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PRKFACE 

An intensive study of base maintenance management has been in pro¬ 

gress at The RAND Corporation for several years under the designation 

Laboratory Problem IV (LP-XV). One portion of this project has concerned 

the statistical analysis of maintenance surnageaient data and the resolu¬ 

tion of methodological problems associated with them. This Memorandum 

attempts to resolve some of the problems arising when siaintenance data 

have extremely nonnormal distributions. Vhile the specific motivation 

for this effort grew out of problems associated with the statistical 

analysis of siaintenance data, the study is far store general, since it 

applies to the use of analysis of variance techniques when the assump¬ 

tions necessary for the analysis are violated. 

This Memorandum will ipterest specialists in statistical data anal¬ 

ysis, specifically those concerned with analysis of variance techniques. 

At present, this audience may be small, but as more refined and computer¬ 

ized data systems become available, a greater effort in the direction 

of statistical analysis will be made, and many methodological problems 

can be expected to arise. As a result, this Memorandum will undoubtedly 

be only one of many aimed at resolving applied problems in statistical 

dat« analysis. 
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SUMMARY 

The purpose of this study was to investigate empirically the power 

of the F-test when the underlying distribution is nonnormal and the 

within cell treatment variances are not homogeneous. The nonnormal 

distributions used in this study were the exponential and the lognormal. 

These distributions were used because they allow one to determine the 

effects of extreme nonnormality on F-test power. The study was limited 

to the single classification analysis of variance in which the F-test 

is used to test for differences among the means of k cells. 

A computer was programmed to draw n numbers randomly for each of 

k cells. The type of distribution and its mean and variance were spe¬ 

cified for each cell, then the F-test was calculated and the process 

repeated 10,000 times. The computer listed the empirical distribution 

of F, MST (mean square between cells) and MSB (mean square within cells), 

and the correlation between MST and MSB. The value of F defined by the 

lower bound of the critical region (of size a) was determined for appro¬ 

priate values of n and k (denoted as F^). The proportion of F's larger 

than approximate the probability of rejecting Hjj (the null hypothesis 

of no difference between means) and accepting ^ (the alternate hypothesis). 

When Hjj is true, this proportion approximates cr, when is true, it 

approximates the power of the test for a specific value of ¢, where 

ids:; r'1™ ■" ^ -¾...... 
% W" 

T 
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The power of F (including Type I error when 0-0) was determined 

for. (1) nonnormal distributions and homogeneous error variances, 

(2) nonnormal distributions and heterogeneous error variances, and 

(3) normal distributions and heterogeneous error variances. In the 

case of heterogeneous error variances, the within cell error variance 

was equal to the mean squared and o2 - (1/k) In all cases, the 

j J 
means were equally spaced. Under Hg, the distributions had a mean of 

10 and a variance of 100. This led to skewness (Yj) and kurtosls (Y„) 

parameters equal to 2 and 6, respectively, for the exponential distri¬ 

bution, and 4 and 38 for the lognormal. Selected combinations of n 

and k were used with k - 2, 4 and 8, and n - 4, 8, 16 and 32. 

The results indicate that the F-test is conservative with respect 

to Type I error for the nonnormal distributions that were considered 

(i.e., the probability of falsely rejecting HQ is smaller than a). 

In the case of equal within cell variances, the power curves based 

on the nonnormal distributions show greater power than in the normal 

case over a large range of 0 (corresponding to a power range of about 

10 to 90 percent). For heterogeneous within cell variances, the 

differences in power are small until 0 becomes large (corresponding 

to a power of about 40 percent), at which point the nonnormal distri¬ 

butions show the greater power. In general, the F-test is conserva¬ 

tive with respect to both Type I error and power when based on non¬ 

normal distributions of the type investigated. Of the two nonnormal 

distributions, the lognormal is the more conservative. As either n 

or k increase, the power curves seem to converge to that based on the 

normal distribution. 
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An attempt is made to understand these results in terms of the 

distributions of the numerator (MST) and the denominator (MSE) of F, 

and in terms of the correlation between them. The correlation between 

MST and MSE was derived under Hq, and was found to depend on n, k and 

Y2- By using an approximation for the variance of F it was shown that 

the correlation (or Y2> reduces the variance of F based on nonnormal 

distributions to approximately the value it has when the underlying 

distribution is normal. The implications these results have for 

experimental design, data analysis, and future studies are discussed. 

’—^ v% ** V.\ -, ■ 
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1. INTRODUCTION 

lhe F-test Ln the analysis of variance provides a powerful test 

ft 
for significance of differences among means under certain restricting 

assumptions. TVro of these assumptions are Important for the present 

study; they are: (1) samples are drawn from normally distributed popu¬ 

lations; and (2) the populations have equal variance. The effect of 

using the F-test when these assumptions are violated has been a topic 

of Interest and research for some time. A review and summary of much 

of the earlier work Is presented In Scheff£ (1959, Chap. 10) and will 

not be discussed here. Ihe general conclusion, however, Is that F-test 

analysis In the case of nonnormallty has little effect on Inferences 

about means. Ihe same Is true concerning Inequality of error variances 

when the samples are of equal size. Ihe Insensitivity of a statistical 

procedure to the underlying assumptions Is referred to as robustness. 

Most studies of F-test robustness have been concerned only with the 

effects of departures from assumptions on the Type I error. The 

Type II error or power (1 - Type II error) has received relatively 

little attention. There are a few notable exceptions. 

it 
In the case of only two means, the t and F tests yield equivalent 

results, and numerically, t^ ■ F. 

The Type I error Is the error of rejecting the null hypothesis of 
no difference between means, when It Is "actually" true. When the prob¬ 
ability of the Type I error Is or, the test Is said to be of size or. 

The Tÿpe II error Is the error of not rejecting the null hypoth¬ 
esis (or of not accepting the alternative) when Lt Is false, l.e. , true 
differences exist between means and one concludes that no differences 
exist. 
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A recent study by Srivastava (1958) investigated the power of the 

t-test under deviations from normality. Both skewness (y^ and kurtosis 

P*ren* distributions were allowed; however, because of the 

distributions used (Edgeworth population) the range of y^ and y^ was 

limited to a rather narrow range. His results indicate that Yj has a 

larger effect on power than y2, but in general, the effect of either 

one is small. Horsnell (1953)* analytically determined the power of 

the F-test for four groups under the condition of unequal variance, 

unequal and equal sample size, and normal distributions. The results 

indicate that when the samples are of equal size (n«10) the effect on 

power is small. 

In general, the F-test appears to be robust for both Type I error 

and power. However, there are some serious limitations in these few 

studies of power. The degree of nonnormality is seriously limited, and 

in Horsnell's study the distributions were normal. The effect of sample 

size and the number of groups has not been adequately determined. The 

combined effect on power of nonnormality and unequal variance is un¬ 

known. This latter point is important. The sample mean and variance 

for any nonsymmetric distribution are correlated, and unequal variances 

within means are expected when the null hypothesis is false. 

The purpose of the present study is to determine the effects of 

extreme departures from underlying assumptions (two listed above) on 

the resultant power of the F-test. Extreme departure from the assump¬ 

tion of normality is indicated by high values of y^ and y2. Extreme 

departure from the assumption of equal within cell variance is indicated 

* 
Reviewed in Scheffé, 1959, pp. 356-358. 
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by a high ratio of largest to smallest within cell variance. The two 

nonnormal distributions used in this study are the exponential and 

lognormal. These distributions were used because they fit the require¬ 

ments discussed above--not to generate power curves specific to these 

distributions. The problem is to determine the degree of error that 

exists if the F-test is used to test for differences among sample raeans 

when the assumptions of normality and homogeneity of error are violated 

to the degree specified by these theoretical distributions. 

F-test power curves are generated in this study by actually sam¬ 

pling from the specified distributions (normal, exponential, lognormal). 

Comparisons in F-test power for the three distributions are made for 

the case of both equal and unequal variance. This investigation will 

deal only with the single classification (or one-way layout) analysis 

of variance with equal observations in each cell,in which the F-test 

is used to test for significant differences in the treatment groups. 
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-L—the single ciassification analysis of variance* 

The layout for the single classification analysis of variance is 

shown in Fig. 1. There are k treatment cells, n observations per cell, 

ij 

nj 

rJ 

9 k 

Ik 

"2k 

ik 

nk 

l J 
1 ““ The Single Classification Layout 

and the ith observation In the jth cell la denoted as x (1 « 1 s n, 

1 ^ J ^ k). The sample mean and sample variance for the j**1 cell are 

i 
n 

(2.1) EJ ‘ a£v,' 

w 

For a detailed discussion, see Winer (1962, Chap. 3). 
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n 

(2.2) s ÍTtZXj-V2 
i 

Under the assumptions of the F-test, the are observations on 

a normally distributed random variable with mean pi and variance a2. 

2 2 J J 
Moreover, " aj» (J ^ j') which states that the population distributions 

in each cell have the same variance (a2). Under these conditions, the 

F-test is appropriate in testing the null hypothesis, 
0 1 Tc* 

The details of the F-test are discussed next. 

Define MST as the mean square between treatments (T), and MSE as 

the mean square error (the unbiased estimate of a2). The F-test for the 
€ 

null hypothesis (Hq) of no difference among the population means is 

(2.3) MST 
MSE ’ 

and F has k-1 and k(n-l) degrees of freedom. That is, under Hq, 

MST has a chi-square distribution with k-1 degrees of freedom, MSE has 

a chi-square distribution with k(n-l) degrees of freedom, and the two 

chi-squares are independent. These mean squares are computed from the 

between and within cell variations in x.,, and are 

(2.4) MST ir]C<Vi)2 

and 

MSE 
1 

k(n-l) SlXrV2 
i j 

It is assumed here that all other assumptions for the F-test are 
also met. 
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where (x) (without any subscript) denotes the grand mean 

Under HQ, the statistic F has a distribution determined by k-1 

and k(n-l). Let Fa(0 < a < 1) define a point on the abscissa of the 

distribution such that the proportion 1-or of the cumulative distri¬ 

bution of F lies to the left of F^, and the proportion a lifts to the 

right and defines the values of F for which HQ is rejected. The 

probabilit/ that F will lie in this critical region (reject Hr) when 

Hq is true is or, and defines the size of the Type I error (the proba¬ 

bility that Hq is falsely rejected). When HQ is true, lOOcr percent 

of the resultant F-tests should be significant (leading to rejection 

of Hq) by chance. When Hq is not true, a greater percentage of F's 

are significant (in the critical region) depending upon the magnitude 

of the true difference between the means (under the alternate hypo¬ 

thesis Hj : ^ ••• ^ ^k*^ 

The power of the F-test is the probability of declaring F signi¬ 

ficant when H1 is true. However, when Hq is not true, the ratio 

MST/MSE is not distributed according to the ordinary F distribution 

but according to the distribution of the random variable F'. The 

distribution of F' (generally referred to as the noncentral F) depends 

upon the parameter ¢, a function of the difference between means,* 

where 

The noncentrality parameter is generally denoted 6, where 
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(2.6) 0 

■ n>‘ 

ka 

where 

j 

In this expressiony n is the number of observations in each cell and 

a€ 18 the within cel1 error variance estimated by MSE. When the 

within cell variances are assumed equal, a is identical in each cell. 
6 

When they are assumed unequal, 

1 2 
¡¿/r 

j 

The power of the F~test depends on the parameter 0; that is, the 

greater the difference between means, the greater the chance of de¬ 

claring F significant, thus correctly rejecting and accepting . 

(H1 is accepted whenever F falls in the critical region.) The proba¬ 

bility of falsely rejecting (Type II error) is the complement of 

power. Therefore, the size of the Type II error (0) is $ ■ 1- Power. 

Power curves for the F statistic as a function of 0 and a have been 

calculated by Pearson and Hartley (1951) and Fox (1956) for various 

values of k-1 and k(n-l). 

Specifying ß is Identical to specifying power, and both terms 
are used throughout this Memorandum. 
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When the underlying assumptions of the F-test are met, power may 

be read off from power curves. If the underlying distributions are 

nonnormal, or if the within cell variances are not equal, the F-test 

.(central or noncentral) is invalid. Also, when the underlying within 

cell populations are normally distributed, the expected value of the 

correlation between MST and MSE is zero, and in fact, MST and MSE are 

statistically independent. The correlation is not zero for many non- 

normal distributions. 

★ 
For example, see Fox (1956) or Pearson and Hartley (1951). 

A correlation between the sample mean and sample variance exista 
for any nonsymmetric distribution ¿ 0). As will be proven in this 
investigation, a correlation between MST and MSE exists whenever Y2 ^ 0» 
it does not depend on Yj* Thus MST and MSE based on some nonnormal 
distributions (whenever Y2 " °) ar« not correlated. 
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3. THE SAMPLING PROCEDURE 

A computer was programmed to sample n numbers from the distribution 

specified in each cell of the single classification layout. The type 

of parent distribution and its mean and variance for each of the k cells 

was specified. An F-test was computed for the k random samples, and 

this operation was replicated 10,000 times. The computer listed the 

distributions of F, MST, and MSB. Thus, when the null hypothesis was 

true (when the means of the parent distribution were equal and normality 

and homogeneity held), approximately 10,000a of the obtained F's ex¬ 

ceeded Fa, where Fa was the critical value of F tabulated* for specific 

values of n and k. The tabulated F had degrees of freedom given by 

k-1, k(n*l). For example, let k - 4, n - 16. Then, by referring to 

tables of the F distribution, one found that for 3 and 60 degrees of 

freedom, F Q5 - 2.76. Therefore, approximately 500 (10,000 x .05) of 

the obtained empirical F's should be larger than 2.76. Conversely, 

by counting the number of F's that actually exceeded 2.76 (or any value 

of Fg), the empirical Type I error (within the limits of sampling error) 

for any sampled distribution was obtained. The similarity between this 

empirical probability of Type I error and the true ot level indicated 

the robustness of F with respect to probability of Type I error. 

The same procedures were used to compute the power (1-ß). In this 

case, the parent distributions have unequal means (and/or variances), 

and 0 had some value depending upon the true population differences 

* 
See tables of the F distribution. 
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between means. The critical region was determined from the value of 

F under the null hypothesis, and the power of the test was approximated 

by counting the number of F's in the critical region. 

A computer program generated the random numbers. The numbers 

drawn were determined by an input control number. Several sets of 

random numbers (for several control numbers) were found that gave 

small sampling error. For all practical purposes, the numbers were 

drawn from continuous distributions, and errors due to discreteness 

are negligible. 

Cumulative distributions of F were obtained for the 10,000 repli¬ 

cations in intervals of 0.1 from 0 to 100. A linear interpolation 

was used to read F values to two decimal places. MST and MSE wer"' 

accumulated in intervals of 1 from 0 to 250, and in intervals of 10 

from 250 to 2750. The critical values of F^ were read off from the 

F interval scale of the cumulative distribution for a ■ .01, .05, 

and .10. 

The correlation between MST and MSE for the nonnonnal distribu¬ 

tions was calculated and printed out. Also printed out were the 

sample variance of MST and the sample variance of MSE (based on the 

sample size of 10,000). 

Under the null hypothesis, all distributions (nonnormal and 

normal) had a mean of 10 and a variance of 100. These distributions 

are shown in Fig. 2. Each distribution and the method for sampling 

from it will be discussed. 
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the Formal distribution 

Normally distributed random variables with mean i¿ and variance 

2 
CT were generated by the method of Box and Muller (1958). 

Fig. 2 — Theoretical Distributions 

THE EXPONENTIAL DISTRIBUTION 

The probability density function for an exponentially distri¬ 

buted random variable x is 

(3*1) f(x) « Xe x > 0 

■ 0, x £ 0. 

Taking expected values (or the moment generating function)* it 

is straightforward to obtain the mean and the higher moments about 

the mean. From the first four moments it follows that: 

*See Cramer (1951). 
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% 

(1) Mean 

(il) Variance 

(üi) Skewness 

(iv) Kur Cosis Y2 

2, 

3*6. 

It is seen that the coefficients of skewness and kurtosis are con¬ 

stant for all exponential distributions end that the mean is equal 

to the standard deviation (a) . 

In order to generate exponentially distributed random numbers, 

the computer was programed to sample from the rectangular distribu¬ 

tion of the random variable r in the 0 to 1 interval. Let 

(3.2) X - -n log(r), 

where log is the natural logarithm: then x is exponentially di.tri 

buted with mean p,. 

THE LOGNORMAL DISTRIBUTIOM 

Let y be H(p,o2)* and set x - ey, then x has the (two parameter) 

lognormal distribution 

This notation indicates that x 
mean ^ and variance o2. is normally distributed with 

•. J 'C*™ n«.* 

I 
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In this study it is necessary to find values of n and o2 for specific 

values of the a>e.n and variance of x (not y) , since it is the random 

variable x that is sampled for the k cells. Denote the mean and 

variance of x by M and V2 respectively. Aitchison and Brown (1957, 

p a 8) show tha t 

(3.4) M - 

<3-5> V2 .mV2-i). 

Solving Eqs. (3.4) and (3.5) for ^ and a2 yields 

For example, in this study, under Hq, M - 10 and V2 - 100. Thus 

from Eqs. (3.6) and (3.7), - 1.95601 and a2 - 0.69351. 

The skewness and kurtosis are (Aitchison and Brown, p. 8), 

(3.9) 

2 
where z 

8 6 á o 
VJ » * + 6z + 15* + 16* , 

2 

ea - 1. However, when V2 - M2, Eq. (3.7) reduces to 

a2 - log(2), 

so that 
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2 log(2) z - e Z'*-' -l-l. 

Thus, under the restriction that V2 - M2 (used in this study) 

V2 - 38. 

While Y1 and Y2 are not constant for all lognormal distributions, 

they are constant for all V2 - M2. 

To generate lognormally distributed numbers, the computer was 

programmed to sample the variable y which has N(^,a2) distribution. 

It then sets x - ey, and the x's are entered into the cells of the 

single classification layout. 

PARAMETER VALUES USED IN THIS STTmv 

The values of n and k used in the study are shown in Table 1. 

In the case of equal within cell variance (a2 - 100), power was 

investigated for samples of size n « 4, 8, 16 and 32, and for k « 2 

and 4. The case of eight treatment cells was investigated for a 

sample of size 4. In the case of unequal variances (a2 ■ ^2), three 

combinations of n and k were used; these were n-16,k-2;n-4, 

k * 4; and n ■ 16, k « 4. 

In one case the assumption of homogeneity of within cell error 

variances was true. Under this condition, when the true population 

cell means varied (H() not true), the within cell population variance 

remained constant for all cells. In order to hold the error var¬ 

iances constant for all cells when sampling from the exponential and 

lognormal distributions, the random numbers were always drawn from 
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popuUtion distributions with a mean of 10. To obtain unequal means 

a constant equal to - 10 (M^ - 10 for the lognormal) was added to 

each number. In effect, this shifts the distribution along the 

abscissa, holding its variance constant while varying the mean. 

Table 1 

PARAMETER VALUES USED IN THE STUDY 

n 

k 4 8 16 32 

• 

2 
* * * 

** 
* 

4 
* 

** 
* * 

** 
* 

8 * 

* 

** 

fNormal \ 
\ Exponential! <j 
(Lognormal I ^ 

{Normal 
Exponential! oT 
Lognormal ) ^ 

2 , - 100 

In the case of unequal within cell variance, the cell variance 

was proportional to the square of the mean. In this case, both 

assumptions of normality and homogeneity of error are violated for 

the two nonnormal distributions. For the normal one, only the 

assumption of homogeneity of error is violated. 
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4. RESULTS AND DISCUSSION 

The effect of nonnonnality when is true (Type I error) will 

be presented first. Then a presentation will follow describing how 

nonnonnality affects F-test power when the within cell variances 

are equal. The effects of nonnormality on F as a function of the 

correlation between the numerator and the denominator of F will be 

discussed and some empirical and analytical results presented. 

Finally, the F-test power in the case of unequal variances will be 

presented along with some empirical results concerning the correla¬ 

tion between MST and MSB. 

TYPE I ERROR 

The observed Type I error (or') for each of the three distribu¬ 

tions is shown in Table 2 for three values of a (where cr is the true 

Type I error for the F-test when the assumptions underlying the test 

are met). The difference between or' and a for the normal distribution 

is due to sampling error and the linear interpolation. The difference 

is small in all cases. It may be observed in Table 2 that the non¬ 

normal distributions lead to conservative Type I errors, i.e., the 

observed values are alwaya smaller than the theoretical cr level. Thus, 

ÍL a test is ^signed with or level protection against a Type I error 

under the assumption of a normal distribution, even more protection 

against a Type I error exists if the distribution is of the nonnormal 

type specified here. It may be noted that the difference between the 

normal and the nonnormal distributions decreases as the sample size 

increases. Further, the size of cr' - cr increases as the size of 
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Table 2 

OBSERVED TYPE I ERROR (<*') 

k Distribution 

i i 

4 la 1 16 1 32 

a * . 10 

2 

4 

8 

Normal 
Exponential 
Lognormal 

Normal 
Exponential 
Lognormal 

Normal 
Exponential 
Lognormal 

.101 

.087 

.074 

.099 

.083 

.076 

.100 

.086 

.079 

.098 

.098 

.085 

.096 

.086 

.076 

.100 

.099 

.094 

.096 

.099 

.085 

.098 

.099 

.096 

.102 

.092 

.092 

a « .05 

2 

4 

8 

Normal 
Exponential 
Lognormal 

Normal 
Exponential 
Lognormal 

Normal 
Exponential 
Lognormal 

.048 

.042 

.031 

.048 

.041 

.035 

.053 

.044 

.040 

.049 

.044 

.035 

.047 

.040 

.034 

.050 

.046 

.038 

.048 

.047 

.037 

.049 

.049 

.046 

.051 

.045 

.044 

or - .01 

2 

4 

8 

Normal 
Exponential 
Lognormal 

Normal 
Exponential 
Lognormal 

Normal 
Exponential 
Lognormal 

.009 

.007 

.005 

.010 

.010 

.008 

.011 

.009 

.009 

.009 

.007 

.005 

.009 

.007 

.006 

.009 

.007 

.004 

.011 

.009 

.006 

.010 
,009 
.007 

.010 

.007 

.008 
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(skewness) and (kurtosis) increases. All of these results 

agree with previous findings. 

POWER; THE CASE OF EQUAL WITHIN CELL VARIANCE 

The actual values of the means and the resultant values of 0 

are shown in Appendix A for the various combinations of n and k used 

in the study. Also shown is the observed power of the F-test for 

three values of a (.10, .05, .01) for each of the distributions. 

These data are shown in graphic form in Figs. 3, 4, and 5 for two 

levels of or (.05 and .01). 

The power curves for the F-test for k « 2 are shown in Fig. 3. 

The power curve when the underlying distribution is normal is shown 

by the solid line. Over most of the range of 0, the power curve 

in the normal case is lower by a substantial amount compared to 

the case of either the exponential (dashed-line) or the lognormal 

(long-dashed-line) distributions. Further, the power curve based on 

the lognormal distribution is higher than it is when based on either 

the normal or the exponential. As the sample size increases, the 

curves based on the nonnormal distributions approach the one based 

on the normal distribution. It may be observed that small values of 

n result in larger differences in power. In general, the nonnormal 

curves at 0 ® 0 (<* level) are below the normal curve; they rise above 

it very quickly (before 0 » %) ani remain above until 0 is quite 

large. As a gets smaller, the point at which the normally based 

curves rise above the nonnormal ones occurs at a smaller value of 0. 

It is inferred that for extremely small values of or, the F-test would 

be conservative for only a limited range of 0 or for only small values 
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Fig. 3 — Power Curves for k ■ 2 
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Fig. 5 — Power Curves for k-2, 4, 8 at n-4 



-22- 

of absolute power. Practically speaking, this is of little 

consequence. Experiments are rarely designed for a < .01, and when 

they are, appreciable power can be obtained only by the use of very 

large samples, in which case the test would be highly robust. 

Figure 4 shows results for k « 4. Compared with k » 2, these 

curves are less disparate, and power for the nonnormal distributions 

approaches the normal case more rapidly. 

The effect of the size of k is shown clearly in Fig. 5. In this 

figure, the power curves for three values of k (2,4,8) at n = 4 are 

shown. Ás with the Type I error, increasing either n or k results 

in F-tests that more nearly approximate the normal case. As also 

with the Type I error, the tests are more conservative with respect 

to power for those distributions with the highest Y1 and Y2 parameters. 

These results are based on equal differences between successive 

means (see values of ^ in Appendix A). As long as the within cell 

variances are equal, however, the relative differences between suc¬ 

cessive means is of no consequence. This is apparent from Eq. (2.6). 

Since Che variances are equal, a* is Independent of the location of 

, and 0 is proportional to £(Hj -n)2. 

To summarize, not only is the F-test robust, but for small 

samples it is generally conservative with respect to both Type I error 

and power. As the sample size (or number of samples) increases, the 

test is less conservative tor nonnormal distributions, and the power 

curves approach that of the F-test based on normality. As n increases, 

the F-test becomes truly robust (distributed as F regardless of the 

underlying distribution). These results are similar to those reported 
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by Srivastava (1958) for positive values of Y1 and X,, although the 

difference in power between the normal and nonnormal distributions 

is greater in the present study than it was in his. This is due to 

the higher values of Y1 and Y2 that were possible in this study. 

Srivastava's results indicated that both Yj and Y2 contribute to the 

effect of nonnormality on F. Further, he found that positive values 

of Yx and Y2 led to conservative F-tests, while negative values lead 

to an opposite effect. The characteristics of the nonnormal distri¬ 

butions used in the present study did not allow manipulation of the 

sign of Y1 and Y2• 

DISTRIBUTION OF MST AND MSE 

The effect of the underlying distribution on the F-test origi¬ 

nates from the combined influence of the numerator (MST) and denom¬ 

inator (MSE). When the underlying distribution is normal, MST and 

MSE are distributed as chi-square and they are independent. If the 

distributions are nonnormal, MST and MSE are not distributed as chi- 

square, nor are they independent. Thus, the effect of nonnormality 

on F may be due to deviations in the distributions of MST and MSE 

from that of chi-square and to the correlation between MST and MSE. 

The cumulative empirical distributions of MST and MSE under Hq 

are shown in Fig. 6 for k « 4 and n « 4 and 32. These distributions 

are shown in terms of the percentile points of the cumulative distri¬ 

bution of MST and MSE when the underlying distrioution is normal. 

In the normal case 

a 
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2 
where s is any variance with v degrees of freedom. From tables of 

2 2 
X one can readily determine the value of s below which is lOO(l-cr) 

percent of the cumulative distribution of s2 (and X2). Setting 
2 

s ■ MST (with k-1 degrees of freedom), and rearranging terms, the 

lOO(l-or) percentile points of MST are, 

(4.2) 

For example, for k « 4 and a2 ■ 1Ó0, MST - 33.333X? 
1-or T-or,v* 

Below this value lies 1()0(l-cr) percent of the distribution of MSE 

when the assumption of normality is true. From tables of chi-square, 
2 

^0.50,3 " 2.366, so that MST ■ 78.86, and 50 percent of the MST's 

for a normally distributed variable have an expected value of less 

than, or equal to 78.86. It may be observed in Fig. 6 that 63.69 

percent of the MST's for the lognormal distribution lie below 78.86 

(and 50 percent of MST's for the normal). Similar calculations were 

used for the MSE curves. 

Inspection of Fig. 6 indicates that the effect of nonnormality 

on MST is slight compared to its effect on MSE; and further, as n 

increases, the effect of MST decreases, while it gets worse for MSE. 

As n increases, a greater proportion of MSB's for the nonnormal 

distributions lie in the tails of the region defined by the distri¬ 

bution of the MSE's for the normal distribution. This is easier to 

observe in Fig. 7, which shows the actual frequency distributions 

of MSE for n ■ 4, 8, 16, and 32. These results are expected from 

theoretical considerations. 
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Normal 
Exponential 
Lognormal 

Fig. 7 — Frequency Distribution of MSE 
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Thc calculation of MST (see Eq. 2.4) depends only upon averages. 

Thus, by the Central Limit Theorem, as n increases, MST becomes less 

sensitive to nonnormality. Further, as n or k increases, the effect of 

nonnormality on the variance of MST is rapidly reduced. From Appendix C, 

the variance of MST is 

(A.3) Var(MST) 

where Var « variance. The actual rate at which Var(MST) converges to 

its normal theory value for the distributions used in this study is 

shown in Table 3 as a function of n and k. 

For MSE the situation is very different. Atiquallah (1962)** 

shows that 

(4.4) Var(MSE) 
k(n-l) 

When Y2 - 0, 

(4.5) Var(MSE) 2sL 
k(n-l) » 

which is the case for the normal distribution. If Y2 ^ °» however, 

it is apparent that the variance of MSE in the nonnormal case is 

larger than in the normal. Further, as n Increases, the variance 

* 
The Central Limit Theorem states that if the variance of x 

exists, x is normally distributed for large n (n-*«) regardless of 
the distribution of x. 

★★ 
This may also be derived from a lemma in Scheffé (1959, p. 255) 

or from the methods discussed in Appendix C of this paper. Atiquallah's 
approach is somewhat different and further shows that sj is a minimum 
unbiased estimate of for any quadratically balanced design. The 
conditions of quadratic design are met in the present study. 
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Table 3 

VAR(MST) FOR NONNORMAL RELATIVE TO NORMAL DISTRIBUTIONS 

k 

n 2 4 8 16 00 

Y2 - 6 

2 
4 
8 

16 
32 
64 

128 
256 

ce 

1.7500 
1.3750 
1.1875 
1.0938 
1.0469 
1.0234 
1.0117 
1.0059 
1.0000 

2.1250 
1.5625 
1.2813 
1.1406 
1.0703 
1.0352 
1.0176 
1.0088 
1.0000 

2.3125 
1.6563 
1.3281 
1.1641 
1.0820 
1.0410 
1.0205 
1.0103 
1.0000 

2.4063 
1.7031 
1.3516 
1.1758 
1.0879 
1.0439 
1.0220 
1.0110 
1.0000 

2.5000 
1.7500 
1.3750 
1.1875 
1.0938 
1.0469 
1.0234 
1.0117 
1.0000 

VJ - 38 

2 
4 
8 

16 
32 
64 

128 
256 

00 

5.7500 
3.3750 
2.1875 
1.5938 
1.2969 
1.1484 
1.0742 
1.0371 
1.0000 

8.1250 
4.5625 
2.7813 
1.8906 
1.4453 
1.2227 
1.1113 
1.0557 
1.0000 

9.3125 
5.1563 
3.0781 
2.0391 
1.5995 
1.2598 
1.1299 
1.0649 
1.0000 

9.9063 
5.4531 
3.2266 
2.1133 
1.5566 
1.2783 
1.1392 
1.0696 
1.0000 

10.5000 
5.7500 
3.3750 
2.1875 
1.5938 
1.2969 
1.1484 
1.0742 
1.0000 

of MSE for nonnormal distributions increases relative to MSE for 

normal distributions. This is apparent from the ratio of Eq. (4.4) 

to Eq. (4.5) which is 

(*-6> 1 

As n gets large: the quantity (n-l)/n approaches 1, the effect of 

* 
Y2 is maximum, and the variance of MSE for nonnormal distributions 

ic 
See Scheffé (1959, p. 336) for a nearly identical development. 
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rela Cive to the normal is maximum. This limit is approached rapidly 

For n - 2, the expression is 1 while at n « 8, it is 

1 + (7/16)Y2, which is already quite close to its limit (i.e., the 

relative distribution of normally and nonnormally based MSB's is 

fixed at small values of n). 

Of course, as n becomes large, the absolute value of Var(MSE) 

epproaches zero and the denominator of F approaches a constant (o*). 

Thus, for large n, the distrlbu.lon of MSE has no effect on the 

distribution of F. Further, MST Is distributed as chi-square (as 

under normal theory) by the Central Limit Theorem, so that In the 

limit, the distribution of F Is unaffected by the underlying distri¬ 

bution of the random variable. Bradley (1964) has discussed this 

ultimate (n—) robustness of F In detail. Further, Bradley shows 

that F Is ultimately robust for either heterogeneous within cell 

variances or unequal sample size, but not for both. 

The Important point Is the speed with which F, based on a non¬ 

normal distribution, approaches Its normal theory value as n increases. 

The results of this study Indicate the convergence Is very rapid and 

only small errors In either a or B would be expected at a aample size 

of 32. This convergence In the distribution of nonnormally based F 

to the distribution of F In the normal case 1. shown directly in 

Figs. 8 and 9. In these figures the cumulative distributions of F 

are shown for two values of n at 0 - 0 and # . 1.68 for k - 4. For 

« - 0 (H0 true) there Is only a slight difference between the normally 

and nonnormally based F distributions even at n - 4. As 0 Increases, 

the three distributions appear more unequal. However, these differences 
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n * 32 are large only in the region of the distributions corres¬ 

ponding to very small a values. The points on the distributions for 

which or ■ .10 and .01 are shown in the figures. 

From Figs. 8 and 9 it is apparent that the distribution of F is 

much less dependent on the underlying distribution than is the dis¬ 

tribution of MSE; that is, F converges to its normal theory distri¬ 

butions for small n, while MSE does not converge for any n. This 

rapid convergence of F cannot be explained in terms of the distri¬ 

bution of MSE, and certainly, the conservative feature of F for 

small samples cannot be attributed to any feature of the distribution 

of MSE. For finite n there are too many nonnormally based MSE's 

smaller than expected under normal theory and also too many that are 

larger. Inspection of Figs. 6 and 7 shows that relatively more 

small MSB's occur than larger ones for small n. This would lead to 

rejection of HQ when it is true with a probability higher than a 

(which does not occur) if MST and MSE are uncorrelated. In order to 

explain the insensitivity of F to the underlying distribution, it is 

obviously necessary to consider the correlation between MST and MSE. 

It will be proven below that a correlation does exist between 

MST and MSE for any distribution for which V2 exists. Because of 

this correlation, small MSB's (relative to expected value) have an 

increased probability of occurring with small MST's. This leads 

directly to a conservative a level. Similar reasoning explains the 

conservative feature of F for Type II error. A correlation between 

MST and MSE would be expected to disappear for large n, and for finite 

n to at least partially cincel out the effect of nonnormality on F. 



-33- 

CORRÊLATION BETWEEN MST AND MSE 

That a substantial correlation does exist between MST and MSE 

is shown in Table 4. The values at 0 = 0 are theoretical ones; the 

method to be discussed below. For 0 ^ 0, the correlations are empir¬ 

ical ones determined by the computer sampling. It may be noted that 

the correlation decreases as either n or 0 increases, or as k decreases. 

Table 4 

CORRELATION COEFFICIENT BETWEEN MST AND MSE 
(Equal Variances) 

k n 

II Exponential 1 Lognorma1 
0 1 0 

0 .5 1.0 1.5 2.0 I 0 .5 1.0 1.5 2.0 

2 

4 
8 

16 
32 

.44 

.34 

.25 

.18 
.19 

.21 

.13 .10 

.U 

.08 

.07 

I .81 
.72 
.59 
.47 

.37 

.49 

.19 .10 

.29 

.25 

.05 

0 0 
0 .56 1.12 1.68 2.24 0 .56 1.12 1.68 2.24 

4 

4 
8 

16 
32 

.50 

.40 

.30 

.22 

.40 .28 
.23 
.19 

.20 .15 
.13 
.07 
.05 

.85 

.78 

.67 

.54 

.76 .60 
.52 
.32 

.49 .38 
.33 
.20 
.19 

8 
4 

8 

.52 

.42 
.87 
.80 

The correlation between MST and MSE under Hq will be derived for 

the case of equal within cell variance and equal sample size. Nothing 

is assumed about the shape of the distribution except that it is the 

same in all cells. 

The correlation is defined as 
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(4.7) Cov^S|s¡^SE2=^^ 
yVar(MST) Var(MSE) 

From Che results of Appendix C, 

(4.8) Cov(MST ,MSE) 
v: 
nk 

Since Var(MST) and Var(MSE) are known from Eqs. (4.3) and (4.4), 

the correlation after algebraic simplification is 

(4.9) 7 (k-D(n-l) + (k-l)(n-l) 
It is apparent from inspection of Eq. (4.9) that as n -» », 

p -* 0 for any value of k. For finite n and k -• », 

(4.10) 2^7 
▼ (n-l) + 

A 

^aLY +v2 
(n-1) T2 + y2 

The values of p as a function of n and k are shown in Table 5 

for the exponential and lognormal distributions. It is apparent that 

k has a small effect on p relative to the effect of n. The correla¬ 

tion between the numerator and denominator of F is largely determined 

by sample size and the kurtosis (but not the skewness) of the under¬ 

lying distribution. 

It is now possible to show how ^ leads to robust F-tests under 

Hq and it is clear that the same phenomenon operates under H^. 

Hansen, Hurwitz and Madow (1953, Chap. 4, Sec. 18) have developed 

an approximation for the variance of the ratio of two random variables. 
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Applying this approximation to the F ratio, under H 

(MST i 1 
MS?) ~T CVar(MST) + Var(MSE) - 2 Cov(MST.MSE)]. 

The validity of the approximation is a function of sample site. 

Because of the algebraic form of MST and MSE it is difficult to 

determine the exact error in the approximation as a function of n 

and k. For the moment the approximation will be accepted and the 

variance of F under H0 for any underlying distribution will be 

explored. 

Table 5 

VALUES OF p 

Substituting Eqs. (4.3), (4.4), and (4.8) in E,. (4.11) and 

using parentheses to separate Var(MST) and Var(MSE), the variance 

of F under HQ is, 

V5--»Ä«!' 
of little value!1 ’ lf he *•* good under , it la 
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Inspection of Eq. (4.12) reveals that the terms containing V2 add to 

zero. The effect of V2 (or correlation) reduces the variance of F 

based on nonnormal distributions to approximately the variance it 

would have when the assumption of normality is true. It may be 

observed in Fig. 8 that the variance of F under Hq is not much 

affected by the shape of the underlying distribution. Thus, the 

approximation given in Eq. (4.11) is good at even small sample sizes. 

When Hq is not true the situation is more complex. As 0 increases, 

the correlation between MST and MSE decreases, while the cumulative dis¬ 

tributions of F are less similar (Fig. 9), especially for n small. How¬ 

ever, as 0 increases the variance of MST also increases, thus contrib¬ 

uting more to the total variance of F. For small n the affects of non- 

normality are therefore severe. A precise explanation of the highly 

conservative feature of the F-test would require an expression for the 

variance of MST and covariance of MST, MSE under . 

POWER: THE CASE OF UNEQUAL WITHIN CELL VARIANCE 

The foregoing results were obtained for the case of equal within 

cell variance and unequal means. In this section, the within cell 

variance is a function of the mean. Under Hq, the within cell var¬ 

iances (and means) are equal, and the previous results apply. For 

the nonnormal distributions used in this study, any other condition 

raises difficulties. For the exponential distribution, there is only 

one parameter (X), and this determines both the mean and variance. 
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It would be possible to construct lognormel distributions with unequal 

variances under H0, but then Yj and Y2 would vary from cell to cell. 

It appears desirable to hold these constant. Under Hj. the variances 

are equal to the mean squared. 

Under the restriction of equal sample size. MSE is the average 

of the within cell sample variance (sj). MSE is an unbiased estimate 

of o], the average of the within cell population variances (i.e 
^12 2 ^ • 

ae " ÏT (<71 + •” + °k>- The calculation of ÿ (see Eq. 2.6) is based 

on a . 
e 

It is possible to obtain any (finite) ratio between the mean 

and variance under H0 when the distribution is normal. I„ this case 

It is possible to determine the effect, of unequal variance alone on 

the power of the F-tast. Previous studies (Horsnell, 1953) indicate 

that the affect of unequal variance i. small if the sample, are of 

equal ai«.. Und.r th. condition, of equally ,p.ced means (used 

throughout this study). the power curve, for equel and unequal 

variance for a normally diatributed variable were nearly identical. 

The slight difference, that existed (generally i„ the third decimal 

place) were attributed to Sampling error. The normal power curves 

reported in this section are valid fr»r Knt-v» t j on are valid for both equal and unequal variance. 

The actual values of ^ , ¢, 0^ (<2 . ls ^ glven ^ ^ 

asily obtained) and the resultant power are shorn in Appendix B. The 

power curves for the investigated values of n end k (k - 2. n - 4. 

* - 4, n - 4. 16) are shown in Fig. 10 for two value, of * (.05, .01). 

The inset table in Fig. 10 show, the ratio of the largest to thé 

smallest of the within cell variance, a. . function of ¢. The ratio 
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Fig. 10 Power Curvet for the Cate of Unequtl Within-Cell Variance 
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of the means is also shown. For example, for k * 2, n = 16, when 

* 10 and ■ 30, the ratio of the means is 3.0, and the ratio of 

the variances is 9.0 (since a* = 100, ¿ * 900). The value of a2 in 
L ¿ e 

this example is 500.00. For k * 4, n - 4, the error variance (ct2) 
e 

increases very rapidly and large values of 0 require large differences 

between the means. This simply shows the low power of a test based 

on small samples and large error variance. It is observed in Fig. 10 

that the normal distribution leads to slightly more powerful tests 

for small values of 0, but as 0 increases, the power for the normal 

case falls below that of either the exponential or lognormal distri¬ 

butions. As in the case of equal variance, the lognormal distribution 

leads to the more powerful tests. Compared to the case of equal within 

cell variance, these curves show less power for small 0 and greater 

power for large ¢. 

The empirical correlations between MST and MSE are shown in 

Table 6. Unlike the case of equal within cell variance, the correla¬ 

tions tend to increase as 0 increases. The size of the correlation 

coefficient is closely associated with the degree to which F is 

conservative. As the correlation increases, the difference in power 

for the nonnormal relative to normal distribution increases. 

In summary, positive (and equal within cell) kurtosis leads to 

generally conservative tests when the within cell variances are 

unequal. This conservative feature of the test is due to the cor¬ 

relation between the numerator and the denominator of F. Obviously, 

if the within cell variances are unequal and uncorrelated with the 

means, then these conclusions no longer apply. 
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Table 6 

CORRELATION COEFFICIENTS BETWEEN MST AND MSE 
(Uneq^a1 Variances) 

I Exponential | Lognormal 

k-2, n-16 

0 

P 

0 
.25 

.44 

.35 
.79 
.45 

1.58 
.63 

1.94 I 
.68 

0 
.59 

.44 

.58 
.79 
.60 

1.58 
.69 

1.94 
.72 

k-4, n-4 

a ° .50 
.40 
.60 

.61 

.60 
.82 
.65 

1.01 
.68 

0 
.85 

.40 

.83 
.61 
.84 

.82 

.82 
1.01 
.82 

k*4, n«16 

0 
D 

0 
.30 

.47 

.36 
1.04 
.50 

1.45 
.54 

1.75 
.63 1 |.67 

.47 

.61 
1.04 
.64 

1.45 
.68 

1.75 
.70 

I WPWl. 
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5. CONCLUDING COMMENTS 

Under the conditions of this study. It Is apparent that neither 

the Type I or II error of the F-test Is much affected by nonnormalIty 

and heterogeneous errors as long as the sample sises are equal. For 

even moderate sample size, the test is robust. This conclusion, 

however, does not specify the degree of robustness that can be expec¬ 

ted under any given set of conditions, and this is the problem the 

researcher must deal with. There have been several attempts to define 

robustness quantitatively. 

Box and Andersen (1955) developed an approximation for correcting 

the degrees of freedom in the F-test that indicates the amount of 

robustness to Type I error. The approximation is primarily a function 

of Y2; however, it applies only to H0, and is based on equal skewness 

and kurtosis in each cell. One is still faced with the problem of 

estimating the kurtosis. 

In a more recent study, Box and Tiao (1962) demonstrated the use 

of Bayesian methods for including estimates of Y2 in the calculation 

of F-tests. Under certain assumptions, the posterior distribution 

of ii (the population mean under HQ) is determined as a function of 

variable kurtosis. The function ^(Y2) which best estimates the data 

is then determined from the sample. This procedure does not require 

the usual X goodness of fit test nor direct estimation of Y,. While 

this approach seems promising, it has not been developed to the point 

of practical usage. 

Bradley (1963, 1964) has extensively studied the factors affect¬ 

ing robustness of F to Type I error. The number of factors and 
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inceracclons between factors that affect robustness leads one to 

agree with the author that any statement about a test being "robust" 

is not generally of much practical value. If one is attempting to 

specify the degree to which a test is robust under any set of condi- 

tions, the task appears enormous. 

From the above comments, it is apparent that an answer to the 

question, "How robust is robust?" is not yet available. However, 

there are a number of findings from studies of F-test robustness 

that may be used as experimental design criteria. When taken in 

conjunction with certain features of the data, these findings insure 

errors no larger than that specified by a and 0 for testing differ¬ 

ences between means. The design criteria are: equal within cell 

sample sire, a levels that are not extremely small* and within cell 

sample sire as large as possible, especially for negative kurtosis. 

Inspection of the distribution of even small samples should allow 

one to determine whether or not the kurtosis is positive or negative, 

particularly since values near rero are of little consequence regard¬ 

less of sign. Under these conditions an F-test analysis of differ- 

enees between means is valid. 

Although the overall F-test may be said to be robust, departures 

from the assumptions of normality and homogeneous errors introduce a 

number of problems for data analysis. In the case of more than two 

samples (k > 2), and if the sample variances are unequal and correlated 

*It was noted in this study that small values of o lead to less 
"robustness." Bradley found serious nonrobust effects for a < .01. 
tTu doe! not seem to be a serious criticism. The requirements for 

such small er levels are rare, and generally when such 
required, an analysis of variance design is not the most desirable. 
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with the mean, differences between the smaller means may be concealed 

by the large contribution to total error from the larger means. This 

effect could be severe when multiple comparisons between means are 

based on the total error. I„ this case, the researcher might do well 

to sacrifice the large degrees of freedom of the pooled MSE error in 

favor of the actual within cell error of the two cells used in the 

comparison. Otherwise, the multiple comparison method (following a 

Significant overall F) will lead to conservative effects for the 

smaller means and an opposite bias for the larger means. 

Attempts to follow a significant F-test with a trend analysis 

(such as orthogonal polynomials)* is in serious question as are any 

F-tests based on regression models. A study by Box and Watson (1962), 

however, indicates that for certain design criteria, F-tests for 

regression are robust. One mignt conclude that a linear trend test 

under the same criteria would also be robust. 

If the sample means and variances are highly correlated, or if 

there is other information about the true distribution, a data trans¬ 

formation may be used. In many applied situations, however, the true 

distribution is unknown, and estimating the distribution from small 

samples is hasardons at best. Even when a transformation is justified, 

it may lead to undesirable results, and often there is not an appre¬ 

ciable effect on the outcome of Che F-test. For a more complete 

discussion of the advantages and disadvantages of transformations, 

the reader is referred to Schafft (1959, pp. 364-368) and Xempthorne 

(1952, pp. 153-158). Suffice it to say that transformations are not 

generally an answer to the problems addressed in this Memorandum. 

* 
See Winer, (1962). 
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One alternative open to the researcher is to use a nonparatnetric 

test which does not assume anything about the underlying distribution. 

However, the F-tesc is very insensitive to distribution alone, and 

when the variances are heterogeneous, many nonparametric tests are 

theoretically as invalid as are the parametric ones. Moreover, a 

study by Pratt (1964) indicates that the t-test is more insensitive 

to unequal within cell variances ("dispersion" for the nonparametric 

case) than are the more common nonparametric equivalents. 

It is obvious from these concluding comments that there is still 

much to be learned about "robustness." Further, given robustness, a 

number of problems remain for data analysis. However, the findings 

of this study, and others, point out a wide class of conditions under 

which the F-test is valid even though the underlying assumptions are 

violated. 
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Appendix A 

DISTRIBUTION PARAMETERS AND POWER IN THE CASE OF EQUAL WITHIN CELL VARIANCE 

Powr_ 

Mor—1 I E»pon«ntUi | Lognoma 1 

.10 |.os j.oi I.io j.05 J.oi I. io 1.05 J.Q~ 

k • 2 

Parameters 

*1 
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Appendix C 

DERIVATION OF VARIANCE MST 

AND COVARIANCE MST. MSE 

In this Appendix, the variance of MST and the covariance of MST, 

MSE are derived for any distribution for which the first two moments 

exist and are finite. MST and MSE are, respectiveiy, the numerator 

and denominator of the F-test. The foliowing derivation is for a 

single classification analysis of variance based on k cells and n 

observations per cell. 

The derivations are based on the assumption that n « 0. This 

does not result in any loss of generality, and simply represents a 

shift in the distribution along the x axis. The rth moment about 

the mean is defined as nr « eRx-^)^. Under the assumption * . 0, 

M.r » E(xr). 

VARIANCE MST 

The variance of MST (s£) is defined as, 

(1) - E[<st)2] - ^(«T5]2- 

Under H0, E(sE) - o2 and 

(2) Var(s2) - e[(s2)2] - o'- 

* 

Cramer 
For a general theory of the method 
, (1951, Chapters 15 and 27). 

used in this Appendix, see 
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k 

Define G » 

j 

Each of the terms inside the brackets will be evaluated separately. 

TERM 1 (EQUATION 3) 

WD (j-X) 

This follows from the mutual independence of the cell means whenever 

] 4 i. The final two terms in Eq. (4) will,for the moment, simply 

be identified as Y and Z. The parenthetic expressions under the summa¬ 

tion sign refer to the subscript values of the original equation. 

TERM 2 (EQUATION 3) 

(5) -(4¾) ■ ï t±±i‘M) 
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i ±i>6Hí) * 
j p 

(j-wp) 
j 

(j-x-p) 

since whenever J ^ l, E(x) o - ,nd this is tero. 

TERM 3 (EQUATION 

(6) 
k k k k 

E[xjxxXpXq 

J + k2 Ç6^) * ÿ(3Y + 2) 
(j-j^p-q ,etc.) (j-l-p-q) 

s defined 
This follows from E(x) - ^ . 0, and that the three condition 

byj-i^p-qfj.p^i.qandj,q^i-pall iead to 

Equation 4 may now be written 

(7) Y(k -2k+ 3) + Z(k-l) '] 
The terms Y and Z will now be evaluated. From the basic defini¬ 

tion of moments 

(8) E(x2) - ^ - a2. 

(9) 2 
E(x ) . -2. - £- 

n n 

Therefore, 



-so¬ 

cio) 

di) Z * 

it H/. + 3(n-l)a '] 
where ^ is the fourth moment about the mean. The result follows 

from a straightforward expansion under the summation with E(x) ■ 0 
2 4 / 

and ■ a . See Cramer (1951, p. 348). 

By definition ^ - (Y2 + 3n)a4, and 

(12) Z * (Y2+3n)* 

Substituting these values of Y and Z in Eq. (10), and simplifying 

(13) kn(k-l) nk +nk+Y- 

Finally, from Eq. (2) 

(14) V«(4)-k(ïïà)-[1+ 
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COVARIANCE (MST .MSE^ 

The covariance of MSI, USE (Sj.a^) la defined as 

The terms Inside the brackets of Eq. (16) will be evaluated 

separately. 

TERM 1 (EQUATION 16Ï 

(17) 

k k 
K2\^2 

4 cj2-?j 
j j j ^ j 

(J-X) 

k k 

+y^y^E(*j)E(s^) * u+V, 
j l 
Ml) 

where U and V are used for the moment to identify the two tenns on 

the right side of Eq. (17). 
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TERM 2 (EQUATION 16) 

(18) 

k 

J 
(j-JÍ-P) 

+ V) 

j p 
(j-je^P) 

since all terms of j i* i involve E(x) ■ 0. 

Substituting these values in Eq. (16), 

(19) £(8^)--^(11+9). 
k 

In order to evaluate U and V, write 

The first term inside the brackets may be written 
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(21) 
ij 

k n n n 

j i u V 
■E(ltijxujxvj> 

n n 

■ ff èE(xíj>+zËE(xij>E<%J) 
J Li i V 
(i«U-v) (i-U1<v) 

K 

“ + n(n'1)<T4] 

■ + i"'1)®4]- 

This result follows from application of E(x^) ■ ^ and E(x^) ■ o'. 

The second term inside the brackets of Eq. (20) is nZ (see Eq. 11) 

Therefore, 

(22) U “ + ("'D»4] * ¡t[“a + 3(0-1)04]| 

+ <y4(n-3)l ; 
n L J 

k k 

(23) 

J i 
(J^i) 

E(Sj)E(.^) 

k k o 

(J^i) 

kik-1) 4 

Substituting these values of U and V in Eq. (24) and simplifying, 

2 2 i[i*4 + <*4(n-3) .1 E(v.) -tr—s—+(k-i)o j. (24) 
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Recall in g that ^ 

(25) 

(Y2 + 3)a\ and substituting Eq. (24) into (15), 

Cov(s£ 
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