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SOM GUIDELINES FOR SONAR BAFFLE DESIGNS

Abstract

The problem of sonar baffle design is examined analytically

by developing expressions for the total sound field behind a

baffle as a result of diffraction around and transmission through

a baffle. The total sound field can be calculated using a digital

computer and includes the effects of a finite bandwidth source, a

source which has a finite spatial distribution and the alteration

of the actual spatial extent of the source by a sonar dome. A

study of the effects of the transducer as an object of finite

size on the sound field has not yet been concluded.

It is shown that the sound field behind the baffle can inter-

act with the beam forming process. For the transducer-baffle

arrangements now in use, this interaction can produce coherent

noise signals both fore and aft. For active sonars this inter-

action results in spokes on a PPI presentation.

It is concluded that the problem of sound transmission through

the baffle does not require further investigation until the diffraction

effects have been established quantitatively. It is not necessary

or practical to reduce transmission much below the diffracted

noise levels, and this may be possible with materials now available.

Some additional promising investigations are also mentioned

in this report.

4l
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SOME GUIDELINES FOR SONAR BAFFLE DESIGNS

1. INTRODUCTION

This report describes a study performed to generate guidelines
for the design of sonar baffles. These guidelines have been de-

rived from the results of an analysis of the interaction of sound

waves with baffles and to some extent, domes using reasonable,

though somewhat simplified, analytical techniques. The approach

which has been taken was chosen in order to obtain mathematical

descriptions of baffle performance suitable for obtaining usable

results without excessive numerical calculations.

The effects of the baffle and the dome on sonar system per-

formance are considered independently in this report. The effect

of the transducer as an object of finite size in the resultant

noise field has not yet been considered, nor has a thorough analysis

of the effect of baffle curvature been made. A more complete

treatment of the baffle-dome-transducer complex, including inter-
actions between them, is in progress under another problem assign-

ment. This later, more rigorous treatment may make it possible to

assign better numerical values to the various effects encountered

in the baffle-dome-transducer complex.

The purpose of a sonar baffle is tc acoustically shield the

sonar transducer from objectionable noise sources, usually sources

arising from the sonar platform as opposed to sources occurring

naturally in the sea. In this report the ship's screws are considered

as the major objectionable noise sources whenever a specific example

is required.

The sonar baffle designer has two basic parameters at his dis-

posal for accomplishing the task of discriminating against ob-

jectionable noise sources. One of these is the geometry of the

- 1
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baffle and the other is the material, or materials, from which it

i is made. These two parameters can be used to minimize, respectively,

the two fundamental shortcomings of a realistic baffle system, namely
diffraction around and transmission through the baffle. A study

to develop guidelines for baffle design can therefore be conveniently

and usefully initiated b-- considering each of the two basic para-
meters separately, i.e., by considering as independent the diffraction

around and the transmission through a baffle. This was the procedure

used for this analysis.

Section 2 of this report contains a discussion of diffraction
effects around a baffle, based on calculations performed by using

the analytical technique described in Appendix 1. Section 2 also

contains a discussion of baffle and dome transmission effects based
on calculations performed by using the analytical technique described

in Appendix 2. It will be noted that transmission effects include
both attenuation studies through the baffle and transmission studies

through a sonar dome.

In Section 3 a discussion is given of the effect of diffraction
j around and transmission through a baffle in terms of sonar equip-
ment performance.

I!

I
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2. 5MTUOD OF ANALYSIS

As is well known, sound diffracts around the edges of a baffle

in much the same manner as light diffracts around the edges of an*
opaque obstruction. The structure of the diffraction pattern is

dependent upon the geometry of the baffle or obstruction and also

dependent upon the spectrum and spatial distribution of the noise

source. The intensity level at any point in the diffraction pattern

is dependent upon the pattern structure and the intensity of the

incident wave or waves.

Because of its symmetry, a disc baffle is the simplest to

treat mathematically. The diffraction pattern resulting from the

disc can be described qualitatively by considering the case of

plane waves of a single frequency at normal incidence to the plane

of the disc. The rotational symmetry of the disc produces an
axially symmetric pattern on planes parallel to the disc. Several

wavelengths behind the disc there will be a region of high intensity
on the axis of the disc. This central bright spot is surrounded by
concentric circles, in planes parallel to the disc, of low and high

intensity. In the case of light waves this results in the familiar
bright spot surrounded by alternating dark and bright rings. Figure

1 shows a measured diffraction pattern behind a circular disc baffle

for acoustic waves. It should be noted that the spatial extent of

the diffraction pattern does not normally coincide with .,y. ,ometrical

shadow of the baffle. This implies that wave acoustics m ,s:" LL ,.sed
because ray theory does not apply to this situation.

Because sonar transducers are usually right cylinders, baffles
which have a rectangular projection are of greater interest to this

See, e.g., Jenkens, F. A. and White, H. E., Fundamentals of
O , McGraw-Hill Book Co., New York (1957) p 359 'if.

1Hiikoff, H., Klein, M. J., Keller, J. B., and Cartensen, E. L.,
"Diffraction of Sound Around a Circular Disk," Internal memorandum
Columbia University; and Keller, J. B., Klein, M. J. and Primakoff,
H., "The Acoustic Shielding Effect of Baffles," Columbia University,
Division of War Research (1945).
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study than circular discs. In nearly all cases, sonar baffles are

terminated at their upper and lower ends such that, for practical

purposes, very little acoustic energy "leaks" around these edges.

This would be the case, for example, for a baffle terminating on

hull at its upper end and in a highly absorbing medium like a sand

pack at its lower end. The net effect of these terminations is

such that the rectangular baffle is approximately equivalent to

an infinite strip baffle for ship's screw noise. This is the form

that has been considered in the study described here.

A mathematical description of the diffraction pattern behind

an infinite str'p baffle is given in Appendix 1. The problem

consi-dered there is one in which the incident sound field is for-ced

to remain a plane wave in front of and in the plane of the baffle.

This is equivalent to the assumption that the front of the baffle

is a perfect sound absorber. The rear of the baffle is likewise

assumed to be a perfect absorber. Transmission through the baffle

is considered to be 4ndependent of the diffraction phenomenon and

is considered separately in the next section.

The diffracted sound field is formulated as a two dimensional

function of position behind the baffle for an incident wave of

single frequency from a point source at a specified angle of inci-

dence. From this formulation realistic sound fields of finite

bandwidth arising from spatially distributed sources can be treated

by summation processes. A spatially distributed source can be con-

sidered as a number of elemental sources located at discrete angles

chosen to approximate the spatial distribution of the source. A

source of finite bandwidth can be treated, at each angle of ;nci-

dence, as a number of elemental sources at a number of discrete

frequencies chosen to approximate the frequency spectrum of the

elemental source at a ci.-n angle of incidence. The total diffrac-

tion pattern can be obtained by summing the contrbution of each

4
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elemental source over both the finite bandwidth and the spatial

extent of the source.

The presence of a sonar dome will have two effects on the

sound field behind a bafclr namely (1) *- -i11 attenuate t+P

incident sound energy and (2) it will, because of its curvature,

alter the spatial extent of the source as seen by the baffle.

These effects are considered in some detail in Appendix 2. They

can be accounted for quantitatively in estimating the total dif-

fraction pattern. Normally the attenuation effects of the dome

will be negligible in comparison with the baffle attenuation.

The effect of sound transmission through the baffle on the sound

field behind a baffle is discussed in Appendix 2.2. It is concluded

there that adequate mathematical descriptions of this effect are in

existence, so that baffle absorption studies reduce primarily to a

study of absorptive materials and geometry. For a given material,

equations are given for estimating the transmission through a

baffle so that this quantity can be added to the diffraction effects

at each point in the sound field behind the baffle in order to ob-

tain the total sound field.

All of the necessary calculations discussed above can be con-

veniently and rapidly carried out on a digital computer.

Figure 2 shows the diffraction patterns behind an infinite

strip baffle computed for baffle width to wavelength ratios ( )
of 3.75, 4 and 5 for an acoustic sine wave incident normal to the

baffle. The foreground of each photograph represents the plane of

the baffle, while the successive planes looking into the picture

represent the diffraction pattern at intervals of two wavelengths

in planes parallel to the baffle. The relative intensities are

shown on a linear scale. The shadow zone is in the center of each

plane. Figure 3 shows the diffraction pattern behind an infinite

strip baffle computed for a baffle width to wavelength ratio of 4

for an acoustic sine wave incident at 200 from the normal to the

baffle.

5
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The structure of the diffraction pattern for the infinite

strip is, as in the case of the disc, dependent on baffle geometry.

However, instead of having the same intensity on any circle per-

pendicular to the baffle axis, one now has the same intensity on

a line parallel with the baffle edge. As can be seen from Figures

2 and 3, the distribution of the intensity behind the baffle shows

a central "bright" line with alternating "dark" and "bright" lines

approximately parallel to the central one. In order to see the

pattern in greater detail, the intensity distribution in a plane
18X behind a strip baffle for a baffle width to wavelength rato

of 4 and normal incidence, is shown in Figure 4. This pattern

corresponds to the pattern present in the vicinity of the trans-

ducer in a typical sonar installation. 1he central line is less

intense, relatively, than the central spot for the disc. In an

experimental measurement, the intensity minima shown in Figure 4 in

the shadow zone would be obscured by transmission effects.

Figure 5 shows a linear scale comparison of the pattern given

in Figure 4 to a measured pattern for light waves. The good

correspondence between the two patterns indicates that the simpli-

fied boundary condition used in the diffraction calculations has

no significant qualitative effect.

The effect of a source with a finite bandwidth will be to

smooth the patterns shown in Figures 2 and 3 because the intensity

maxima and minima from each portion of the incident spectrum will

occur at different parts of the pattern. (This, of course, is not

true for the central bright line.)

The effect of a source with a finite spatial distribution will

be two-fold. First, the intensity maxima and minima will occupy

different positions for different angles of incidence, so that the

total pattern will become smoother. Secondly, the width of the

region of relatively low intensity, i.e., the diffraction shadow

zone. will be influenced. For normal incidence, it can be seen

from Figure 2 that the shadow zone diverges slightly as a function

6
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of distance behind the baffle. For oblique incidence, the shadow

zone also diverges, but the entire pattern is perpendicular to the

plane of incidence, as can be seen from Figure 3. When a number

,of such patterns are summed the total effect will be to cause the

,pattern to converge, i.e., to become narrower as a function of

idistance from the baffle, and to broaden the region in which the
,.average intensity rises from its low value in the shadow zone to

the ambient value.

It should be noted that the intensity just outside the shadow

zone will, in all cases, rise to a value greater than the intensity

Swhich would occur if the baffle were not present.

The discussion to this point has considered plane baffles.

Although no quantitative calculations have been carried out, the

following qualitative statements can be made concerning curved

baffles. By considering the derivation of the equations giving

the diffracted noise field behind the baffle (Appendix i), it can

be seen that small surface curvature has essentially no effect on
the pattern. The important factor is the position of the baffle

edges relative to the transducer, which will be discussed further

below. The effect of the curved baffle on the transducer when it

is used to transmit or receive, i.e., the lens effect of the curved

baffle, has not yet been considered. Also the possibility of per-

forming some "cute" tricks with multiple section baffles has not

been, but should be explored. Smaller baffle sections located

close to the transducer will not significantly alter the trans-

mitted sonar pulse, but they might be used to alter the received

diffracted noise field significantly.

7

55



T RAC OR. INC uJ'. ~ I ~AJ

3. DISCUSSION

As shown in Section 2, the total sound field behind a baffle
taking into account the finite bandwidth of the source, the finite

spatial extent of the source, the effect of the dome on modifying

the actual spatial extent of the source, and transmission through

the baffle, can be readily calculated using a digital computer.

The manner in whicb this sound field is altered by the presence of

the transducer is the subject of work presently in progress. It

is of interest now to discuss the effect of the sound field behind

the baffle on sonar system performance. Until the effect of the

presence of the transducer is determined this discussion will re-

main qualitative. Nevertheless, as will be seen below, some inter-

esting conclusions can be drawn.

Figure 6a shows a typical, smoothed, diffraction pattern which

might be expected in a plane passing through the center of a trans-

ducer (without the transducer present) for an arrangement as shown

in Figure 6b. (For an active sonar, with its relatively narrow

pass band, the pattern will normally not be as smooth as it is

shown in the figure, but this fact is not of great importance for

the following discussion.) Consider a baffle, rectangular in

projection such that the edges of the baffle are located at A and

A'. Although it is possible that the baffle can be so wide that

the entire transducer is within the region in which the intensity

is less than the ambient from the objectionable noise source, such

a situation does not usually occur in practice. The more common

situation is the one depicted schematically in Figure 6b, where a

portion of the transducer is in a low intensity field (the arcs

B B' and C C') and a portion in a high intensity field (the arcs

BC and E'C'). Normally the high intensity field will be greater

than it would be if no baffle were present.

As stated above, the effect of the transducer as an object

of finite size in modifying the diffraction pattern as computed

here has not yet been determined. Nevertheless, it can be stated

8
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that the sound field in the regions BC and B'C' will be spatially

coherent, and the exact phase relationships, as they exist in the

modified sound field, will cause this coherent sound field to ap-

pear to originate from a source located (in azimuth) in the vicinity

of the baffle edges (the virtual source in Figure 6b). Because

this noise field is coherent, it will be summed in the beam form-

ing process, like a coherent signal, modified only by the beam

pattern in the direction of the virtual source. For example, a

beam which is designed to "look" in the direction OC will have a

finite response in the direction of the virtual source. Situations

are not unconmmon in which this virtual source can be some 20 db or

more greater than the ambient noise level in the pass band of inter-

est. If the beam is not shaded or compensated, it is not unlikely

that for a number of beam positions the virtual source may be re-

ceived on a side lobe no more than 12 to 15 db down from the major

lobe. If a sufficient number, say about half, of the elements used

to form a beam are in the region of high intensity, the total noise

output from the beam can be significantly greater than for sea or

water flow noise alone. This coherent noise output is interpreted

by the equipment as a signal on the major lobe axis. Because this

coherent noise signal is continuous, it will appear, in an active

sonar, at all ranges, i.e., proJuce a "spoke" on a PPI presentation.

Note that such spokes can appear both fore and aft.

The production of these false signals by the interaction

between the noise field behind the baffle (primarily the diffraction

pattern) and the beam pattern will occur whether the baffle is large

enough to place the transducer completely in a region of lower

intensity than ambient or not because the field is not constant

across the diffraction shadow. Within the shadow, however, this

interaction will occur to a much lesser degree.

It is interesting to note that the interaction between the

virtual noise source and the beam pattern can be minimized by the

9
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use of shading (except, of course, in the direction of the source).

Stated more generally, baffle design and beam forming (either for

fixed beams or for the rotating beams) cannot be carried out in-

dependently unless shading is used to a degree that the side lobes

are down far enough to make the virtual source negligible.

From the point of view of baffle design, it appears that the

diffraction characteristics of a baffle require further study and

analysis than do the transmission characteristics.

As pointed out above noise transmission through the baffle

has been reduced largely to a development or selection of materials.

Until the diffraction effects can be delineated, the value of

further baffle material development is not known, because there

is, after all no reason to reduce the noise transmitted through

the baffle much below the level of the diffracted noise field.

This may be possible now with available materials.

10
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1.1 Diffraction Around a Baffle-Normal Incidence

The appendix will analyze the diffraction of sound around

an infinite strip baffle. The baffle is of width 2a, and com-

posed of pressure release or absorbing surface, i.e., the particle

velocity is zero on the baffle surfaces. The general non-viscous

wave equation is used to describe the sound field. The boundary

condition of an undistorted plane wave in the plane of the baffle

is used to describe the incident sound. The baffle is referred

to the coordinate system shown in Figure AI.l.l.

A plane wave propagating in the positive y direction can be

represented by

e -(it - ikx) (1)
1 0

where - scalar velocity potential of the incident wave

CD - frequency of the sound wave
2vrk - wave number (k - X-) X m wave length).

To determine the solution to the problem, first consider the

general wave equation

1 (2)2. --- -- 2

c 't

where c is the propagation velocity in the medium (velocity of

sound). Two important properties of velocity potential function

are given by

- vn (3)

C' P (4)

where vn is the particle velocity in the n-direction, p is the

11
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-density of the medium, and p is the instantaneous sound pressure.

These two properties will be used later in the determination of

boundary conditions. By considering an infinite baffle, the prob-

lem is reduced to two dimensions. Thus Equation (2) in cartesian

coordinates become

6 262(5)6

The general form of the solution to Equation (4) is taken to be

- X(x)Y(y)e iDt (6)

where X(x), Y(y) are continuous, analytic functions of x and y.

Using this solution, Equation (6) in the governing Equation (5),

yields the equations,

dxd2Y+ m2x - 0 (8)
4 +ym2y -0 (8)

dy2

12M2 - C /2 2(9)

where t and m are separation constants. A solution of Equations

(7), (8), and (9) is

X = A + Bx1 hp- 0 
(10)

Y = A' + B'y

12
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X - C sin Inx + D cos nx
Shn,2n  0 (Ii)

Y - C' sin hny + D' cos hnY n

where

hn [.2/C2  12 n(12)

Since Equation (6) is a linear equation and A is any real constant,

a linear combination of the solutions (10) and (11) is also a

solution. Therefore, the general solution can be written in the

form

"- (An sin nx + Bn cos x)(Cn sin hY + Dn cos hny ) e t
L n n n nnn nn
n (13)

hn -L I. 2c " -2~1

where An) Bn, Cn , Dn are arbitrary constants. These constants will

be evaluated fror the boundary conditions. Since the baffle is

assumed to be a pressure release surface, the incident wave reaches

the plane (y - 0) undistorted and the particle velocity is zero on

the strip baffle. For the Case of the normally incident wave, i.e.,

wave fronts parallel to the surface of the baffle, the boundary

surface becomes an infinite piston with a strip the size of the

baffle held fixed. The condition on the surface of the baffle, re-

calling Equation (3), becomes

0 for 0 <IxI < a (14)

and

v wv for x I> a (15)

13
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where v yI is the particle velocity in the incident plane wave.

These conditions, plus the requirement that at large distances

from the baffle the solution becomes plane waves again, determine

the solution.

Equations (14) and (15) can be rewritten in the form

mv Sa (x) ,(16)

where S (x) is the unit step function in the interval a < x <

From Equations (1) and (2) the particle velocity in the incident

wave is

V yI . - y ih0e- ict- (17)

Expanding Equation (16) in a Fourier series in the interval 2L,

where L > > a, and combining with Equation (17) yields,

Vy- ik \~ aL - 2 i cos Ie'it . (18)

v - § a/L) L7 271.

j=i

From Equati.n (13) the particle velocity in the plane of the bafile

is

V hn  An sin Inx + Bn cos InX Cne imt (19)

n

The boundary conditions given by Equations (18) and (19) must be

term wise identical. This condition yields

A n 0 (a)n
(20)

(b)

14
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CoB° w * -[ - a/] (c)
sin ia (20)

CB o . L (d)

Using Equation (20) in Equation (13) gives

siny- 2 i v

niz 1n(+ 1~ -a/)snEy-L-T
n7Tx 2 nwcos E Sin - y + BLD cos RP cos y (21)

n
nX

where Yn - . Notice in Equation (21) that the radical in the

argument of the y function becomes imaginary for values of yn n > N.

For the solution to remain finite under such conditions B D must benfn
identically zero. Writing the solution, Equation (21), with the

y-terms in exponential form yields

n~a i ,l - 1
#o e i m  I- /Le i y  0" 2 sin T  ny

" a/L)e oo e L (22)

n=l n ' 1 Vn J

Note that the solution changes form for n > N. This change is best

noted by rewriting the solution in the form

N nwa+oimt (I- /Le i y  2 s in L cos x i vi
*-e (1 a/L)e 7 n 2Trx -e 2

n-l n7 -Yn o

nwa y 2 (23)

+ L 2sn "~ CO ne l
n~r V77. -

n-N+l n

3+
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for N > 2 > N + 1. Equation (23) can be written in the form

1 A(,ty) e- (x,y)] (24)
0

where
N
N- nra

2 t( - 2'L n~rx 2
A (x,y) ( a sin cos - sin i yn

N nva

+aI- ) cos m.....n- L' n2di Cos TCos [ 'y (25)

+ 2 sin -- nrx " 2 Y

=COS=e

N+l n,7 n

and

-IRe
0 Tan m (26)

R 4s tie f~rst brac 1ete'I term nF Fqiici(m (P ) an,i I s the secnn!a In

bracketed term of Equation (25). Equation (25) gives the amplitude

ratio of the potential functions which, from Equation (4) is also

the pressure amplitude ratio.

Equation (25) was programmed for a digital computer, and the

ratio, A(x,y) was calculated for various values of the non-dimensiona aan
ratios, aa and y. Results from these calculations are shown

in Figures 2 and 3 in Section 2.

To extend the solution to a source of finite bandwidth Equation
(24) can be integrated over this bandwidth. However, Equation (24)

does not readily yield to analytic integration over a frequency band.

16
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But, as has been indicated above, Equation (24) can be readily

programmed for solution by a digital computer and, since * is a

linear function, a numerical integration is admissible. The

finite bandwidth can be subdivided into elemental bands. The

energy in the elemental band is assigned to the center frequency

of this band. A summation over the center frequencies can be

carried out by the digital computer and results for the finite

bandwidth source can be evaluated.
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1.2 Diffraction Around a Baffle-Oblique Incidence

The development of a solution for a wave obliquely incident

on the infinite strip baffle parallels that for the normal-

incidence case. Only the salient features of the oblique case

will be demonstrated here.

Thz coordinate system used is shown in Figure A.1.2.1.

It is assumed that a freely-progressive plane wave described

by

0 o ei(ct - kX kyy) ()

where

* - scalar velocity potential,

a,,- angular frequency of wave,

k - projected wave number in x direction,

k - projected wave number in y direction,y

is obliquely incident on a rigid semi-infinite strip of negligible

thickness lying in the plane y - 0. The strip is infinite in ex-

tent perpendicular to the x - y plane. That the strip is rigid

implies that the particle velocity normal to the strip is zero in

the region - a < x _ a.

The variables of the wave equation are separable in the manner

shown in the normal-incidence solution. Upon separation of variables

and solution of the resulting ordinary differential equations one

may determine a general solution of the form

* . X + Bk +je + +Dje e (2)

where

18
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AB.,C.,D - undetermined coefficients, perhaps complex

in form;
k. = an undetermined separation constant, eitherJ

real or imaginary;

and k - wave number w/C.

In determining a boundary condition, the point of view of an

observer sitting in the y - 0 plane will be taken. Such an ob-

server sees a plane wave approach the strip at an angle 0. In

general the particle velocity of the wave in the y direction is

i(wt - kxx - k)y)
Vy o ikyoe 

At the plane y - 0, however, the particle velocity in the y

direction is reduced to zero in the region -a x < a because the

strip is rigid. Hence,

iky*oe Sa (x) (4)

where

2a - width of strip and Sa(x) is the unit step function

Sa(X) 0 0, 0 < x < a, and Sa (x) - 1, a _ x < o.

For the ass,-med solution (2) to be valid, it onust fit the boundary

condition (4).

The boundary condition (4) may be expressed in a Fourier series.

Equation (4) can be written in the form

Ty- 0 "* (cos k x + i sin kxX) Sa(x) e -  (5)

The general form of the Fourier expansion is

19
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CIDao + 7 nwrx .n7rx)

CY .0 = (an cos = + bnn sin (6)

nai

where L is an arbitrary interval of expansion.

The Fourier coefficients for the expansion of (5) are de-

termined in the usual manner, resulting in the following Fourier

series expansion of the boundary condition.

%Lo0 = iky*oMO +n  (iky*oMn cos ky oNn sin 'lr e - it

where

(sin kxL - sin kxa)

-2 kL (8)
x

X

fkxL [(-l)nsin kxL - sin k a cos a+ nw cs ka si nya iL 22

n -- x -2 22 4 (9)

and

nv [(-l)nsin k L - sin k a cos na + k L cos k a sin n

nk L -n 7r

Using the assumed solution (2), Vy | is given by

A.e 3 + B.e + - D. e(II)Y,0 L e i + (j J j

For the assumed solution (2) to fit the boundary conditLon (4),

Equations (7) and (11) must be equated term by term. It can be

seen that for such a relation to exist,
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k. -i n r' (12)

The only restriction on the solution (2), other than the boundary

condition (4) is that it remain finite for all positive y. This

restriction, together with the relation (12), can be used to eli:ni-

nate D.. Consider the termJ
2  21
ki+k j Y

D. e
I

For large n this term becomes

-nn2 2 y

D. eDe

which does not lead to a bounded solution. Hence D. ,mist be,J

identically zero, Equation (12) can now be rewritten as

(cos + i sin fly) + B (cos , i sin

y-0 " L n L
n-1

2_n 2 v -i.t

i (k2 - 2 e (13)

Equating cosine and sine components from Equations (7) and (13)

results in

ia n (An + Bn)- i ky oMn (14)

and

ca (- A + B ) -- k y Nn n n yon

Here

21
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2 2V
O Vk 2 

- 2 "2

Solving Equations (14) for An and Bn yields

kn

An n (Mn + Nn )

and
k

B 1 -- ( n- Nn )

The form of the solution now becomes

M e +L e- (M + Nn)(cos Ls+ in )70 a -0 n,-L- i
[' n=l

Sn (Mn - N)(cos n - i sin e) e -ke

It is convenient to modify Equation (17) in order to obtain a form

suitable for computations.

2 ~ 22'(
k2 n~r V

n [k L 2

kL
Note that for n > N (N - an - i n where

72 2  k2

n L1

It is therefore convenient to break the infinite series (17) into

two series having summation ranges of i < n < N, and N + 1 < n < 0.

Further, let

nX

22
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where X is the wave length of the incident wave. an and pn become

a n- k -l -7 2  (21)

and

n , (22)

where k is the wave number of the incident wave.

With these modifications, retaining only the real parts of

Equation (17), the solution can be written in the form

7 (7-) cos Mt + ( ) sin wt . (23)

T0 0 c0

IT 0 ~ j ar afe0oesmpiiai

1\ cos ~ nrx

c Mo s0yan (M cs .-Y / cos (1nyo n-l n

N (24)
n7Tx 7 k cos Nsn nrx " n y

-N sin -sin any) + N snL en L n' L. D nLn-N+1

and

N

M sin ay k cos 05 (M cos sin ay
(''-s 0 0. Lo (o 71, n n ny

0n--i n

(25)
0

+ N- k cos M cos n-xe ny

n ny) -n n
n-N+1

-. - -- ~ ~ ~ - - ~ ~ -
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where

n
a-n = kie2

n

A solution for the special case of zero angle of incidence

( 0) has been obtained independently and is given in Appendix

1.1. The solution for a general angle of incidence can be re-
duced to the normal-incidence solution by the substitution of

= 0 in the above Equations (24) and (25).

A particular solution is demonstrated in Figure 3. The

parameters used in this solution were;

0- 200

X - .5 ft

a - 4x

L - 40x

The intensity of the diffracted wave normalized to the incident-

wave intensity at intervals Ay - 2X beginning at the plane of the

strip are shown in the figure.

A complete analysis of the baffle considered alone requires

the construction of a solution for a complex sound field, that is,

a field having waves cL arbitrary equiphase lines and a continuous

frequency distribution.

An effort to obtain an integral of Equation (23) using a

continuously distributed semi-circular source indicated that a

spatially distributed source can most conveniently be treated
numerically. The technique considered is illustrated as follows:

* -- - --?7qr- ~ ---- ---- ---
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assume a single frequency arc-shaped source at some distance from

and symmetric with respect to the baffle. The source can be ap-

proximated, to the first order, by two in-phase equal-amplitude

plane waves as shown in Figure A1.1.2. Of course, the use of

several in-phase plane waves effects a more accurate representation

of the source. For more complex sources, it is not expected that

the phase or amplitude relation will be so simple; however, such

sources car be approximated by a superposition of plane waves having

appropriate angles of incidence with respect to the baffle.

It was pointed out in the previous section that frequency

distributions can b3 approximated by a sumnmation over intervals

of the frequency band. Combining the spatial and frequency

summations, the solution to a complex field will have the general

form

-i(mt- kx x- k y)
if _ n,m *0 e n,m Ynm

m n

where L is an amplitude and frequency weighting function.n ,m

25
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2.1 The Transmission of Sound Through Sonar Domes

The theory treating transmission and attenuation of sound in

flat plates is highly developed in the literature. Baffles en-

countered in sonar applications are readily approximated by attenu-

ating flat layers and can be analyzed using flat plate results.1

Hence the baffle study was reduced to that of materials selection

and is discussed in Section 2.2 below.

The problem to be considered here is to determine the effect

of the sonar dome on the incident sound. Transmission theory treat-

ing complex plate shapes is not well developed and exists only for

shapes such as hemispherical 2and cylindrical shells. No previous

work was found which treated irregular shapes. Therefore the sonar

dome shape has been treated by approximating it with a series of

flat plates. The dome transmittivity is described using flat plate

data. To introduce this technique, a discussion of flat plate

transmittivity follows.

Consider the situation pictured in Figure A2.1.1. The incident

wave front represents a plane harmonic wave impinging on a segment

of a dome or baffle at a general angle of incidence. Part of the

incident energy is reflected and the balance is transmitted through

the layer. The objective of the study is to develop an expression

for the transmission coefficient, T, which is a complex quantity

whose modulus represents the ratio of transmitted-to-incident

pressure and the phase is the phase shift occurring in transmission.

Standard boundary conditions are applied at liquid-solid inter-

faces, governing the passage of sound energy from one medium to the

next. These conditions are: the liquid .urrounding the baffle

supports only longitudinal (compressional) waves; there exists a

See listed References,

ISee, for example, Reference 3.
2 See Reference 8.

26
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continuity of normal stresses and normal displacements across

the boundary. The tangential stress components must be continuous

across the interface, but since the water does not support shear

stress, this condition reduces to the condition that the tangential

stress vanishes at the interface. The solution satisfying the sound

field in the system is assumed to be plane harmonic waves of a

single frequency.

The incident plane wave impinges on a layer of finite thick-

ness d, at an arbitrary angle of incidence, 0 (refer to Figure

A2.1.1). The subscripts 1, 2, and 3 denote respectively the medium

into which transmission occurs, the baffle medium, and the medium

of the incident wave.

The pressure amplitudes can be related through the use of

normal acoustic impedances, which are defined as the ratio of

acoustic pressure to the normal particle velocity. Normal acoustic

impedance can be written for a medium as

- n(1)

Since this quantity is composed of pressure (or normal stress) and

normal velocity (related to normal particle displacement), and each

of these elements are continuous across boundaries of media, the

normal acoustic impedance must be continuous across boundaries of

the media.

Considering first the impedance of a single layer baffle

(medium 2); the acoustic pressure wave transmitted into the baffle

can be written

--a 2y i 2Y ] i(2 x - cut)

P 2 i A e + B e e , (2)

where a - k cos 0, k sin 9. Here k is the wave number-

and A and B are undetermined amplitude coefficients. The normal

componenc o, particle velocity can be written
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1 [A ia2Y 2y]i(-2 - ct)

v2 " 2 e" + B ei2y ei2x " • (3)

Now the characteristic impedance for medium 2 can be formed as

the ratio Z 2- p2/V2. At the 1-2 boundary, Z2 must equal ZI;

i.e., for y =

z 2  - z or B 1 2 (4)

This same reasoning of "continuity of impedances" at the upper

boundary 2-3 (where y - d) gives

Ae 2d +Be 2

z- .. 2 - (5)
A2 e 2 -Be' 2Ae-B

Substitution for from Equation (4) into Equation (5)

gives

ZI - iZ2 tan a2d
in " Z2 - iZ1 tan a2d Z2 " (6)

Equation (6) is an expression for the input impedance to the layer

in terms of the characteristic impedances of media 1 and 2 and the

layer thickness.

Introducing the elements of the acoustic impedance of medium

3 and applying the condition of "impedance continuity" across the

boundary y v d gives with the factor e suppressed,

-C -i3(- d) +Dia 3(Y - d)] i' 3 x
P3 " ICe-a3(y d + D e ia3( )Ie il3x(7)

and

~-~-~ --~ -. - -~ /. -
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v3  1 [C e'i3(Y " d) De 3  " d)] e 3 X . (8)

At the interface y - d, the ratio f must represent the inputV3

impedance Zin of the layer, i.e.,

Z. Z C + D (9)iln 3C - D

In Equations (7) and (8), the pressure and velocity in medium

3, C denotes the amplitude of an incident pressure wave and D is

the amplitude of a reflected wave. The ratio D/C is the reflection

coefficient V, and is used in the formulation of the transmission

coefficient T. From Equation (9) the reflection coefficient can

be written

Zin z3v ~ - i n + z 3,,I0

where Z. is given by Equation (6). Substituting Equation (6) intoin

Equation (10) gives

(Z1 + Z2 )(Z 2 - Z3 ) e -i 2d+ (Z - Z2)(Z 2 + Z3 e i 2d

V -ia2d ia2d (1)(Z1 + Z2)(Z2 + Z3 ) e + (Z! - Z2 )(Z2 - Z3) e

The sound field in medium 1 is the energy transmitted through

the baffle. It can be expressed by

Pl - G e ,i( y-*' (12)

where G is the amplitude of the transmitted pressure wave. The

transmission coefficient T according to the definition is T - G/C.

29
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Applying the condition of continuity of normal stress or

sound pressure at the interfaces, T can be formulated in terms of

the known quantities. At the 1-2 interface, where y - 0, the

pressure expressions Equations (2) and (12) have the same magni-

tude; i.e.,

G- A + B . (13)

Similarly, evaluating the pressures at the y - d interface gives

-a i2 d iCL' d

C + D - C (I + V) - A e +Be ()

Dividing Equation (13) by Equation (14) gives

T (1 + B)(l + V)

C 2 B ei 2

Substitution of from Equation (4) and V from Equation (11) into

Equation (15) gives

4z Iz21Zi2

(Z 1 - Z 2 )(Z2 - Z3) e + (Z1 + Z 2)(Z2 +Z3) e

In the foregoing discussion transmission and reflection co-

efficients were developed, making no mention of attenuation within

the layer. In most baffle materials absorption is present, and

should be accounted for in the reflection and trans-nission coefficients.

The presence of absorption causes the inpedances to be complex; the

wave numbers k and the angles of refraction P will in gencral be

30
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complex for absorptive layers.3 Reflection and transmission co-

efficients using complex wave numbers and impedances can be

written in the form

V - p and T - e (17)

Using the notation

2a2d - a + ip and Zu- y+i" , ( )

and applying Che proper subscripts in Equation (16), expressions

for the modnlus and phase of T can be written.

If the media 1 and 3 are the same, which is true for a laver

surrounded by water, then the phase and modulus of the transmission

coefficient can be written

2 16 (2 + 612)(Y2 + 5) e jj + 2p 2 e-H cos (2012 + 2 ) + e -

T
1  [(' + 'Y2) + (6 + 62)](

1 2 (19)

and

- F + A - B - C (20)

where
' 2 + 6 172

2(F 1 + ' 2) (1 + 2)
( + 2 1 l+622 ,(2

ri r a discussion of transmission through absorbing media, see

-t&,xertLnce 2, pp 52-54.

C
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2 -B 3
2 - sin (201 + aL)

C -arctan ,12 2 i (12 (23)
l+ p 1 2 e cos (2012 + a)

and

P02(' ) + (61 62) 2  (24)
12 I +  2 2 ) 2  + (61. + 62)2

and

2 ('2 - 62 Y1 ) (25)
12  arctan 2 2 62 _.8.2

1i 2 1 2

The foregoing expressions give the transmittivity for a layer,

and are equally applicable to a dome segment or a plane baffle.

Using the appropriate physical constants Equations (19) and (20)

combine to give T. These expressions are bulky and can be replaced

by simplified equations for certain situations. For instance, if

the attenuation losses in the layer are small, an approximate

method can be used to describe the transmitted sound field.

There are three approximate methods 4 described in the litera-

ture which agree closely with the exact theory for thin metal plates.

Each of these methods was used to generate transmittivities for a

range •f incidence angles and frequencies. Representative results

of these calculations are shown in Figures A2.1.2 to A2.1.13.

Reissner's method5 is seen to give good results over a wide fre-

quency range. This method is used for subsequent computation of

transmittivities through the dome.

For a sample solution, a curved dome was considered having an

elliptical shape. A plane wave incident at the trailing edge was

assumed to propagate parallel to the major axis. The dome was

4See References 4, 5, 6, and 7.
5A presentation appears in Reference 7.
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approximated by flat plate sections. The normalized transmitted
pressure and phase shift relative to the incident wave were com-
puted using Reissner's method for several frequencies. The re-
sulting sound distributions are presented graphically in Figures
A2.1.14 to A2.1.19.

This approximating technique can be applied equally well to
other dome shapes to compute the transmitted pressure amplitude
and phase. These calculations are of interest in determining the
effect of the dome on the spatial extent of a noise source as it is
seen by the baffle.

Ii

i,
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2.2 The Transmission of Sound Through :,onar b,-!ik

If data are given to supply the physical constants f qaLiori

(18), the transmittivity for the particular layer is calculable

using Equations (19) and (20). In Equation (18) the term 9 re-

presents the total attenuation for the layer thickness. Inspection

of Equation (19) indicates that the transmittivity modulus is

diminished for increasing IS. The effect of increased f increases

the phase angle as evidencedby Equaions (20) and (23). Both

these mathematical predictions are intuitively agreeable.

There are occasions which warrant the effort to determine

transmittivity according to Equations (19) and (20). For instance,

if the field between the baffle and transducer is to be processed

for display, the pressure magnitude and phase are needed. These

require solution giving pressure amplitude and phase. However,

at other times the transmittivity magnitude alone is sufficient.

This situation can be handled by noting the diffraction level, be-

hind the proposed baffle and then determining the baffle thickness

needed to attenuate the transmitted energy to below this level.

Such design information can be generated using the material attenu-

ation characteristics in db loss/inch versus frequency.
6

A logical extension of the single layer baffle is the multi-

layer composite baffle. This type baffle combines the advantages

of interface reflectivities and attenuation to produce frequency

band pass characteristics. 7 No expression is included here for

multilayer transmittivities but these are described in the litera-8
ture.

The same technique and transmittivity equations for the simple

baffle apply to the composite baffle. The over-all multilayer

6 For example, see Reference 3.

7 See, for example, Reference 1, p 85.
8For a discussion see Reference 2, p 59.
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transmittivity expression takes the form of a product of terms
representing transmittivities of the individual layers.9 However,

for design evaluation purposes it seems desirable to have the

freedom of viewing individual layer effects separately; also this

allows the freedom of studying the effects of various orders of

layer combinations without completely solving a new baffle each

time. Therefore, it is at this point intended to successively

apply the results of Equations (19) and (20) for solving multi-

layer transmittivities. The over-all transmission coefficient is

the product of the moduli and the phase is the sum of the phases

for the respective layers.
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