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Scope of Project

To conduct a basic theoretical research program in stress waves
and per>tration mechanics, with particular emphasis on armor plate. To
assist the experimental program in this field being conducced at the
Arsenals by parallel theoretical investigations.

Project duration - from 1 January 1963 to 15 May 1966.

The technical work of this project has been reported by presen-
vation at professional meetings, through publication in scientific
Journals, supported by reprints submitted to AROD, as far as is avail-
able, and by Interim Technical Reports. While recognizing the greater
usefulness of journal articles, the purpose of the Interim Reports has
been to inake the results availsble much sooner then reprints of publica-
tions. At times the lag has been reduced by as much as a year thereby.
A second purpose of the technical reports has been to provide a much
fuller prescntation than is possible in a paper and as a repository for
data and details.

The coutents of this final report include:

1) list of output documerts,

2) general summary and review of project activities,

3) progress of last 6 month period, and

4) technical work of significance not previously reporied.
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Brief Review of Project

1. Oblique Impact

One of the phases of the research on this project has been
the analytical study of tran ient stresses in a plate due to step im-
pacts at a point on the curface. The point impact is & fair idealiza-
tion represeniing a pointed projectile, and is applicable to cother types
of disturbances as well. Considereble work on this problem was carried
out on an earlier AROD project for normal and shear impacts, using a
mathematical procedure which has come to be known as "Caignard's Method”,
used extensively in geophysical analyses. The present effort continued
the siudy and brought it to conclusion by working out the principal
stresses induced for impacts =t 500 and 60o angles of incidence. The
results are reported in paper no. 1 ~nd report no. 1, and a computer
program is available for any additional numericel data required.

This method of analysis is valuable in that it follows both the
dilatatior and distortion wavefronts or pulses across the plates as well
as their interaction duc to reflecticns across the back face. This pro-
vides a direct understanding, unlike cther methois based on "normal
modes" or vibrational considerations. Further, it is able to assess
realistically magnitudes of the inauced tensile stresses, which are
very sensitive to the reflected waves. For this reason, analyses based
on semi-infinite media or on normal modes lead to consi ierable errors
on this estimation. On the other hand, Caignard's approact is not
realistic for studying sactual penetration dynemics {for which {¢ was
not intended) and is limitel to brittle-type materials which are

elastic until failure.
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Since penetration dynamics was considered the main theme of
this project, the following further phases were studied.

2. Plug Formation

This phase was concerned with an area of penetration dynamics
referred to as "plug formation". This is part of the more general area
of plastirc impact, where the impacting materials undergo a type of
viscous flow. It may be considered as intermediate in impact velocity
range between the elastic and hydrodynamic deformation theories, and
is characterized by a paucity of resnlts on account of the uncertainties
in the constants of the material and complexity or the analyses hereto-
fore presented in the literature. A reasonable assumption made by
Pytel on a previously sponsored AROD project (also by some other litera-
ture) has been that of linear viscosity, so that the methods of the
equation of diffusion or heat conduction were applicablie. Although it
Lecomes possible to solve this equation explicitly with the given
boundary conditions, the cld solutions failed to predict the time when
motion is stopped or the final shape of the target.

The need for comparing results with these prime physical c¢b-
servables led to to undertake a new investigation of this problem. At
this time specimens of deformed target pletes of 3" rolled armor steel
became available from watertown Arsenal laboratories, etched by Ober-
hoffer's reagent. These yielded values of deformation under the pro-
Jected impact by direct measurement. Even thcugh reletively few such
specimens were available, they constituted an cpportunity for an im-
proved thecretical approach to the problem. Following suggestions in

the litersature which assumes the prodominant forces in the deformation
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of a plate under impact to consist of frictional forces, the new featurs
is to suppose there is a threshold stress level or impact yield constant
at which flow starts, and below which the material i1- either elastic cor,
more simply, rigid. This behavior prevents the material from flowing
indefinitely.

The analysis of this non-linear problem is described in Techni-
cal Report no. 3, presentation no. 1 and publication no. 7. Valuec for
impact yield constants of 210 x lO3 psi were found for mild steel and
deformations agreed very well with those shown on the =tcn2d specimens.

3. Peretration in Fiberglass Reinforced Plastics {FRP)

This investigation was undertaken to determine the basic know-
ledge of impact behavior of a class of materials (FRP) and was especial-
ly spurred on by the needs of the military for light personal armor.

A series of 70 penetration tests were completed of small caliber pro-
jectiles through laminated fiberglass plates. The material, in proper
combinations, wa:s found to give a substantial saving of weight (14% to
50%) over steel for the same stopping power. A firing range was built
and projectile velocities, both incident an? resiiual, were measurel at
6 ctations by aluminum foils, in conjuncticn with a Polaroii camera ani

an externally-triggered cscilloscope. (Pudlication no. %)
h/ BE P

The theory of couple-siresses, originally ievelopei by Miniiin,
~as extenied ¢o a cyiinirical inciusicn cf one material imbeitedl in
ancther zediuwr under uniaxial tension, ani has caiculated the cirecro
concentration factors at the interface. There come ~ut 4 bhe ab-ot 1990

2% higher *han tha* civen by <he clarsica

(Publication no. &).




lOa

5. Other Completed Work

Our work on viscoelastic waves and further studies in penetra-
tion dynamics, which have not previously been reported, are covered in
detail further below in this report.

6. Recent Work (last 6 months) Not Completed

One of the really large problems in dynamics is the analysis
of stress wave propagation in multi-dimensional btodies. The analytical
solutions to date apply only to very simple geometries. Our success
with the use of discrete approaches for the various plane and spherical
geometries has led us to attempt to apply this method to the afore-
mentioned problems. To datve, some test cases have been solved.

The same general approach is also applicable to a class of
statical plasticity 1 oblems. To date we have validated this method

for some known problems in the literature.

The analysis of flexural traveliing waves has produced solutions

for step and ramp moment inr :ts, but step-shear input is still unsolved.

- -
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Viscoelastic Waves with Reflection

for Longitudinal Impact (Ch. I-IV)

by

M. L. Wenner

Armor Penetration Dynamics (CH. V-VIII)

by

R. Minnich
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NOMENCLATURE

VISCOELASTIC WAVES

P

dt
E(t = 0)

de

dv

- e — -

Mass density of bar material
Longitudinal coordinate

Time

Velocity in x-direction
Cross-sectional area of bar

Tensile stress in x-direction

Tensile strain in x-direction
Pressure at origin

Glassy (fastest) wave séeed

Time duration of stress input
Viscoelastic relaxation modulus
Spring constant-standard linear solid
Spring constant-standard linear solid

Dashpot viscosity coefficient-standard linear
solid

Number of bar 2lements

Number of time elements

Change in x-coordinate

Change in time

Glassy state relaxation modulus
Change in strain

Length of bar

Chenge in velocity
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VISCOPLASTIC IMPACT

N " W D kP T >N ¢
" . . -

Longitudinal Coordinate

Time

Compressive stress in X-direction
Compressive strain in X-direction
Particle velocity

Mass density of bar material
Static yield stress (compressive)
Cross-sectional area of bar
Material constant

Overstress exponent

Mass of striking body

Slip factor

Length of bar

Initial velocity of striker
Dimensionless coordinate (= X/L)
Dimensionless time(= ooT/pDLz)
Dimensionless stress (= o/oo)
Dimensionless velocity(= V/DL)
Dimensionless impact velocity (= Vo/DL)
Dimensionless strain (= g_ elpDZLz)
Dimensiunless .;ass factor(= G/pAL)
2

k v
0

[ Y

The quantity
Number of bar elements

Number of time elements

- . - PPN DRI
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Time at which unloading begi.s
Time at which all motion stops
Change in dimensionless velocity
Change in dimensionless strain
Change in dimensionless stress
Change in dimensionless time

"i{s replaced by"

R 1 2 R ——— - ——
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Chapter 1

INTRODUCT ION

l.1 On2-Dimensional Impact

Since the problem of one-dimensional elastic stress wzves
in a slender bar was solved by Newton in 1685, it has been recog-
nized that the one-dimensional problem is quite valuable for de-
veloping and checking further analyses on more complicated cases.

As our store of knowledge increases, however, we find that the
material representations which are most realistic are usually those
which also present the most difficult mathematical obstacles. Thus,
even the simplest cases of dynamic protlems are difficult to treat
analytically.

It i8 proposed to analyze in this thesis two problems of
loengitudinal impact of slender bars. The ultimate concern here is
to obtain solutions for realistic materials, since only in this way
may it be expected that a contribution of a quantitative or of an
engineering nature may be made.

The problems to bte analyzed are stress waves in a viscoelas-
tic material and plastic impact of a viscoplastic matevial. The
material representation for the viscoelastic material is cae which
can be directly obtained from experiments, namely, the relaxation
modulus in tension. The conventional method cf desc-ibing a material

by a spring-dashpot model will be discarded. The law used herein to
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describe the viscoplastic material will be a nonlinear stress-strain
rate law.

In the following, two problems will be explained concurrent-
ly since many of their aspects are quite similar. When there is a

dissimilarity, separate treatments will be used.

1.2 Introduction--Viscoelastic Waves

Wwith the increasing use of visccelastic materiels in such
diverse applications as insulations, binders for solid fuei rocket
propellants, and structures, there has occurred an increase in the
nunber of theoretical iavestigations into the subject. These have
been hampered, particulatly in dynamic analyses, by formidable
mathewatical difficulties, which are rormally overcome by representing
the material by means of spring-dashpot models. These models simpiify
the analytical problems considerably, but at the expense of inade-
quately describing the materials. In fact, the commonly used models
consisting of two or three elements exhibi' nearly all of the change
in a particular viscoelastic function in a single logarithmic decade
of time, whereas e:periments show that actual viscoelastic materisls
require at least seven to fourteen logarithmic decades of time to
describe their full range.

The problem of one-dimensional wave propagation in visco-
elastic bars is among the simplest of dynamic problems to state, but
no analytic solution has yet been obtained which does nut depend
in one way or another upon a material representation of springs and

dashpots. A general solution to this problem wou.d determine stress

v St T e . - - —— . g e~
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(or strain) in a hav as a functicn of time and position, using
only the experimentally obtained material data and the boundary
conditions on each end of the bar., 1t is one of the purposes of
this report to develop an analysis which yields such a solution,

In analyzing the problem of one-dimensional wave propagation
in viscoelastic media the following assumptions are made:

a) The bar is assumed to be slender enough that
we have plane waves. Hence, lateral effects are disre-

garded, and the stress is uniform on any cross section.
b) The displacements are infinitesimal.

¢) The bar consists of a linear viscoelastic
material and thus obeys Boltzmann's superposi*tion principle.
This principle, which forms the basis of all linear visco-

elastic analysis, will be stated in Section 2.2 below.

d) The bar is assumed to have a uniform cross

section.

A complete solution to this problem must show the response
of a viscoelastic bar subjected to impulsive loading as a function
of time and position. It will be readily adaptable to free or
fixed ends, and will show the reflection of the waves from each end.
It is hoped that this will provide a direct means by which to

compare theoretical results with experimental results.

1.3 Introduction-Viscoplastic Impact

In order to adequately describe the pheomenon of deformation

L R TR o~ e ol o - - T e -k W - -
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of materials in which plastic deformation occurs at a high rate, it
has been found necessary to incorporate a constitutive law which
takes into account the strain rate. A simple type of experiment

is the axial impact of a prismatic bar by a finite mass.

One of the laws proposed for this problem is a power law
relation between strain rate and dynamic overstress., The advantage
of choosing this law is that some material data are available from
test results and the law has shown to be effective in predicting
deformations of cantilever beams even when the physicai cuastants
had tu be .rudely estimated. This past success should be a stimulus
to further invesiigation in order to determine if the law in question
adequately describes different problems. 1If this is the case, the
theory could be used iLogether with experiments, in order tc determine
the physical constants more accurately, thereby producing solutions
for other problems.

The following assumptions and conditions are imposed on the

analysis:

a) Uniaxial stress is assumed, and no lateral

effects are admitted.

b) The material is rigid viscoplastic; that {s,
no strain increment occurs at a point unless the static
yield stress there is exceeded. This {s & realistic
assumption if the plastic deformation at & point is much

larger than the elastic deformation.

c) The striking mass moves parallel to the axis
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of the bar and after impact, it sticks to the end of the bar.

d) “he constitutive law is a power relation be-
tween the strain rate and the dynamic overstress. This law

will be stated explicitly in section 2.3 below.

The law to be used in this analysis is & more general one
than has been used previously in the problem of longitudinal impact
in viscoplastic rods. These results should enable researchers to
more accurately evaluate the worth of this particular constitutive

law,

.4 Past Work--Viscoelastic Waves

Most of the analytic investigations accomplished to date
have used Maxwel! solids, Voigt solids, or a combination of the two.
The Maxwell model, proposed in 1890, is a spring in seriec with a
dashpot, while the Voigt model (1892) is a spring in parallel with
a dashpot. These models have been used not only for stress wave
problems but also for vibrations and quasi-static problems.

Hillier [1]' has used the Maxwell model, Voigt model, and
two models using three elements each as material representations ror
the problem of longitudinal sinusoidal waves in & bar. This {s of
course a vibrations solution and no trancient 2ffecte are cunsidered.

The transient problew wae treated by Lee and Morrison (¢},

also using simple model representations. Laplace traissform

*
Numbers in brackets refer to references isted {n Biblicgraphy.
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techiniques were used in order to solve the boundary value problems.

Kolsky |3] performed experiments ou a viscoelastic material
by subjecting a rod to explosives at one end and recording the
respcnse of the other end. An analytic solution was obtained for
the same problem by using Fourier analysis. The theoretical re-
sults compared favorably with the experimental results.

A partial solution to the problem is given by Bland [4].

In this analysis a wave front expansion is used which yields a long
time solution. We desire, however, to find a complete solution
whenever possible.

Morrison [5) has given integral solutions to severai model
repr:sentations, {ncluding the standard linear solid which will he
described below. Laplace transform methods were used, with a
numerical {nversion. Our computer solution will be applied to tais
model and the results compared to Morrison's.

The most comprehensive solution (o this probiem to date
has been given by Arenz [6]. 1In this study the material is repre-
sented by a Kelvin model consisting of a glasey spring pius n
Voigt elements in series. Arenc uses this model with nine Voigt
elenents to represent the real part ot the complex shesr compliance
of a polyurethane material. Tranaform techriques are used with two
different methods of inversion. These methods were {ormulated for
other applicaticns by Schapery [7,8].

Several review articles have recentiy been published con-
cerning dynamic phonomens in viscoelastic materi{ais. Mor. refer-

ences to these jproblems may be found {a tne papers by Zverev [9],




Lee [10]), and Hopkins [11].

1.5 Past Work--Viscoplastic Impact

The constitutive law, a form of which we shall use in this
analysis, was first proposed by Hchenemscr and Prager [12]. It is
for a solid of the Bingham type in which elastic deformations are
neglacted and in which the strain rate is related to the amount by
which the stress at a point exceeds the static yield stress. Several
experimenters [13, 14, 15] have shown that this type of law satis-
factorily describes the plastic impact of beams and other structures,

Lee and Wolf [16] made an investigation of longitudinal im-
pact on a rigid-plastic bar in which the material was considered to
be linearly strain-hardening but rate independent. In using their
golution to analyze tests made by Habib [17), Lee and Wolf showed
that rate dependence effects may become of importance i{f nonuniform
strain distribution resuiting from plastic wave propagation is ig-
nored.

The linear form of the rigid-viscoplastic law has formed the
basis of several studies. Sokolovskii [I8] used it to solve seversl
prcblems of plane shear waves in semi-infinite media, and Ting and
Symonds [19] used it to analyze the problem of longitudinal impact
of viscoplastic bars. The game two authors also give [20] some
approximate methods for the nonlinear case anc compare these re-
suits with both the linear case and with the simplest rigid-plastic,
rate i{ndependent problem. They conclude that for the case of high

{mpact velocity of a iarge impact mass the assumption of unitorm




final strain is reasonable. We shall have some comments on this
assumption and shall show its limitationms.

Some review articles which will provide more references
are Lee's review [10] which treats elastic-plastic problems, and an

article by Cristescu [21] which describes European contributions.

M - et o




Chapter 11

MATHFMATICAL FORMULATION

2.1 Pertinent Mathematical Relations

The standard method by which physical problems of this
sort are solved is to write down the appropriate mathematical re-
lations, combine them, and then solve the resulting boundary value
problem. The approack used here also depends, of course, on a
certain combination of physical laws, geometrical relations and
definitions. In particular, what we need are: definition of strain, a
geometrical relation between strain and velocity, the impulse-
momentum law, and a law relating stress to some other parameters.

These form the basis for each of the two analyses given.

2.2 Mathematical Formulation--Viscoelastic Waves

The physical conditions governing the one-dimensionai
viscoelastic wave problem is shown in Figure 1. The origin is
located at the left end of a bar of length L. The right end may
either be fixed or free. The left end is subjected to an impulsive
stress loading at time zero; this stress may remain acting for any
desired amount of time. Thus, the boundary condition at the origin
is

0(0,€) = -p,[H(t) - H(t)] (2.1)

- T T R Y R -
N . -
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where H(t) is the lieaviside step function and tp is the time at
which the stress is remcved. The boundary condition at the right

end is

v(L,t) = 0 (2.2)
1f the right end is fixed, or

o(L,t) = 0 (2.3)

if the end is free.
The equation of motion governing the one-dimensional

case is
dofdx = pdtupr? - (2.4)
and the definition of strain is
€ = Ou/dx (2.5)

The above is standard analysis, ani may be found, for instance,
in Timoshenko [27].

We now require a stress strain law for the viscoelastic
material. Normally, this is obtained from a model representation.
For instance, the stress strain law for the standard linear solid

shown below 1is

(1/E')do/dt + yo = (1 + E/E')de/dt + Eue. (2.6)
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E'

-

v

o(t)

The standard procedure is to insert equations (2.6) and
(2.7) into (2.4) and solve the resulting partial differential
equation subject to the boundary conditions, usually by transform
techniques.

However, the general stress strain law for a linear visco-
elastic material is given by the Boltzmann superposition principle,
which 18, in fact, the definition of a linear viscoelastic material.
This is an integral equation and as given by several authors [4,

22, 23] may take either of two equivalent forms. One rcpresentation

is

t

o(t) = €(t)E(t = Q) -f €(v) dE(t -v) dv, (2.7)
o dr

This is a Riemann-Stieltjes integral, and when we apply integraticn

by parts,

t
g(t) "f E(t - 1) de(+) dr. (2.8)
o dr




There are corresponding integral relations giving the strain when
the stress history is known. 1In 2.7} and (2.8) the function E(t)
is the relaxation modulus in tension and it is the stress/strain
ratio as determined from a relaxatica test. In this test the
material is suddenly subjectcd to a strain which is subsequently
held constant, and the stress required to maintain this deformation
is measured as a function of time,

Inserting une of equations (2.7) or (2.8) with (2.5) into
(2.4) gives an integro-differzntial equation which has not yet been
solved mathematical.y. Instead of attacking this equation, we
propose to use the Boltzmann superposition principle as the basis
of a so-called 'computer analysis' to solve the one-dimensional

wave probilem fur any linear viscoelastic material.

2.3 Mathematical Formulation-Viscoplastic Impact

Figure 2 shows a rod of length L, fixed to a rigid wall at
the right end and subjected to the uniform impact of a body of mass
G on the left end. The origin is located at the left end and the
impact occurs at time zero. The boundary conditi. at the left end

is obtained by applying the impulse-momentum law at X = 0. That is,
G AV(0,T)/OT + Ag(0,T) = O. (2.9)

The toundary condition at X = L is
v(L,T) = 0. (2.10)
The impulse-momeniur cguation is

QA/0K »  -p OV/AT (2.11)
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and the equation relating the velocity to the strain (where they are

continuous) is

J0€/dT = -0V/oX. (2.12)

The equation relating the strain rate to the dynamic over-

stress is
p
e . ple . if | q | > g (2.13a)
oT a, o
e _ if < (2.13b)
ST ' g I - oo *

where D and p are material constants. Several consequences of this
law should be noticed. First, upon being loaded, a material which
obeys equations (2.13) exhibits no defcrmation until the stress ex-
ceeds the static yield stress. Second, when a particular region is
unloaded from a stress which is higner than the static yield stress
to a stress which is less than the yield stress, that region will move
as a rigid body.

Following Ting and Symonds [19] we introduce nondimensional
variables in order to simplify the analysis. These nondimensional
quantities are recorded in the list of symbols, and using these

terms, the equations (2.11), (2.12) and (2.13) become

ov/dt = -Qs8/dx (2.14)
dv/dx = -dn/ot (2.15)
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on/dt = (s - P s ls i) 1 (2.16a)
on/ot = 0 if !sl <1 (2.16b)

respectively. In the case of p = 1 the combination of equations

(2.14), (2.15) and (2.16a) yields

sz/ax2 -dv/dt = 0 ifl s l>r1 (2.17)
32 2 _ |
8/Ox” - 08/t = 0 if|s|>1 . (2.18)
This is the one-dimensional hea: condu~tion equation and analytical

solutions may be obtained for a number of problems. In a region

where l 8 '_(_ 1,

on/dt = 0 (2.19a)
Qv/idx = 0 (2.19b)
aza/axz = 0. (2.19¢)

In nondimensional notation the boundary conditions at the right end

becomes

v(l,t) = 0. (2.20)

The boundary condition at x = 0 which was given by equation (2.9)

is

BV(O, t) BV(OAC)
N e rah R S (2.21)

when combined with (2.16a) using p = 1.0. In nondimensional




notation the initial conditions are

v(0,0) = Vo (2.22a)
v(x,0) = n(x,0) = 0 (2.22b)
s(x,0) = 1 for x > 0. (2.22¢)

The solution of this problem is given by Ting and Symonds [19] with
solutions to three similar problems.

It is proposed in thic repcrt to give a means by which to
solve the viscoplastic impact problem using the nonlinear case of
equation (2.13). This will be accomplished by means of a computer
analysis using the asbove relations as a basis. The means by which
these relations are written in finite form and the method by which
we incorporate them into a computer approach is given in the follow-

ing chapter.




Chapter ITIL

COMPUTER ANALYSIS

3.1 General Computer Approach

The purpose of this section is to give a brief account of
the method by which both the viscoelastic wave problem and the
viscoplastic jimpact problem will be solved. Instead of deriving
complicated equations from basic principles and then using the
methods of numericzl analysis in order to obtain results, we shall
write down the physical laws, definitions, and assumptions for a
pavticular problem and use them in finite form. This is called
"computer analysis'. Some of these relatiuns are given in this
scction, and the method by which we combine them for computational
purposes is illustrated in the fcllowing i{wo sections.

This method has several advantages over standard numerical
prxcedures. First, the program is physically meaningful because
the physical laws appear explicitly and the program actually follows
the phyrical processes as they occur. This fact makes tais method
more desirable than the standard procedure in which equations are
der{ved from simple laws and then suljected to finite-difference
anelysis which usualiy renders them uarecognizable. Secondly, the
prgram is easily adaptable tc changes because often only cne stata-
went need be modified with ro change to the rect of the program. In

the use of a computer to solve finite-difference equations wvhich




have been derived from t(he basic principles, the entire logic must
usually be chang'd when one ot these basic laws is changed. Third-
iy, the resulting program is more efficient because finite methods
are used immediately rather than as a means to solve complicated
integral or differential equations.

Since we are using a finite process to simulate a continuous
process, some further features of the approach must be explained.
Unless stated otherwise the following comments apply to both the
viscoeidastic and the viscoplastic programs.

l. The bar is divided into a finite number of cells and
the basic equations are applied to each of these cells; the time
variable is periodically changed and the variables such as stress,
strain, displacement, and velocity are recorded for each cell and
for each time. We consider Lere only bars of uniform cross section-
al area A. The length of a cell is dx, which is related to the
element of time dt for the viscoelastic program.

2. It has been found that the order in which the basiv
equaetions are stated 1s of great importance and the order given in
our programs £s tae oniy one which has yielded a solution. The
reason for this fact 1s that our finite analysis must necessarily

do one thing at a time whercas in the actual physical process sever;
chdanges may occur at one time. The stability of the procedure s
directly dependent von the order of the steps.

3. Another factor which aftects stability 18 the ceil size
ang the size of the U1lm» ndrement. Detaiied comments on this

prodlem will be founag beiow in the discussion of cach provien
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4. The »rogram should be corstructed in such a manner that
mincr changes may be incorporated in both the data and the procedurc.
If possible, a single program should be abie to solve several prob-
lems. For instance, a program might have a feature by which it may
solve a bar with a fixed or free end.

5. The program mechanism should be constructed so that the
physical process is as closely simulated as possible. This gives
an insight into the problem and may lead to further understanding
and study of related problems.

Figure 3 shows the notation by which the cells and stresses
are labelled. It should be noted that the stresses are shown in the
positive direction for the viscoelastic program, but in the negative
direction for the viscoplastic program in which compressive stresses
are regarded as positive. In each of the programs the index i runs
from 1 to im’ and the time index k runs from 1 to km.

The cores cf the two problems are similar and may be out-
lined as follows.

1. The law relatin; stress to strain is stated in finite
form and the stress in cell i + | is calculated and recorded. For
the viscoelastic problem this step is a numerical integration while
a finite form of equation (2.16a) serves the purpvose for the visco-
plastic program.

2. The strain increment acting on cell 1 + 1 may be
written in terms of displacement as

a1 T (up g m e dx 1 (3.1)
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where the displacements are given by

- .2
u, v, gt (3.2)

and

u, = v, _dt. (3.3)

Combining (3.1), (3.2) and (3.3) yields

de, =

i+ 1 (vi 41 - vpee/dxy

+ 1 (3.4

which is the form we shall use.
3. A cunulation process follows in which the strain in

cell 1 + 1 is replaced by the addition of de,

i+ 1 to the original

strain €5 This may be written symbolically as

+1°
i+ i+1 i+1, (3.5)

The symhol « is understood to mean '"is replaced by".

4, The impulse-momentum law may be written as

2: F dt = change in momentum (3.6)

where the ieft hand side cf (3.6) is the sum of the impulses. We
apply this law tocell i by noticing that the impulse on the right
end of the cell is 0f + | A dt and the impulse on the left end is
o; A at, where A is the cross sectional area of the bar. The

change in wmomentum of the cell is given by the mass times the




by

increment of velocity,

M dvo= (p A dx,) dv. (3.7)

Using these quantities in (3.6) gives

dt - g, A dt

(paA dxi) dv = 9 41 A {

or, in the form which we shall use,

dv = - Oi) dt/p dxi. (3.8)

(0; +1

Note that this gives an increment of velocity in cell i as a result
of a net impulsive force acting on that element.
5. In order to calculate the actual velocity of cell i we

use the relation

vi- vy + dv. (3.9)

This is actually an integration process which recalculates the
velocity in cell i.
6. The position along the bar is calculated by another

integration process which we write as

X+l * X + dxi. (3.10)

These six relations, taken in the given order, form the
basis of each of the two solutions. There are only minor revisicas
in the problems which will be explained further below. Note that

two of the relations are mechanical or physical laws (1 and 4),

- - Lt g R T - o~ — . P R
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while the others are geometrical definitions or integra:.iors.

In each of the programs, these six telations, (1) to (6) are
repeatedly calculated for values of the index ranging from 1 to im.
Physically, im i8 the number of elements making up the entire length
of the bar. This repetition for the index i is then nested in
another repetition procedure which increments the time variable by
means of the index k. This index runs from 1 to km, where km is
the total number of time elements. It should be noted that all
boundary conditions such as stress at x = 0, momentum interchange
at x = 0 or a velocity condition at x = L are included in one or
both of these steps. Any initial conditions ‘as on the stress
field for the viscoplastic problem) are included before-hand.

The above is a general sketch of the method to be employed.
The details of the solution for each of the programs are given in

the following sections.

3.2 Computer Theory-Viscoelastic Waves

As previously stated, a spring-dashpot model of two to four
elements i8 not sufiicient to describe a realistic viscoelastic
material. Although the number of elements in the model could
theoretically be increased so that the model would represent any
given materlal very closely, this procedure is not recommended be-
cause it leads to a numerical analysis scheme of probnibitive leagth
and complexity. Therefore, we shall ignore models of this sort
entirely and shall use the Boltzmann superposition principle.

Instead of writing the integrals cited previously [equations

S~ -y e - ~ . ———ep - e e - &

- - A —— - -




e N -

39.

(2.7) and (2.8)) we shall deduce the proper form of the law
directly from the definition of the relaxation modulus and the
superposition principle. Recall that the stress at any time in a
viscoelastic material due to a constant strain suddenly applied at

zero cime is given by

g(t) = E(t) €, (3.11)

where €, is the constant strain. If the strain had been applied

not at time zero but at time t = 7, the relation wou'd .=
o(t) = E(t - 7)€ (3.12)

since we must use the value of the relaxation modulus whose argument
is the elapsed time since the strain was applied. Now let us apply
(3.12) to a particular cell, say cell i + 1. Then the increment

of stress on cell 1 + 1 at time t, due to an applied strain dei

k +1

at time t will be given by

+ 1

doy , 4 = deg (e, ) X E(y me ). (3.13)

In order to calculate the stress on the cell due to a series of
successively applied strains the Boltzmann superposition principle
is used. This states that we may use (3.13) to compute the quantity

dg for each strain applied and add these quantities in order

i+l

to obtain the value of the total stress. Thus, the total stress

is given by

Cisl ™ dci +1(t1) x E(tk - tl) + dei . 1(t2) x E(tk - tz)

+ .. .+ dci + 1(tk) x E(t = 0) (3.14)
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If we take the limit as k tends to infinity and d€i +1 tends to

zero we obtain the familiar representation of equation (2.8):
t
o(t) = J( E(t - 1) de(r) dr. (2.8)
o dr

The equation (3.14) is not quite the form which is used in the
analysis. This is because the propagation of stress waves is a
continuous process and (3.14) was written for & finite number of
constant valued strain increments. Therefore, in order to obtain
the correct value of wave-front stress and to more accurately

describe the continuous process, the terms E(tk -t ) are re-

m+1

placed by E[tk - %(tm +t )]. That is, the strain is regarded

m+ 1
as being applied at a time halfway between the times tm and tm +1°
It i8 imperative to do this in order that a correct value of the
wave front stress {s obtained. If E(tk - tm) were used, the wave

front stress would not be relaxed at all and 1if E(tk -t ) were

m+ 1
used, the stress would be relaxed too greatly.
A different form of the integral equation can be obtained

bv applying an integration by parts to equation (2.8). The result

is

t
og(t) = ¢€(t) E(t = 0) - Jr €(t) dE(t - 1) dr. (2.7)
o d+

This representation is attractive because it quite strikingly shows
two physical phenomena. The first term on the right represents the
stress acting on the element as a result of the strain which has

daformed it at the instant considered. This part {s completely

- ~ -
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analogous to the case of elastic waves in which the function E(t)
would be a constant. The integral, however, represents in our
problem the process of relaxation in whicb the stress which has
been acting on the element for some finite time is reduced in value
because of the nature of the relaxation modulus. 1Ir crder to apply
the analysis of rhis report to the integral, we again write in-
crements of stress and add these increments. In this case the

quantity doi +1 is calculated by

dg -t

i1 " 41 DBy L st ) By D)

(3.15)

Inherent in this equation is the assumption that the strain on
element { + 1 is constant from time tm to time tm +,° This
equation is calculated for the entire strain history of the element
and the stress is thus integrated. The complete the caiculation

of equation (2.7), the '"elastic' part of the stress is calculated

by means of

doy o1 = €441t 4 ) E(t=0), (3.16)

It was found that an effective way to increase stability in
this program was to compute the integral in two places in the
procedure of the problem. Therefore, the order of the laws given
in section 3.1 was modified as follows. (1) The first calculation
is the evaluation of the integral as described abcve. (2) The

increment of stvain dEi + x(tk) is calculated &nd added to the
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strain on cell i + 1 at the last time index, k - 1. Thus we cal-
culate the strain €+ 1(tk), which had not as yet been available.
(3) This newly calculated strain is then used to obtain the elastic
part of the stress by means of equation (3.16). (4) The integral
1s again evaluated, but now the strain € + l(tm + 1) has been cal-
culated for m + 1 = k, whereas it had not been available for the
first integral calculation. (5) The stress 0f 4+ 1 is now calcu-
lated by adding the elastic part of the stress to the average of
the two integral calculations.

The reason that it was found necessary to incorporate this
somewhat artificial device is that if {t were not used, the integral
would be evaluated either by using all of the strain €i + l(tk)’ or
by using none of it. Either of these two alternatives may lead to
serious errors. For instance, a stress may be calculated which is
higher in magnitude than the {nput stress, or a change of signs may
occur. Either of these errors tend to be magnified as the calcu-
lation proceeds, rendering the results meaningless. In addition,
our method is probably closer than either alternative to thte actual
physical process in which several changes occur simultaneously.

The only other exceptional feature of this program is that

the elements of time need not be equal. Since elements of time are

related to elements of distance (cell size) by the relation
dx, = ¢ x dt (3.17)

it follows that the cell sizes may likewise be unequal. If these

sizes are unequal, an interpolation procedure is required in crder

P -3 - - T Wt g e T D~ ————— —




that the proper values of the relaxation modulus are available. A
linear interpolation is used which introduces some errors into the
glassy and transition regions of the modulus; these are not serious
if the time elements are small enough.

Two schemes have thus been devised for the calculation of
viscoelastic stress waves. The remainder of what follows in this
section applies to both representations.

In order to allow these schemes to be used for bars with
fixed or free ends, an "end factor'" ic employed. This is simply a
number, either one or zero, which is multiplied with the stress

Oim + 1° If the bar is free at the right end, EF = 0.0, and if the

right end is fixed, EF = 1.0. Thus, the stress at the end of the
bar is made to be zero for a iree end, and is undisturbed for a
fixed end. These conditions lead, by means of the impulse-momentum
law, to the proper type of reflection at the right end.

The left end condition is decided by means of a test in
the time repetition loop, but outside the position loop. This test
applies a given constant stress, either tensile or compreesive, to
the first cell if the time is less than tp and applies no stress if
the time is greater than tp. It would be a simpie matter to apply
any given stress at any time to the bar, but since this would add
essentially no new information or new understanding to the problem,
it was not done in our program.

The basic laws as they appear in the double integral program
are shown ir rfigure &. Note that this diagram is merely the logical

“skeleton' of the program.
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FIG. 4 VISCOELASTIC COMPUTER SCHEME USING TWO
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3.3 Computer Theory-Viscoplastic Impact

This program was construct.u along the general lines given
in section 3.1. A minor difference is that the strain increment is
calculated and integrated before the stress-strain rate iaw 15§
applied. This order was chosen because the stress-strain rat: law
is not used when there is no deformation occurring, whereas the
strain is always calculated. Thus, the order 1 merely a matter of
tonvenience, since this particular choice does not alter the logic.
The basis of the scheme is outline in Figure 5.

In the computer procedure we write the stress-strain rate

law, equation (2.13) as

X 1/p .
= .0 - i 3.1
si + 1 i.0 + [(vi vi . 1)/dx] L f vigyi + 1 (3.18a)
Si +1 " 1.0 if v1<vi + 1 (3.18b)

This representation uses « somewhat different criterion than does
equation (2.13). In (3.18) it is the velocity that determines
whether or not deformation occurs whereas in (2.13) the stress is
the determining factor. This dif{crence arises because the initial
input to the bar is a velocity on the left end. This, of course,
gives rise to stresses, but we follow the diffusion of velocity
through the bar and use 1t as a ''deiormation criterion'.

The *ns by ~hich this deformation decision i1s made is
the use ¢f "siip factors”. This is a factor {caiied sii in the

prugram) which takes the vaiue of 1.0 .f celis 1 and 1 - i are
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defeorming relative to each other, and the value 0.0 if the cells

i and 1 - 1 are moving with the same velocity. We thus have

sli = 1.0 for V.o ¥ vi

sl, = 0.0 for v, = v, .
i i-1 i

The dynamics of cell number i is thus determined by the

relative values of the slip factors sli and sl We compare

i+1

these two slip factors by computing their difference, sli +1
The results of this subtraction may lead to any one of three

possibilities; that is, the difference may be zero, positive, or

negative. There are actually, then, four dynamic conditions:

(Al. sl, = sl, = 0.0)
A. sl , -8l = 0 1 i+l

(A2. sli = sli +1 " 1.0)
B. s1i +1 sli > 0 (sli +1 = 1.0, sli = ()
C. sli w1 sli < 0 (sli +1 ° 0.0, 8, = 1.0)

This method was devised by Minnich and Davids {25] for

i.

anothev application, and the details of their method are similar in

some respects to those used here. However, the method will be
given explicitly here since the physical conditions of the two

applications are different in a number of circumstances.
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Condition Al sli = sl. = 0.0

i i+1

i-1 i i+1

In this case, since each slip factor 1s zero, the three
velocities shown above are equal and there is no net force on cell
i. Therefore, its velocity increment is zero and, if we write the

impul se-momentum law in the form

dv = (si X sli - 8 )dt/dx (3.19)

i+1 %5 4
we may use (3.19) to calculate dv.

Condition A2 sli = sli +1 1.0

sl sl

¢r— i ¢F‘ i+1

i-1 i i+1
v v v
i-1 i i+1
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Now deformation occurs at both ends of the i - th cell and
therefore there are stresses on each end of it. Thus, equation

(3.19) may again be used,

diti = =
Condition B sli 0.0, sli + 1 1.0

sli sli +1

/- /

i-1 i i+1
\ v v
i-1 i i+1

Physically, this means that the material immediately to the
left of the i - th cell is not deforming, while the material to the
right is deforming. Thus the region in question is in the 'un-
loading' process in which the boundary between rigid and deforming
material is moving to the right. Ting and Symonds{19] prove that
this unloading must start at the impact end of the bar, and since
this is a diffusion phenomenon, once a region has unloaded, it will
not deform again. We thus use a form of the impulse-momentum law
in which the mass of the striker must be taken into account. This
is

dv = -s, dt/k. (3.20)

i+ 1

This velocity increment is added to the first i cells.
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Condition C Sl; = 1.0, le +1 = 0.0
sl sl
i oL+ 1
— ¢y 4
i -1 i i+1
T 7 e
i-1 i i +1

In this instance the material to the left of the i - th
cell is deforming while the material to the right is rigid. This
corresponds to a loading process where the deforimation field is
moving to the right. Since 8 +1 must be 1.0 and 8, must be

greater than 1.0, deformation will be initiated to the right of

cell i. Therefore, ali 1s set equal to one and equation (3.19)

+1
is used.
The structure of the logic for this program is indicated

in the schematic diagram, Figure 6.
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d€|'|= _
(v;.,-vi)dt!dx
Y
Visi® v f—tpe] Siei® 1.0

'[(Vi - V'.l)/dx]

Q

dvs (S;sli-s;,,
di,|)d'/dx

oy

/

vi =v; +dv

v

FIG. 6 LOGIC OF SLIP FACTORS
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Chapter 1V

RESULTS OF CALCULATION AND DISCUSSION

4,1 Standard Linear Solid Material

Two computer programe based on the theory given in sections
2.2, 3.1 and 3.2 were written in the Fortran language. These
programs are given In their entirety in Appendices A and B.

In order to cneck the validity of the programs, runs were
made using the standard linear solid to represent the material. The

values of the system parameters were chosen as follows:

E = E' = 1.0

l/uy = 1.0
p = 1.0
po = -1l0

The relaxation modulus in this case is

t

E(t) = 1 +e (4.1)

Actually ‘hese values were chosen in order to facilitate a comparison
with both Morrison (5] and Arenz (6]. As Figure 7 shows, the in-
tegral solution by Morrison, the Laplace transform method of Arenz,

and the computer solutions agree very well.
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As a point of interest, we show in Figure 8 the response of
a bar of the same material and at the same location. The differ-
ence this time is that the bar has a finite length (L = 2.828), c°nd
the right end is fixed. A constant unit stress 1is applied at the
origin. The step discontinuities in the response are due to the
reflections from the ends of the bar.

Several facts should be noted from the diagrams. First,
the response of the bar takes place in less than two decades of
log time, thus bearing out what was stated previously: that the
standard linear solid is a fictitious material. Also, if the
response of two bar locations are plotted, the slope becomes less

steep, as we should expect.

4.2 Realistic Viscoelastic Material

We now apply the program to a realistic material. Visco-
elastic data was taken from a thesis by Arenz [6] for a polyurethane
synthetic rubber, a low modulus polymer. The relaxation modulus is
shown in Figure 9. There are some grap.s given in Arenz's work
showing stress wave behavior as calculated by an approximate Laplace
inversion technique. The single integral program was applied to
this materiasl and a comparison of results {s shown in Figure 10.

The high frejuency response as calculated ty Arenz is slower than

our data. This seems to be true generally. Also, Arenz obtained

some oscillation in the high frequency response, suppnsedly due to
alternate reinforcement and interference of waves of differing

frequency and therefore difiering speeds of propagation. No such

- e - - : - - e
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occurrence was obtained in our analysis, and indeed it seems likely
that the oscillation reported by Arenz is not a genuine physical
fact, but a result of some mathematical approximation. The
transition region of the response is quite well matched for the
two solutions but some divergence is apparent at large time. It
is believed that this is due to an inaccurate low frequency material
representation in this analysis.

The double integral program was applied to another, similar
material in reference [24]. This program does not seem to operate
as effectively as the sirgle integral program, and there was some

scattering of results. Figure 11 shows the response of this

material (Hysol 8705) at two positions along the bar x = 1.77 inches-"/

and x = 3.29 inches.

It was found that several factors could give rise to in-
stability in either of the programs. First, the time element must
be chosen small enough so that enormous changes in the relaxation
modulus do not take place. This factor is far more critical for
the double integral program than for the single integral solution.
The time interval was taken as 3.0 x 10-3 sec. for the results in
Figure 10 and as 1.0 x 10-7 sec. for those in Figure 11. Secondly,
since each of the programs incorporates a linear interpolation, the
material data must be given to the program at quite a few points.
Normally, the data was given at log time increments of 0.1 and even
this is not enough for response calculations at positions where the

glassy wave speed arrival time is less than 10'6 sec.

The double integral program was so written that variable
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elements of time could be chosen. It was found, nowever, thit
actually using variable time elements leads to serious errors in
most cases., Generally, it may be said that the time increments
shouid be decrease? in size as the time increases. This, however,
is not an advantage over taking equal time increments, insofar as
required computer time or representation of material are concerned.
It may be said that for all cases tested, the single integral
program outperformed the double integral program in every way.

Furthermore, it is more efficient than the double integral program.

4.3 Viscoplastic Impact

A program incorporating the theory of sections 2.3, 3.1 and
3.3 was written in Fortran. This program is shown in Appendix C.

The case of the overstress exponent equal to unity was
performed first, and the results were compared with those of Ting
and Symonds [19). Figure 12 shows a comparison of our stress cal-
culations with those of Ting and Symonds. This plot is the quantity
(s - 1)/vo versus the dimensionless distance x. The calculation is
for values of k = 1.0 and vo " 1.6. Calculations for other values
of k and A showed similar agreement with Ting and Symonds. Figure
13 shows a plot of dimensionless strain, 7, divided by Mg (which is
defined as the uniform strain which could absorb the initial kinetic
energy at stress s = 1) versus the dimensionless distance. The
quantity Mg is equal to one-half the product k voz. Again agreement
was as close for other values of k and N In Figures 12 and 13 the

values of t, and t, are the times at which the striker stops moving
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and the velocity in the entire bar vanishes, respectively.

The case of overstress exponent equal to unity 1s quite ua-
realistic. In engineering situations, we would require an analysis
using the correct value of p. For mild steels, p = 5, and for
aluminum alloys, p = 4; therefore, the analysis for p = 1 does not
give a quantitative answer to the impact problem.

Accordingly, we introduced the value of p = 4 into the

program. Thus the stress-strain rate law becomes

s = 1+ (v, - /dx)Q (4.2)

i+1 Vi +1

where Q = 1/p. No serious difficulties were encountered as lcng
as the value of the time increment was kept sufficiently small. For
instance, for dx = 0.050, the program operated satisfactorily for
dt = 0.001, but became unstable for dt = 0.01. This arises because
the computer performs one operation at a time. If the time increment
is tou large relative to the distance increment, one parameter may
accumulate errors. The velocity field, for instance, may reverse
directions, or the strains become impossibly high.

The results of the calculations for p = 4.0 are shown in
Figures 14 and 15, where they are compared to the solutions for
p=1.0. As could be seen from the general law, the strains are
larger for this case. Also, the stresses are lower initially but
increase to a higher value at times t = (0.1 and t = 0.36. The time
for complete cessation of motion ror the case p = 1.0 was t = 0.770.
At this time there was still plastic deformation occurring in the

var when p = 4,0. It was also noticed that the velocity of the
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striking mass slows down much faster for p = | than for p = 4. For
instance, with vo = 1.0, k= 1.0 the striker velocity at t = 0.360
was 0.31 for p = 1.0 and 0.50 for p = 4; at t = 0.600, the velocity

was 0.07 for p= 1.0 and 0.25 for p = 4.
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SUMMARY ANu CONCLUSIONS

{£.1 Summary

The problems of longitudinal impact are .mportant bacause
of their relative simplicity. Their study indicates the pertinent
physical laws of a problem and often indicates the direction in
which further research should be directed. Even more important,
they provide a simple and direct method by which a particular law
may be experimentally verified. The two proolems presented here
belong to that class of problems which have received considerable
attention in recent years. They are: viscoelastic waves in a
longitudinat bar and viscoplastic impact orf a longitudinal bar.

Viscoelastic investigations typically begin with a model
representation of the material. Som: of these studies are described
in the first Chapter. Whea simple models are used, however, the
material is highly fictitious. If a model is used which does repre-
sent a viscoelastic material, the solution usually involves an ex-
iremely difficult numerical progrom. In this work & finite numerical
scheme has been devised, using the Beltzmann superposition principle
as toe s.ress strain law. Spring-dashpot models “ave beef eliminate
altogether, and the actual material data is used in graphical form.
This method has been shown to solve problems represenied by moge,s

as well as problems represented by more realistic materials.
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The current situation for plastic impact of bars may not be
80 eesily summarized. There exist many mathematical models for these
phenomena, with varying degrees of complexity. We have chosen to
analyze the case of plastic impact of a finite mass on a bar of
length L, where the material is rigid-viscoplastic. That is, the
bar does not deform until the stress at a point exceeds the static
yield strength. When it does deform, it does so according to a power
law relation between the rate of strain and the amount by which the
stress exceeds the static yield stress. The solution has been shown
to agree very well with existing analytical results using the linear
law. The nonlinear case has also teen solved, and a great difference
is shown between the linear and nonlinear cases. In addition, the
final strain for the nonlinear case has been shown to differ greatly
from that obtained by assuming uniform strain, when the impact mass
and velocity are small. Our solution also yields the value of
stress, strain and velocity at any point of the bar at any time, in-

stead of just the final strain.

A.2 Conclusions

The model representation of viscoelastic materials is in-
adequate to describe the phenomenon of stress waves. The definition

of a linear viscoelastic material is the Boltzmann superposition

principle and this should be used to calculate any short time effects.

The response of a realistic viscoelastic material takes place cver
a large number of decades of log time. This indicates that phencmena

occurring in material which is more rigid than that used here will
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requirc a great deal of time to reach equilibrium. We conclude
that the study of viscoelastic problems other than stress waves
should also use the Boltzmann principle.

The linear law of viscoplastic impact does not give quanti-
tatively correct results for common materials such as steels and
aluminum alloys. The nonlinear law also difters greatly from the
simplifying assumption of uniform ¢ ‘1in cases of low impact mass
and velocity. This is an important example for experimenters, since
it would be easier to conduct a test with small parameters than
with very large ones. Also, the nonlinear law extends the time of
the problem; since this analysis gives the complete stress, strain
and velocity distributions in the bar at any time, tests could be

made to check all these quuantities for any period of time.

A.3 Suggestions for Further Study

The method of viscoelastic wave analysis presented here
should be used in an attempt to solve other problems of more direct
engineering and research value. The problems of two dimensional
waves and of long time duration, complicated geometry and with
accompanying creep are examples of other engineering applications.
In the area of research, a program of this nature might be used in
reverse to calculate material data with given stress wave response.
The interesting Fourier analysis of Kolsky [3] in which he calcu-
lated the stress wave response to an explosive discharge at one end
of a bar is a potential check on our method. This study is particu-

larly valuable because experimental data is also given. Finally,
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the problem of impact by a finite mass would be a valuable extension
of this problem.

The most irmediate and important use of the viscoplastic
program would be to compare it with extensive experimental data
If justified, it could be immediately applied to other geometries
and structures. If the law is found lacking in any way, it might
be combined with strain hardening effects in order to decide what
type of constitutive equations are most applicable for certain
problems. This could then be used as an aid in designing and in-
terpreting experiments. Eventually, criterions for failure by

various means could be added.
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COMPILE

APPENDIX A

RUN FORTRAN

VISCOELASYIC WAVES IN BAR

BOL T2ZMANN

SUPERPOSITION PRINCIPLE

DOUBLE INTEGRAL PROGRAM

LISTY
X
T
Stn)
E(] K}
VIXeT)
AREA
RHO
CG6
TP
PO
EM{K)
Y1(Mm)
EMO
EMI (M)
TL
IM
XM
DX
oT
DE(14K)
oV -
OIMENSION
DIMENSION
DIMENSION
READ 801,

a0 % & s % A 8 & 0 0 ® @ W N B NN

OF SYMBOLS

LONGITUDINAL COORDINATE

TIME

TENSILE STRZSS IN X~DIRECTION
TENSILE STRAIN IN X-DIRECTION
VELOCITY IN X~DIRECTION
CROSS-SECTIONAL AREA OF BAR

MASS DENSITY OF BAR MATERIAL
GLASSY (FASTEST) WAVE SPEED

TIME DURATION OF STRESS INPUT
PRESSURE AT ORIGIN

VISCOELASTIC RELAXATION MODULUS
INTERMEDIATE TYIME (=T(K+1)=T(Mel})
GLASSY STATE RELAXATION MODULUS
EM EVALUATED AT TIME=T1(M)

LOG (TIME)

NUMBER OF BAR ELEMENTS

NUMBER OF TIME ELEMENTS

CHANGE IN X-COORDINATE

CHANGE IN TIME

CHANGE IN STRAIN

CHANGE IN VELOCITY
E(22+120)1+DE(2291201+T1200)+DT(200)90X(200)9X(200)
S(200)+VI200) 9 IDENT(16)+EM{200)sTL(200)
T1(200)+,EM1(200)

IDENT

READ 802+RHO,TP,+PQ
READ BO21AREAEF
READ 8040 KMyIBs1E

READ 803,

Exal)

FORMAT(16A5)
FORMAT (5F10.,0)
FORMAT (E1044)
FORMAT (8110)

EMO=EM(1)

CG = SQRTF (EMO/RHO)

T(11=0,.,0

DQ 101 N=lekM

READ BOS+EMIN+1)}sTLIN®L1) 4A
FORMAT (E10+s49sF10e4s110)
TIN®1)=20,0%*TL(N+])
ODTIN)«T(N+1}=T(N)
DX(N)=CG*DT (N)

IF (A) 200101420

CONTINUE
G0 10 17
Nl=Ne]

DO 104 IaNlykM
EM{Jel)InEMINT)
OT(1)=DT(N)
NX(l)eCReDT (])
T(I+11eT(1)+NT(N)

CONTINUF

EMO = EM(1)

PRINT 901,
PRINT 9024

RPPP e st

1DENTY
RHO L TP WPO
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908

909
105

40

111
110

41
11

12

13

25
32
107

109

14

27

103
102

909

204

APPENDIX A (continued)

PRINT 9034AREA

PRINT 904y IMKM

PRINY 908

FORMAT (1H1420KTENSILE MODYLUS DATA/)
DO 105 KzlyIM

PRINY 909+sTL(K)EMIK)

FORMAT {(1H »F10e¢295XsFBs0)
CONTINUE

DO 102 K=1lsKM

WRITE TAPE 2,T(K)olS{TI)slnleK)
X{11=0.0

IF (K=1) 41441940
INTERPOLATION PROCEDURE

DO 110 N=1,X
TI(NIeT(Kel)~T(N+1)

DO 111 J=leKM

TFITYINY=T(J+1)) 30930111
CONTINUE

75.

EMLIINIw(EM(J*II=EMIUI IR ITIINISTLIIIZ(TCJe1 =T 1 J))EML)

CONTINUE

STEP PRESSURE INPUTe LEFT END
IF (T(X)1=TP) 11912912

P=pQ

60 TO 13

P=2.,0

PROPAGATION PROCEDURE
S{1)e=P/AREA

00 103 I=leiIM

KleakK=1

IF (K=1) 279274+2%

A=20,0

ANELASTIC PARTy BOLTZIMANN SUPERPOSITION
DO 107 M=]1,4K]
ASA+E(T+]1 oy M+I)IR(EMIIM)=EM]){M+]) )
CONTINUE

OEFINITION OF STRAIN
DE(I+1+sKs(VII+1)=VII)}I*DTIK}/DXL1I*))
E(l+14K)aE(I+1oK1I4DE(T14]4K)
STRESS~STRAIN LAWy ELASTIC PARY
BeE([+]19K)REMO

C=0.0

DO 109 Ms],Kl
CuCHE(I+] ML IRIEMI(M)~EM] {M+]})
CONTINUE

S{I+11%0.5%{A+C1+8

[F (1=1M4) 2T414elb
S(I+1)=S(]+]1)%EF

{MPUL SE-MOMENTUM LAW
DVe(S{I+11"AREA-SLII®AREAI DT (K ) 7 (RHO®AREA®OX(I 1)
VIil)eVi1)4DY

X(I¢lymX(1)eDXIT)

CONTINUE

CONTINUE

REWIND 2

PRINTY 90Ss (X(J)sl=e1B,]E)

FORMAY (INS»11X»E10ek)

D0 106 K=lskKM

READ TAPE 2+T(K)124iS{1)elnm])ek)
PRINT 906 T!X) 215111 ,]elBy 18D
FORMAT (IMSeEL10.001X,]15F6.))




106 CONTINUE
500 STOP

901 FORMAT(1H1440Xs25HVISCOELASTIC WAVES IN BAR/1HOs 16"

902 FORMAT{(

APPENDIX A (continued)

132HOMASS DENSITY

23¢H PULSE DURATION
332H PULSE INTENSITY

903 FORMAT!{

132H0AREA OF BAR

904 FORMATI

132HONUMBER OF CELLS
232H NUMBER OF TIME ELEMENTS

END

P e =

- - o a—— -

F10.14+10H
F10.1410H
F10e1910H

F10e1910M

13, //
13/71H1)

l/
/7
/)

/)
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APPENDIX B

A EARA T A £ SR

(V2 IR A vt Coe HETE B 0
RO T 2rvacr ‘ ATION RPRINCIPLE
GINGLE INTHLRAL BY 00 AM

LIST  OF  SYM30LS
LONGITUDINAL COORDINATE
i i ME

X
7

S(1) r TENSILE STRESS IN X-DIRECTION
EtTer) = TENSILE STRAIN IN X-DIRECTION
VIXeT) = VELOCITY IN X-DIRECTION

AREA = CROSS5-SSCTIONAL AREA OF BsR

RHO = MASS DEMSITY OF BAR MATERIJAL

G * GLASSY (FASTEST) WAVE SPEED

14 = TIMF DURATION OF STRESS INPUY
PO » PRESSURE AT ORIGIN

EM(K) = VISCOELASTIC RELAXATION MODULUS
EMO = GLASSY STATE RELAXATION MODULUS
TI{N) = INTERMEDIATE TIME

EM1(M) = EM EVALUATED AT TIMEeT1(M)

TL = LOA (TIME)

'™ * NUMBER OF BAR ELEMENTS

KM « NUMBER OF TIME ELEMENTS

Dx = CHANGE IN X<~COORDINATE

DT = CH, NGE IN TIME

DEL1,K)} = CHANGE IN STRAIN

Dv s CHANGE IN VELOCITY
DIMENSION E(22:120)9DE1220120),5T¢(2001,7T7620G)
DIMENSION S(200)1,VI200)» JDENT(16)EMI200)0TL{200!}
DIMENSION T1(200)+EM11200)
READ 801, IDENT

READ 802 +RHO,TP PO

READ B02AREAEF

READ 8064sIM KMe1B,1IE

READ B803+EM(1)+0T
FORMAT(16AS5)

FORMAT (5F10.0)

FORMAT (2E10.44)

FORMAT (8110)

EMO=EMI(])

CG » SQRTF (EMQ/RHO)
DX=sCG®DT

T(1:=0.0

EMO = EM{L])

TT{1)w0.0

0N 101 J=1.200

READ B80FeTL U] ) sEMIJe] ) A
FOQMAY (Flao‘ OE‘O.“!!‘O'

1F (A} 90,90,+91
TTtJel)ol0.000TLIJ])
TtJe1)eT())eDY

CONTINUE

KMMe j=]

PRINTY 901+ 1DENTY

PRIRY 902:RHO,TP.PO

PRINT 903,AREADY

CRINT 904, 1M KN

PRINTY 900

FORMAT ()1H]1.20NTENSILE MODWLUS DATAZ)
00 109 Kel,ln

PRINT 909:TTIK) EM(K)

7.

EXY




APEENOTN B (continued)

OO +ARMAT (1M sF 1064 eSX o F10.2)
10% COnTINUE
DO 102 KelokM
WRITE TAPE 24T(K)o(St])el2])eK)
X«0s0
C INYERPOLATION PROCEDURE
£leK-]
IF (K=1) 61441960
60 T1(1)1eT{K)=0.5"DT
IF (K=2) 42942470
70 DO 110 Nr24K])
T1(N)RT] (N=;)=DT
110 CONTINUE
42 DO 111 N=},X
DO 112 Js]KMM
[F (TLUINI=TT(J*L)) 300300112
112 CONTINVE

30 EMLIINISLEMIJ+ II=EMIJNI®ITIINI=TY(III/ZITTUISLI=TY(J)I+EM(J]}

111 CONTINUE

C STCP PRESSURE INPUTs LEFT END
&1 IF (7Y =TF) 11e12012
11 F=p0
GO 10 1)
12 P=0,0
C PROGPAGATION PROCEDURE

13 S{1)==P/AREA
DO 103 Is] IM
KlsK=1
[F (K=1) 27427950
C DEFINITION OF STRAIN
SO DE(I¢) o) e(V(I+1)=-VI]I))®DT/DX
E(l4]l o )mE(T41oK]1)4DE(L*],4K)
C ANFLASTIC PART. BOLTIMANN SUPERPOSITION
CN=20,0
DO 109 N-!.Kl
CNeCNSDECI*1 M1 1O (EMY (M)
109 CONTINUE
S{l+11=CN
TE (I~1M) 27,146,416
14 5(141)=St1+]1)9EF
C IMPULSE-MOMENTUM LAY
27 OVe{SUI*1I2AREA-SIII®AREALI®DT/(RHOYAREA®DX )
Villeyi{]lreDV
XeXxeDX
10y CONYINUE
102 CONTINUE
REWIND 2
00 104 Ve, k¥
READ TAPE 2,7IK) (St Yalr],x)
PRINT 904, TIXV (St elelB 1€
900 FORMAY (IMSsE10.4s]1X+19F8,.))
106 CONTINUE
$30 SYOP
Ol FORMATI (K] 40X e25HVISCOELASTIC WAVES IN BAR/1HQ,.16A5)
02 FORMAT(
13I2H0OMASS DENSITY
2324 PULSE DURATION

» Fl0.1.10H
s FlO«lolOM

IIM PYLSE INTERSITY - F10.1010M
QCY FORAMAT{
1I2M0AREA OF BAR ® o FlO.l010M

t/
/7
/)

1/




APPENDIX B (continued)

2320 STZ2F OF TIME ELEMENY
904 FORMAT(

132HONUMBER OF CELLS

232H NUMBER OF TIME ELEMENTS

END

[ 4

E10+4010H

13, //
13/71H1)
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APPENDIN C

comMp 1Lt RUN FORTRAN
VISCAPLASTIC [MPACT OF BARS
FINITE MASS [MPACT ON LEFT FEND
PCWER STRFSS = STRAIN RATE LAW
DIMENSIONLESS FORM
LIST OF sSy™mBOLS
X = DIMENSIONLESS COORDINATE

TT = DIMENSIONLESS TIME

S s DIMFMSIONLTSS STRESS

\ v DIMENSIONLESS VvELOCITY

VO = DIMENSIOM .FSS IMPACT VELOCITY
£ = DIMENSIONLESS STRAIN

P = QVERSTRFSS EXPONENT

D s MATERTAL CONSTANT

XK s DIMENSIONLESS MASS FACTOR

ETA = THE QUANTITY Qs5%XK*(V0O)*%2,0
ET = E/FTA

55 = {(S-1.0)V0

SL = SLIP FACTOR

[M = NUMBER OF BAR ELEMENTS

KM = NUMBER OF TIME ELEMENTS

DV = CHANGE IN NIMENSIONLESS VELOCITY
DE = CHANGE IN DIMENSIONLESS STRAIN
DT = CHANGE iN DIMENSIONLESS TIME

DS = CHANGE IN CIM" JSIONLESS STRESS
DIMENSION S(500)sV(500)»IDENT(16)+SS(500)¢EL500) ¢eDE(SQO0)EE(500)
ODIMENSION SL(S500)

READ 801y IDENT

READ 802+VO»DTsDXsXK,P

READ 803sIMpKM

FORMAT( 16A5)

FORMAT (5F10.5)

FORMAT (2110)

TT=Ce0

PRINT 901, 1DENT

PRINT 9CcosVOsDTsDX9XKyP

PRINT 903 4IMyKM

CO 101 l=1,1M

S{Ti=1e0

Vil)=0.C

CONTINUE

Qele0/P

V(il)=v0

DO 102 K=]1 KM

WRITE TAPE 29TTo(SUI)olm)sIMIpSUIMEI ) o (VI])olmloIMIo(E(L)olnml,yiM)
X'Ooo

IMPACT OF FINITE MASS ON LEFT END

IF (1=1) 17417418

OVIm («DT/XK)®#{1e0={(V(2)=V(1))/DX)%%Q
IF (VI1)+4DV]) 19417917

vil)=0.0

GO0 10 20

Vil)=v({1)1+DV]

SL{1)=2040

DO 102 I=1,y1M
DEtLI+1)=s(v(iI+1)=vil))*DT/D>
E(1+1)1=C(1+1)4DE(]I+])

IF (V(D)=V{l+1)) 29428928
vil+1)eVI(])

VISCOPLAGTIC STRESI STRAIN RATE LAW
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27
30

31
32
11

36
27

34
41

40
42

104

33
35
15
103

102

107

906
105

907
106

109

908
108
500
901
902
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APPENDIN € (continucd)

SET411=1,040(VIT)=VII41)) /DY) asQ

TEST FOR SLIPPING

IF (vIiI+1)=v{1)) 31,30+30

SL{T+1)=0.0

60 YO 32

SLII+1121,0

IF (1-1) 11011036

IF ISL(2)Y 3343312

DV'0.0

GO0 T0O 35

IF (SL(1+1)=~SL(1)) 37,33,34

SLIT+1)=]1,0

GO 10 32

DVe(~140)#S(]1+1)%#DT/XK

IF IVILI+DV) 4094004}

VI =vV{i1)+DV

GO T0 &2

Vl!)-0.0

DO 104 Ilwl,l

vili)=vi(])

CONTINUE

GO TO 15

IMPULSE MOMENTUM LAW
DVe(S(II*SLIT)~S(I+1)#S5L([+]1))*DT/DX

VITYy=vIT)+DV

XeX+DX

CONTINUE

TT=TT+DT

CONTINUE

REWIND 2

DO 105 K=lsKM

READ TAPE 2¢TTe {SUIYVelulsIM)sSTIIMeI)o(VII)oImloIM)y(E(I)slm]lsIM)
IMlaIM+]

DO 107 I=14¢1M1

SS{T¥=(S{1¥=",01/V0

CONTINUE

PRINT 9069TTo{(SSII)s]Im1yIM])

FORMAT(IHS 9F543901X921F%42)

CONTINUE

REWIND 2

DO 106 KrliKM

READ TAPE 24TT» {S{I)alm)oIM)ySUIMeL) o(VII)olm)pIM)o(E(T)sl=1yIM)
PRINT 907eTTs (VII),yl=],y]IM)

FORMAT (114SsF5343X020F542)

CONTINUE

REWIND 2

ETA2O,5#XK*{VvO**2.C)

DO 108 K=}lysKM

READ TAPF 2sTTs  (SUI)ala1sIM)ySIIME1) (VI oIl oIM)W(E(I)s]Im]ly]IM)
DO 109 I=1yIM

EE(IY=E(I)/FTA

CONTINUE ‘

PRINT 908y TTo(EE(I)slmly]IM)

FORMAT (1HSsF5e393X020F5.2)

CONTINUE

STOP

FORMAT (1M1 240X+27HVISCOPLASTIC IMPACT OF BARS/1HO»16A5)
FORMAT(
132HOIMPACY VELOCITY = 3 Fl0+3010H /7
232H ELEMENT OF TIME = » Fl0s3910H /77

- R
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APPENDIX ¢ (continued)

1I2H EIL EMENT OF BAR LFNGTH » 9y Fl0e3s)0H
432H DIMENSIONLES S MASS FACTOR E o Fl0e3,10H
532H OVERSTRESS FEXPONENT =y F1l0e3s10H
903 FORMATI
132HONUMBER OF BWR ELEMENTS =, 13, /7
232H NUMBER OF TIME ELEMENTS = s 1371H1)
END
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CHAPTER V

AN ANALYSIS OF ARMOR PENETRATION DYNAMICS

by R. Minnich

5.1 Introduction and Assumptions

A reasonable set of assumptions which may be made in analyzing

the motion of a projectile as it penetrates armor materia! are:

)

1)

i)

The projectile Is assumed to be a non-deforming body of
arbitrary, but known, geometry and mass.

The projectile's motion during penetration Is resisted by
& system of forces which depend upon geometry, initial
velocity, and the material properties of the armor. These
forces are assumed to be of two types: the resistance of
the material! to penetration due to its compressive resist-
ance and the inertial resistance of the material as It Is
displaced by the projectile.

Frictional effects are neglected at present but could be

added.

5.2 perivation of the Governing Equation

Because frictional effects are neglected, the resisting force

components are assumed to be acting normal to the »>rojectile surface.

Figure 12 shows the force component acting on the elemental surface

ares, dAs.
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FIG. 12
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PROJECTILE PENETRATING AN
ARMOR MATERIAL
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The compressive resistance force Is considered to be uniformly
distributed over the surface area of the projectile tip. This force
per unit area, a property of the armor material, will be denoted as .

The inertial resistance is not uniformly distributed over tie
surface area of the projectile but |s dependert upon the shape of tke
projectile. Teo find this force it Is assumed that the change In
kinetic energy of the armor material being displaced Is equal to the
work done by the Inertial force on an element of armor material. This

relation can be expressed as

df dx = 12 v % dn (5.1)
where:

df = normal force acting on a ¢! ferentlal area (dAs) of
the projectile surface

dxn = displacement of the element of mass of the armor
material normal to the projectile surface.

L velocity of the element of mass in a direction normal
to the surface of the projectile (equal to the normal
component of the projectile velocity).

dn = mass of the differential element of the armor material
being displaced (equal to o dx dAs, where o s
the mass density of the armor mnterli!).

The substitution of o dx  dAs for dm and v cos & for Vi

ylelds

¢ = W2 (cos?8) v dAs | (5.2)




From these equations Adams and Tsai (11) derive an equation of

motion given by

Mv% - = f O cos O dAs - [ %p (cos30) v2 dAs (5.3)
As As

where the component of each force per unit area In the direction of
motion |s Integrated over the frontal surface area of the projectlile.
They then proceed to solve this problem In three parts for three con-
ditions which arise, depending upon the location of the projectile
nose In the armor material. The three positions are: the ertrance
phase when the surface area of the projectile increases with the
depth of penetration, the phase where the nose is completely imbedded,
and the exit phase where the area decreases to zero as the nose

emerges.

P — e o e - — - e e - - A gy W S T T A A - e




a7

CHAPTER V|

COMPUTER ANALYSIS OF PENETRATION

6.1 Introduction

The theory developed in Chapter V is not limited to the calcu-
lation of residual velocities for complete penetration. Much more
complicated mathematical procedures would be required to solve the
governing equation to predict depth of penetration if complete pene-
tration does not occur. To avoid these limitations, a computer
analysis was developed which combines the derived expressions for the
forces with the physical laws governing the system and sidesteps the
mathematics. The program has all the advantages mentioned in Section
3.1. The resulting program is general, and enables one to predict
the depth of penetration or residual velocity depending upon the

initial conditions.

6.2 Development of the Program

The projectile was divided into cells by cross-sections normal
to its axis. A typical cell is shown in Fig. 12, its length being
dx! and its surface area being dAs. The method employed was to sum
the forces acting on each cell and use an impulse-momentum relation-
ship to calculate the velocity change of the projectile for each time

interval.
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As was stated in Chapter V the forces are assumed to consist
of two kinds, an inertial force and a compressive resistance force.

Let f, and f, denote the sum of the components in the direction

] 2
of motion, of the compressive force and the inertia force respectively.
Then df' represents the component in the direction of motion acting

on an individual cell of surface area dAs and is defined as

df | = & cos 8, dAs, (6.1)
where the subscript i denotes the i-th cell. Similariy, df2 is
given by

1 39 2
df2 = 37 p cos eiv dAsi (6.2)

The sum of fl and f2 will then represent the total force acting

on the projectile during a time dt. This sum is given as

f = f, + ¢ {6.3)

The velocity change dv will then be calculated using the

impulse-momen.tum law. This is expressed as

dv = ~ fdt/M (6.")

Because the forces act opposite the direction of motion, a minus sign
is included in the above equation. This velocity increment is then
added to the velocity of ths projectile to obtain the velocity at a

given time or

- —— . - P -
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V &—v + dv (6.5)

The distance the projectile travels during each time interval,
dx, 1is obtained by integrating the velocity over the time Interval dt.

This is expressed as
dx = vdt (6.6)

The total depth of penetration or the distance from the surface of
the plate where the initial contact is made to the nose of the pro-

jectile is the sum of all these incremental dx's.

X €=x + dx (6.7)

Equations 6.1 - 6.7 are combined in a program which calculates
the force acting on the projectile during each time interval and finds
the velocity change during this interval. This process begins when
the projectile first penetrates the plate and stops when the projec-
tile velocity becomes zero (for partia) penetration) or when the pro-
jectile leaves the plate. We again add a DO loop which directs the
repetitive operations from i = 1 to i = lm to obtain f and use

another D0 loop to repeat this process for successive time intervals.

The program then appears as below.

- o .. - - — AT e =




Input

oo - k- "co-ookm

oo '. ','0...' S

df' s Ocos 0' dAs' compressive resistance force

df. o 4 o cose vszs inertia force
2 2 i i

fzq— fz + dfz

f = f‘ + fz

v
dx « vdt definition
dv = - fdt/M impulse-momentum law
V @==v + dv
X & x + dx
t €t + dt

i

output

The above is the basic program except for geometry calculations, which
will! be discussed below, input statements and output statements, and
verious tests to determine if the plate has been completely penetrated

or if the projectile has stopped.

6.3 Geometry

The various projectile configurations deslt with and the dimen-

sions which need to be specifled to completely define them are shown
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in Fig. 13. Two quantities had to be determined for each cell in
order for the force calculations to be carried cut, namely the surface
area, dAs,, and the cosine of the angle between the normal of the
cell and the direction of motion, cos Oi. These quantities were
determined at the beginning of the program and stored until they were
needed. Thelr calculation for each projectile configuration follows.
6.3.1 The Ogive

Fig. 14 shows the ogive with its detailed dimensions. The
quantities Yo V3 and y were required to be computed for the cal-
culation of the cosine and the surface area for each cell. 0B repre-
sents the entire surface of the nose while BN is the cylindrical
surface. OP is the axis of the projectile. dAsi is the surface
area of the i-th cell and dx! is its length. The origin of the x
and y axes was taken as shown. The needed quantities can now be

expressed in terms of the known quantities for each cell. That is

1/2
vy = W -x1h (6.8)
1/2
vy = (8- (xy - s (6.9)
Yy = ¥y Y, (€.10)
dAsi can therefore be expressed as
dAs, = 2R(1.0 - y [y )dx] (6.11)

and the cosine as




ge.
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FIG. '3 VARIOUS PROJECTILE CONFIGURATIONS
WITH  DIMENSIONS
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cos 8, = (xl3 - xls‘)/R (6.12)

For the cylindrical portion of the projectile the surface area of

each cell is constant and is given by
dAsi = 2nry dx | (6.13)

the cos 9i in this region is equal to zero.

6.3.2 MHemispherical End Cap

The hemispherical end cap projectile was useful to study
because of the availability of experimental results.

The cylinder with hemispherical cap is a special case of the
ogive with R = r, and xl3 =Ty Therefore the only dimensions
required to define it are m and xl. The surface area for elements

of equal width Is the same for a sphere and is given by
dAs. = 2nr, dx (6.14)

This is also the expression for dAsi in the cylindrical portion.

The cosine of the spherical portion is defined as
cos 6, = 1.0 - (xlsi/rl) (6.15)

and again the cosine of the cylindrical portion is zero.
It should be pointed out that a cylinder with a hemispherical
nose was programmed rather than a sphere because It is more general.

Since the forces only depend upon the surface area of the nose, a

——r 3 P A > X T -~ NI s oy~



sphere can be made a special case of the hemispherical cylinder by
setting the length of the cylindrical portion equal to 2/3 of the
radius of the sphere. In this way the mass will be equal to that of
a sphere.

6.3.3 Conical End Cap

The cone is defined if Fys x!l, and xll are known. The

distance from the projectile axis to the surface at x!s' is
Yi = N xls'/xI: {6.16)

The surface area of the i~th cell which is the surface area of the

frustum of a cone is

2 2 1/2
dAs‘ = n (y; + yi”)(dxl + (yl_” - y') ) (6.17)

The cosine of all the cells is a constant value equal to

? ) 1/2
cos 9, = rl/(r' + xll ) (6.18)

The surface area and the cosire for the cylindrical portion is the
same as the other two cases.

These three configurations are related so that a separate pro-
gram for each is not required. The given dimensions read into the
program determine which configuration is being considered. The details

of this are shown as comments in the program itself found in Agpendix 8.




CHAPTER Vil

RESULTS AND CONCLUSIONS OF PENETRATION STUDY

7.1 Verification of the Program

The initial computations were concerned with checking the pro-
gram's results with those of Adams and Tsai. The easiest method of
doing this was to see if a computed curve of residual velocity vs
initial velocity agreed with theirs using the same initial conditions.

The initial conditions were

plate materia) = polyethylene

plate thickness = 0.65 Inches

plate mass density = 0.89 x IO-“ Ib-scczlln“
compressive resistance = 25,670 lb/in2

projectile shape = sphere
The resulting curve from the program is shown in Fig. 15 as the curve
for the spherical projectile. Because it coincided very closely with
the Adams and Tsai's curve there was no need to include botk.

All the work in (11) was shown to agree with experimenta!
studies. Yowever, because they conducted the experiments themselves
it was decided to check the program with other experimental results.
Gupta and Davids (17) performed studies on the penetration of fiber-
glass reinforced plastics.

Because the compressive resistance, o, 1is a property of the
armor material it must first be found. In order to find O one must

know all the conditions of & ballistics test. If the initlal velocity

L ey w— = —— r— g - —e— > o — eyt ol
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and the residual velocity are known, different values of 0" may be
tried In the program with the intention of finding one which yields
the known residual velocity.

This process is not so much of a trial and error effort as it
might seem. A curve of residual velocity vs O  may be drawn which
will enable one to find the correct value of O from the known value
of Ve

The program was checked with the first three entries in Gupta
and Davids' Table 2. The third entry which was for a plate 0.22
Inches thick Impacted by a 0.22 caliber projectile with an Initia)
velocity of 1270 ft/sec was used in the calculation of O, the
intent being to determine a value which gave a residual velocity of
750 ft/sec. This value was found to be 127,500 lb/lnz. The program
then correctly predicted the residual velocities for the different

plate thicknesses found in (17). The results are summarized in Table

3.

Table 3

Comparison with Experimental Results of (17)

No Thickness Initial Residual Velocity
(inches) Velocity ft/sec
(ft/sec) Experimental Program
1 0.22 1270 750 750
2 0.09 1270 1090 1085
3 0.13 1270 1000 995

- Wy W —e——— D = ————— o —e cem g — T R ———————rrm -
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When the value nf O is found the program becomes capable of
predicting results of different initial conditions for any projectile
configuration. It should be remembered that this value is only a
property of that plate material for which it was found.

Because of the excellent agreement shown in Table 3 with exper-

imental results It was concluded that the program is valid.

7.2 Review of Significant Runs

Curves showing residual velocity vs initial velocity were
desired for the other two projectile configurations (the ogive and the
cone). They are shown in Fig. 14 also. The compressive resistance
constant was obtained from {11) for epoxy and from (12) for aluminum,

A1l of the curves in Fig. 15 approach a straight line. It can
be seen that this straight line portion has the same siope regardless
of plate material or projectiie configuration. This straight line
portion has a slope of unity which means that a change in the initial
velocity will produce the same change in the residual velocity.

Figures 16, 17, and 18 show the force vs time plots for the
three projectile configurations. It is seen that they are all of the
same basic shape with the only differences being the entrance and exit
regions. The rapid rise to the maximum force which the sphere exhibits
indicates that this configuration is not a very good penetrator as com-
pared to the ogive. The cone's ability to penetrate varias from being
the best to the worst penetrator depending upon the angle the surface

¢rea of its nose makes with its axis.
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Tables 4, §, and 6 contain the results of a1l the runs made
for ogives, spheres, and cones respectively. These tables contain
the runs previously mentioned plus some other general runs for other
plate materials and initiy, conditions. These were made merely to
show the applicability of the program.

it can be concluded that fuyr penetration in which the projec-
tile Is nct deformed, this analysis I3 valid both In predicting depth
of penetration and residual velocities, and is very efficient In com-

putational accuracy.
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The assumptions and the analytical solution of ductile hole
enlargement are presented in Chapter V. The forces acting on the
projectile are assumed to be of two kinds, the inertial resistance
of the plate material and the compressive resistance. The expressions
for these forces are given and are then used to derive the governing
equation. The equation for predicting the residual velocity after
penetration Is also glven.

The next chapter contains the development of the computer pro-
gram used to solve the ductile hole enlargement problem. The first
section describes the ircorporation of the expresslions for the forces
into a program which will yleld the velocity change during a set time
interval. The next section discusses the geometry of the three pro-
jectiles considered and the method of dividing them into cells. The
expressions for the surface area of each cell and the cosine of the
angle between the normal to the surface of the cell and the horizontal
axis are also developed.

The results of the investigation for ductile hole enlargement
are contained in Chapter VIi. The first results presented are those
needed to verify the computer program. Both experimental and theoret-
ical ballistic data are compared with the output of the program. The
comparison in all cases is excellent. Curves showing force vs time
and residual velocity vs Initial velocity for all the projectile con-
figurations are given. Also contained in this chapter are tables

with the results of all the computer runs.
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The ability of various projectile configurations to penetrate
a plate is determined. It is concluded that a sphere is a much poorer
penetrator than an ogive. The cone varies in penetration ability from
the best penetrator to the worst depending upon the angle the surface

of the nose makes with the axis.

8.2 Suggestions for Further Study

The most obvious suggest.on for further work in the plug forma-
tion problem would be to extend this investigation to other materials.
In order for this task to be undertaken, photographs must be obtained
from which experimental deflection curves can be made. All the condi~-
tions of the impact must be known, i.e., initial velocity of the pro-
jectile, mass of the projectile, plate thickness and density of the
plate.

A criterion for complete penetration would be a worthwhile
extension. As was mentioned before the program does not contain this
important aspect. By inspection of the final defliection curves, one
can obtain a fairly accurate guess as to what initial conditions will
cause complete penetratior; but specific results are needed.

Worthwhile studies could be begun on other types of failures
caused by Iimpact. A computer program incorporating the material laws
associated with scabbing or dishing wuu'd be of interest. Some com-
puter work (18) has been done for cratering.

Also minor revisions can be made in the present program to give

radial strains and strain rates. A condition which prescribes the
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initial velocity around a hole in the plate might be of some value.
The program for the penetration of nonmetallic materials and
ductile hole enlargement in metals is fairly complete. As is shown
the correlation with experiment is excellent. Some approaches in
this area take into account a friction force also. The program could
very easily be extended to include this if it were deemed necessary.
It is believed that an extension of this program can be used
to solve problems of water entry. For this problem water is consid-

ered incompressible so that the compressive force would be zero.
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APPENDIX A

COMPUTER PROGRAM FOR PLUG FORMATION

COMPILE RUN FORTRAN

RIGID-VISCOUS MODEL FOR PLUG FORMATION IN PLATES
UNITS IN IN-LB=-SEC
v

= VELOCITY IN 2-DIRECTION

F(I) = VISCOUS FORCE ON LATERAL AREA OF [-TH CELL
XMR = MASS OF EACH CELL

R = RADIAL COORDINATE

AREA = [NSIDE LATERAL AREA OF CELL

W = DISPLACEMENT IN Z-DIRECTION

s = SHEAR STRESS ON R-PLARE [N Z~-DIRECTION
XMOD = STABILITY MODULUS FOR EACH CELL

XM = CUMULATIVE MASS OF FIRST I CELLS

s1 = NONDIMENSIONAL SHEARING STRESS

vV = NONDIMENSIONAL VELOCITY

WW = NONDIMENSIONAL DISPLACEMENT

T = NONDIMENSIONAL TIME

DEN = WEIGHT DENSITY OF PLATE MATERIAL

GNU = COEFFICIENT OF VISCOSITY OF PLATE MATERIAL
Y s IMPACT ViELD CONSTANT

H » PLATE THICKNESS

ve = INITIAL VELOCITY OF PROJECTILE

RO « RADIUS OF PROJECTILF

XMB = MASS OF PROJECTILE

IM = NUMBER OF CELLS

KM = NUMBER OF TIME INTERVALS

DT = CHANGE IN TIME

VS = VELOCITY SCALE FACTOR

S = DISPLACEMENT SCALE FACTOR

S5 = STRESS SCALE FACTOR

DR = CHANGE IN RADIUS

FMT1 = VARIABLE FORMAT FUR PRINT STATEMENTS
RHO = MASS DENSITY OF PLATE MATERIAL

XMRO = MASS OF PLATE MATERIAL UNDER IMPACT

Vo = INiTIAL VELOCITY OF PLATE MATERIAL UNDER IMPACT

NPIMENSION VIINO)I«F 1IN0 e XMRILI00)sRI100)+AREALLIO00)eVVIION),

IWWL100)sW(100)9S1100)9S11100)0IDENTL16)9FMTIL16) 9eXMOD(100)

2 SL{100)YeXM{100)
READ B0V o LIDENTU L) el=1s14)
FORMAT(14A5)
READ 802¢ ANAME ] oNAME29DENsGNUSY oM
FORMAT(2A543F10s0eFl10eb)
READ 803sVA RO XMB
FORMAT(2F)0e3sE1044)
READ B804 IVIKMIDT pVSeWSIDReES K]
FORMAT(21542E106402F)10,61F1004015)
IF (IM)199499,45
READ 801 ¢FMT]
Plx3e 1615927
PHO=DEN/38B4.
XMRQ=© | eRO*#2eHORH)
VO=(VB®XMB )/ (XMB+XMRQO)
REWIND 2
PRINT SO0+ (IDENT(I)slnlslb)
PRINT 901 4NAME ] o NAME 2 4DENsRHOWGNU 9 SY
PRINT 902 +VOsRPOsHIVAXMB
PRINT Q039 IMiKMaDT oVS DR WS:%5
PRINT 905
R(1)=0400
DO 101 l=1l4IM
AREA(1)20,40
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22

23
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106
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APPENDIX A. Cortinued

RUI+1)=RLLI4DR
AREA{]+1)ePlaR{]14]1)92,0%H
Wil)=0e0
WWlli=swi])/ws
St1)=0.0
S1t1)=S(1)/8S
F(l)=060
IFIR{1+11=RO)21¢21022
Vil)=vQ
IFL1-1)1%015416
XM{1)e(P]OR(2) #828RHOMN) ®{XMB/XMRO+1,0)
XMR(1)mXM(])
G0 10 23
XM{1)=(PI®R(]+]1)0420RHOOM)® (XMB/XMRO+]1,0)
XMR{I)nXM({])=XM{]~-1)
GO 10 23
Vili=z0s0
XMRUL)=P] ®(RUIIGR(I*1II®(R(]+1)=RL]))ORHO®H
XM(J)=XM{I=1)¢XMR (1)
Vvil)=vil)/vs
MODULUS TEST FOR STARILITY
XMOD{])=GNURAREA(]+1)1*DT/(XMR(1)®DR)
PRINT 906 ¢1 o XMR{]I)oXMI])eAREA(]} o XMODI )
CONTINUE
Tz0.0
PRINT 904
00 103 X=]eKM
Tv=Y707
PRINT FMT1eTTs(VVII)elnlelM)
WRITE TAPE 2oTToiwWWi{i)olololMIo(SY (L )oln]olM}
DO 106 [=1IM
Wil)swil)svi])eDT
WWil)=sw(])/WS
CONT I NUE
SLI1)=0,0
DO 102 I=slelM
IFIK +K1)40040061
IF(l=1)4206204)
PRINT 909
PRINT 9101 oVIil)eSUIYesF{])eSLIT)eDY

RIGID-PLASTIC-VISCOUS STRESS-STRAIN LAW

6]

24
2%
26
27
30
3
8)

60
62

St1+1)1a=SYSCNUSIVI(]+]1)=VII)}/DR
S1{1+1)1=5(1+1)/5S
Filel)luStI+110AREA(]+}))

TEST FOR SLIPPING
IFtLVIT)I=VI]I®1) 120024028
SLIT+1)=Ca0

GO 10 26

SLilel)=1,0
TFUSLEL)=SLU1+1)02742802Y
IFIFLLel)=FLI)OXM{])/XMI]-1)130:3)03])
Sttlr=led

GO 10 238

DVe Fllel)1/7XM{])0DY
IFI{VII)I+DV1I80:600e61
VilleV(])eDV

GO 10 62

Villie0,0

00 1048 ll=],?

Viil)evil)

LT A T T S———— ¥ S = - -
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APPENDIX A. Continued

VVII1)YavilYI/ZVS
108 CONTINUE
60 10 3%
29 IFIFLI+1)=F(])1)32+32:33
32 Vil)=0.0
Dv=0,0
G0 10 3%
33 SL(1+))e],0
C IMPUL SE MOMENTUM AW
OVR(F(]+11SL(J+))=FLI)aSLI1))I/XMRL])®DT
SL1+1)=0,0
GO TO 34
C IMPULSE MOMENTUM LAW
28 DVs(F(]+118SLIT+1)=F(1)1oSLIJ))/XMR(]}®OT
34 IFLVIII+DV)I50+50051
851 V(I)Ysvil)i+DV
GO TO 35
80 VI1)=0,0
98 vvilisvili/svs
102 CONTINUE
YaTenNT
103 CONTINUE
PRINT 907
REWIND 2
DO 104 K=] KM
READ TAPE 2+TToiwWwillal=1oIMIo(S1{])eluloe]lM)
PRINT FMT1oTTotwwil)elnloelM)
104 CONTINUE
REWIND 2
PRINT 908
DO 1095 K=] kM
READ TAPE >eTTolWWildelalsIM)ntSIt]lol21sIM)
PRINT FVYT14TT,(S11f1s]1m24lM)
1095 CONTINUE
6C 10 1
99 STCGP
900 FORMAT{ 1Ml 14&AS/////1)
Q01 FORMAT(IM +35Xe31HVISCO-PLASTIC ANALYS.!S OF PLATE ¢/

1221 MATFRIAL = p2AS7/
232m wEIGMT DENSIETY DEN & 2F1CeYeYH LB/ IN®®) /¢
3321 RRCEDIN/G RHO » »E10.4el6H LB=SECO®2/[NBO4 /7
&12H COEFFICIENT OF VISCOSITY GNU = 1F10e3e13H LB=SEC/IN®S2 //
§32H IMPACT YIFLD CONSTANT SY & 3E10eke9% LB/IN®®2 )
902 FOPMATIINQIIMNINITIAL VELOCI TY vO = o€103e7TH [N/SEC 7/
13201 RADIUS OVER wH(lwW YO ACTS RO » 2F10e3ed3N LN 7/
232K THJCKNESS OF FLATE M e sF10e3edN IN //
J¥H VFLOCITY Of ey vB » +L10edeTH IN/SEC /7
&432M MASS OF BurLE? A8 » +E10e3el3N LB=SEC®827]IN )
9GY FORMAT(IMI«IIHTHE AUMRER OF CELLS Im e H110 7/
132m kbR OF TIML INTERVALS KM @ o]10 VY
2324 CraANLL IN TINML DT = sE]0ebkobH SEC 7/
3321 VELOCITY SCALE FACTOR VS & sE10easTH IN/SEC 7/
&32H CHANGE IN RADIUS DR = oF10e3e3H IN //
§-2M DISTACEMENT SCALE FACTOR WS » oF10ebedn IN 17
632K STRE.S SCALE FACTQ® SS @ +El1Qekoe9H LB/IN®®2 )

904 FORMATIIH] «&nTIME 480X 4 20MVELOCETY PROPAGATION /7)

Q08 FORMAT(1H] &M ELL +8Xs9HCELL MAZSs AXe1ONMTOTAL MASS o 9X e AMAREAS 12X 0
1 IHNMONULYUS)

906 FORMATI(IN el 108X eC10,4eB8Xel10shsaNF10,4e8KeF10.4)

907 FORMATULIMH] +&4MTIME 450X ¢12HD I SPLACEMERT /7))

[ - - —-— S -~ = A ————— - =  —
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APPENDIX A. Continued

908 FORPMAT(1H]L o4HTIMI 955X 96HSTRESS /77)

909 FORMATI1IH o1 XelHIolZ2XotaHV (1) o16X04HS(I)016XoaHFI]i:0X
1 2HSL 915X 92HDV)

910 FORMAT(LIH 901205XKoF 154 95XoF15¢005XeF1544 05X oF34105X9F154)
END

- W = e —
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APPENDIX B

COMPUTER PROGRAM FOR ARMOR PENETRATION

MULTIFILE RUN
COMPILE RUN FORTRAN

¢ MA INPRCGRAM

C PROJECTILE ARBITRARY SHAPEs NON-DEFORMING

C COMPRESSIVE AND IMCRTIAL RESISTANCE BY TARGET

C SUBRNOUTINES SBULLET AND VELO REWUIRED

C IF SOHERE SFT Pa2R1 AND XL13=R]

C IF CONE SET R=1000.0 AND XL3=XL]

C SYMBOL TARBLE (UNITS IN IN-LR-5EC SYSTEMI

C ARHC = MASS DENSITY OF PROJECTILE

C R = RADIUS OF CIRCULAR ARC

C R1 = RADIUS OF CYLINDRICAL PORTION OF PROJECTILE

C XL x 10TAL LENGTH OF PROJECTILE

C XLe = HOPe DISTANCE ©#FTe R AND TIP GF PROJECTILE

C Xi 1 = LENGTH OF PROUFCTiLE NOSE

C XL2 = LENGTH OF CYULINDIRICAL PART OF PRIJECTILE

C X3 = LENGTH OF THE S5EMICCORD

C DXL = WIDTH OF A CELL

C H = PLATE THICKNESS

C TRHO = MASS DENSITY QOF TARGET MATERIAL

C S1G = COMPRESSIVE STREMGTH OF TARGET MATERIAL

C DT « TIME INTERVAjL

C FS = FORCE SCALE FACTOR

C Vs ~ VELOCITY SCALE FACTOR

C TS 2 TIME SCALT FACTOR

C vi e INITiAL YELOCITY OF PROJECTILE

C XLS = DISTANCY 3F A CELL FRCM TIP OF PRNJECTILE

¢ DAS = SURFACE AREA OF FACH CELL

d ASD = SURFACE ARFA OF CELLS IN CYLINDR!CAL PART OF PROJ,.
C c0s = CUSe UF ANGs BFTe HOR, DIAe AND NORMAL ON SURFACE
C SIN a3 SOPTF (140-CNSu¥2}

C et = CCS/SIN

C £ M = PROJECTILE MASS

C M = NUMUER OF CELLS

c T s T }]ME

c v = VFLOCITY OF PRGJECTILE

c X e DISTANCE AFT, TIP OF PROJs AND FRONT EDGE OF PLATE
C DX = DISTANCE PROJECTILE TRAVILS IN TIME DT

c Xp = DFPTH OF PENETRATION

C VR a RESIPUAL VELOCITY OF PROJECTILE

C Fl « TOTAL FORCE DUE TO COMPRESSIVE RESISTANCE OF TARGET
C F2 = TOTAL FORCE Dub TO INERTIAL RLSISTANCE OF TARGEY
C F = SUM OF F1 AND F?

¢ YO = DISTANCE BET. PROJe AXIS AND HORe DIAMETER

C Y e RARDIUS UF ANY SECTION OF PROJLCTILE

C Y3 = VERTICAL DISTANCE OF SURFACE FROM HORe DIAMETER
C voLi = VOLUME OF NOSE OF PROJECTILE

C voL2 = VOLUME OF CYLINDRICAL PORTION OF PROJECTILE

e vOL = VOLUME OF PROJECTILE EQUAL TO VOL1+VOL2

I'e TY = NONDIMENSIONAL TIME

I vV = NONDIMENSINONAL VELOCITY

c FF = NONDIMFNSIONAL FORCE

1 PIMFNSION XLSU200)s NDASL200)y COS(200)e SIN{200)s COT(200)
1IDENTU16) e FMTIL16)
2 RFAD BOO«UIDENTU(LYe 1 = 1416 )
800 FORNAT (16 A5)
3 REAL 805 ONAMEL1vBNAMER2 »HBRHO
805 FORMAT ( 2A5+4t10.2 )
4 READ H10: ReR1eXL3IsXL DXL
8.N FORMATISF1040)
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APPENDIX B. Continued

5 READ 815» TNAME1»TNAME?29HsTRHO#SI1G
815 FORMAT(2A5+3E1042)
6 READ R20s DTsFSsVSeINeNRUN
820 FORMAT(3E10.2+2110)
7 READ B830+FMT1
830 FORMAT(16AS5)
DO 400 N=1NRUN
8 READ R25.vI
825 FORMAT(E1Q042)
IF(MN~1130430940
30 PRINT 900+ (IDENT (I)s] = 19016 )
9GO0 FORMAT(1H1+48X33HRESIDUAL VELOCITY IN A PROJECTILE /
11HO 925X e 6AS/// /)

cALL RULLETLReRT o XL oXLIvXL29XL3sDXL o INsIMeDAS ¢COS»EM9BRHO)
SCALF FACTORS
T8 = DT
PRINT 905.BNAMEIoBNAMcz.TNAMEloTNAMEZvBRHOoEMoTRHOQSIGcH
905 FORMAT(26HOMATERIAL OF PROJECTILE = #1X92A5 7/
1 264 MATERIAL OF TARGET z o]1Xs2A5 //
2 26H MASS CENeQF B~MATGBRHO = 9E13e¢%016H LB-LECH#2/IN®RL//
3 26H MASS OF PROJECTILE BM = ¢E13¢4913H LB-SEC##2/IN//
4 261 MASS DENCOF T-MAToTRHO = sE13e4916H LB-SECH#2/IN®RG//
5 26H COMPoRESISeOF T-MATS510G= sE13e499H LB/IN®®2 //
6 26H THICKNLSS NF TARGET H = +F10e¢507H INCHES /)

PRIMT 917 XL o XL 1oXL? eXLA9AsR1 DXL IM

910 FORMAT (28HOTOTAL LENGTH OF CELL XL
a0 LENGTH OF VARCSECTS XL1
26H LENGTH OF CON.SECT. XiL2
26H LENGTH OF SEMICHORD XL3
26H RADIUS OF CIRCe ARC R sF310e5sTH INCHEC //
26H RADIUS OF CONSSECTe R1 sF10e5¢7H INCHES 7/
26H LcNOTH OF THE CELL OXL= obtl3ebsTH INCHES //
26H NUMBER OF CELLS iMe » [10 /)

PRINT 950 VSeFIWDT

950 FORMATI2AHOVEL. SCALE FACTOR VS

2F10e5¢TH INCHES 7/
2710650 7TH INCHES //
sF104597H INCHES //
sF10e597H INCHES //

# a0 AN

NV W~

2E13e42TH IN/SEC 7/

1 26H FORCE SCALFE FACTOR FS§ = 28130 LB 7/
2 26H TIME INCREMENT TS = DT = vC13s&04H SEC /)
40 PRIMT 915sVI
91% FORMAT(26HIINITIAL VILOCITY VI = 9E13e497H FT/SEC /)
CAlLL VELO (XLsNDXLsCOSPDASsBMeIMeVIsDToHsSIGITRHOIFSIVSe
1TSS T TaXeXPsVVeFFaXL1 R 9 KHM)
REWIND 2
PRINT 920

920 FQRMAT(1Hl.aHTlMto9x.llHPtNLTRATlONo9Xo8HTRAVtL-Xe9Xo
18HVELOCITY »GXe5HFORCE ///7)
DO 400 K = 1sKM
READ TAPE DeTTeXPoeXsVVFF
PRINT FMT19TToXPeXsVVeFF
400 CONTINUF
1000 STGP
END

COMPILE RUN FORTRAN

SUBROUT INE BULLET(R.RXoXLoXLlvXLZoXLSoDXLolNolMoDASoCOScBMoBRHO)
DIMENSION XLS1200)sDAS(2C0)+C0O5(200) SIN(200)2COT{200)0Y1200)
Pl = 3el0159

XLS(1) = 0.0

ASL = 2.0"PI*RI*DXL

TEST O DUTLRAINE IF PPOJECTILE 1S A CONE

IF(R-100040120932»30
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C LOGIC FOR OGIVE AND HEMISPHERICAL NOSE
20 YO = SQRTF (R##2-XL3%#2)
XLO = SQRTF(R##2-(R14+4Y0)##2)
XLl = XL3=-XLO
XL2 = XL=-XL1
YOL1l = 0.0
VOL2 = PleR]*u2#XL2
DO 101 I = 1IN
IF (XLS(I)~-XL1) 10910911
C NON UN]FORM PORTION OF PROJECTILE
10 Y3 = SQRTF(R#*#2~-(XL3-XLS(]))%"2)
DAS{1) = 2,0%PI#R*(1,0-YO/Y3)#DXL
COSI1) = (XL3-XLS(I))/R
SIN(1) = Y3/R
COT(I) = COS{I)/SINCIY
YiI) = Y3=-Y0
OVOLY= PI#DXL#(Y(1)#%24+Y (1) *#COTi[)#DXL4(COT(]))"u2eDXL##2/3,0)
VoLl = VOL1+DVOL1

GO TO 14
11 IF (XLS(IV)=XL) 13913412
12 IM = |-1
GO TO 501
C UNIFORM PORTION

13 DAS(1) = ASD
COSt1y = 0e0
14 XLS(I+]1) = XLS(I)+DXL
101 CONTINUE
501 VOL = VvOL1l+VOL?2
BM = BRHO®*VOL
GO TO 400
C LOGIC FOR CONICAL NOSE
30 Y(1) = 040
XL1i = XL3
XL2 = XL - XL1
NO 102 1 = 1IN
XLSUI+1) = XLSUI)+DXL
1F (XLSUT) = XLY1 ) 40440441
40 Y(I1+41) =R1#xXLS(I+1)/XL1
DASI(]) = Pl (YD) + YOI+1))%SQRTFIDXL##24(Y(]1)=Y(]+1))882)
COStI) = RI/VSOQRTF(R1I##24XL 1%%2)
GO TO 102
41 IF (XLSUI)=XLY 43043942
42 1M = -1
GO TO 50
43 DAS(1) = ASD
COSUIY = 0.0
102 CONTINUE
50 VOL = PIRRI#¥2# (XL 1/3,04XL2)
BM = PRHO*V(QOL
400 RETURN
STOP
END

COMPILE RUN FORTRAN

SUAROUTINE VELO {XLsDXLsCOSsDASsBMeIMeVIsDToHeSIGeTRHOOFSIVSy
1TSeTToXeXPaVVeFFeXLIsR]1 9KM)

DiMENSION XLS(200)+C0S(200)9DASE200)

T = 00

TT=T/TS

V = V1I#12,.0
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APPENDIX B. Continued

VV = V/(VS5#)2,0)

FF=0,0

X = 040

XLS{1) = 0,0

REWIND 2

DO 410 K= 141000
IF(X=H=XL1)17+25425

F1 = 0.0

F2 = 0,0

DO 415 U = 1,IM

IF (V) 24424418
IF(X=H)19419420

1 =

XP = X

GO T0 21

IL = (X=~H}/DXL

I = J+IL

XP = H

IF{I=1M)21921422

IF (XLS(1)=X) 22¢22+22
COMPRESSIVE RESISTANCE OF PLATE MATERIAL
DF1 = SIG#COS(I)#DAS(])
INERTIAL RESISTANCE OF PLATE MATERIAL
DF2 = O045%#TRHO®(COS(I))u23n{V)RR22DAS(])
F1 = F1+DF1

F2 = F24DF2

F = F14F2

XLS(I+1) = XLS(I)+DXL
CONTINUE

WRITE TAPE 29TTeXPeXeVVeFF
DX=v%DT

IMPULSE MOMENTUM LAW

DV z=F %#DX/(BM#Y)

V = V4DV

X = X+DX

T = T4DT

FF = F/FS

T7 = T/75

VVaV/(VS#1240)

CONTINUE

V=040

VV =z V/(VS#12.0)

VR = V/12.0

WRITE TAPE 29TTeXPeXsVVeFF
XPM = XP

XM = X

™ = T

TIM = TY

KMeK

PRINT 9509 VRoXPMoXMsTMpTTM

FORMAT(26HORWVELOCITY OF BULLEY VRa +E13a497H FT/SEC //
26H MAXePcNETRATION XPM = sE13e49TH INCHES //
26H TOTAL TRAVEL XM = sE13ebeTH INCHES //
26H TOTAL TIME FOR XM TM = 9E13eb94H SEC
26H SCALED TIME FOR TM TTM = 4F10e3

RETURN
£T0P
END

MULTIFILE END
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