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PREFACE 

An attempted asymptotic  series solution in terms of inverse powers 

of the axial distance for  the incompressible laminar wake far behind 

a very  slender cylinder breaks down at an early stage.     In this Memo- 

randum,   the PI1C method is applied to  the problem and yields a uniform- 

ly valid asymptotic solution.     The method of approach used should be 

of interest to researchers in fluid mechanics concerned with the solu- 

tion of  singular perturbation problems, while the results  should be 

of interest  to those involved in wake studies. 
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SUMMARY 

The Oseen solution for the wake far behind a very slender cylin- 

der indicates that an asymptotic series solution in inverse powers of 

the axial distance might be possible.  However, if an attempt is made 

to carry this out, the solution breaks down at an early stage.  This 

occurs when the coefficient of the inverse second power of the axial 

distance (x ) exhibits the wrong behavior at the edge of the wake. 

This difficulty is overcome by applying Lighthill's technique (the 

PUC method) for rendering approximate solutions uniformly valid.  The 
2 

correct series contains the term 0(in x/x ); it was the omission of 

this term which caused the difficulty encountered in the original se- 

ries expansion.  In addition, it is shown that the next term in the 
-2. 

series, 0(x ), contains an indeterminate factor.  This indeterminacy 

is due to the occurrence of eigenfunction solutions, but the reason 

for their existence is not explained.  Earlier work on this problem, 

however, indicates that this is connected with the neglect of the ini- 

tial velocity profile in obtaining the asymptotic solution.  The solu- 

tion obtained has some relevance to the wake behind any finite axisym- 

metric body. 

"T1^ 
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I.  INTRODUCTION 

The asymptotic solution for the incompressible axisymmetric wake 

far behind a long thin cylinder (or "needle") was given in Ref. 1. 

(This reference also contains a discussion of the applicability of the 

"needle" solution to more general axisymmetric bodies.)  The solution 

was sought in the form of a series in inverse powers of the axial dis- 

tance.  However, the solution so obtained was not a uniformly valid one. 

This first became evident when the second approximation (corresponding 

to the negative second power of the axial distance) did not approach 

zero exponentially at the edge of the wake,  A detailed analysis of the 

problem revealed that the difficulty lay in the assumed form of the ex- 

pansion and indicated that logarithmic terms had to be included.  In 
2 

particular, it was shown that the term following 0(l/x) was 0(Xn x/x ) 
2 

and not 0(l/x ) as was initially assumed (x is axial distance). The 
2 

series solution was carried out to the term 0(jin x/x ), and it was shown 
2 

that within the context of the asymptotic approach, the term 0(l/x ) 

could not be completely determined.  This indeterminacy was explained 

as  being due to the neglect of one boundary condition in obtaining the 

asymptotic solution.  This last boundary condition is the initial veloc- 

ity profile at the base of the cylinder.  The manifestation of the lost 

condition in determining the terms in the series was in the form of 

eigensolutions, that is, complementary solutions of the equations sat- 

isfying the boundary conditions on the axis and edge of the wake.  Ar- 

bitrary multiples of these eigensolutions could be added to certain terms 

in the expansion, the formulation of the problem being such that there 

was no way of determining their contribution, 

la the present Memorandum, we wish to reconsider this far-wake prob- 

lem and demonstrate how the correct asymptotic solution can be obtained 

by using Lighthill's technique for rendering approximations uniformly 
(2) 

valid (the PLK method, or "method of strained coordinates"^ '),  In ad- 
2 

dition to correctly predicting the 0(Xn x/x ) term, the technique also 

determines the explicit form of the eigensolution responsible for the 
2 

indeterminacy in the 0(l/x ) term. 
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Application of Lighthill's technique to this problem does yield 

the solution more readily than the analysis given in Ref. 1; however, 

its efficiency is diminished by a loss of insight into the basic cause 
2 

of the indeterminacy appearing in 0(l/x ) and higher-order terms. 
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II.  BASIC EQUATIONS AND ASYMPTOTIC SOLUTION 

The equations of motion governing the development of the axisym- 

metric incompressible wake without pressure gradient can be written as 

|j (ru) + Ij (rv) = 0 (1) 

ÖU ,   öu    1 ö  /  öu\ ,0K u^+v^ = 7^7 ir^j (2) 

(Although the assumption of constant pressure would seem to limit the 

resulting solution to very slender bodies, the solution does have some 

application to the wake far behind any axisynmetric body.  See Ref. 1 

for a detailed discussion of this point.) 

Herej x, r, u, and v are nondimensional variables defined by 

xi      /ue^ri      ui   v  
vi 

where x. and r. are cylindrical coordinates {TX.^ is the axial distance, 

and r. the radial distance measured from the axis of symmetry), ^ and 

v are the corresponding velocity components, U is the free-stream ve- 

locity, v is the kinematic viscosity, and 9 is the momentum thickness. 

Equation (1) can be satisfied by introducing a stream function f, 

defined by 

Id* lö* 
u 7^   v = "7^ (3) 

Equations (1) and (2) are to be solved subject to the boundary 

conditions 

^ = 0    y1 = 0    at    r = 0 (4) 

u -• 1    as    r -• o0 (5) 

The solution is most conveniently expressed in terns of a new in- 

dependent variable Ci defined by 

^g. f       ■"! 
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which replaces r; we also write the stream function as 

| - xf(x,C) (7) 

In Ref. 1 the initial approach to an asymptotic solution is made 

by expanding f(x,0 in the following series: 

00 

(x,c) ■ £ -*r (8) 

n-0  X 

However, this method fails when it is found that f^Q)  approaches 

zero as C -* • algebraically and not exponentially, as should be ex- 

pected on physical grounds. An alternate formulation was used in 

Ref. 1 to indicate the form of the correct expansion. 

In this Memorandum, following the methodology of the FIX tech- 

nique, we expand the stream function and the x coordinate in the 

following series: 

OS 

* - ßf(ß,C) - ß ) -^ (9) 

x - ß + x^ß) + ... (10) 

2 
where C ■ r M*« 

pressions for u and v: 

u - i £C (") 

Substitution of Eq. (9) into Eq. (3) leads to the followi.ig ex- 

.JIIW   f^PW llll    '■     I " !■       '      s* '■—WPW^.       ,IX .*"im 
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7 Cf - Cfc ♦ ßfß] £ (12) 

From Eq.   (10) we find that 

J      "    J   ua    "    TT—W/Q\ J. *' 1  "  xi(P) + ••• dx dx/dp 1 + X.CP) + ... 1 
(13) 

assuming that x'(ß) « 1 when x is  large.    Then 

v  -   - ± [f - cfc + efß](i - x^ß) + ...) (14) 

Substituting Eqs.   (11)  and (14)   into the momentum equation,  Eq. 

(2),  and using Eq.   (13), we obtain 

Cfccc + £cc+ [i "cc+ W« - i ßVc](1 - xi'(e) +-> -    0 

(15) 

In terms of the functions f (C)»  ^e boundary conditions are 
n 

f.<0)  - o 

Ji i'n(0 - 0 

f0'(C) - 2 

r«) - o 

as C -* 0 

c - 

as C - n i 1 

(16) 

If we now substitute the series expansion of fO.C) given in 

Eq. (9) into Eq. (15) and begin equating coefficients of different 

powers of |  to zero, we find that the terms independent of ß yield 

-^-■yf 
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££'"+ f' +-7 f f"    -    0 (17) to o        o      2    o o 

A solution of this equation satisfying the boundary conditions is 

f (C) ■ 2C,  and this term is simply the uniform free stream. 

Before any further equations can be obtained, we must choose x.Cß). 
-2 

In Ref.  1 it was found that f^iQ)  goes to zero as Q "   in the limit of 

^ -» oo,  and therefore the expansion was considered to have broken down 

at this  stage.     Through an appropriate selection of the value of x^ß), 

we shall try to eliminate those terms in t^Q) which do not decay ex- 

ponentially near infinity.     Since ^  is expanded in a series in inte- 

gral powers of ß"  ,  the simplest choice for x|(ß)  is 

x^ß)    -   | (18) 

where A is a constant. 
If the coefficient of ß"    is now equated to zero,  we obtain (as- 

suming fo(0 - 20 

»    ^   c* Cff+ (C + Df; + «i 0 (19) 

_2 
while the coefficient of ß      yields  the equation 

Cf^ (C + 1)^ + 2f2' + | if - | (2Cf/{ + Up (20) 

Equation (19) is the same as  the equation for f^O   found in Ref. 

1,  and a solution satisfying the boundary conditions is 

«{    -    C^ (21) 

where 

«      .    -jgf (22) 
1 2u 
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The momentum thickness 6 is a constant and is determined from 

ne 
CD 

V - 2TT I  u1(U - u1)r1 dr1 (23a) 

or 

■ 

6 - ^ J u(l - u) dC (23b) 

It Is related to the drag of the body, D, by 

D - pU2ne2 (23c) 

Substituting Eq. (21) for f' Into Eq. (20) yields 

Cf^' + (C + DfJ + Zfj + \ C*e"2C + C^C - l)e"C - 0    (24) 

Tbe function fAQ  must satisfy the boundary conditions 

f2(0) - 0    yc" ^(C) "* 0    as    C •* 0 

f^O - 0    as    C - • 

To solve Eq. (24) we set 

-c f2(C) - (C - De"*8 g2(0 

»nd g (Q)  then satisfies the equation 

2       - C?e-C   C,A 
M    2c - (c - i)     * r       zi 

82 *  C(C - 1)   82 " 2C(C - 1) " C 

(25) 

w- - J- • — F 
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This is immediately integrable and the solution is 

; 

.2   P 

g2(0 
C   -t 

a 
dt + 

C - i 
+ c. 

0-
dc-c-i 

+ c^ li« C - T H 
where C, and a are arbitrary constants.    Hence,  f^CO  is given by 

fjCC) 8 
-r   f  e-C 

(C - De * J    V dt + e -2C + c. (C  -  De" 
C   t 

a 
^- dt -  1 
t 

+ C1A[ (C - l)e"C In C - 2e"C (26) 

Since 

rC e^ e'C 
-— dt r— + constant 

Ja   t c 

rC e" eC 
•=— dt ^ T + constant 

as C -* ^ (27) 

the only term in Eq.   (26) which does not exhibit exponential decay to 

zero as  C - ^ is the integral multiplied by C..     Hence, we set C^ - 0. 

For  C "^ 0 

C   -t 
dt ~ Xn C + constant (28) 

a 

which means if f^C) is not to become infinite (as -ßn Q  when C - 0, 

we must choose 

-r-" iw  ■ '*»■ 
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With these choices of C« and A, Eq. (26) reduces to 

fjCC) i^i (C - l) (29) 

To check the second of the boundary conditions in Eq. (25), we 

first calculate 

f^CO V'J (C - 2) J   t a 
dt - in (l+1)e-C+3.i} 

Then 

lim f/,(0 •4{- lim 
^- dt - in C 

or 
+ Al- 

and, using Eq. (28), we see that 

lim ,( > constant 

Hence 

^/ftfU) "0 as C - o 

and the required boundary condition is satisfied. 

The last boundary condition is f2(0) - 0. This is satisfied by 

choosing the constant of integration after integrating f~(C)•  That 

this can be done follows from the fact that f?(C) has been made finite 

at C - 0. 

Thus the required solution for fliO  Is given by Eq. (29).  We 

note that the lower limit on the integral in the solution is still 

—r "rrr-r» 
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arbitrary after satisfying all the boundary conditions. This arbitrari- 

ness introduces a term 

ke"C(C - 1) (3°) 

in f«(C) which cannot be determined.     The reason is that this  function 

satisfies the required boundary conditions  for  f^CO  both on the axis 

and on the edge of the wake.    If F'(C)  represents the function,   then 

the boundary conditions  it must satisfy are 

Jll'iO - 0 as C - 0 

F'CO  "• 0  (exponentially) as C -» ^ 

The second of  these is  seen to be satisfied inmediately for F'(C)  ■ 

e ^(C -  !)•    For  the former,  since 

F'CO    -    e"C -  (C  -   l)e"C 

we see that 

F'^O)    -    2 

so that it too is satisfied.  (Note that in terms of r and x this 

eigenfunction can be written 

,-««-.) - .-'Wi-i 
which can be compared to the corresponding  eigenfunction for  the two- 

dimensional flat-plate far wake 

Ji* W. , 
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found by Stewartsoir  '  and Crane.      ) 

The solution for  the velocity u is now given by 

(C - i) «—4t • Aa C     +et + 2> 
>   * J J 

(31) 

Integrating Eq.   (18)  we obtain 

x1(ß)    -    A In ß + B 

and substituting into Eq. (10) 

x(3)  - ß+Ain0 + B+... 

To invert this, we proceed as follows: 

(32) 

ß    -    x-Ajenß-B + ... 

-    x-AXn(x-Ajenß-B+...)-B + . 

■    x-A£nx-B+... 

Since A - C./S, we obtain finally 

ßßsx § Am S • B (33) 

If ß(x)  is introduced into Eq.   (31),  we obtain 

u    ■ 1+ll£i + ^e-Cinjc + DLQ. 
2    x        16 2     '       2 

x x 
(34) 

ii"i?"j .rsry^Ty 

. 
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where D(Q   is  some function of £.     This does not yet explicitly dis- 
2 

play the x dependence of u,  since C - r  /4ß also involves x.     Substi- 

tuting ß(x)  into £ we obtain 

C    ■      AX        8    x2        x2 (35) 

from which it can also be shown that 

-c       < e        »    e 1 " "8 C ^T^ '     '" 
(« 

where C ■ r  /4X*     Then u can be written 

u -^-^«-^-(y (36) 

Along the axis,  at C = 0f  thi8 reduces to 

C,       C 
uo(x) 1 + 2x16    x2 U2i (37) 

Equations  (36)  and  (37) agree with the corresponding equations given 

in Ref.   1. 

^F m ■ i"   m —w—!* • ■ ■ '     ,-- ■■w^NPPr*- 
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