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SUMMARY

The vortex lattice method for the calculation of loads
on a wing advancing in a uniform stream, initiated by Falkner
(Reference 1) in 1943 and refined since then by other researchers
(References 2,3) was extended to the case of a wing in the

vicinity of infinite vortices.

No experimental data or different treatments of the
same problem being available in the literature in order to
verify the accuracy of the present method, the results in the
report had to be limited to checking their convergence with
respect to the three parameters involved and investigating what

conditions them.

The problem being treated linearly, only the simple
case of one infinite vortex at the midspan of a wing at zero
angle of attack has been tested, with the understanding that
the method can be applied to more complicated cases once its

convergence and its validity have been shown.
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NOMENCLATURE

L = location of infinite straight vortex line
along wing span, divided by span.

R = vortex core radius divided by span
U = free stream velocity

W = induced velocity at wing surface

X = abcissa along wing span

Y = ordinate along wing chord

distance between wing midsurface and
infinite straight vortex

™
il

a = c/2

c = wing chord
dX = spacing between two consecutive trailing
vortices, divided by span
d = spacing between two consecutive bound
y vortices, divided by chord
m = number of bound vortices

= number of trailing vortices
= strength of infinite vortex

. strength of (element)i. in the vortex
J lattice J

e 11>
]

angle between infinite straight vortex
and free stream

O angle of attack

X(Y) = vorticity distribution along wing chord

vi



I INTRODUCTION

A thin, rectangular, and untwiscted wing of infinite
span moving at a constant angle of attack in a uniform stream
produces only bound vorticity along its span with no trailing
wake behind.

Consider the same idealized wing over an infinite
vortex (Fig. 1).

The effect of the votex is to increase the angle of
incidence on the upwash side and to decrease it on the downwash
side, as well as to increase the magnitude of the velocity on
both sides. Since the change in incidence and velocity, and
thus in circulation and lift, is not uniform along the span, a

trailing vortex sheet must form.

The infinite vortex | being free, will not be
straight or stationary when interacting with the wing vorticity.
It will likely be distorted into an S shape and rotated. To
make the problem amenable to a simple solution, the effect of
wing vorticity on | will be neglected.

The vorticity distribution over the wing has been
modified. It is clear that this will also be the case with
different wing shapes and different configurations of infinite
vortices. (More than one may be present.)

The object of this report is to show how a vortex
lattice method can be used to determine the calculation
distribution of a wing in the vicinity of infinite vortices.



II DEVELOPMENT OF THE METHOD

Replace the continuous circulation distribution on
the wing surface by a set of line vortices which is discrete
in the spanwise and chordwise directions. The circulation is
constant along a segment parallel to the span, then, after
shedding a trailing vortex extending downstream to infinity,
takes on another constant value along the next bound vortex
segment. The resulting pattern is a '"vortex lattice' laid
on the wing surface as shown in Fig. 2. It will not be
contested that, if the spacing is made infinitesimally small,
the correct distribution can be obtained.

Near the wing, thk trailing vortices will be neither
parallel to the stream nor straight. Because of insufficient
knowledge to determine their geometry near the T.E. and for
simplicity's sake, it is assumed here that they are infinitely
straight and parallel to the stream.

If the wing is thin, the lattice is located on a
surface which is the mean of the upper and lower surfaces.
For the case of a thick profile, two vortex lattices, one on
the upper surface and the other on the lower, may be used
(see Reference 2).

Each bound vortex segment with the two trailing vor-
tices emanating from its ends may be regarded as a horseshoe
vortex satisfying the condition that vorticity does not stop
in the flow (See Fig. 3). The strength of any trailing vortex
is equal to the sum of the strengths of the bound vortex
segments adjacent to it and upstream from it. Thus, to de-
termine completely the circulation distribution, only the
strengths of the bound vortex segments need to be known. This
is the next step coneidered.



At any point, the velocit; Iuduced by the vurtex
lattice, W, is obtained by summing the contribution of each
vortex segment (bound or trailing)

WeW (T g Tips eeeeeess r;l(m-l)s rnm)

The Tﬂij's are the strengths of the bound vortex
segments to be evaluated.

By satisfying the boundary condition, namely equating
at @ x m) ''pivotal points' on the wing the total downwash
(obtained by summing the contributions of the vortex lattice,
the incident infinite vortices, and the normal component of
the free stream velocity) to the local slopey (n x m) linear
algebraic equations are ohtained the solution of which yields
the unknown vortex strengths. To solve those (n x m) equations,
a digital computer is needed in view of the required dimensions
of the lattice for satisfactory accuracy.
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III RULES FOR LAYING OUT THE VORTEX LATTICE AND THE
PIVOTAL POINTS

The rules established by Rubbert (Reference 2)
for laying out the vortex lattice and the pivotal points
have been tested first with a wing advancing in a uniform
stream, then used throughout for the problem considered in

this report.

The rules are:

(1) The line vortices should be equally spaced in
the spanwise, as well as the chordwise, directions.
If it is desired to bring them closer over certain
parts of the wing because of a larger variation
in circulation, the spacing should be changed
very smoothly using a "cosine law". (This is
illustrated in Figure 4.)

(2) I1f the chordwise spacing between the line vortices
is d_, the first line vortex is located at d_/4
from the L.E. and the last one at 3dy/4 from the
T.E.

(3) If the spanwise spacing is dx’ the line vortex
at the wing tip 1is located at dx/4 from it.

(4) The pivotal points must be halfway between two
consecutive line vortices in the chordwise, as
well as the spanwise, directions. The last row
of pivotal points is placed at dy/4 from the
T.E. (For a theoretical justification of the
pivotal point and line vortex locations, see
Appendix I.)
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REMARKS

The storage in the computer being limited, it was
found that the accuracy hopefully obtained by the
use of the cosine law can be achieved by a smaller
lattice spacing. For by using a uniforn spacing
throughout, simplicity and shortness are gained,
and thus, more of the locations in the computer
are left for the solution of a larger number of
simultaneous equations, permitting a smaller
spacing and a better accuracy.

For a constant chord and spanwise spacing, (n x m)
was limite<dd to about 150 before overflow occured in
the 7094 IBM Computer.

It should be pointed out that the above rules are
of the utmost importance. In particular, the
results are very sensitive to a displacement of
the pivotal points from the middle of the lattice

cells.



\' CASE TESTED AND PRELIMINARY DISCUSSION

A thin, rectangular wing, approximated by a
rectangular flat plate, moving at zero agle of attack over
an infinite straight line vortex,'ru which is parallel to
the wing plane, at a distance Z below it and which makes
an angle q) with the free stream was used for the first case.

This case is illustrated in Figure 5 which shows
also the notation used.

In plotting the computer solutioms,circulation per
unit length is first integrated over the chord to get the cir-
culation around the wing. This integration is equivalent to
a summation of the strengths of the bcund vortex segments at a
spanwise station.

The downwash being skew-symmetric over the wing,
(see Figure 1) lift and circulation are expected to be also
skew-symmetric and, moreover, to vanish at the tips.

Only the most representative solutions are given in
this report. Those which are not included corroborate the
general results.

For a smooth circulation distribution and a rapid
convergence of the solutions two rules, evolved when in-
vestigating the variation in dx’ dy’ and L, are observed:-

RULE A: When Z is "small", of the order of 1/2 chord or
less, the infinite wortex T should be placed on
top of a trailing vortex. Otherwise, it may be
placed anywhere.



RULE B: In a direction perpendicular to ', i.e., that
of a nonuniform downwash induced velocity or, in
general, of a nonuniform downwash, the lattice
spacing should be less than Z. Thus, if (i)- 0,
dx 1s smaller than Z.

Those two rules become of importance only if T°
is very close to the wing, say if Z is smaller than one chord.
A difficulty may then arise when laying out, according to
the rules of Section III, the lattice vortex over the chosen
wing shape. For instance, for the case of a rectangular wing
with T at an angle ¢different from zero, the above two rules
and the rules of Section III cannot be satisfied simultaneously.

A discussion and suggestions are given in Appendix II.
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VI CONVERGENCE OF RESULTS

As d, is made smaller, for a rectangular wing of
AR=20, with d_=.25 chord, @ =0, L = .5 and Z = 1 chord, Figure 6
shows four circulation distributions corresponding to four
different values of dx‘ In Figure 7, the peak value of cir-
culation is seen converging to an asymptotic value as dx gets

smaller. Note that dy-l/m, dx- IE_%—T .

As d_ is made smaller for the same case but with
d fixed at .054, Figure 8 shows that the circulation distribution
is practically the same for four different values of d_. The
distribution insensitivity to the chordwise spacing is due to
the special case in hand, namely a constant downwash along the
chord. Here one bound vortex is obviously sufficient, permitting
a smaller dx’ Later, it will be shown that whenever downwash is
not constant along the chord, it is necessary to have more than

one bound vortex.

As Z 1is made larger, the circulation distribution
should converge to that of the wing in a uniform flow. Figure 9
illustrates the expected convergence of the circulation peak
value. Here the asymptotic value, for 7Z=00, is zero since
the flat plate is at zero angle of attack.

e — —— e g s o - g —r e e L S TR WA WY T L MeATLL G b O



VII  SINGULAR CASE: Z= 90

Figure 9 shows also that for Z = 0, the circulation
peak value becomes infinite. This is a consequence of the un-
realistic choice of an infinite vortex T with no inner core
which induces an infinite downwash at the vortex itself. To
avoid this singularity, the infinite vortex is assumed to have
a finite core rotating as a rigid body inducing a velocity as
shown in Figure 10.

No general theory being available to predict the
core diameter, several infinite vortices with different cores
have been tested. The solutions are plotted in Figure 11l.
The important feature is that for a core diameter smaller
than or equal to dx’ the circulation remains unchanged and
the singularity is still present. This is inherent in the
vortex lattice method. For Z being zero, r" is placed
on top of a trailing vortex in accordance with Rule A, i.e.
halfway between two pivotal points which are separated by a
distance dx; since the core diameter is less than dx’ the
linear distribution of downwash in the core, introduced to
eliminate the singularity, does not reach the pivotal points.

e e



VIII CENTER OF PRESSURE LOCATION

Once circulation is known, 1lift is proportional to
it and acts through the center of pressure. The center of
pressure is determined as follows:

Y. . = Sc..,..YY(Y)d‘{ _ é_:{_‘l
] S iy YY) dY Z T:

Che

where x’(Y)is the circulation distribution along the chord.

It was found that for (b = 0, and all values of L
and Z, the center of pressure locus along the span is practically
a straight line at the quarter chord. Thus, the infinite vortex
did not shift the center of pressure from its location in a
uniform flow (see Figure 12). This last result is only a con-
sequence of the case. It is known that, for a flat plate in
a uniform flow, the center of pressure is fixed and located at
the quarter chord. Since the infinite vortex is parallel to
the stream, each spanwise section of width dx may be regarded
as an elementary flat plate in a uniform flow, with constant
circulation and a pair of trailing vortices of same strength
at its tips. Bearing in mind that the spanwise variation in
incidence and velocity due to T" does not move the center of
pressure on each elementary flat plate, it is clear that their
locus will still be a straight line at the 1/4 chord.

Now 1if a chordwise, as well as a spanwise,variation
in stream conditions is included, the centers of pressure will
be displaced by difference amounts. Such a chordwise variation
is introduced by putting the infinite vortex at an angle d)#()
with the stream. Close to [ , this variation is large and,

10



thus, the displacement is relatively large. Far from T , it
is small and the displacement is small. This is illustrated

in Figure 13.

With ¢ﬁ#0 and a corresponding change in the center
of pressure locus, the chordwise spacing d_ becomes of importance
and some convergence is expected as d_gets smaller. Clearly,
if only one bound vortex (at the quarter chord in accordance
with the rules for laying out the lattice) is used, the locus
is located at the bound vortex itself and the expected C.P.
displacement cannot be accounted for; thus, more than one bound
vortex is needed. In Figure 14, the pecak value in the C.P.
locus is plotted versus dy showing a rapid convergence of the
solution as the spac.ag gets smal.ler

All the preceding is in agreement with Rule B.

11




APPENDIX 1

1. Location of Pivotal Points

Two different approaches leading to the same result

are given:

First Approach (suggested by P. Rubbert):

Consider a pivotal point P on a vortex sheet (in

two dimensions). (See Figure 15)

To compute the induced velocity at P, the sheet SS
may be divided into equal segments. At the middle of each seg-
ment is located a point vortex of strength equal to the
average circulation over the segment (as shown in Figure 15).

The replacement of the continuous circulation dis-
tribution by discrete point vortices is acceptable for the
segments far from P. As for the two segments adjacent to P,

consider the following derivation:-

Supposc the segments are small enough so that
between 1 and 3 the circulation may be approximated by a linear
continuous distribution (see Figure 16). The velocity induced
at P due to the vorticity lying between 1 and 3 us given by:

W r{(%)a + '(dag)a][i--ﬂ}ds_ X \ *[(%! -55);;“.1 ]}

o anw (1-s)

(), - . [(@),-(32),] s
‘L [%— sml )Jd - 5 snLd ]d
g‘ﬁ- [(%)i-(gl;:)a‘l

12



Now replace segments (1.2) and(2 3) by concentrated vortices
Tﬂl and Yﬂ located at their midpoints. Assume these
vortices to be of strength equal to the integral of the dis-

tributed c1rculat10n on the segments.

T\x J{ U sa]['l’l (‘3—2 a}ds
= [(41), - (d—g,]é : (%{Li
Similarly, T = [(3_: L - (@) 1% ai

The velocity induced at P by ‘q and Kﬂz is:-

L. L . >-<;1>

A lf’a 2“2’/3

w:

which is the same as the answer for a linear continuous dis-
tribution.

The foregoing justifies the position of Tﬂl
and T12 at the mid points of their segments. Equivalently, P
should be placed halfway between qu and Tﬁz. Then, if more
than one pivotal point is desired, a correct configuration would
be as shown in Figure 17.

Second Approach:

Consider a two dimensional flat plate aerofoil
represented by a vortex line of strength 1 at the quarter
chord (1.e. at the center of pressure and aerodynamic center).
The downwash due to the vortex line equals the normal component

U sina of the free stream velocity at a distance d from

13
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the quarter chordygiven by:- l—;—d= Usina => d= =g v

bt T=nX=maaUsina (seeReference 4, p. 183)
and for a flat plale 2a=c (Reference 4, chapt. 6)
then o= TEUsa) ¢

an Usina b=}
Thus, the downwashes according to the exact theory and the
single vortex line representation are equal at the 3/4 chord.

The flat plate may be represented as in Figure 10.

If a 1.fting surface is represented by the juxta-
position of several flat plates, the configuration of concentrated
vortices and pivotal points would be as shown in Figure 19. It
turns out that the pivotal points are halfway between two con-

secutive point vortices (or vice-versa).

It may be noted incidentally that the first point
vortex is at c¢/4 from the L.E. and the last pivotal point at
c¢/4 from the T.E.

14



APPENDIX II

Alternative lattice geometries will be presented.
Although they may not be of practical use (except when the
infinite vortex [ 1is not parallel to the stream), they
would give more insight to the method.

The circulation distribution over the wing is a threce-
dimensional surface usually varying in all directions. The
vortex lattice method is essenfially a stepwise calculation
of the circulation. Its continuous distribution is replaced
by a network of concentrated vortex lines, the strength of
each being the average circulation over the corresponding
lattice spacing (see Fig. 20).

In the small doubie-crossed area (Figure 20), a
vorticity vector may have an arbitrary direction. However,
it may be broken into an X and Y component, each of which 1is
taken into account when evaluating I 1 and T—‘Z
respectively.

It is important to note that the X and Y directions
can be arbitrary; moreover, they need not be perpendicular
to each other.

In this report, for the sake of simplicity and
shortness, a rectangular lattice with the Y-axis parallel to
the free stream was used. As shown in the results, this lattice
geometry was adequate for all the cases tested. However, as
pointed out after iles A and B, a difficulty arises in locating
the infinite vortex when d)#c;and. T is small. For that case
and others which require non-rectangular lattices, the two
lattices suggested below should be adjusted before use. This

15



is accomplished by testing a simple case with both the
rectangular latticeyused in this report,and the chosen
lattice; and then adjusting the geometry of the latter to
obtain the same results from both.

A way to resolve the difficulty and to satisfy
Rules A and B is to use a tilted lattice at an angle , as

illustrated in Figure 21.

The rules for laying out the lattice, (3) for the
type A, (2) and (3) for the type B (Figure 21), may not be
readily applicable. They would have to be modified when ad-
justing the lattice geometry. Special care should be given
to the wing tips where a few horseshoe vortices would have

to be at reduced spacing (Figure 22).

In Figure 22, the location of the pivotal points
near the tip is not known a priori. Rule (4) is to
be modified at the tips.

An equivalent wing fitting the tilted lattice
may probably also be used (Figure 23).

16
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Fig., 15 A One-Dimensional Vortex Sheet Represented

By Discrete Vortex Lines
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Fig. 17 The Correct Configuration Of The Pivotal
Points And The Vortex Lines
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Fig. 18 'Lifting Line" Representation Of A Flat Plate
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19 A "Lifting Surface" Approximated By

Fig.
n Of Several Flat Plates

The Juxtapositio
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THE STRENGTH OF T; IS THE

AVERAGE CIRCULATION OVER
AREA A, DUE TO THE VORTICITY
IN THE X-DIRECTION.

THE STRENGTH OF T3 IS
THE AVERAGE CIRCULATION
OVER A, DUE TO THE VORTICITY
IN THE Y-DIRECTION

Fig. 20 Discrete Vortex Line Representation
Of A Vortex GSheet
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i 2] Tilted Vortex Lattices
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HERE, THERE IS NO
DIFFICULTY IN PLACING
THE PIVOTAL POINTS AT
THE TIPS

Fig. 23 Use Of An Equivalent Wing For A Tilted Lattice
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