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PREFACE 

The asymptotic development of the two-dimensional incompressible 

wake far behind a flat plate is a classical problem in fluid mechan- 

ics, but it is only recently that the correct asymptotic series solu- 

tion has been given.  This Memorandum treats the analogous problem 

for axisyrametric flow, which corresponds to the wake flow behind a 

very slender cylinder or "needle"; however, the solution has some rel- 

evance to the wake behind any finite axisymmetric body.  The results 

presented here should be of interest to those working in the general 

area of wake flows. 



SlftMARY 

This Memorandum considers the asymptotic development of the axi- 

symmetric incompressible wake far behind a long, thin cylinder. This 

is the axisymmetric analogue of the classical two-diioensional flat- 

plate problem; however, the resulting solution is applicable to a wider 

class of axisymmetric bodies. 

In Section II an asymptotic expansion in inverse powers of the 

axial distance downstream of the cylinder is attempted; such an expan- 

sion is suggested by the Oseen solution to the problem.  The solution 

is calculated to the second-order term. However, the condition that 

the perturbation velocity go to zero exponentially far from the axis 

is not satisfied by the second-order term. Hence, this term must be 

rejected on physical grounds. 

A similar difficulty arises in the two-dimensional flat-plate prob- 

lem in the third-order term. Resolution of this difficulty is accomp- 

lished by adding a logarithmic term. The following term contains an 

indeterminate numerical factor; this indeterminacy can be shown to be 

associated with the neglect of the initial velocity profile in obtain- 

ing the asymptotic far-wake solution. Indeterminate factors also ap- 

pear in various other terms in the series expansion, and these can be 

shown to be connected with the existence of eigensolutions to the equa- 

tions satisfied by individual terms of the expansion. 

In Section III the axisymmetric problem is reformulated, and it 

is shown that as in the two-dimensional problem the cause of the break- 

down of the solution given in Section II is the existence of a loga- 

rithmic term in the second-order approximation. The logarithmic term 

is calculated explicitly, but again, the next term is indeterminate be- 

cause of neglect of the initial velocity profile.  The next approxima- 
2 

tion is shown to involve a (in x) term which must be included for the 

next term to have the correct behavior far from the axis. Indetermi- 

nate factors associated with the existence of eigensolutions also ap- 

pear in succeeding terms. 
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I.     INTRODUCTION 

At the present  time  the complete analytic  solution for the wake 

behind a body,  slender  or blunt,  is not obtainable because of the es- 

sential nonlinearity of  the problem and the  transition from laminar 

to  turbulent  flow at  some  point in the wake.     In a search for a more 

tractable problem,  one  is  led to a consideration of incompressible 

laminar wakes.    However,  even for this restricted problem, an analytic 

solution valid in the  entire wake is not  possible.    One  then looks 

further to see  if  there  exist portions of  such  flows where an analytic 

treatment is possible.     There do,  in fact,  exist  two such regions  for 

certain bodies:     the  first of these is  the near wake  immediately be- 

hind a flat plate  or very slender cylinder, waile  the second is  the 

wake  far behind either of these bodies. 

For the flat plate,  no recirculating zone exists beyond the  trail- 

ing edge;  for the  slender cylinder, whatever  small recirculating zone 

is present may often be neglected (see Ref.   1).     It is then possible 

to obtain a series solution for small distances  from the rearmost  point 
<2) 

of  the body.    The  flat-plate near wake was  first  treated by Goldstein, 

while the solution for the very slender cylinder, or "needle," was  given 

recently by Viviand and Berger. 
(3) The wake far behind a flat plate has been analyzed by Tollmien, 

Goldstein,        and Stewartson. This Memorandum discusses the  far 

wake behind the  "needle."    (For reasons that will be  indicated  later, 

however, the solution obtained will, in fact,  be valid for the  far wake 

behind any finite,  closed axisymnetric body.)    The problem will be 

treated by seeking an asymptotic series  solution.     In Section II, we 

will attempt a series  solution in powers of x     , n taking on successive 

Integral values;  but we will also show that  the  second approximation, 
_2 

the x      term, does not exhibit the correct  behavior far from the wake 

axis, and hence the expansion breaks down. 

In Section III,  following Stewartson's approach to the two-dimen- 

sional case,        the problem is reformulated and the solution expressed 

In a different form, enabling us to explain the breakdown of the direct 

expansion of Section II and, in addition,  to  indicate the form of the 
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cortect expansion. The second approximation, which was rejected in 

Section T.I, is given explicitly; the x ' term in the expansion contains 

an undetermined constant connected in some way with the Initial profile 

of u, which is neglected in the asymptotic development. The nature of 

the Indeterminacy in succeeding terms, due to the neglect of the ini- 

tial profile and its relationship to the existence of eigenfunction so- 

lutions, is also indicated. 

For the two-dimensional flat-plate problem, the Oseen approxima- 
(3) 

tion for the velocity far downstream was first given by Tollmien. 
(4) _1 

Goldstein   found the next approximation (of 0(x )), then joined the 
(2) 

far-wake solution to his near-wake solution   by a graphical method. 

In this way he determined the origin on the x-axis (initially arbitrary) 

in the far-wake solution. Goldstein also tried calculating the next 
-3/2 

approximation (of 0(x "  )) but had to reject his solution on physical 

grounds because it did not have the correct exponential decay at infin- 

ity.  Stewartson   showed that this difficulty could be resolved by 
-3/2 

adding an extra term 0(x    /n x) into the expansion; he also found 
-3/2 

that a numerical factor occurring in the term 0(x '  ) remained inde- 

terminate and that this indeterminacy is probably connected with the 

neglect of the initial velocity profile in the asymptotic solution. 

Stewartson also clearly discussed the existence and significance of 

eigensolutions in asymptotic expansions in boundary-layer problems. 

There seems very little possibility in the axisymmetric case of 

reasonably determining the origin for x by numerically matching the 

•'needle" near-wake solution of Viviand and Berger   with the asymp- 

totic far-wake solution, as the near-wake solution for the "needle" 

does not extend far enough downstream for such a matching to be accu- 

rate.  In particular, Viviand and Berger find that the range of valid- 

ity in the downstream direction of the new wake solution is of the or- 

der of the cylinder radius and that for certain ranges of the parame- 

ters, it is much less than this radius. Cn the other hand, for the 

two-dimensional near wake behind a flat plate, the range of validity 

of the expansion used by Goldstein is an appreciable fraction of the 

length of the plate. 

The analyses referred to above, as well as the present one, are 

boundary-layer analyses; that is, the usual Reynolds number is assumed 



to be large enough so that boundary-layer approximations are valid in 

the far-wake region. The more general problem, finding solutions of 

the full Navier-Stokes equations at large distances from a finite body, 

has been treated by Chang   for two-dimensional flow and by Childress 

for axially symmetric flows and general three-dimensional flows.  In 

these analyses, which are valid for a fixed value of the Reynolds num- 

ber which is assumed neither large nor small, a small extraneous param- 

eter is introduced; the construction of the asymptotic expansion is 

then recast as a perturbation for small values of this parameter. Due 

to the presence of the viscous wake, the perturbation is in general a 

singular one and is treated by the method of "inner and outer expansions" 
(8) 

(or "matched asymptotic expansions'^ '). The results of the present 

analysis agree with those of Childress for the axisynmetric case, but 

there are significant differences in the basic approach, details of 

the analysis, and interpretation of certain important aspects of the 

problem; these are discussed at some length in Section IV.  In particu- 

lar, the reason for the introduction of logarithmic terms into the so- 

lution, which remains somewhat of a mystery in the artificial-parameter 

analysis, is explained simply by the present analysis. 

There is one result of the Childress analysis which is of special 

significance in the formulation of the far-wake problem within the con- 

text of boundary-layer theory. The pressure gradient which appears in 

the boundary-layer equations would have to come from the solution out- 

side the wake. For the "needle," as for the corresponding flat-plate 

problem, the pressure gradient may be taken as zero. Childress*1  shows 

that the lowest-order contribution to  the pressure gradient begins af- 

fecting the velocity distribution u at the x  term, but without know- 

ing more about the initial profile of u than the total drag, this term 

is indeterminate. Hence, up to but exclusive of the term of order x , 

which includes all the determinate terms in the expansion, the asymp- 

totic expansion for u presented in this Memorandum is valid not only 

for the "needle," but for any finite, closed, axisynmetric body. 
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II.     BASIC  EQUATIONS AND ASYMPTOTIC  SOLUTION 

We introduce a cylindrical coordinate  system (x., r ), where x. 

is the axial distance measured from the base of the cylinder and r. 

is  the radial distance measured from the axis of symmetry.    The corre- 

sponding velocities will be denoted by u    and v.,  respectively. 

In this coordinate system,  the continuity and momentum equations 

without pressure gradient are 

^ <Vi> + ^ «'iV - 0 (1) 

öu- du.. 
ui ä^;+ vi a^; " t- -e- K ^) (2) 

These are to be solved subject to the boundary conditions 

öu 

v1 = 0     ^ - 0    at    rl ' 0       <3) 

u 
1 -* U    as    *! -* ^ ^4) 

and in the limit of x,   -♦ <*>. 
(7)      I 

Childress, in his asymptotic analysis of the Navier-Stokes 

equations  for the flow at  large distances  from a finite axisymmetric 

body,  has shown that  the pressure in the inner viscous wake has  the 

following asymptotic  form: 

pu x 

where x ■ cx/L, P is  the uniform free-stream pressure,  L is a charac- 

teristic length,  a  is  a constant related  to the dimensionless drag, 

and e, an "artificial  parameter," is the ratio of the characteristic 
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length to  the  length of an extraneous  standard of measurement.     Physi- 

cally,  the  leading term in this expansion is the pressure Induced by 

a potential  source,  representing  the effect of the displacement  thick- 

ness on the outer flow.    We see that  far from any finite axisynmetric 
-2 

body the pressure,  up to but not  including the term of order x     ,   is 

constant; consequently, to that order the formulation of the far-wake 

problem as given above for zero pressure gradient applies not only to 

the "needle" but  to finite bodies as well. 

Equation (1)   is satisfied by introducing a stream function t,   de- 

fined by 

^1 
r1u1    -    ^ (5a) 

r,V,      -      -   T-p (5b) öx1 ri 

It is now convenient to introduce a dimensionless stream function 

f(C,x1)  such  that 

♦j    -    ux1f(C,x1) (6) 

where 

Then the nondlmenslonal velocity components u and v can be written: 

u   a    U"    "    2  fC (8) 
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U — (f - cfc + ^ w 

(The subscripts are derivatives.) 

In terms of these new Independent and dependent variables, Eq. (2) 

becomes 

Cfccc+ £cc+ * "cc+ i xiV« " * xiVc - 0    («» 

Now x.   Is nondlmenslonalized by means of the momentum thickness 0  ,  de- 

fined by 

2 2 
00 

=    2TT (U - vi1)u1r1 dr1 (11) 

or 

4ux,     » 
ei   s  IT J   (1 " u>u ^ (12) 

Here 9    is a constant,  related  to  the drag of the body,  D.. ,   by 

2  2 
D1   -   np^ej (13) 

We now set 

(14) 

The differential  equation Eq.   (10),  however,  is unaffected by  this 

change,  since it  is homogeneous  in x.. 

"Jß m* «f        ■ 
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For the asymptotic solution, we assume that f(Q,x)  has an ex- 

pansion for large values of x of the form 

n=0 

Substituting into Eq.   (10)  yields 

n-0 X      n-0 X n-0 X n-0 X n-0    X n-0X n-0    X w-O X 

(16) 

Equating  the coefficients of powers of x    to zero yields the following 

set of ordinary differential equations: 

Cf'V f' +i f f'    -    0 (17) b   o o       zoo K1-'/ 

eT* ^ ♦ J VI ♦ I fifi " 0 (18) 

c£'"+f'2+ifof'2-if;f2 + f^ + if(2 - o (19) 

Cf3,+ «3 + 1 V3 + f £of3 " 2 Wl - #3 + 2 W   •   0        <20) 

Since 

♦1 ■ -11 T^rr* *o (W 

we note that the boundary conditions,  Eq.   (3), require 

u   j-g.     — F 
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fn(0)    -    0 (21) 

Jtt^O - 0 as C "* 0 (22) 

Boundary-condition Eq.   (4)   implies  that 

00 * 

f (O 
-J[L-^- -2 as £ - » (23) c 

n=0 

The condition 

Uj^ -» U    as    x. -• •    Independent of C       (24) 

must also be satisfied, and this indicates that 

fo'(C) - 2    as    C - • (25) 

Equation (23) then reduces to the condition 

f'(0 -0    as    C-00    n^l (25a) 
n 

SOLUTION FOR  f  (Q xr 

The differential equation is Eq.   (17): 

Cf'"+ f'' + -J f f"    =    0 (26) oo2oo 

with boundary conditions 

ay—■www^»1  ' ,»i—^^-^^m^mfi 
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fo(0) ■ 

^f'(0 - o as 

f;<o - 2 as 

C -o 

c - 

(27) 

A solution satisfying  the differential  equation and all the boundary 

conditions Is obvious by Inspection and Is 

f0(0    -   2C (28) 

SOLUTION FOR £,&)_ 

Substituting Eq.   (28)   Into Eq.   (18)   for  f^C), we obtain 

//       ** CfJ + (c + D«J + tl (29) 

the solution of whicn must satisfy the boundary conditions 

fjCO)   -   o 

v^f J(0 "* 0 as C - 0      ► 

f^C) -0 as C - 

(30) 

If we set 

f^C)   -   •"CglCC) 

then g,(0  satisfies  the equation 

"^^'V 



whose solution Is 

.lO- 

CgJ - (C - Dti 

g^O    -    c f-< + Cl 

where c and c.   are arbitrary constants. 

Therefore, 

fj^CC)    -    ce JJ-«*«!« -c 

It is easily seen that  the second boundary condition,  Eq.   (30),   cannot 

be satisfied unless c = 0;  hence 

f^CO   -   c^ (31) 

This automatically satisfies the third boundary condition.  Integra- 

ting and applying the remaining boundary condition yields 

f^Q - CjO - e'C) (32) 

The constant c. is directly related to the drag of the body 

chrough 9.. In particular, since 9 is independent of x, we can write 

Eq. (12) in the limit x - », 

lim 
x 

4UX. „» -tAQ 
im 2I_1 r   !   Af 
i       o 

-4ue] 
u 

r,00 C 

\  e-C dC 

and obtain 

""•mwi^gm* mu*m* «—rr« 
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2u (33) 

SOLJnON FOR f2(0 

Using Eqs.   (28)  and (31),  we can write Eq.   (19)  as 

Cf2,+ (C+l)f; + 2f2' + |c2 e-2C 
(34) 

subject to  the boundary conditions 

f2(0)     -    0 

vff^Q - 0 as C - 0 

f,(C) - 0 as C - 

(35) 

Let 

t^O    -    (C -  l)e"Cg2(0 (36) 

rhen g. satisfies 

C(C - l)g2 + C2C - (C - 1)2]82' 1    2    -C 
" 2cle 

This is easily integrated and yields 

82(C)    '   "4 
C(C - D' 

C(C - |)e"2C + cp 

If we integrate this result and substitute in Eq. (36), we obtain 

— y ... 
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o - -4{cc-^j'v—-2C} 

|(C - De^ J^ dt -  l} + c2i(C -  De 

where A and c_ are arbitrary constants. 

As  C "* 0 

rc e^ 
j    ^-- dt ~ Xn C 

JA    C 

I    ^r dt ~ in C 
JA    t 

which means that £«(0 -• * as An C when C - 0- but this would indi- 

cate that u is infinite along the axis, ^ ■ 0. To avoid this, we 

must choose 

c2 - 4 (37) 

The boundary condition f-CC) -• 0 as  £ -• » ..s satisfied,   since 

-c rc e* Ce ^   i    -^r dt - 1 as C - 
JA    t 

One can also verify that  f" "* constant as  C -♦ 0,  so that 

VCflCQ - 0 as C - 0 

♦ 

■*•- * ^ßmmmm^mm    ■■■ — — — ■  —— —JPI —«■-^r»   -^. 
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as required by the middle boundary condition of Eq. (35). This com- 

pletes the determination of f»(0» which may be written as 

f^O 
2 

cl 
+ -8^ (C - De I 

C t  -t 
e - e 

dt + 2c - 2 ■] ■2C } 
(38) 

(The boundary condition fAO)  = 0 is obviously superfluous as far as 

the determination of f' is concerned.) Note that after satisfying all 

the boundary conditions, an arbitrary constant c still remains in the 

equation for tAQ. 

To second order then, the velocity on the x, axis is given by 

Cl    Cl Uo(x)  = 1 + 2^- C72+ •" 
8x 

where c is an undetermined constant. 

^ —i-     — w —am*- 
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III.  MODIFICATION OF EXPANSION 

The occurrence of an arbitrary constant in the expression for 

f'(C). and consequently for uo(x) . is not in itself surprising. In 

foCt, since the initial conditions, ignored in calculating the asymp- 

totic expansion, influence the far-vake solution, we must anticipate 

that at some stage of the expansion indeterminacy will occur.^ Of 

greater concern is the fact that the second approximation, f'CO, does 

not approach zero exponentially M C - «• as we would expect, since 

lim 

C-6 (C - De^ J ^ 
JA H lim (C - D« •c 

x(^+-)]=« 
im 

We note that l*iO  goes to zero as Q'2  as C - »• A similar phenomenon 

•^   in the two-dimensional case in the third 
■n/2 

was found by Goldstein 

approximation (his solution proceeded in terms of x'n/\  n taking on 

all integral values).  Even if this approximation were not rejected 

on physical grounds, it is actually impossible, as shown by Goldstein, 

to satisfy all the boundary conditions in the next approximation, so 

the solution is not even possible tnathematically.  It is very likely 

we would encounter the same difficulty if we attempted to solve for 

the next term in our expansion, f^CO» 

Stewartson(5) resolved the difficulty for the two-dimensional 

flat-plate case; he showed that the asymptotic expansion contained an 

extra term 0(x"3/2 ^n x) in addition to the x"n  terms (n = 1, 2, 3) 

contained in Goldstein's original solution and also that a numerical 

factor occurring in the term 0(x"3/2) was indeterminate. Stewartson 

treated a number of boundary-layer problems involving asymptotic ex- 

pansions for large x and demonstrated that these phenomena (the occur- 

rence of logarithmic terms and indeterminacy in the following alge- 

braic terms) are general features of all of them. 
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Briefly, Stewartson's demonstration proceeds as follows:  In each 

of the problems considered at the nth stage of the expansion procedure, 

the required function satisfies a third-order ordinary linear differ- 

ential equation with, say, T] as an independent variable and n as a 

parameter; two boundary conditions are given at T) = 0 and one at T] = «. 

For each of an infinite countable set of n's, not necessarily integers, 

there is a complementary solution satisfying all the boundary condi- 

tions at Tl = 0 and at T1 = ».  (These are called "eigensolutions."^'*0) 

It follows that the factor multiplying this function cannot be deter- 

mined; and Stewartson concludes that it probably depends on the neg- 

lected upstream boundary condition, the initial velocity profile.  When 

a member of this set is an integer, then no particular integral of the 

differential equation is exponentially small for large 1\  unless an ad- 

ditional term, consisting of the complementary solution multiplied by 

in x or in In  x, depending on the problem, is added.  The factor in 

this term is determined by requiring that the particular integral be 

exponentially small for large T,; the particular integral so defined 

is, however, not unique. 

In the following, we shall demonstrate the particular form which 

the ideas expressed above take in the present problem.  Using the same 

general approach as Stewartson employed for the flat-plate problan, 

we shall indicate why the expansion of the previous section broke down 

and proceed to determine the correct expansion.  In this process, we 

shall explicitly determine the set of n tor which eigenfunctlons exist 

and the nature of the eigenfunctions themselves. We shall see that 

there are significant differences between the two-dimensional and axi- 
symnetrlc cases. 

Consider Eqs. (1) and (2) again with the boundary conditions 

u1 - Ü     as    r - - > 0 
1 Äl 

vi - äT- - 0    at 1    ar1    
u    ac    rl    m    o Xi > 0 

(39) 



and the initial condition 
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u1 - UfCr^    at x1 = 0    r1 > 0 (40) 

This initial condition is introduced here only for convenience in 

carrying out the later discussion, which will lead to the correct form 

of expansion. This initial condition should not appear in the actual 

formulation of the asymptotic problem.  (It does, however, play a role 

in determining certain constants in the asymptotic solution.) In gen- 

eral, an axisyranetric body of nonzero thickness will have a separated 

region imnediately behind the base, and the flow field is too complex 

to allow the computation of f(r.). However, for the purposes of our 

later discussion it is not necessary that the initial profile be given 

at the base of the body; it is only necessary that some initial pro- 

file be specified, and we arbitrarily place the origin of the x^^ axis 

at the place where the profile Ls given. Thus, for example, we can 

think of f(r,) as being given at some location downstream of the sep- 

arated region if one exists.  In any case, whether or not f(r^) can 

readily be determined is immaterial to our later arguments. However, 

we do assume that f(r1) is some sort of boundary-layer solution. As 

a corollary of this, it follows that f(r1) -» 1 exponentially as ^ ap- 

proaches infinity. 

We nondimensionalize by setting 

i 

u. 

U \   u /    U ®f'i 
(41) 

Equations   (1)   and  (2)  now become 

h <"■>+ fc (rv) (42) 

ÖU    . du 1 ä    /    du\ Vö7  "  7^Vrä7J (43) 
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A first approximation to u when x is very large can be obtained 

from the Oseen approximation and the fact that the momentum thickness 

is constant (since the pressure is taken to be constant). The result 

is 

,  A -r /4x _ 
u»l e     sUi x 1 

(44) 

say, where A is given in terms of the nondimensional drag D by 

1 
uuen 

4npA (45) 

or 

00 

- I J f(l - f)r dr (46) 

Te improve this approximation we substitute Eq. (44) into Eqs. 

(42) and (43), thus starting an iteration.  To demonstrate the nature 

of this process at any stage, we set 

1 + u 

(47) 

Substituting into Eq. (43), we rewrite it as 

du  1 ö_ / du\ 
dx ' r dr y  9r j 

— du  — äu 

The solution in the n      iteration is then obtained from the equation 

fi«    ia   (  ^\ 
"dT " r ^F \r     ST/ - u ̂(n-1)  ^n'l)  . ^(n-l) <dn'l) 

ax or 

(48) 
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(This  iterative method of solution can be shown to be equivalent to 

the asymptotic scries-expansion approach discussed in Section II.) 

For n - 1,  taking u^0)  = 0,  Eq.   (48) reduces  to 

öu 
ÖX ̂ {.«V 

the solution of which is 

ü^)    -    -Ae-r2/4x (50) 
x 

(already given in Eq.   (A4)). 

When n » 2,  Eq.   (48)  reads 

-CD 
au(2)    i a   ( <toSz)\ -(i) ^l)    -(i) öu       ._., 

By substituting Eq. (50) into Eq. (42), we find that 

-d) . .^_e-r2/4x (52) 

2xZ 

Substitution of Eqs.   (50)  and (52)  into Eq.   (51)   now yields as the 

governing equation for  the second approximation 

Ä<2)      lit    ^2)>| A2    -r2/2x .„, 
X 

Rather than determine the solution to Eq.   (53)  at this time, we 

want to consider the general problem at any stage of the iteration. 

In each iteration, we are treating the equation 

fc-ifc('fc)- '<-'> <"> 

-•^——"» ■   ,^'Ji' '^——WW—ffT ^*J^—'M™M^,*—~Tt"1 
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F(x.r) = (l.tt)g-vg (55) 

the value of F being calculated using the u and v determined from the 

solution of Eq. (54) in the previous iteration. 

Equation (54) is of the form of an inhomogeneous heat equation, 

and the determination of its solution is a standard problem in heat 

conduction. Assuming f(r) and F(x,r) to be even functions of r, the 

solution of Eq. (54) satisfying the boundary conditions, Eqs. (39) and 

(40), is given by 

u 1 - 1 - ttLJ 
2x 

4x <£)''*' 
(rV2) 

♦ f Ac'f dr'f^a e" 
t^r>    i (Tr^-rr] 

.io    J0    2(x - x') o\2(x - x')/ 
(56) 

where I is the modified Bessel function of the first kind and zeroth 

order. 

For simplicity and without sacrificing any of the significant 

details, we shall limit ourselves to determining u on the axis, r = 0. 

Setting r = 0 in Eq. (56) yields 

U|r=0 
= 1 

2x 
f(r )   4x  *  , 
'    '   e     r dr 

r>X 

dx' dr ' ^^(x
7,^) / 4(x-x/) 

2(x - x') (57) 

^B" •— w 
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With the general solution for any iteration now given in terms 

of quadratures, we return to the determination of u  . From Eq. (53) 

we note that F(x,r) can be written 

F(x,r)  - ^j e"r /2x = g(x)F2('T1) 
x 

(58) 

where 

g(x) = — 

F2(T1) = e -tl 

1 7^ 

(59) 

Introducing Eq.   (58)  and the new variable T]  into the second integral 

of Eq.   (57), we obtain 

u|r=0 =    1 

a 

I 1  -  f(r  )        4x 
2x e r dr 

J        (x  -   X 
dx 

Tl'F^Tl^e    2(x"X )  dT)' (60) 

Now we write 

l/(x)     =    xg(x)    =    ^2 
x 

(61) 

JI1   v^mm 1—. "mmmam T^r 
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The contribution from F is  then 

fAWlVv^'1^ «rv (62) 

Integrating by parts, this becomes 

o o (x - X )   o 
2(x - x') 

#*#2 
JLÄ 

Y   VF^Tl^e 2(X-X) (63) 

(We cannot conclude that L(0) is infinite from Eq. (61), since the it- 

erative solution based on Eq. (54) is valid only for large x.) For 

large x the leading terms in Eq. (63) are 

-^ jVF2or) dir + 4-enxf (i .af joMrt **' w 
O X        o \       / 

Following the method of Stewartson, two questions can now be 

raised.  First, does the initial profile affect u only through the 

constant A, given in terms of f(r) by Eq. (46)?  Second, is it pos- 

sible to find a second-order approximation which has the correct asymp- 

totic behavior as r -• «, thus eliminating the difficulty encountered 

in Section II; and if so, what is the correct second approximation? 

The first question may now be answered on the basis of expression 

(64). The first term represents a modification to the term 0(l/x) of 

the expansion for large x; this occurs because the contribution from 

f(r) in Eq. (60) to the 0(l/x) term is 

IJd-fO^r'dr' (65) 

~?W 
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which differs from Eq. (46). There will be a contribution to expres- 

sion (65) at each stage until the coefficient of 1/x is Eq. (46). In 

Eq. (57) the general term of the contribution from f(r) to u(x,0) is 

llll 
n 

2x(4x)nn., "o 

^2nfl 
(1 - f(r')) r""""1 dr' (66) 

and in a similar way this will be modified at each stage of the itera- 

tion.    Thus, we can expect terms in the expansion of order x to 

have an indeterminate numerical factor  depending on f(r).     The term 

with n = 0 is completely determined because of the momentum integral, 

but this is  the only such integral known. 

Expression  (64)   enables us to answer  the second question also. 

The second term of expression (64)   shows  that the asymptotic expansion 
2 

contains a term of  the form £n x/x   ;  it was  the absence of this  term 

In the expansion in x     ,  considered In Section II, which caused the 

difficulties encountered in the second-order approximation. 

Let us now return to Eq.   (53)  and assume that 

u(2)    .   in_x 6(Ti) + 1    H(lf1) (67) 

x x 

Substitution in Eq.   (53)  yields the equations 

Tf}" + (T12 + 1)0' + 4T1G    -     0 (68) 

2 
fff + (T]2 + 1)^ + ATlH    -    Zip - 2A2Tle"1f1 (69) 

The boundary conditions are 

wpwyywwi      ■ —  ■■' .~'   ^mmmnmm'.mt ,,,— •       *    i.nn 
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G'CO)    -    H'CO)     -    0 

and 

G,H -• 0 exponentially as 1] -» <» 

(70) 

The solution of Eq.   (68)  satisfying  the boundary conditions,  Eq. 

(70),   is 

C(T))    -    C (4-.) .-Tl2/2 
(71) 

Substituting this result into Eq.   (69)  and changing  to the new inde- 

pendent variable Q defined by 

c-4 t 2 (72) 

(this  C is the nondimensional form of the  Q used in Section II) ,  we ob- 

tain 

CH" + (C + ^H7 + 2H   -   C(C -   l)e"C - A2 e"2C 
(73) 

where primes now denote differentiation with respect to £.  This can 

be solved by setting 

H(0 = (C - De'^Q (74) 

Here,   K(Q  satisfies  the equation 

^  ,   ifc - tl - n2!     ,   m    C(C -  1)   - A2e'C 

ZCt- 1) C(C - i) 
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Ä first Integral of this equation is 

K' e"C  1(1 -  I)2 .C     7   - 
[cCC e"C (C "  1)   |c(£ -  1)  - A2 e"' U (75) 

If H(^) is to tend exponentially to zero as T] -» » (^ -♦ «) ^ then we 

must require 

J e"C (C - 1) |C(C 1) - A^e dC - 0 (76) 

This condition determines C to be 

^A2 

4 A (77) 

Integrating Eq.   (75)  once more and substituting into Eq.   (74), 

we obtain the H(Q  satisfying the differential equation,  Eq.   (69), 

and boundary conditions,  Eq.   (70): 

H(0 (C - De" 
7 fC -t 

a 
V dt + e"2« ] 

^(«- l)e"C in Q - 2e <] (78) 

where a  is an undetermined constant. 

Thus, G is determined uniquely but H is not; this is not sur- 

prising, since, as we saw earlier, H probably depends on f(r). 

The solution for u to the present order of approximation is 

given by 

u = i.A,-r/*. + *tl8(ö + l ^ 
(79) 

- .»_ •, mm—-r» 
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2 2 
where T = 11 /2 - r /4x and G^)  and H(^)   are given by Eqs.   (71)   and 

(78),  respectively.     Thus, we can also write  the solution as 

u   -    1 . I e"^ . i A2(J - l)e 
x x 

(80) 

On the axis £ ■ r - 0,   this reduces to 

u(x,0) = i.Ä+l42*^E + ^ 
X      X 

(81) 

where ß is an undetermined constant. 

Let us now consider what happens in the next iteration, the de- 
-(3) 

termination of uv ',     Equation (48) now reads 

^3) 

ox 
a (   &*A ^2) ^2) . ^(2) du(2) 

ÖX Or (82) 

For convenience in calculating the right-hand  side, we introduce T] 

rA/2x as an independent variable;  this allows us to write 

-<2)   ^(2)      "(2)   du(2) 
u —c— -  vv   ' 

hx Or ox \2 x 

_(2) 
v  ^2> 

(83) 

In terms of Tj,  Eq.   (80)   becomes 

u 
V / xx 

H(H)        (84) 

It will be convenient  for  our purposes if we represent Eq.   (84)  by 

DiOU /nx      D,(T1) 

x x 
(85) / 

• 
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Integrating the continuity equation, Eq.   (42),  and using Eq.   (85), 

we find 

-2 12 Xnx      G3(T1) k D/ + G2(^) ^f + ^4- (86) 

where G0 and C  are given in terms of D_ and D    but their explicit 

representation is not necessary at this time. 

If we now substitute Eqs.   (85)  and (86)  into the right-hand side 

of Eq.   (83),   this equation becomes 

-(2)  öu(2)      -(2) au(2) 

u ^       - v 
ÖX or 

1      2      in x 
3 Dl +     4 

x x 
3D 

1D2  - Dl(^ - 2 ^ 

X 
»A + DiD2 - Dl \ ^3 + ^ +     ... (87) 

The right-hand side of Eq.   (87)  is now substituted for the right-hand 

side of Eq.   (82)  and is  therefore the inhomogeneous  term for the third 
2    3 iteration.    The term D./x    is exactly the one treated earlier in the 

second iteration (see Eq.   (58)),  and since F(x,r)   enters Eq.   (57)  (or 

Eq.   (60))   linearly,  it  will contribute only the terms obtained in the 

second iteration.    Hence,  we shall  limit our attention to the remain- 

ing  two  terms on the right-hand side of Eq.   (87). 

We now let 

F(x,r)     -    g1(x)F3(T]) + g2(x)F4(Tl) (88) 

where 

g^x) 
£n x g2(x)    -    -£ 

X 

I—■■   ,•• t9m ""W» 
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and F- and F. are the coefficients in Eq. (87), multiplying g^  and g., 

respectively.  Correspondingly, we define 

so for large x 

T // \       / \    -^n x L^x) - xg^x)  » —j- 

L^Cx) - xg2(x)  = -j 
x 

T / \    1 Xn x   1 
Li(x) ~ " I ^" ■ TT 

x    4x 

L2(x) ~ - -^ 

(89) 

Now consider the second term of Expression (63), giving the con- 

tribution from F(x,r) to u; in particular, we take the sum of two such 

terms, L. (x) and F»(T1) appearing in one and L2(x) and F,(T1) in the 

other: 

JC L (x')  dx'  -» 

r,—VJ ^ o     (x  -  X  )       o 
1 • xV2       1 Tl'F3(T]')e 

xV2 

2(x-x') 
2(x  -  x')_ 

-r L (x')   dx'    » 
I     dTl' 

o     (x  -  x  )' 

XT1    ■ 
2(x  -  x') 

& 
/2 

Tl'F4(Tl')e     2(X-X  > 

For  large x the  leading terms are 

fl^x')   dx'  f  (l  .I1^)VF3(V)  dTl' 
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+ 1 
X 

LJCOK' dx'        (2 - 211 4 WF3(V)  dT]' 

+ I* L2(x') dx' J    [l  ■ ^-)T1'F4(T1')   dfl 

X 
f L2(x')x' dx' [{l - 2T1'2 + I]^)TI'F4(T1')  dV 

_i > 

(90) 

According to Eq.   (89), 

r Li(x >dx ~"2r + ^ 

r L2(x')  dx'~^ 

r L^x^x' dx' ~ - 7 (Xn x)2  - ^ £n x 

r L-(x )x    dx    ~ - — £n x 

Substitution of these  integrals into expression  (90) allows us to write 

it as 
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ü«Ji!j^2.2^ + id)11>j(ii')«ii'* Ig x 

2x3 
-^hVOdtr 

i 
2 . 2r2   1.^ 

2x- 

^-JTl'F3(Tl')dTl' -  J  f2  - 2V2 + VrV71^   dT1' 

2 H1  " ^Wc^dTl'* jYl  - H^VF^V)   dvl (9i: 

(3) 
Thus we  see  that in the solution.for u      ,  terms of order 

2    3 3 3 
(^n x)  /x  ,  In x/x  ,  and l/x    appear. 

To gain some insight into why terms involving powers  of  the natu- 

ral  logarithm should appear in the expansion,  let us return to Eq.   (48). 

The complementary solution at any stage of the iteration is  determined 

as the solution of Eq.   (48) with the right-hand side set equal  to zero. 

In terms of  the variables x and T] =  rA/2x,  the complementary  function 

satisfies  the equation 

. iHi-UCn)    mjL 
ax      2 x ÖT] 2xTl STj ÖT1 0 (92) 

If we now substitute 

-(n) V^ 
u"1 ■  

n (93) 

we obtain the  following equation for Q  (T)) : 

TIQ^ + flf + 1)Q^ + 2nT1Qn    -    0 (94) 

Now let 

Qn(T1)    "    V7»6"71  /2 (95) 
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This yields 

M; + (V ^) "n + 2(n " 1)Mn   ■    0 

2 
Finally, we again introduce the independent variable Q = T\  /2 in terms 

of which the equation for M    becomes ' n 

CM^CO + (1 -  QM'CO + (n -  DM (0    -    0 (96) n n n 

The solution of  this is 

«„«  - Vi«> 

where L (Q   is  the Laguerre polynomial of order n.    Hence 
n 

v* ■ v^) ^n <"> 

The boundary conditions  to be satisfied by Q  (J\)  are n 

Q'(0)  «0     Q_0I) "* 0 exponentially as T] -» » 

The second boundary condition is immediately seen to be satisfied. 

For the first condition, we note that 

so (/(O) ■ 0, and this condition is also satisfied for any n.  Hence, 

the complementary functions for all n exactly satisfy the boundary 

conditions at T] - 0 and T) ■ •, 

The corresponding inhomogeneous equation looks like 

^ß^^fmmm        ■    ■ ■■      ,.1" ■"^P•^^■»-•^*"■,-■ •,„        " ' mm    iffpa   «■ 
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TIR'' + (IT +  l)R' + 2nT1R      -    F(T1) 
n      x /   n ' n v " (98) 

where F(T1)   is a known function of T],  perhaps Involving arbitrary con- 

stants.     If we  let 

Rn(T1)     "    Sn(T1)e 
•Tl2/2 

(99) 

and also introduce the variable ^ = ^ /2 again,   the equation becomes 

Cs;(0 + (i - Os^O + (n - i)sn(C)   -   2^ 
c 

(100) 

In particular, we consider  the third approximation,   n = 3.    The 

equation is  then 

UQe CS;+(1-QS3'+2S3    -    ^ 
c 

(101) 

If we  set 

S3(0    =    L2(OT(C)    »    (C    - 4C + 2)T(0 (102) 

(L2(C)  is  the Laguerre polynomial of ore ir 2),   then we obtain 

-3      rt<2 
, ( -r + 9C  -   14C 4- 2 

C(C2 - 4C + 2) 

F(0^ 

2C^2C (C    - 4C + 2) 

The first integral of this  equation is given by 

rl,,J 2 „^ .c 
e baC    - 4C + 2)fc T ttQiC - 4C + 2) 

272C" 
dC (103) 

Thus, if R_ is to tend to zero exponentially as Q or T\ -* cof  we must 

require 

" » ■ ■ .. _ y 
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F^)^2 -4^+2)    m    0 (104) 

2J2C 

3   ~(3) 
If R-(T1) represents the coefficient of the terra in  x/x in u  , 

that is, 

u(3) fc  en_x  ^ + term  of oix-3) 

x 

then the F(0 to be entered in Eq. (98) and the following equations 
4 

is the coefficient of J^n x/x 

tion of this in terras of T) is 

4 
is the coefficient of J^n x/x in Eq. (87). The explicit representa- 

Hence 

F(C)    -    A3(C "  l)e"2C (105) 

If we substitute this expression into the integral in Eq.   (104),   the 

integral becomes 

AL f (g - DCC2  -_4c + 2)e-2£ ^ 
2J2 o yc 

3 
The value of this integral is (-89/216)A , and hence the condition 

that R- - 0 exponentially as Tl -. » is not satisfied. 
3 2 3 

This now explains the appearance of the (in  x) /x term in the 

solution for tt^ • This term must oe introduced to insure that the 
3 

particular integral corresponding to ^n x/x be exponentially small 
2 3 

when T) is large.  This (in x) /x term consists only of the complemen- 

tary function (solution of Eq. (94)), its numerical factor being de- 

termined from the condition on the particular integral corresponding 

^np*^1—' ■  1 ■■'     , ■■ "^NWW^"^"■ ■ ',>*'       '■■• '^' 
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3 
to in x/x .     The factor multiplying the complementary function corre- 

3 
spending to in x/x    is determined by the condition on the particular 

3 
integral corresponding to 1/x .     However,   there is no way of obtaining 

the numerical  factor  in the complementary function corresponding  to 
3 

1/x    in this way,  and as we have already seen,   it probably depends on 

the initial profile,   f(r). 

Generally,   difficulty arises each time a complementary solution 

to Eq.   (48)  of the form x'nG (Tj)  satisfies  the conditions G'(0)  = 0 
n n 

and G (T|) -» 0 exponentially as T] -• <».  We have already shown that this 

occurs for all Integers n, and thus at each step of the solution it may 

be necessary to introouce an extra factor in  x into the series.  At 

the same time, the x  term will contain an indeterminate numerical 

factor depending in some way on the initial profile of u. 

'^mF 
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IV.    DISCUSSION 

A number of differences may be pointed out between the two-dimen- 

sional and axisymnetric results.    Stewartson        shows that the veloc- 

ity at y ■ 0 for the flat-plate asymptotic far-wake solution is 

u(x,0)    =    1 - 
x 

2        3 
a       or       a      in x .      ß        -. /in x\ 

where a is a known constant related to the drag of the plate and 0 is 

an unknown constant.  (Stewartson gives a coefficient of the term 
3/2 

in  x/x  " which is twice as great as the one given above; this was due 

to a slight error in one of his equations that was corrected by Crane. 

We have found the corresponding axisynmetric solution to be Eq. (81): 

X     X      \  X 

where A is known in terms of the drag of the body and B is unknown. 

We note that the indeterminacy in the asymptotic expansion appears 

earlier in the axisynmetric than in the two-dimensional case, occurring 

in the fourth term in the former and in the fifth in the latter. Also, 

in the two-dimensional case, eigenfunctions occur for terms involving 

x   ' only when n is an odd integer, so a factor in  x may be introduced 

at alternate steps of the series expansion. In the axisynmetric case, 

on the other hand, eigenfunctions exist for each n, so these additional 

logarithmic factors may occur at each step. 

As indicated in Section II, the pressure in the wake is constant 
_2 

to order x  ; consequently, Eqs. (80) and (81) up to terms of order 
_2 

x  in x represent the asymptotic far-wake solution at large Reynolds 

number for any finite axisynmetric body. The term of order x , which 

is the first term in the asymptotic expansion affected by a nonconstant 

pressure, is already indeterminate due to the existence of an eigenso- 

lution; thus, the determinate part of the solution is unaffected by the 

existence of a nonzero pressure gradient. 

viii i wjpwm  ■*■  ■    '        -■   i—uii ^    ,^      m\ iip 
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It is of some interest to compare the approach taken here with 

that of Chang'' ' and Childress^ ^ in their analyses of the far flow 

field for arbitrary Reynolds number. As indicated earlier, these au- 

thors introduce an artificial parameter e, which is the ratio of a 

characteristic length to an artificial length, and recast the problem 

of the flow at large distances as a perturbation for small values of 

e; in other words, the coordinate-type expansion is replaced by a pa- 

rameter-type expansion. They then construct two expansions for the 

velocity and two for the pressure, an outer expansion valid outside 

the wake region and an inner expansion valid within the wake region. 

The domain of validity of these two expansions overlaps, and hence an 

expansion uniformly valid at large distances may be constructed by a 

combination of outer and inner expansions. 

Apart from the usual principles for matching inner and outer ex- 

pansions, Chang and Childress employ two additional, independent prin- 

ciples for finding the form of the expansions and for eliminating cer- 

tain apparent indeterminacies.  These are (1) the principle of elimi- 

nability, and (2) the principle of rapid (transcendental) decay of vor- 

ticity. The first of these requires that the artificial parameter e 

be eliminable from the expansions. The second principle, that for a 

finite or semi-infinite solid in a uniform stream the vorticity decays 

at an exponential rate with distance outside the wake (or at least 

faster than any power of the distance) , is assumed to hold for solu- 

tions of the Navier-Stokes equations; all the known exact and linear- 

ized solutions support this assumption (see Ref. 6). The application 

of the eliminability principle leads to the concept of "switchback 

terms" which must be introduced in order that e be eliminable fram the 

resulting expansions.  In the Chang and Childress analyses, the effect 

of switchback is to introduce logarithmic terms; thus, for example, in 

the axisyinmetric solution of Childress, terms e (in e)  (i and j are 

integers satisfying j ^ i - 1) are introduced into expansions which 

originally contained only integral powers of e.  Childress does not 

attempt to explain precisely the reason for switchback but notes that 

it is a nonlinear phenomenon. 

—J y 
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One of the essential differences between the artificial-parameter 

analyses of Chang and Chlldress and the present analysis, based on a 

coordinate-type perturbation. Is the reason for the Introduction of 

the logarithmic terms.  In the present analysis these terms are Intro- 

duced In order that the vortlclty decay exponentially at Infinity.  In 

the artificial-paranieter analysis, as indicated above, the switchback 

terms arise from the application of the principle of eliminability of 

the artificial parameter; the principle of rapid decay of vortlclty 

is put forth as a completely independent principle. Thus, the under- 

lying reason for the occurrence of the switchback terms, which is not 

fully explained in the Chang and Chil Iress analyses, would seem to 

stem from only one basic principle--rapid decay of vortlclty. 

It might be added that after listing certain of the advantages of 

the artificial-parameter approach, Chang indicates that a direct coordi- 

nate-type procedure would seem preferable for a final analysis. 

.. .' ,-'*♦' rTm»"*' 
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