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SECTION 1 

INTRODUCTION 

The Goals of Computer Language Design 

The universe and its reflection in the ideas of man have wonderfully 

complex structures. Our ability to comprehend this complexity and perceive 

an underlying simplicity is intimately bound with our ability to symbolize 

and communicate our experience. The scientist has been free to extend and 

invent language whenever old forms became unvieldy or inadequate to ex- 

press his ideas. His readers however have faced the double task of learning 

his nev language and the new structures he described. There has therefore 

arisen a natural control: a work of elaborate linguistic inventiveness and 

meager results will not be widely read. 

As the computer scientist represents and manipulates information 

within a machine, he is simulating to some extent his own mental processes. 

He must, if he is to malte substantial progress, have linguistic constructs 

capable of communicating arbitrarily complicated information structures 

and processes to his machine. One might expect the balance between linguis- 

tic elaboration and achieved results to be operable. Unfortunately, the 

computer scientist, before he can obtain his results, must successfully 

teach his language to one particularly recalcitrant reader: the computer 

itself. This teaching task, called compiler writing, has been formidable. 

Consequently, the computing community has assembled, under the 

banner of standarization, a considerable movement for the acceptance of 
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a few committee-defined languages for the statement of all computer 

processes.    The twin ideals of a common language for programmers and 

the immediate interchangibility of programs among machines have largely 

failed to materialize.    The main reason for the failure is that program- 

mers,  like all scientists before them,  have never been wholly satisfied 

with their heritage of linguistic constructs.    We hold that the demand for 

a fixed standard programming language is the antithesis of a desire for 

progress in computer science.    That the major   responsibility for compute 

language design should rest vith the language user will be our central 

theme. 

The reduction of compiler writing to a task that a language user 

might reasonably wish to undertake is the major   technical obstacle.    We 

are not alone in our desire to simplify compiler writing [h,  7,  17,  22,  25 

and we must justify our particular approach in some detail. 

We postulate the existence of a set of basic concepts common to all 

computing tasks.    A language which includes just the basic concepts we 

will call a kernel language.    The implementation of a compiler for a 

kernel language ve    will call an extendable compiler.    We do not expect 

agreement on what constitutes the set of basic concepts or on the best 

kernel language to represent them.    We do hope that our kernel language 

will be noncontroversial enough that the user will not be seriously 

hampered in building a language to suit his needs. 

Our first claim is that modifying an extendable compiler is easier 

than building a compiler from first principles.    The primary reason for 

this is that the user of an extendable compiler can largely ignore the 

details of such mechanisms as text scanning,  syntactic analysis and pro- 

gram loading while concentrating on translating his forms  (syntax) into 

2 

^■t        ' 



hin meaning (semantics). In many compiler systems trie mechanisms for 

syntactic and semantic analysis, scanning, buildin'; tables and code 

production are inextricably entwined, making a change to any one of them 

hazardous, even for the expert. In our extendable compiler such functions 

are cleanly separated, both conceptually and physically in the text of 

the compiler program. 

Our second claim involves the syntactic description of the user's 

language. We demand a phrase structure grammar (BNF, Backus-Naur Form, 

Chomsky type II, context free, etc.) from which a syntax preprocessor 

generates syntactic recognition tables for physical insertion into the 

compiler. We can show that if the syntax preprocessor accepts the phrase 

structure grammar without complaint, then the syntactic analyzer in the 

compiler will always function correctly. In short, we can prevent even 

the naive user from blundering into an ambiguous or otherwise ill-defined 

grammar. 

Finally, we claim that the kernel language is a powerful and concise 

base upon which to build. 

Review of the Literature and Summary 

We assume (for the moment) the reader is familiar with the notion 

of a context-free grammar. The central problem in writing a compiler for 

a language described by a context-free grammar is the construction of an 

algorithm which will efficiently discover the grammatical structure of 

an arbitrary input text. And the basic step in a parsing algorithm is 

the identification of a substring in the text which, when replaced by 

application of a rewriting rule, brings us closer to goal of an analyzed 

text. 

3 
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A string is a candidate for rewriting if it is identical to the 

right-hand side of a rewriting rule. If two or more candidates for 

rewriting overlap, then at most one of the rewritings can lead to a 

correct analysis. In Bounded Context Syntactic Analysis Floyd explores 

the possibility of making the decision by examining a fixed number of 

characters to the left and right of the candidate. A grammar for which 

such a decision is always possible is called of bounded context. Floyd 

shows that, if we chose the left and right bounds, we can determine if 

a given grammar is of bounded context, for the chosen bounds. The 

construction of a parsing algorithm then simply demands the construction 

of tables for the relevant contexts. 

We immediately discover two difficulties. First, straightforward 

application of the ideas for a practical language results in tables of 

impractical size. Floyd points out several simplifications based on 

particular algorithms (such as a left-to-right scan of the text). But 

the main difficulty is that the amount of table required for the hardest 

decision is required for all decisions. Second, there are three decisions 

involved: where is the left end of the candidate, where is the right end, 

and what may we substitute for it. As might be expected, the bounds for 

the individual decisions are usually smaller than those of Floyd, resulting 

in a reduction of the table size. 

In Syntactic Analysis and Operator Precedence Floyd presents a 

particular algorithm for making the parsing decisions. The algorithm is 

not properly a parsing algorithm since it skips some steps in the analysis 

thus failing to give the complete structure of the text under consideration. 

It is on the other hand more efficient for skipping them. The compiler 
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writer must in each case decide whether the analysis provided is suffi- 

ciently complete. We also come immediately to face the problem that for 

some purposes the class of grammars acceptable to the algorithm is too 

restricted. 

In Euler; A Generalization of Algol §0,  and its Formal Definition, 

Wlrth and  Weber modify Floyd's algorithm to remove some of the restrictive- 

ness on the acceptable grammer and also expand it into a proper analysis 

algorithm. No progress is made in reducing the size of the tables demanded 

by expanding the context. 

In this paper we explore the implications of splitting the parsing 

decision into its thre»- components. For context bounds of (l,l) the 

allowed grammars turn out to be identical to those of Wirth and Weber. 

For bounds of (2,l) for finding the left boundary, bounds of (l,2) for 

finding the right boundary and (0,0) for choosing the result of the 

rewriting we find a substantial improvement in the table size but they 

are still impractically large. 

Also in Luler ... we find that not only the form of the language 

but also the sequence of parsing steps is significant in the design of 

a compiler. The sequence of steps proceeding strictly from left to right 

in the text is called the canonical parse. The canonical parse turns out to 

le a natural vehicle for describing the sequence of execution in the 

compiled program as well as for proving a given class of grammars unambiguous 

In language design we attempt two goals: to present a language 

simpler and more powerful than Euler, and to make the defining mechanism 

sufficiently simple so that the language user can change the language to 

suit his needs. 



Our first action is to equate those constructs in other languages 

that are conceptually similiar but take different forms (switches, proce- 

dures and name parameters)  (lists, blocks, compound statements, parameter 

lists, iteration lists).    Our second step is to integrate the concept 

of a list-valued constant into the language structure itself. 

We describe the resulting language and compiler in some detail. 



SECTION 2 

COMPUTER LANGUAGE DEFINITION 

Production Grammars 

As can be seen by examining Table 1, there is little unanimity 

among authors regarding the formalisms for the description of production 

grammars. While our notation adheres closely to the consensus, our 

readers may wish to refer to the table for a more familiar terminology. 

We define three primitive entities: (l) the vocabulary V, a finite 

set of elements called symbols, (2) a null string of symbols,  A  and 

(5) the operation of catenation between strings and symbols denoted by 

juxtaposition. In terms of the primitive entities we make the following 

definitions: 

V* = {x|x = A or (3y)(3y), y G V* , Y € V, x = yY] 

is the set of all strings that can be formed from the elements of set V. 

Note that we have used lower case latin letters to denote members of V* 

and upper case latin letters to denote members of V. This convention 

is extremely useful and we will adhere to it henceforth, usually without 

explicit reminder. 
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V* A -» -♦ * -.* P 

Table 1 

A resume of notations used in recent papers on 

production grammars. 

The arrows of Eickel and Paul,  like those of Gilbert [lO] have the 

sense of reduction as opposed to the more standard sense of production. 
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i-*ri a production, is an ordered pair with both i, r € V*. We call i 

the left of the production, r the right of the production and read the 

production as I    produces r. 

P is a finite set of productions. 

VL = [U |(3x)(3y)(3z) with yUz -♦ x in P) is the set of symbols on 

the left in P. 

VR = {U | (3x)(3y)(3z) with x-» yUz in P) is the set of symbols on 

the right in P. 

V™ = V - V  is the set of terminal symbols. 

V = V - V 
-N  - 

y_ , the complement of V_ , is the set of nonterminal symbols, 

VQ = V - VR is the set of symbols appearing only on the left in productions 

We call V- the set of g;oal symbols. If £-»r is in P, then for any 

x and y we may write  x/y-» xry and read x<y directly produces xry, 

or xry directly reduces to xiy. We immediately note that for every 

production, the left of the production directly produces the right of the 

production. We regard each production as a rewriting rule allowing the 

substitution of the right of the production for any occurrence of the left 

of the production in any string. If a string is in V^ then there can 

be no applicable production and the process of production must halt, 

hence the name terminal symbols is applied to V^. 

One may also regard a production as a rewriting rule in the direction 

opposite to the arrow. In that case the rule would be called a reduction. 

In simplest terms, we would think of speaking as involving actions of 

production and listening as involving actions of reduction. It will be 

convenient to phrase our theorems in terms of productions while our 

programs are capable only of reductions. 



If y = x. -» x^ -» x, -♦ .,. -> x = z for n > 1, then  we write y => z 

and read y produces z or z reduces to y. 

If we write y -> => z we mean y -> z with n > 1. 

The set DS(p) = (x | (3G), G € V- , G -4=> x)  is the set of strings 

derivable in P. 

Ii(P) = DS(P) H y* is called the language defined by P. The members 

of L(P) are called the sentences of the language. Note that it is the 

sentences that can be written as text and we need be concerned only with 

the analysis of sentences. 

Since a language is fully determined by the set of its productions P, 

we will refer to the set of productions as the grammar P.  We lose the 

generality of being able to select a single member of V^,  as the distin- 

guished symbol, but the loss does not affect our considerations since we 

have other reasons to restrict ^ to a single unique member. 

For example: Let 

P » (G -» X, X -» XX, X -♦ Y) . 

Then: 

V = (G, X, Y) , 

% • CD , 
VJJ = (G, X) , 

VQ » (G) , 

V* = (A, G, X, Y, GG, GX, GY, XG, ... etc.) , 

VJ = (A, Y, YY, YYY, ... etc.) , 

L(P) = (Y, YY, YYY, ... etc. ) , 

G-»X-*XX-*XXX-»XXY-»XYY-» YYY 

is an explicit demonstration of the fact that G produces the string 

YYY   (G => YYY). 10 



We now direct our attention to a subset of production grammars, 

called phrase structure grammars,   in which the form of the productions 

is restricted to   L -♦ r. ' 

We will also assume two additional restrictions: 

(1) V_    has a single element; we will designate it by   G . 

(2) (Vx)(3t)    such that    X € ^ ,    * ^ V*    and    X=i> t  . 

The alternative to restriction (l) is to distinguish one member 

of V-, explicitly in the description of the language. We reject this 

for two reasons: First, the productions describing the other members of 

V- can be discarded since they can never be used in an analysis; Second, 

we like to be able to test the productions for the existence of a unique 

goal as a check against programmer errors. 

Restriction (2) excludes grammars that give rise to derivations 

that can never terminate in a sentence. It happens that condition (2) 

is also required to prove the equivalence of simple precedence grammars 

and symbol pair grammars (see page 27). 

The Canonical Parse 

If xYz -» xyz and z € VJ* , then we call the ordered pair 

(xYz, xyz) a canonical parsing step (abbreviated CPS). Note that it 

is the rightmost nonterminal symbol (RNS) that is replaced in a CPS. 

If every step in s ^> t is a CPS, we call the sequence of steps a 

canonical parse. A CPS induces a partition (xyz) on the unreduced text. 

Note that we imply L € V and r € V* by our conventions on upper 
and lower case. 

11 



Knuth calls the segment    y   the handle [l6] which unfortunately conflicts 

with Greibach's term handle  [12],    Wirth and Weber [25] call    y    the 

leftmost reducible substring which implies a relation that we do not wish 

to pursue.    We will give    y   the name canonically reducible string and 

abbreviate it CRS.    For a particular CPS,  the CRS is well defined. 

If we view the CPS in the sense of production,  we see that zero 

or more symbols are added to the terminal string to the right of the 

rightmost nonterminal symbol.    Therefore the length of the string    z    of 

terminal symbols is a monotonic function of the number of canonical 

parsing steps.    Now viewed as a reduction,  we see that the canonical 

parse inforces exactly the same order of productions as required by a 

left-to-right scan of the sentence. 

Because of its relation to left-to-right parsing algorithms, the 

concept of a canonical parse has appeared in many forms. It was first 

explicitly named in [5] and [25]  independently. 

A sentence which has two essentially different  structures is 

called ambiguous.    Formally,  a sentence is unambiguous if and only if it 

has a unique canonical parse.    Furthermore^  a language containing an 

ambiguous sentence is ambiguous;  a grammar defining an ambiguous language 

is ambiguous., 

The reader should verify that the grammar, language and sentence 

in the preceding example are formally ambiguous according to our definition. 



The Parsing Function 

The problem of parsing a text t reduces to finding, at each stage, 

the string ti so that t. -»t.   is a CPS. If a sentence t Is 

unambiguous then we see Imnedlately that each Intermediate stage of Its 

derivation Is unambiguous. In particular, we note that for all 1, t. 

Is uniquely determined by t, ,  alone.^"  We can therefore Infer the 

existence of a uniquely valued parsing function P such that Pfa.  ) ■ t., 

The following algorithm Is the complete solution to the problem of parsing 

an unambiguous sentence. 

START 

1 
t := Input text; G := goal; 

t := P(t) ; 

false 
—^— 

true 

STOP 

The assured existence of the function P Is, however, of little 

use In constructing a translator. The only way to compute its values in 

general Is to parse the sentence t and record the results in a table 

(which rather begs the question). 

For otherwise we would have two canonical parses of t . 

15 
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It is surprising to find thst for a restricted set of phrase 

structure grammars,  we can find economical ways of computing the parsing 

function.  XUo [7^25] have been previously published.    A third way,   and 

some steps toward a fourth are presented below.    Except that Floyd's algorithj 

skips some CPS,  all are special cases of the following detailed breakdown 

of an algorithm to compute the function    P . 

PI, P2,   and P5    are functions of three string-valued variables 

x, ^ and z.    For the moment we will underline program variables to distin- 

guish them from values with the same name but derived from the canonical 

parse.    If the catenation    xyz    is in DS(p)    and    L(p)    is unambiguous 

then there is a unique partition    xyz ■ xyz    of the catenation of strings 

in the program variables    x, y and z    and a unique production    Y -♦ y    in    P 

such that   G ^    xYz -»xyz    is canonical.    We give an Algol-like definition 

of the functions in terms of the partition and production as follows: 

Pl(x,^,z): If   G -»^    xyz    then 

(x ■ xy and ^r = A  and x ■- z)    else undefined; 

P2(x,^,z):   If G -»^ xyz    then 

(x = x    and   ^ = y    and    z = z)    else undefined; 

P5(x^z): if    P2(x,^,z)    then    Y    else undefined. 

Ik 
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thm 

The general parsing algorithm. 

.. 

START 

x := A ;       ^r : = A j      z, 5=   input text  ;        0  :=   goal symbol   ; 

true 

true 

jr := x^;      X :=   A > 

false 

STOP 

false 

false 
—j»- 

move first symbol 

of    z   to tail of 

move last symbol 

of   x   to head of   £ 

T 

15 



In terms of a syntactic analysis algorithm, we would assign the 

following individual responsibilities to the functions: 

pi: read the input tape.. 

P2: locate the CRS y to be replaced. 

P5: perform the reduction. 

Due to the monotonicity of the length of z,    we must decide before 

each CPS whether to shorten z.    At the termination of the loop on PI, 

we have assured ourselves that all of the CRS is on the tail of x« We 

have located one boundary of y. The left boundary is found in the 

loop on P2. At the termination of the larger loop, we substitute Y 

for y, leaving the nonterminal symbol Y on the tail of x. If we have 

reduced the entire string to the goal we are through. Otherwise, we return 

to the loop on PI. 

A cycle through the functions PI, P2, and P3 is equivalent to 

a single step on the function P. The string xyz is always identical, 

at the end of the main cycle, to the value of P(xyz).  The main reason 

for introducing the function PI, P2, and P3 is that their values can 

be handled as reasonable computational entities. The parameters of the 

functions are still unwieldy which reflects the fact that the function 

values may depend upon an examination of the entire text. 

Theorem.  If the input text is a sentence and the grammar is unambiguous, 

the general parsing algorithm will reduce the input text to the goal 

symbol via the canonical parse. 

Before attempting the proof we must describe our general method 

for proving the correctness of algorithms. The basic mechanism of 

inductive closure for program loops is described by Floyd [9] as one 

16 
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technique of a verifying compiler.    We state an initial set of relations 

that ve know to be true upon entry to the ]oop.    Wo then show that they 

are invariant with respect to execution of the loop,   hence they are 

always true.    We finally deduce some relations that are true at the comple- 

tion of the loop,   either as a final result,  or as a component in a proof 

on a larger enclosing loop.    In our deductions we must insure that alJ 

actions are defined and all loops terminate.    Relations  true upon exit 

from the algorithm are then correct descriptions of the final state of 

the algorithm. 

Proof.      If the grammar is ambiguous, the parsing functions are not 

uniquely defined and it is meaningless to state the parsing algorithm. 

Similiarly,   if the input text is not a sentence, all of    PI,  P2,  and P5 

are immediately undefined. 

We need to show that we complete one CPS each time through the 

outer loop and that the process terminates in a finite number of steps. 

We cannot analyze the outer loop until we understand the inner loops. 

We consider the loop on    PI    first. 

G -♦=>    xgz    hence  (ax)(3y)(3z)(3Y)     such that 

xyz    = xyz    and    xYz  -» xyz    is a CPS;  |x|<   |xy|   ;    1 =   A 

move first symbol of 
z    to tail of    x 

false 
Ul <   M 111 >o 

G -*=Z>    xyz    hence  ...  etc.  CP;3; 

x = xy;       ^ =   A ;       z = z;      |zl  <    M     ' 

17 



We assume the truth of the relations listed at the top of the loop 

and derive those at the bottom.    Since   G -*s&>    xgz ,    PI    is defined. 

If it is false,    x ^ xy.    But we have    |x| <  |xy|    hence we derive 

x| < |xy|     ,      From  |^|   = 0   we get    \x^\ <  |xy| < |xyz|    hence 

xy| < |xyz|.    But    xyz = xyz   thus   |8| > 0.    There is, therefore,  at 

least one character in   £   and the action in the box is defined.    Further- 

more, all of the assumptions are unaffected by the action,  hence are 

invariants of the loop.    The loop must terminate because    z    is of finite 

length.    When    PI    becomes true, the conditions on exit from the loop are 

consequences of the definition of   PI. 

Now consider the loop on   P2    with the resulu.. of    PI    as assumptions, 

V 
G -»ae> x^z hence ( 3x)(3y) (3z)(3Y) such that 

xyz ■ xyz and xYz -> xyz is a CPS; 

x = xy; ^ = A z.= z;  |^| < |y| . 

false 

move last symbol of 

x    to head of   ^r 

III < lyl     1*1 > o 

true 

G -»a5> xyz hence ... etc. ... CPS . 

x = x;  ^ = y;  z = z; 

P2 is initially defined and will remain so. Since z is never 

affected, we have z^ = z everywhere. If P2 is false we have either 

x / x or £ £ y.    But either inequality implies the other, so we have both. 

18 



From 1^1 > |y|  we derive |^| < |y|,  hence |x| > 0. Therefore the 

action in the box is defined. All the assumptions are preserved in the 

loop. The loop must terminate because x is of finite length yie.'ding the 

stated relations as consequence of the definition of P2. 

For the entire algorithm we can now write 

x := A ;  ^ := A ; z := input text; G := goal symbol; 

-*• 
G-»^»x^z    hence (3x)(3y)(3"2)(3Y)    such.that 

xyz ■ xyz    and    xYz -♦ xyz    is a CPS; 

1*1 < M ;    x * A ; 

G -♦=>    x^z    hence  ... etc ...  CPS; 

x = x;    ^ « y;     z z: 

^r := P5(x, ^,z) ; 

x  := x£;    £ ::= A » 

G -*=>    xyz 
hence  ...  CPS; 
*| < |xy|; 

^ = A ; 

false 

G => xjrz  ;      ^ = A ; 

true xyz = G 

STOP 

19 



By our assumptions, the input text is a sentence and we have 

G -»=t> xgz    and its ramifications. Since |x| = 0 initially, 

|x| < lxy|  is vacuously true. P3 is defined and has value Y. 

xYz -* y^z    is a GPS by definition hence we have new x = xY, ^ = A , 

and z = z with G=t>  xyz. If G = xyz, we are done. Otherwise, we may 

write again G -»=t> xyz and define new x, y, and z. Since z 6 V* , 

xy must contain all of the nonterminal symbols. The last symbol of the 

new x is nonterminal, giving the required |x| < |xy|. We find our 

assumptions invariant and also a consequence of the initial conditions. 

The loop must terminate since there are a finite number of steps in a 

canonical parse.  QED. 
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Symbol Pair Parsing Functionti 

If we wish to find a reasonably efficient method for computing the 

parsing functions,  we must renounce the privilege of examining the entire 

text at each stage.    We will see that the effect of narrowing the view of 

the parsing functions will be to reduce the class of gramraars for which 

we can build mechanical translators. 

We first postulate that the parsing functions depend only upon a 

few symbols in the region of the CRS.    We will be able to verify our 

postulate   mechanically;-   if it is false then the grammar in question lies 

outside the range of that particular analysis. 

Our approach will be to examine the grammar (mechanically,  as it 

is very tedious) to discover all the sequences of symbols that can possibly 

occur in the region of the next CRS.    For each possible sequence we will 

record the required value of the parsing functions.    When the resulting 

functions are well defined the grammar is unambiguous and the syntactic 

analysis algorithm in the compiler always functions correctly.    The func- 

tion values are inserted into the compiler in a condensed tabulated form. 

Consider the three new functions    PI', PS», and P^'    defined in 

terms of    PI,  P2,  and P5. 

If    Pl(x,^,£) is defined,    X    is the last symbol of    x    and   Z   is 

the first symbol of    z,    then we define    Pl'^z)    to be identical to 

Pl(x,^,z).    Similiarly,      P2'(X,Z)    must be identical to    P2(x,^,z) 

when P2 is defined^ X   is the last symbol of   x   and    Z    is the first 

symbol of the catenation   jrz.    P?1^)    must be identical to    P3(x,^,£) 

when    P3    is defined.    We will call a grammar for which the functions 

PI',    PS',  and    PJ'    are well defined a symbol pair grammar (or more 
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generally,  as we will see,  a (l,lXl,l) canonical parse grammar).    We 

will be able to show that under restrictions (l) and (2)  (page ll), 

symbol pair grammars are equivalent to simple precedence grammars [25]. 

The number of arguments  for which PI,  P2,  and P3    are defined is 

in general,  infinite.    On the other hand,  if NSY is the number of symbols 

in    V,     PI'     -nd P2'  need be defined for at most NSY squared possible 

arguments.    PJ'     is defined only when   ^    is the right part of a production 

and thus also has a finite number of possible arguments.     It is immediately 

clear that we must apply a new restriction in order to make    P5'    well 

defined: 

Restriction (3):    No two productions may have equal right parts. 

We may,  as has been pointed out to the author by N.  Wirth,   lift restriction 

(5) if we have any way of distinguishing equal right parts.    A particular 

case in point is the Algol 60 <identifier> which we might wish to reduce 

to <array identifier^ or to <variab]e>,  etc.,  where the decision can be 

made due to other non-grammatical information.    We will call the number of 

productions,   (and, under restriction (j^ the number of CRS)    NPR. 

We see that the boundaries between x    and   ^    and between   ^   and    z 

in the general parsing algorithm always lie immediately to the left of, 

within,  or immediately to the right of the next CRS.    The parameters    X 

and    Z    of    PI'     and    P2,    always lie on opposite sides of one of the 

boundaries;  the values of    PI'     and    P2,    depend upon where the boundaries 

lie with respect to the CRS.    We will be able to compute the position of 

the boundaries with the help of the three following set definitions: 
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TS(X), the set of tail symbols of X, is given by 

{Y|(3y), X-»=> f[]   . 

HS(X), the set of head symbols of X is given by 

{Y|(3y), X-»^> Yy)  . 

HS_(X),    the set of terminal head symbols is given by 

(HS(X) U (X)) n ^    . 

Note that if X is terminal, the first two sets are null but the third 

is not. 

When X is a tail symbol of the rightmost symbol in a CRS and Z 

is a head symbol of anything that might follow that CRS in a sentence, 

P1,(X,Z) must be true and never otherwise. Similiarly, whenever X lies 

within a CRS and Z is a head symbol of the next symbol needed toward 

the completion of that CRS, Pl'^z) must be false so that the needed 

symbol is moved onto x. In terms of a production: 

W -» uUVv , 

we cannot start building V if U has not yet been fully formed. Since 

we have narrowed our view to one symbol on either side of the boundary, 

we must never move any symbol in the head of V from £ to x if the 

last symbol of x is a tail symbol of U. If U has been formed and 

is the last symbol of x, we must move any head symbol of V onto x 

to start building toward V and finally uUVv. We may very well find 

conflicting demands, a symbol that must be moved on account of one pro- 

duction and must not be moved on account of another production. Conflicts 

are common in practice and constitute a serious nuisance. The compiler 

writer can usually modify his grammar in a trivial way to remove the 

conflict. A more general solution would be to extend the view of the 

parsing functions, an approach which is discussed later in this section. 
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The function of the loop on P2,  is to march down across a given 

CRS and locate its left boundary. In terms of the sample production, it 

is clear that P2'(U,V) must be false for every pair U,V that are 

contiguous within a CRS. P2,(X,Z) must be true whenever we cross the 

left boundary of a CRS—a condition that is true when X lies within a 

CRS and Z a head symbol of the next item to be formed within that 

CRS. We can summarize these relations with a mnemonic table: 

W -» uUVv 

P1'(U,HST(V)) = 

P2'(U,V) 

= false 

= false 

pr(TS(u),HST(v)) 

P2'(U,HS(V)) 

= true 

= true 

P^'CuUVv) = W 

We need only consider terminal symbols for PI'  since we know that 

z    contains only terminal symbols. We are also implicitly assuming some 

strings to be non-empty. We avoid this last problem by adding a production 

leading to the goal symbol, 

G' -»  I-G H ,  where 4- and H are end-of-file symbols 

that we may use to initialize x and append to z.    As modified the 

parsing algorithm becomes; 
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The Symbol Pair Parsing Algorithm 

START 

x:=|-; ^:=A; £:= input text -| ;  G := goal symbol ; 

false 

■^-M»—^ 

X := last symbol of x ; 

Z := first symbol of z ; 

false 
move first symbol 

of z to tail of x 

true 

last symbol of x ; 

first symbol of ^z ; 

false 
m 

t 
move last symbol 

of x to head of J 

x := x£;  ^ := A ; 

true 

STOP 
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We state some consequences of the definition of symbol pair grammars. 

Theorem. If the symbol pair parsing algorithm terminates normally, it 

has produced the canonical parse for the input text. 

Proof. The only transformation allowed on the text is the substitution 

of the leftpart of a production for the rightpart, thus it is immediately 

obvious that if the algorithm functions at all, it produces a parse. 

After each substitution we see that the newly formed reduced symbol is the 

rightmost nonterminal symbol in the text, hence that step was a CPS.   QED. 

Theorem. A symbol pair grammar is unambiguous. ([25] p. 26). 

Proof. Assume the contrary. Then there is a sentence for which there 

exist two canonical parses. We first show that the existence of two 

different overlapping CRS implies a conflict in the parsing functions. 

Assume that our text is 

xLn L-,.. .L. M,M0.. .M R-R0...R z id       Ki£   mic   n 

and both of L... .M  and M1.. .R  are CRS with m > 0, and one 

of k or n > 0. 

We treat the case k > 0 in detail. From the fact that L-.. .M 
1   m 

is a CRS  we immediately derive PtC&Li HS^.J) = false and 

P^(Lk, JL) = false. 

(We substitute the set as an argument of P' meaning the relation is 

true for all members of that set). Now perform the rightmost reduction 

and our text becomes 

xL1 L«...LjMz 

where M was the leftpart of the production. Either L  and M are 
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next to each other in a production or further reduction brings us to the 

text 

x'L'M'z' 

where L' and M1  are next to each other in a production, 

V =E> uL,  M' =5> M v. 

In the first case we have P2,(L, »N. ) ■ true and in the second, 
k 1     

P^(Lk, HST(M
1)) ■ true. Either implies a conflict since M ^ ES{W ) 

and HS  is never empty. 

The situation is entirely similiar for n > 0. Thus we find our 

only choice during reduction is which of several disjoint CRS to pick. 

Let us assume that we pick other than the leftmost, substituting for it 

the nonterminal symbol in the leftpart of its production. There is a 

CRS to the left which must always be disjoint from all other CRS, hence 

will eventually be reduced to its leftpart. But such a step is not a 

CPS because we have already formed a nonterminal symbol to its right. 

In order to form the canonical parse, we must always pick the leftmost 

CRS and it is unique, thus the canonical parse is unique and the grammar 

is unambiguous. 

We will now define the simple precedence grammars of Wirth and Weber 

and show their equivalence, under restriction (2), to symbol pair grammars. 

We define three relations, <,=,>, between symbol pairs as follows: 

For every production of the form W -» uUVv 

U = V , 

Z € HS(V) implies U <• Z 

X e. TS(U) implies X > V 

X € TS(U) and Z € HS(v) imply X > Z. 

27 

•- ■• 



If for each pair of symbols in   V   at most one of the above relations 

holds, the grammar is a simple precedence grammar. 

Theorem.    If   P    is a simple precedence grammar, then   P   is a symbol 

pair grammar.    If   P   is a symbol pair grammar and restriction (2) holds, 

then   P   is a precedence grammar.    We immediately exhibit a symbol pair 

grammar that violates restriction (2) and thus fails to be a simple 

precedence grammar. 

P   -    (G-»AB,    A-»X,    A-»XB,    B -»C,    C -» CY)     . 

The reader may find it instructive to build the six by six matrix of 

precedence relations implied by the definition and find the two conflicts, 

one of which is    X <• C   and   X •>  C. 

Proof.    We show that if   P   is not a simple precedence grammar then it 

is not a symbol pair grammar and the converse. 

Assume that    P    is not a simple precedence grammar.    Then there 

exist at least two symbols related by at least two of the three relations 

<•     >=**>.    We treat each case separately. 

(a).      U=V    implies    (3W)(3-i)(3v)    suchthat   W-»uUVv. 

(b).      U<-   V    implies    (3W)(3u)(3S)(3v)    suchthat   W -»uUSv 

and    V € HS(S). 

(c).    UJ>V    implies    (3W)(3u)(3R)(3v)    suchthat      W-»uRVv 

with    U € TS(R),    or 

(3W)(3u)(3R)(3S)(3v)    such that 

W-»uRSv   with   U € TS(R)    and   V £ HS(S)  . 
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From the existence of a relation between two symbols we have been 

able to infer the existence of the production from which the relation 

was derived. Now from the productions we can derive some values for 

the functions PI' and P2\ 

(a) implies P2'(U,V) is false and (VX), X € HST(V) 

gives Pl'^X) is false. 

(b) implies P2'(U,V) is true and (Vx), X € HST(S) 

gives P1'(U,X) is false, Also HST(V) C HST(S). 

(c) implies (Vx) Xe HST(v) gives Pl'C^X) = true since 

U € TS(R) and HST(v) C HST(S). 

On account of restriction (2), we see that HS_ is always nonempty. 

Therefore if any two of (a), (b) or (c) hold simultaneously, we have a 

conflict in Pi« or PS'; hence P is not a symbol pair grammar. 

Converse. Assume that P is not a symbol pair grammar. Then there exist 

symbols U and V for which either PI' or P21 is double valued. 

(d).  Pl'd^V) is true implies (3W)(3u)(3R)(33)(3v) 

suchthat W-»uRSv with U € TS(R) and V € HST(S). 

(e).  n.*(llf?) is false implies (3W)(3u)(3S)(3v) 

such that W-»uUSv with V € HST(S). 

Now V € H3T(S) implies V £  HS(S) or V « S, thus (e) implies 

U - V or U <• V and (g) implies U v> V, conflict. 

(f).  P2«(U,V) is true implies (3W)(3u)(3S)(3v) 

suchthat W-»uUSv with V £ HS(S). 

(g).  P2'(U,V) is false implies (3W)(3u)(3v) 

such that W -» uUVv. 

But (g) implies U i V and (f) implies U <i V. Conflict, QED. 
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In terms of the general parsing algorithm,  the precedence relations 

can be thought of as a thre- valued function    P12*(X|Z)    which is used 

for both analysis loops.    Replacing    PI',    it  is false if it has value 

<•   or    =    and true if   •>  ,      Replacing    P2',     it  is false if    ^    and 

true otherwise.   ([25] p.  20).    It is  surprising to find that even though 

the defining matrix for    P^'    is twice as dense as corresponding matrices 

for    PI'    and      P2,    and also contains spurious relations due to the over- 

restrictive fourth defining rule for simple precedence grammars, that 

no extra conflicts are introduced. 

In either case,  the matrices defining the parsing functions tarn 

out  to be rather sparse,  and rather large.    In the process of building 

the parsing functions, we tabulate the symbols of    V,    and manipulate 

instead the integer corresponding to their symbol table location.    As 

suggested by Floyd ([7] p.  525) we can frequently find functions    fl    and 

gl    such that if    P1'(U,V)    is true,     fl(u) > gl(v)    and if    Pl'O^V)    is 

false,    fl(uN   ' gl(v). 

We can,  of course,  do the same  for    P2',     The advantage accrues in 

requiring only    k NSY    memory locations for the tables defining the  func- 

2 
tions    fl,  gl,   f2,   and g2    instead of    2 NSY      locations required for 

the matrices explicitly defining    PI'     and    P2'.    This is  somewhat offset 

by the fact that the Boolean matrices defining    PI'    and    P2,     could be 

packed in digital memory.    At present,  all syntax checking is done by the 

f..nctjon    P3'     and the only error indication is that the CRS found is 

not   la the production table.    If we retained the functions    Pl:    and    P2' 

including the undefined values,  we woald have an additional  (redundant) 

method of error  checKing. 
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Let P be an arbitrary Boolean matrix (values 0 and l). For 

all X and i,    define 

NSY  ,,. .x Y 

f(X) =  £ 2^-1h{yi,Y),    g(Y) = 2Y . 
Y=l 

Then P(X,Y) = 1 if and only if (f(X) mod g(Y)) > g(Y)/2 .  Thus we 

can state that a relation always exists with which we can record the 

content of a Boolean matrix P in two linear arrays. The relations V" 

and ">" are adequate in practice. 

We present the symbol pair syntax preprocessor in two forms. The 

first is written in the kernel language presented in Section 3> the 

second is the listing of the Burroughs B5500 Algol program actually 

used to generate tables for the extendable compiler of Section h.    We 

find it informative to compare the programs for conciseness and readability. 

While the two programs accomplish essentially the same actions, the kernel 

language version is approximately one half as long as the Algol version. 

A detailed inspection of the program text reveals that the major savings 

are in implicit table lookups (G, %$  index) and the generalized for 

loop. Jn particular, there are 26 occurences of the symbol for in the 

kernel language version while the Algol version contains 55. Further- 

more, we find ten labels in the Algol version of which perhaps one half 

are essential and none of which contribute to the reader's ability to 

understand the program. 

Since the kernel language is discussed in detail in Section 5> we 

will say nothing further about it here. Burroughs B5500 Algol is in most 

respects exactly Algol 60. The input and output conventions are relatively 

standard except for the following features: 
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(1) On line 7 of the program we see a file declaration for the 

card punch. Its function, setting aside buffer areas for the card 

punch, is not important to an understanding of the program. 

(2) Three lines below we find a WRITE statement in the form of 

a procedure call. The first parameter to WRITE is a format which is 

indicated to the Algol compiler by enclosing the format in the brackets 

< and >. All the remaining parameters are values to be written. 

In the middle of the third page we see two STREAM procedures. They 

are an interface with the character mode machine instructions of the 

B5500 used to set and interrogate two-bit fields within the h8  bit B5500 

word. Since we may have upwards of 100 symbols and have two matrices 

with that number squared of elements, packing the values is unavoidable 

in Stanford's l6 thousand word B5500 memory. Packing would be somewhat 

more convenient in the kernel language since we can use subscripts to 

access bit strings directly. 

Finally, we use the machine clock to obtain execution time infor- 

mation for the user. One of our objectives is the accumulation of precise 

timing information for the behavior of the preprocessor as a function of 

the number of productions and number of symbols. Preliminary data gives 

the surprising conclusion that execution time is a linear function of 

the number of productions (about 2 seconds per production). 

We now give a narrative of the kernel language version of the 

program. Our first action is to name all the identifiers local to the 

main block and initialize P to the null set. We examine the first 

character from the input medium and continue to read productions until 

an end-of-file symbol is encountered. Our productions are character 
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strings whose length is a multiple of 12. The firs^ 12 characters are 

the leftpart of the production and the remaining fields are the symbols 

of the rightpart. A carriage return delimits the production. Internally, 

a production is an ordered set of strings, each element representing one 

symbol in the production. We make special provision (if (length t)^ 0 

then ...) for blank lines which cam be used to increase the readability of 

the production tables. We also print the productions to supply the user 

with a record of his input. 

If the leftpart of two successive productions is the same, we 

allow the user to substitute a field of twelve blanks for the second 

leftpart, again to increase readability. At the completion of input we 

immediately repair the omission. 

Then, in three lines, we use the generalized for loop, set union 

and set difference to build all the symbol tables that we will need. 

Four more lines of program records them on the output medium. 

After excluding the possibilitlos of empty and repeated rightparts, 

it becomes advantageous to replace the production table with a new table 

"PR" of identical format except that its elements are the indices of the 

production symbols in the vocabulary V. We then complete our grammar 

checks by excluding the possibility of a grammar with nonterminating 

phrases (restriction 2). 

We define procedures to compute head and tail symbols. Note that 

we recompute the head and tail symbols repeatedly within the analysis 

loop. In the processor for the (2,l)(l,2) grammars we adopt a suggestion 

of N. Wirth to compute an "occurence" matrix which need not be re-evaluated. 

The latter is probably a superior approach. 
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We then initialize the matrices    PI    and    P2    to NSY iqutrtd 

values undefined,,  and proceed to evaluate the functions PI*    and    P2• 

according to the directions of the theory.    For every pair of adjacent 

symbols in the grammar (j    and    k    in the program) we evaluate the tail 

and head symbols.    We record    P2,(j,k) true    and all of    P2,(j,HS(k)}  fal.se. 

Then we modify heads to become the set    HS,_    and evaluate    PI'    in the 

same manner. 

Our final task is the computation of Floyd's linearization functions 

f   and    g.    Our algorithm is modeled on that of N. Wirth [26] but is 

simpler since our matrices are two valued instead of three valued. 

Our algorithm proceeds to satisfy the requirements of the decision function 

starting in the apper left corner of its defining matrix.    We add a row 

to the satisfied area (null to begin with) and call uprow to assure that 

(,l)    f    is large enough to satisfy all the requirements given by the value 

false    and (2)    g    is large enough to satisfy all the requirements given 

oy the value true.    If we must change    g    we call upcol to readjust   that 

entire column. 

It   is possible to hav ? functions    PI1    and P2'     b^t  still not  nave 

a linearization for the relation pair   <    and >.    At any given stage of the 

operation of the  algorithm above,  we know that the Submatnx in the upper 

left  corner bar, been correctly linearized.    Thus if we are going to fail, 

the failure must involve one of the last relations added to consideration. 

We can check witnm the adjusting procedures to see that we never return 

to adjust one of the last relations added.    If we do, we have failed and 

print  a diagnostic error trace indicating the exact  reason for that 

partic^l^r failure. 
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•    Kernel language version of (l,l)(l,l) syntax preprocessor ' 

{ new j k kl P PR NPR V NSY VL VR VT VN VG PI P2 f g t heads tails 

fail beenatrowk beenatcolk HS TS upcol uprow change, 

P ♦- {);   '   the null set of productions  ' 

while in[l] / eof do 

{  t *- [],   '  the input loop,  build a production  ' 

while in[l] ^ cr do 

{  t <- t © { in[l to 12]   ),   •   fixed field,   12 characters  ' 

in «- in[l5 to length in] 

)• 

in <- in[2 to length in], 

if (length t) ^ 0 then P ♦- P ® (t), ' add another production ' 

out <- out ® i®/t)  ® cr ' print the production ' 

), 

NPR <- length P,    VL <- VR <- set  (), 

for all i  from 1 to NPR do     'replace omitted left parts' 

(if P[i][l] = " " then P[i][l] *- P[i-l][l]), 

for all t from P do 

{  VL <-VL U (t[l]),    VR ♦-VR U t[2 to length t]), 

V<-VLUVR,    VTf-VReVL,     VN^-VeVT,  VG«-VL©VR, 

NSY <- length V, 

out «- out « (if (length VG) £ 1 then "no "  else l",) © 

"Unique leftmost  symbol:  " « (©/VG) ® er ® 

"Terminal spibols:  " ® (®/VT) ® er ® 

"Non terminal symbols:  " ® (®/VN) ® cr, 

for all t from P do (if (length t) = 1 then 

out «- out 9 t[l] ® " has an empty right part" ® cr), 

for all  i from 1 to NPR do for all j from i+1 to NPR do 

(if P[i][2 to oo]  = P[tj][2 to oo] then 

out «- out ® "Productions " ® er ® 

(«/Pti]) • " and" ® cr e («/P[j]) « er ® 

"have equal right parts" 9 cr), 

PR «- P,   'convert productions strings to symbol table location' 

for all i  from 1 to NPR do for all j from 1 to length P[i] do 

PR[i][j] «-PUHj]  index V, 
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• The final grammar check—for nonterminating phrases' 

for all 1 from 1 to NPR do P[i] «- P[i] e VT, 

change «- true 

while change do 'now try to collapse grammar' 

( change «-false, 

for all t from P do  (if (length t) = 1 then 

(for all i from 1 to NPR do 

for all j from 2 to length Ptl] do 

(if P(i][j] = t[l] then 

P[i] .-PU] e (t[l])), 

P <- P e' (t),  change «- true 

)) 

), 

if P ^ () then out «- out 9 "grammar includes a 

non terminating phrase" • (©/©/P)©cr, 

HS <-  (?) 

( new s, 

for all t from PR do 

(if t[l] = s then if t[2] £ heads then 

( head «-heads * (t[2]), HS{t[2])   }) 

TS *-  (p) 

{  new s, 

for all t from PR do 

(if t[l] = s then if t[-l] £ tails then 

{ tails *-tails 9 {t[-l]), TS{t[-l])   )) 

h 
PI ♦- P2 <- NSY list (NSY list 0) 

for all t from PR do for all i from 2 to (length t) - 1 do 

{ j «- t[i], k «- t[i+l], heads «- tails «- {), 

TS(j},    HS(k), 

if P2[j](k] = ß then 

{  P2[j][k] 4-1, 

for all h from heads do 



if P2[j]Lh] = 0 then P2[j][k] «- 0 else 

(if P2[j][h] = 1 then out ♦- out • 

"Conflict,    P2(" 0 V[j] 9 "IE" 9 Vlh] 9 "]" • cr), 

)  else (if P2[j][k] = 0 then out ♦- out 9 

"Conflict, P2[" 9 V[j] 9 "H" 9 V[k] • "]" 9 cr), 

if V[k] € VT then heads «- {k),   'Now HST in heads' 

for all h from heads do (if V[k]  € VT then 

(  if Pl[jl[h] = n then Pl(j][h] ^ 1 else 

(if Pl[j][h] ■ 0 then out <-out 9 

"Conflict,  Pl(" ® V[j] 9 "][" 9 V[h] 9 "]" 9 cr), 

for all g from tails do if Pl[g][h] = 0 then Pl[g]lh] ♦- 0 else 

(if Pl[g][h] = 1 then out «-out 9 

"Conflict,  Pl[" 9 V[g] * "][" « V[h] 9 "]" 9 cr), 

) 

h 
uprow «-   (p) 

(  new i p, 

if beenatrowk    A    i = k then fail ♦- true, 

beenatrovrit «- beenatrowk   v i = k, 

for all j from 1 to kl do 

(if f[i] < g[j] then if p[i][jl = 0 then f[i] «-g[j] + l), 

for all j from 1 to kl do 

(if    1 fail then if f[i] > g[j] then if p[i][d] = 1 then 

upcol{J, (p) p)   ), 

if fail then out ■ out 9 "row= " • V[i] • cr 

)i 

upcol «-  (p) 

{  new j p, 

if beenatcolk A j = k then fail «- tru^, 

beenatcolk «- beenatcolk v J = k, 

for all i from 1 to k do 

(if f[i] > g[j] then if p[i](jl = 1 then gtj] «- f[i]), 

for all i from 1 to k do 

(if i fail then if f[i] < g(j] then if p[i][.j] = 0 then 

uprow{i, (p) p)   ), 

if fail then out «- out • "col= " © V[j] «or 

li 
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fail «- false, kl <- 0 

f <- g <-NSy list 0,   'Allocate storage to f and g' 

for all k from 1 to NSY do if 1 fail then 

( beenatrowk «- false,    f[k] <-g[k] «- 1, 

uprow{k, 0 P2), 

kl <- k, beenatcolk 4- beenatrowk «- false, 

upcoKk, 0 P2) 

out <- out • "Linearized functions for K:" 9 cr 9 

(for all i from 1 to NSY do (i base 10) • tab • V[i] ® 

(f[i] base 10) 9 tab • (g[i] base 10) 9 cr), 
fail «- false, kl 4- 0 

for all k from 1 to NSY do if 1 fail then 

( beenatrowk <- false, f[k] «- g(k] <- 1, 

uprow(k, 0 PI), 

kl «- k, beenatcolk «- beenatrowk <- false, 

upcol(k, 0 PI) 

out «- out • "Linearized functions for PI:" 9  cr • 

(for all i from 1 to NSY do (i base 10) 9 tab • V[i] • 

(f[i] base 10) • tab • (g[i] base 10) • cr) 

•end of program' 
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The Algol   version follows the kernel language version closely.     We 

have taken especial care to minimize conflict in memory use in the Algol 

version.    We provide three globals quantities, MAXNPR, MAXNSY,  and MAXLPR 

which determine the si^e of the tables  in the program.    Within the system 

definition block (see the following diagram) we define the global arrays. 

Our first action block is A, where the data cards are read and the various 

tables built.     In block B we check that the tables represent a grammar 

according to the restrictions of the theory.    In block 01 the recognition 

functions are computed and in C2 the linearization is completed. 

Block structure of the symbol pair analysis program 

Outer block - system definition 

Global quantities 

Block A, 
grammar  input 

Block B, 
grammar  checks 

Block C 

Block Cl 
Compute 
functions 
PI1    and    P2, 

Block C2 
Compute 
functions 
flj  Hi   f2|  g2 
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RLGIN     CQMMLNT SYNTAX   fRJCESoCK.   A* 
INTEGER   HAXMSY* CCKMENT 
INTEGER   HAXNPHJ CO.MENT 
INTEGER   MAXLPHI CC«MENT 
INTEGER   EllHER» fF.S#   NO/   11»    GTJ 

M. MCKEEMAN 
MAX NUMUER 
MAX NUMBER 
MAX   LENGTH 

INTEGER   Tl»   OU 
FILE   UUT   CH   0(2*10)1 

CCT,   1965) 
OF   SYMBOLS) 
OF   PRODUCTIONS) 
OF   A   PHCÜUCFIOM 

CCVMENT      TIMING   INFORMATION) 

PHCCEOURE   TIMER) 
PEQIN   INTEGER   T)      T   •   TlME(l)) 

bHITE^MlME   «••»   F/.^»"»   TOTAL 
(T-OT)/ieOö»   (T-TD/iöOÜ)) 
OT   ♦   T) 

FND   TIMER) 

ELAPSED  »  "#   F7J2#   ■   MIN,'»>. 

PAXNST • iOC) MAX:4PK 
EITHEh «- U) YES • D 
CT   ♦   VI   ♦    IlMtd)) 

♦ 3ÜÜ)  KAXLPR ♦ 5) 
NO ♦ 2»  LE ♦ 1)  GT ♦ 2) 

BEGIN  CQMV.ENT  SET UP «LUdAI. TABLES) 
INTEÜEH 
INTEGER 
riQOLEAN 
INTEGCK 
INTEGER 

12 SIG. CHARS) 
PRODUCTIONS) 

ARKAY VÜ» VIIOIMAXWSYI)     COMMENT 
ARHAY PRtÜJMAXNPR^UIMAXLPRJ)COMMENT 
ARRAY ONHlGHKOiMAXNSYl) 
NPh)  CUMMENl  ACTUAL NUMBER OF PRODUCTIONS READ) 
NSYN« NSY)  COMMENT  ACTUAL NUMBER OF SYMBOLS READ) 

COMMENT  CARD INPUT BLOCK) BEGIN  CUMMENT  HLÜU A) 
iNTtGLR I« J> K, L) 
LARtL INPUTLÜUP» LUF» FÜLND) 
INTEGEK ARRAY KQ* HHOIMAXNPR» 
INTLGLR ARRAY MTdlOtMAXNSYJ) 

OtMAXLPRD 
COMMENT     MASTER   TABLE) 

INTLGER   ARRAY   PHTo[Ü< 1022]) 
WR1 rE(<''PRUÜUC I IUNS »'♦//>)) 
NPR   ♦   0) 
iNPUTLQOPl 

REAÜ(<12A6>f   FüK   K   f   0   STEP 
(HUKPRM»   Ml   PHNPH4J | 

IF   PUlNHRM»   li   «   ^ ■ 
BEGIN     NPR   *■   NPR   ♦   I) 

MNlTE(<le*Xt)^A6*',   • *«*10A6>f 
FOR   R  ♦   fl   SUP   1   UNTIL   MAXLPR   DO 

END) 
GO    TO   INPUTLÜLH) 

COMMENT     PRODUCTION   TABLE) 

1   UNTIL   MAXLPR   DO 
KIIHEOFI) 

THEN   HRITE(<*  •'>)   ELSE 

NM* 
tPO(NPR*K],Pl(NPR»K]]}) 

I 

IC 

ELFI 
NSY   ♦   0)      VCtÜJ   ♦   VllCl   ♦   H 

FC/R   K   ♦   C   STEP   1   UNTIL   ^AXLPM   CD 
BEGIN     ^R   I   ♦   1   bltH   1   LKTIL   NPR   PO 

BEOIN     FOR   J   ♦   0   STEP   1   UNTIL   NSY 
IF   PCtI#M   »   VCI Jl   AND   PHI»*] 

GO   TU   FUONÜ) 
J   ♦   NSY   «•   NSY   ♦   D      V0IJ1   ♦   PCri»K]l 
FUUNDi 
PKt I»KJ    •   J> 
IF   K   #   0   IhLN   UNR1GPTIJ]   «-   TRUE) 

VltJl   THEN 

VltJl   *   PKNKl) 

ho 



E.MJ   li 
U   K   a   C    IHK   NSYN   ♦   ^SYj 

FCR   I   ♦   2   STLP   1   OMTIL   NPK   DO   IF   PftlNCJ   ■   0   ThfN 
PNC I#0]   ♦  f-Ktl-l^Ojl 

taHITEdPAGC D)     »•«IU{<,,INTEf»MEÜIAT£   SVMBCL S • ,,> )l 
*KIUU3(I8*Xj;2AC}>#   rifi   1   4-   1   STfP   1   INTIL   NSYN   DC 

11* vorn» viiinj; 

Nhm.(<5(ifc»x>#?Af,)># ruR i «. Ktvik«] STEP I UNTIL NSY OO 
n» vO[ j )# vi(nj}j 

HHnt(CP#<,,Fll.L   VO[*J   WITH 0#"#   6(••••••»A«»,••,••#,•#,•)/ 
(H("»"«,A6,*',,,#,,#,,))>»F0»'   I f   I   STEP   1   UTlL   NSY   OU   VO(lJ)> 
KRITL(CP»<,,HIL   m*J   KUH 0»n»   ÖC"»,A«»"*" »••#")/ 
C8(,M,,,»A6»',,,,,#,,*,'))>»F0M   I «.   1   STEP  1   UNTIL   NSY   00   VIIIDJ 

L ♦ o; 
Fl!N   I   «■   1   STL^   1   UNTIL   NSV   DO 
BEGIN     MBtl J   ♦ L*li 

FUN   j   «.   J   f.U.P   1   UNTIL   NPH   CO   IF   PKIJ»1J   ■   I   THEN 
dEUIN      FOH   K   »   k   STEP   I   UNTIL   HAXLPH   00 

IF   HhIJ,Kj   1-   (j   THIN   HRTBtL*L*l]«-PRtJ#KJI 
PNTHlL«-!*!]  ♦   -j;     PRTBU«-L*n  ♦  PRfw^OJI 

LNU   Jl 
PHintL*i + n *- u; 

END   li 

*«iHITkUP#<,,f ILL  PKTbl*!   KITH     0#,,M0CI4#"#" )/ 
C   «•»lAdO»"»-))»»   Fl'R   1   ♦   1   STEP   1   UMIL   L   OC   PRTBCIJ)! 
hHITUCP#<',FlLL MlLiI*J   WITH   ••»   13(13,••,*)/ 
(*•   ,,#17(T3»*,»"))>'ü#FUH   I   ♦   |   STEP   1  UNTIL   KSY   00   MTBHJ)) 
WHlTt(CP#<,,NSY   ♦  "»IS,   ")      NSVN   ♦   ••,   13,   «;      NPRTB   ♦   *$   13,••)••>, 
NSY»   tSYN,   I.)) 

END   BLOC»1   A; 

BEGIN     CtMKtNl      «iLOCK  Bi COMMENT     GRAMMAR   CHECKS) 
IMLGKH I, J* U 
LABEL OKI 
J • «; 
FOR   1   •   1   STEH   1   UNTU    NSVN   00   IF   NOT RNHlGhUIl   THEN 
BEGIN     J   <■   J   ■•   U 

»«HlTt(</MTMt  UiiiuUi    TAHfiET   SYMBOL   JSl     •«/   ?A6>#   VOt 11» VH IJ )| 
END   li 
IF   J   V   I   THEN  WRIit(<,'TMEt<E   IS   NO  UNIQUE  LEFTMOST   SYMbOL">)l 

FOH   I   *   I   sm   1   UNTIL   NPR   OH 
BEGIN     CDMMENl     CHECK   FOR   EMPTY   LEFT   AND  RIGHT   PAHTSI 

IF   PHtI,OJ   e   0   THEN 
WHITt(<HP«ÜUUCribN   •»,   J»   •   HAS  AN  EMPTY   LEFT   PAHT"^!)! 

IF   PH[ I,J J   a   u   IHEN 
WHITt (<"PHüüUCTlON   M,   J,   ■   HAS  ftN  EMPTY   RIGHT   PART,,>#I)I 

FUM   J   ♦   1*1   bltP   1   UNTIL   NPR   00 

hi 



bt0lnü   SnH   ^Nr     ChtCK   K-nR   ICENTICAL RIGHT   PARTS; 
FUH   K   *   i   aiLP   1   liMiL   MAXl.HH   01) IF   PRtJ.KJ   ^   PH[J,KJ   THEN 

GO    T.J   UK> 
Wi<ITL(<"HKl)uuCIiONS   ••.J#•,   AND   "» 4i 
"   MUST 

UKI 

Ian a 
TlMtHi 

tNU dLOCK Hl 

.i>. uiSTu.GuiSHEo ev  THE FNTERPRETATION RULES«>#I#J)I 

HEGIN     CUMMENT 
ALPHA AHRAY 

Öt-UCK   Ci COMMENT     SYNTAX   ANALYSIS! 
Pl»   P^rOlNSY^   OINSY   Olv   24Ji 

eONNCNf     PACÄI'Nli   »»NO  INPACKING   PHOCEOURES; 
STREAM   MOCCOI.NC   i(.T2..nrS(W#    T,   V);      VALUE   II 
BLGIN     ÜI   *    *i      ülSKIk   I   iiq)l   SI   ♦   V)   SKIP   46   SBI 

2(ir   SB   THf.S  Ü6 ♦  s,El   KLSE  OS   ♦   RE3tTj   SKIP   SBMI 

END stTPdnsi 

iNTEGtH   STREAM   PHJCLÜljRE   (iET2ÖITS<W*   1)1 VALUE   II 
BLGIN     DI   «•   LUC   ÜLf2ttmi      SKIP   4«   OB)   SI ♦   Hl   2(SKIP   I   SBI)I 

2(1F   SB   THF.^J  III  f  üET   ELSE   CS   ♦   RESETI SKIP   SBDI 
ENO   GET2^1TSI 

BEGIN     CHMMENI      BLUCK   C   l»        CCMMENT   COMPUTE   PRECEDENCE   RELATIONSI 
INFEGER   AHtUY  rti-.AÜS»   T>lLSlOlNSyjl 
INIECFR   C,   M,   I,   j,   K,   Lt   LC*   HC#   T#   DIV2A#   M0024I 
BÜüLLAN   FA1LI 
LAbEL   SKIPfl,   bKlPP2»   ÜONEI 

PRUCEOUKE   HSCb);     VALUF   SI      INTEGER   SI 
BLüIN     C0MrM.N1     Fl^ü   THE   LEFTMOST   SYMBOLS   OF   Sl 

INTECEM   l#   J#   K; 
LABEL   ü"Jf llALrtEMQYI 
FOR   I   ♦   l   klCC   l   üMIL   NPR   00   IF  PR(I,OJ   ■   S   THEN 
BLGU:      N   ♦   PRIlftll 

FUH   j   ♦   i   SUP   I   UNTIL   LC   DO   IF  HEAOSIJJ   «   K   THEN 
GU   Tu  LUIITALREADYI 

LC   ♦   LC   ♦   II   HLAUStLCJ   *   Kl      HS(K)I 
GCI 1 I Al.HLAUYi 

END    (I 
tN.J   HSI 

PHüCEUU'AJ.    lb(}»)»     VALIE   SI      INTFGER  SI 
BLGIN      COM-LNI     FIND   THE   RIGHTMOST   SYMBOLS   OF   SI 

INTE^EH    i,   j,   Kl 
LABEL    (ii.niALHLAÜY,    Rl 
FUR   I   ♦   1   SILP   1   UMIL   NPR   DO   IF   PRtI»OJ   ■   S   THEN 
BEGIN      FUR   J   *   MAXLPR   STEP   -l   UNTIL   I   00   IF   PRtl.JJ   *   0   THEN 

GO   TtJ   hi 
Ri      K   ♦   H«tl,jj; 
FOR   J   ♦   I   STfP   1   UNTIL   RC   DO   IF   TAILSIJ1   ■   K   THEN 

GJ   TU   liUMTALHEAnYl 

k2 



ENO   II 
CNÜ   TSI 

PRUCeOUHE   CUNFLICT(I#j,M)l   INTEGER   I*J#M| 
Bt'ilN     INTtüEH   Cl 

FAIL *  rnuti 
NRITE(CNÜJ»<X29*N/">}J 
NHITE(<WCUNH.ICT#   *,   2A6*   "   ",   M*   ■   AND  *  A1#X2,2A6>« 
VO(I)>Vim«   M,M,   VO(Jl,VltJJ)| 

IHQ CüNFLKT; 

FAIL * FALSE; 
FOH   I   ♦   i   SIEP   1   UNTIL  NPR  DO  FOR   L   ♦   2   STEP   I  UNTIL   NAXLPR   DO 
UEtilN 

J  ♦  PH[I»L-lji     K   ♦  PRII#LJi 
IF   K   a   O   THtN   GQ   TC   OONEI 
0IV24   •   K   Ü1V   241     MQ024   ♦  K   MOO   241 
LC   ♦   RC   *   01 
TS(J);      HJ>(K)| 
T  *  GET2»IT&(P2lJ*0lV24)*H0024)f 
IF  T  •   US   IHEN   GÜ  TO  SKIPP2I 
IF   T   ■   NO   1MEN   CONFLICT(J#K#«»N")  ELSE 
StT2d|TS(P2[J*UIV24J,MQ024*YES)l 
FÜR  H  ♦   l   SIEP   1   UMIL LC  00 
BEGIN     0IV24   *   hEAOStH]   DIV   ?4I   H0024   •  HEAOSCH]   MOD   241 

IF  GU2bnS(P2[J.0lV24]*HQ024)   •   YES  THEN 
CONKICT(JfHEADS[H]*NK(")   ELSE 
SET2UITS(P2CJ#0IV241>K0024*N0)I 

ENO  Hj 
SKIPP2I 

IF   K   >   NSVN   THtN 
BEGIN     CÜMMtNf   IF   «K«   IS  TERMINAL   NE   MUST  TABULATE   ITI 

LC   ♦   LC   ♦   II 
HEAOSILCJ   «■   Kl 

ENOl 
FOR  H  ♦   1   SIEP   1   UNTIL LC  00 
BEGIN     CUMMLNT     ONLY   TERMINAL   SYMBOLS   ARE   INVOLVEOI 

IF  HLAUSIH)   1   NSfN  THEN  60   TO   SKIPPll 
DIV24   •  HEAOS(H)  OIV  241     M0024   •   HEA0S(N]  MOD  24| 
IF   GtT2älTS(Pl(j*0lV24]*MOO24)   •   NO   THEN 

CÜNFLiCT(J#HEAOStN],"S")   ELSE 
SLT2dirS(Pl[lj»DIV24)«M0024«YES)l 

FOR   G   ♦   1   SIEP   1  UNTIL  HC   00 
19   GEl2blTS(PlITAlLStGj,0IV24l#M002O  •  YES  THEN 

CüMFLlCT(TAILSt6J#HEA0StHJ»"S")  ELSE 
SEI2U1TS(PI[TAILS[G]«OIV24]*M0024*NO)I 

SKIPPil 
ENO  Hl 
OONEI 

END  L   II 
IF  NOT  FAIL   THtN   HRl TEC</"NO   CONFLICTS   MERE  FOUND*>)l 
TIMERI 
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END «LOCK C II 

BEGIN  COMMENT  bLUCK C 21     COMMENT LINEAHI2E MATRICES! 
INTEGER 4MNAY t* GCQlKSYU 
INTEGER K> KU 
BOOLEAN FAIL* bttMTHC*K# BEENATCOLKl 

•NÜCEOURE üHCÜL(J»P)i VALUE Jl INTEGER Jl ALPHA ARRAY P[0#0JI 
FORNAROI 

PHÜCEÜURE ÜPHÜN(I#P)! VALUE H INTEGER II ALPHA ARRAY PtC#CJl 
BEGIN INTEGER j; 

IF BEENATHO.IK ANQ I a K THEN FAR ♦ TRÜEI 
BEENATROHK ♦ ÜLENATWUWK CR I • Kl 
FOR j ♦ i siEP i u^r^L KI DO IF FIU i  GCJI THEN 

IF   üCT2älTS(P(I,j  OIV   2A1,ENTIER(J  MOD   2«))   ■   GT   THEN 
FlIJ   ♦   GIJJ   ♦   II 

FOR   J   ♦   1   SIEP   I   UKFIL   Kl   ÜO   IF  NOT  FAIL   THEN 
IF   FUJ   >  GIJJ   THEN 

IF   GEI2aiTS(Pn#J  OIV   20.ENTIER(J   MOO   24))   ■  LE   THEN 
UPtUL(J#   P)| 

IF   FAIL   THEN   MHITE(<"R0*|   .   ",I3,   «     m,   ?A6># I# VO( !!# VI111)1 
ENU UPRONI 

PHUCEDURE   ÜHCÜL(J»P)I   VALUE   Jl   INTEGER   Jl   ALPHA   ARRAY   PI0*0JI 
BEGIN   INTEGER   i,   d0lV2«,   JM002AI 

IF   BEENAfCULK  ANO   J   a   K   THEN  FAIL  ♦  THOEI 
BEENATCüLK   ♦  HiENATCOLK   CR   J   •  Kl 
J0IV24   •   J  U1V   241     JM0024   ♦   J   MOO  241 
FOR   I   ♦   1   SIEP   I   UKTIL   K   DO   IF  FII]   >  GUI   THEN 

IF   GET2diTSCPll.J0IV24)#JM002O  -  LE   THEN   GCJ]   ♦  FtUI 
FOR   I   ♦   I   SIEP   I   UMIL   K   DO   IF   NOT  FAIL   THEN 

IF   f[l)   i  G[j)   THEN 
If   aEI2Hirs(F(I,J0lV24),JM002O   ■  GT   THEN 

JPKJMd,   P)| 

„uJULÜh   TH£N  "^^^"COL   ■   "#13,   ■     %   2A«>#J#V0CJJ,V1NJ)I 
ENU   UPCOLI 

FAIL   ♦   FALSE!     Kl   ♦   ÜI     HRITE(I?AGEJ)I 
FOR   K   ♦   1   STEP   i   UNTIL   NSY   OÜ   IF   NOT  FAIL   THEN 
BEGIN     HEtNATHUNK   ♦   FAL5EI   FtKJ   ♦   CtKJ   ♦   II 

UPR0«(K.P2)I 
Kl   ♦   Kl     dEtNAlCOLK   »   BEENATRONK  ♦  FALSEI 
UPC0L(K#P2)I 

ENU   Kl 
IF   FAR   THEN 

NRITE<<"LlNtAKnATIÜN   FAILURE   FOR  FUNCTIONS   BELÖN">)I 
XRITE(<"LlNtAHnEÜ  PRCüUCTICN   RECOGNITION  PATRIXI"/ 
X^«»NO,"»X9#-STMdüL,,#MO.wF»#X7.»GV(Il0»X6#2A6»2I«)>« 

j Fun   K   ♦   |   STEP   I   U*TU   NSY   00   t K, VOIK J,Vl IK J,FIK I^GIKJ ) )| 
^lTE(CP»<"nLL  F2I*J   WITH   C,%   1«(I2,-.«   /   24   12,5  !     >' 

f FÜH   K   ♦   I   STEP   I   UNTIL   NSY   00   F;KJ)| ••'••■•   •    ^>» 
KHiTE<CP#<"FILL   G2m   rtlTH   Q,*,   1 N( I2.«.'» )/(24( 12»"." ) )>. 
FÜ«   K   *   i   STEP   I   UNTIL   NSY   00   G[K])I "l<^>" "»• 



FAIL   ♦ 
fQH   K 
BEÜIN 

UHH 
Kl 
UPC 

ENü   Kl 
IP   FA! 

MAI 
HH1U( 
X7»*NO 
Füh   K 
NHITCC 
FÜH   K 
WRlTtC 
FÜH   K 

END   BLOCK 
ENO   BLOCK   tt 

ENOI 
Tir'ERJ 
END, 

FALUJ      Kl   •   ÜI 
♦ 1   SIEM   I   UNTIL 

UUMTHUMK   •   FA 

» Ki HELNATCOLK 
QL(K.P1)> 

L THk.N 
IE(<nLlNtAM1241I 
<MLlUEAHi2EÜ HIE 
,,,#X«#,,bYHBÜL,,#)( 
* I srtP t UNTIL 
CP^^f ILL FU*1 
♦ 1 STEP I UNTIL 
CP#<"KILL ßl[*l 
* 1   STEP   \   UNTIL 

C   *) 

TIMER)     NRITE((PA6E1)I 
NSY   ÜO   IF  NOT   FAIL   THEN 

I.SEI   F[K1   *  G(K]   •   II 

»   REENAIHQWK   •   FALSE) 

ON   FAILURE  FOR   FUNCTIONS   BEL0NN>)l 
HAHCHY   ANALYSIS   HATRIXlV 
lO#HF,,#X7,"C"/(IlO#X6*2A6,2ia)># 

NSY   00   [K*VO(K]fVim#F(K]#G(KIl)l 

00 FrKDf 
0#«#   18(I2»*#««)/(2*(I2,••,"))>, 
00  GrKDI 

*iITH 
NSY 

>UTH 
NSY 
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(2,l)(l,2)  Parsing Punctiong 

Consider tne gramrr.ar 

P ^  (G -» AB,     B -♦   BC,     3 -» C) 

The symbol    B    is left recursive,  that is.,    B € HS(3) ,    From the first 

production we can derive a conflict  In    P2'»    Similiarly,   if    A   had been 

right  recursive,  we would have had a conflict in    PI'     frorr. the first 

production,,    We can s'jn up both situations by saying that an interntl 

recursion will always cause a conflict.    Note that tne grsmmer 

P =   (G -♦ AB' .     B'   -» B,     S -* 3C,     B -♦ C] 

has no internal  recursion and is  a ^yirbol pair grammar.     While we must 

reject arbitrary grarrmar transformations  on sen antic  grounds,   the  Inser- 

tion of a dummy production does not affect the semantic  interpretation of 

the language.     The reader will note several such dUMy productions in the 

grammar of our kernel language 

We would liKe to extend the  range of our grammars without requiring 

additional  work by the programmer.     It   is perfectly feacible to test for 

internal  recursions  and automatically insert dummy productions  into 'he 

grammar prior to starting the analysis of the syntax 

A perhaps more hopeful approach is to extend the  v.ew of the func- 

tions    PI'     and    12        It happens  that  internal recursions  are allowed 

if we TOOK l^eft one extra symbol  for    PI    and ri_aht one extra  symbol for 

P2      Extending the notation of Wirth and Weber ([25    p     52)  we call tne 

symbol pair grammars  (L,l}(l,l)  canonical parse grammars  and the  suggested 

extension  (2,l)(l,2)  canonical parse grammars 

A (2,l)(l,2)  syntax preprocessor is  considerably more  complicated 

than that   for a (l,])(l,l} grammar,.     In pnrticulari  the defining matrices 

^6 
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for Pl'^X^Z) and ?2n{X,Y,Z)    contain NSY cubed elements. Even 

though the density of defined entries is on the order of one percent, 

a moderately large grammar may require 10,000 entries. It is encouraging 

to note that no naturally occuring grammar has failed to be a (2,l)(l,2) 

grammar. 

The rules for deriving the values of Pi" and P2,, are similar 

to those for deriving PI' and P21. We will first tabulate the various 

set definitions required for the derivations and then state the rules de- 

rived from certain standard production formats. 

Set definitions. 

{(X,Y) | (3u)(3R) P-»uXR, R ^> Y) U 

{{X,Y) | (3u)(3R) P -»uR, 

{X,Y) € T2S(R)) 

canonical parse 
tail two symbols 

T2S(P) 

Canonical parse 
head two symbols 

H2S(P) 

Allowed predecessors 
AP(P) 

Allowed successors 
AS(P) 

({X,Y) | (3u)(3R) P -»XRu, 

(Y = R or Y G HS(R))) U 

{{X,Y) | (3u)(3R) P -»Ru, 

{X,Y) G H2S(R)) 

{X | (3Q)(3R)(3x)(3y) R -» xXQy, 

(P s Q or P € HS(Q))) 

(X | (3Q)(3R)(3x)(3y) R -» xQXy, 

(P = Q or P € TS(Q))) 

kf 
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Derivation rules for the parsing function values. 

W -♦ UVv 

W -♦ UVv 

W -» UVv 

W 

W 

tTUVv 

tTUVv 

W -» tTUVv 

PI" 

(3X)(3Z)    Z € HST(V),    X G AP(W)    implies 

Pl'^X^Z) = false. 

(3X)(3Y)(3Z) Z € HST(V),    X € AP(W), 

U-»xe>    y    implies    P1W(X,Y,Z) = true. 

(3X)(3Y)(3Z)    Z € HST(V),   (X,Y)  € T2S(U) 

implies    P1M(X,Y,Z) = true. 

(3Z)    Z € HST(V)    implies    P1M(T,U,Z) = false. 

(3Y)(3Z)    Z € HST(V),    U -»^> Y    implies 

Pln{T,Y,Z) = true. 

(3X)(3Y)(3Z)    Z G HST(V),   (X,Y) € T2S(U) 

implies    ?1"{X,Y,Z) = true. 

W -» tTU 

W -♦ tTU 

W -» tTU 

W 

W 

tTUVv 

tTUVv 

W -» tTUVv 

P2" 

(3S) S € AS(W),     (3Z)    Z € HST(S)    implies 

P2»(T,U,fc) = false. 

(3S)    S € AS(W),     (3Y)(3Z) Z € HST(S), 

U -»-e>    Y    implies    P2,,(T,Y,Z) = true. 

(3Y)(3Z)   (Y,Z) e H2S(U)    implies 

P2,,(T,Y,Z) = true. 

P2,,(T,U,V) = false. 

(3Y)(3Z) Z € HST(V), U -»=e> Y implies 

P2,,(T,Y,Z) = true. 

(3Y)(3Z) {Y,Z) C H2S(U) implies 

?2n{T,Y>7)  = true. 
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The block structure of the (2;l)(l,2) preprocessor is similiar to 

that of the symbol pair preprocessor.    We organize the set definitions 

for allowed predecessors,  allowed successors,  single character derivatives 

(Y -»=$> Z),    head symbols and tail symbols as Boolean matrices.    If,  for 

example,    AP[l,j] = true    then symbol number   J    is an allowed predecessor 

of symbol number    I.    We gain by avoiding table look ups and loose by 

being forced to pack the matrices.    The blocks    Cl, C2, and C5 contain 

relatively transparent algorithms for the computation of the five sets. 

Block C& delineates the algorithm for computing the function    PI". 

Consider an arbitrary canonical derivation    Y ^> t    where     "t ^ Vm  • 

For every intermediate stage of the derivation (such that it has at 

least two symbols) the pair of rightmost two symbols of the produced string 

are an entry in the canonical parse tail two symbols of   Y.    The procedure 

T2S    tabulates pairs of tail symbols over all possible derivations emana- 

ting from its argument.    Storage requirements force us to abandon the 

Boolean matrix definition for these sets and we tabulate them in a linear 

array.    It is also infeasible to record the values of   Pln    in a three 

dimensional matrix hence we record the values in four linear arrays, the 

first three giving the coordinates of the point and the fourth its value. 

At the innermost loop of the analysis (nested within four FOR's    and five 

IF's) we find a call on procedure ENTER which records the computed value. 

Since the speed of execution of the algorithm is proportional to the speed 

of ENTER, we have attempted to code it efficiently. The first implication 

is the need for a binary table look up which itself demands that the three 

coordinate arrays be packed in a single word as the polynomial value 

2 
IXN    +JXN+K    where   N > NSY.    Secondly we use even powers öf two 

and Burroughs B5500 partial word operators instead of multiplies and divides 

as indicated in the comments. 
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In block C5 we find similiar algorithms to compute    P2".    As one 

immediately sees by inspecting the output from a trial run on the pages 

following the program,  even a small grammar generates an enormous number 

of relations.    The number is so large that we have been unable to test 

the program for large grammars.    Yet we feel that the information in the 

tables is highly redundant leading us to conjecture the existence of some 

analogue to Floyd's    f    and    g    functions for condensing the information. 

To date we have not been able to find a reliable algorithm for this 

purpose. 

Our inability to condense the definitions of    Pi"    and    P2"    into 

reasonably compact tables is the only bar to their use in the syntactic 

analyzer of the compiler.    It appears that  (2,l)(l,2) grammars are suff- 

iciently -powerful to describe computer languages with no further generali- 

zation.    There would be some advantage in generalizing the function    P3' 

to allow repeated and empty right parts in the production tables. 

The sample output has been slightly rearranged from the actual 

computer output.    The first page contains listings of    P, Y^., V_,     and 

G.     Then follow the definitions of the five sets.    The left margin contains 

the  symbol number and name;  the top margin the least significant digit of 

the symbol number.    A dot signifies that the symbol numbered in the top 

margin stands in the indicated relation to the symbol in the left margin. 

For example,    EOF    is in the head of <PR0GRAI^>. 

The first tabulated value for    PI"    indicates that <EXPR>    ELSE    IF 

is an expected triplet and that    IF    is not to be moved from   ^    to    x    in 

the general parsing algorithm (because <EXPE>    ELSE    must first form 

<TRUEPART>). 
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BEGIN  COMMENT  (2#1)(U2) SYNTAX PROCESSOR  MCKrCMAN  JAN. l9A6i 
INTEGER MAXNSY) 
INTEGER HAXNPRJ 
INTEGER MAXLPRJ 
INTEGER TN OT# T; 
INTEGER P2CSAVE» Si' U 
REAL ARRAY RECORDt0 I 20]; 
DEFINE PACKED ■ ALPHAfJ 

COMMENT MAX NUMBER OF SYMBOLS) 
COMMENT MAX NUMBER OF PROnUCTIDNS; 
COMMENT MAX LENGTH OF A PRODUCTION! 
COMMENT TIMING INFORMATION) 
COMMENT STATISTICS STORAGE) 

PROCEDURE TIMER) 
BEGIN  OT «- T)  T ♦ TIMEM)) 

HRITEC^TIME 
(T-OT)/3600# 

END TIMER) 

»"»   F7,2#,,# TOTAL ELAPSED ■ "# F7,2# H MIN."># 
(T-Tn/3600)) 

PROCEDURE SAV(X))  VALUE X)  REAL X) RECORDCSK-SI + U • X) 

MAXNSY » 300)  MAXNPR • 300)  MAXLPR • 5) 
P2CSAVE * SI * 0) 
T •- TI •• TlMEd)) 
WRITE(<,,(2#l)(l,2) SYNTAX PROCESSOR» MCKEEMAN» JAN. 1966«»//>)) 

BEGIN  COMMENT  SET UP GLOBAL TABLES) 
INTEGER ARRAY VO» VICOIMAXNSY])     COMMENT  12 SIG. CHARS) 
INTEGER ARRAY PRCOtMAXNPR* OIMAXLPRD  COMMENT  PRODUCTIONS) 
BOOLEAN ARRAY ONRIGHTCOIMAXNSY]) 
INTEGER NPR)  COMMENT  ACTUAL NUMBER OF PRODUCTIONS READ) 
INTEGER NSY« NSYN)  COMMENT  ACTUAL NUMBER OF SYMBOLS READ) 

BEGIN  COMMENT  BLOCK A)    COMMENT  CARD INPUT BLOCK) 
INTEGER 1,   J# K) 
LABEL INPUTLOOP. EOF» FOUND) 
INTEGER ARRAY PO» PlCOlMAXNPR» OIMAXLPR]) 
WRlTE(<MPROnuCTlONSlH//>)) 
NPR ♦ 0) 
INPUTLOOP! 
REA0(<12A<S># FOR K ♦ 0 STEP 1 UNTIL MAXLPR 00 

[POtNPR*l# Kl» P1CNPR+1» K]])CE0F]) 
IF P0[NPR*1,IJ ■ ••     " THEN WRITE(<H ••>) ELSE 
BEGIN  NPR «• NPR • 1) 

NRITE(<IA»XB»2A6»N •    W#10A6>» NPR» 
FOR K * 0 STEP I UNTIL MAXLPR DO CP0[NPR»K1. PICNPR#K31)) 

END) 
GO TO INPUTLOOP) 

EOFI 
NSY ♦ 0)  VOCOJ • VHOl » "      •') 
FOR K ♦ 0 STEP 1 UNTIL MAXLPR 00 
BEGIN  TOR I •• 1 STEP I UNTIL NPR 00 

BEGIN  FOR J ♦ 0 STEP I UNTIL NSY DO 
IF POCI»K] ■ VOCJl AND P1CI»K] > VlCJ] THEN 

GO TO FOUND) 
J ♦ NSY •• NSY ♦ II 
VOtNSYl ♦ POtI»Kl)  VltNSYl ♦ PllI»K]) 
FOUNDS 
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PRCNK]  *  J; 
IF   K   ^   0   THEN  ONRIGHTtJl   ♦   TRUE; 

END i; 
IE K « 0 THEN NSYN •• NSYJ  COMMENT  STIUL IN INTERMEDIATE SYM) 

END K; 

FOR I •• 2 STEP I UNTIL NPR 
PRtI»0] ♦ PRCI-I,OI; 

DO IF PRtI#OJ ■ 0 THEN 

SYMBOLS»">)j 
I UNTIL NSYN DO 

WRlTECtPAGEDi  WRTTE(<,, INTERMEDIATE 
WRITE(<3(I8,X3I,2A6)># FOR I * 1 STEP 

ci# vom» vitnn; 
WRITE(<//»»TERMINAL  SYMBOLSt'»>)l 
WRITE(<3(ie.X3,2A6)>»   FHH   I   ♦   NSVN^l   STEP   1   UNTIL   NSY   HO 

ti# vom» vicnnj 
COMMENT  GATHtR STATISTICS^ 
SAV(NPR);  SAV(NSY);  SAV(NSYN)I 

END BLOCK AJ 

BEGIN  COMMENT  BLOCK fll COMMENT 
INTEGER ARRAY TESTtOlNPR» OlMAXLPRW 
BOOLEAN CHANGE» EMPTY; 
INTEGER I. J*   K» Zt 
LABEL OKI 

GRAMMAR CHECKS) 

j ♦ o; 
FOR I #• I STEP 1 UNTIL NSYN 00 IF NOT ONRlGHTCH THEN 
BEGIN  J «■ J + I) 

WRITE(</HTHE UNIQUE TARGET SYMBOL ISI *,   2A6>» VOtll» Vltll); 
END II 
IF J ^ 1 THEN WRlTE(<,,THERE IS NO UNIQUE LEFTMOST SYMBOL1^)! 

DO FOR 
> NSYN 

J «• 0 STEP I UNTIL MAXLPR 
THEN 0 ELSE PRCI.Jll 

DO 

NPR 00 

FOR i M STEP i UNTIL NPR 
TESTCI.J] * IF PfUI.JJ 

CHANGE «• TRUE; 
NHILE CHANGE 00 
BEGIN  CHANGE •> FALSFI 

FOR I •> 1 STEP 1 UNTIL 
BEGIN  Z • TE3TtI#0i; 

If   7.   *   0   THEN 
BEGIN  EMPTY «• TRUEl 

FOR J *■   1 STEP J UNTIL MAXLPR 00 
EMPTY * EMPTY AND TESTCNJ] ■ 01 

IF EMPTY THEN FOR K •■ I STEP 1 UNTIL NPR DO 
FOR J ♦ 0 STEP I UNTIL MAXLPR DO IF TESTtK,J3 ■ Z THEN 

TESTtK»Jl ♦ 01 
CHANGE • CHANGE OR EMPTYI 

ENDI 
ENDI 

END CHANGEI 
FOR I * I STEP I UNTIL NPR 00 IF TESTtI#0) ^ 0 THEN 

WRITE(<HPRODUCTION% 
1)1 

U< LEADS   TO   A  NON-TERMINATING  PHRASEH># 
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FOR I * I STEP 1 UNTIL NPR DO 
BEGIN  COMMFNT  CHECK FOR EMPTY LEFT AND RIGHT PARTS) 

IF PRtI#03 « 0 THEN 
WRITE(<MPRnDUrTinN -# J, •• HAS AN EMPTY LEFT PARTH>#I)I 

IF PRtI»l] ■ 0 THEN 
WRITE(<MPROnUCTIOM ", J,   " HAS AN EMPTY RIGHT PART">#I)J 

FOR J ♦ !♦! STEP 1 UNTIL NPR DO 
BEGIN  COMMENT  CHECK FOR IDENTICAL RIGHT PARTS) 

FOR K •• 1 STEP 1 UNTIL MAXLPR 00 IF PRtI#K3 ^ PRrj»Kl THEN 
GO TO OKI 

WRITE(<MPROnUCTlONS »,J,*   AND *$   J. 
" MUST BE niSTlNGUISHEO BY THE INTERPRETATION RULES">,I,J)) 

OKI 
END Jl 

END i; 
TIMER; 
WRITECCPAGE])! 

END BLOCK B; 

BEGIN  COMMENT  BLOCK C; COMMENT  SYNTAX ANALYSIS» 
PACKED ARRAY CR[OJlO?2i;    COMMENT  COORDINATES! 
INTEGER ARRAY Ifi S2[Gll022i;  COMMENT  NSY*2! 
BOOLEAN ARRAY VtOn022i; 
PACKED ARRAY INHEAO» INTAILC01NSY# QlNSY DIV 4831 
PACKED ARRAY SCDCOINSY» OlNSY DIV 463) 
PACKED ARRAY AP# ASfOtNSY» OlNSY DIV 4831 
BOOLEAN ARRAY BEENTHEREIOINSY ] J 
INTEGER NVAL, P2C, riNDS) 

BOOLEAN STREAM PRoCEOURE GETRITCA, I)»  VALUE || 
BEGIN SI «■ A; SKIP I sm TALLY ♦ i; 

IF   SR   THEN   GETRIT   ♦   TALLYI 
END   GETRITI 

STREAM   PROCEDURE   SETfllT(A,   I>|      VALUE   1) 
BEGIN     DI   *   A!      SKIP   I   OBI      nS   »   SETI 
END   SETBITI 

PROCEDURE   ENTERd»   J»   K,   X)l   VALUE   I»   J#   K#   XI 
INTEGER   I,   J#   Kl      BOOLEAN   XI 
BEGIN     LABEL     RINARYLOOKUP»   GOTITALREADYI 

INTEGER   R#   M»   J,   HP   NH,   LI 
IF   NVAL   •■»   1022   THEN 
BEGIN     rfRlTEC<HTOO  MANY   ANALYSIS  FUNCTION  VALUESM>)| 

NVAL   *   II 
TIMERI 

ENDI 
COMMENT  WE PACK COORDINATES BOTH FOR STORAGE ECONOMY AND 
SPEED IN THE BINARY LOOKUP FOR INSERTION! 
B ♦ 01  T • NVAL!  H * K«J[24 I 361123»1112t361123 I 
COMMENT  H IS THE COORDINATES AS PONERS OF 2*101 
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BlNARYLOOKUPl      M   «■   rMT}*C9AtttSI     COMMENT     DIV   2; 
NH   ♦   CRtMi; 
IF NH < H THEN R «• M ELSE 
IF NH > H THEN T «• M ELSE 

BEGIN  IE NOT (X EOV VtM]) THEN WR1TE(<McnNrLICT»M# 6A6>» 
VO(n#VUIl# VOtJWVHJl* VOCKl#Vl[Kl); 
FINDS * FINOS ♦ ||  COMMENT  FOR STATISTICS! 
GO TO GOTITALRFAny; 

CNOJ 
IF B+l *   T THEN GO TO BINARYLOOKUP; 
FOR L ♦ NVAL STEP -I UNTIL T DO 
BEGIN  CRCL*ll «• CRfLlI 

vtL*n • vfLi; 
END L) 
CR[T] » H;  VtTl • Xl 
NVAL ♦ NVAL ♦ 1) 
GOTITALBEADY« 

END ENTFR; 

PROCEDURE PUT(X# Y); ikXMl  x, Y; INTEGER X» Y; 

BEGIN COMMENT ENTER A HEAD OR TAIL PAIR INTO LIST; 

INTEGER |J LABEL GOT ITALREAOY) 

FOR I ♦ 1 STEP I UNTIL P2C DO 

IF SHI] » X THEN 

IF S2M « Y THEN GO TO QOTITALREADY; 

P2C «■ P?C ♦ \i 
IF P?C > 1022 THEN WRITE(<HT00 MANY PAIRSM>); 
COMMENT  WE SAVF P2C FDR STATISTICAL ANALYSIS) 
IF P?C > P2C5AVE THEN P2CSAVE ♦ P2C; 
SltP?C] «• X;  S2tP?Cl «■ YJ 
GOTITALBFAOYJ 

END PUT; 

PROCEDURE PRINTMATRIX(TITLE# M);  FORMAT TITLE) 
PACKED Af?9AY MC0,01I 
BEGIN  COMMENT  PRINT A BOOLFAN MATRIX) 

INTEGER I# J) 
WRITE(TITLE); 
WRITEC<X9» MSYM^OLM» t*>»    I00ll>» 

FDR I •• 1 STEP I UNTIL NSY 00 I MOD 10)) 
FOR I «• 1 STEP 1 UNTIL NSY 00 

WRITEf<I3» X3# ?A6# X2» 100Al># If   V0CI3. VltU» 
FDR J ♦• 1 STEP 1 UNTIL NSY DO 
IF GETBIT(MCI,J niV /i»i]#ENTIER(J MOO afl))THEN *,*   ELSE • ")) 

TIMER! 
WRITECCPAÜED) 

END PRINTMATRIX; 

PROCEDURE TABULATE(N))  VALUE N)  ALPHA N) 
BEGIN  COMMENT  PHlNT VALUES PF PlH(X#Y#Z> AND P2,,(X»Y»Z)) 

INTEGER I# ri# C2» C3) 
FOR I «• 1 STEP 1 UNTIL NVAL DO 
BEGIN  ri » CRCI].[12M?1)  c2 ♦ CRC 11. C?« 1121) 

C3 #• CRCI].C36:12)) 
WRITEC<A?,♦••♦'♦,M( ••»6A6»W)  «  ••# A2#MwH» w(,,#2( I 3»M»,, ># I 3# 
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N,   vOtClUVHCn.   V0[C?l*VlCC21,   VOtC33#VltC3)» 
N, ci# eg» e9i vtn); 

END; 
WRITE(<I5# M FUNCTinNI VALUFS, DENSITY •*,   F6.2» MtH# 

••^ ENTRIES/VALUE»*» r6.2># 
NVAL» 100xNVAL/NSY*3# (FlNOS^NVAL)/NVAL )l 

TIMERI 
SAV((T-0T)/3600)I  SAV(NVAL); 
hRITE(CPAGEn) 

END TABULATED 

CR[01 •■ 01        COMMENT  A SATE MBOTTOM" FOR THE BINARY LOOKUP) 

BEGIN  COMMENT  BLOCK C II   COMMENT  HEAD AND TAR OCCURFNCES) 
COMMENT  INHEADtI»Jl IMPLIES J IS IN THE HEAD OF 1) 
INTEGER I» J) 

PROCEDURE HS(S)J  VALUE SI  INTEGER SI 
BEGIN  COMMENT  FlNO ALL THE HEADS OF SI 

INTEGER I# J# 21 
IF NOT GETBlTdNHFTAntStS OIV 48l,ENTIER(S MOO 48)) THEN 
BEGIN SETBlT(INHEAOtS,S DIV 4B)#ENTIER(S MOD 4fl))i 

FOR I ♦ I STEP 1 UNTIL NPR 00 IF PRtI»0) ■ S THEN 
BEGIN  Z «- PR[I»ni 

HS(Z)| 
FOR J •• 1 STEP 1 UNTIL NSY DO 

IF GETpiT(INHEADtZ#J OIV 481»ENTIER(J MOD 48)) THEN 
SETBITCINHFAOCS^J DIV 48],ENTIER(J MOD 48)); 

END II 
END; 

END HSI 

PROCEDURE TS<S)I  VALUE Si  INTEGER SI 
BEGIN  COMMENT  FIND ALL THE TAILS OF SJ 

INTEGER U   J* Zl 
LABEL Fj 
IE NOT GETBlT(INTAlLtS#S OIV 4fl).ENTlER(S MOO 48)) THEN 
BEGIN SETBlT(lNTAILtS#S OIV 48]#ENTIER(S MOD 48))) 

FOR I * 1 STEP 1 UNTIL NPR 00 IF PRtI#OJ ■ S THEN 
BEGIN  FnR J «• MAXLPR STEP -l UNTIL I 00 

IF PRtI#J3 *   0 THEN GO TO Fl 
Fl  Z ♦ PRtI»J3l 
TS(Z); 
FOR J «■ I STEP I UNTIL NSY DO 

IF 6FTBlT(INTAlLtZ,J OIV 48l,ENTlER<J MOD 48)) THEN 
SETBIT(INTMLCS#J OIV 48]»ENTIER(J MOO 48))J 

ENO II 
END; 

END TSI 

FOR I #• 0 STEP I UNTIL NSY 00 FOR J ♦ 0 STEP I UNTIL NSY DIV 48 
DO INHEAOCNJI ♦• INTAILtI#JJ * 0| 

FOR I •• I STEP 1 UNTIL NSY DO 
BEGIN HS(I)I  TS(I)I 
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END; 

PRlNTMATRIX(<//MINHrAOlw/>»    INHEAO); 
PRlNTMATRl)((<//«!NTAlLt,,/>»    INTAlL); 

END BLOCK CM 

BEGIN     COMMENT     BLOCK   C   2l        COMMENT   SINGLE   CHARACTER  OERIVATIVES; 

COMMENT    scnti,j] IMPLIES THAT J IS A SINGLE CHARACTER 
DERIVATIVE OF I» 
INTEGER I» j* K; 
BOOLEAN CHANRE) 
TOR I «• 0 STFP t UNTIL NSY DO 

FOR J «■ 0 STEP I UNTIL NSY DIV a« DO SCDfNJl «■ (W 
FOR I ♦ 1 STEP 1 UNTIL NPR DO 

IF PRtI#?l r 0 THEN 
SETBlT(ScDtPPtI»03»PRri#n OIV «81,ENTlER(PRtI#11 MOo 
4P)); 

CHANGE •• TRUE; 
^HILE CHANGE On 
REGIN  CHANGE «■ FALSE; 

FOR I ♦ I STFP 1 UNTIL NSYN 00 
FOR J «• I STEP I UNTIL NSYN DO 

IF GETBITfSCDtI#J DIV a81»ENTIER(J MOD 4fl)) THEN 
FOR K «• 1 STEP I UNTIL NSY DO 
IF GFTBIT(SCOtJ.K OIV 4fl3.ENTlER(K MOO 48)) THEN 

IF NOT GETniT(SCOCI#K DIV 4fl]*ENTIER(K MOD 48)) 
THEN 
BEGIN CHANGE ♦ TRUE; 

SETBIT(SC0(I»K DIV 481,ENTIER(K MOD 48)); 

END; 
END CHANGE; 

PRlNTMATRlX(<//-SINf,LE   CHARACTER   DERIVATlVES l"/>»   SCO); 
END   BLOCK   C   2; 

BEGIN     COMMfNT     BLOCK   C   11        COMMENT  PREDECESSORS   ANO   SUCCESSORS; 
COMMENT Apri,j) IMPLIES J IS AN ALLOWED PREDECESSOR OF I; 
INTEGER I» J# P; 
FOR I ♦ 0 STEP I UNTIL NSY 00 FOR J ♦ 0 STEP 1 UNTIL NSY DIV 4P 

DO APtI»J] ♦• AS[I,J) ♦ o; 

FOR P * I STEP 1 UNTIL NSY DO 
FOR I •• I STEP 1 UNTIL NPR 00 
BFGIM  COMMENT  PREDECESSORS FIRST; 

FOR J ♦ 2 STEP 1 UNTIL MAXLPR DO 
IF PR[WJ1 « 0 THEN ELSE 
IF GETHlT(lNHEADtPRtI#Jl#P OIV 48],ENTlER(P MOD 48)) 
THEN 
SETBlT(AP[p#PR[I»J-n OIV 483 *ENTIER(PRtI»J-ll MOO 
4fl)); 
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FOP   J  *   1   STEP   1   UNTIL   MAXLPR-1   DO 
IK  PRtNJM]   »   0   THEN  ELSE 
IF   GETRlTdNTMLfPRlNJl^P   DIV   ÖflJ,ENTlER(P   MOO   «8)) 
THFM 
SETBlT(ASCP,PRCI.J*ll   DIV   it8 1, ENT IEH( PRC I# JM]   MOO 
48)); 

END I P; 

PRlNTMATRIX(<//HALLOWEn PRFOECESSORSI"/>, AP); 
PRINTMATRlXC<//"ALLnwFn SUCCESSORSt'V># AS); 

END BLOCK C3; 

BEGIN  COMMENT  BLOCK C HI COMMENT  HIERARCHY ANALYSIS» 
INTEGER A# B,   C» P» X» Y# 7»   U   11» 12»   Hi 

PROCEOURF T2S(P);    VALUE PI    INTEGER P; 
BEGIN   COMMENT   THE CANONICAL PARSE TAIL 2 SYMBOLS OF P; 

INTEGER I# J» R# X# Y; 
LABEL F; 
BEENTHERFIP1 •■ TRUE; 
FOR I •• I STEP I UNTIL NPR 00 IF PRTL/OJ - P THEN 

BEGIN FOR J •• MAXLPR STEP -I UNTIL I 00 IF PRTI#JL / 0 THEN 
GO TO F; 
El  R «• PRfl.J]; 
IT J / 1 THEM 
BEGIN  COMMENT  PROOUCTION LENGTH AT LEAST TWO; 

x ♦ PRti# j-n;' 
PUT(X» R)l 
FOR Y «• 1 STEP I UNTIL NSYM 00 
IF GETBIT(SCOCY#R 01V 483#ENT!ER(R MOO 48)) THEN 

PUTCX, Y); 
ENO; 
IF NOT BEENTHERETR] THEN T2S(R); 

END n 
END T2S; 

NVAL * 11  FINOS ♦ 0;  CRCl] » 10?4*3; 
FOR II f   I STEP I UNTIL NPR 00 IF PRtll» 21/0 THEN 
BEGIN  COMMENT  HIERARCHY ANALYSIS RELATIONS; 

B «• PRCU» ISJ  C «• PRCU, 21; 
P •• PRCU» OJ; 

FOR I •■ 1 STEP I UNTIL NSY 00 BEENTHEREtl] ♦ FALSE; 
P?C •• O;  T2S(B); 
FOR Z •■ NSYN ♦ I STEP I UNTIL NSY 00 
IF GETBlT(lNHEA0rC»7 OTV 48l#ENTIER(Z MOO 48)) THEN 
BEGIN  COMMENT 7.   ARE IN HST(C); 

FOR X * I STEP 1 UNTIL NSY DO 
IF GETRIT(APCP#X DIV 48l#ENTIER<X MOD 4«)) THEN 
BEGIN  ENTER(X# B,   2»   FALSE)) 

IF B 5 NSYN THEN 
FOR Y ♦ 1 STEP 1 UNTIL NSY DO 

IF GETBITCSCDfR^Y DIV 4ai»ENTlER(Y MOO 48)) THEN 
FNTERCX, Y# Z,   TRUE); 
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FOR   13   ••   I   STEP   1   UMTlL  P2C 
FNUR(Simi»   S?ri31»   Z# 

Euo z; 

DO 
TRUOI 

FOR 
RFGI 

A 
F 
P 
F 
1 
R 

12 
N 

OR 
2C 
OH 
F 

«■   3   STEP   I   UNTIL   MA^LPR   DO   IF   PRCII»   121   ^   0   THEN 

PR 
I 
f 

z 
GET 

PHtll»   12-1]^      C   »  PRCIl»   123» 
NSY  00  BFENTHEREm   «•  FALSE! 

rr.iN 
IF 
FOR 
IF 

FOR 

til» 12-21» R ♦• 
«• I STEP I UNTIL 
O;      T2S(B)» 
«•   NSYN*1   STEP   I   UNTIL   NSY   00 
HlTdNHEAOtCZ   OIV  «fll »ENTlERf Z   MOO  48))   THEN 

ENTER(A#   R»   7.0   FALSE)* 
8 i  NSYN THEN 
Y ♦■ I STEP 1 UNTIL NSY DO 

fiETRlT(SCnrH#Y OIV <»8]#ENTIFR(Y 
FNTFR(A# Y, 7,   TRUE)» 
IS » I STfP I UNTIL P2C 00 
ENTERCSltm, S2[I3J, Z,   TRUE)» 

MHO ft«)) THEN 

FNO z; 
END i?; 

ENO ill 
NVAL ♦ NVAL 11 

WRITE(<"HIFRARCHY 
TABULATECPI"); 

ENO BLOCK C Hi 

ANALYSTS FUNCTIONS I V> ) ) 

BEGIN  COMMENT  BLOCK C 5; 
INTEGER A, B# C» R# P» Y» 
LABEL LASTONC» 

COMMENT  PRODUCTION RECOGNlTlONJ 
2»   I,   11,   I2ß   13» 

PROCEDURE H?SCP);  VALUE P)  INTEGER P) 
BEGIN  COMMENT  THE CANONICAL PARSE HEAD 2 SYMBOLS IN PI 

INTEGER I,   R» X* Y# Z; 
BEENTHEHFCP1 «■ TRUE» 
FOR I ♦ 1 STEP 1 UN1IL NPR 00 IF PR[I,03 ■ p THEN 
BFGIM 

IF PR[I*21 ^ 0 THFN 
BEGIN  COMMENT  PHOHiJCTlON OF LENGTH AT LEAST TWO; 

X •• PPCI» 11»  R » PRtI» 111 
IF GETRlTdNHEADfR.Y OIV 481»ENTIER(Y MOO 48)) THEN 

PUT(X» Y)» 
ENO» 
R ♦ PHfl» 11» 
IF NOT BEFNTHERECHl THEN H2S(R)I 

END I» 
END H?S» 

NVAL «• |l  FINOS «• 0»  CRT 11 ♦• 1024*3» 
FOR II ♦ I STEP 1 UNTIL NPR 00 IF PR[I1» 21/0 THEN 
BEGIN COMMFNT  PRUDUCTIDM RECOGNITION RELATIONS» 

FOR I? «■ 2 STEP I UNTIL MAXLPR DO 

5b 

- 



BFGIM  A «• PRtll» If«!)!  R * PRCIW 1231 
IF 12 « MAXLPR THEN GO TO LASTONEJ 
C *■  PRtll» I2M1I 
IF C « 0 THFN GO TO LASTONEJ 
ENTER(A# R, C» FALSF); 
IF B «S NSVN THFN 
FOR Y * I STEP 1 UNTIL NSY DO 
IF GETBIT(SCD[R»Y DIV «fJ3#ENT IER( Y HOD 48)) THEN 

FOR Z •• NSYN*1 STEP 1 UNTIL NSY DO 
IF GETRIT(INHFAO[C#Z OIV flfl]»ENTIERCZ MOD 68)) THEN 

ENTER(A» Y» Z» TRUE)) 
FOP I •■ I STFP 1 UNTIL NSY 00 BEENTHEREII] «■ FALSEJ 
P2C •■ o;   H?S(B)J 
FOR 13 • 1 STEP 1 UNTIL P2C 00 

F.NTER(A» SUH], S2tI3]. TRUE)) 
END p; 

LASTOME» 
P ♦ PPCIl» Oil 
FOR » «• 1 STFP I UNTIL NSY DO 
IT GFTBIT(AStP»R DIV «fl]#FNTlER(R MOO 48)) THEN 

FOR Z * NSYNM STFP 1 UNTIL NSY DO 
IF GETRIT(INHEAOCR#Z DIV 4R1#ENTIER(Z MOO 48)) THEN 
BFGIN  ENTER(A« R* 7, FALSE)) 

IF B S NSYN TMrN 
FOR Y •■ 1 STEP I UNTIL NSY DO 
IF GET*IT{SCOtB#Y OIV 481#ENTIER(Y MOD 48)) THEN 

ENTER(A# Y# Z, TRUE)I 
END z R; 

FOR I «■ 1 STFP 1 UNTIL NSY DO REENTHFRECU ♦ FALSE* 
P2C •■ O;   H2S(0)j 
FOR 13 ♦ I STEP 1 UNTIL P2C DO 

FNTER(A# S1[I31# S2[I31# TRUE)| 
END 11) 
NVAL ♦ MVAL - 1) 

WRITE(<wPROOUCTION RECOGNITION FUNCTIONS!"/>) I 
TABULATr(wP2H); 

END BLOCK C 5) 
END BLOCK C) 

END) 
SAV((T-Tl)/3600))  SAV(p?CSAVF )» 
WRITE(PRINFIL* <9E8.?# MMCKFFMAN"># FQR I «• 1 STEP I UNTIL 51 DO 

RECORDtl])) 
END. 
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(2#1)(1*2)   SYNTAX   PKüCLbSO«»   MCKF.CMAN»   JAN«   1966 

PRCOUCTnNSI 

<PH0(jrtAM> 4 
<fcXPK>                    * 

► EOF 
► <IF   CLAUSE> 
► <SUM> 

<EXHN> 
<TRUF:PART> 

EOF 
<EXPR> 

<ri<ür.rAwf>     < 
<IK   CLrtÜÜ|.>     * 

> <EXPR> 
> IF 

ELSE 
<EXPH> THEN 

10 
II 
12 
13 

<SUM> < 

<PKIHAI<Y>          < 

► <SIJM> 
► <SlJM> 
► ♦ 

¥          <PRIMAHY> 
► IÜEN1 
*          IN1EGFH 

( 

♦ 
■ 
<PR1HANY> 
<PRIMHY> 

<EXPH> 

<PRINAHY> 
<PRIMARY> 

) 

INTEHNEOIATL   SYMHntSt 
1        <PNOGUAM> 
A       <lf   CLAUSt> 

TERMINAL   SYMBOLS! 
7       tOf 

10 
13  ( 
16   ) 

2 
5 

a 
ii 
1A 

<iXpR> 
<SIM> 

IF 
IOENT 
ELSE 

THE   UMflUL   tAHGET   SYMbUL   ISt     <Ph(IGRAM> 
TIPE   "       0.12«   TOTAL   ELAPStO  > 0.12   NIK. 

3 
6 

9 
12 
IS 

<TRUEPART> 
<PRIMARY> 

INTEGER 
THEN 

I 
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INhEAOl 

IfHpOi 123«96769U123496 
1        <PRÜGHAH> •             • 
2        <EXPK> •   »t*   •i**«t 
3        <THOtPART> 
i     <ir CLAUSO •        • 
9       <SUM> • t     • • • • t 
6        <PRIMARY> •         ••• 
7       EOF t 

e     IF * 
9       ♦ • 

1C       • • 
11        I0EM • 
12 INTEGER 
13 ( 
14 ELSE 

« 
• 

• 
19       THEN • 
16       ) t 

l¥l   m       0.04*   TOTAL ELAPSED  «          0.16   MIN. 

INTAILI 

SYMBOL 
<PR0ÜHAM> 
<EXP4> 
<TRUtPAPT> 
<IF CLAUSE> 
<SUM> 
<PRIMARY> 
EOF 
IF 
♦ 

lüENf 
INTEGER 
( 
ELSE 
THEN 
) 

E ■  0.0A. TOTAL tLAPStU ■ 

1234567890123456 
i     • 

•  • •   «•   • 

i • 

t •   • •   t 

•   * •   • 

t 

« 
« 

0.20 MIN. 
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SINGLE   CHAi<ACTEi<   0I.M1V4 f I VÜSl 

<PRÜUHAH> 
<F:XHN> ,.       ,. 
<TRULPAKT> 
<ir CLAÜSE> 
<SUM> . •• 
<PRIM«RY> M 

EOF 
ir 
♦ 
■ 

lOENf 
INTEGER 
( 
ELSE 
THEN 
) 

E   ■       0.04/   TOTAL   ELAPSED   - 0*24   HIN. 
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ALLüMEO  PHtUCCESSOKSI 

bYHQüL 

2 <kXPK> 
3 <TRUtPART> 
4 <ir   CLAliSL> 
5 <SUM> 
6 <PR1MARY> 
7 IDF 
a ir 
« ♦ 

IG - 
11 IDEM 
12 lNTfcr.tR 
13 ( 
14 ELSK 
15 THEN 
1« ) 

TICE ■       0.04/ 

12J<tbA7fi901234!)6 

•« 

• • 

•« 

TOTAL   ELAPSKÜ 0.26   MIN« 

ALLONEO  SUCCESSORS^ 

SYHBOL 123456/690123456 
<PRU>iNAH> 
<tXP.O • • • • 
<TRU£PART> • 
<IF   CLAOSE> t 

<SUH> i • • • • • 
<PRIHARY> • «• t • • 
EOF « 
IF « 
♦ • 
• • • 
IOENT * »• « • • 
iNTkUkR • • • • • • 
( • 
ELSt • 
ThEN t 

) t • • • • • 
TIK ■       0.04#   TOTAL LLAPSLÜ a 0.3?   MIN. 
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HIERARCHY   ANALYSIS   RJNCTIONSl 

Pl-C   < 
PIH( < 
P1M< < 
Pl-C   < 
P1"C   < 
Plnl < 
Pl"( < 
Plw( < 
Pl-C   < 
P1H( < 
PIM( < 
Plw< < 
Plw( < 
PIH( < 
Plw{ < 
P1MC   < 
PIM( < 
Pl-C   < 
Plw( < 
P1H( < 
Pl"( < 
Plw( < 
P1M( < 
PlMC   < 
Pl"( < 
Pl-t < 
P1M( < 
Plw( < 
pre < 
PIH( < 
pi-t < 
pr( < 
Pl-C   < 
PIM( < 
PI*^ < 
PIH( < 
pi*( < 
PIH( < 
PIM( < 
PT'C   < 
Plmt   < 
PlM(   < 
PlH(   < 
Pl-C   < 
PlMC   < 
plM(  < 
Pl"( < 
prt < 
Plw(  < 
PI"I < 
PIM( < 
PIM( < 
P1M( < 

EXPR> FLSE ir                ) s      PIN 2 1    14 i      8) B TRUE 
EXPR> FLSF 4                                     ) «      Pi»( •    I« »      9) S TRUE 
EXPR> FLSE ■                                     J ■      Plw( I   14 I   10) ■ TRUE 
rxPR> FLSE IOFNT                  ) «      Pl-( •    U >   11) a TRUE 
EXPR> FLSE INTEGER             ) .      p\*{ •    14 .   12) s TRUE 
EXPR> FLSE (                           ) «      Pl"( l   14 »   13) s TRUE 
tXPR> THEM ir                 > ■      Pl"( »   15 »      8) s TRUE 
EXPH> THEN ♦                   ) ■      Pl"( .   15 •      9) 3 TRUE 
EXPR> THEN ■                   ) «      Pii.( »   15 •    10) 3 TRUE 
EXPR> THEN IÜENT                  ) »      PlM( .   15 •    It) « TRUE 
EXPH> THEN INTE6FR             ) »      Pl"( .   15 »    1?) ■ TRUE 
EXPR> THEN (                           ) ■      Plw( »   15 .   13) a TRUE 
EXPH> ) Eor                 > •      PUM .    lAi .      7) s TRUE 
EXPR> ) «                    ) •      Pl'M .    16 .      9) 3 TRUE 
EXPR^ ) a                                                J ■      Pi"« .    I*. .    10) 3 TRUE 
EXPR> ) FLSE                     ) ■      Pl"{ •    16 .    14) 3 TRUE 
EXPR> ) THEN                    ) «      Pl'M »   16 »    15) 3 TRUE 
EXPR> ) )                           } »      Pl"( .    16 »    16) 3 TRUE 
TRUFPART3 »     <EXPR> FOF                       ) ■      Pl'M .      ?. .      7) 3 TRUE 
TRUEPARTJ »      <EXPR> ELSE                    ) *      PlM« •      ? .    14) 3 TRUE 
TflUFPART: »      <EXPq> THEN                     ) «      Pl«( .      ?- •    15) 3 TRUE 
TRUEPAHT: »     <EXPR> )                            } ■      Pt*i .      ? .   16) S TRUE 
TRUEPART: >     <IF   CLAUS£> IF                          ) m       P|«| 1      4 l     6) 3 FALSE 
TRUrPART^ ►     <IF   CLAliSF> ♦                            ) ■     Pi"! •      4 •      9) 3 FALSE 
TRUfPAHT: ►     <IF   CLAIJSE> **                                                        ) «     Mw( •      4 •   10) 3 FALSE 
TRUEPART: ►     <IF   CLAUSF> lOENT                  ) s         f>|«( I      4 '    11) 3 FALSE 
TRUPPARTJ >     <ir   RLAIJSE> INTEGER              ) ■     PI"! l      4 .    12) C FALSE 
TRUEPARTS »     <IF   CLAUSE> (                            } s     Pl'M l      4< •   13) 3 FALSE 
TRUEPART: ►       <SÜM> ♦                            ) ■     Pl"( 1      5. •      9) X FALSE 
TRUEPART: »        <SJM> ■                            \ «     P1M( .     5/ i   10) 3 FALSE 
TRUEPART: »      <PHlMARy> ♦                            ) ■     Pl'M •      6- •      9) 3 TRUE 
TRUfPART: ►      <PHlMARY> m                                                    \ ■     Pl-( •      6 »    10) 3 TRUE 
TRUEPART: >     IF Ir                        ) «     PlM( .      8, •      8) ■ FALSE 
TRUfPART: »     IF ♦                          ) «     Pl^i .      fl •      9) 3 FALSE 
TRUFPART: ►      IE -                          ) «     PlM( .      fli •    10) 3 FALSE 
TRUfPART: »    ir lOENT                   ) «     P1H( •      8- '    11) 3 FALSE 
TRUEPART: ►      IF INTEGFR              ) ■     Pl"( .      8» •   12) 3 FALSE 
TRUFPART: ►      IF (                            ) ■     Pl'M •      Hi I   13) S FALSE 
TRUEPART: »     ♦ IOFNT                  ) ■     Pl'M .      *?, •   11) 3 FALSE 
TRUfPART: ►     ♦ INTEGER              ) ■     Pl'M •      9i I   12) a FALSE 
TRUEPART: »     ♦ (                            ) «     Pl'M .      9i •   13) 3 FALSE 
THUEPART: t          m IOFNT                  ) ■     Pl'M .    IOI •   11) 3 FALSE 
TRUFPART: ► INTEGFR             ) ■           PJM, .    IOi 12) E FALSE 
T«Uf PARTS • (                           ) ■     PI"! .   IOi •   13) S FALSE 
TRUfPART: i     lOCNT ♦                           ) •     Pl'M 111 9) 3 TRUE 
TRUEPART» ►      IDENT M                                                                     | ■     PI«( Hi 10) 3 TRUE 
TRUEPART: •      INTEGER ♦                                                                     ) ■     PPM 1   l?i .      9) 3 TRUE 
TRUEPART: »      INTrfiER m                                            % ■     Pl"( 12. 10) 3 TRUE 
TRUEPART' •      ( If                                         ) «     Ft«( >   13. I      8) 8 FALSE 
TRUEPART: •      ( ♦                                            ) ■      Pi"! 13« 9) 3 FALSE 
T»UEPART> '      ( *                                                                                         % ■      pii»( III 10) 3 FALSE 
TRUEPART5 ►     ( IOENT                  ) ■      Pl"( .   I3i 11) 3 FALSE 
TRUEPARTS »      ( INTEGER              ) «     Pl'M 13. 1?) a FALSE 
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PIM( <TRU EPART> ( (                            ) ■     Pl"(     3 *    13 *   13) ■     FALSE 
Pl"( CLAUSF> <EXPR> ELSE                     ) ■     PlH(     4 f      2 1    14) ■     FALSE 
pre CLAUSE> <TRUEPART> IF                         ) ■     Pl"(     4 *      3 i      8)      < •     FALSE 
PIM( CLAUSE> <TftUEPART> 4                                      ) »     Pl"(     H l      3 »     9)      i •     FALSE 
Pl^C CLAUSE> <TRUEPART> ) «     Pl"(      4 >      3 .   10)      > •     FALSE 
pre CLAUSE> <TRUEPART> IOENT                  ) ■   pre    4 *      3. .   ID      • «     FALSE 
PIM( CLAUSF> <TRUEPART> INTEGER             ) ■     Pl"(      4 i      3 I   12)     < ■     FALSE 
PIH( CLAUSE> <THUEPART> (                            > ■     Pl"(      4 *      3 .   13)      l ■     FALSE 
pi-c CLAüSE> <ir   CLAUSr> IF                            ) ■     Pl"(      4 *      4 .     8)     i i     FALSE 
PIM( CLAUSE> <IF   CLAUSE> *                              ) «     Pl"(      4 •      4/ i      9)      i i     FALSE 
pre CLAUSE> <IF   CLAUSE> m                                                 \ ■     PPC      4 *      4 •   10)      « •     FALSE 
pi"( CLAUSE> <IF   CLAIJSE> IOENT                   ) ■   pre    4 >      4, •   11)      • •     FALSE 
PIM( CLAUSE> <IF   CLAUSE> INTEGER             ) ■   pre   4 *      4i i   12)      • »     FALSE 
pi-( CLAUSE> <IF   CLAUSE> (                            ) ■   pre   4 f       4/ .   13)     i t     FALSE 
PIM( CLAUSE> <SUM> ♦                            ) ■     Pl«(      4 1       || I      9)      • •     FALSE 
pi"( CLAUSE> <SUM> ■                            j ■   pr(   4 #      5i »   10)     • «     FALSE 
Pl^C CLAUSE> <SUM> ELSE                    ) ■     Pl"(      4 *      5i .   14)      i «     TRUE 
PIM( CLAUSE> <PRlMAHY> ♦                          ) •   pre   4 I      6i i      9)      • •     TRUE 
PIM( CLAUSE> <PRIMARY> •                          ) ■     Pl"(      4 1      6/ .   10)      i «     TRUr 
PIM( CLAUSE> <PRlMARy> ELSE                    ) «     Pl"(     4 1      6, »14)      i «     TRUE 
PIM( CLAUSE> IF IF                         ) ■     Pl"(      4 *      8i >      8)      • «     FALSE 
Pl^C CLAUSE> IF *                            ) ■   pre   4 $      6, .      9)      . •     FALSE 
PIM( CLAUSE> IF -                           ) »   pr(   4 9      8/ .   10)      • >     FALSE 
PIW{ CLAUSr> IF IOENT                  ) «     Pi"«     4 *      8i i   11)      • «     FALSE 
PIH< CLAUSE> IF INTEGER             ) ■     Pl"(      4 1      Si i   12)      • «     FALSE 
PI"( CLAUSE> IF (                            ) ■   pre   4 *      8i 13)     • l     FALSE 
pr'c CLAUSE> * IOENT                   ) ■   pr(   4 1      9i 11)     ■ l     FALSE 
PIM( CLAUSE> ♦ INTEGER             > ■   pre   4 1      9i 12)     . i     FALSE 
Pl-C CLAUSE> ♦ (                            ) ■   pr(   4 1      9i 13)     . >     FALSE 
piM( CLAUSE> • IOENT                  ) «   pre   4 *   10i 11)     ■ i     FALSE 
PI"( :LAUSE> ■ INTEGER             ) ■   pre   4 *   lOi 12)     ■ <     FALSE 
pre CLAUSE> - (                            ) ■   pre   4 $   10, 13)     » •     FALSE 
Pl-C I:LAUSE> IOENT ♦                           ) «   pr(   4 » lit 9)      ■ •     TRUE 
Pt*t CLAUSE> IOENT •                           ) ■   pr(   4 t 111 10)      i i     TRUE 
pfl CLAUSE> IOENT ELSE                    ) «     Pl"(      4 * 111 i    14)      • •     TRUE 
Pl"( CLAUSE> INTEGER ♦                          ) ■   pr(   4 *   12i 9)     « •     TRUE 
P1H( CLAUSr> INTEGER -                          ) -   pre   4 *   12i .   10)      i •     TRUE 
wtmt CLAUSE> INTEGER ELSE                   ) ■   pre   4 *   12< .   14)      . •     TRUE 
PlMC CLAUSE> ( IF                         ) ■   pre   4 i   13, .      8)      . •     FALSE 
PfC CLAUSE> ( #                           ) ■   pr(   4 *    13, i      9)      ■ •     FALSE 
pre CLAUSE> ( •                           ) «   pre   4 *    13, .   10)     « t     FALSE 
pio( CLAUSE> ( IOENT                   ) ■   pre   4 *   13, >   11)     i •     FALSE 
PIH( CLAUSE> ( INTEGER             ) ■     Pl-(      4 •   13i 12)     I •     FALSE 
PIH( :LAUSE> ( (                            > ■   Pr(   4 *    13. 13)     ■ *     FALSE 
PIM( <SUM ♦ IOENT                  ) ■   pre   5 I      9i 11)     « i     FALSE 
pi"( <SUM ♦ INTEGER             ) ■   pre   5 1      9i 12)     ■ l     FALSE 
PIH( <SUM ♦ (                            ) ■   pre   5 *       9J 13)     . >     FALSE 
Pl^C <SUM • IOENT                  ) ■   pre   5 1    lOi 11)     • •     FALSE 
pre <SUM m INTEGER             ) ■   pre   5 I   10« 12)      • <     FALSE 
PIH( <SUM m (                            ) ■   pre   5 *   Id 13)     ■ >     FALSE 
PIW( EOF <EXPR> EOF                       ) fc   pre   / *      2i 7)      ■ t     FALSE 
PIM( EOF <IF   CLAUbE> IF                        ) ■   pre   T *      4i 8)      ■ •     FALSE 
pre EOF <IF   CLAUSE> 4                                     ) ■   pre   7 *      4« 9)      ■ FALSE 
Pl^C EOF <IF   CLAUSE> ■                                     ) ■   pre   7 1      4i 10)      ■ FALSE 
PIH( EOF <IF   CLAUSE> IOENT                  ) ■   pre   7 *      4i U)      ■ FALSE 
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Pl"( EOF 
Pl"( EOF 
Pl-t EOF 
Pl-C EOF 
Pl*l EOF 
P1H< EOF 
Plw{ EOF 
PIH( EOF 
Pl-t EOF 
Pl-C EOF 
pre EOF 
pre EOF 
Pl-C EOF 
PIM( EOF 
Pl-C EOF 
PIM( EOF 
PI,,( EOF 
PIM( EOF 
PlMC EOF 
PIH( EOF 
pre EOF 
PIM< EOF 
pre FOF 
pre EOF 
PIM( EOF 
PI"( EOF 
PIM( EOF 
Pl-C EOF 
PIM( EOF 
Pl-C EOF 
pre EOF 
PI"( EOF 
Pl-C IF 
pre Ir 

Pl-C IF 
pi"( IF 
Pl-C IF 
PIH( IF 
Pl-C IF 
PIM( IF 
PJW( IF 
pre IF 
pr( IF 
piH( IF 
PIM( IF 
pre IF 
pi-t IF 
Pl-C IF 
pi-c IF 
PIM( IF 
PT't IF 
PIM( IF 
PIM( IF 
pre IF 
pre IF 

<IF CLAilSF> INTFGER )  »  ?t"( 1  4 » 12) «  FALSE 
<IF CL4USe> ( )  =  P1"C ,      4 * 13) »  FALSE 
<SUM> FOF )  »  Pl"{ »  *> .  7) ■  TRUE 
<SUM> ♦ )  =  Pl"( »  5 •  9) B  FALSE 
<SUM> • )  *  Pl"( f      'S , 10) «  FALSE 
<PRIMARY> EOF )  »  Pl"( •  6 »  7) »  TRUE 
<PHIMARY> ♦ )  »  Pl^t P      6 »  9) »  TRUF 
<PRIMARY> ■ )  «  Pl"( 1  6 . 10) ■  TRUE 
IF IF )  ■  PlM( »      R .  A) B  FALSE 
IF ♦ )  ■  Plw( 1  A .  9) ■  FALSE 
If - ) -     Plw( I  8 » 10) ■  FALSE 
If IOFNT ) *     P1M( 7 »  A » 11) *  FALSE 
IF INTFGER )  ■  Pl-( 7 *      A . 12) »  FALSE 
IF ( ) *     Plw( •  A . 13) B  FALSE 
♦ IOENT )  «  Plw( 7 •  9 i 11) s  FALSE 
♦ INTEGER )  «  Pl"( •  9 * 12) «  FALSE 
♦ ( )  ■ P\»( 7 •  9 . 13)  . «  FALSE 
■ IDENT )  »  P1M( 7 • 10 . 11) «  FALSE 
■ INTEGER )     ■ Pl"( 7 • 10 * 12)  i •  FALSE 
■ ( )  ■  Pl^t f . 10 . 13)  i «  FALSE 
IDENT EOF )  »  Pl"( T I 11 .  7)  . •  TRUE 
inENT ♦ )  ■  PlM( 71 1 11 •  9)  i t  TRUE 
IDENT - )  •  P1"C r i I 11 . 10)  . •  TRUE 
INTFGER FOF \     «  Pl"( 7 1 1?- .  7)  i •  TRUE 
INTrGER ♦ )       »  Pl"( 71 i 12. .  9)  . •  TRUF 
INTEGER ; )       *  Pl"{ 71 • 12i . 10)  i •  TRUE 
( IF       ; >  »  P1"C 71 • 13i .  8)  i «  FALSE 
( ♦ > ■ Plw{ 71 • 13< .  9)  i i  FALSE 
( ; 1 ■ Plw( 71 i 13. 1 10)  : *     FALSE 
( IDENT       : ■ Pl«( 71 13i 11)  i t     FALSE 
( INTFGFR     I 1  s  Pl»( 71 I 13i i 12)  i •  FALSE 
( (        : 1  =  PI"« 71 I3i 13)  i «  FALSE 
<EXPR> THEN        : 1  «  P1M( At |i 15)  • •  FALSE 
<IF CLAIJSE> IF      : I *      Plw( Si •i A)  . i  FALSE 
<IF CLAUSE> ♦ 1  =  Pl^c fli U, 9)  i I  FALSE 
<IF CLAUSE> - 1 ■ PIM( fli • l . 10)  . •  FALSE 
<IF CLAUSE> IDENT       5 •   Pl"( 8i 4J 11)  • •  FALSE 
<IF CLAUSF> INTFGER     3 8   P1»«C 8i •l 12)  i •  FALSE 
<IF CLAUSE> (                  : ) » P1W( Hi tti 13)  . «  FALSE 
<SUM> ♦ ■ Pl"( fli 5i 9)  i «  FALSE 
<SUM> • ■ Pl"( 8i 5i 10)  • •  FALSE 
<SUM> THEN        ) s  Pl"( Si 5i 15)  . «  TRUE 
<PRIMARY> ♦           ] «    Pl"( 8i Ai 9)  • «  TRUE 
<PRIMARY> m ■  PlMC 8i 6« 10) . l  TRUE 
<PHIMAHY> THEN        3 a      P1"( 8i 6, 15)  . 1  TRUE 
IF IF         3 ■  Pl"( fli Ai 8)  i «  FALSE 
IF ♦ «  Pl^C 8. fli 9)  i i  FALSE 
IF • «   Pl"( 8i 8i 10)  . l  FALSE 
IF IDENT       | - Pl"( 8i A. 11)  « '  FALSE 
IF INTEGER     3 ■ Pft 8« Ai 12)  • l  FALSE 
IF (          5 ■   Pl"( 8i At 13)  « '  FALSE 
♦ IDENT       3 « Fl»< fli tl 11)  i l  FALSE 
♦ INTEGER     ) •  PlMC fli 9i 12)  ■ 1  FALSE 
♦ (           ) r  Pl«( fli 9i 13)  ■ FALSE 
• IDENT       | «  Plw( fli 10. 11)  ■ >  FALSE 
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-■ 

P1M( IF 
Pl"( ir 
PI" I IF 
PT'C IF 
P1M( IF 
Pl"l IF 
Pi*{ IF 
PT'C IF 
Pl-t IF 
PlM( IF 
PT'C IF 
Pl"{ IF 
PlM( IF 
P\n( IF 
pre 
n»! 
PT'C 
Plw( 
PT'C 
Hmi 
Pl"( 
PT't 
PlM( 
Pl-C 
PlM< 
Pl"l 
PlM( 
pr'f 
P1WC 
pre 
Pl^C 
PXn( 
pi" i 
PI"( 
pi"t 
p\"( 
PI"I 
PI
M
( 

PI
M
( 

pi"i 
PI
H
( 

PI
H
( 

PI
M
( 

PI
M
( 

p\"( 
p\"t 
pre 
PI
M
( 

PI"I 
PI
W
( 

PI
M
( 

Pl-C 
PIM( 
Pi"( 
PIM( 

" INTEGER )   3 Pl"(  8» 10. 12) «  FALSE 
" ( )   S Pl"(  8# 10. 13) >  FALSE inENT 
TOFNT 

)    3 

)   S 
Pl"(  8« 
P1" (  8» 

11.  9) 
11. 10) 

■ TRUf 
■ TRUE IDENT THEN )    S P%*i      8# 11. 15) ■  TRUE 

INTTCER ♦ Pf(  8, 1?.  9) =  TRUE 
INTEGER - Pl"(  8« 12. 10) ■  TRUE 
INTFr,ER THFN P\"(      8# 12. 15) ■  TRUE 
( IF Plw( Q, 13.  8) ■ FALSE 
( ♦ PlM(  8# 13.  9) ■  FALSE 
( " P\*t     8# 13» 10) ■  FALSE C lOFNT P1M(  8# 13» 11) ■  FALSE 
( INTEGER PlM(  8» 13» \2) »  FALSE 
( ( PJ"{  8, 13» 13) «  FALSE 
<EXPR> EOF PlM( 9» 2»  7) 3  TRUE 
<EXPP> ♦ Pl"(.      9, 2»  9) «  TRUE 
<EXPR> • Pl"(  9# 2» 10) B  TRUE 
<EXpp> ELSE P1«(  0# 2. 14) 3  TRUE <EXPR> THEN P1" (  9. 2» 15) B  TRUE <EXPR> ) Pl"( 9, 2» 16) •  TRUF <SUM> EOF P\"l      9, 5»  7) •  TRUE 
<SUM> ♦ Pl"( 9, 5.  9) «  TRUE 
<SUM> - Pl"(  9, 5» 10)  . i  TRUE <SUM> ELSE Pl"( 9» 5» 14)  i B  TRUE <SUM> THFN P\"i      9» 5. 15)  • «  TRUE 
<SUM> ) P\"l      9, 5. 16)  > «  TRUE <PRIMARY> EOF         ) Pl"(  9. 6.  7)  i «  TRUE 
<PKIMARY> ♦ P1MC  9, 6.  9)  i •  TRUE 
<PRIMARY> - Pl"(  9, 6. 10)  • i  TRUE 
<PRIMARY> ELSE        ) PT'C  9. 6. H) * i  TRUE 
<PHIMARY> THEN        J ■ Pl"C  9, 6. 15)  i i  TRUE 
<PRIMARY> )           } a Pl"(  9» 6. 16)  i TRUE 
( IF          ) ?\*l      9, 13.  6)  ■ FALSE 
( ♦          ) PlM(  9, 13.   9)   a FALSE 
( m                                                  1 PV'l      9, 13. 10)  . FALSE 
C IDCNT       ) P\*t      9# 13. 11)  ■ FALSE 
( INTEGER     ) PlM(  9, 13. 12)  ■ FALSE 
( (           ) P1M(  9, 13. 13)  ■ FALSE <EXPR> EOF         ) Pl"{ 10» 2.  7)  ■ TRUE <EXPR> •f           ) P1M( 10» 2»  9)  « TRUE 
<FXPR> m                                                     ) Plw( 10» 2. 10)  « TRUE <EXPR> ELSE        ) PlM( 10. 2* 1«)  ■ TRUE 
<EXPR> THEN        ) P\"l   10. 2. 15)  » TRUE <EXPR> )           ) Plw( 10. 2* 16)  ■ TRUE 
<SUM> EOF         ) Plw( 10. 5.  7)  ■ TRUE 
<SUM> +           > P1M{ 10. 5»  9)  ■ TRUE 
<SUM> •           ) Pl"( 10. 5. 10)  ■ TRUE <SUM> ELSE        ) Pl"( 10. 5. 14)  * TRUE 
<SUM> THEN        ) f\*i   10. 5. 15)  ■ TRUE 
<SUM> )          ) P1M( 10. 5. 16)  s TRUE 
<PRIMARY> EOF         ) Pl«( 10. 6.  7)  * TRUE 
<PRIMARY> *                             ) P1M< io. 6.  9)  ■ TRUE 
<PRIMARY> m                                                     ) P\"{   10. 6. 10)  i TRUE 
<PRIMARY> ELSE        ) Pl"( 10. 6. 14)  « TRUE 
<PHIMARY> THEN        ) P\"l   10. 6. 15)  ■ TRUE 

' 
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Pl"( <PRIMA«Y> ) Plw( 10 *  6 * 16) •  TRUE 
PIM( ( IF Pl^C 10 • 13 *  8) s  FALSE 
Plrt( ( ♦ PlM< 10 * 13 .  9) «  FALSE 
pre ( ■ P1M( 10 • 13 » 10) »  FALSE 
PI
M
( ( IOENT PlM( 10 i 13 » 11) B  FALSE 

pi"( ( INTEGER Pft 10 l 13 » 12) «  FALSE 
p\*( ( C PlH( 10 1 13 » 13) «  FALSE 
PI
W
( <EXPR> ) Pl"( •  2 . 16) s  FALSE 

pr( <IF CLAlJSr> IF Pl"( •  4 .  8) «  FALSE 
p\*( <ir cuusr> * P1M( 1  4 .  9) t     FALSE 
pre <1F CLAUSr> m PlM{ i  A . 10) t     FALSE 
PI
M
( <ir CLAi)sr> IOFNT P1M( •  4 * 11) i  FALSE 

pre <ir CLAUSF> INTEGER P1M( >  4 . 12) »  FALSE 
PI
M
( <IF CLAUSF> ( 1  s Pl-C •   4 . 13)  i i  FALSE 

Pfi <SUM> ♦ 1   s PIM( .  5 .  9)  . i  FALSE 
pre <SUM> ■ Pl-C p  5 . 10) i  FALSE 
*%*( <SUM> ) p\n( i  5 . 16) »  TRUE 
pre <PRTMARY> ♦ PIM( 1 l  6 ,  9)  . «  TRUE 
Pl-C <PRIMARY> m Pl"( >  6 i 10)  . •  TRUE 
pre <PRIMARY> ) Pl^f 1 •  6 • 16)  > •  TRUE 
PI
M
( IF IF P1M( 1 a •  6)  i «  FALSE 

PI
M
( IF ■♦■       ; Pl"( 1 l  8 .  9)  . «  FALSE 

PI*( IF m P1" ( ] 8/ . 10)  ; «  FALSE 
PI
M
( IF IOENT Pl"< 1 •  6 . 11)  1 i  FALSE 

PI
H
( IF INTEGER PJ^C 1 8i • 12)  i «  FALSE 

pre IF (        : PP'C 1 8/ . 13)  i i  FALSE 
Pl-C ♦ IOENT      : M"( 1 9/ • 11)  « «  FALSE 
PI*I ♦ INTEGER     ! Pl^C 1 9i >   12)  . t  FALSE 
PI
M
( ♦ (                             ] P1M( 1 ft 13)  s «  FALSE 

pre ■ IOENT       ] P\Hl   1 10i 11)  « •  FALSE 
pre - INTEGER     3 Pl^t 1 lOi 12)  i «  FALSE 
pre • (           ] P\"(   1 lOi 13)  i »  FALSE 
Pl-C IDENT ♦ P1M( 1 111 9)  . i  TRUE 
Pl-C IDFNT m Pl"( 1 111 10)  i t     JRUC 
PI
W
( IOENT ) Pl"( 1 3 J Hi 16)  • :      TRUE 

pi"( INTEßFR ♦ P1M( 1 12I 9)  • t     TRUE 
prt INTEGER - P1M( 1 l?i 10) . 8  TRUE 
pi-c INTEGER }          ! PlwC 1 12« 16)  • «  TRUE 
Pl-C ( IF          ) Pl"( 1 13. 8)  i I  FALSE 
PI
M
( c * Plw( 1 13* 9)  i I  FALSE 

PI-C ( m P1M( 1 13. 10)  i «  FALSE 
?!"( ( IOEMT       : Pl"( 1 13. 11)  * '  FALSE 
PI
W
( ( INTEGER     ] P\*l   1 13. 12)  i 1  FALSE 

PI-C ( (          5 Pl"( 1 13. 13)  . FALSE 
262 FUNCTION VALUES, DENSITY ■ *,*(.%»   £ INTRIES/VALli F l.C 10 

TIME B O.lfl, TOTAL ELAPSED ■    0.3* MU . 

68 



PRODUCTION   RECOr.NilTlriN   PUNCTIONSl 

p2.f 
P2" 

P?" 
P2M 

pgit 
p2H 
p2.. 

P2M 

P2" 
P2" 
P2" 
p2if 

P2M 

p2.t 
p2., 
p2.. 
p2M 

P2M 

pp.. 
pp.. 
p2.. 

P2" 
P2" 
P2M 

P2W 

p^', 

P2" 
p?" 
p2.. 
p2.. 

P2" 
P2" 
p2.. 
p2.. 
p2.. 

P2M 

pp.. 
p2.. 

P2" 
pp.. 

?2M 

p2.. 
pp.. 

P2" 
P2,, 

P2,, 

P2W 

p2.. 

P2" 
pp.. 
pp.. 
PP« 
ppH 

<rxpR> 
<EypR> 
<EXPR> 
<EXPR> 
<EXPR> 
<EXPR> 
<EXPR> 
<EXPR> 
<EXPR> 
<EXPR> 
<rxpR> 
<EXPR> 
<EXPR> 
<EXPR> 
<EXPR> 
<EXPR> 
<EXPH> 
<EXPR> 
<TRUEPART> 
<TRUEPART> 
<TRUEPART> 
<TRUEPART> 
<TRUEPART> 
<TRUrPART> 
<TRUFPART> 
<TRUf:PART> 

<TRUEPART> 
<TRUEPART> 

<TRUrPART> 
<TRUEPART> 
<TRUf:PART> 
<TRllEPART> 
<TRUFPART> 
<TRUFPART> 
<TRurPART> 
<TRUEPART> 
<TRLIFPART> 
<TRUE:PART> 
<IF" CLAUSF> 
<SUM> 
<SUM> 
EOF 
EOF 
EOF 
EOF 
EOF 
IF 
IF 
IF 
IF 
IF 
♦ 

FLSr 
ELSE 
ELSE 
ELSE 
ELSE 
ELSE 
THEN 
THEN 
THEN 
THEN 
THEN 
THEM 
) 
) 
) 
) 
) 
) 
<EXPR> 
<EXPR> 
<CXPP> 
<EXPR> 
<SUM> 
<SUM> 

<SUM> 

<PRlMARy> 
<PRlMARY> 
<PRIMARY> 
<PRIMARY> 
IDEMT 

IDENT 
IDENT 
IDE^JT 
INTFOFR 
TNTf:r,F.R 
INTFRFR 
INTFGER 
<THUFPART> 
♦ 
m 

<EXPR> 
<SUM> 
<PRTMARY> 
IDFNT 
INlFGER 
<EXPR> 
<SUM> 
<PKIMARY> 
lOENT 
INTFGER 
<PRIMARY> 
<PHIMARY> 

IF 

IDENT 
INTEGER 
( 
IF 

♦ 

lOFNT 
INTEGER 
( 
EOF 
♦ 

ELSE 
THEN 
) 
EOF 
ELSE 
THEN 
> 

EOF 
ELSE 
THEN 
) 
EOF 

ELSE 
THEN 
) 
FOE 
ELSE 
THEN 
) 
EOF 

ELSE 
THEN 
) 
<EXPR> 
<PPIMARY> 
<P0IMARY> 
EOF 

EOF 
EOF 
EOF 
EOF 
THEN 
THEN 
THEN 
THEN 
THEN 
EOF 
4 

s 

s 

s 

■ 
s 
s 

s 
3 

S 

= 

S 

3 

■ 

3 

3 

S 

pp..( 

P3"( 
pp..( 
PpM( 
P?..( 
Pp..( 

P2"( 
P?''( 
pp..( 
pp..( 

P9mt 
P2..c 

??••( 
pp..( 

P?M( 
ppM( 
pp..f 

P?"( 
P?»( 
??•♦( 

P2M( 

P?M( 
pp..( 

P?M( 
P?M( 
??»( 
ppM( 

P?M( 
PpH( 

P?W( 
P?M( 
pp..( 
PP..( 
p?W( 

P?M( 
pp..( 

??»( 
pp..( 

P?MC 
P?*l 
P?"( 
pp..( 
p?..( 

P?"( 
P?"C 
pp..( 
pp,.( 

P?M( 
??*( 
p?*( 
pp«c 

? >    11 .      1)      ■ 
2 #   14 .      9)      « 

2 •    14 »    101      • 
2 #     10 »    11)      s 
? *  14 I   12)     ■ 
2 »    14 »   13)     « 
2 »    15 ,     1)     « 
2 •   15 .     9)     = 
2 .    15 *   10)     » 
2 .   15 .   11)     ■ 
2 i    15 .   12)     » 
? .    15 .   13)     « 
2. .    16< .     7)     s 
2/ •    16 .       9)       m 

2 .    16 .    10)      » 
2 •    16 .    14)      » 
2/ .    16 .    15)      • 
2 i    16/ .    16)      « 
ll i      2 .      7)      a 
ll >      2< .    14)      a 
ii 2i 15)      a 
3/ 2i 16)      a 
3« 5< 7)      a 
3. 5< 14)      a 
3# 5* 15)      a 
ll 5i 16)      a 
3, 6, 7)      a 
3i 6« 14)      a 
3, 6, 15)      a 
3« 6i 16)      a 
3« 11' 7)      a 
3. 11« 14)      a 
3. 11» 15)      a 
3, 11« 16)      a 
3, 12# 7)      a 
3, 12» 14)      a 
3, 12» 15)      a 
3» 12» 16)      a 
k. 1« 2)      a 
5ß 9« 6)      a 
5. 10» 6)      a 
7# 2» 7)       a 
7, 5» 7)      a 
7» 6« 7)      a 
7, 11» 7)       a 
7, 12» 7)      a 
fl. 2» 15)      a 
1« 5» 15)      a 
8, ll 15)     « 
6* 11» 15)       a 
If 12» 15)      a 
Q, 6» 7)      a 
9. 6» 9)      a 

FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 

TRUE 
TRUE 
TRUE 
TRUE 
TRUE 
TRUE 
TRUE 
TRUE 
TRUE 
TRUE 
TRUE 
TRUE 
TRUE 
TRUE 
TRUE 
TRUE 
FALSE 
FALSE 
FALSE 
FALSE 
TRUE 
TRUE 
TRUE 
TRUE 
FALSE 
TRUE 
TRUE 
TRUE 
TRUE 
FALSE 
FALSE 
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P2"( ♦ 
P2H( ♦ 
P2W( ♦ 
P2"( ♦ 
P2H( ♦ 
P2H( ♦ 
P2n{   ♦ 
P2W( ♦ 
P2"( ♦ 
P2H( ♦ 
P2"( ♦ 
P2,,( ♦ 
P2W( ♦ 
P2''( ♦ 
P2nl   ♦ 
??*(   ♦ 
P2H( - 
P2«( - 
P2M( - 
p2«( . 

P2"{ - 
P2"( - 
P2H( . 
P2"( - 
P2-( - 
P2«( - 
P2H( - 
p2-( - 
P2',{ - 
P2H( - 
P2"( - 
P2H( - 
P2H( - 

P2"C - 
P2H( < 
P2,,( ( 
P2H( < 
P2,,( ( 
P2,,( C 

92 
TIME « 

<PRIMARY> 
<PRIMARY> 
<PRIMARY> 
<PRIMARY> 
IOENT 
1DENT 
1DENT 
IOENT 
1DENT 
IOENT 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
<PRIMARY> 
<PRIMARY> 
<PR1MARY> 
<PRIMARY> 
<PR1MARY> 
<PRIMARY> 
IOENT 
IOENT 
IOENT 
IOENT 
IOENT 
IOENT 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
<EXPR> 
<SUM> 
<PRIMARY> 
IOENT 
INTEGER 

FUNCTION VALUES» DFNSI 
0.06» TOTAL ELAPSEO 

m                                            ) ■  P2"< 9i 6i 10)  ■ FALSE 

ELSE        ) «  P2M( 9i 6< 14)  • FALSE 

THEN        ) *  P2"( 9» 6i 15)  » FALSE 

)          ) ■  P2W( 9i 6i 16)  « FALSE 

EOF        ) ■  P2"( 9i 11< 7)  i TRUE 

4              ) ■  P2"< 91 11* 9)  • TRUE 
■  P2W( 9i 11- 10)  • i  TRUE 

ELSE      . ) »  P2"( 9i Ui 14)  ■ i  TRUE 
THEN       ) ■  P2"( 9i Hi 15)  » •  TRUE 
)          ) «  P2"( 9i 11. 16)  • .  TRUE 
EOF         ) «  P?"( 9i 12. .  7)  « i  TRUE 

♦          ) «  P2H< 9J • 12« i  9)  • i  TRUE 
m                                            } s  P?"( 9I > 12- . 10)  * TRUE 

ELSE        ) «  P2"( 9j i 12. . 14)  « t  TRUE 
THEN        ) m       P?t.( 9i 12. . 15)  « i  TRUE 
)          ) ■  P?"( 9i . 12. . 16)  s TRUE 
EOF        ) .  P2-( lOi *  6. .  7)  a FALSE 

♦          ) «  P2««( lOi •  6/ .  9)  : i  FALSE 
«  P2'«( 10/ >  6. . 10)  • .  FALSE 

ELSE       ) ■  P2"( 10. •  6. . 14)  • i  FALSE 
THEN        ) «  P2W( 10. I  6. • 15)  » .  FALSE 

)          ) .   P?H( 10. >  A. . 16)  » •  FALSE 

EOF         ) «  P2M( 10. • 11. .  7)  i *     TRUE 
4              ) «  P2"( 10 • 11 .  9)  • .  TRUE 
.              ) •  P2««( 10. l U . 10)  « «  TRUE 
ELSE        ) «  P2''( 10. * 11 . 14)  . i  TRUE 
THEN       ) .   P2H( 10 • 11 . 15)  • •  TRUE 

)          ) «  P2M( 10. • 11 . 16)  » «  TRUE 
EOF        ) a  P2,'( 10 > 12 .  7)  i •  TRUE 
♦          ) ■ P?*( 10 . 12 .  9)  • i  TRUE 
*          ) m      P2'»( 10 « 12 . 10)  i •  TRUE 
ELSE       ) «  P?f( 10 . 12 . 14)  « •  TRUE 
THEN        ) •  P2M( 10 • 12 . 15)  i .  TRUE 
)          ) ■  P?"( 10 l 12 I 16)  • t  TRUE 
)          ) ■  P2M< 13 •  2 » 16)  « «  FALSE 
)           ) »  P2«,( 13 1  5 . 16)  : i  TRUE 
)           ) «  P2'«( 13 1  6 » 16)  . t  TRUE 
)           > «   P?H( 13 * 11 » 16)  « t  TRUE 
)          ) ■  P2"C 13 » 12 » 16)  . •  TRUE 

TY ■  2.25«» EN TRIES/VA LUE 1. 39 
a    0.42 MIN. 
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SECTION 3 

THE KERNEL LANGUAGE 

Principles of Design 

The kernel language must above all provide the programmer witn a 

convenient means for controlling an automatic digital computer. O^r 

first task is to discuss several general principles of language design 

and the contribution each makes toward the final form of the kernel 

language, 

We require that the language be minimal in that the forms of the 

language must be concise and that there be as few kinds of forms as 

necessary. The conciseness and mnemonic significance of expressions in 

program text will depend upon the available character set as well as the 

aesthetic, suitability of the multicharacter symbols chosen to represent 

the various linguistic entities- We have exercised considerable care in 

choosing the forms for the kernel language, drawing from the notations 

of Algol, Euler [25J, Iverson's language [15] and Fh/lilk],    We neverthe- 

less realize that our readers with different experience in language or 

with different, hardware may take strong exception to our choices. Our 

interest is primarily in the organization behind the linguistic fajade 

and we take refuge in the realization that the language user can choose 

his own forms with the aid of the mechanisms of the extendable compiler. 
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1 

We minimize the number of different structural forms by requiring 

that the kernel language he involuted.  Involution is achieved by avoiding 

constructs that are applicable only in local context, we give some examples 

of failures in existing computer languages. 

In Algol 60 we find the following isolated features: 

(1) A primitive list structure in the constructs <for  list> 

and <actual parameter list> which is unavailable elsewhere  (for mstanc-p, 

to be used in array initialization). 

(2) General call by name is available only through aciual para.rjeters, 

(5)    Dynamic memory allocation is available only at   block entr./ . 

We  also find that most compilers provide a separate language  for   Input 

and output which includes only a fraction of the power of tne complete 

language.     In each case the power of the language can b?  increased,   the 

number of primitive concepts reduced and the compiler simplified  by 

bringing the action out into the main program on a level with othei 

statements. 

By choosing operators and data types to reflect  closely the mnn'ai 

processes  of tne  language user we can substantially add to his ability to 

write brief and lucid programs.     With distressing frequency we  find that 

existing computers are  ill-suited to the tasks thus set.    We will  find tha4 

our goal of designing a mutable computer  language  irequentiy  implies a 

more anthropoid machine. 

A program can be  viewed as a sequence of operations on a data 

structure      It  is necessary to provide the programmer with forms designed 

to  control the  sequence conveniently.    We find that with a sufficiently 

elaborate set of sequence controlling forms,   we have no need for tne 

more traditional  aabels and go-to statements.     Lest  rfe oe misunderstood, 
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the inclusion of labels would not appreciably complicate the translator. 

We would regard the appearance of the label definition as an instruction 

to initialize the corresponding local variable to an appropriate value 

of type label upon entry into the scope of the variable. The mechanics 

of implementing the go-to statement are given in Wirth and Weber ([25] p 52) 

We feel that labels are an anochronistic holdover from early computer 

languages and are not in the collection of basic concepts. 

Whenever possible we defer actions to a later time.  A deferred 

action implies an increased freedom since we have preserved our ability 

to choose what action, if any, to take. 

In particular, we shall require that each value be marked with its 

type during execution. In this way we can make the machine operators 

dynamically data dependent.* 

The extendable compiler is a translator from the kernel language 

into a machine language. That language will generally be a mixture of 

direct commands to the hardware and interpretable information to direct 

the hardware and other programs present at execution time. We will call 

the program structure present at execution time the interpretive system 

(or simply, the system) to distinguish it from the hardware. 

t Consider, for instance, the effect of the arithmetic operators in 

Iverson's language ([l5], p 13). Dynamic typing demands a memory 

organization substantially different than any known to the author. It 

can be avoided by adding typing information to the declaration structure 

of the kernel language. 

75 



The program, the system and the hardware form three levels of 

control over the action of the machines. It is possible to have even 

more levels of control than those described here. For instance, the 

microprogramming feature of the IBM System 560 line of machines [ 19] 

could be inserted between the interpreter and the hardware.  We may 

change the system at any level. As we progress down the levels, the 

ohanges become more difficult (more expensive) and the results are more 

general. 

Example Programs in the Kernel Language 

We have implemented an extendable compiler for the kernel language 

on the Burroughs B5500. The actual compiler and its description are given 

elsewhere [20] but we wish to present the results of the execution of 

selected kernel language programs as motivation for the sequel. (Note 

another extensive example on page 35.) 

We give several trivial examples which are essentially self- 

explanatory and finish with a version of the extendable compiler written 

in the kernel language. The programs and output are given in typescript 

instead of actual computer listing because the B5500 character set is not 

sufficiently rich to produce readable listing. We present the B5500 listing 

of the first example for the purpose of reader comparison. 

This has in fact been done by H. Weber for Euler IV on IBM 360 model 30. 
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Exajnple 1. The procedure assigned to the identifier "factorial" gives 

the usual recursive definition of the factorial function. The local 

variable "n" is initialized from the parameter list when the procedure 

is activated. Note the subscript "[l]". If it were omitted the procedure 

would return a value of type list with one member equal to the required 

factorial. The subscript, here analogous to the assignment to a procedure 

identifier in Algol 60,  serves to select the desired value. 

Note also that the identifier "k" does not appear in the declara- 

tion of its list. It is local to the scope of the iterative statement 

and is declared by its appearance as the control variable. 

{new factorial, 

factorial «- (?) 

(new n, if n = 0 then 1 else n X factorial{n-l) )[lh 

for all k from 1 to 6 do 

out <- (k base 10) $ " factorial =" 9 

(factorial{k} base 10) • cr 

) eof 

*** output *** 

1 factorial = 1 
2 factorial = 2 
5 factorial = 6 
k  factorial = 2h 
5 factorial = 120 
6 factorial = 720 

B5500 Version of Example 1. 
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BtGlN   *  TEST PROfiRAM FOR RtCURSIVK TACTORIAL  » 
NEW FACTORIAL  N» 
FACTORIAL •■ » 
BEGIN  NEH N» 

IF N » 0 THEN I ELSE NXFACTURIAL BEGIN N-l END 
ENDtn» 
FOR ALL N FROM I TO A DO 

OUT «• (N BASE 10) CAT ■ FACTORIAL • " CAT 
(FACTORIAL BEGIN N END  RASE 10) CAT CR 

END  EOF 

***  output  *** 

1 FACTORIAL ■ I 
2 FACTORIAL « 2 
3 FACTORIAL « 6 
H FACTORIAL « 2M 
5 FACTORIAL *   120 
6 FACTORIAL ■ 720 

1110 INSTRUCTIONS EXECUTED 

— ÜR-- 
57 

CAT 
16 

UNION 
0 

INTER 
0 

DIFF 
0 

BASE 
12 

OR 
0 

AND 
0 

< 
0 

i 
0 

s 

27 0 
2 

0 
> 

0 
MEM 

0 
INCL 

0 

CONTAI 
0 

EOV 
0 

MAX 
0 

MIN 
Ü 0 21 

X 

21 0 

MOD 
0 

>IV 
Ü 

* 

0 
NÜTMEM 

0 
INDEX 

0 
LIST 

0 0 0 

0 0 0 0 0 0 0 0 

0 g 
PD 

1 
STO 

7 
SET 

1 
HRB 

A 
FETCH 
102 

XCG 
1 

NAME 
121 

JOF 
27 

BRF 
6 

VAL 
219 

BEGIN 
56 

END 
56 

XEQ 
0 

CASXIT 
0 

SUBS 
27 

CALL 
27 

AP 
175 

RTN 
?7 

EOS 
56 

FOR 
7 

FORXIT 
1 

EOP 
1 

0 0 0 0 0 0 0 
NOT 

0 

MINUS 
0 

ABS 
0 

TYPE 
0 

ROUND 
0 

LENGTH 
0 

CHOP 
0 0 0 
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Example 2. Inner product. 

{ out «- (( + / {1,2,5) X (3,2,1)) base 10) 9  cr) eof 

*** output ■**■*■ 

10 

Example 3.  A simple sort procedure. 

{ new sort, 

sort ♦- (p) 

{  new x, 

for all i from 1 to length x do 

for all j from i+1 to length x do 

(If x[i) > x[j] then x[{i,j)] «-x[(j,i)]), 

x 

for all i from sort( {6,5A,3,2,1)) do 

out ♦- (i base 10) ® cr 

} eof 

*■**■ output *■*■* 

1 
2 
3 
k 
5 
6 
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Example h,    A procedure to generate all the permutations of an 

ordered set. 

{ new perm, 

perm «- ^g) 

{ new x, 

if 0 = length x then (x) else 

©/(for all i from 1 to length x do 

for all t from perm(x[l to i-l] 9  x[i+l to length x]) 

do x[i to i] © t) 

Hi], 

for all test from [nn,  "a", "ab", "abc", "abed") do 

for all p from permftest) do out «-p cat cr 

) eof 

*** output *** 

a 
ab 
ba 
abc 
acb 
bac 
bca 
cab 
cba 
abed 
abdc 
acbd 
aedb 
• • « 

etc. 
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Example 5. The following program is a compiler-executor for a small 

language. The organization of the program is essentially that of the 

extendable compiler written for the Burroughs B5500. We will make 

comments on the kernel language constructs used, the organization of 

the compiler-executor and the implementation of the small language. 

We find the following major sections: (l) The syntactic analysis 

tables, (2) The scanner, (3) The compile actions definition and the 

v 

compiler, (h)  The execute actions definition and the executor, (5) The 

test program and its output. 

In the outermost list we find the declaration of all the global 

identifiers. To seven of them we find immediate assignments of syntactic 

analysis tables. The tables are best understood in reference to the 

Backus-Naur Form description of the small language contained in the com- 

ments in the compile action definitions. The table wreservedsymbolsw 

is a list of strings which correspond to the nonterminal and terminal 

symbols in the grammar. The position of a symbol in the list is called 

its symbol number. 

The table "productionrightparts" is a list of lists, each of the 

latter corresponding, in order, to the right part of a production 

(<progran]> is symbol 1, eof is symbol 15, {l>l5i corresponds to 

<program>eof). "productionleftparts" contains the symbol number of the 

left part of the corresponding production. 

The next four tables are linearized representations for the parsing 

functions PI' and P2' which locate the right and left ends of the 

next CRS. All seven tables could have been produced by a syntax pre- 

processor similiar to the symbol pair algorithm of Section 2. 
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The scanner must fetch the next terminal symbol from the input 

text each time it is called.    In the case of the small language this 

means identifying digits (which are less than 10 in our character set), 

catenating identifiers (letters are less than 56), matching reserved 

identifiers with their syntactic symbol numbers,  entering variables into 

the symbol table and matching special characters with their syntactic 

symbol numbers. 

Now skip ahead to the procedure assigned to "compile".    After some 

initializing we find "while compiling do" which controls a loop down to 

the end of the procedure.    Within that loop we immediately find the syn- 

tactic analysis algorithm.    In the first inner loop we are scanning ahead 

to the right under control of the linearized form of function    PI'.    Having 

located the right end of the CRS,  we exit the loop and enter a loop scan- 

ning for the left of the CRS under control of the linearized version of 

function P2,.    At the termination of the second loop,  we may compare the 

CRS with the production right part table to find the production number 

"pn". 

"pn"  is used as a subscript to  select the compile actions corres- 

ponding to that production from the preceding table.    The prescript 

operator "[compileactions[pn]]"  causes the execution,   in order,  of actions 

from the explicit list following the prescript.    For instance,  the dis- 

covery of production two would cause the integer 12 to be placed in the 

code array, the program pointer   to   be incremented and the variable 

"compiling" to be  set to false,  thus terminating compilation. 

At the termination of each compilation step we find the substitution 

of the production left part for the CRS. 
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The compiler is considerably simplified by having the entire code 

array and execution memory available at compile time. 

The translated code for the small language consists of a sequence 

of twelve operation codes.    Within the procedure assigned to "excute" 

we find another prescript "[executeactionsfcodeEpp]]]".    The operation 

code in "codefpp]" is used to select a sequence of execution actions 

from the preceding table.     Execution proceeds until the operation code 12 

causes the execution action "executing «- false" whereupon execution 

terminates. 

i 

t 
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•Micro-mutant, a small version of the extendable compiler' 

(new code pp memory variables mp text tp fl gl f2 g2 

reservedsymbols productionleftparts productionrightparts 

compile compileactions execute executeactions 

scan nextsymbol scanval, 

'Seven tables prepared by a syntax preprocessor' 

reservedsymbols ♦- 'syntactic vocabulary' 

("<prograaC>", "<stmt>", "<stmt]>", "<if clause!»", 

"<label>", '^list head>", 'kexpi^", '^expr^", 

'^arith exF>", "<tern>", "<tenia>", "<factoi>", 

'^intege^", "<vai>", "eof", "go", "output", "if", 

"<ident>", "begin", "(", "<digit>", "end", "to", 

":", ",",   "+% ■-•i MX", */*$    "then", ")" ), 

product ionrightparts <- 

{(1,15), (15,2,15), (3), (5,3), (M), (6,23), 

(16,21^,7), (17,7), (7), (18,7,32), (5,25), (20,2), 

(6,26,2), (8), (1^,27,8), (9), (9,28,10), (9,29,10), 

(10), (11), (11,30,12), (11,31,12), (12), (llf), 

(13), (21,17,33), (22), (13,22), (19)), 

productionleftparts «- (l,1,2,3,3,3,3,3,3A,5,6,6,7,8, 

8,9,9,9,10,11,11,11,12,12,12,13,13,1^), 

fl «_ (1,2,3,1,1,1,3,^,4,5,5,6,6,6,3,1,1,1,7,1,1,7,3, 

1,7,1,1,1,1,1,1,7,6), 

gl <- (1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,6,1, 

1,7,1,6,4,^,5,5,3,3), 

f2 *- (l,l,l,6,6,l,i,l,l,l,l,l,l,l,7,l,5,5,l,7,5,l,l, 

5,1,7,4,3,5,2,2,1,1), 

g2 <- (l,7,6,l,l,l,5,4,l,3,l,2,i,i,i,i,i,i,i,i,i,i,i, 

1,1,1,1,1,1,1,1,1,1], 
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scan <-   (?)    'fetch the next terminal symbol from the text* 

(new t,    while text[tp] = " "[l] do tp <- tp + 1, 

if text[tp] < 10 then 

{nextsymbol ♦- Vdigi^" index reservedsymbols, 

scanval «- text[tp],    tp «- tp + 1 

) else 

if textEtp] < 36 then 

('catenate an identifier* 

t <- tp,    while text[tp] < 56 do tp <- tp + I| 

t «- text[t to tp-l], 

nextsymbol «- t index reservedsymbols, 

if nextsymbol = 0 then 

{' a variable' 

nextsymbol «- '^iden-^" index reservedsymbols, 

scanval «- t index variables, 

if scanval = fl then variables [scanval «- mp <-mp + l] ♦- t 

) 

) else 'must be a special character' 

(nextsymbol ♦- text[tp to tp] index reservedsymbols, 

tp «- tp + 1 

) 

), 'end of scanning algorithm' 
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compileactions «- 

(   Oi ^progran^         : 2 = <prograii> eof                     ' 

(12,17,19), ^progran^         : S = eof <stmt> eof                  ' 

(2,17), ^stm^               : !■ <stmtl>                                  • 

ih ^stmt^             : 2 = <labe]> <stmtl>                  ' 

15, ^stmt^             : := <if clause> <stmt]>          ' 

0, ^stmt^             : |a <list hea<C» end                  • 

(1,17), ^stmt^             : := go to <expi>                     ' 

(7,17), ^stmt^             : := output <expi>                    ' 

0, ^stmt^             : := <expi>                                    ' 

(3,17,18,17), •"Cif clause>     : {■ if <expi*> then                  ' 

15, ^labe^             : J s <ident> : 

0, ^list hea^«     : := begin <stm-t>                      ' 

0, ^list head>     : !■ <list hea(I> , <£tmt>         ' 

0, ^exp^               : !■ <exprl>                                  ' 

(6,17), ^expr^             : !■ <var> <-<exprl>                  ' 

0, ^expr^             : |a <arith exp>                         ' 

(8,17), ^arith exp>     : Js <arith exp> + <tern>        ' 

(9,17), ^arith exp>      : := <arith exp> - <tern>        f 

0, ^arith exp>      : : = <tenn>                                    ' 

0, ^tern^                : t= <terml>                                  ' 

(10,17), ^tem^             : := <terml> x <factoi>            ' 

(11,17), •«ctenn;^             : !■ <terml> / <factoi>            • 

0, ^tem^             : ; = <factor>                                ' 

(5,17), ^facto^           : := <var>                                      ' 

(M7,lM7), ^factoi^           : := <integer>                              ' 

0, ^facto^           : := ( <expr>  )                            • 

0, •«CintegeiS*          : := <digit>                                  ' 

16, ^intege^         : ! = <integer> <digit>              • 
{4,i7,iii,i7) ^va^                 : !■ <ident>                                  ' ), 

Oh 
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compile <- @ 

{new x xv xp Ip pn compiling, 

pp <- tp «- 1, mp ♦- 0, compiling «- true, 

x <- xv «- 25 list 0,  xp <- 2, 

x[l] «-"("  index reservedsymbols, 

x[2] «- "eof"  index reservedsymbols, 

memory «- variables «- 10 list   fl >    code «- 100 list 0, 

scan,  'initialize nextsymbol and scanval' 

while compiling do 

(while fl[x[xp]] < gl[nextsymbol] do 

(x[xp«-xp+l] <- nextsymbol, xv[xp] «- scanval, 

scan  'the decision for function PI'), 

lp «-xp, 

while f2[x[lp-l]] < g2[x[lp]] do lp <-lp-1, 

'the right part of the next CRS i? between lp and xp' 

pn «-x[lp to xp] index productionrightparts, 

'the production number is used as an index to select 

a sequence of compile actions' 

[compileactions[pn]]   'a prescript on the following list' 

('the first twelve compile actions correspond to 

execution macro-instruction operation codes' 

code[pp] «-   1,  codefpp] «-   2,   code[pp] «-   3, 

code[pp] ♦-   ^,  code[pp] «-   5*   code[pp] <-   6, 

code(pp] «-   lt  codefpp] <-   8,   code[pp] «-   9> 

code[pp] «- 10,  code[pp] «- 11,  code(pp] <- 12, 

'the remaining 7 rules do fixups, label initialization, 

increment the program pointer, etc.' 
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memory[xv[xp-l]l ♦-pp, •15' 

code[ppl <- xv[xpl, •lU' 

code[xv[xp-l]] <-pp, •15' 

xv[lp] 4- (xv[xp"ll x 10) + xv[xp]. •16' 

pp <- pp + 1, •17' 

Xv[lp]   4-pp, •18' 

compiling <- false 

h 
xp ♦- Ip,   'making the left-f 

•19' 

or-right part aubst 

x[xp] ♦- productionleftparts 

) 

),  'end of compilation procedure* 

[pn] 

1 



executeactlons <- 

((2,15), •unconditional branch V 

(15,1), •clear stack 2» 

(1,10,15), •branch on zero *• 

(M,6,l), •load stack from code If 

(8,1), •load stack from memory 5' 

(9,7,5,1), •store stack to memory 6* 

(5,1), •decimal output 7' 

(11,5,1), •add 8- 

(12,5,1), • subtract 9' 

(13,5,1), •multiply 10« 

(1^,5,1), •divide 11 • 

16 •halt 12M, 
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execute «-   (?) 

(new executing stack sp, 

sp <- 0,    pp <- 1,    executing *- true, 

stack <- 100 list 0, 

while executing do 

[ executeact Ions [ code [ pp ] 1 ] 

(    pp ♦- pp + 1, 

pp «- stack[sp], 

out ♦- (stack[sp] base 10) • cr, 

sp ♦- sp + 1, 

sp «- sp - 1, 

stack[sp] <- code[pp], 

stack[sp-l] «- stack[sp], 

stack[ sp] <- memory[ stack[ sp] ], 

memory[stack[sp-l] ] «- stack[sp], 

pp *- If stack[sp] sa 0 then code[pp] else pp + 1, 

stack[sp-l] «-stack[sp-l] + stack[sp], 

stack[sp-l] «- stack[sp-l] - stMck[sp], 

stack[sp-l] <- stack[sp-l] x stacktsp], 

stack[sp-l] «- stack[sp-l] -r stack[sp], 

sp «- 0, 

executing «- false 

) 

},     'end of execution procedure' 

V 

2« 

y 

%• 

5« 

6« 

7' 

8' 

9' 

10' 

'll* 

'12' 

'15' 

•IM 

•16' 
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•test program for micro-mutant compiler1 

text <- 

"begin   n «- 1, 

k:    if   102k.n   then 

begin output n, 

n «- 2 x n, 

go to   k 

end 

end   eof eof ", 

compile, 

out «-"code dump:" • cr • "pp" « tab • "inst" « cr, 

for all   i    from    1    to   pp-1   do 

out «-(i base 10)© tab 9 (code[i] base 10) • cr, 

out ♦- cr, 

execute, 

out «- cr • "memory dump:" ® cr, 

for all    i    frcn    1    to   mp   do out «-variables[i] © "a" 9 

(memory[i] base 10) * cr 

eof 
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code dump: 
PP Inst 
1 k 
2 I 
3 k 
k 1 
5 6 
6 2 
7 k 
8 102k 
9 k 
10 1 
11 5 
12 9 
13 3 
Ik 35 
15 k 
16 1 
1? 5 
18 7 
19 2 
20 »♦ 
21 1 
22 1* 
23 2 
2k ll 
25 1 
26 5 
27 10 
28 6 
29 2 
30 4 
31 2 
32 5 
33 1 
Ik 2 
35 2 
36 2 
37 12 

1 
2 
U 
8 
16 
32 
6k 
128 
256 
512 

memory dump: 
n ■ 1024 
k= 7 
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Syntactic and Semantic Definition 

The following table is the phrase structure grammar for the kernel 

language. We adopt the Backus-Naur Form of the Algol report, substitute 

the reduction symbol "::=" for the production arrow "-»" of Section 2, 

enclose the members of V.. in the brackets "<" and ">" and underline 

the multicharacter representations for members of V_. The special sym- 

bols integer,   identifier and string are discussed on page 93. 

We remind our readers that the grammar obeys two restrictions that 

occasionally give it an artificial appearance.    First,  it is a symbol pair 

grammar.    Second,   the productions have been carefully selected to reflect 

the desired sequence of execution in the canonical parse to simplify the 

production of the machine code. 

Symbol Pair Grammar for the Kernel Language 

<prograin> 

<expressioii> 

<expression > 

<expressionp> 

<expression,> 

<procedure> 

<if clause> 

|- <expression>-^ 

<expression > 

<if clause> <expression >  | 

<expressionJ> 

<expression,> 

<if clause> <truepart> <expressionJ> 

<primary > «- <expressionJ>   | 

<procedure> <expression^>    1 

<for clause> do <expressionJ>   ! 

<for clause> <while clause> do 

<expression3>    1 

<while clause> do <expression^>   | 

<step list> 

® 
if <expression> then 
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<truepart> 

<for clause> 

<while clause> 

<while> 

<step list> 

<simple expr> 

<simple expr > 

<primary> 

<primary > 

<primaryp> 

<.lis-t> 

<list head> 

<begin> 

<case> 

<case head> 

<case begin> 

<declaration> 

declaration > 

<constant> 

<infix> 

<prefLx> 

<expressionp> else 

for all  identifier from <3tep list> 

<whil^> <step list> 

while 

<simple expr> to <simple expr> | 

<simple expr> b^ <simple expr> | 

<simple expr> to <simple expr> by <simple expr> | 

<simple expr> b^; <simple expr> to <simple expr> 1 

<simple expr> 

<simple expr > 

<primary> <infix> <simple expr > I 

<prefix> <simple expr > 1 

<infix> / <simple expr^ | 

<primary> 

<primary > 

<primary > [<expression>] | <primaryp> 

<constant> | (<expression>) | 

identifier <list> 1 identifier | <list> | <case> 

<list head> ) 

<list head> , <expression> I 

<begin> <declaration> | <begin> <expression> 

{ 

<case head> ] 

<car.e head> , <expression> i 

<ca.se  begin> <declaration> | 

<case begin> <expression> 

[<expression>l  ( 

<declaration > 

new identifier | 

<declaration > identifier 

true | false I integer | integer . | . integer | 

integer . integer | universe \  string | <begin> ] 

t | U  | 0   | • | base   |V|A|<|<|  =  |/| 

>   | >   |   t   | /   |   index   [list   | C   | D  |  H  | max   | min 

+  I  -   |  X   |mod|  ♦   I t 

"1 I minus I abs j type | round |chop | length I set 
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We will now gi\e our interpretations of each construct. The 

description of an involuted language involves the use of terms before 

they are defined. Paragraph numbers and cross references are used to 

ease the reader's task in following the description. 

We must distinguish between text describing the form of a construct, 

text giving examples of a construct, text describing the meaning of a 

construct, text justifying the choice of a construct nnd text advocating 

a particular system organisation or machine design. We distinguish them 

when possible with paragraph headings of Syntax, Examples, Ser.-.antic 

Description, Justification, and Implementation, respectively. 

Implementation of Reserved Words, Identifiers, Strings and Integers. 

By an underlined word in the grammar we mean to reserve that word for 

exclusive use in the given grammatical context. We do not then need spe- 

cial character sets or escape symbols to write programs. One implication 

is that spaces nre significant and that we cannot know whether an identi- 

fier is reserved or not until we have seen all of it. Thus we find that 

the process of catenating identifiers must take place outside of (and 

before) the syntactical analysis algorithm. We assign this task to a 

procedure called the scanner. It turns out to be convenient to recognize 

and convert both integers and strings there also. As a result we find the 

symbols integer, identifier and string terminal in the grammar but not 

underlined. The inclusion of natural language text within a program in 

the form of parenthetical comments to the reader is provided by choosing 

an otherwise unused character as a comment bracket. We reject the Algol 60 

comment convention because it is neither concise nor independent of the 

program structure (since it involves the use of the semicolon). 
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Semantic Descrlption of Values.    Before we can discuss (5-l) 

constants,  we must introduce the values they represent.    We specify in 

the language four unstructured types of values  (undefined, number,  name 

and process) and three structured types (string,   list,  and set). 

Syntax of Constants. 

<constant> ::=    ft  | co   j universe   | 

integer  |  integer  .   |   .   integer   i  integer  .   integer  | 

true   I  false   | 

<begin>  )   |  string 

<begin> ::= ( 

Examples of Constants. 

ft    oo       universe    true    false 

2    2.     .2    156.721 

{)     "ABCDEFGHIJ-52" 

Semantic Description of Constants of Typed Undefined. 

ft ,     oo,     and universe    have type    undefined.    The value of a variable 

before anything haa been  stored into it is    ft  ;     the result of dividing 

a positive number by zero is oo;  the intersection over the null collection 

of sets  is universe (the universal set). 

The operators    =    and    ^    are valid for all of the above;     oo   is  a 

valid operand for all numeric operators;    universe is a valid operand for 

all operators  that accept sets as operands. 

Implementation of Values of Type Undefined.  The appearance of an 

undefined value is usually cause for alarm.    An alarm should cause the system 

to originate a warning action to the programmer,  but beyond that we make 

no particular recommendation as to the form of the warning or the means of 

suppressing it. 



Justification of Values of Type Undefined. Undefined values can 

arise in a variety of ways. We might think of, for instance, the value 

of an uninitialized variable, the result of division by zero and the 

result of an invalid subscripting operation. We propose the introduction 

of a type undefined and a collection of values of type undefined corres- 

ponding to (usually) pathalogical situations such as those described above. 

For some we may wish explicit constants in the language. Thus we might 

write 

if X = GO then ... 

to test for a division by zero. 

The introduction of a type undefined provides a conceptually 

simple mechanism with which to warn the programmer of some of the wilder 

errors as well as providing a relatively noncontroversial system reaction 

to the errors.    If the error is isolated,  the system may proceed with 

execution of the program,  leaving behind an indicative trail of undefined 

values. 

Semantic Description of Numbers. A value of type number will be 

the computer representation of a real number. We have two reasons for 

not wishing to make our concept of a number precise. 

First, the only reasonable choice for numbers in a given implemen- 

tation of the kernel language will be those acceptable to the floating 

point hardware of the machine.    For that implementation,  the programmer's 

knowledge about values of type number will be a pragmatic mixture of 

his knowledge of numbers  in the abstract and his study of the machine 

specifications. 
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Second,  a study of the desirable properties of computer numbers is 

well beyond the scope of this paper.    We hope to see some results in 

this direction in a ^tudy presently being conducted by W. Kahan, J. Welsch, 

and N.  Wirth. 

We do find it useful to distinguish three subsets of the class of 

computer numbers,  the first of which is computer integers.    The second 

is the set of characters which is the set of integers restricted to        (3*2) 

the range    0    to 255    inclusive.    Finally we have the logical values 

0    and    1. (5-3) 

Semantic Description of Strings.     We consider a fixed input or 

output device.    We assume a correspondence between the printing character 

of the device and the characters (see 3-2).    Normally some of the charac- 

ters  Qre unused for printable characters and may be used for nonprinting 

or control functions.    A string in the kernel language is an ordered set 

of printable characters delimited by the string quote (").    We adopt the 

PL/I convention that within the string,  two contiguous string auotes 

signify a single string quote within the string. 

Justification of Strings.    The programmer communicates with his 

program via strings  of characters;  thus unrestricted ability to analyze, 

manipulate and produce character strings  is  a minimal requirement for 

any computer language.     In much the sarne  spirit that a compiler for 

numerical work provides  certain standard functions such as square root 

and natural logarithm,   we must provide primitive string manipulating 

functions. 

Implementation of Input and Output.       For the kernel language 

we assume that we have a   single input medium «nd a  3ingle output medium. 

96 



If we view the program over the history of its execution, the input and 

output are each single contiguous strings of characters.  We name two 

special variables (IN and OUT) and access them in the normal manner with 

our primitive string manipulating functions. The fact that in real time, 

the program may have to wait before an access to IN can be completed does 

not affect the program logic. On the other hand, the program must have 

control over when, in real time, the output appears. Thus we establish 

the convention that whenever a carriage return is catenated onto OUT, the 

string OUT is shortened past the carriage return and the excised characters 

appear on the output medium. 

Semantic Description of the Null List. The construct (} represents 

the null set of values. We use the dummy production <begiri> for technical 

reasons having to do with the emission of block entry code from the canon- 

ical parse. 

Semantic Description of true and false. The constants true and 

false are synonymous with the characters 1 and 0. 

Semantic Description of Variables. A variable is an object which 

can be named in the kernel language and to which any value can be assigned. 

The designation variable is given by either an identifier or a subscripted 

identifier (see 3-9)- 

Semantic Description of Values of Type Name. Corresponding to 

every valid name in the kernel language is a value of type name within 

the system. Names are created as intermediate results and are not access- 

ible to the programmer. 
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Implementation of Variables and Names.    A variable corresponds to 

a memory address.    The type of the value stored in a variable must be 

preserved,  thus we  find that we allocate two words for a variable rmd use 

the second to store the type information.    We would prefer a machine in 

which the type bits were automatically associated with each word but had 

special properties.     In particular we would like to determine whether the 

variable contains a value of type address to effect indirect addressing 

but without accessing the whole variable to find out.    We believe this 

implies that at least some of the type bits must be accessible  in a 

fraction of the time to access a memory word. 

Syntax of Declarations. 

<declaration>  ::= <declaration > 

<declaration >  :;=    new identifier | 

declaration >    identifier 

Examples of Declarations. 

new    abed 

new    thisone    thatone    anyone 

Semantic Description of Declarations.    At most one declaration appears 

in the head of a list  (see 5-5).    The extent of the list defines the scope 

of the identifiers  in the declaration.     Every identifier in a program must 

either be reserved or lie within the scope of an identifier of the same 

name.    Upon entry into the scope of an identifier,  the system allocates 

a variable to it and gives it the value uninitialized.    An identifier names 

the variable allocated to it.     If an identifier appears  in more than one 

declaration,  the use of that identifier names the variable corresponding 

to the smallest containing scope. 
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Justification of Declarations. The use of declarations to define 

the scope of variables is well established. With dynamic typing of values, 

we find no particular advantage in binding the type of an identifier with a 

compile-time declaration. The involuted nature of the kernel language 

moves the structural implications of the conventional declaration out into 

the main program. Thus we find that declarations in the kernel language 

are reduced to the single action of delineating the scope of, and allocating 

variables fo^ identifiers used in the program. 

We regard this as the final step in the direction taken by Wirth 

and Weber ([25] p. k}). 

Implementation of Declarations.  From the viewpoint of variable 

addressing, the program consists of a nested collection of scopes. Thus 

from any point in the program we may assign a unique ordered pair of 

integers to each variable, namely, the depth of nesting of the scope of 

the identifier and the position of the identifier in the declaration. 

We call the integers the scope level and order number respectively. At 

compile time we can name the variables with the scope level and order 

number. 

The form of the declaration suggests that we should allocate a 

list of variables corresponding to the declared identifiers upon entry 

into the sccpe of the identifiers. The order number of a variable is 

the index of that variable in the list of local variables. Thus we 

expect to use the scope level to find a particular list and the order 

number to find an element of that list. At execution time we convert 

the compile time name into a value of type name by locating the memory 

location assigned to the variable. 
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The designers of programning languages have traditionally   (3-*) 

indulged themselves in a semantic ambiguity: one cannot always tell 

from the form of an expression (a subscripted variable for instance) 

whether the name, or the value stored in the named location, is indi- 

cated. In the Algol 60 construct of general call by name the ambiguity 

is complete; the expression must yield both name and value, the choice 

depending upon its use at a remote location. One can remove the ambiguity 

by introducing explicit name and value operators into the language 

([25] p. ^5). Since the choice is always ultimately clear from the con- 

text in which the expression is found, we have chosen to dynamically 

defer the final fetch of the value in cases where there is doubt. 

Syntax of Lists. 

<list>      ::= <list head> ) 

<list head>  ::= <list head> , <expression> | 

<begin> <declaration> | 

<begin> <expression> 

<begin>     : := ( 

Examples of Lists. 

(1, 2, 3, "ABC") 

[x ♦- 1, y *- y-2,  if x < y then z else z ♦- y } 

{new abc, a«-b«-1.0,  c«-5) 

{new a, {new a, a «- ?), a ♦- 2 ) 
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Semantic Description of Lists. A list is an ordered set of   (3-5) 

expressions which are evaluated sequentially. The value of the evaluated 

list is the ordered set of evaluated expressions and is of type list. 

The declaration is not an expression and does not contribute to the value 

of the list. 

Justification of Lists. Arrays, trees, iteration lists, parameter 

lists, strings, blocks and compound statements are ordered sets. The 

inclusion of arbitrary (even infinite) lists in the kernel language to- 

gether with the principle of involution yields a drastic reduction in the 

number of primitive concepts. 

Semantic Description of Values of Type List. A value of type list 

is an ordered collection of values with any admixture of the value types. 

Implementation of Lists. We discover in the literature two alterna- 

tives for representing lists. The first, in LISP, demands a li3t structure 

where all elements are explicitly linked in storage. In Euler and Burroughs 

B5500 hardware we find that a value of type list is a descriptor which 

delineates the extent and locates the list. The list elements are stored 

in sequentially contiguous memory locations. The first comparison is in 

the amount of storage required to represent a given list. In LISP we 

must use memory for the linking information; in Euler we must use memory 

for dynamic typing. We estimate that implicit linking saves a factor of 

two in '.tnory. The second comparison is in ease of access. In LISP we 

must explicitly trace the list structure to find an element near the end 

of a list; in Euler we may access any element of any list directly via a 

subscript. There is no reason to expect the implicit list structure 

organization to be less efficient them conventional index registors for 

array applications so long as descriptors do not have to be repeatedly 
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fetched from memory. Even with the repeated fetching, the B5500 is 

able to "ubr.ume the extra core accesses under cover of the multiply 

operation time so afl to be proportionately as fast as the 7090 for 

matrix problems. Our third comparison is in ease of modification. In 

LISP we must change a link to append or insert an element to a list where 

in Euler we must copy the entire contiguous block.  Implicit linking is 

severely less efficient here. Fourth, we must consider storage rtclUM« 

tion.  In both systems the majority of time is spent in searching out 

and identifying the valid list structure.  In Euler we find that the 

percentage of execution time spent in storage reclamation is rougnly tne 

same as the percentage of storage occupied with valid list structure; we 

have no figures on LISP. In any case we do not expect the systen.^ to be 

much different in this respect. 

We do not know which represents the most efficient solution; we 

suspect that it is both problem dependent and hardware dependent. We 

have chosen implicit linkings so as to have array capability without in- 

troducing them into the language as a distinct form. 

Semantic Description of Values of Type Set. A set differs fron 

a list m two ways: 

(1) A set cannot contain two equal values. 

(2) Tne programmer cannot prescribe the order of r,he members of the 

set. Certain operations are allowed on sets and not on lists. 

Justification of Values of Type Set. The set operations of member- 

ship, inclusion, equivalence, etc., reouire preorganization for efricient 

implementation.  We choose to sort the values of a set by a machine deter- 

mined order to facilitate table look ups (binary searches), union and 

intersection (merges), etc. The membership operation (for instance) takes 
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log-n operations in a sorted set and n/2 operations in an unsorted 

set (on the average). 

Syntax of Subscripts. 

[<expression>] 

Examples of Subscripts. 

[1] [x-z]    [{1,2,5)] 

Semantic Description of Subscripts.  We will distinguish between 

the subscript expression (the expression in the syntax above), the sub- 

script operator (the rtiult of applying certain standard transformations 

to the subscript expression), the subscript operand (the object in the 

kernel language to which the subscript operator is being applied) and 

the subscripted expression (the final result achieved by applying the 

subscript operator to the subscript operand). A subscript expression 

has meaning if (l) it has type number or (2) it has type list and all its 

members have type number. A subscripted expression has meaning if (l) the 

subscript has meaning and (2) the subscript operand is one of the structured 

types, string, list or set. If a subscripted expression does not have mean- 

ing, it yields a value of type undefined. 

Subscripts of Type Number. If the value of the subscript expression 

is of type number, the value of the subscript operator is the nearest 

(rounded up) integer. 

Subscripts of Type List. If the value of the subscript expression 

is of type list and each element of the list is of type number then the 

subscript operator is the list of nearest integers (rounded up) corres- 

ponding to the numbers in the subscript expression. 
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Justification of Subscripts.    Various constructs in the kernel 

language have the form of ordered sets.    Numerical subscripts Will be 

used to select elements from the ordered sets and list valued subscripts 

will be used to select subsets from the ordered sets. 

Examples of Subscripted Lists. 

list subscript result 

{10, 20, 30, ÜoHl] = 10 

{10, 20,  50,  Uo][minus 1 ] = ^0 

{10, 20,   30,   40)[{2,lv}] = (20,  tO] 

{10, 20,   30,   kO)ll to 3] =  (10, 20,  30) 

(10, (20,   (30),  k0]][2] =  (20,   (50),  ^0) 

(10, (20,   (30),  h0})[2][2] =  (50} 

Syntax of the Case Expression. 

<case> ::=   <case head> ) 

<case heacl>      : :=    <case heacO , <expression> 

<case begin> <declaration>  | 

<case begin> <expression> 

<case begin>    ::=    [<expression>]   ( 

Examples of the Case Expression. 

[n] {1,2,5,5,7,11,15,17,191 

[{x, minus 1)]   {  new a, 

a <- "Invalid type for subscript operator", 

a «- "Invalid type for subscript operand", 

a «- "Subscript out of range", 

out <- a ® cr 

) 
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Semantic Description of the Case Expression. [15] The case 

expression has the form of an explicit list preceded by a subscript. 

Upon execution the following occurs: (]) The subscript operator is 

evaluated.  (2) The list is entered. (3) Storage is allocated for 

the local variables (if any). If the subscript operator is an integer- 

then we have {h)    If the value of the integer is zero or larger in magni- 

tude than the number of expressions in the list, a value of type undefined 

results.  If the subscript operator is positive then it is used as an 

index to select an expression counting from the front of the Jiit| if 

it is negative it is used to select an expression counting from the rear 

of the list.  (5) The selected expression is evaluated and the value of 

the case expression is the value of the selected expression. If the 

subscript operator is of type list then (h)    Each number in the list is 

used sequentially to select an expression as done above for subscript 

operators of type number.  (5) The value of the case expression is the 

list of values so computed. 

Implementation of Case Expressions. The use of an index to select 

an expression out of a list of expressions suggests that the machine code 

itself should have the form of a list structure where tlM code for an 

expression occupies exactly one memory location. 

Justification of Case Expressions. The case expression represents 

one of the more powerful sequence controlling features of the kernel 

language.  If the subscript operator is a number, it resembles the Algol 

60 switch without the nuisance of labels. The list valued subscript 

operator allows reordering and repetition of the expressions in a list. 
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Syntax of Primaries. 

<primary>      ::=   <primary > 

<primary.>    ::=   <primary > [<expression>]   | <primary2> 

<primar,yp>    ::=   <constant> |   (<expressiori>)   |  identifier <list>   | 

identifier | <list>  | <case> 

Examples of Primaries. i 

3.0      (x-z)      X     X[2][a-2]        Y{l,2,51  (1,2,5)     [n]{l,2,5) 

Semantic Description of Primaries.    Parentheses allow the programmer 

to reorder the evaluation of operators in the conventional manner.    They 

have no other meaning in the kernel language. 

An identifier followed by a list signifies a procedure activation. 

The list  (of parameters) is evaluated and the name of the variable corres- 

ponding to the identifier is computed.    If the variable contains a value 

of type process the process  is activated,  otherwise the value undefined 

is returned.   (See 5-12). (3-6) 

If an identifier appears alone, the name of the variable corres- 

ponding to the identifier is first computed.     If that variable holds a 

value of type process,   the process is activated and the name of the 

identifier is replaced with the value of the process.   (See 3-ll). 

Semantic Description of Subscripted Primaries.     If the (3-7) 

subscript operand has type name,  it is replaced by the value of the named 

variable.    The effect of the subscript operand on types string and list 

follows. 
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Semantic Description of Subscripted Strings. A value of type 

string is an ordered set of characters.  If the subscript operand is of 

type string the following remarks apply:  (l) If the subscript operator (3-8) 

is an integer and this integer is positive and less than or equal to the 

length of the string, the value of the subscripted expression is the 

character selected by counting from the front of the string; if the integer 

is negative and no larger, in magnitude, than the length of the string, 

the character is selected by counting from the rear of the string; other- 

wise the value undefined is returned.  (2) If the subscript operator is 

a list of integers then the result is a (sub) string selected by applying 

each integer as a subscript operator in order of occurence. 

Implementation of Strings. If we view a string as a packed read- 

only data structure then the operation of forming a contiguous substring 

can be accomplished by constructing a new descriptor to point into the 

old string. An implication is that a scanning algorithm does not have to 

move characters, only locate them. 

Semantic Description of Subscripted Lists.  A value of type list 

is an ordered set of values.  If the subscript operand is of type list 

the following remarks apply:  (l) If the subscript operator is an   (5-9) 

integer then the value returned is the name of the variable selected 

according to the algorithm given in paragraph (5-8). (2) If the sub- 

script operator is a list of integers then the result is the (sub) list 

selected by applying each integer as a subscript operator in their order 

of occurence in the subscript operator. 
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Syntax of Prefix Operators. (5.10) 

<prefix>      ::=   "~i I minus   |  type  | abs   |  round   I  chop  ! length   i  set 

Semantic Description of Prefix Operators.    A prefix operator is 

a single valued partial function of one operand.    The action of the operator 

is defined when the function is given over the allowed range of the operand. 

All of the above operators,   except type,  length and set, are numeric prefix 

operators.    Their behavior for numeric operand,   is  obvious;   their behavior 

for list valued operands  is discussed presently. 

Semantic Description of the Operator "type" .      The range of 

operands  for type is the collection of all values.    The function defined 

by the operator gives an integer corresponding to the type of the operand. 

We leave the actual integer to be implementation defined since it is 

convenient to have more than one system type corresponding to a given 

kernel language type.    Normally we test for type with a construct like 

if (type a)    =    (type " ") then ... 

rather than attempting to remember the correspond ^nce between integers 

and types. 

oemantlc Description of the Operator "length".      The operand of 

length must have type set,  list or string.    The value of the function 

defined by the operator is the number of elements  in the structured 

operand. 

An application of the operator set  is the only way to transform 

a value of type list into a value of type set.    The resulting value will 

have no repeated elements  and will have been reordered. 
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Syntax of Infix Operators. 

<infix>      ::=n|u|e|c|D|€|^|   Index  |   ® |  list   |   base  | 

V |   A | <  |  < |  = |  ^  | >  | >  |  max | mm |  + 

X   I   mod |   "M   t 

Semantic Description of Infix Operators. An infix operator is a 

single valued partial function of two (right and left) operands. The 

action of the operator is defined when the function is given over the 

allowed range of the operands. 

Semantic Description of     0, U,   ©, C,     and D. The range  of values 

for both operands  is the  collection of all values of type set.     Their 

defining functions are,  respectively,   set intersection, union,   difference, 

inclusion and containment. 

Semantic Description of    ^   and    j£ .      The left operand ranges 

over the collection of all values; the right operand must be of type set 

or list.    The value of the function defining    *    is true if a value 

equal to the left operand is  found in the right operand.    The  function 

defining   ^   is the complement of the above. 

Justification of Set Operators.    The concept of a set is a natural 

data type for many algorithms.    Its simplicity makes the set a natural 

object for the kernel language. 

Implementation of Set Operators.     The elements of the set valued 

operands of the above  operators are sorted to facilitate the construction 

of efficient algorithms for their execution (sort - merge, binary look up, 

etc.) 
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Semantic Description of index.  I'ndex is identical to € except 

that the resulting value is the index within the sot of the value, If 

found, and of type undefined otherwise. 

Semantic Description of base.  The operands of base must be both 

integers. The result is a value of type string. The string is the legible 

representation of the left operand to the base specified by the right 

operand. 

Semantic Description of list. The left operand of list must be a 

number and the right may have any value. The left operand is rounded to 

the nearest integer and the result is that many copies of the right 

operand (thuf a value of type list). 

Semantic Description of ®. The range of operands of ® is the 

collection of values for which the types of the operands (left and right 

respectively) are string, string; set, list; set, set; list, set; list, 

list. In the first case the result is a string obtained by catenating 

the right operand onto the tail of the left operand. Otherwise the re- 

sult is a list containing the members of the left operand followed by 

the members of the right operand. 

Semantic Description of - and /,  The operands of = and f 

may range over all values.  If the operands do not have the same type, 

they are unequal.  If they have an unstructured type, they are equal if 

they are identical.  If they have a structured type, they are equal if 

they have the same length and the corresponding elements are equal. 

Semantic Description of Numeric Infix operators.  All of the 

remaining operators are numeric infix operators.  If both operands are 

of type number, the function defining the operators is usually obvious. 
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We make the  following commentn.    The operators   V  and    A    (logical "or" 

and logical "and") accept as operands only logical values   (See 3-5).    The 

result of    3  -r t    is the  (real valued)  quotient.    If we wish the  integer 

qnotient,  we write    chop(s T t).     s mod t    is defined to be the function 

s - t X chop(s ♦ t)    for all numbers. 

Syntax of Simp]e Expressions. 

<simple expr>       : :=      <simple expr > 

<simple expr >     ::=      <primary> <infix> <simple expr > | 

<preflx> <simple expr >   | 

<infix> / <simple expr >  | <primary> 

Examples  of Simple Expressions. 

3-2-1 a + b -  c  x d mod e -r f   t g 

""I (minus abs round chop a)    =    (b max c min d) 

+    /   1    to    n (1,2,3}    -    (2,5,*) 

Semantic Description of Simp.l e Expressions.    From the grammar above 

we deduce that the operand of a prefix operator is the value of the 

(largest possible)  simple expression to its  right.    The operands  of an 

infix operator are the primary to its left and the (largest possible) 

simple expression to its  right.    We  further deduce that all operators 

(excepting those reordered by parentheses) are evaluated right-to-left. 

Justification of Right to Left.     We have provided a fairly extensive 

catalog of operators in the kernel language while leaving room for further 

extensions.    With so many operators  it would be    onfusing at best to 

assign hierarchies to them.    In search for a simple rule ordering the 

evaluations,  we are left  with either left-to-right or right-to-left 
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order ([l5] p.  8).    The normal (and only reasonable) interpretation of 

prefix operators demands a right-to-left ordering among themselves.     We 

choose the same order for infix operators as a concession to consistency. 

Semantic Description of List Valued Operands for Numeric Operators. 

If a numeric prefix operator finds a list as operand, we will follow 

Iverson ([l5] p.  13) in generalizing the operator to yield the list of 

values obtained by applying the pref.x operator to the members of the 

operand in order.    If a numeric infix operator finds a value of type list. 

and a value of type number as operands,  the result is the list obtained 

by applying the operator successively between the number and elements of 

the  list.    If the operator finds two lists as operands, the result is the 

list obtained by applying the operator between corresponding members of 

the lists.    The operation terminates on the shorter of the two lists. 

More formally,  let     s    and   t    be numbers and    S    and    T    be lists. 

Then if   0    is a numeric prefix operator,  the following are equivalent: 

(See 3-15). 

0 S for all    v    from   S    do    0v 

If    0    is a numeric infix operator then the following are enuivalent: 

s 0 T for all     v    from   T    do    s 0 V 

S0t for all    v    from   S    do    v 0 t 

S © I for all     i    from   1    to (length S) min (length T) 

do    S[i]   © T[i]    . 
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Semantic Description of Compression.    If    0   Is any Infix operator 

then the following are equivalent: 

0 / T for all v   from   T    do    u <- u 0 v 

The latter depends upon the Initial value of    u    for which we specify 

the following: 

•i 
ffti 

U,    ( ) ; 

fli    universe ; 

o,    fl ; 

base,    fi ; 

V ,    0 ; 

A,   i ; 

<f S ~* r* 2^ >> a11 undefined ; 

max ,    - oo  ; 

mln ,   oo  ; 

+ ,    0 

- i    0 

X ,    1 

mod ,    1  ; 

T ,   1 ; 

t ,   fl . 
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Justification of Compression. Compression, as well as the other 

generali7ations of the numeric operators in the paragraphs preceding, 

is a concise way of expressing comraon programming tasks. Furthermore, 

as pointed out by R. S. Barton, they provide a mnemonic notation for 

ignoring the order of execution so that, if parallelism is available, 

it can t-, utilized. For example, the inner product: 

+ / u x v 

of vectors of length   n   can be performed in   log^n + 2    operation times 

if   n   multipliers and   n   -r   2    adders are available. 

Syntax of Step Lists. 

<step list>      ::=   <simple expr> to <simple expr> I 

<simple expr> by <simple expr> I 

<simple expr> by <simple expr> to   <simple expr>    i 

<simple expr> to <slmple expr> by   <simple expr>    I 

<simple expr> 
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Examples of Step Lists. 

2 by minus 2 to minus 16 1 to n 

x-z    to    X[n] by 2 1 by 1 

Semantic Description of Step Lists.    A step list is a list of values 

of type number.    The value of the first expression above is called the 

initial value;  the value following the t_o is called the limiting value; 

the value following the b^ is called the step value.    The evaluation of 

the step list proceeds as follows: 

(1) All the expressions are evaluated in the order of their 

occurence in the program. 

(2) If the  step value is missing it is replaced by 1. 

(5)    If the limiting value is missing,  it is replaced by a value 

of type undefinedo 

(h)    If all the values thus computed are of type number,  the step 

list has for value all the numbers of the form (initial value) + (n) x 

(step value) lying between (inclusive) the initial and limiting values 

where    n    ranges over the integers from   0    to infinity.       If the limiting 

value is undefined the set is infinite,  otherwise,  it is undefined. 

Syntax of Assignments. 

<expression^>       ::-      <primary > «-<expression,> 

Examples of Assignments. 

a <-1, (if   x = y    then    z[l]    else    z[2])<-7, 

b «-1    to    n, c[2][x-z] <-   "ave."  , 

c ♦- { new x,       if (length b) = 3    then out   «- "5"  , 

out <- out      ®      cr,       x ♦- out 1 
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Semantic Description of Assignments. The primary on the left 

must have a value of type name. If it does, the value of the named 

variable is replaced by the value of the expression on the right. The 

value of the expression is also the value of the assignment. 

Justification of Assignments. The assignment allows the saving of 

temporary intermediate values. We also provide some flexibility in the 

designated variable on the left of the arrow (i.e., subscripted or 

unsubscripted identifiers and the parenthesized expressions). Both of 

(if a = b then c else d) «- 3* 

a «- @ c, a <- 3, 

are meaningful, and, if  a initially equals b, have the same effect. 

In the first case the principle of deferment demands delaying the fetch 

of the value of c until the end of the conditional expression at which 

point we discover that it is the name that we want. In the second, we 

delay until after return from the procedure. The latter case is exactly 

the Algol 60 call-by-narae construct. 

Syntax of Procedures. 

<expression^> 

<procedure> 

<primary2> 

:•-   <procedure> <expression,> 

:=    identifier <list>   i  identifier 

Examples of Procedures. 

increase      <-   Q^)    a <- a + 1 , 

increase      <-   Qj)     {new a,    a «- a + 1]  , 

increase{(F)  a)  , 

factorial    •-   © 

[new n, 

if    n - 0    then    1   else    n x factorial{n-l1 

Hi] 
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Semantic Description of Procedure Definition. A procedure 

definition is denoted by the mark MM followed by an expression called 

the procedure expression. The execution of a procedure definition pro- 

duces a value of type process.  If the procedure expression is not an 

explicit list (or an explicit list followed by subscripts) then it is 

called a parameterless procedure. 

Semantic Description of Parameterless Procedure Activation.    (3-ll) 

Whenever the name of a variable is computed, that variable is inspected 

to determine whether or not it contains a value of type process. If it 

does, the process is activated and the name of the variable is replaced 

with the resulting value. If that value is again of type name, the test 

is repeated, etc., until a value of some other type is returned. If, at 

the time of procedure activation, all of the variables valid at the place 

of procedure definition are defined, then the effect, and the resulting 

value are the same as would be obtained by executing the procedure ex- 

pression in the same environment at the place of definition. 

Semantic Description of a Procedure with Parameters.        (5-12) 

If the procedure expression is an explicit list, then it has a (perhaps 

null) list of identifiers local to the scope defined by the list. We 

call the variables allocated to these identifiers the first, second, 

third, etc., initializable variables of that procedure. 

Semantic Description of the Activation of a Procedure with 

Parameters. If the procedure activation is signified by an identifier 

followed by an explicit list, we call the list the actual parameter list. 

If the variable allocated to the identifier does not contain a value of 

type process, a value of type undefined is returned. Otherwise the 
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activation is identica] to that for the parameterless procedure except 

that the initial!zadle variables of the procedure are given the values of 

the corresponding actual parameters. 

tt 
Justification of Values of Type Process.   The ability to define 

a process that can be activated upon demand is present in some form in 

Algol 60 procedures, functions, switches and name parameters. We have 

in the kernel language a single process defining construct. The value 

of a process may be of any type and the value may depend upon where the 

process is activated.  (For instance, if a process is activated to the 

left of a replacement arrow it may return a value of type name rather 

than the actual value of the named variable.) Process recursion, the 

programming analogue of mathematical induction, is frequently the most 

natura] way of expressing an algorithm in the kernel language. 

The second and third examples above show the kernel language 

equivalent of Algol 60 name parameters. The local variable a is 

initialized to the procedure to compute a, a non local variable. 

Each cccurence of the identifier a in the list body causes the procedure 

t 
Note tnat since every access to the procedure identifier causes a 

procedure activation, there is no equivalent to tne Algol 60 procedure 

assignment statement. If the procedure has parameters it is necessarily 

list-valued anless/ as in the factorial example, a subscript is ^sed to 

select the desired value« 

Values of type process are similiar to the quotations of Euler. 

Tne difference is that Euler quotations behaved differently when passed 

ac parameters and when stored in local variables. We have eliminated 

the distinction. 
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to be activated.    The first activation yields the name of the non local 

a    since it is called to the left of the assignment arrow;  the second 

yields the value.    The result is that the non local    a    is increased by 1 

Implementation of Primaries of Type Process.    The necessity of 

accessing a word to compute its address is a consequence of the general- 

caH-by-name concept from Algol 60.    The provision for a special fast- 

access bit associated with the word is required for efficient implementation* 

Syntax of While-Controlled Iterations. 

<expression,> : 

<while clause> : 

<while> : 

=   <while clause> do <expression^> 

*   <while> <step list> 

=    while 

Examples of While-Controlled Iterations.• 

while    in[l] ± " "il] do (a «-a ® in[{l)], 

in «- in[2 to length in] 

) 

while xt2^a    do    x«-(x + a"J'x)-r2 

Semantic Description of While-Controlled Iterations.    A while- 

controlled iteration consists of a while clause and a controlled expression. 

The Burroughs B5500 has the special bit (called the flag bit) but it 

can be examined by the hardware only by accessing the word.    Thus even 

in the assignment I 

a «- a 

three memory references are required. 
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The while clause is evaluated;  if it has value true then the controlled 

expression is evaluated and we return to re-evaluate the while clause; 

if it has value false we terminate the iteration and the value of the 

while-controlled iteration is the list of values of the controlled ex- 

pression; if it has any other value, the iteration is terminated with a 

value of type undefined. 

Syntax of For-Controlled Iterations. 

<expressionJ>        ::=    <for clause> do <expression:>   | 

<for clause> <while clause> ^2 <expression,'> 

<for clause> ::=    for all identifier from <step list> 

<while clause>      ::=    <while> <step list> 

<while> ::=    while 

Examples of For-Controlled Iterations. 

for all    I    from    1 to n    do    S f- S + I t  3, 

+ /    for all    I    from    1 to    n    do    I t  5, 

for all    t    from table while looking do 

if   t - object then looking «- false else emit{0} 

Semantic Description of For-Controlled Iterations. (5-15) 

The for-controlled iteration provides for the execution of the controlled 

expression of a fixed number of times or a fixed number of times with 

the possibility of an early termination.    The step list of the for clause 

is evaluated once;   if it is not list or set valued,  the value of the 

for-controlled expression is of type undefined.    The scope of the iden- 

tifier of the for clause is the controlled expression.    The variable 

allocated to the identifier assumes in order each value from the iteration 

set and the controlled expression is executed.    If there is a while clause 

120 

—■ ZZ?*. 



and its value is not true before the execution of the controlled expres- 

sion, the iteration is terminated. 

The value of the for-controlled expression is the list of values 

assumed by the controlled expression. 

Syntax of Conditional Expressions. 

<expression> 

<expression > 

<expressionp> 

<expression,> 

<if clause> 

<truepart> 

= <expression > 

= <if clause> <expression > | <expressionp> 

= <expression2> 

- <if clause> <truepart> <expressionT> 

= if <expressiori> then 

= <expressionp> else 

Examples of Conditional Expressions. 

if x = y then if y ^ z then x «- y max z , 

if test{7] then (x <- 1, y *- 2] else x <- 3 , 

if if A C B then true else z j^ B then B ♦- {l 

Semantic Description of Conditional Expressions.  The first 

form of conditional expression is an if clause followed by an expression. 

The if clause is evaluated; if it has value true the expression is 

evaluated and the vaLue obtained is the value of the conditional expres- 

sion; otherwise the value of the conditional, expression is of type 

undefined. 

For the second form we evaluate the conditional expression; if it 

is true we evaluate the truepart expression; if it is false we evaluate 

the final expression; otherwise we create a value of type undefined. 
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Syntax of Programs. 

<program> ::= h <expression> H 

Semantic Description of a Program. The value of a program is the 

value of the expression. Note that by the nature of the kernel language 

(identification of Algol 60 blocks and values of type list) the value of 

a program will be a list structure of the intermediate results. 

Implementation of a Program. On account of the copious list 

structure generated by a program, we must have some form of remote storage 

and recall mechanism. The list structure of the program is well suited 

for segmentation and overlay. 
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In language design,  we attempt to carry the EULER develop- 
ment by Wirth and Weber to a more concise and powerful form.    We 
advocate languages that are minimal and involuted.    A minimal 
language combines into a single construct any two conceptually 
similar but notationally different constructs.    An involuted 
language avoids constructs that are,applicable only in local 
context.    In the resulting language we find such previously 
diverse constructs as lists,  parameter lists,  blocks,  compound 
statements, for lists, and arrays to be identical.    After com- 
bining the features of the reduced EULER with some ideas from 
Iverson and PL/I we find that our control over the flow of ex- 
ecution within a program is sufficiently complete such that we 
can discard the traditional label and go-to statement as 
irrelevant. 

■ 

As a final example of the kernel language, we present an 
extendable compiler written in the kernel language itself. 

Our conclusions are that the precedence grammar techniques 
are quite efficient and useful.    Further improvement could make 
them substantially superior to other methods of compiler gen- 
eration.    We believe that the computing community would be better 
served with a minimal common language which the user would 
routinely extend than by any large general purpose language. 
Finally we believe that the growing agreement on the constructs 
common to all programming task should have a much more significant 
effect upon machine design than is presently the case. 
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