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SUMMARY 

The vortex lattice method for the calculation of loads 

on a wing advancing in a uniform stream» initiated by Falkner 

(Reference 1) in 1943 and refined since then by other researchers 

(References 2,3) was extended to the case of a wing in the 

vicinity of infinite vortices. 

No experimental data or different treatments of the 

same problem being available in the literature in order to 

verify tht accuracy of the present method, the results in the 

report had to be limited to checking their convergence with 

respect to the three parameters involved and investigating what 

conditions them. 

The problem being treated linearly, only the simple 

case of one infinite vortex at the midspan of a wing at zero 

angle of attack has been tested, with the understanding that 

the method can be applied to more complicated cases once its 

convergence and its validity have been shown. 
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NOMENCLATURE 

L ■■ location of infinite straight vortex line 
along wing span, divided by span. 

R = vortex core radius divided by span 

U = free stream velocity 

W = induced velocity at wing surface 

X «■ nbcissa along wing span 

Y = ordinate along wing chord 

Z = distance between wing midsurface and 
infinite straight vortex 

a = c/2 

c = wing chord 

d = spacing between two consecutive trailing 
x vortices, divided by span 

d = spacing between two consecutive bound 
^ vortices, divided by chord 

m = number of bound vortices 

n = number of trailing vortices 

I = strength of infinite vortex 

| .. = strength of (element)., in the vortex 
1J lattice :L:l 

$ angle between infinite straight vortex 
and free stream 

&      = angle of attack 

fl(i) ■   vorticity distribution along wing chord 

vi 
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I     INTRODUCTION 

A thin, rectangular, and untwisted wing of infinite 

span moving at a constant angle of attack in a uniform stream 

produces only bound vorticity along its span with no trailing 

wake behind. 

Consider the same idealized wing over an infinite 

vortex (Fig. 1). 

The effect of the votex is to increase the angle of 

incidence on the upwash side and to decrease it on the downwash 

side, as well as to increase the magnitude of the velocity on 

both sides. Since the change in incidence and velocity, and 

thus in circulation and lift, is not uniform along the span, a 

trailing vortex sheet must form. 

The infinite vortex F being free, will not be 

straight or stationary when interacting with the wing vorticity, 

It will likely be distorted into an S shape and rotated. To 

make the problem amenable to a simple solution, the effect of 

wing vorticity on V     will be neglected. 

The vorticity distribution over the wing has been 

modified. It is clear that this will also be the case with 

different wing shapes and different configurations of infinite 

vortices.  (More than one may be present.) 

The object of this report is to show how a vortex 

lattice method can be used to determine the calculation 

distribution of a wing in the vicinity of infinite vortices. 



II    DEVELOPMENT OF THE METHOD 

Replace the continuous circulation distribution on 

the wing surface by a set of line vortices which is discrete 

in the spanwise and chordvise directions. The circulation is 

constant along a segment parallel to the span, then, after 

shedding a trailing vortex extending downstream to infinity, 

takes on another constant value along the next bound vortex 

segment. The resulting pattern is a "vortex lattice" laid 

on the wing surface as shown in Fig. 2.  It will not be 

contested that, if the spacing is made infinitesimally small, 

the correct distribution can be obtained. 

Near the wing, thb trailing vortices will be neither 

parallel to the stream nor straight«. Because of insufficient 

knowledge to determine their geometry near the T.E. and for 

simplicity's sake, it is assumed here that they are infinitely 

straight and parallel to the stream. 

If the wing is thin, the lattice is located on a 

surface which is the mean of the upper and lower surfaces. 

For the case of a thick profile, two vortex lattices, one on 

the upper surface and the other on the lower, may be used 

(see Reference 2). 

Each bound vortex segment with the two trailing vor- 

tices emanating from its ends may be regarded as a horseshoe 

vortex satisfying the condition that vorticity does not stop 

in the flow (See Fig. 3). The strength of any trailing vortex 

is equal to the sum of the strengths of the bound vortex 

segments adjacent to it and upstream from it. Thus, to de- 

termine completely the circulation distribution, only the 

strengths of the bound vortex segments need to be known. This 

is the next step considered. 
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At any point, the velocity induced by the vertex 

lattice, W, is obtained by summing the contribution of each 

vortex segment (bound or trailing) 

W=W  ( ^ IV       42'  *  'n(m-l)i   l nm ) 

The  1 ..'s are the strengths of the bound vortex 

segments to be evaluated. 

By satisfying the boundary condition, namely equating 

at (fi x m) "pivotal points" on the wing the total downwash 

(obtained by summing the contributions of the vortex lattice, 

the incident infinite vortices, and the normal component of 

the free stream velocity) to the local slope,(n x m) linear 

algebraic equations are obtained the solution of which yields 

the unknown vortex strengths. To solve those (n x m) equations, 

a digital computer is needed in view of the required dimensions 

of the lattice for satisfactory accuracy. 



HI        RULES FOR LAYING OUT THE VORTEX LATTICE AND THE 
PIVOTAL POINTS 

The  rules established by Rubbert  (Reference 2) 

for laying out  the vortex  lattice and the pivotal points 

have been tested first with a wing advancing in a uniform 

stream,   then used throughout for  the problem considered in 

this report. 

The rules are: 

(1) The line vortices should be equally spaced in 

the spanwise, as well as the chordwise, directions 

If it is desired to bring them closer over certain 

parts of the wing because of a larger variation 

in circulation, the spacing should be changed 

very smoothly using a "cosine law". (This is 

illustrated in Figure 4.) 

(2) If the chordwise spacing between the line vortices 

is d , the first line vortex is located at d /4 
y y 

from the L.E. and the last one at 3d M from the 
y 

T.E. 

(3) If the spanwise spacing is d , the line vortex 

at the wing tip is located at d /4 from it. 

(4) The pivotal points must be halfway between two 

consecutive line vortices in the chordwise, as 

well as the spanwise, directions.  The last row 

of pivotal points is placed at d /4 from the 

T.E.  (For a theoretical justification of the 

pivotal point and line vortex locations, see 

Appendix I.) 



IV     REMARKS 

1) The storage in the computer being limited, it was 

found that the accuracy hopefully obtained by the 

use of the cosine law can be achieved by a smaller 

lattice spacing. For by using a uniforn spacing 

throughout, simplicity and shortness are gained, 

and thus, more of the locations in the computer 

are left for the solution of a larger number of 

simultaneous equations, permitting a smaller 

spacing and a better accuracy. 

For a constant chord and spanwise spacing, (n x m) 

was limited to about 150 before overflow occured in 

the 7094 IBM Computer. 

2) It should be pointed out that the above rules are 

of the utmost importance. In particular, the 

results are very sensitive to a displacement of 

the pivotal points from the middle of the lattice 

cells. 

•  , 



V   CASE TESTED AND PRELIMINARY DISCUSSION 

A thin, rectangular wing, approximated by a 

rectangular flat plate, moving at zero agle of attack over 

an infinite straight line vortex, I , which is parallel to 

the wing plane, at a distance Z below it and which makes 

an angle (b with the free stream was used for the first case. 

This case is illustrated in Figure 5 which shows 

also the notation used. 

In plotting the computer solutions,circulation per 

unit length is first integrated over the chord to get the cir- 

culation around the wing. This integration is equivalent to 

a summation of the strengths of the bound vortex segments at a 

spanwise station. 

The downwash being skew-symmetric over the wing, 

(see Figure 1) lift and circulation are expected to be also 

skew-symmetric and, moreover, to vanish at the tips. 

Only the most representative solutions are given in 

this report. Those which are not included corroborate the 

general results. 

For a smooth circulation distribution and a rapid 

convergence of the solutions two rules, evolved when in- 

vestigating the variation in d , d , and L, are observed:- 

RULE A:   When Z is "small", of the order of 1/2 chord or 

less, the infinite cortex T" should be placed on 

top of a trailing vortex. Otherwise, it may be 

placed anywhere. 



RULE B;   In a direction perpendicular to "P , i.e., that 

of a nonuniform downwash induced velocity or, in 

general, of a nonuniform downwash, the lattice 

spacing should be less than Z.  Thus, if CO- 0, 

d is smaller than Z. 
x 

Those two rules become of importance only if T" 

is very close to the wing, say if Z is smaller than one chord. 

A difficulty may then arise when laying out, according to 

the rules of Section III, the lattice vortex over the chosen 

wing shape. For instance, for the case of a rectangular wing 

with r* at an angle (^different from zero, the above two rules 

and the rules of Section III cannot be satisfied simultaneously 

A discussion and suggestiors are given in Appendix II. 



VI CONVERGENCE OF RESULTS 

As d    is made smaller,   for a rectangular wing of 
AR-20, with d -.25 chord,   Cp -0,  L -  .5 and Z - 1 chord, Figure 6 
shows four circulation distributions corresponding to four 
different values of d  .     In Figure  7,  the peak value of cir- 
culation is seen converging to an asymptotic value as d    gets 
smaller.    Note  that d -1/m,  d - £__ . 

Y      x 2m + 1 

As d is made smaller for the same case but with 
y 

d fixed at .054, Figure 8 shows that the circulation distribution 

is practically the same for four different values of d . The 

distribution insensitivity to the chordwise spacing is due to 

the special case in hand, namely a constant downwash along the 

chord. Here one bound vortex is obviously sufficient, permitting 

a smaller d .  Later, it will be shown that whenever downwash is 

not constant along the chord, it is necessary to have more than 

one bound vortex. 

As Z is made larger, the circulation distribution 

should converge to that of the wing in a uniform flow.  Figure 9 

illustrates the expected convergence of the circulation peak 

value. Here the asymptotic value, for Z"Oo, is zero since 

the flat plate is at zero angle of attack. 

8 
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VII   SINGULAR CASE:  Z- 0 

Figure 9 shows also that for 2 " 0, the circulation 

peak value becomes infinite.  This is a consequence of the un- 

realistic choice of an infinite vortex T-* with no inner core 

which induces an infinite downwash at the vortex itself. To 

avoid this singularity, the infinite vortex is assumed to have 

a finite core rotating as a rigid body inducing a velocity as 

shown in Figure 10. 

No general theory being available to predict the 

core diameter, several infinite vortices with different cores 

have been tested.  The solutions are plotted in Figure 11. 

The important feature is that for a core diameter smaller 

than or equal to d , the circulation remains unchanged and 

the singularity is still present. This is inherent in the 

vortex lattice method. For Z being zero, T is placed 

on top of a trailing vortex in accordance with Rule A, i.e. 

halfway between two pivotal points which are separated by a 

distance d ; since the core diameter is less than d , the 

linear distribution of downwash in the core, introduced to 

eliminate the singularity, does not reach the pivotal points. 



VIII  CENTER OF PRESSIRE LOCATION 

Once circulation is known, lift is proportional to 

it and acts through the center of pressure. The center of 

pressure is determined as follows: 

\    YY(Y)dlY        L\TK 

\     X(Y)dY        ZVi X(Y) dY 
'ClwrJ 

where   0 (Y) is the circulation distribution along the chord. 

It was found that for y = 0, and all values of L 

and Z, the center of pressure locus along the span is practically 

a straight line at the quarter chord. Thus, the infinite vortex 

did not shift the center of pressure from its location in a 

uniform flow (see Figure 12) ,  This last result is only a con- 

sequence of the case. It is known that, for a flat plate in 

a uniform flow, the center of pressure is fixed and located at 

the quarter chord. Since the infinite vortex is parallel to 

the stream, each spanwise section of width d may be regarded 
■rib 

as an elementary flat plate in a uniform flow, with constant 

circulation and a pair of trailing vortices of same strength 

at its tips. Bearing in mind that the spanwise variation in 

incidence and velocity due to I  does not move the center of 

pressure on each elementary flat plate, it is clear that their 

locus will still be a straight line at the 1/4 chord. 

Now if a chordwise, as well as a spanwise,variation 

in stream conditions is included, the centers of pressure will 

be displaced by difference amounts. Such a chordwise variation 

is introduced by putting the infinite vortex at an angle (j) ^ 0 

with the stream. Close to V   , this variation is large and» 

10 
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thus, the displacement is relatively large.  Far from \     , it 

is small and the displacement is small. This is illustrated 

in Figure 13. 

With (p^-O and a corresponding change in the center 

of pressure locus, the chordwise spacing d becomes of importance 

and some convergence is expected as d gets smaller. Clearly, 

if only one bound vortex (at the quarter chord in accordance 

with the rules for laying out the lattice) is used, the locus 

is located at the bound vortex itself and the expected C.P. 

displacement cannot be accounted for; thus, more than one bound 

vortex is needed. In Figure 14, the peak value in the C.P. 

locus is plotted versus d showing a rapid convergence of the 

solution as the spacing gets smaller 

All the preceding is in agreement with Rule B. 

11 



APPENDIX I 

1.  Location of Pivotal Points 

Two different approaches leading to the same result 

are given: 

First Approach (suggested by P. Rubbert): 

Consider a pivotal point P on a vortex sheet (in 

two dimensions).  (See Figure 15) 

To compute the induced velocity at P, the sheet SS 

may be divided into equal segments. At the middle of each seg- 

ment is located a point vortex of strength equal to the 

average circulation over the segment (as shown in Figure 15) . 

The replacement of the continuous circulation dis- 

tribution by discrete point vortices is acceptable for the 

segments far from P. As for the two segments adjacent to P, 

consider the following derivation:- 

Suppose the segments are small enough so that 

between 1 and 3 the circulation may be approximated by a linear 

continuous distribution (see Figure 16), The velocity induced 

at P due to the vorticity lying between 1 and 3 us given by: 

Jo       flTT(i-sy~ -J,        aTT(Jt-S) 

J* ' STTl ^        JA      Sfl 

~   !   ffoUh ./sOh 1 

12 
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Now replace segments (1.2) and(2.3) by concentrated vortices 

Y"1-! and  I _ located at their midpoints. Assume these 

vortices to be of strength equal to the integral of the dis- 

tributed circulation on the segments. 

The velocity induced at P by   i , and  \ „  is:- 

sn«^   awl/a      air 

which is the same as the answer for a linear continuous dis- 

tribution. 

The foregoing justifies the position of  I-. 

and  \ « at the mid points of their segments. Equivalently, P 

should be placed halfway between  \   , and   \ «• Then, if more 

than one pivotal point is desired, a correct configuration would 

be as shown in Figure 17. 

Second Approach: 

Consider a two dimensional flat plate aerofoil 

represented by a vortex line of strength I  at the quarter 

chord (i.e. at the center of pressure and aerodynamic center). 

The downwash due to the vortex line equals the normal component 

U sin a  of the free stream velocity at a distance d from 

13 



the quarter chord,given by:- 1-^ Uvm*   =4>     <d= ^j-^- 

but    r= TI X = naaUi»nöC    ^et "Reference 4 , ?• 18S) 
otnoL    for    ex   flat    ^atc      aoi=C    (Refcre nee 4- , cloQpt - G) 

aTT\3*»not a 

Tlias,   the downwashes according to  the  exact  theory and  the 
single vortex line representation are equal at the 3/4 chord. 

The flat  plate may be represented as  in Figure  18. 

If a lifting surface is represented by Che juxta- 
position of several flat plates,   the configuration of concentrated 
vortices and pivotal points would be as shown in Figure  19.     It 
turns  out  that the pivotal points are halfway between two con- 
secutive point vortices  (or vice-versa). 

It may be noted incidentally  that  the first  point 
vortex is  at c/4 from  the L.E.  and the  last pivotal point  at 
c/4  from the T.E. 

14 



APPENDIX  II 

Alternative lattice geometries will be presented. 

Although they may not be of practical use (except when the 

infinite vortex P is not parallel to the stream), they 

would give more insight to the method. 

The circulation distribution over the wing is a three- 

dimensional surface usually varying in all direction!. The 

vortex lattice method is essentially a stepwise calculation 

of the circulation.  Its continuous distribution is replaced 

by a network of concentrated vortex lines, the strength of 

each being the average circulation over the corresponding 

lattice spacing (see Fig. 20). 

In the small double-crossed area (Figure 20), a 

vorticity vector may have an arbitrary direction. However, 

it may be broken into an X and Y component, each of which is 

taken into account when evaluating   | , and    | ^ 

respectively. 

It is important to note that the X and Y directions 

can be arbitrary; moreover, they need not be perpendicular 

to each other. 

In this report, for the sake of simplicity and 

shortness, a rectangular lattice with the Y-axis parallel to 

the free stream was used. As shown in the results, this lattice 

geometry was adequate for all the cases tested. However, as 

pointed out after  lies A and B, a difficulty arises in locating 

the infinite vortex when (j) ^ o and T is small. For that case 

and others which require non-rectangular lattices, the two 

lattices suggested below should be adjusted before use.  This 

15 



is accomplished by testing a simple case with both the 

rectangular latticeyused in this report,and the chosen 

lattice; and then adjusting the geometry of the latter to 

obtain the same results from both. 

A way to resolve the difficulty and to satisfy 

Rules A and B is to use a tilted lattice at an angle y , as 

illustrated in Figure 21. 

The rules for laying out the lattice, (3) for the 

type A, (2) and (3) for the type B (Figure 21), may not be 

readily applicable. They would have to be modified when ad- 

justing the lattice geometry.  Special care should be given 

to the wing tips where a few horseshoe vortices would have 

to be at reduced spacing (Figure 22). 

In Figure 22, the location of the pivotal points 

near the tip is not known a priori.  Rule (4) is to 

be modified at the tips. 

An equivalent wing fitting the tilted lattice 

may probably also be used (Figure 23). 

16 
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Fig. 4 Rules For Laying Out The Vortex Lattice 

And The Pivotal Points 
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Fig. 15 A One-Dimensional Vortex Sheet Represented 

By Discrete Vortex Lines 
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^ * •)* 

Fig.   17    The  Correct  Configuration Of The  Pivotal 
Points And The Vortex Lines 
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Fig.   18     "Lifting Line" Representation Of A Flat  Plate 

LEADING      V-"* 
EDGE V- C 

0/2,0/2 

TRAILING 
EDGE 

Fig     19    A  "Lifting  Surface" Approximated  By 
The Juxtaposition Of Several Flat  Plates 

35 



THE STRENGTH OF Tj  IS THE 
AVERAGE CIRCULATION OVER 
AREA A | DUE TO THE VORTICITY 
IN THE X-DIRECTION. 

THE STRENGTH OF  T^   IS 
THE AVERAGE CIRCULATION 
OVER Ag DUE TO THE VORTICITY 
IN THE Y-DIRECTION 

Fig.   20    Discrete Vortex Line Representation 
Of A Vortex  Sheet 
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Fig.   21    Tilted Vortex Lattices 
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-JSs&t 

EQUIVALENT 
WING 

HERE, THERE IS NO 
DIFFICULTY IN   PLACING 
THE PIVOTAL POINTS AT 
THE TIPS 

Fig.   23    Use Of An Equivalent Wing  For A Tilted  Lattice 
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