
Th Tcun ~ j
k nD, - !,' •;;?I, o,"r,

UNCLASSIFIED

N The Pennsylvania State University
Department of Engineering Mechanics

Un",,ersity Park, Pennsylvania

U. S. ARMY RESEARCH OFFICE (DURHAM)

CONTRACT NO. DA-31-124-ARO(D)-67

FINAL REPORT

May 15, 1966

Prepared by

Norman Davids

Requests for additional copies by Agencies of the
Department of Defense, their contractors and other
Government Agencies should be directed to:

Armed Services Technical Information Agency
Arlington Hall Station
Arlington 12, Virginia

Department of Defense contractors must be established
for ASTIA services or have their "need to know" certi-
fied by the cognizant military agency of their project
or contract.

All other persons and organizations should apply to the:

U. S. Department of Commerce
Office of Technical Services
Washington 25, D. C.



Scope of Project

To conduct a basic theoretical research program in stress waves

and penrtration mechanics, with particular emphasis on armor plate. To

assist the experimental program in this ft.eld being conducted at the

Arsenals by parallel theoretical investigations.

Project duration - from 1 January 1963 to 15 May 1966.

The technical work of this project has been reported by presen-

tation at professional meetings, through publication in scientific

Journals, supported by reprints submitted to AROD, as far as is avail-

able, and by Interim Technical Reports. While recognizing the greater

usefulness of journal articles, the purpose of the Interim Reports has

been to mnake the results available much sooner than reprints of publicA-

tions. At times the lag has been reduced by as much as a year thereby.

A second purpose of the technical reports has been to provide a much

fuller pres-ntatinn than is possible in a paper and as a repository for

data and details.

The conltents of this final report include:

1) list of output documents,

2) general summary and review of project activities,

3) progress of last 6 month period, and

4) techniual work of significance not previously reported.
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List of Publications

1. "A Viscous Model for Plug Formation in Plates" by A. Pytel

and N. Davids, J. Franklin Inst. 276, No. 5, Nov. 63, pp. 394- 't0

2. "Transient Analysis of Oblique Impact cn Plates*' oy N. D.ývidz

and W. Lawhead, J. Mechanics and Physics of Solids, 1965,

Vol. 13, pp. 199-212.

3. "A Penetration Methoe for Determining Impact Yield Strength"

by N. Davids, R. Minnich and J. Sliney, Proc. VII Hyper-

velocity Impact Symposium, Tanpa, pp. 261-297.

4. "Couple-Stress Effects on Stress Concentration Around a

Cylindrical Inclusion" by Y. Weitsman, J. Appl. Mechanics.
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5. "Direct Numerical Analysis Method for Cylindrical and Spheri-
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6. "Penetration Experiments with Fiberglass Reinforced

Plastics" by B.P. Gupta and N. Davids, to appear shortly

in the J. Exper. Mechs.

7. "Elastic Waves in Projectiles" by N. Davids, B.P. Gupta,

H. R. Minnich, to appear in Marin Anniversary Volume,

Toronto University Press.
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3. Invited presentation of plug formation results at the

Ballistic Research Labs, March 10, 1964.

4. Invited presentation of computer analysis methods,
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Frankford Arsenal- April .1', 1963.
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Brief Review of Project

1. Oblique Impact

One of the phases of the research on this project has been

the analytical study of tran jent stresses in a plate due to step im-

pacts at a point on the Lurface. The point impact is a fair idealiza-

tion representing a pointed projectile, and is applicable to other types

of disturbances as well. Considerable work on this problem was carried

out on an earlier AROD project for normal and shear impacts, using a

mathematical procedure which has come to be known as "Caignard's Method",

used extensively in geophysical analyses. The present effort continued

the ;Ludy and brought it to conclusion by working out the principal

stresses induced for impacts -t O and 60 angles of incidence. The

results are reported in paper no. 1 qnd report no. 1, and a computer

program is available for any additional numerical aata required.

This method of analysis is valuable in that it follows both the

dilatation and distortion wavefronts or pulses across the plates as well

as their interaction due to reflecticns across the back face. This pro-

vides a direct understanding, unlike other methods based on "normal

modes" or vibrational considerations. Farther, it is able to assess

realistically magnitudes of the inauced tensile stresses, which are

very sensitive to the reflected waves. For this reason, analyses basel

on semi-infinite media or on normal modes lead to consi -erable errors

on this estimation. On the other hand, Caignard's approac!- is not

realistic for studying actual penmtý-ation d1n~1mics (for which it was

not intended) and is limited to brittle-type materials which are

elastic until failure.
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Since penetration dynamics was considered the main theme of

this project, the following further phases were studied.

2. Plug Formation

This phase was concerned with an area of penetration dynamics

referred to as "plug formation". This is part of the more general area

of plastl'- impact, where the impacting materials undergo a type of

viscous flow. It may be considered as intermediate in impact velocity

range between the elastic and hydrodynamic deformation theories, and

is characterized by a paucity of r-;1iits on account of the uncertainties

in the constants of the material and complexity of the analyses hereto-

fore presented in the literature. A reasonable assumption made by

Pytel on a previously sponsored AROD project (also by some other litera-

ture) has been that of linear viscosity, so that the methods of the

equation of diffusion or heat conduction were applicable. Although it

becomes possible to solve this equation explicitly with the given

boundary conditions, the cld solutions failed to predict the time when

motion is stopped or the final shape of the target.

The need for comptring results with these prime physical ob-

servables led to to undertake a new investigation of this problem. At

this time specimens of deformed target plates of Is rolled armor steel

became available from Watertown LAsenal Laboratories. etched by Ober-

hoffer's reagent. These yielded values of deformation uknder the pro-

Jected impact by direct measur-nent. Even though reletively few such

specimens were available, they constituted an oppcrtunity for an im-

proved the•.retical approach to the problem. Following suggestions in

the literature which assumes the prdomIinant forces in the deformation



of a plate under impact to consist of frictional forces, the new feature

is to suppose there is a threshold stress level or impact yield constant

at which flow starts, and below which t+)- matpri-l i- Pit-her elastic or,

more simply, rigid. This behavior prevents the material from flowing

indefinitely.

The analysis of this non-linear problem is described in Techni-

cal Report no. 5, presentation no. 1 and publication no. . Values for
7

impact yield constants of 210 x 10" psi were found for mild steel and

deformations agreed very well with those shown on the etcaed soecimenn.

.PF-etration in Fiberglass Reinforced Plastics (FRP)

This investigation was undertaken to determine the basic know-

ledge of impact behavior of a class of materials (FRP) and was especial-

ly spurred on by the needs of the military for light personal armor.

A series of 70 penetration tests were completed of small caliber pro-

jectiles through laminated fiberglass plates. The material, in proper

combinations, ias found to give a substantial saving of wcight (141 to

50Y-) over steel for the same stopping power. A firing range was built

and projectile velocities, both incident an! resilual, were measured at

6 ~stations by alunin= foils, in cn-juncticn with a Polaroid camera aný

an exterrally-triggered oscilloscope. (Publication no. 3)

L. Couple-Strtesses

The theory of couplA ...... originally 4eV n-,, p by Min•n,.

was extend n to a cylindr¢ical of one -.a a. L-be,,e! in

anothor medi.. uxricr aniaxial t,,n:-i,:n, ar.]. ha: ,'is^"t'h• . . ...-

co-ncentration factc-rs at the int-rface ..... c.. b. a:•-",t ,-

OR higher than that given by tIh c rioca the-oryvf -- a:ti 'y.

(Publication no. 4).
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5. Other Completed Work

Our work on viscoelastic waves and further studies in penetra-

tion dynamics, which have not previously been reported, are covered in

detail further below in thts report.

6. Recent Work (last 6 months) Not Completed

One of the really large problems in dynamics is the analysis

of stress wave propagation in multi-dimensional bodies. The analytical

solutions to date apply only to very simple geometries. Our success

with the use of discrete approaches for the various plane and spherical

geometries has led us to attempt to apply this method to the afore-

mentioned problems. To date, some test cases have been solved.

The same general approach is also applicable to a class of

statical plasticity I oblems. To date we have validated this method

for some known problems in the literature.

The analysis of flexural travelling waves has produced solutions

for step and ramp moment inj,,ts, but step-shear input is still unsolved.
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Viscoelastic Wawv3 with Reflection

for Longitudinal Impact (Ch. I-IV)

by

M. L. Wenner

Armor Penetration Dynamics (CH. V-VIII)

by

R. Minnich

J - ~ - ~ 'r *--
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NOMENCLA'rURE

VISCOELASTIC WAVES

p Mass density of bar material

x Longitudinal coordinate

t Time

v(xpt) Velocity in x-direction

A Cross-sectional area of bar

oT(xpt) Tensile stress in x-direction

E(xt) Tensile strain in x-direction

PO Pressure at origin

c Glassy (fastest) wave speedg

t Time duration of stress inputp

E(t) Viscoelastic relaxation modulus

E Spring constant-standard linear solid

E' Spring constant-standard linear solid

1/tL Dashpot viscosity coefficient-standard linear
solid

i Number of bar elements
m

k Number of time elements
m

dx Change in x-coordinate

dt Change in time

E(t 0 0) Glassy state relaxation modulus

de Change in strain

L Length of bar

dv Ch6nge in velocity
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VISCOPLASTIC IMPACT

X Longitudinal Coordinate

T Time

o(XT) Compressive stress in X-direction

E(XT) Compressive strain in X-direction

V(X.,T) Particle velocity

p Mass density of bar material

0° Static yield stress(compressive)

A Cross-sectional area of bar

D Material constant

p Overstress exponent

G Mass of striking body

sl 1 Slip factor

L Length of bar

V Initial velocity of striker

x Dimensionless coordinate (- X/L)

t Dimensionless time(- %oT/pDL2)

6 Dimensionless stress (- 0/0o)

v Dimensionless velocity(- V/DL)

v Dimensionless impact velocity () Vo/DL)

7 Dimensionless strain (- °0 c/pD2 L 2)

k Dlinernsivnlesb .-ass factor(- G/pAL)

1 2
71f The quantity 1 k v

2 0

i Number of bar elements
m

k Number of time elements
m
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t Timre at which unloJading be-i,,s
0

t 1 Time at which all motion stops

dv Change in dimensionless velocity

dT) Change in dimensionless strain

do Change in dimensionless stress

dt Change in dimensionless time

"is replaced by"
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Chapter I

INTRODUCTION

1.1 On2-Dimensional Impact

Since the problem of one-dimensional elastic stress uaves

in a slender bar was solved by Newton in 1685, it has been recog-

nized that the one-dimensional problem is quite valuable for de-

veloping and checking further analyses on more complicated cases.

As our store of knowledge increases, however, we find that the

material representations which are most realistic are usually those

which also present the most difficult mathematical obstacles. Thus,

even the simplest cases of dynamic problems are difficult to treat

analytically.

It ts proposed to analyze in this thesis two problems of

lengitudinal impact of slender bars. The ultimate concezn here is

to obtain solutions for realistic materials, since only in this way

may it be expected that a contribution of a quantitative or of an

engineering nature may be made.

The problems to be analyzed are stress waves in a viscoelas-

tic material and plastic impact of a viscoplastic mate'iaal. The

material representation for the viscoelastic material is cze which

can be directly obtained from experiments, namely, the relaxation

modulus in tension. The conventional method cf desc-ibing a material

by a spring-dashpot model will be discarded. The law used herein to

. .... .. . fl'- r Ot••hF •,.,r - -S. - -- .,
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describe the viscoplastic material will be a nonlinear stress-strain

zate law.

In the following, two problems will be explained concurrent-

ly since many of their aspects are quite similar. When there is a

dissimilarity, separate treatments will be used.

1.2 Introduction--Viscoelastic Waveb

With the increasing use of viscoelastic materiels in such

diverse applications as insulations, binders for solid fuel rocket

propellants, and structures, there has occurred an increase in the

numnber of theoretical iivestigations into the subject. These have

been hampered, particulatly in dynamic analyses, by formidable

mathematical difficulties, which are normally overcome by representing

the material by means of spring-dashpot models. These models simplify

the analytical Froblems considerably, but at the expense of inade-

quately describing the matetials. In fact, the commonly used models

consisting of two or three elemients exhJbi, nearly all of the change

in a particular viscoelastic function in a sitmgle logarithmic decade

of time, whereas e;.periments show that actual viscoelastic -nateria1s

require at least seven to fourteen logarithmic decades of time to

describe their full range.

The problem of one-dimensional wave propagation in visco-

elastic bars is among the simplest of dynamic problems to state, but

no analytic solution has yet been obtained which does nuL depend

in one way or another upo.n a material representation of springs and

dashpotu. A general solution to this problem would determine stress

W ---
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(or strain) in a hat- as a functien of time and position, using

only the experimentally obtained material data and the boundary

conditions on each end of the bar. It is one of the purposes of

this report to develop an analysis which yields such a solution.

In analyzing the problem of one-dimensional wave propagation

in viscoelastic media the following assumptions are made:

a) The bar is assumed to be slender enough that

we have plane waves. Hence, lateral effects are disre-

garded, and the stress is uniform on any cross section.

b) The displacements are infinitesimal.

c) The bar consists of a linear viscoelastic

material and thus obeys Boltzmann's superposition principle.

This principle, which forms the basis of all linear visco-

elastic analysis, will be stated in Section 2.2 below.

d) The bar is assumed to have a uniform cross

section.

A complete solution to this problem must show the response

of a viscoelastic bar subjected to impulsive loading as a function

of time and position. It will be readily adaptable to free or

fixed ends, and will show the reflection of the waves from each end.

It is hoped that this will provide a direct means by which to

compare theoretical results with experimental results.

1.3 Introduction-Viscoplastic Impact

In order to adequately describe the pheomenon of deformation

IF-
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of materials in which plastic deformation occurs at a high rate, it

has been found necessary to incorporate a constitutive law which

takes into account the strain rate. A simple type of experiment

is the axial impact of a prismatic bar by a finite mass.

One of the laws proposed for this problem is a power law

relation between strain rate and dynamic overstress. The advantage

of choosing this l&w is that some material data are available from

test results and the law has shown to be effec.tive in predicting

deformations of cantilever beams even when the physical cu,,stants

had to be zrudely estimated. This past success should be a stimulus

to further invesLigation in order to determine if the law in question

adequately describes different problems. If this is the case, the

theory could be used Logether with experiments, in order to determine

the physical constants more accurately, thereby producing solutions

for other problems.

The following assumptions and conditions are imposed on the

analysis:

a) Uniaxial stress is assumed, and no lateral

effects are admitted.

b) The material is rigid viscoplastic; that is,

no strain increment occurs at a point unless the static

yield stress there is exceeded. This is a realistic

assumption if the plastic deformation at a point is much

larger than the elastic deformation.

c) The striking mass moves parallel to the axis
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of the bar and after impact, it sticks to the end of the bar.

d) The constitutive law is a power relation be-

tween the strain rate and the dynamic overstress. This law

will be stated explicitly in section 2.3 below.

The law to be used in this analysis is a more general one

than has been used previously in the problem of longitudinal impact

in viscoplastic rods. These results should enable researchers to

more accurately evaluate the worth of this particular constitutive

law.

1.4 Past Work--Viscoelastic Waves

Most of the analytic investigations accomplished to date

have used Maxwell. solids, Voigt solids, or a combination of the two.

The Maxwell model, proposed in 1890) is a spring in seriec with a

dashpot, while tne Voigt model (1892) is a spring ia parallel wIth

a dashpot. These models have been used not only for stress wave

problems but also for vibrations and quasi-static problems.

.

Hillier 1Il has used the Maxwell model, Voigt model, and

two models using three elements each as material representations ior

the problem of longitudinal sinusoidal waves in a bar. This is of

course a vibrations solution and no trancient effects are cunsidered.

The transient problem vac treated by Lee and Morrison (2),

also using simple model representati.ns. Laplace trauformz

Numbers in btackets refer to references i&tcd in Bibliography.

Mawr. - 4 ----.- -- -
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techniques were used in order to solve the boundary value problems.

Kolsky 131 performed experiments oo a viscoelastic material

by subjecting a rod to explosives at one end and recording the

respcnse of the other end. An analytic solution waa obtained for

the same problem by using Fourier analysis. The theoretical re-

sults compared favorably with the experimental results.

A partial solution to the problem is givern by Bland [4).

In this analysis a wave front expansion is used which yields a long

time solution. We desire, however, to find a complete solution

whenever possible.

Morrison [(5 has given integral solutions to several model

representations, including the standard linear solid which will he

described below. Laplace transform methods were used, with a

numerical inversion. Our computer solution will be applied to this

model and the results compared to Morrison's.

The most comprehensive solution Lo this problem to date

has been given by Arenz [6]. tn this study the materi.al is repre.

sented by a Kelvin model consisting of a glab!' apoting plus n

VoLSt elements in series. Arenz uses this model with nine Voigr

elenenta to represent the real part ot the complex shear compliance

of a polyurethane material. Transform techriques are used with two

different rethods of inversion. These methods were formulated for

other applicaticns by "-hapery [7,91.

Several review articles have recently been published con-

cerning dynamic ph!rnc-mena in viscoelastic materiais. tor. refer-

er'es to Ehese 1,roble-s may be found in tne papers by Zverev [9),
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Lee [0], and Hopkins [II .

1.5 Past Work--Viscoplastic Impact

The constitutive law, a form of which we shall use in this

analysis, was first proposed by Hohenemser and Prager [12). It is

for a solid of the Bingham type in which elastic deformations are

neglected and in which the strain rate is related to the amount by

which the stress at a point exceeds the static yield stress. Several

experimenters [13, 14, 151 have shown that this type of law satis-

factorily describes the plastic impact of beams and other structures.

Lee and Wolf [16) made an investigation of longitudinal im-

pact on a rigid-plastic bar in which the material was considered to

be linearly strain-hardening but rate independent. Yn using their

solution to analyze tests mrede by Habib [17], Lee ard Wolf showed

that rate dependence effects may become of importance if nonuniform

strain distribution resuitirng from plastic wave propagation is ig-

nored.

The linear form of the rigid-viscoplastic laI.. has formed the

basis of several studies. Sokolovskii [18] used it to solve several

problems of plane shear waves in semi-infinite media, and Ting and

Symonds [19] used it to analyze the problem of longitudinal impact

of viscoplastic bars. The same two authors also give [201 some

approximate methods for the nonlinear case and compare these re-

suits with both the linear case and with the simplest rigid-plastic,

rate independent problem. They conclude that for the case of high

impact velocity of a large impact mass the assumption of unitorm
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final strain is reasonable. We shall have some comments on thii

assumption and shall show its limitations.

Some review articles which will provide more references

are Lee's review [10] which treats elastic-plastic problvms, and an

article by Cristesci (21] which describes European contributions.
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Chapter II

MATHFMATICAL FORMULATION

2.1 Pettinent Mathematical Relations

The standard method by which physical problems of this

sort are solved is to write down the appropriate mathematical re-

lations, combine them, and then solve the resulting boundary value

problem. The approach used here also depends, of course, on a

certain combination of physical laws, geometrical relations and

definitions. In particular, what we need are: definition of strain, a

geometrical relation between strain and velocity, the impulse-

momentum law, and a law relating stress to some other parameters.

These form the basis for each of the two analyses given.

2.2 Mathematical Formulation--Viscoelastic Waves

The physical conditions governing the one-dimensional

viscoelastic wave problem is shown in Figure 1. The origin is

located at the left end of a bar of length L. The right end may

either be fixed or free. The left end is subjected to an impulsive

stress loading at time zero; this stress may remain acting for any

desired amount of time. Thus, the boundary condition at the origin

is

oJ(Ot) -po [H(t) - H(t )j (2.1)

0 p
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where 11(t) is the IHeaviside step function and t is the time atp

which the stress is removed. The boundary condition at the right

end is

v(L,t) = 0 (2.2)

if the right end is fixed, or

C(L,t) - 0 (2.3)

if the end is free.

The equation of motion governing the one-dimensional

case is

/ =P 2 u/ t 2  (2.4)

and the definition of strain is

-= U/X (2.5)

The above is standard analysis, ani may be found, for instance,

in Timoshenko [27].

We now require a stress strain law for the viscoelastic

material. Normally, this is obtained from a model representation.

For instance, the stress strain law for the standard linear solid

shown below is

(l/E')do/dt + 4a (I + E/E')de/dt + EEi. (2.6)



26.

El

E

a(t)

The standard procedure is to insert equations (2.6) and

(2.7) into (2.4) and solve the resulting partial differential

equation subject to the boundary conditions, usually by transform

techniques.

However, the general stress strain law for a linear visco-

elastic material is given by the Boltzmann superposition principle,

which is, in fact, the definition of a linear viscoelastic material.

This is an integral equation and as given by several authors (4,

22, 231 may take either of two equivalent forms. One representation

is

t

o(t) - C(t)E(t - 0) -f C(T) dE(t -T) dT. (2.7)
Jo d-

This is a Riemann-Stieltjes integral, and when we apply integratien

by parts,

)- J E(t - T) de(T) JT. (2.8)
di
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There arc corresponding integral relations giving the strain when

the stress history is known. In (2.7) and (2.8) the function E(t)

is the relaxation modulus in tension and it is the stress/strain

ratio as determined from a relaxaticn test. In this test the

material is suddenly subjectcd to a strain which is subsequently

held constant, and the stress required to maintain this deformation

is measured as a function of time.

Inserting one of equationi (2.7) or (2.8) with (2.5) into

(2.4) gives an integro-differential equation wh.ch has not yet been

solved mathematicaliy. Instead of attacking this equation, we

propose to use the Boltzmann superposition principle as the basis

of a so-called "computer analysis" to solve the one-dimensional

wave problem fsr any linear viscoelastic material.

2.3 Mathematical Formulation-Viscoplastic Impact

Figure 2 shows a rod of length L, fixed to a rigid wall at

the right end and subjected to the uniform impact of a body of mass

G on the left end. The origin is loc3ted at the left end and the

impact occurs at time zero. The boundary conditit at the left end

is obtained by applying the irpulse-momentuw law at X - 0. That is,

G iV(OT)f/T + An(0,r) 0 0. (2.9)

The boundary condition at X - L is

V(L,T) 0 0. (2.10)

The impulse-momentuw .quation is

- - p VT(2.11)
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and the equation relating the velocity to the strain (where they are

continuous) is

/T -•V/•X. (2.12)

The equation relating the strain rate to the dynamic over-

stress is

P
T D (o-) if f y >l (2.13a)

7- 0 i f laI<a (2.13b)

where D and p are material constants. Several consequences of this

law should be noticed. First, upon being loaded, a material which

obeys equations (2.13) exhibits no deformation until the stress ex-

ceeds the static yield stress. Second, when a particular region is

unloaded from a stress which is higher than the static yield stress

to a stress which is less than the yield stress, that region will move

as a rigid body.

Following Ting and Symonds [19] we introduce nondimensional

variables in order to simplify the analysis. These nondimensional

quantities are recorded in the list of symbols, and using these

terms, the equations (2.11), (2-12) and (2.13) become

v/ -/s/x (2.14)

)v/*x -•r/•t (2.15)
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t . (s P if ,> 1i (2.16a)

-t 0 if I u<1 (2.16b)

respectively. In the case of p - 1 the combination of equations

(2.14), (2.15) and (2.16a) yields

2 2- v/t - 0 ifd s >l (2.17)

•2 /ýx2 -_ ý /ýt . 0 ifj 81 N 1 (2.18)

This is the one-dimensional heat conduction equation and analytical

solutions may be obtained for a number of problems. In a region

where I s j< I,

- 0 (2.19a)

ýv/ýx - 0 (2.19b)

2- 0. (2.19c)

In nondimensional notation the boundary conditions at the right end

becomes

v(lt) - 0. (2.20)

The boundary condition at x - 0 which was given by equation (2.9)

is

k •t " •x + I - 0 (2.21)

when combined with (2.16a) using p - 1.0. In nondimensitnal
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notation the initial conditions are

v(OO) - v (2.22a)

v(x,O) - T(x,O) 0 (2.22b)

s(x,O) - 1 for x > 0. (2.22c)

The solution of this problem is given by Ting and Symonds [19] with

solutions to three similar problems.

It is proposed in this repcrt to give a means by which to

solve the viscoplastic impact problem using the nonlinear case of

equation (2.13). This will be accomplished by means of a computer

analysis using the above relations as a basis. The means by which

these relations are written in finite form and the method by which

we incorporate them into a computer approach is given in the follow-

ing chapter,

W " Ir m___ - .; 97 - • "-
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Chapter III

COMPUTER ANALYSIS

3.1 General Computer Approach

The purpose of this section is to give a brief account of

the method by which both the viscoel3stic wave problem and the

viscoplastic lmpact problem will be solved. Instead of deriving

complicated equations from basic principles and then using the

methods of numerical analysis in order to obtain results, we shall

write down the physical laws, definitions, and assumptions for a

pa:ticular problem and use them in finite form. This is called

"computer analysis". Some of these relations are given in this

szction, and the method by which we combine them for computational

purposes is illustrated in the following two sections.

This method has several advantages over standard numerical

prczedures. First, the program is physically meaningful because

the ph)sical laws appear explicitly and the program actually follows

the phyrical processes as they occur. This fact makes Chis method

more desirable than the standard procedure in which equetions are

derived from simple laws and then subjected to finite-difference

anilysis which usually renders them unrecognizable. Secondly, the

prgrar, is easily adaptable to changes because often only one state-

ment need be modified with ro change to the rect of the program. In

the use of a computer to solve finite-difference equations w'hich



have bcen derive( f roin Lc h is ic principlesP the ent. ire I ogL must

usually be c hand whou1 one ot these basic laws is changed Thi rd-

ly, the resulting program is more efficient because finite methods

are used immediately rather than as a means to solve complicated

integral or differential equations.

Since we are using a finite process to simulate a continuous

process, some further features of the approach must be explained.

Unless stated otherwise the following comments apply to both the

viscoeiL.stic and the viscoplastic programs.

1. The bar is divided into a finite number of cells and

the basic equations are applied to each of these cells; the time

variable is periocically changed and the variables such as stress,

strain, displacement, and velocity are recorded for each cell and

for e.ich time. We consider here only bars of uniform cross section-

al area A. The length of a cell is dx, which is related to the

element of time dt for the viscoelastic program.

2. It has been found that the order in which the basic

equations are stated is ot great importance and the order given in

our programs is toe only one which has yielded a solution. The

reason for this fact is that our finite analysis must necessaril>

do one thing at a time whcrc.is in the actu.,1 physical process sever,.

changes m.ay occur at one tt,,m. 1h11 stabilitV of the proceuure is

dire tli) depe-ndent on thi• -der of t h', ctes.

3. Another iactor -:uc, h afte, ts stability is the :cic s. ze

ana the size c': tte z,. in-r-en- t. Dvtai.eC co-yr.e ts on thi,

probem. will be founa below in tliv discus.sion of cach prai:tcr
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4. The )rogram shouid be constructed in such a manner that

mincr changes may be incorporated in both the data and the procedure.

If possible, a single program should be able to solve several prob-

lems. For instance, a program might have a feature by which it may

solve a bar with a fixed or free end.

5. The program mechanism should be constructed so that the

physical process is as closely simulated as possible. This gives

an insight into the problem and may lead to further understanding

and study of related problems.

Figure 3 shows the notation by which the cells and stresses

are labelled. It should be noted that the stresses are shown in the

positive direction for the viscoelastic program, but in the negative

direction for the viscoplastic program in which compressive stresses

are regarded as positive. In each of the programs the index i runs

from I to i m and the time index k runs from 1 to km.

The cores of the two problems are similar and may be out-

lined as follows.

1. The law relating stress to strain is stated in finite

form and the stress in cell i + I is calculated and recorded. For

the viscoelastic problem this step is a numerical integration while

a finite form of equation (2.16a) serves the purpose for the visco-

plastic program.

2. The strain increment acting on cell i + I may be

written in terms of displacement as

dc= (ui+ ui)/dxi+ 1 (3.1)
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whCrC LhL disp1lacements arc given by

ui + I vi + I dt (3.2)

and

u, vi dt. (3.3)

Combining (3.1), (3.2) and (3.3) yields

d= (v1 + 1 vi)dt/dx' + i (3.4)

which is the form we shall use.

3. A cumulation process follows in which the strain in

cell i + 1 is replaced by the addition of de. + 1 to the original

strain c. + i" This may be written symbolically as

4+ - + 1  i + i. (3.5)

The symbol - is understood to mean "is replaced by".

4. The impulse-momentum law may be written as

Z F dt - change in momentum (3.6)

where the ieft hand side of (3.6) is the sum of the impulses. We

apply this law to cell i by noticing that the impulse on the right

end of the cell is ai + I A dt and the impulse on the left end is

Oi A at, where A is the cross sectional area of the bar. The

change in inomentuin of the cell is given by the mass times the
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increment of velocity,

M. dv (p A dxi) dv. (3.7)
1

Using these quantities in (3.6) gives

(p A dxi) dv = a A dt - Ci A dt

or., in the form which we shall use,

dv = (Ci + 1 - Oi) dt/p dxi. (3.8)

Note that this gives an increment of velocity in cell i as a result

of a net impulsive force acting on that element.

5. In order to calculate the actual velocity of cell i we

use the relation

v - v. + dv. (3.9)1 1

This is actually an integration process which recalculates the

velocity in cell i.

6. The position along the bar is calculated by another

integration process which we write as

xi + 1 - xi + dxi' (3.10)

These six relations, taken in the given order, form the

basis of each of the two solutions. There are only minor revisions

in the problems which will be explained further below. Note that

two of the relations are mechanical or physical laws (I and 4),
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while the others are geometrical definitions or integra).iors.

In each of the programs, thebe six ielations, (1) to (6) are

repeatedly calculated for values of the index tanging from I to i I"

Physically, i is the number of elements making up the entire lengthm

of the bar. This repetition for the index i is then nested in

another repetition procedure which increments the time variable by

means of the index k. This index runs from 1 to k MP where k is

the total number of time elements. It should be noted that all

boundary conditions such ab stress at x - 0, momentum interchange

at x - 0 or a velocity condition at x - L are included in one or

both of these steps. Any initial conditions t as on the stress

field for the viscoplastic problem) are included before-hand.

The above is a general sketch of the method to be employed.

The details of the solution for each of the programs are given in

the following sections.

3.2 Computer Theory-Viscoelastic Waves

As previously stated, a spring-dashpot model of two to four

elements is not sufEicient to describe a realistic viscoelastic

material. Although the number of elements in the model could

theoretically be increased so that the model would represent any

given material very closely, this procedure is not recommended be-

cause it leads to a numerical analysis scheme of probhibitive length

and complexity. Therefore, we shall ignore models of this sort

entirely and shall use the Boltzmann superposition principle.

Instead of writing the integrals cited previously [equations
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(2.7) and (2.8)] we shall deduce the proper form of the law

directly from the definition of the relaxation modulus and the

superposition pcinciple. Recall that the stress at any time in a

viscoelastic material due to a constant strain suddenly applied at

zero cime is given by

Cy( L) E(t) C (3.11)

where c is the constant strain. If the strain had been appliedo

not at time zero but at time t T , the relation wou'd L!

G(t) - E(t -T)f° (3.12)

since we must use the value of the relaxation modulus whose argument

is the elapsed time since the strain was applied. Now let us apply

(3.12) to a particular cell, say cell i + 1. Then the increment

of stress on cell i + 1 at time tk due to an applied strain dci + 1

at time t will be given by

doi + 1 - dci + 1 (tm + 1) x E(tk - tm + 1) (3.13)

In order tT calculate the stress on the cell due to a series of

successively applied strains the Boltzmann superposition principle

is used. This states that we may use (3.13) to compute the quantity

doi + I for each strain applied and add these quantities in order

to obtain the value of the total stress. Thus, the total stress

is given by

Cli + I dc d +1 (tI) x E(tk tI) + dci & 1(t2) x E(tk - t2)

+ . . + dEi + l(tk) x E(t - 0) (3.14)
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If we take the limit as k tends to infinity and dei + I tends to

zero we obtain the familiar representation of equation (2.8):

O(t) - E(t - T) de(T) dT. (2.8)
Jo dT

The equation (3.14) is not quite the form which is used in the

analysis. This is because the propagation of stress waves is a

continuous process and (3.14) was written for a finite number of

constant valued strain increments. Therefore, in order to obtain

the correct value of wave-front stress and to more accurately

describe the continuous process, the terms E(tk - tm + i) are re-

placed by E[tk - 1(t + + )I. That is, the strain is regarded

as being applied at a time halfway between the times t and tm+Vm m l

It is imperative to do this in order that a correct value of the

wave front stress is obtained. If E(tk - t m) were used, the wave

front stress would not be relaxed at all and if E(tk - tm + I) were

used, the stress wold be relaxed too greatly.

A diffetent form of the integral equation can be obtained

by applying an integration by parts to equation (2.8). The result

is
tt

o(t) C €(t) E(t - 0) - E(t) dE(t - T) dT. (2.7)
fo td&

Thia representation is attractive because it quite strikingly shows

two physical phenomena. The first term on the right represents the

stress acting on the element as a result of the strain which has

defotmed it at the instant considered. This part is completely

"-j --.b -o -- -- w-.~ -~--*- ~ - -



analogous to Lhe case of elastic waves in which the function E(t)

would be a constant. The integral, however, represents in our

problem the process of relaxation in which the stress which has

been acting on the element for some finite time is reduced in value

because of the nature of the relaxation modulus. Ir order to apply

the analysis of this report to the integral, we again write in-

crements of stress and add these increments. In this case the

quantity dai + 1 is calculated by

d~i 1j = +i + 1 (t + I) [E(tk + I - t+ - E(tk - t m )].m+m E k-t m +2

(3.15)

Inherent in this equation is the assumption that the strain on

element i + I is constant from time t to time t This

equation is calculated for the entire strain history of the element

and the stress is thus integrated. The complete the calculation

of equation (2.7), the "elastic" part of the stress is calculated

by means of

doi + i + 1(tk + 1) E(t - 0). (3.16)

It was found that an effective way to increase stability in

this program was to comipte the integral in two places in the

procedure of the problem. Therefore, the order of the laws giw-n

in section 3.1 was modified as follows. (1) The first calculation

is the evaluation of the integral as described abc'se. (2) The

increment of strain dE.i + (tk) is calcutated and added to the
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strain on cell i + 1 at the last time index, k - 1. Thus we cal-

culate the strain Ei + 1 (tk), which had not as yet been available.

(3) This newly calculated strain is then used to obtain the elastic

part of the stress by means of equation (3.16). (4) The integral

is again evaluated, but now the strain Ei + I(tm + 1) has been cal-

culated for m + I - k, whereas it had not been available for the

first integral calculation. (5) The stress ai + 1 is now calcu-

lated by adding the elastic part of the stress to the average of

the two integral calculations.

The reason that it was found necessary to incorporate this

somewhat artificial device is that if it were not used, the integral

would be evaluated either by using all of the strain E + l(tk ), or

by using none of it. Either of these two alternatives may lead to

serious errors. For instance, a stress may be calculated which is

higher in magnitude than the input stress, or a change of signs may

occur. Either of these errors tend to be magnified as the calcu-

lation proceeds, rendering the results meaningless. In addition,

our method is probably closer than either alternative to tfe actual

physical process in which several changes occur simultaneously.

The only other exceptional feature of this program is that

the elements of time need not be equal. Since elements of time are

related to elements of distance (cell size) by the relation

dxi a c x dt (3.17)
i g

it follows that the cell sizes may likewise be unequal. If the;e

sizes are unequal, an interpolation procedure is required in order

IV __ - .-
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that the proper values of the relaxation modulus are available. A

linear interpolation is used which introduces some errors into the

glassy and transition regions of the modulus; these are not serious

if the time elements are small enough.

Two schemes have thus been devised for the calculation of

viscoelastic stress waves. The remainder of what follows in this

section applies to both representations.

In order to allow these schemes to be used for bars with

fixed or free ends, an "end factor" ic employed. This is simply a

numbf-r, either one or zero, which is multiplied with the stress

aim + I" If the bar is free at the right end, EF - 0.0, and if the

right end is fixed, EF = 1.0. Thus, the stress at the end of the

bar is made to be zero for a iree end, and is undisturbed for a

fixed end. These conditions lead, by means of the impulse-momentum

law, to the proper type of reflection at the right end.

The left end condition is decided by means of a test in

the time repetition loop, but outside the position loop. This test

applies a given constant stress, either tensile or compressive, to

the first cell if the time is less than t and applies no stress ifp

the time is greater than t . It would be a simple matter to applyP

any given Ntress at any time to the bar, but since this would add

essentially no new inforn'ation or new understanding t,, tte problem,

it was not done in our program.

The basic laws as they appear in the double integral program

are shown in Figire 4. Note that this diagram is merely the logical

"skeleton" of the program.
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REPEAT FOR k I, . km

REPEAT FOR i • I,.-, im

REPEAT FOR m'I,-. k

BOLTZMANN SUPERPOSITICN
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8 a oEIlEM0I a 0) I ELASTIC STRESS
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dvi w(a1, 1 ..si) dt/pdx IMPULSE - MOMENTUM
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FIG. 4 VISCOELASTIC COMPUTER SCHEME USING TWO
BOLTZMANN SUPERPOSITIONS



3. 3 Compiuter Thc.ry-Viscoplastic Imrnc,

This program was construct,_ along the general lines given

in section 3.1. A minor difference is that the strain increment is

calculated and integrated before the stress-strain rate iaw is

applied. This order was chosen because the stress-strain rat? law

is not used when there is no deforn:ation occurring, whereas the

strain is always calculated. Thus, the order i nerely a mdtter of

-onvenience, since this particular choice does not alter the logic.

The basis of the scheme is outline in Figure 5.

In the computer procedure we write the stress-st'ain rate

law, equation (2.13) as

si + = i.0 + f(vi - vi + 1)/dxj 1 /P J.f vi?.Vi + I (3.0ia)

s 1.0 if V <v. (3.18b)+ 1 i + I

This representation uses somewhat different criterion than does

equation (2.13). In (3.18) it is the velocity that determines

whether or not dieformation occurs whereas in (2.13) the stress is

the determining factor. This difference arises because the initial

input to the bar is a velocity on the left end. This, of course,

gives rise to stresses, but we follow the difiusion of velocity

through thi bor and use it as a "deiorm•ttion criterion'

The 'ns by '-hich this deformatLon decision is r.n.de is

the use of "slip factors". This is a factor (called si. in the

pro,-ram) which takes the value of 1.0 ,f cells , arnd i -i ire
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FIG. 5 VISCOPLASTIC COMPUTER SCHEME
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deforming relative Lo each other, and the value 0.0 if the cells

i and i - 1 are moving with the same velocity. We thus have

sl. = 1.0 for v. I V.1 i -i 1

sl. = 0.0 for v. = v.

The dynamics of cell number i is thus determined by the

relative values of the slip factors sli and slI . We compare1 i+l

these two slip factors by computing their difference, sli+1 - sl..+

The results of this subtraction may lead to any one of three

possibilities; that is, the difference may be zero, positive, or

negative. There are actually, then, four dynamic conditions:

(Al. sl. = sl + 0.0)
A. sl - sl. = 0

i + I (A2. sl, - sl - 1.0)
"1i +i

B. sl i + - sl > 0 (sli = 1.0 sli = 0)

C. sli + - sl. < 0 (sli = 0.0, +I = 1.0)

This method was devised by Minnich and Davids [25] for

anothev application, ind the details of their method are similar in

some respects to those used here. However, the method will be

given explicitly here since the physical conditions of the two

applications are different in a number of circumstances.



48.

Condition Al si. = sl. 0.0

i 51.f-

i-i i i+l

S- i Vl+-

In this case, since each slip factor is zero, the three

velocities shown above are equal and there is no net force on cell

i. Therefore, its velocity increment is zero and, if we write the

impulse-momentum law in the form

dv - (s, x sli. - Si + x l )dt/dx (3.19)

we may use (3.19) to calculate dv.

Condition A2 sli - sl. + 1.0

811 sl 1

i i i +1

1 i i i+1
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Now deformation occurs at both ends of the i - th cell and

therefore there are stresses on each end of it. Thus, equation

(3.19) may again be used.

Condition B sl. = 0.0, sli + 1 = 1.0

sl. sli + 1

i-I i i+l

---- +~ ~ --- 1 --

V Vi Vi

Physically, this means that the material immediately to the

left of the i - th cell is not deforming, while the material to the

right is deforming. Thus, the region in question is in the "un-

loading" process in which the boundary between rigid and deforming

material is moving to the right. Ting and Symonds[19] prove that

this unloading must start at the impact end of the bar, and since

this is a diffusion phenomenon~once a region has unloaded, it will

not deform again. We thus use a form of the impulse-momentum law

in which the mass of the striker must be Laken into account. This

is

dv = -si + 1 dt/k. (3.20)

This velocity increment is added to the first i cells.
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Condition C si = 1.0, si = 0.0

L+ 1

sli sli

i~ i+
i- I i i+1

vi i liil

In this instance the material to the left of the i - th

cell is deforming while the material to the right is rigid. This

corresponds to a loading process where the deformation field is

moving to the right. Since si + i must be 1.0 and si must be

greater than 1.0, deformation will be initiated to the right of

cell i. Therefore, sli + 1 is set equal to one and equation (3.19)

is used.

The structure of the logic for this program is indicated

in the schematic diagram, Figure 6.
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Chapter IV

RESULTS OF CALCULATION AND DISCUSSION

4.1 Standard Linear Solid Material

Two computer programs based on the theory given in sections

2.2, 3.1 and 3.2 were written in the Fortran language. These

programs are given in their entirety in Appendices A and B.

In order to check the validity of the programs, runs were

made using the standard linear solid to represent the material. The

values of the system parameters were chosen as follows:

E = E' = 1.0

1/p.L - 1.0

p = 1.0

p - -i.0

The relaxation modulus in this case is

-t
E(t) = 1 + e (4.1)

Actually :hese values were chosen in order to facilitate a comparison

with both Morrison (5] and Arenz [6]. As Figure 7 shows, the in-

tegral solution by Morrison, the Laplace transform method o' Arenz,

and the computer solutions agree very well.
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As a point of interest, we show in Figure 8 the response of

a bar of the same material and at the same location. The differ-

ence this time is that the bar ha6 a finite length (L - 2.828), ý'nd

the right end is fixed. A constant unit stress is applied at the

origin. The step discontinuities in the response are due to the

reflections from the ends of the bar.

Several facts should be noted from the diagrams. First,

the response of the bar takes place in less than two decades of

log time, thus bearing out what was stated previously: that the

standard linear solid is a fictitious material. Also, if the

response of two bar locations are plotted, the slope becomes less

steep, as we should expect.

4.2 Realistic Viscoelastic Material

We now apply the program to a realistic material. Visco-

elastic data was taken from a thesis by Arenz [6] for a polyurethane

synthetic rubber, a low moduluq polymer. The relaxation modulus is

shown in Figure 9. There are some grap..s given in Arenz's work

showing stress wave behavior as calculated by an approximate Laplace

inversion technique. The single integral program was applied to

this material and a comparison of results is shown in Figure 10.

The high frejuency response as calculated by Arenz is slower than

our data. This :ieems to be true generally. Also, Arenz obtained

some oscillation in the high frequency response, supposedly due to

alternate reinforcement and interference of waves of differing

frequency and therefore differing speeds of propagation. No such
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occurrence was obtained in our analysis, and indeed it seems likely

that the oscillation reported by Aren:! is not a genuine physical

fact, but a result of some mathematical approximation. The

transition region of the response is quite well matched for the

two solutions but some divergence is apparent at large time. It

is believed that this is due to an inaccurate low frequency material

representation in this analysis.

The double integral program was applied to another, similar

material in reference [24]. This program does not seem to operate

as effectively as the single integral program, and there was some

scattering of results. Figure 11 shows the response of this

material (Hysol 8705) at two positions along the bar x = 1.77 inches-"

and x = 3.29 inches.

It was found that several factors could give rise to in-

stability in either of the programs. First, the time element must

be chosen small enough so that enormous changes in the relaxation

modulus do not take place. This factor is far more criti.al for

the double integral program than for the single integral solution.

-3
The time interval was taken as 3.0 x 10 sec. for the results in

-7
Figure 10 and as 1.0 x 10 sec. for those in Figure 11. Secondly,

since each of the programs incorporates a linear interpolation, the

material data must be given to the program at quite a few points.

Normally, the data was given at log time increments of 0.1 and even

this is not enough for response calculations at positions where the

glassy wave speed arrival time is less than 10 sec.

The double integral program was so written that variable
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elements of time could be chosen. It was found, howevt.r, that

actually using variable time elements leads to serious errors in

most cases. Generally, it may be said that the time increments

should be decreaseA in size as the time increases. This, however,

is not an advantage over taking equal time increments, insofar as

required computer time or representation of material are concerned.

It may be said that for all cases tested, the single integral

program outperformed the double integral program in every way.

Furthermore, it is more efficient than the double integral program.

4.3 Viscoplastic Impact

A program incorporating the theory of sections 2.3, 3.1 and

3.3 was written in Fortran. This program is shown in Appendix C.

The case of the overstress exponent equal to unity was

performed first, and the results were compared with those of Ting

and Symonds [19]. Figure 12 shows a comparison of our stress cal-

culations with those of Ting and Symonds. This plot is the quantity

(s - 1)/v 0 versus the dimensionless distance x. The calculation is

for values of k - 1.0 and v - 1.0. Calculations for other values0

of k and v0 showed similar agreement with Ting and Symonds. Figure

13 shows a plot of dimensionless strain, 71, divided by rf (which is

defined as the uniform strain which could absorb the initial kinetic

energy at stress s - 1) versus the dimensionless distance. The

2
quantity if is equal to one-half the product k v° . Again agreement

was as close for other values of k and v0 . In Figures 12 and 13 the

values of to and ti are the times at which the striker stops moving
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and the velocity in the entire bar vanishes, respectively,

The case of overstress exponent equal to unity is quite un-

realistic. Dh engineering situations, we would require an analysis

using the correct value of p. For mild steels, p - 5, and for

aluminum alloys, p = 4; therefore, the analysis for p = 1 does not

give a quantitative answer to the impact problem.

Accordingly, we introduced the value of p - 4 into the

program. Thus the stress-strain rate law becomes

si + 1 - 1 + (vi - vi + i/dx)Q (4.2)

where Q = 1/p. No serious difficulties were encountered as Icng

as the value of the time increment was kept sufficiently small. For

instance, for dx = 0.050, the program operated satisfactorily for

dt = 0.001, but became unstable for dt = 0.01. This arises because

the computer performs one operation at a tine. If the time increment

is tou large relative to the distance increment, one parameter may

accumulate errors. The velocity field, for instance, may reverse

directions., or the strains become impossibly high.

The results of the calculations for p - 4.0 are shown in

Figures 14 and 15, where they are compared to the solutions for

p - 1.0. As could be seen from the general law, the strains are

larger for this case. Also, the stresses are lower initially but

increase to a higher value at times t - 0.1 and t = 0.36. The time

for complete cessation of motion for the case p - 1.0 was t - 0.770.

At this time there was still plastic deformation occurring in the

,ar when p - 4.0. It was also noticed that the velocity of the

V -. '. mW
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1tLrikiig mjIss slows down much faster for p 1 th3nr for p I.. For

instance, with v - 1.0, k - 1.0 the striker velocity at t z 0.360

was 0.31 for p - 1.0 and 0.50 for p - 4; at t - 0.600) the velocity

was 0.07 for p a 1.0 and 0.25 for p - 4.



SU•MARY ANj CONCLUSIONS

;.. 1 Summary

The problems of longitudinal impact are important because

of their relative simplicity. Their study indicates the pertinent

physical laws of a problem and often indicates the direction in

which further research should be directed. Even more important,

they provide a simple and direct method by which a particular law

may be experimentally verified. The two proolems presented here

belong to that class of problems which have received considerable

attention in recent years. They are: viscoelastic waves in a

longitudinal bar and viscoplastic impact oi a longitudinal bar.

Viscoelastic investigations typically begin with a model

representation of the material. Som.e< of these studies are described

in the first Chapter. When simple models are used, however, the

material is highly fictitious. If a model is used which does repre-

sent a viscoelastic material, the solution usually involves an ex-

Lremely difficult numerical program. In this work a finite numer>;•l

scheme has been devised, using the Boltzmann superposition principl(

as tate s-ress strain law. Spring-dashpot gnodels 'tave beert eliminat".

altogether, and the actual material data is used in graphical form..

This method has been shown to solve problems represenLed by mocirLi

as well as problems represented by more realistic materials.

- • ! • . ... ... .. .''" "=-"W - -I - W- I'... "I-'.. . ...
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The current situation for plastic impact of bars may not be

sc easily summarized. There exist many mathematical models for these

phenomena, with varying degrees of complexity. We have chosen to

analyze the case of plastic impact of a finite mass on a bar of

length L, where the material is rigid-viscoplastic. That is, the

bar does not deform until the stress at a point exceeds the static

yield strength. When it does deform, it does so according to a power

law relation between the rate of strain and the amount by which the

stress exceeds the static yield stress. The solution has been shown

to agree very well with existing analytical results using the linear

law. The nonlinear case has also been solved, and a great difference

is shown between the linear and nonlinear cases. In addition, the

final strain for the nonlinear case has been shown to differ greatly

from that obtained by assuming uniform strain, when the impact mass

and velocity are small. Our solution also yields the value of

stress, strain and velocity at any point of the bar at any time, in-

stead of just the final strain.

A.2  Conclusions

The model representation of viscoelastic materials is in-

adequate to describe the phenomenon of stress waves. The definition

of a linear viscoelastic material is the Boltzmann superposition

principle and this should be used to calculate any short time effects.

The response of a realistic viscoelastic material takes place ever

a large number of decades of log time. This indicates that phenomena

occurring in material which is more rigid than that used here will
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require a great deal of time to reach equilibrium. We conclude

that the study of viscoelastic problems other than stress waves

should also use the Boltzmann principle.

The linear law of viscoplastic impact does not give quanti-

tatively correct results for common materials such as steels and

aluminum alloys. The nonlinear law also differs greatly from the

simplifying assumption of uniform r zin cases of low impact mass

and velocity. This is an important example for experimenters, since

it would be easier to conduct a test with small parameters than

with very large ones. Also, the nonlinear law extends the time of

the problem; since this analysis gives the complete stress, strain

and velocity distributions in the bar at any time, tests could be

made to check all these quantities for any period of time.

A.3 Suggestions for Further Study

The method of viscoelastic wave analysis presented here

should be used in an attempt to solve other problems of more direct

engineering and research value. The problems of two dimensional

waves and of long time duration, complicated geometry and with

accompanying creep are examples of other engineering applications.

In the area of research, a program of this nature might be used in

reverse to calculate material data with given stress wave response.

The interesting Fourier analysis of Kolsky [3] in which he calcu-

lated the stress wave response to an explosive discharge at one end

of a bar is a potential check on our method. This study is particu-

larly valuable because experimental data is also given. Finally,
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the problem of impact by a finite mass would be a valuable extension

of this problem.

The most it~mediate and important use of the viscoplastic

program would be to compare it with extensive experimental data

If justified, it could be immediately applied to other geometries

and structures. If the law is found lacking in any way, it might

be combined with strain hardening effects in order to decide what

type of constitutive equations are most applicable for 'ertain

problems. This could then be used as an aid in designing and in-

terpreting experiments. Eventually, criterions for failure by

various means could be added.
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APPLND)IX A

COMPILE RUN FORTRAN
C VISCOELASTIC WAVES IN BAR
c BOLTZMANN SUPERPOSITION PRINCIPLE

DOUBLE INTEG3RAL PROGRAM
C LIfT OF SYMBOLS
C x LONGITUDINAL COORDINATE
C T TIME
C S(1) " TENSILE SIRESS IN X-DIRECTION
C E(I#K) * TENSILE STRAIN IN X-DIRECTION
C V(XTI * VELOCITY IN X-DIRECTION
C AREA - CROSS-SECTIONAL AREA OF BAR
C RHO a MASS DENSITY OF BAR MATERIAL
C CG a GLASSY (FASTEST) WAVE SPEED
C TP a TIME DURATION OF STRESS INPUT
C PO - PRESSURE AT ORIGIN
C EM(K) a VISCOELASTIC RELAXATION MODULUS
C 11(M) - INTERMEDIATE TIME (uT(K+1)-T(M÷Itl

C EMO a GLASSY STATE RELAXATION MODULUS
SEMI(M) * FM EVALUATED AT TIME-TI(M)
C IL a LOG (TIME)
r IM a NUMBER OF BAR ELEMENTS
C KM a NUMBER OF TIME ELEMENTS
C DX a CHANGE IN X-COORDINATE
C DT a CHANGE IN TIME
C DE(IIK) a CHANGE IN STRAIN
C DV a CHANGE IN VELOCITY

DIMENSION E(22,120)'DE(22o120)tTI200)DT(200) DX(200)oX(200)
DIMENSION S(200),V(200),IDENT(16) EM(200)TLI200)
DIMENSION T 1200)tEMI(200)

I READ 801t IDENT
2 READ 802RHO#TP#PO
3 READ 802tAREA*EF
4 READ 804,91 KMIBoIE
5 READ 803, EtMJ)

801 FORMAT(16A5)
802 FORMAT (SF10.0)
803 FORMAT (EIO4)
804 FORMAT (8110)

EMO-EM(1)
CG a SORTF (EMO/RHO)
T(1 1.00
DO 101 N-ItKM
READ 805EM(N+1)*TL(N÷I)A

805 FORMAT (ElO*4*F10.9.I10)
T(N+I)*=0.0**TL(N+Il
DTfNtuT(N.1)-T(N)
DX(N)-CG*DTIN)
IF (A) 20o101.20

101 CONTINUE
GO TO 17

20 NIN.1
00 104 IoNloKM
EM(I÷1mE9M(NI)
DTfIl-DT(N)
)X IIIoC4'*DT fII
t(lII-twlfl)nt(Nl

104 CONTINUr
17 EMO a EM(1)

PRINT 901, IDENT
PRINT 902oRMO0TPoPO
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APIIEhNDlX A (con,.inued)

PRINT 903*ARIEA
PRINT 904o IM#KM
PRINT 908

908 VORMAr IHI920HTETNSILE MODULUS DlATA/)
DO 105 KxIsIM
PRINT 909,TL(K)oEM(K)

909 FORMAT (IH 9FiO.2*5XvFB.0)
105 CONTINUE

DO 10? Kn1.KM
WRITE TAPE 2.TlK)vISII)9I~ltK)

IF (K-1) 41,41,40
C INTERPOLATION PROCEDURE

40 DO 110 Nul.K
TI(N)uT(Ke'1 -TIN+1)
DO 1II JxlKM
FF(II(N)-T(J41 P 30.30.111

III CONTINUE
30 EM1IN)u-(EM(J+1l-EMIJ)) ITIIN)-TIJIP/ITfJ41,1%1,J) )4EMIJ')

110 CONTINUE
C STEP PRESSURE INPUT# LEFT END

41 IF (TIKI-TP) 11912912
11 PUPO

6O TO 13
12 P0,200

C PROPAGATION PROCEDURE
13 S (I )-P /AREA

00 103 1.1,114

IF (K-1) 27027P25
25 Am0s0

C ANELASTIC PART, BOLTZMANN SUPERPOSITION
32 00 107 MI*K1

AsA+EfI+1,M41)*IEM1IM)-EMIIM4I))
107 CONTINUE

C DEFINITION OF STRAIN

El I.1,K)aE(I+IvK1Il+OEll*1K)
C STRESS-STRAIN LAW9 ELASTIC PARt

8*E (I+1.10*EMO

D0 109 MI*KI
Ca(iEU41,om41)*f~lE,1m)-EmIImiiP

109 CONTINUE

IF (I-IM) 21,14,14
14 5(t+1)vS(1+1IPEF

C IMPULSE-MO4OENTUM LAW
27 OV.(5(1I,1IAREA-til AREA ODT.EKi/(RM0*AftA*OX(iIf

ViI )aVl I ['DV
X( Ilt~l II )40XlI1)

101 CONTINUE
102 C04TINUE

REWIND 2
PRINT 905. (X(I)tIuIBIEJ

905 FORMAT l1IMSI)Xvf1O.')
00 106 Kal*KM
READ TAPE 2*T(KP.1S(IPIa1,K)
PRINT 9I~K 11 aI.E

966 FOR14AT (INS*ElO.'.,IXo19F6*3)
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APPENDIX A (continued)

106 CONTINUE
500 STOP
901 FORMATr(Hlo4OXo25HVISCOELASTIC WAVES IN BAR/IH0O16',.
902 FORMAT(

112HOMASS DENSITY • 0 F10*IIOH 1/
23kH PULSE DURATION 0 9 F1O,1#o0H //
332H PULSE INTENSITY " o F101,91OH I3

903 FORMAT4
132HOAREA OF BAR a . FP0o11.OH I)

904 FORMAT(
132HONUMBER OF CELLS a s 13p /
232H NUMBER OF TIME ELEMENTS a , 13/11H!

END
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"p C: I. T r: ~ PI~ I

IN(-,N4I E iNH 'iWAL
C LIST Of SYML30LS

C LONGITUDINAL COORDINATE
C ii E
C S11) TENSILE STRESS IN X-DIRECTION
C EtI#Kl TENSILE STRAIN IN X-DIRECTION
C VIX*T1 a VELOCITY IN X-OIRECTION
C AREA - CROSS-SFCTIONAL AREA OF BAR
c RHO a MAS5 DlENSITY OF BAR MATERIAL
c rG v GLASSY (FASTEST) WAVE SPEED
C TO a TIMF DURATION OF STRESS INPUT
C Po a PRESSURE AT ORIGIN
C EM(K) a VISCOELASTIC RELAXATION MODULUS
c EMO a CLASSw STATE RELAXATION MODULUS
C TI(N) a INTERMEDIATE TIME
C EMI(M) a EM EVALUATED AT TIMEnTI(M)
C TL a LOri (TIME)
C !M , NUMBER OF BAR ELEMENTS
C KM a NUMBER OF TIME ELEMENTS
c Ox u CHANGE IN X-COORDINATE
e DT CH.NGE IN TIME
C DE(IoK) - CHANGE IN STRAIN4
C DV a CHANGE IN VELOCITY

DIMENS1014 E( 22,120) .OEIZZ.120OTZOOI,*TTZOC)
DIMENSION 5(200) ,V(?00I * DENTI 16) sEMIZ0OO TL(ZOO)
DIMENSION T1(20019EM11200)

I READ 801. IDENT
2 READ 8029RHOoTPoPO
3 READ 802*AREA*EF
4 READ 804#IM#KM*IBPIE
5 READ 8039EM(1),DT

801 FORMAT(16A5)
802 FORMAT (5F10.01
803 FORMAT (2E10.4)
604 FORM4AT (8110)

EMOVEMI 1
CG u SORTF (EMO/RHOI
D~arCG*DY
T(l ;'oO*

17 EMO aEM(1)
TB 1 )uO.O
DOf 101 J1.tzoo
READ 6099fL(J*1),EMIJ.1)*A

809 FORMAT (F1O.4oE10.4,1101
IF (A) 90.90.91

90 TTIJ.1I.1o)0*00TLIJ41)
T(j.1 I'T(J)*DT

101 CONTINUE
91 KmMMJ-1

PRINT 901.IDENT
PRINT 90ZRHO*TP*PO
PRINT 903*AREA.DT
r'RINT 904o IM*KM
PRINT 908

906 FORMAT I1H1.ZOMTENSIL1 MODULUS DATA/)
DO 105 KoloIM
PRINT 909,TTIK).(IK)

. .......
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10" (collIiIuUd

110 102 KwItKM
WRITE TAPE 2sT(KI,(SfIIv).IoKI

C PNTFHPOLATION PROCEDURE

IF IK-I) 419419'.0
40 T ItI I -T IK I-0*50DT

IF IK-21 42942.00
7C 0 DO10I Nw7,K I

T If N) aTI (N-i I -rT
110 CON4TINUE
42 D0 III N.1.oK

DO 112 Jwl*KMM
IF (TIlNl-TT(J*1,3 30o30.112

112 CONTINJE
30 EMI(Ni*(EM(J.1 3-EMI-JI 3'T1INI-TT(.J),/(TT(J.13-TT(JI4EM(Ji

III CONTINUE
C STCP PRESSURE INPUT, LEFT END

41 IF (rIT 11.12.12
11 PUP()

60 TO 13
12 P-0.0

C PROPAGATIO-4 PROCEDURE
13 Sfll%-P/APEA

D0 103 1 It 104
K IUK-Z.
IF IK-I) 27.27v50

C DEFINITION OF STRAIN

Etl .1*K).EllI*I1K1 )+DE( I*1.K)
C ANFLASTIC PART. BOLTZMANN SUPERPO5O.ITI0N

DO Ing mui.K1
CN-CN+t)E(l?+.'*m1 *IEMI (MI

109 CONTINUE
St 141)aCN
'F 11-iM) 2?,1'.14

14 a(1413 .51141 OEF
C IMP'JLSE-MO0NENTUM LAW

27 DV.IS(I1IO1AREA-SiI)'AREAIUDT/(RHO.AREAODXI
VII )*Vt I)*DV
XOX*D X1

101 CON YI mor
102 CON TI1NUE

REVINn 2

RFAOI)APF 2*TlKl,(Sfll9Iu1,K)
PRINT 906vT(K)9(SlI 1IGtuBsIE)

90o FORMAT fIiNSEI0*49IX*I9F~e3l
106 CONTINUE
510 STOP
'01 FORMATf!H1,40X*25NVIS(OELASTIC WAVES IN. OAIR'140@14AS)
02 F OR4A T I

IlHnOMASS DENSITY a 9 F1O.1*1OM /
232"4 PULSE DURATION a 9 P10.1,014 1
33)71 PULS~E 'NftfNSITY a * F10.1.slm /

901 FnQ1'ATI
132'HOAREA OF BAR 0 0 0.1.1014 I
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A PPi;ND I X B (Ico i I Iu d)

12"H rIZF OF TIME ELEMENT " * ElO.4,10H II
Q04 FORMAT(

).HNONUMFPER OF CELLS * , 13. II
232H NUMBER OF TIME ELEMENTS - , 13/IHII

E ND

-w
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ComF)IL R UN FOPTPAN
V v!SU)-Pt. ASTI( I MP4C T OF 11APS
FIN!Tc MAc imrACT ON LEFT FN#U
PCER STRFSS - STRAIN RA TE LAW

C DIMENSIONLESS FORM
C LIST OF SYMBOLS
C x DIMIENSIONLESS COORDINATE
C TT DIMENSIONLESS TIME
C S uDIHF'JSIONL[S5 STRESS
C V DIMENSIONLESS VELOCITY
C VO D:MrfJsION'.ES5 IMPACT VELOCITY

C E =DIMENSION~LESS STRAIN
C P OVERSTRFSS EXPONENT

C f) MATFRIAL CONSTANT
C XK - DIMFNSIONLESS MASS FACTOR
C ETA aTHE QUANTITY O.5*XK*(VO)**2*0
C Eý v E/ETA
C 5S (S-t.0)VO
C SL a SLIP FACTOR
C IM - NUMBER OF BAR ELEMENTS
C KM - NUMBiER OF TIME ELEMENTS
C DV 9CHANGE IN N)MENSIONLESS VELOCITY
C DEcCHANGE IN DIMLNSIONLESS STRAIN

D T aCHANGE IN DIHENSIONLESS TIME
C DS - CHANGE IN C'IM'4~SIONLFSS STRESS

DIMENSION S(500'p*V(500),IDENT(16),SSC50O) ,E(5OO)tDE(5O0)hEE(500I
DJ!MENSION SL(5O00

1 READ 8019 IDENT
2 READ 8029VOoDTtDXPXK*P
3 READ 803,!MKM

801 FORMAT(1%(,A5)
802 FORMAT (5F1O.5)
803 FORMAT (2110)

T TE0.0
PRINT 901#IDENT
PRI'NT 90z*VOtDTtDXPXKP
PRINT 9039 14,KM
CO 101 1-1,IM
S( T )=1.
V I 120.0

101 CONTINVE
o1 .0/P
V (1) zVO
DO 102 Kv1,KM
WR~ITE TAPE 2 ,TT.(S( I) ,I-1,IM),S(IM+1) .(V(I) ,Iu1.IM).(E( I hlulIM)

C IMPACT OF FINITE MASS ON LEFT END
IF (1-1) 17,17,18

18 DV1. (-.DT/XK)*(1.0-(V(2)-V( 11l/DX)**Q
IF (V(1)+DV1) 19,17,17

19 V(1)0.O*
GO TO 2n

17 V(1)nV(1)+DV1
20 SL(fl):0*0

DO 101,I l1,I'
14 DE(I+1la(V(I+1)-VI II )*DT/D)'

E(I+l)tf(I+1)+DE(1+1)
IF (V(I)-V(It1)) 29#28t28

29 vtI.1)uV(I)
C VISCOPLAtTIC STIRES.' STRAIN RATE LAW
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A PPEND IN)1 , (colit Lifllud)

28 111 .0(Vi-V 1)/l)**
C tE4-T FOR SLIPP!NG
27 IF t(VU.1)-vtIil 31*30930
30 SL( 1+1),-O.0

GO TO 32
31 SL(l+1)01.0
32 IF (I-1) Ilo11.36
11 IF f.,LI2)) 33,33ol12
12 DV-o.0

GO TO 35
36 IF (SLII+1)-,cLII)) 37933934

GO TO 33
34 DVu(-I*0)*.SII11)*DT/XK

IF IVII)+DV) 40t40941
41 VII)=VfI)4'DV

GO TO 42
40 VlU)mO0*
42 DO 104 1101#1

Vi 11 )NV( I I
104 CONTINUE

GO TO 15
C IMPULSE MOMENTUM LAW

31 DV'i(SII)*,SLI I)-S(I+13*SLI 1+1 ))*DT/DX
35 VCI)-VII)+DV
15 XcX+DX

103 CONTINUE
TT=TT+DT

102 CONTINUE
REWIND 2
DO 105 KzlpKM
READ TAPE 29TTo (SI I) ,Iu1,IM),SIIM+lhI4VII),Ju1,!M ,IE(II ,Iu1.M)
IMluIM.1
DO 107 IclsIMl
,sS( I )z~sI Sl-' 0) /Vo

107 CONTINUE
PRINT 906vTT, ISS(T)#Iu1.IM1)

906 FORMAT I HSoF5.391Xs,21F5s2)
105 CONTINUE

REWIND 2
DO 106 Kn1,KM
READ TAPE 29TTo I(SI) ,Iu1,Im) SIIM+1) ,IV( I) Tu1,IM) *IE(IJ),I.1,M)
PRINT 907#TTo MVI)PI61,IM)

907 FORMAT (1HqSsF5*393X#20F5o2)
106 CONTINUE

REWIND 2
ETA=095*XK*I VO**2*0)
DO 108 KulKM
READ TAPE 29TT, S ),uM SI+JV(I I1I),EIuM
DO 109 1-11,M
EE I )cEII) /FTA

109 CONTINUE
PRINT 908,TT9(EE(IvI IIl#IM)

908 FORMAT I1HSoF5.3,3X#20F5*2)
108 CONTINUE
500 STOP
901 FORMAT (1Hlo40X*27HVlSCOPLASTIC IMPACT OF BARS/1HO#16A5)
902 FORMAT(

112HOIMPACT VELOCITY u I F1O.3#1OH /
232H ELEMENT OF TIME a * F1O.3slOH /



APPIENI)IX (; (contIinued)

132H El rMENT OF B3AR L.ENGTH TO F10*3, OH /
432H DIMENSIONI.E:,3 MA.5s I:ACT 0 F'1O.3,1OH
532H4 OVERST%5SS EXPONENT 0 F1O.3*1OH

903 FORMAT(
132HONUMBER OF BA~R ELEMENTS 9 13p
232H NUMBER OF TIML ELEMENTS 0 13/1HIU
END
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CHAPTER V

AN ANALYSIS OF ARMOR PENETRATION DYNAMICS

by R. Minnich

5.1 Introduction and Assumptions

A reasonable set of assumptions which may be made in analyzing

the motion of a projectile as it penetrates armor material are:

i) The projectile Is assumed to be a non-deforming body of

arbitrary, but known, geometry and mass.

ii) The projectile's motion during penetration Is resisted by

a system of forces which depend upon geometry, Initial

velocity, and the material properties of the armor. These

forces are assumed to be of two types: the resistance of

the materia! to penetration due to Its compressive resist-

ance and the Inertial resistance of the material as It is

displaced by the projectile.

i1i) Frictional effects are neglected at present but could be

added.

5.2 Derivation of the Governing Equat;on

Because frictional effects are neglected, the resisting force

components are assumed to be acting normal to the projectile surface.

Figure 12 shows the force component acting on the elemental surface

area, dAs.

-- • l r- • . . . -'1 .. .
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The compressive resistance force Is considered to be uniformly

distributed over the surface area of the projectile tip. This force

per unit area, a property of the armor material, will be denoted as T.

The inertial resistance is not uniformly distributed over tre

surface area of the projectile but Is dependert upon the shape of tlea

projectile. To find this force It is assumed that the change In

kinetic energy of the armor material be!ng displaced Is equal to the

work done by the Inertial force on an element of armor material. This

relation can be expressed as

df dx . 1/2 v 2 dm (5.1)n n n

where:

dfn - normal force actIng on a d.Cferentlal area (dAs) of

the projectlle surface

dx = displacement of the element of mass of the armorn

material normal to the projectile surface.

vn = velocity of the element of mass in a direction normal

to the surface of the projectile (equal to the normal

component of the projectile velocity).

dm , mass of the differential element of the armor material

being displaced (equal to p dxn dAs, where PIs

the mass density of the armor material).

The substitution of P dx dAs for dm and v cos 6 for v

yields

df n 1/2 p (cos 2) v2 dAs (5.1)
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From these equations Adams and Tsai (11) derIve an equation of

motion given by

v cJ ocos B dAs -f j (cos 3S) V2 dAs (5.3)A s A

where the component of each force per unit area In the direction of

motion Is Integrated over the frontal surface area of the projectile.

They then proceed to solve this problem In three parts for three con-

ditions which arise, depending upon the location of the projectile

nose in the armor material. The three positions are: the ertrance

phase when the surface area of the projectile Increases with the

depth of penetration, the phase where the nose is completely imbedded,

and the exit phase where the area decreases to zero as the nose

emerges.



CHAPTER VI

COMPUTER ANALYSIS OF PENETRATION

6.1 Introduction

The toeory developed in Chapter V is not limited to the calcu-

lation of residual velocities for complete penetration. Much more

complicated mathematical procedures would be required to solve the

governing equation to predict depth of penetration if complete pene-

tration does not occur. To avoid these limitations, a computer

analysis was developed which combines the derived expressions for the

forces with the physical laws governing the system and sidesteps the

mathematics. The program has all the advantages mentioned in Section

3.1. The resulting program is general, and enables one to predict

the depth of penetration or residual velocity depending upon the

initial conditions.

6.2 Development of the Program

The projectile was divided into cells by cross-sections normal

to its axis. A typical cell is shown in Fig. 12, its length being

dxl and its surface area being dAs. The method employed was to sum

the forces acting on each cell and use an Impulse-momentum relation-

ship to calculate the velocity change of the projectile for each time

interval.

m -. --- -
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As was stated in Chapter V the forces are assumed to consist

of two kinds, an inertial force and a compressive resistance force.

Let f1  and f denote the sum of the components in the direction

of motion, of the compressive force and the Inertia force respectively.

Then df1  represents the component in the direction of motion acting

on an Individual cell of surface area dAs and is defined as

dfI = Tcos e1 dAsi (6.1)

where the subscript I denotes the i-th cell. Similarly, df 2  is

given by

df = P Ccos 3 "v2 dAs. (6.2)
2 2- p

The sum of fI and f 2 will then represent the total force acting

on the projectile during a time dt. This sum is given as

f= fI + f2  (6.3)

The velocity chaige dv will then be calculated using the

impulse-momer.tum law. This is expressed as

dv - - fdt/M (6.4)

Because the forces act opposite the direction of motion, a minus sign

is included in the above equation. This velocity increment is then

added to the velocity of the projectile to obtain the velocity at a

given time or
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v <---v + dv (6.5)

The distance the projectile travels during each time interval,

dx, Is obtained by integrating the velocity over the time interval dt.

This is expressed as

dx = vdt (6.6)

The total depth of penetration or the distance from the surface of

the plate where the initial contact is made to the nose of the pro-

jectile is the sum of all these incremental dx's.

x •.--x + dx (6.7)

Equations 6.1 - 6.7 are combined in a program which calculates

the force acting on the projectile during each time Interval and finds

the velocity change during this interval. This process begins when

the projectile first penetrates the plate and stops when the projec-

tile velocity becomes zero (for partial penetration) or when the pro-

jectile leaves the plate. We again add a O0 loop which directs the

repetitive operations from I = I to i = I to obtain f and usem

another DO loop to repeat this process for successive time intervals.

The program then appears as below.

•- • lP I • •' . ..- _ - . .
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Input

0 1O0 k. - ,...k

m

df1 - o'cos 0I dAs 1  compressive resistance force

df 2 . 2 P C3i v2dAs inertia force

f 4I- fI + dfI

f.2.- f 2 + df2

f f f + f2

dx a vdt definition

dv a - fdt/M Impulse-momentum law

v *- v + dv

x <-- x + dx

t 4- t + dt

output

The above is the basic program except for geometry calculations, which

wil! be discussed below, input statements and output statements, and

various tests to determine If .he plate has been completely penetrated

cr if the projectile has stopped.

6.3 Geometry

The various projectile configurations dealt with and the dimen-

sions which need to be specified to co.pletely deflne them are shown

---- ---.- -. - -,- -•
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in Fig. 13. Two quantities had to be determined for each cell in

order for the force calculations to be carried out, namely the surface

areap dAsi, and the cosine of the angle between the normal of the

cell and the direction of motion, cos Gi. These quantities were

determined at the beginning of the program and stored until they were

needed. Their calculation for each projectile configuration follows.

6.3.; ThLe_ Oiye

Fig. 14 shows the ogive with its detailed dimensions. The

quantities yo' V3 and y were required to be computed for the cal-

culation of the cosine and the surface area for each cell. 0 repre-

sents the entire surface of the nose while BN is the cylindrical

surface. OP is the axis of the projectile. dAs. is the surface

area of the i-th cell and dxl is ;ts length. The origin of the x

and y axes was taken as shown. The needed quantities can now be

expressed in terms of the known quantities for each cell. That is

Yo (R2 -xl321 (6.8)

Y3 (R 2 (xI3 " xls) 2) (6.9)

Y y3 - YO (6.10)

dAs. can therefore be expressed as

dAs 2MR(I.0 - y o/Y3 )dxl (6.11)

and the cosine as
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cos e ( - 3 - xs I)/R (6.12)

For the cylindrical portion of the projectile the surface area of

each cell is constant and is given by

dAs = 2n rI dxl (6.13)

the cos 8 in this region is equal to zero.

6.3.2 Hemispherical End Cap

The hemispherical end cap projectile was useful to study

because of the availability of experimental results.

The cylinder with hemispherical cap is a special case of the

ogive with R = r and x)3 = r 1 . Therefore the only dimensions

required to define it are r and xl. The surface area for elements

of equal width Is the same for a sphere and is given by

dAs. 2n rI dxl (6.14)

This is also the expression for dAs. in the cylindrical portion.

The cosine of the spherical portion is defined as

cos ei = 1.0 - (xls 1 /rl) (6.15)

and again the cosine of the cylindrical portion Is zero.

It should be pointed out that a cylinder with a hemispherical

nose was programmed rather than a sphere because It Is more general.

Since the forces only depend upon the surface area of the nose, a
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sphere can be made a special case of the hemispherical cylinder by

setting the length of the cylindrical portion equal to 2/3 of the

radius of the sphere. In this way the mass will be equal to that of

a sphere.

6.3.3 Conical End Cap

The cone Is defined if r,, xl, and xl, are known. The

distance from the projectile axis to the surface at xIs1  is

Y = rI XlS /xl, (6.16)

The surface area of the i-th cell which is the surface area of the

frustum of a cone is

2 2 1/2
dAs = i (yi + yi+I)(dxl2 + (yi+ - Yi) 2 ) (6.17)

The cosine of all the cells is a constant value equal to

2 12 1/2

cos •. = r /(r2 + xl1 ) (6.18)

The surface area and the cosire for the cylindrical portion is the

same as the other two cases.

These three configurations are related so that a separate pro-

gram for each is not required. The given dimensions read into the

program determine which configuration is being considered. The details

of this are shown as comments in the program itself found in Appendix 8.
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CHAPTER VII

RESULTS AND CONCLUSIONS OF PENETRATION STUDY

7.1 Verification of the Program

The Initial computations were concerned with checking the pro-

gram's results with those of Adams and Tsai. The easiest method of

doing this was to see If a computed curve of residual velocity vs

Initial velocity agreed with theirs using the same Initial conditions.

The Initial conditions were

plate material - polyethylene

plate thickness M 0.65 Inches

plate mass density = 0.89 x 104 lb-sec 2/in4

compressive resistance = 25,670 lb/in2

projectile shape = sphere

The resulting curve from the program is shown in Fig. 15 as the curve

for the spherical projectile. Because it coincided very closely with

the Adams and Tsai's curve there was no need to include both.

All the work in (11) was shown to agree with experimental

studies. 4owever, because they conducted the experiments themselves

It was decided to check the program with other experimental results.

Gupta and Davids (17) performed studies on the penetration of fiber-

glass reinforced plastics.

Because the compressive resistance, a-, Is a property of the

armor material it must first be found. in order to find a' one must

know all the conditions of a ballistics test. If the Initial velocity

-7-- --
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and the residual velocity are known, different values of or may be

tried In the program with the Intention of finding one which yields

the known residual velocity.

This process is not so much of a trial and error effort as It

might seem. A curve of residual velocity vs o- may be drawn which

will enable one to find the correct value of 0o from the known value

of v

The program was checked with the first three entries In Gupta

and Davlds' Table 2. The third entry which was for a plate 0.22

.teas thick Impacted by a 0.22 caliber projectile with an Initial

velocity of 1270 ft/sec was used In the calculation of a-, the

Intent being to determine a value which gave a residual velocity of

750 ft/sec. This value was found to be 127,500 lb/In2 . The program

then correctly predicted the residual velocities for the different

plate thicknesses found in (17). The results are summarized in Table

3.

Table 3

Comparison with Experimental Results of (17)

No Thickness initial Residual Velocity
(inches) Velocity ft/sec

(ft/sec) Experimental Program

I 0.22 1270 750 750

2 0.09 1270 1090 1085

3 0.13 1270 1000 995

- - -
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When the value nf o- is found the program becomes capable of

predicting results of different initial conditions for any projectile

configuration. It should be remembered that this value is only a

property of that plate material for which it was found.

Because of the excellent agreement shown in Table 3 with exper-

imental results It was concluded that the program is valid.

7.2 Review of Significant Runs

Curves showing residual velocity vs initial velocity were

desired for the other two projectile configurations (the ogive and the

cone). They are shown in Fig. 14 also. The compressive resistance

constant was obtained from (11) for epoxy and from (12) for aluminum.

All of the curves In Fig. 15 approach a straight line. It can

be seen that this straight line portion has the same slope regardless

of plate material or projectile configuration. This straight line

portion has a slope of unity which means that a change in the initial

velocity will produce the same change in the residual velocity.

Figures 16, 17, and 18 show the force vs time plots for the

three projectile configurations. It is seen that they are all of the

same basic shape with the only differences being the entrance and exit

regions. The rapid rise to the maximum force which the sphere exhibits

indicates that this configuration is not a very good penetrator as com-

pared to the ogive. The cone's ability to penetrate varies from being

the best to the worst penetrator depending upon the angle the surface

urea of its nose makes with its axis.
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Tables 4, 5, and 6 contain the results of bl1 the runs made

for ogives, spheres, and Cones respectively. These tables corta;n

the runs previously mentioned plus some other general runs for other

plate materials and Initl,. cinditlons. These were made merely to

show the applicability of the program.

It can be concluded that fjr penetration in which the projec-

tile is net deformed, this analysis Is valid both In predicting depth

of penetration and residual velocities, and is very efficient In com-

putatio:nal accuracy.
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Conclusions

The assumptions and the analytical solution of ductile hole

enlargement are presented in Chapter V. The forces acting on the

projectile are assumed to be of two kinds, the Inertial resistance

of the plate material and the compressive resistance. The expressions

for these forces are given and are then used to derive the governing

equation. The equation for predicting the residual velocity after

penetration Is also given.

The next chapter contains the development of the computer pro-

gram used to solve the ductile hole enlargement problem. The first

section describes the ircorporation of the expressions for the forces

Into a program which will yield the velocity change during a set time

interval. The next section discusses the geometry of the three pro-

jectiles considered and the method of dividing them into cells. The

expressions for the surface area of each cell and the cosine of the

angle between the normal to the surface of the cell and the horizontal

axis are also developed.

The results of the investigation for ductile hole enlargement

are contained in Chapter VII. The first results presented are those

needed to verify the computer program. Both experimental and theoret-

ical ballistic data are compared with the output of the program. The

comparison in all cases is excellent. Curves showing force vs time

and residual velocity vs initial velocity for all the projectile con-

figurations are given. Also contained in this chapter are tables

with the results of all the computer runs.

7Z
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The ability of various projectile configurations to penetrate

a plate Is determined. It is concluded that a sphere is a much poorer

penetrator than an ogive. The cone varies in penetration ability from

the best penetrator to the worst depending upon the angle the surface

of the nose makes with the axis.

8.2 Suggestions for Further Study

The most obvious suggest on for further work in the plug forma-

tion problem would be to extend this investigation to other materials.

In order for this task to be undertaken, photographs must be obtained

from which experimental deflection curves can be made. All the condi-

tions of the impact must be known, i.e., initial velocity of the pro-

jectile, mass of the projectile, plate thickness and density of the

plate.

A criterion for complete penetration would be a worthwhile

extension. As was mentioned before the program does not contain this

important aspect. By inspection of the final deflection curves, one

can obtain a fairly accurate guess as to what initial conditions will

cause complete penetration; but specific results are needed.

Worthwhile studies could be begun on other types of failures

caused by impact. A computer program incorporating the material laws

associated with scabbing or dishing w•.d be of interest. Some com-

puter work (18) has been done for cratering.

Also minor revisions can be made in the present program to give

radial strains and strain rates. A condition which prescribes the
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initial velocity around a hole in the plate might be of some value.

The program for the penetration of nonmetallic materials and

ductile hole enlargement in metals is fairly complete. As is shown

the correlation with experiment is excellent. Some approaches in

this area take into account a friction force also. The program could

very easily be extended to include this if it were deemed necessary.

It is believed that an extension of this program can be used

to solve problems of water entry. For this problem water is consid-

ered incompressible so that the compressive force would bp 7ero.
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APPENDIX A

COMPUTER PROGRAM FOR PLUG FORMATION

COMPILE RUN FORTRAN
C RIGID-VISCOUS MODEL FOR PLUG FORMATION IN PLATES
C UNITS IN IN-LB-SEC
C V a VELOCITY IN Z-DIRECTION
C Fi() a VISCOUS FORCE ON LATERAL AREA OF I-TH CELL
C XMR a MASS OF EACH CELL
C R * RADIAL COORDINATE
C AREA = INSIDE LATERAL AREA OF CELL
C W a DISPLACEMENT IN Z-DIRECTION
C S a SHEAR STRESS ON R-PLANE IN Z-OIRECTION
C XMOD a STABILITY MODULUS FOR EACH CELL
C XM a CUMULATIVE MASS OF FIRST I CELLS
C SI m NONDIMENSIONAL SHEARING STRESS
C VV a NONDIMENSIONAL VELOCITY
C WW a NONDIMENSIONAL DISPLACEMENT
C TT a NONDIMENSIONAL TIME
C DEN a WEIGHT DENSITY OF PLATE MATERIAL
C GNU m COEFFICIENT OF VISCOSITY OF PLATE MATERIAL
C SY a IMPACT YiELD CONSTANT
C H 0 PLATE THICKNESS
C VB a INITIAL VELOCITY OF PROJECTILE
C RO a RADIUS OF PROJECTILF
C XMB a MASS OF PROJECTILE
C IM = NUMBER OF CELLS
C KM a NUMBER OF TIME INTERVALS
C DT = CHANGE IN TIME
C VS a VELOCITY SCALE FACTOR
C WS x DISPLACEMENT SCALE FACTOR
C SS = STRESS SCALE FACTOR
C DR = CHANGE IN RADIUS
C FMTI a VARIABLE FORMAT FUR PRINT STATEMENTS
C RHO a MASS DENSITY OF PLATE MATERIAL
C XMRO - MASS OF PLATE MATERIAL UNDER IMPACT
C VO a INi'"AL VELOCITY OF PLATE MATERIAL UNDER IMPACT

DIMFNSION V(10rlor t(1VOIMR(flOi.oR(1OOIAREAIIOO)VVf1Oft)
IWW(1O)OW(1OO),S(10,.SI(I002,IDENT(161,FMTI414.oXMODIIOO)e
2 SL(100)*XM(IOC)

I READ 80'.(IDENTlIID 3,II.l)
801 FORMATI14A51

2 READ 802. NAMEINAME2,DEN.GNUvSY9H
802 FORMATI2A593Fl00OFIO,4)

3 READ 8O3,VBoQOoXMB
003 FORMAT(2FJ03,EO1.')

4 READ 804,1V.KM.DT9VSWS,9RtSSK1
804 FORMATI215?!2EIOo*.2rlO.*4.ElO.4,15)

IF (IM)99.9995
5 READ 8019FMT1

P1=3 1415927
PHOaDEN/384,

XMROa 0 I RO.2*H0RHQ
VOa(VBOXMB)/IXMB+XMRO)
REWIND 2
PRINT 900o(IDENTI I- Il91&)
PRINT 901#NAMEI9NAME2.DEN*RHO*GN~,SY
PRINT 9029VORO#H*VBXM8
PRINT 9039IM9KMoDT*VS9DRoW.is%
PRINT 905
RI )-0.00
DO 101 IslIM
AREAIRII aO
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AREAI 1.1 IPl#Rtl1,1 *2.O'H

Slit I '(1 I/SS

IFIR 141 1-RO)21*21*22
21 vIItuvo

15 XM(I1 UtPI'Rt?)o*2ORHO*H).IXMB/XMRO41.OI

XMR(1 )wXM(1)
GO TO 23

16 XMII)utPI*R(I41)O*ZORNOOH)*IXMSI/XMRO,1.Oo
XMRlI I XME I -xM~t I-i
GO TO 23

22 vilizoso
XMR(I).PI *(RII,,R(I.1IlftR(1l,1I-RtliIIRHO'M

XMt I )nmXMI -I ).XMpI
23 VVtI)aVtI)/VS

C MODULUS TEST FOR STARILITY
XMOD( I )GNU*AREAI 1,1 IDT/IXMRI I)*DRI
PRINT 906.! ,XMR(I1) XMt I I AREAti XMODI II

101 CONTINUE
T-oeo
PRINT 904
DO 103 (21.*KM

PRINT FMTI*TT91VVt I i.1u1Iml
WRITE TAPE 2,TT9tWWt I).1.i.IMIetSl(1gll.iINI,
DO 106 1.1dlm
W I )=W( I )Vt I )*T
WW(I )cW I )/WS

106 CONTINUE
SLI 11.0.0
DO 102 1-11,M

42 PRINT 909
43 PRINT 910#*IvVf Il#St I) Ff l)*Sit I)%V

C RIGID-PLASTIC-VISCOUS STRESS-STRAIN LAW

Sit 1.1)uSl I.U/SS
FlI.1I.StI1*11APEAtI1*1

c TEST FOR SLIPPING
IF(V(II1-Vt 1.11 )Z4.Z4?5

G0 TO 26
25 SLt 1411.1.0

27 IFtFt 1.1 -Ft I)*XMI II/XMt 3-11I130.31.31
30 SLt I1a1.O

GO TO 28
31 DVe FtI41I/XMtIiODT

1Ff Vt I)*DV)60*60,41
61 VtI)GVUI.*DV

GO TO 62
40 Vt1100*O
42 DO 10A 1'161*

ViII IVI 11
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"V( II lVI 11)/VS
106 CONTINUE

6O To 35
29 IFIF1*131 -Ftl)1323Z.3Z33
32 vmIIo.0

GO 10 35
33 SLII+11-1.0

C IMPULSE MOMENTUM LAW
OVuiFI +1.1 SLII 41 -Fft I*SLI I))/XMRII lOOT

GO TO 34.
c IMPULSE MOMENTUM LAW

28 DV=IF(I1 IS*SLI 1*1 -FII)*SLII)I/XMRiI )'DT
34. IFIVII)-*0V150950.51
51 ViI~uV(IIIOV

GO TO 35
50 VIIuo~OO
ss VVIII.VlII/VS

102 CONTINUE
T aT +flT

103 CONTINUE
PRINT 907
REWIND 2
00 10'. Kw31KM
READ TAPE 2.TT.IWwII IlztulIM).(IS(I 3.Iu1MIM
PRINT FMTI1TT*IwwI 1)#1u1.JM)

104 CONTINUE
REWIND 2
PRINT 90o
rlO 10O5 K - I KM
QFAD> YAPF '.TT,(WW( I ~.lslM),(Slt I ,Iv1'IM)
PRINT F"'T 1 TT, (51(j19I2#Im'i

105 CONTINUE
GO TO 1

99 STOP

900 V0PF4ATl1H1,I4A5//////I
901 FORMAT1P4 9~A35X*31HVSCO-PLASTIC ,'NALYS:S Of PLATE i

I'~ MAT f R IA La pA/

23291 ,.f1Gý4 CENSITY C'EN a 9F1C.bsVH L&3/IN*03 /

332o4 RHsv)r/G RHO - #E1O.4al6H LB-SEC002/1NO94 /I

'.'?m COEFFIcIFrNT OF VISCOSITY GNU m ,FIO*3*13H iP-SEC/IN*02 I

5fl91 IMPACT YIFLr) CONSTANT Sy a oElO.4v9H LB/lN*92 I

902 FOPMATIIHQ.11HINITIAL VELOCITY VO a sElos397H IN/SEC

1132 RADIUS O)VER VH:C" "0 ACTS ao a .FlO.3*)H IN 1

?32H T041CKNFSS (OF PLATE H 0*F.10.3.31 IN /

31M? VrLO(ITY OF 1PULLT VO #E10*3.H IN/SEC I

412?H "ASS OF PULLET 1*8 a EIQ.3a13H iB-SEC962/IN 1

903 FORMAT( 1040911HTHE NU'4PER OF CELLS IM a 0110 1

132Zi )~L .F TIML INT~i4VALS K.M a .110 il

2 32H4 C~tAN~.t IN T141 U)T a #E1O.6494" SEC I/

332?4 VELOCITY SCALE FACTOR VS - 9E)Q.'.,1H IN/SEC 1

432H4 CHANGE( IN RADIUS DR a*FO13.314 IN4 I/

5:2H4 UIS')AC(f0t%T !.(Att( FACTrnq WS a .100.4.3p4 IN It

637HN STARS SCALt FA(TOQ SS - *E10*'.914 LA/IN*02 1

904 FDA " 4,?It9'f),f(ýVL(IT PROPAG)ATION m/

905 FoRM4ATI1Ml*14e.ELL.8E.o914(ELL P.A:So AX910mIOTAL MASSs9X#4HAREAs1ZX9

I 7?4%0OrULUS 1

907 FORMAT I1H1, 4HT IKE(*OX 0 1HOI SPLACLME14T I



APPENDIX A. Continued

g08 roPMAT(1H1,4HTIM'C,55X,6HsTPLýSs //)
909 FORMATI P4 *1X,1HI,1~2X,4HV(11i 16XL.HS( I ol6Xod.HFt i 9X.

I 2HSL,15Xt2HDV)
910 FORMAT( 1H ,I2,5XFl5.'.,5XFl5e4,5XFl~5.,X.,3.1 ,5XeF15.AJ

E ND
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COMPUTER PROGRAM FOR ARMOR PENETRATION

MULTIFILE r0N
COMPILE RUN FORTRAN

(" MPINPRCGRAM
C PROJECTILE ARBITRAPY SHAPE, NON-DEFORMING
C COMPRESSIVE AND INERTIAL RESISTANCE BY TARGET
C SUBROUTINES SULLET AND VELO REWUIRE&
C IF SnHERE SET P-RI AND XL3LRI
C IF CONE. SET R=1000O* AND XL3=XLI
C SYMBOL TABLE (UNITS IN IN-LB-SEC SYSTEMI
C F.RHO a MASS DENSITY OF PROJECTILE
C R a RADIUS OF CIPCULAP ARC
C RI a RADIUS OF CYLINDRICAL PORTION OF PROJECTILE
( XL • IOTAL LENUTH OF PROJECTILE
C XLO - HOP. DISTANCL PFT. R AND TIP OF PROJECTILE

C XL] = LE•:GTH OF coOJFrrT;LE NOSE
C XL2 a LENGTH OF CYLINDPICAL PART OF PRO)JECTILE
C XL3 - LFNCTH OF THE SEMICORD

C DXL a WIDTTH OF A CELL
C H a PL.kTE THICKNESS
C TRHO a MASS DENSITY OF TARGET MATERIAL
C SIG - COMPRESSIVE STRENGTH OF TARGET MATERIAL
C DT TIME INTERVAi.
C FS FORCE SCALE FACTOR
C VS VELOCITY SCALE FACTOR
C T.S a TIME SCALE FACTOR
C vi INITiAL VESLOCITY OF PROJECTILE
C XLS = P'ISTANUt -) A CELL rROM TIP OF PROJECTILE
C DAS z SURFAC(E AREA OF FACH CELL
C ASD = SURFACE AREA OF CELLS IN CYLINDR!CAL PART OF PROJs
C COS z C(JS. OF ANG, BFT. HUR, DIA. AND NORMAL ON SURFACE
C SI N = .r"QTF (1.0-COS*?2)
C COT = CCs/SIN
C PM = PROJfCTILE :AASS
C IM = NW;'.1R OF CELLS
C T TIM?

C V VFIOCITY OF PROJECTILE
C X r DISTANCE BET. TIP OF PROJ. AND FRONT EDGE OF PLATE
C DX a DIiIANCE PROJECTILE TRAVELS IN TIME DT

SXP = DFFPTH OF PFNETwATION
C VR nR(SIDUAL VELOCITY OF PROJECTILE
C Fl a TOTAL FORCE DUE TO COMPRESSIVE RESISTANCE OF TARGET
C F2 2 TOTAL FoP(E DUE TO INL_,TIAL RLSISTANCE OF TARGET

C F c S!UM OF Fl AN" F2
C YO a DISTANCE BET. PROJ. AXIS AND HOR, DIAMETER
C Y a RADIUS OF ANY SECTION OF PROJL(.TILE.
C Y3 x VERTICAL UISTANCE OF SURFACE FROM HOR. DIAMeTER
C VOLI = VOLUME OF NOSE OF PROJECTILE

C VOL2 a VOLtUME OF CYLINDRICAL PORTION OF PROJECTILE

C VOL - VOLUME OF PROJECTILE EQUAL TO VOLI+VOL2
T 'T - NONDIMENSIONAL TIME
VV a ,•ONDIMENSIONAL VELOCITY

C FF a NONDIMFNSIONAL FORCE
I DIMFNSION XL5 IO0)9 DAS(20O) COS(200), SINW200)9 COT(2001.
1IDENT(16)t FMT1(16)

2 RIAD 8009IJDENT(I)o I a 1916
800 FORMFAT (16 AS)

3 REAL, 805. fINAME1,bNAME2*flRHO
805 FORMAT ( 2A5sEl02 )

4 RFAD A1O; R*RI*XL3*XLtDXL
R,) FORMAT(5F10.0)
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5 READ 8159 TNAMEI*TNAME?,I4,TRHO#SIG
815 FORMAT(2A5,3E10.2)

6 READ A20o DTFStVSPIN#NRUN
820 FORMAT(3E10.2921101

7 'READ 8309rMT1
830 FORMAT(16A51

00 400 N-I.NRUN
8 READ A259VI

825 FORMAT(E1O,2)
IFUI- 1)30,30,40

30 PRINT 9009 (IDENT (1)91 a 1916
900 FORIMAT(1HL1948X#33HRESIDUAL VELOCITY IN A PROJECTILE/

1 1H0v?5X#I6Al////)
CALL nIJLLET(RRlXLXL1,XL2,XL3,0XLJNIMDASCoSSEM#BRHOI

C SCALE FACTORS

PRINT 905 .BNAM~lsBNAMr'2,TNAME1,TNAME2,6RHO#kOMTRH0OSiG9H
905 FORMAT(26HOMA",TERLAL OF PROJECTILE a vIX.2A5 I

I 26H MATERIAL OF TARGET w O1X92A5 1
2 2614 MASS DENeO-F B-MAT*BRHO - 9E13*4916H LB-.,EC**2/IN**4//
3 26H VASS OF PROJECTILE BM = 9E1394#13H LB-SECN**/IN//
4 2611 tASS DEN.OF T-MATTRHO - 9E13o4916H LB-sEC**2/IN**4//

5 26H COMP.RESIS.OF T-MAT.S!G= vE13a499H LB/IN**2 /

6 26H THICKN[.S,, OF TARGET H = FIO*5o,7H INCHES I
PR rINT 91')%,Xt, Xt I iXL?,XL3,9:1R1 9DX(LtI M

910 FORMAT (76SHOTOTAL LENGTH OF CELL XL 9 F1O.5,TH INCHES /
1I6 LENGTH OP VAR.SECT* XL1 9 ,F109597H INCHES 1

2 26H LENGTH OF CON.SECTo XL2 9 F1O.5t7H INCHES I

3 26H LENGTH OF SEmi(HORD XL3 P F1O.597H INCHES /
4 -'-6H RADIUS OF CIPCe ARC R = l*57H INCHESIAI

5 2611 RA0IU'S OF CON*SECT. RI 9 FIOo597H INCHES 1
6 26H L-.N(,TH OF THE CLLL DXLN 7L13*4,7H INCHES /
7 26H NUMIBER OF CELLS =IM 110 I
PRINT 950v VS,iFS'oCT

95C F0'l'%AT(2$diOVFL, Sc',-ALF FACTOR VS = *E139497H IN/SEC I
I 26H FORCE SCALF FACTOR FS = E'13e494H LB //

2 26H TIMF INCRFEMEINT TS = T = 9[139494H SEC /I
40 PRINT 9159VI

915 FrP"AT(26H]IINITI'\L VELOCITY VI = 9E13*497H FT/SEC /I
("LL VFLO (XLO)XLCOSDASPMIMVI9DTH.SlGTRHO9FS9VS.

I T!; ,1T ,X ,XP VV, FE XLI ,R ~ KM~)
REWIND 12
PRINT 920

920 F jM.AT (IH1 ,4HT I ML99X9,11HPLNLTRAT IONv9X98HTRAVLLX I,9 X9

I8HIVE.OC IT Y 9X95 HFORCE //

DO 400 K = 19KM
RFAD TAPE 2#TTsXP9X9VV9FF
PRINltT FMTI ,TTXPXVV*FF

400 CONTUP.UF
1000 STOP~

END

COMPILC PUN FORTRAN
SuBROUTINE BULLET(RRIXLXL1,XL2,XL3,DXLIN.IM.DAS9CO$B6MDBRHO)
DIMENSION XLS(200)9FDAS(2C3) .COS(200)* SIN(200i9C0T(200)oY(2OO)
PI 35.14159
XLS(l) %z0.0

Acý,=2*OOPI,'R!*DXL

C TEST to 0' -TU,"AINE IF PPOJECTILE IS A CONE

IF(R-1000.O 120.3)30
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C LOGIC FOR OGIVE AND HEMISPHERICAL NOSE
20 YO v SQRTF (R**2-XL3**2)

XLO z SORTF(R**2-IR1+yo)**2)
XLI c XL3-XLO
XL2 - XL-XL1
VOLl a 0.0
VOL2 - PI*Rl**2*XL2
DO 101 1 a 19IN
IF (XLS(1)-XL1) 10910911

C NON UNIFORM PORTION OF PROJECTILE
10 Yl SORTF(R**2-lXL3-XLS(I))**2)

DASII) =2*0*P[*R*11,0-YO/Y3)*DXL
CO51I) a (XL3-XLS(I)H/Q
SIN(I) aY3/R
COT(I) - COS(IbSIN(I)
Y(I) = Y3-YQ
OVOLls PI*DXL*(Y(I)**?+y(I)*COT(I)*DXL+(COT1))*2D9XL**2/300)
VOLl a VOL1+DVOL1
GO To 14

11 IF (XLS( I -XL) 13913912
12 IM = 1-1

GO TO 501
C UNIFORM PORTION

13 DAS(I) = ASD
COSMi = 0.00

14 XLS(1+1) = XLS(I)+DXL
101 CONTINUE
501 VOL zVOLI+VOL2

H3M RRHO*VOL
GO TO 400

C LOGIC FOR CONICAL NOSE
30 Y(1) =0.0

XLi XL3
XL? XL - XL1
DOr 102 1 =1,IN
XLS(1+1) =XLS(I)+DXL.
IF (XLS(1) - XL1 ) 40940,41

40 Y(1+1) =91*XLS(I+1)/XLI

O)AS(I) w P1 *(Y(I) + Y(1+1',)*SQRTF(DXL**2+(Y(I)-Y(1+1)l**2)
COS(I) 2R1/SQRTF(Rl**2+XL1**2)
Go To 102,

41 IF (XLS(I)-XL) 43o43#42
42 1M =1-1

Go TO 50
43 DAS(I) = ASD

COS(1' 0.0

102 CONTINUE
50 VOL PJ*R).**P(XLI/q.0+XL2)

SM PRHO*VOL

400 RETURN
,,TOP
END

COMPILE RUN FORTRAN
SUBROUTINE VELO IXLOXLCOSDAS,8M,1MVIDTHSIGTRHOOFS.VS,
1TSTT9XsXP*VV9rF .XL: ,RlKM)
DIFNSION XLS(200)9COS(200)9DAS1200)
T7 0.0
TT=T/TS
V - VI*12*0
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VV * V/(VS*12oO)
FFaO.O
X a 000
XLS11) a 0,0
REWIND 2
DO 410 K - 1.1000
IF(X-H-xLI 17 25,25

17 Fl - 0.0
F2 - 0.0
DO 415 J a I1IM
IF IV) 24.24,18

18 IF(X-H)19919,20
19 1 a j

XP w x
GO TO 21

20 IL a (X-H)/DXL
I x J+IL
XP a H
IFfI-IM)21,21,23

21 IF (XLS(I)-X) 7_2#22923
c COMPRESSIVE RESISTANCE OF PLATE MATERIAL

22 DFI a SIG*COS(I)*DAS(I)
C INERTIAL RESISTANCE OF PLATE MATERIAL

DF2 0 0.5*TRi4O*(COS(II,**3*(VI**2*DAS(II)
Fl Fl+DF1
F2 F2+DF2
F a Fl+F2
XLSII+1) m XLS(I)+DXL

415 CONTINUE
23 WRITE TAPE 2*TTeXPtX.VVPFF

DX=V*DT
C IMPULSE MOMENTUM LkW

DV =-F *DX/(BM*V)
V = V+DV
X = X+DX
T a T+DT
FF a F/FS
TT = T/TS
VV=V/(VS*12.0)

410 CONTINUE
24 V=O.0

VV z V/(VS*12,0)
25 VR x V/12.0

WRIE TAPE 2,TT*XPtXtVVFF
XPM a XP
XM x X
TM a T
TTM a TT
KM=K
PRINT 950. VR*XPM.XMoTMTTM

950 FORMAT126HOR.VELOCITY OF BULLET VR. 9E13*497H FT/SEC /t
1 26H MAX.PLNETRATION XPM a *E13.4*7H INCHES /1
2 26H TOTAL TRAVEL XM a 9E13.497H INCHES /
3 26H TOTAL TIME FOR XM TM a 9E13.494H SEC //
4 26H SCALED TIME FOR TM TTM w 9F1O.3 /I

RETURN
STOP
END

MULTIFILE END

- - ~' 47
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