inclusion and containment.

Semantic Description of € and ﬁ . The left operand ranges

over the collection of all values; the right operand must be of type set
or list., The value of the function defining € is true if a value
equal to the left operand is found in the right operand. The function
defining £ is the complement of the above.

Justification of Set Operators. The concept of a set is a natural

data type for many algorithms. Its simplicity makes the set a natural

object for the kernel language.

Implementation of Set Operators. The elements of the set valued

operands of the above operators are sorted to facilitate the construction

of efficient algorithms for their execution (sort - merge, binary look up,

ete.)

109

. - poe % . o 1 4 3

Semantic Description of index. Index is identical to € except

that the resulting value is the index within the set of the value, if
found, and of type undefined otherwise.

Semantic Description of base. The operands of base must be both

integers. The result is a value of type string. The string is the legible
representation of the left operand to the base specified by the right

operand.

Semantic Description of list. The left operand of list must be a

number and the right may have any value. The left operand is rounded to
the nearest integer and the result is that many copies of the right
operand (thus a value of type list).

Sementic Description of . The range of operands of & 1is the

collection of values for which the types of the operands (left and right
reSpectively) are string, string; set, list; set, set; list, set; list,
list. In the first case the result is a string obtained by catenating
the right operand onto the tail of the left operand. Otherwise the re-
sult is a list containing the members of the left operand followed by
the members of the right operand.

Semantic Description of = and 4. The operands of = and £

may range over all values, If the operands do not have the same type,
they are unequal. If they have an unstructured type, they are equal if
they are identical. If they have a structured type, they are equal if
they have the same length and the corresponding elements are equal.

Semantic Description of Numeric Infix Operators. All of the

remaining operators are numeric infix operators. If both operands are

of type number, the function defining the operators is usually obvious.

110

e - . L™
- wwe d -'...‘x'ﬁ . - =

We make the following comments. The operators V and A (logical "or"

and logical "and") accept as operands only logical values (See 3-‘5). The
result of s +t 1is the (real valued) quotient., If we wish the integer
aotient, we write chop(s +t). s mod t is defined to be the function

s - t x chop(s + t) for all numbers,

Syntax of Simple Expressions.

<simple expr> t1= <simple exprl>

<primary> <infix> <simple exprl>|

n

<simple exprl>
<prefix> <simple exprl> |

<infix> / <simple expr,> | <primary>

Examples of Simple Expressions.

5=-2-1 atb-cxdmde +f t g
= (minus abs round chop a) = (b max ¢ min d)
+ / 1 %o n [1,2)3}- - [2)5)1"]

Semantic Description of Simple Expressions. From the grammar above

we deduce that the operand of a prefix operator is the value of the
(largest possible) simple expression to its right. The operands of an
infix operator are the primary to its left and the (largest possible)
simple expression to its right. We further deduce that all operators
(excepting those reordered by parentheses) are evaluated right-to-left.

Justification of Right to Left. We have provided a fairly extensive

catalog of operators in the kernel language while leaving room for further
extensions. With so many operators it would be confusing at best to
assign hierarchies to them. In search for a simple rule ordering the

evaluations, we are left with either left-to-right or right-to-left

111

- 3
~e > T o e % . .

order ([15] p. 8). The normal (and only reasonable) interpretation of
prefix operators demands a right-to-left ordering among themselves. We

choose the same order for infix operators as a concession to consistency.

Semantic Description of List Valued Operands for Numeric Operators.

If a numeric prefix operator finds a list as operand, we will follow
Iverson ([15] p. 13) in generalizing the operator to yield the list of
values obtained by applying the prefix operator to the members of the
operand in order. If a numeric infix operator finds a value of type list
and a value of type number as operands, the result is the 1list obtained
by applying the operator successively between the number and elements of
the list. If the operator finds two lists as operands, the result is the
list obtained by applying the operator between corresponding members of
the lists. The operation terminates on the shorter of the two lists.
More formally, let s and t be numbers and S and T be lists.
Then if © is a numeric -prefix operator, the following are equivalent:

®S for all v from S do Ov 5

Lf © 1is a numeric infix operator then the following are equivalent:

ST for all v from T do s @ v
S0t for all v from S do voOt
SeT for @11 i from 1 to (length S) min (length T)

do S[i] e Tli] .

112

Semantic Description of Compression. If © 1is any infix operator

then the following are equivalent:
o/ T for all v from T do ueu®@v

The latter depends upon the initial value of u for which we specify

the following:

o’ "y
L
u, () ;
N, universe ;
e, 03

base, Q

<, <5 = #, 2, >, all undefined ;
max , -0 3

min, ® 3

' +
- -

T o
weo we

x
-

-
wse

1
-
=
we

113

Justification of Compression. Compression, as well as the other

generalizations of the numeric operators in the paragraphs preceding,
is a concise way of expressing common programming tasks. Furthermore,
as pointed out by R. S. Barton, they provide a mnemonic notation for

ignoring the order of execution so that, if parallelism is available,

it can t. utilized. For example, the inner product:

+ / u x v

of vectors of length n can be performed in logen + 2 operation times

if n multipliers and n ¥+ 2 adders are available.

Syntax of Step Lists.

<step list> ti= <simple expr> to <simple expr> |
<simple expr> by <simple expr> |
<simple expr> by <simple expr> to <simple expr> |
<simple expr> to <simple expr> H <simple expr> |

<simple expr>

114

Examples of Step Lists.

2 by minus 2 to minus 16 l ton
x-z to X[n] vy 2 1byl

Semantic Description of Step Lists. A step list is a list of values

of type number. The value of the first expression above is called the

initial value; the value following the to is called the limiting value;

the value following the by is called the step value. The evaluation of
the step list proceeds as follows:

(1) All the expressions are evaluated in the order of their
occurence in the program.

(2) If the step value is missing it is replaced by 1.

(3) If the limiting value is missing, it is replaced by a value
of type undefined.

(4) If all the values thus computed are of type number, the step
list has for value all the numbers of .the form (initial value) + (n) x
(step value) lying between (inclusive) the initial and limiting values
where n ranges over the integers from O to infinity. If the limiting

value is undefined the set is infinite, otherwise, it is undefined.

Syntax of Assignments.

<expression5> $i= <primaryl> “ <expression5>

Examples of Assignments.

8«1, (if x =y then z[1l] else z[2]) «7,
bel to n, c[2][x-2z] « "ave." ,
c «(new x, if(length b) = 3 then out «"3" ,

out «out & cr, X « out }

115

Semantic Description of Assignments. The primary on the left

must have a value of type name. If it does, the value of the named
variable is replaced by the value of the expression on the right. The
value of the expression is also the value of the assignment.

Justification of Assignments. The assignment allows the saving of

temporary intermediate values. We also provide some flexibility in the
designated variable on the left of the arrow (i.e., subscripted or

unsubscripted identifiers and the parenthesized expressions). Both of

(if a=b then c else d) « 3,
& « (:) c, a3,

are meaningful, and, if a initially equals b, have the same effect.
In the first case the principle of deferment demands delaying the fetch
of the value of ¢ until the end of the conditional expression at which
point we discover that it is the name that we want. In the second, we
delay until after return from the procedure. The latter case is exactly
the Algol 60 call-by-name construct,

Syntax of Procedures.

<exPressionj> ::= <procedure> <expressionj>
<procedure> = (:)
<primary,> 1= identifier <list> | identifier

Examples of Procedures.

increase - (:) 7 Vi TR Y
increase « (:) (new a, aea+1}),

increase{c:) a) ,

factorial (:)
{new n,
if n=0 then 1 else n x factorial{n-1)
}1l

116

g K g =

Semantic Description of Procedure Definition. A procedure

definition is denoted by the mark <:> followed by an expression called

the procedure expression. The execution of & procedure definition pro-

duces a value of type process. If the procedure expression is not an
explicit 1list (or an explicit list followed by subscripts) then it is

called a parameterless procedure.

Semantic Description of Parameterless Procedure Activation. (3-11)

Whenever the name of a variable is computed, that variable is inspected
to determine whether or not it contains a value of type process. If it
does, the process is activated and the name of the variable is replaced
with the resulting value. If that value is again of type name, the test
is repeated, etc., until a value of some other type is returned. If, at
the time of procedure activation, all of the variables valid at the place
of procedure definition are defined, then the effect, and the resulting
value are the same as would be obtained by executing the procedure ex-
pression in the same environment at the place of definition.

Semantic Description of a Procedure with Parameters. (3-12)

If the procedure expression is an explicit list, then it has a (perhaps
null) list of identifiers local to the scope defined by the list. We
call the variables allocated to these identifiers the first, second,

third, etc., initializable variables of that procedure.

Semantic Description of the Activation of a Procedure with

Parameters. If the procedure activation is signified by an identifier

followed by an explicit list, we call the list the actual parameter list.

If the variable allocated to the identifier does not contain a value of

type process, a value of type undefined is returned. Otherwise the

117

activation 1s identical to that for the parameterless proceduref except
that the initializable variables of the procedure are given the values of

the corresponding actual parameters.
T

Justification of Values of Type Process. The ability to define

a process that can be activated upon demand is present in some form in
Algol 60 procedures, functions, switches and name parameters. We have
in the kernel language a single process defining construct. The value
of a process may be of any type and the value may depend upon where the
process is activated. (For instance, if a process is activated to the
left of a replacement arrow it may return a value of type name rather
than the actual value of the named vari&ble.) Process recursion, the
programming analogue of mathematical induction, is frequently the most
natural way of expressing an algorithm in the kernel language.

The second and third examples above show the kernel language
equivalent of Algol 60 name parameters. The local variable a is
initialized to the procedure to compute a, a non local variable.

Each cccurence of the identifier a in the list body causes the procedure

Note that since every access to the procedure i1dentifier causes a
procedure activation, there is no equivalent to the Algol 60 procedure
assignment statement. If the procedure has parameters it i1s necessarily
list-valued unless, as in the factorial example, a subscript is used to
select the desired value.

g Values of type process are similiar to the quotations of Euler.

The difference is that Euler quotations behaved differently when passed
as parameters and when stored in local variables, We have eliminated

the distinction.

118

w B ok - ’ - h'ﬂ.‘t
- - - g o P e -

to be activated., The first activation yields the name of the non local
a since it is called to the left of the assignment arrow; the second
yields the value. The result is that the non local a is increased by 1

Implementation of Primaries of Type Process. The necessity of

accessing a word to compute its address is a consequence of the general-
call -by-name concept from Algol 60. The provision for a special fast-

access bit associated with the word is required for efficient implementationt

§yntax of While-Controlled Iterations.

<expression3> t:= <while clause> do <expression5>
<while clause> ::+= <while> <step list>

<while> t1:= while

lixamples of While-Controlled Iterations. -

while in[1] #" "[1] do (a «a ® in[{1}],

in « in[2 to length in]

while x t 2 £a do xe(x+a+x)+2

Semantic Description of While-Controlled Iterations. A while-

controlled iteration consists of a while clause and a controlled expression.

tone Burroughs B5500 has the special bit (called the flag bit) but it
can be examined by the hardware only by accessing the word. Thus even
in the assignment §)

aa

three memory references are required.

119

The while clause is evaluated; if it has value true then the controlled
expression is evaluated and we return to re-evaluate the while clause;
if it has value false we terminate the iteration and the value of the
while-controlled iteration is the list of values of the controlled ex-
pression; if it has any other value, the iteration is terminated with a
value of type undefined.

Syntax of For-Controlled Iterations.

<expression5> t:= <for clause> do <expression5> |
<for clause> <while clause> do <expression5>

<for clause>

for all identifier from <step list>

<while clause>

.o
.o
I

<while> <step list>

<while>

while

Examples of For-Controlled Iterations.

for all I from 1 ton do Se«S+ It 3,
+/ forall I from 1to n do It 3,
for all t from table while looking do

if t = object then looking « false else emit{O)

Semantic Description of For-Controlled Iterations. (3-13)

The for-controlled iteration provides for the execution of the controlled
expression of a fixed number of times or a fixed number of times with

the possibility of an early termination. The step list of the for clause
is evaluated once; if it is not list or set valued, the value of the
for-controlled expression is of type undefined. The scope of the iden-
tifier of the for clause is the controlled expression. The variable
allocated to the identifier assumes in order each value from the iteration
set and the controlled expression is executed. If there is a while clause

120

and its value is not true before the execution of the controlled expres-
sion, the iteration is terminated.
The value of the for-controlled expression is the list of vaiues

assumed by the controlled expression.

Syntax of Conditional Expressions.

<expression> = <expressionf>

<expressionf> s:= <if clause> <expressionl> | <expression2>
<expressioné> ti= <expression5>

<expressionj> t2= <if clause> <truepart> <expression5>

<if clause> ::i= if <expression> then

<truepart> ::= <expression,> else

Examples of Conditional Expressions.

if x=y then if y#2z then x«y max z,
if test{7) then (x e« 1l, y«2) else x e 3,

if if ACB then true else z £ B then B « ()

Semantic Description of Conditional Expressions. The first

form of conditional expression is an if clause followed by an expression,
The if clause is evaluated; if it has value true the expression is
evaluated and the value obtained is the value of the conditional expres-
sion; otherwise the value of the conditional expression is of type
undefined.

For the second form we evaluate the conditional expression; if it
is true we evaluate the truepart expression; if it is false we evaluate

the final expression; otherwise we create a value of type undefined.

121

Syntax of Programs.

<program> ::= |- <expression> -

Semantic Description of a Program. The value of a program is the

value of the expression. Note that by the nature of the kernel language
(identification of Algol 60 blocks and values of type list) the value of

a program will be a list structure of the intermediate results.

Implementation of a Program. On account of the copious list

structure generated by a program, we must have some form of remote storage
and recall mechanism. The list structure of the program is well suited

for segmentation and overlay.

122

' shib gy ~
- . Sy orvs) S -

BIBLIOGRAPHY

[1] R. S. Barton, "A new approach to the functional design of a digital
computer", Proc. WJCC (1961), p. 393.

[2] Noam Chomsky, Syntactic Structures, Mouton & Co. (1964).

(3] , "Formal properties of grammars", Handbook of Mathematical
Psychology, Vol. II, John Wiley & Sons (June 1963), pp. 323-418.

(4] Jay C. Early, "Generating a recognizer for a BNF grammar", Technical

report, Carnegie Institute of Technology (August 1965).

[5] Jurgen Eickel and Manfred Paul, "The parsing and ambiguity problem
for Chomsky-languages", Report 6409, Computation Center, Mathematics
Institute, Technical High School, Munich (no date).

[6] Jurgen Eickel, "Generation of parsing algorithms for Chomsky type-2
languages", Report 6401, Computation Center, Mathematics Institute,
Technical High School, Munich.

[7] Robert W. Floyd, "Syntactic analysis and operator precedence",
J. ACM, vol. 10, no.3 (July 1963), pp. 316-333.

[81 ___, "Bounded Context Syntactic Analysis", Comm. ACM vol. 7, no 2
(Feb. 1964), p. 62.

(9] , private communication (Jan. 1966).

[10] Philip Gilbert, "On the syntax of algorithmic languages",
J. ACM, vol. 13, no. 1 (June 1966), pp. 90-107.

[11] Seymour Ginsburg and Joeseph Ullian, "Ambiguity in context free
languages”, J. ACM, vol. 13, no. 1 (Jan. 1966), pp. 62-89.

[12] Sheila A. Greibach, "A new normal-form theorem for context free phrase
structure grammars", J. ACM, vol. 12, no. 1 (Jan. 1965), pp. 42-52.

(13] cC.A.R. Hoare, "Case Expressions", Algol Bulletin 15 (Oct. 1964)
ppo 20-220

(14] IBM Systems Reference Library, PL/I: Language Specifications,
Form C28-6571 (no date).

125

[15])
[16]

(17]

[18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

Kenneth Iverson, A Programming Language, John Wiley & Sons (1962).

Donald Knuth, "On the translation of languages from left to right",
Information and Control, vol. 8 (Dec. 1965), p. 607.

F. E. J. Kruseman Aretz, "Algol 60 translation for everybody",
Elektronische Datenverarbeitung, vol. 6 (1964), p. 233.

Reino Kurki-Suonio, "On character set reduction", Technical report,
Carnegie Institute of Technology, (August 1965).

W. C. McGee and H. E., Petersen, "Microprogram control for experimental
sciences", Proc. FJCC, (Sept. 1965), p. T7.

W. M. McKeeman, "MUTANT, An Extendable Compiler on the Burroughs B5500",
(to be published).

Naur, et al, "Revised Report on the Algorithmic Language ALGOL 60",
Comm. ACM, vol. 6 (Jan. 1963), pp. 1-17.

John Reynolds, "COGENT Programming Manual", Report 7022, Argonne
National Laboratory (March 1965).

A. van Wijngaarden, "Recursive definition of syntax and semantics",
IFIP working conference (Sept. 1964).

e "Generalized Algol", Symbolic languages in data processing,
(Rome 1962), 409 pp.

N. Wirth and H. Weber, "Euler: A generalization of Algol, and its
formal definition", Technical Report CS20, Computer Science Department,
Stanford University (April 1965) (also in part - Comm. ACM, vol. 9,
nos. 1 & 2 (Jan. 1966)).

N. Wirth, "Find precedence functions", (Algor;thm 265)
Comm. ACM, vol. 8, no. 10 (October 1965).

N. Wirth and C.A.R. Hoaré, "A contribution to the development
of AIGOL", Technical Report éSBS,‘Computer Science Department,
Stanford University (Feb. 1966).

124

ey

— R Ry 7 e e

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R&D

(Bocusity sloseification of tile, body of adetrest and indoning annsietien must bo entored when the everall repert le clasoilieod)

1. ORIGINATING ACTIVITY (Comperate suthes)

36. REPOAT SECURITY C LASSIFICATION
Computer Science Department

Stanford University T
Stanford, Calif. 94305 L

DESCRIPTIVE N ol

3. REPORT TITLE

AN APPROACH TO COMPUTER LANGUAGE DESIGN

report and incleeive dotes)
Manuscript for Publication (Technical Report)

F'5. AUTHON(S) (Laot name, Nret name, inttiel)

McKEEMAN, William M.

6. REPORT DATE A Ta. TOTAL NO. OF PAGES 76. NO. OF REPS
August 31, 1966 124 2
B6. CONTRACY OR GRANT NO. 96. ORISINATON'S REPORT NUMBENA(S)
Nonr-225(37)
& PROJECT NO. csua
NR-O4b4.211
. 9. “ﬂll asvo" NO(B) (Any sther numbere thet mey be sssigned
e 3 none
10. AVAILABILITY/LIMITATION NOTICES
Releasable without limitations on dissemination
11. SUPPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research Code 432
e Washington, D. C, 20360

13. ABSTRACY

A kernel programming language includes those constructs
universally applicable to the problem of computer control. The
need for constructs outside the kernel leads to the concept of
an extendable compiler. We approach this problem by attempting
to simplify the methods of generating a §omp11et and by design-
ing a basic language upon which to build.

The form of a language is determined by its grammar. In
particular, we demand a context free grammar as the initial in-
put to a syntax preprocessor which produces syntactic analysis
tables for the extendable compiler. The methods are extensions
of the precedence grammars of Floyd and Wirth-Weber.

A formal mathematical description of a class of analysis
algorithms including the above is given and two new syntax pre-
processor algorithms are presented. Some theorems concerning the
behavior of the algorithms and the nature of the acceptable
grammars are given.

(cont.)

DD /2. 1473 UNCLASSIFIED

Security Classification

- - e

, T8

°!nh‘3,< '”1.9.‘1. 2 dSkS
1 s.cm CI.: di;c.tio:w
“—1--“' . - e LINK A LINK 8 LINK C
KEY WORDS ROLE wT ROLE wr noLtg LAj

1. Compiler

2. Computer-language

3. Parsing

4, Context-free grammar.
p

« Extendable compiler

INSTRUCTIONS
1L, ORIGINATING ACTIVITY: Enter the name and address imposed by security classification, using steandard statements
:(the co?rllclof, n:bcontractothp-?tn. Dcpmmh:t)ol l.)“o; such as:
ense activity or other organization (corporate author) lssuing .
the report. (1) Qu:tlmod ggia'o.tou may obtain copies of this
2a. REPORT SECURITY CLASSIFICATION: Enter the over (2) “Foreign announcement and dissemination of this

ail security classification of the report. Indicate whether

”
“Restricted Data’” is included Marking is to be in accord DRI G B B 0 Snsiord

ance with appropriate security regulations. . (3» “u s OoV:Lnunt :‘mgf)‘c. -&;mln -‘;:3‘.? &'wc
20. GROUP: Automatic downgrading s specified in DoD Di- :':l:tml u;cutol:t t'l::ugh -

rective 5200, 10 and Armed Forces Industrial Manual. Enter P
the group number. Also, when applicable, show that optional .
markings have been used for Group 3 and Group 4 as author- (4) *U. 8. military agencies may obtain copies of this
ised. seport directly from DDC. Other qualified users

3. REPORT TITLE: Enter the complete report title in all shall request through

capital letters. Titles in nll cases should be unclassified. W
If a meaningful title cannot be selected without classifica- ..

tion, show title classification in all capitals in parenthesis (S) **All distribution of this report is controlled Qual-
immediately following the title. ified DDC users shall request through

4, DESCRIPTIVE NOTES: If appropriate, enter tho' :N.ypo of O
teport, €.g., interim, progress, summary, annual, or fi he report h o

Give the inclusive dates when a specific nponing period is Sorvllle‘n. Dep:tm::tb::nc:‘::‘:r?: ::t“::“ l'(.lc&: ;ncm
covered. cate this fact and enter the price, if known

S. AUTHOR(S):: Enter the name(s) of author(s) as shown on P NOTES: addi

ot in the report. Enter last name, first name, middle initial. ::’ 'S”U:..LB(EMARY - Bahd S d

If military, show rank and branch of service. The name of

the principal author is an absolute minimum requirement. 12. SPONSORING MILITARY ACTIVITY: Enter the name of

the departmental project office or 1aboratory sponsoring (pay

6. REPORT DATEL: Enter tire date of the report as day i
Ssnih 3808 A month, yoiw W-3ars WA S0 SHP ‘”.;“ ng for) the rnofrch and development, Include address.
on the report, use date of publication. ::- A”mc% En“'t.l:;lb":l‘ct l:::‘“l . b'::‘ and ?“‘“‘

3 mary e documen cative of the report, even though
Zl.;o umﬁ:-'%ﬁgfnz?g‘% T.dh‘.n:?.:.:..‘:;:?bo it may also appear elsewhers in the body of the techaical re-
Tk of nhasd contalning et o iy . g.or:.u.u addfuonnl space is required, a continuation sheet shall
76, NUMBER OF REFERENCES: Enter the total aumber of It is highly desirable thet the abstract of classified reports
references cited in the report. be unclessified. Each paragraph of the abstract shall end with
8a. CONTRACT OR GRANT NUMBER: If sppropriate, enter an indication of the military security classification of the ia-
the applicable number of the contract or grant under which formation in the paragraph, represented as (TS$), (3). (C), o¢ (V).
the report was written, There is no limitation on the length of the sbstract. How-
8b, &, & 8d. PROJECT NUMBER: Eater the appropriste ever, the suggested length is from 150 to 225 words.
military depertment ideatification, such as project number, 14. KEY WORDS: Key words are technically meaningful terms

subproject number, system numbers, task number, etc. .
phrases that characterize a report and may be used a
9a. ORIGINATOR'’S REPORT NUMBER(S): Enter the offl- index entries for cataloging the report. Key wotd.: must be 4

cial report number by which the document will be identified selected so that no security clessification is required. Identi-
and controlled by the originating activity, This aumber must fiers, such ss equipment model designation, t::o name, military
be unique to this report. ":::c::d:‘ l';.b-..'f “:":.dpuc loc‘:;lon, may be used as key

95. OTHER REPORT NUMBER(S): If the report has been weehe ollowed by en indication of techaicel con-
assigned any other report numbers (either by the originator text. The assignment of links, rales, and weights is optional.

or by the sponasor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enater any lim-
itations on further dissemination of the report, other than tbouj

DD '523‘:4 1473 (BACK) Unclassified

Security Classification

A~y . B o R = - T ——— . .
’ B S e T ”if-

In language design, we attempt to carry the EULER develop-
ment by Wirth and Weber to a more concise and powerful form. We
advocate languages that are minimal and involuted. A minimal
language combines into a single construct any two conceptually
similar but notationally different constructs. An involuted
language avoids constructs that are\applicablé only in local
context. In the res\ilting language we find such previously
diverse constructs as lists, parameter lists, blocks, compound
statements, for lists, and arrays to be identical. .After com-
bining the features of the reduced EULER with some ideas from
Iverson and PL/I we find that our control over the flow of ex-
ecution within a program is sufficiently complete such that we
can discard the traditional label and go-to statement as
irrelevant. '

As a final example of the kernel language, we present an
extendable compiler written in the kernel language itself.

Our conclusions are that the precedence grammar techniques
are quite efficient and useful. Further improvement could make
them substantially superior to other methods of compiler gen-
eration. We believe that the computing community would be better
served with a minimal common language which the user would
routinely extend than by any large general purpose language.
Finally we believe that the growing agreement on the constructs
common to all programming task should have a much more significant
effect upon machine design than is presently the case.

~ | ———————" . L - . .
O e il GRS P - e
:

